Sample records for demand water availability

  1. The Influence of Climate Change on Irrigated Water Demands and Surface Water Availability of the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Zhang, J.

    2017-12-01

    Balancing irrigated water demands and surface water availability is critical for sustainable water resources management. In China, irrigation is the largest water user, and there is concern that irrigated water demands will be affected by climate change. If the relationship between climate change, irrigated water demands and surface water availability is quantified, then effective measures can be developed to maintain food production while ensuring water sustainability. This research focuses on the Yellow River, the second longest in China, and analyzes the impact of historical and projected climate change on agricultural water demands and surface water availability. Corn and wheat are selected as representative crops to estimate the effect of temperature and precipitin changes on irrigated water demands. The VIC model is used to simulate daily streamflow throughout the Yellow River, providing estimates of surface water availability. Overall, results indicate the irrigated water need and surface water availability are impacted by climate change, with spatially varying impacts depending on spatial patterns of climate trends and river network position. This research provides insight into water security in the Yellow River basin, indicating where water efficiency measures are needed and where they are not.

  2. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    NASA Technical Reports Server (NTRS)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  3. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability.

    PubMed

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J; Peel, Murray C; Phillips, Thomas J; Wada, Yoshihide; Ravalico, Jakin K

    2017-07-24

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  4. Is the available cropland and water enough for food demand? A global perspective of the Land-Water-Food nexus

    NASA Astrophysics Data System (ADS)

    Ibarrola-Rivas, M. J.; Granados-Ramírez, R.; Nonhebel, S.

    2017-12-01

    Land and water are essential local resources for food production but are limited. The main drivers of increasing food demand are population growth and dietary changes, which depend on the socioeconomic situation of the population. These two factors affect the availability of local resources: population growth reduces the land and water per person; and adoption of affluent diets increases the demand for land and water per person. This study shows potentials of global food supply by linking food demand drivers with national land and water availability. Whether the available land and water is enough to meet national food demand was calculated for 187 countries. The calculations were performed for the past situation (1960 and 2010) and to assess four future scenarios (2050) to discuss different paths of diets, population numbers and agricultural expansion. Inclusion of the demand perspective in the analysis has shown stronger challenges for future global food supply than have other studies. The results show that with the "business as usual" scenario, 40% of the global population in 2050 will live in countries with not enough land nor water to meet the demands of their population. Restriction to basic diets will be the most effective in lowering both land and water constraints. Our results identify both food production and food demand factors, and the regions that may experience the strongest challenges in 2050.

  5. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    DOE PAGES

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; ...

    2017-07-24

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the regionmore » could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.« less

  6. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the regionmore » could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.« less

  7. Open Source Tools for Assessment of Global Water Availability, Demands, and Scarcity

    NASA Astrophysics Data System (ADS)

    Li, X.; Vernon, C. R.; Hejazi, M. I.; Link, R. P.; Liu, Y.; Feng, L.; Huang, Z.; Liu, L.

    2017-12-01

    Water availability and water demands are essential factors for estimating water scarcity conditions. To reproduce historical observations and to quantify future changes in water availability and water demand, two open source tools have been developed by the JGCRI (Joint Global Change Research Institute): Xanthos and GCAM-STWD. Xanthos is a gridded global hydrologic model, designed to quantify and analyze water availability in 235 river basins. Xanthos uses a runoff generation and a river routing modules to simulate both historical and future estimates of total runoff and streamflows on a monthly time step at a spatial resolution of 0.5 degrees. GCAM-STWD is a spatiotemporal water disaggregation model used with the Global Change Assessment Model (GCAM) to spatially downscale global water demands for six major enduse sectors (irrigation, domestic, electricity generation, mining, and manufacturing) from the region scale to the scale of 0.5 degrees. GCAM-STWD then temporally downscales the gridded annual global water demands to monthly results. These two tools, written in Python, can be integrated to assess global, regional or basin-scale water scarcity or water stress. Both of the tools are extensible to ensure flexibility and promote contribution from researchers that utilize GCAM and study global water use and supply.

  8. Water-Constrained Electric Sector Capacity Expansion Modeling Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Macknick, J.; Miara, A.; Vorosmarty, C. J.; Averyt, K.; Meldrum, J.; Corsi, F.; Prousevitch, A.; Rangwala, I.

    2015-12-01

    Over 80% of U.S. electricity generation uses a thermoelectric process, which requires significant quantities of water for power plant cooling. This water requirement exposes the electric sector to vulnerabilities related to shifts in water availability driven by climate change as well as reductions in power plant efficiencies. Electricity demand is also sensitive to climate change, which in most of the United States leads to warming temperatures that increase total cooling-degree days. The resulting demand increase is typically greater for peak demand periods. This work examines the sensitivity of the development and operations of the U.S. electric sector to the impacts of climate change using an electric sector capacity expansion model that endogenously represents seasonal and local water resource availability as well as climate impacts on water availability, electricity demand, and electricity system performance. Capacity expansion portfolios and water resource implications from 2010 to 2050 are shown at high spatial resolution under a series of climate scenarios. Results demonstrate the importance of water availability for future electric sector capacity planning and operations, especially under more extreme hotter and drier climate scenarios. In addition, region-specific changes in electricity demand and water resources require region-specific responses that depend on local renewable resource availability and electricity market conditions. Climate change and the associated impacts on water availability and temperature can affect the types of power plants that are built, their location, and their impact on regional water resources.

  9. Evaluation of measures to meet future supply demand gap in Chennai city, India

    NASA Astrophysics Data System (ADS)

    Lakshmanan, E.; Paul, N.

    2016-12-01

    Availability of water forever has daunted all the major cities of the world and the cities of India are no exception. Even with high annual average rainfall of 1200 mm the Chennai city has an availability of just 108 lpcd of water, which is much lower than 150 lpcd prescribed by the World Health Organisation. The water requirement presently is met mainly from five reservoirs and partly from groundwater pumping which has given rise to seawater intrusion. The objective of this study is to find effective measures for overcoming the chronic demand supply gap and to predict the results of such measures quantitatively by modelling with the Water Evaluation and Planning System(WEAP). The modelling of city's water demand and supply system was carried out using WEAP and calibration was done using PEST. The data required for this study was obtained from various sources as well as by field investigations. There has been a continuous decrease in the actual water supply even with high availability as predicted by the model. About 60 percent of the city's supplied water ends in sewage and after treatment is presently supplied to industries, on its reuse it is found to meet completely the city's demand alone. The modelled heavy rainfall scenario demonstrates an increase in the water availability up to 20 percent during the years of heavy rainfall. The rejuvenation of existing water bodies in the outskirts of Chennai will increase the water availability for agriculture by 60 percent and hence more groundwater can be pumped for city's water supply. With addition of a new desalination plant over the existing two, the city's water supply-demand gap can be reduced by about 80%. If all the measures are implemented the water availability will exceed the demand. Thus, the WEAP model was successfully used to suggest means for sustainable water management plans for the Chennai city.

  10. Integrated Assessment of Global Water Scarcity over the 21st Century under Multiple Climate Change Mitigation Policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.

    2014-01-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14more » geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and a global population of 14 billion by 2095, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demand for water exceeds the amount of water availability in two GCAM regions, the Middle East and India. Additionally, in years 2050 and 2095, 20% and 27% of the global population, respectively, is projected to live in areas (grid cells) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). This study implies an increasingly prominent role for water in future human decisions, and highlights the importance of including water in integrated assessment of global change.« less

  11. A generic hydroeconomic model to assess future water scarcity

    NASA Astrophysics Data System (ADS)

    Neverre, Noémie; Dumas, Patrice

    2015-04-01

    We developed a generic hydroeconomic model able to confront future water supply and demand on a large scale, taking into account man-made reservoirs. The assessment is done at the scale of river basins, using only globally available data; the methodology can thus be generalized. On the supply side, we evaluate the impacts of climate change on water resources. The available quantity of water at each site is computed using the following information: runoff is taken from the outputs of CNRM climate model (Dubois et al., 2010), reservoirs are located using Aquastat, and the sub-basin flow-accumulation area of each reservoir is determined based on a Digital Elevation Model (HYDRO1k). On the demand side, agricultural and domestic demands are projected in terms of both quantity and economic value. For the agricultural sector, globally available data on irrigated areas and crops are combined in order to determine irrigated crops localization. Then, crops irrigation requirements are computed for the different stages of the growing season using Allen (1998) method with Hargreaves potential evapotranspiration. Irrigation water economic value is based on a yield comparison approach between rainfed and irrigated crops. Potential irrigated and rainfed yields are taken from LPJmL (Blondeau et al., 2007), or from FAOSTAT by making simple assumptions on yield ratios. For the domestic sector, we project the combined effects of demographic growth, economic development and water cost evolution on future demands. The method consists in building three-blocks inverse demand functions where volume limits of the blocks evolve with the level of GDP per capita. The value of water along the demand curve is determined from price-elasticity, price and demand data from the literature, using the point-expansion method, and from water costs data. Then projected demands are confronted to future water availability. Operating rules of the reservoirs and water allocation between demands are based on the maximization of water benefits, over time and space. A parameterisation-simulation-optimisation approach is used. This gives a projection of future water scarcity in the different locations and an estimation of the associated direct economic losses from unsatisfied demands. This generic hydroeconomic model can be easily applied to large-scale regions, in particular developing regions where little reliable data is available. We will present an application to Algeria, up to the 2050 horizon.

  12. The relative impact of climate change mitigation policies and socioeconomic drivers on water scarcity - An integrated assessment modeling approach

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.

    2012-12-01

    We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total renewable freshwater available in two GCAM regions, the Middle East and India. Additionally, 20% and 27% of the global population in years 2050 and 2095, respectively, is projected to live in areas (grid cells) that will experience greater water demands than the amount of renewable water available in a year (i.e., WSI > 1.0). We also investigate the effects of emission mitigation policies on water demand and compare them to the contribution of socioeconomic drivers both globally and regionally. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 in year 2095, under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. With more stringent climate mitigation targets, water scarcity declines under a UCT mitigation policy while increases with a FFICT mitigation scenario by the year 2095. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food, energy, and land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops.

  13. Sub-seasonal predictability of water scarcity at global and local scale

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Wada, Y.; Wood, E. F.

    2016-12-01

    Forecasting the water demand and availability for agriculture and energy production has been neglected in previous research, partly due to the fact that most large-scale hydrological models lack the skill to forecast human water demands at sub-seasonal time scale. We study the potential of a sub-seasonal water scarcity forecasting system for improved water management decision making and improved estimates of water demand and availability. We have generated 32 years of global sub-seasonal multi-model water availability, demand and scarcity forecasts. The quality of the forecasts is compared to a reference forecast derived from resampling historic weather observations. The newly developed system has been evaluated for both the global scale and in a real-time local application in the Sacramento valley for the Trinity, Shasta and Oroville reservoirs, where the water demand for agriculture and hydropower is high. On the global scale we find that the reference forecast shows high initial forecast skill (up to 8 months) for water scarcity in the eastern US, Central Asia and Sub-Saharan Africa. Adding dynamical sub-seasonal forecasts results in a clear improvement for most regions in the world, increasing the forecasts' lead time by 2 or more months on average. The strongest improvements are found in the US, Brazil, Central Asia and Australia. For the Sacramento valley we can accurately predict anomalies in the reservoir inflow, hydropower potential and the downstream irrigation water demand 6 months in advance. This allow us to forecast potential water scarcity in the Sacramento valley and adjust the reservoir management to prevent deficits in energy or irrigation water availability. The newly developed forecast system shows that it is possible to reduce the vulnerability to upcoming water scarcity events and allows optimization of the distribution of the available water between the agricultural and energy sector half a year in advance.

  14. Evaluating the potential of improving residential water balance at building scale.

    PubMed

    Agudelo-Vera, Claudia M; Keesman, Karel J; Mels, Adriaan R; Rijnaarts, Huub H M

    2013-12-15

    Earlier results indicated that, for an average household, self-sufficiency in water supply can be achieved by following the Urban harvest Approach (UHA), in a combination of demand minimization, cascading and multi-sourcing. To achieve these results, it was assumed that all available local resources can be harvested. In reality, however, temporal, spatial and location-bound factors pose limitations to this harvest and, thus, to self-sufficiency. This article investigates potential spatial and temporal limitations to harvest local water resources at building level for the Netherlands, with a focus on indoor demand. Two building types were studied, a free standing house (one four-people household) and a mid-rise apartment flat (28 two-person households). To be able to model yearly water balances, daily patterns considering household occupancy and presence of water using appliances were defined per building type. Three strategies were defined. The strategies include demand minimization, light grey water (LGW) recycling, and rainwater harvesting (multi-sourcing). Recycling and multi-sourcing cater for toilet flushing and laundry machine. Results showed that water saving devices may reduce 30% of the conventional demand. Recycling of LGW can supply 100% of second quality water (DQ2) which represents 36% of the conventional demand or up to 20% of the minimized demand. Rainwater harvesting may supply approximately 80% of the minimized demand in case of the apartment flat and 60% in case of the free standing house. To harvest these potentials, different system specifications, related to the household type, are required. Two constraints to recycle and multi-source were identified, namely i) limitations in the grey water production and available rainfall; and ii) the potential to harvest water as determined by the temporal pattern in water availability, water use, and storage and treatment capacities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    NASA Astrophysics Data System (ADS)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2011-12-01

    During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960-2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which are subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes, wetlands and reservoirs by means of the global hydrological model PCR-GLOBWB. We thus define blue water stress by comparing blue water availability with corresponding net total blue water demand by means of the commonly used, Water Scarcity Index. The results show a drastic increase in the global population living under water-stressed conditions (i.e. moderate to high water stress) due to growing water demand, primarily for irrigation, which has more than doubled from 1708/818 to 3708/1832 km3 yr-1 (gross/net) over the period 1960-2000. We estimate that 800 million people or 27% of the global population were living under water-stressed conditions for 1960. This number is eventually increased to 2.6 billion or 43% for 2000. Our results indicate that increased water demand is a decisive factor for heightened water stress in various regions such as India and North China, enhancing the intensity of water stress up to 200%, while climate variability is often a main determinant of extreme events. However, our results also suggest that in several emerging and developing economies (e.g. India, Turkey, Romania and Cuba) some of past extreme events were anthropogenically driven due to increased water demand rather than being climate-induced.

  16. Current and projected water demand and water availability estimates under climate change scenarios in the Weyib River basin in Bale mountainous area of Southeastern Ethiopia

    NASA Astrophysics Data System (ADS)

    Serur, Abdulkerim Bedewi; Sarma, Arup Kumar

    2017-07-01

    This study intended to estimate the spatial and temporal variation of current and projected water demand and water availability under climate change scenarios in Weyib River basin, Bale mountainous area of Southeastern Ethiopia. Future downscaled climate variables from three Earth System Models under the three RCP emission scenarios were inputted into ArcSWAT hydrological model to simulate different components of water resources of a basin whereas current and projected human and livestock population of the basin is considered to estimate the total annual water demand for various purposes. Results revealed that the current total annual water demand of the basin is found to be about 289 Mm3, and this has to increase by 83.47% after 15 years, 200.67% after 45 years, and 328.78% after 75 years by the 2020s, 2050s, and 2080s, respectively, from base period water demand mainly due to very rapid increasing population (40.81, 130.80, and 229.12% by the 2020s, 2050s, and 2080s, respectively) and climatic variability. The future average annual total water availability in the basin is observed to be increased by ranging from 15.04 to 21.61, 20.08 to 23.34, and 16.21 to 39.53% by the 2020s, 2050s, and 2080s time slice, respectively, from base period available water resources (2333.39 Mm3). The current water availability per capita per year of the basin is about 3112.23 m3 and tends to decline ranging from 11.78 to 17.49, 46.02 to 47.45, and 57.18 to 64.34% by the 2020s, 2050s, and 2080s, respectively, from base period per capita per year water availability. This indicated that there might be possibility to fall the basin under water stress condition in the long term.

  17. Pond and Irrigation Model (PIM): a tool for simultaneously evaluating pond water availability and crop irrigation demand

    Treesearch

    Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins

    2018-01-01

    Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...

  18. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers decisions, the operation of the upstream reservoir (Como Lake) is optimised with respect to the real irrigation demand of the crops. Then, the farmers can re-adapt their decisions according with the new optimal operating strategy, thus activating a loop between the two systems that exchange expected supply and irrigation demand. Results show that the proposed interaction between farmers and water managers is able to enhance the efficiency of water management practices, foster crop production and mitigate climate change impacts.

  19. The Role of Demand Response in Reducing Water-Related Power Plant Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Brinkman, G.; Zhou, E.; O'Connell, M.; Newmark, R. L.; Miara, A.; Cohen, S. M.

    2015-12-01

    The electric sector depends on readily available water supplies for reliable and efficient operation. Elevated water temperatures or low water levels can trigger regulatory or plant-level decisions to curtail power generation, which can affect system cost and reliability. In the past decade, dozens of power plants in the U.S. have curtailed generation due to water temperatures and water shortages. Curtailments occur during the summer, when temperatures are highest and there is greatest demand for electricity. Climate change could alter the availability and temperature of water resources, exacerbating these issues. Constructing alternative cooling systems to address vulnerabilities can be capital intensive and can also affect power plant efficiencies. Demand response programs are being implemented by electric system planners and operators to reduce and shift electricity demands from peak usage periods to other times of the day. Demand response programs can also play a role in reducing water-related power sector vulnerabilities during summer months. Traditionally, production cost modeling and demand response analyses do not include water resources. In this effort, we integrate an electricity production cost modeling framework with water-related impacts on power plants in a test system to evaluate the impacts of demand response measures on power system costs and reliability. Specifically, we i) quantify the cost and reliability implications of incorporating water resources into production cost modeling, ii) evaluate the impacts of demand response measures on reducing system costs and vulnerabilities, and iii) consider sensitivity analyses with cooling systems to highlight a range of potential benefits of demand response measures. Impacts from climate change on power plant performance and water resources are discussed. Results provide key insights to policymakers and practitioners for reducing water-related power plant vulnerabilities via lower cost methods.

  20. Numerical simulation of groundwater artificial recharge in a semiarid-climate basin of northwest Mexico, case study the Guadalupe Valley Aquifer, Baja California

    NASA Astrophysics Data System (ADS)

    Campos-Gaytan, J. R.; Herrera-Oliva, C. S.

    2013-05-01

    In this study was analyzed through a regional groundwater flow model the effects on groundwater levels caused by the application of different future groundwater management scenarios (2007-2025) at the Guadalupe Valley, in Baja California, Mexico. Among these studied alternatives are those scenarios designed in order to evaluate the possible effects generated for the groundwater artificial recharge in order to satisfy a future water demand with an extraction volume considered as sustainable. The State of Baja California has been subject to an increment of the agricultural, urban and industrials activities, implicating a growing water-demand. However, the State is characterized by its semiarid-climate with low surface water availability; therefore, has resulted in an extensive use of groundwater in local aquifer. Water level measurements indicate there has been a decline in water levels in the Guadalupe Valley for the past 30 years. The Guadalupe Valley aquifer represents one the major sources of water supply in Ensenada region. It supplies about 25% of the water distributed by the public water supplier at the city of Ensenada and in addition constitutes the main water resource for the local wine industries. Artificially recharging the groundwater system is one water resource option available to the study zone, in response to increasing water demand. The existing water supply system for the Guadalupe Valley and the city of Ensenada is limited since water use demand periods in 5 to 10 years or less will require the construction of additional facilities. To prepare for this short-term demand, one option available to water managers is to bring up to approximately 3.0 Mm3/year of treated water of the city of Ensenada into the valley during the low-demand winter months, artificially recharge the groundwater system, and withdraw the water to meet the summer demands. A 2- Dimensional groundwater flow was used to evaluate the effects of the groundwater artificial recharge. Artificial recharge is feasible and is one water resource technique available to meet an increasing water demand; therefore, the final objective was to estimate the response of the groundwater system to the possible development of a system for artificial recharge of the aquifer. Based on the analysis of the groundwater management alternatives it was determined a groundwater withdrawal which ensures a sustainable management of the aquifer, in order to maintain a sustainable extraction volume and to reduce the water table depletion.

  1. Assessment of water availability and demand in Lake Guiers , Senegal.

    NASA Astrophysics Data System (ADS)

    Sambou, D.; Weihrauch, D.; Hellwing, V.; Diekkrüger, B.; Höllermann, B.; Gaye, A. T.

    2015-12-01

    Assessment of water availability and demand in Lake Guiers, SenegalWater resources are critical to economic growth and social development. In most African countries, supply of drinking water to satisfy population needs is a key issue because of population growth and climate and land use change. During the last three decades, increasing population, changing patterns of water demand, and concentration of population and economic activities in urban areas has pressurize Senegal's freshwater resources. To overcome this deficit, Senegal turned, to the exploitation of the Lake Guiers. It is the sole water reservoir which can be used extensively as a stable freshwater. Its water is use for irrigating crops and sugar refinery and as a drinking water resource for urban centres, including Dakar, the capital city of Senegal, as well as for the local population and animal herds. To ensure sustainability, a greater understanding of Lake Guiers's water resources and effective management of its use will be required. In this study we developed and quantified future water situation (water availability and demand) in Lake Guiers under scenarios of climate change and population growth until 2050, using the water management model WEAP (Water Evaluation And Planning system). The results show that the pressure on Lake Guiers's water resources will increase, leading to greater competition between agriculture and municipal demand site. Decreasing inflows due to climate change will aggravate this situation. WEAP results offer basis to assister lake Guiers water resources manager for an efficient long-term planning and management. Keywords: climate change, population growth , IWRM, Lake Guiers, Senegal

  2. The benefit of using additional hydrological information from earth observations and reanalysis data on water allocation decisions in irrigation districts

    NASA Astrophysics Data System (ADS)

    Kaune, Alexander; López, Patricia; Werner, Micha; de Fraiture, Charlotte

    2017-04-01

    Hydrological information on water availability and demand is vital for sound water allocation decisions in irrigation districts, particularly in times of water scarcity. However, sub-optimal water allocation decisions are often taken with incomplete hydrological information, which may lead to agricultural production loss. In this study we evaluate the benefit of additional hydrological information from earth observations and reanalysis data in supporting decisions in irrigation districts. Current water allocation decisions were emulated through heuristic operational rules for water scarce and water abundant conditions in the selected irrigation districts. The Dynamic Water Balance Model based on the Budyko framework was forced with precipitation datasets from interpolated ground measurements, remote sensing and reanalysis data, to determine the water availability for irrigation. Irrigation demands were estimated based on estimates of potential evapotranspiration and coefficient for crops grown, adjusted with the interpolated precipitation data. Decisions made using both current and additional hydrological information were evaluated through the rate at which sub-optimal decisions were made. The decisions made using an amended set of decision rules that benefit from additional information on demand in the districts were also evaluated. Results show that sub-optimal decisions can be reduced in the planning phase through improved estimates of water availability. Where there are reliable observations of water availability through gauging stations, the benefit of the improved precipitation data is found in the improved estimates of demand, equally leading to a reduction of sub-optimal decisions.

  3. On inclusion of water resource management in Earth system models - Part 1: Problem definition and representation of water demand

    NASA Astrophysics Data System (ADS)

    Nazemi, A.; Wheater, H. S.

    2015-01-01

    Human activities have caused various changes to the Earth system, and hence the interconnections between human activities and the Earth system should be recognized and reflected in models that simulate Earth system processes. One key anthropogenic activity is water resource management, which determines the dynamics of human-water interactions in time and space and controls human livelihoods and economy, including energy and food production. There are immediate needs to include water resource management in Earth system models. First, the extent of human water requirements is increasing rapidly at the global scale and it is crucial to analyze the possible imbalance between water demands and supply under various scenarios of climate change and across various temporal and spatial scales. Second, recent observations show that human-water interactions, manifested through water resource management, can substantially alter the terrestrial water cycle, affect land-atmospheric feedbacks and may further interact with climate and contribute to sea-level change. Due to the importance of water resource management in determining the future of the global water and climate cycles, the World Climate Research Program's Global Energy and Water Exchanges project (WRCP-GEWEX) has recently identified gaps in describing human-water interactions as one of the grand challenges in Earth system modeling (GEWEX, 2012). Here, we divide water resource management into two interdependent elements, related firstly to water demand and secondly to water supply and allocation. In this paper, we survey the current literature on how various components of water demand have been included in large-scale models, in particular land surface and global hydrological models. Issues of water supply and allocation are addressed in a companion paper. The available algorithms to represent the dominant demands are classified based on the demand type, mode of simulation and underlying modeling assumptions. We discuss the pros and cons of available algorithms, address various sources of uncertainty and highlight limitations in current applications. We conclude that current capability of large-scale models to represent human water demands is rather limited, particularly with respect to future projections and coupled land-atmospheric simulations. To fill these gaps, the available models, algorithms and data for representing various water demands should be systematically tested, intercompared and improved. In particular, human water demands should be considered in conjunction with water supply and allocation, particularly in the face of water scarcity and unknown future climate.

  4. Determining Regional Sensitivity to Energy-Related Water Withdrawals in Minnesota

    NASA Astrophysics Data System (ADS)

    McCulloch, A.; Brauman, K. A.

    2015-12-01

    Minnesota has abundant freshwater resources, yet concerns about water-impacts of energy and mining development are increasing. Statewide, total annual water withdrawals have increased, and, in some watersheds, withdrawals make up a large fraction of available water. The energy and mining sectors play a critical role in determining water availability, as water is used to irrigate biofuel feedstock crops, cool thermoelectric plants, and process and transport fuels and iron ore. We evaluated the Minnesota Department of Natural Resources (DNR) Water and Reporting System (MPARS) dataset (1988-2014) to identify regions where energy and mining-related water withdrawals are high or where they are increasing. The energy and mining sectors account for over 65 percent of total water extractions in Minnesota, but this percentage is greater in some regions. In certain southern and northeastern Minnesota watersheds, these extractions account for 90 percent of total water demand. Sensitivity to these demands is not dependent on total water demand alone, and is also not uniform among watersheds. We identified and evaluated factors influencing sensitivity, including population, extraction type (surface water or groundwater), percentage of increased demand, and whether withdrawals are consumptive or not. We determined that southern Minnesota is particularly sensitive to increased water demands, because of growing biofuel and sand extraction industries (the products of which are used in hydraulic fracturing). In the last ten years, ethanol production in Minnesota has increased by 440 percent, and over fifteen refineries (each with a capacity over 1.1 billion gallons), have been built. These users primarily extract from surface water bodies within a few watersheds, compromising local supplies. As these energy-related industries continue to grow, so will the demand for freshwater resources. Determining regional sensitivity to increased demands will allow policy-makers to manage the increased competition for Minnesota's future water supplies.

  5. Potential climate change impacts on water availability and cooling water demand in the Lusatian Lignite Mining Region, Central Europe

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Koch, Hagen; Gädeke, Anne; Grünewald, Uwe; Kaltofen, Michael; Redetzky, Michael

    2014-05-01

    In the catchments of the rivers Schwarze Elster, Spree and Lusatian Neisse, hydrologic and socioeconomic systems are coupled via a complex water management system in which water users, reservoirs and water transfers are included. Lignite mining and electricity production are major water users in the region: To allow for open pit lignite mining, ground water is depleted and released into the river system while cooling water is used in the thermal power plants. In order to assess potential climate change impacts on water availability in the catchments as well as on the water demand of the thermal power plants, a climate change impact assessment was performed using the hydrological model SWIM and the long term water management model WBalMo. The potential impacts of climate change were considered by using three regional climate change scenarios of the statistical regional climate model STAR assuming a further temperature increase of 0, 2 or 3 K by the year 2050 in the region respectively. Furthermore, scenarios assuming decreasing mining activities in terms of a decreasing groundwater depression cone, lower mining water discharges, and reduced cooling water demand of the thermal power plants are considered. In the standard version of the WBalMo model cooling water demand is considered as static with regard to climate variables. However, changes in the future cooling water demand over time according to the plans of the local mining and power plant operator are considered. In order to account for climate change impacts on the cooling water demand of the thermal power plants, a dynamical approach for calculating water demand was implemented in WBalMo. As this approach is based on air temperature and air humidity, the projected air temperature and air humidity of the climate scenarios at the locations of the power plants are included in the calculation. Due to increasing temperature and decreasing precipitation declining natural and managed discharges, and hence a lower water availability in the region, were simulated by SWIM and WBalMo respectively. Next to changing climate conditions, also the different mining scenarios have considerable impacts on natural and managed discharges. Using the dynamic approach for cooling water demand, the simulated water demands are lower in winter, but higher in summer compared to the static approach. As a consequence of changes in the seasonal pattern of the cooling water demand of the power plants, lower summer discharges downstream of the thermal power plants are simulated using the dynamical approach. Due to the complex water management system in the region included in the water management model WBalMo, also the simulation of reservoir releases and volumes is impacted by the choice of either the static or the dynamic approach for calculating the cooling water demand of the thermal power plants.

  6. Analyzing Uncertainty and Risk in the Management of Water Resources in the State Of Texas

    NASA Astrophysics Data System (ADS)

    Singh, A.; Hauffpauir, R.; Mishra, S.; Lavenue, M.

    2010-12-01

    The State of Texas updates its state water plan every five years to determine the water demand required to meet its growing population. The plan compiles forecasts of water deficits from state-wide regional water planning groups as well as the water supply strategies to address these deficits. To date, the plan has adopted a deterministic framework, where reference values (e.g., best estimates, worst-case scenario) are used for key factors such as population growth, demand for water, severity of drought, water availability, etc. These key factors can, however, be affected by multiple sources of uncertainties such as - the impact of climate on surface water and groundwater availability, uncertainty in population projections, changes in sectoral composition of the economy, variability in water usage, feasibility of the permitting process, cost of implementation, etc. The objective of this study was to develop a generalized and scalable methodology for addressing uncertainty and risk in water resources management both at the regional and the local water planning level. The study proposes a framework defining the elements of an end-to-end system model that captures the key components of demand, supply and planning modules along with their associated uncertainties. The framework preserves the fundamental elements of the well-established planning process in the State of Texas, promoting an incremental and stakeholder-driven approach to adding different levels of uncertainty (and risk) into the decision-making environment. The uncertainty in the water planning process is broken down into two primary categories: demand uncertainty and supply uncertainty. Uncertainty in Demand is related to the uncertainty in population projections and the per-capita usage rates. Uncertainty in Supply, in turn, is dominated by the uncertainty in future climate conditions. Climate is represented in terms of time series of precipitation, temperature and/or surface evaporation flux for some future time period of interest, which can be obtained as outputs of global climate models (GCMs). These are then linked with hydrologic and water-availability models (WAMs) to estimate water availability for the worst drought conditions under each future climate scenario. Combining the demand scenarios with the water availability scenarios yields multiple scenarios for water shortage (or surplus). Given multiple shortage/surplus scenarios, various water management strategies can be assessed to evaluate the reliability of meeting projected deficits. These reliabilities are then used within a multi-criteria decision-framework to assess trade-offs between various water management objectives, thus helping to make more robust decisions while planning for the water needs of the future.

  7. Socioeconomic Drought in a Changing Climate: Modeling and Management

    NASA Astrophysics Data System (ADS)

    AghaKouchak, Amir; Mehran, Ali; Mazdiyasni, Omid

    2016-04-01

    Drought is typically defined based on meteorological, hydrological and land surface conditions. However, in many parts of the world, anthropogenic changes and water management practices have significantly altered local water availability. Socioeconomic drought refers to conditions whereby the available water supply cannot satisfy the human and environmental water needs. Surface water reservoirs provide resilience against local climate variability (e.g., droughts), and play a major role in regional water management. This presentation focuses on a framework for describing socioeconomic drought based on both water supply and demand information. We present a multivariate approach as a measure of socioeconomic drought, termed Multivariate Standardized Reliability and Resilience Index (MSRRI; Mehran et al., 2015). This model links the information on inflow and surface reservoir storage to water demand. MSRRI integrates a "top-down" and a "bottom-up" approach for describing socioeconomic drought. The "top-down" component describes processes that cannot be simply controlled or altered by local decision-makers and managers (e.g., precipitation, climate variability, climate change), whereas the "bottom-up" component focuses on the local resilience, and societal capacity to respond to droughts. The two components (termed, Inflow-Demand Reliability (IDR) indicator and Water Storage Resilience (WSR) indicator) are integrated using a nonparametric multivariate approach. We use this framework to assess the socioeconomic drought during the Australian Millennium Drought (1998-2010) and the 2011-2014 California Droughts. MSRRI provides additional information on socioeconomic drought onset, development and termination based on local resilience and human demand that cannot be obtained from the commonly used drought indicators. We show that MSRRI can be used for water management scenario analysis (e.g., local water availability based on different human water demands scenarios). Finally, we provide examples of using the proposed modeling framework for analyzing water availability in a changing climate considering local conditions. Reference: Mehran A., Mazdiyasni O., AghaKouchak A., 2015, A Hybrid Framework for Assessing Socioeconomic Drought: Linking Climate Variability, Local Resilience, and Demand, Journal of Geophysical Research, 120 (15), 7520-7533, doi: 10.1002/2015JD023147

  8. Water stress as a trigger of demand change: exploring the implications for drought planning

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Islam, S.; Portney, K. E.

    2015-12-01

    Drought in the Anthropocene is a function of both supply and demand. Despite its importance, demand is typically incorporated into planning models exogenously using a single scenario of demand change over time. Alternatively, demand is incorporated endogenously in hydro-economic models based on the assumption of rationality. However, actors are constrained by limited information and information processing capabilities, casting doubt on the rationality assumption. Though the risk of water shortage changes incrementally with demand growth and hydrologic change, significant shifts in management are punctuated and often linked to periods of stress. The observation of lasting decreases in per capita demands in a number of cities during periods of water stress prompts an alternate hypothesis: the occurrence of water stress increases the tendency of cities to promote and enforce efficient technologies and behaviors and the tendency of users to adopt them. We show the relevance of this hypothesis by building a model of a hypothetical surface water system to answer the following question: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? The model links the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). Under SOP, demand is fulfilled unless available supply drops below demand; under HP, water releases are reduced in anticipation of a deficit to decrease the risk of a large shortfall. The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result per capita demand decrease during periods of water stress are more frequent but less drastic and the additive effect of small adjustments decreases the tendency of the system to overshoot available supplies.

  9. Water scarcity and economic damage in Europe: regionally relevant simulations from 2000 to 2050

    NASA Astrophysics Data System (ADS)

    Bernhard, Jeroen; de Roo, Ad; Bisselink, Bernard; Gelati, Emiliano; Karssenberg, Derek; de Jong, Steven

    2017-04-01

    Water availability is unequally distributed across Europe. Where certain regions experience a surplus of water, other areas have limited water availability which causes economic damage to the water using sectors such as households, industries or agriculture. Future changes in climatic and socio-economic conditions are expected to further increase the competition for available water that is already present in Europe. This means there is an increasing need for models that are able to simulate this multi-sectorial system of water availability and demand and incorporate the socio-economic component required for robust decisions and policy support. We present our modelling study which is focused at providing regionally relevant pan-European water scarcity and economic damage simulations. First we developed regionally relevant pan-European water demand simulations for the household and industry sector from 2000 up to 2050. For the household sector we developed a model to simulate water use based on water price, income and several other relevant variables at NUTS-3 level (over 1200 regions in Europe). Alternatively, we modelled industrial water use based on regionally downscaled water productivity values at the national level for ten sub-sections of the NACE (Nomenclature of Economic Activities) classification for economic activities. Subsequently we used scenario projections of our explanatory variables to make scenario simulations of water demand from 2000 up to 2050 at pan-European scale with unprecedented spatial and sub-sectorial detail. In order to analyze the European water use system we integrated these water demand scenarios into the hydrological rainfall-runoff model called LISFLOOD (Distributed Water Balance and Flood Simulation Model), which incorporates a vegetation module for the simulation of crop yield and irrigation water demand of the agriculture sector. We simulated river discharge and groundwater availability for abstractions of water using sectors across Europe from 2000 up to 2050 at 5km grid level for multiple climate and socio-economic scenarios. This allowed us to identify regions with water scarcity problems from the recent past up to 2050 and quantify the economic damage that can be attributed to the limited water availability. Results showed several regions where substantially more water is extracted from the system than what would be sustainable into the future. Furthermore, we analyzed how changing water prices or relocation of economic activities could reduce future water scarcity problems and decrease the related economical damage. We found that for some regions, relatively small measurers already could have a positive impact on water scarcity problems.

  10. Agricultural Water Use under Global Change

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  11. Technical Note: Seasonality in alpine water resources management - a regional assessment

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Fleischhacker, E.; Rauch, W.

    2008-01-01

    Alpine regions are particularly affected by seasonal variations in water demand and water availability. Especially the winter period is critical from an operational point of view, as being characterised by high water demands due to tourism and low water availability due to the temporal storage of precipitation as snow and ice. The clear definition of summer and winter periods is thus an essential prerequisite for water resource management in alpine regions. This paper presents a GIS-based multi criteria method to determine the winter season. A snow cover duration dataset serves as basis for this analysis. Different water demand stakeholders, the alpine hydrology and the present day water supply infrastructure are taken into account. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon different geographical datasets winter was defined as the period from December to March, and summer as the period from April to November. By determining potential regional water balance deficits or surpluses in the present day situation and in future, important management decisions such as water storage and allocation can be made and transposed to the local level.

  12. Water for the cities - The outlook

    USGS Publications Warehouse

    Schneider, William Joseph; Spieker, Andrew Maute

    1969-01-01

    Rapid expansion of urban areas, particularly in the large metropolitan complexes of the United States, is placing urban political entities in ever closer juxtaposition to each other. The large demand for water for each entity is resulting in competition for available sources and is rapidly reaching critical proportions. Increasing awareness of the role of water in our society further complicates this competition. Pollution abatement, recreation, wildlife conservation, and aesthetics are demands now recognized by both rural and urban areas. Future development of water resources must consider regional demands and resources. Only in this way can our reasonably abundant water resources meet the severe demands imposed by our rapidly expanding urban areas.

  13. Impacts of Change in Irrigation Water Availability on Food Production in the Yellow River Basin under Climate Change

    NASA Astrophysics Data System (ADS)

    Yin, Y. Y.; Tang, Q.

    2014-12-01

    Approximately 9 percent of China's population and 17 percent of its agricultural area are settled in the Yellow River Basins. Irrigation, which plays an important role in agricultural production, occupies the largest share of human consumptive water use in the basin. Given increasing water demands, the basin faces acute water scarcity. Previous studies have suggested that decrease in irrigation water availability under climate change might have an overall adverse impact on the food production of the basin. The timing and area that would face severe water stress are yet to be identified. We used a land surface hydrological model forced with the bias-corrected climatic variables from 5 climate models under 4 Representative Concentration Pathways (RCPs) to estimate total water availability in the sub-basins of the Yellow River basin. The future socioeconomic conditions, the Shared Socioeconomic Pathways (SSPs), were used to estimate the water requirement in the nonagricultural water use sectors. The irrigation water availability was estimated from the total water availability and nonagricultural water use, and the irrigation water demands were estimated based on the current irrigation project efficiencies. The timing and area of irrigation water shortage were shown and the implication of change in irrigation water availability on food production was assessed. The results show that the sub-basins with high population density and gross domestic product (GDP) are likely to confront severe water stress and reduction in food production earlier because irrigation water was to be appropriated by the rapid increase in nonagricultural water use sectors. The study stresses the need for adaptive management of water to balance agriculture and nonagricultural demands in northern China.

  14. Assessment of Long-term Irrigation Water Availability over Highly Managed and Economically Important Agricultural Region of the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Rushi, B. R.; Malek, K.; Rajagopalan, K.; Hall, S.; Kruger, C. E.; Brady, M.; Stockle, C.; Adam, J. C.

    2016-12-01

    Agriculture contributes about 12% in Washington State's economy. Water diverted from the Columbia River Basin (CRB) is the major source of irrigation water in this region. Although agriculture accounts for 80% of this state's total water withdrawal, this sector is the first to be curtailed (i.e., irrigators do not receive their full water right allocation) while there is a water shortage. This snow dominated region is already threatened by climate change. A robust regional-scale analysis of water supply, demand, unmet crop water requirements and associated impacts is critical to develop sustainable water resources plans under climate change. This study uses a dynamically-coupled hydrologic and cropping systems model, VIC-CropSyst, a reservoir management model, ColSim, and a water curtailment model to simulate changes in surface water irrigation demand projecting 30 years in the future in response to various climate, management and economic scenarios. Five downscaled climate scenarios for each of the IPCC's Representative Concentration Pathway 4.5 (rcp4.5) and 8.5 (rcp8.5) are selected in a way that they capture the projected spread of temperature and precipitation changes for the area. Results show an increase in total water availability across the CRB. Water availability is predicted to shift earlier in the season due to warming-induced snowpack reductions. Agricultural water demand is projected to decrease by approximately 5.0% (±0.7%) and 6.9% (±0.7%) respectively across the entire CRB and the Washington portion of the CRB by 2035. Irrigation demand is expected to shift earlier in the season along with water availability. This shift in demand may cause higher amount of early season irrigation water curtailment in some highly managed watersheds of the CRB in Washington State. This reduction and shift in demand is due to a warmer climate and an elevated atmospheric CO2 level which are leading to a shorter but early starting growing season. This study does not consider any expansion of irrigated crop lands for future, or any adaption measures such as double cropping, switching to slow maturing crop varieties. Curtailment increasing in the early season and declining in the late season may require adjustments to reservoir operations unless proper adaptive measures are taken.

  15. Estimating irrigation water demand in the Moroccan Drâa Valley using contingent valuation.

    PubMed

    Storm, Hugo; Heckelei, Thomas; Heidecke, Claudia

    2011-10-01

    Irrigation water management is crucial for agricultural production and livelihood security in Morocco as in many other parts of the world. For the implementation of an effective water management, knowledge about farmers' demand for irrigation water is crucial to assess reactions to water pricing policy, to establish a cost-benefit analysis of water supply investments or to determine the optimal water allocation between different users. Previously used econometric methods providing this information often have prohibitive data requirements. In this paper, the Contingent Valuation Method (CVM) is adjusted to derive a demand function for irrigation water along farmers' willingness to pay for one additional unit of surface water or groundwater. An application in the Middle Drâa Valley in Morocco shows that the method provides reasonable results in an environment with limited data availability. For analysing the censored survey data, the Least Absolute Deviation estimator was found to be a more suitable alternative to the Tobit model as errors are heteroscedastic and non-normally distributed. The adjusted CVM to derive demand functions is especially attractive for water scarce countries under limited data availability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Combined impacts of climate and socio-economic scenarios on irrigation water availability for a dry Mediterranean reservoir.

    PubMed

    Nunes, João Pedro; Jacinto, Rita; Keizer, Jan Jacob

    2017-04-15

    The impacts of climate and associated socio-economic changes on water availability, including supply and demand, quality, and storage volume, were evaluated for the Vale do Gaio reservoir in southern Portugal, located in a dry Mediterranean climate and already under drought stress. The SWAT model was applied with 6 scenarios for 2071-2100, involving two storylines (A1B and B1) with individual changes in climate (-9% rainfall, increasing in winter by +28 to +30%), socio-economic conditions (an increase in irrigation demand by 11%, and a replacement of cereals and pastures by sunflower), and a combination of both. Most future scenarios resulted in lower water availability, due to lower supply (-19 to -27%) combined with higher irrigation demand (+3 to +21%). This resulted in more years with limited irrigation supplies (presently: 28%; scenarios: 37 to 43%), although limitations were mitigated by lower losses to excess discharge. Land-use changes also decreased quality by increasing P concentrations (+29 to +93%). Impacts were more severe in scenario A1B than in B1, and in combined changes than in climate or socio-economic changes only. Water availability was resilient to climate change, as impacts led only to a moderate aggravation of present-day conditions. Lower future water availability could be addressed by supply and demand management strategies and, in the most extreme scenario, by water transfers from regional water reserves; water quality issues could be addressed through land-use policies. Results also highlighted the importance of taking the characteristics of water supply systems into account when designing adaptation measures for future changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Assessing the Use of Remote Sensing and a Crop Growth Model to Improve Modeled Streamflow in Central Asia

    NASA Astrophysics Data System (ADS)

    Richey, A. S.; Richey, J. E.; Tan, A.; Liu, M.; Adam, J. C.; Sokolov, V.

    2015-12-01

    Central Asia presents a perfect case study to understand the dynamic, and often conflicting, linkages between food, energy, and water in natural systems. The destruction of the Aral Sea is a well-known environmental disaster, largely driven by increased irrigation demand on the rivers that feed the endorheic sea. Continued reliance on these rivers, the Amu Darya and Syr Darya, often place available water resources at odds between hydropower demands upstream and irrigation requirements downstream. A combination of tools is required to understand these linkages and how they may change in the future as a function of climate change and population growth. In addition, the region is geopolitically complex as the former Soviet basin states develop management strategies to sustainably manage shared resources. This complexity increases the importance of relying upon publically available information sources and tools. Preliminary work has shown potential for the Variable Infiltration Capacity (VIC) model to recreate the natural water balance in the Amu Darya and Syr Darya basins by comparing results to total terrestrial water storage changes observed from NASA's Gravity Recovery and Climate Experiment (GRACE) satellite mission. Modeled streamflow is well correlated to observed streamflow at upstream gauges prior to the large-scale expansion of irrigation and hydropower. However, current modeled results are unable to capture the human influence of water use on downstream flow. This study examines the utility of a crop simulation model, CropSyst, to represent irrigation demand and GRACE to improve modeled streamflow estimates in the Amu Darya and Syr Darya basins. Specifically we determine crop water demand with CropSyst utilizing available data on irrigation schemes and cropping patterns. We determine how this demand can be met either by surface water, modeled by VIC with a reservoir operation scheme, and/or by groundwater derived from GRACE. Finally, we assess how the inclusion of CropSyst and groundwater to model and meet irrigation demand improves modeled streamflow from VIC throughout the basins. The results of this work are integrated into a decision support platform to assist the basin states in understanding water availability and the impact of management decisions on available resources.

  18. Vulnerability of supply basins to demand from multiple cities

    NASA Astrophysics Data System (ADS)

    Padowski, J. C.; Gorelick, S.

    2013-12-01

    Humans have appropriated more than half of the world's available water resources, and continued population growth and climate change threaten to put increasing pressure on remaining supplies. Many cities have constructed infrastructure to collect, transport from and store water at distant locations. Supply basins can become vulnerable if there are multiple users depending on the same supply system or network. Basin vulnerability assessments often only report the impacts of local demands on system health, but rarely account future stress from multi-urban demands. This study presents a global assessment of urban impacts on supply basins. Specifically, hydrologic and regulatory information are used to quantify the level of supply basin stress created by demand from multiple cities. The aim is to identify at-risk basins. This study focuses on large urban areas (generally over 1 million people) that use surface water (n=412). The stress on supply water basins by urban demand was based on three parameters: 1) the number of cities using a basin for water supply, 2) the number of alternative urban sources (e.g. lakes, reservoirs, rivers) within the supply basin, and 3) the percent of available surface water in each basin that is required to meet the total of urban and environmental demands. The degree of management within each basin is assessed using information on federal water policies and local basin management plans.

  19. An Index-Based Assessment of Agricultural Water Scarcity for Sustainable Water Resource Management

    NASA Astrophysics Data System (ADS)

    Kim, S. E.; Lee, D. K.; Kim, K. S.; Hyun, S.; Kim, Y.

    2017-12-01

    Global precipitation pattern is changing due to climate change, causing drought and water scarcity all around the world. As water is mandatory to all lives, water availability is becoming essential and so is sustainable water resource management. Especially in agriculture, water resource management is crucial, as it is directly connected to the production. However, many studies about water scarcity show limits by focusing on current situation and overlooking future possibilities of water availability. Also, most of the studies about water scarcity use single index or model. To overcome these shortcomings, we assessed agricultural water scarcity considering future climate, using water scarcity indices. We assessed present and future water scarcity using several indices and compared the results derived from each index. The study area of this research is South Korea, as drought is a prominent problem in agricultural sector. Precipitation in Korea is concentrated in summer, causing severe drought in spring and fall. Rainfall density in Korea is increasing with climate change, and sustainable water resource management is inevitable. In this research, we used irrigational demand along with current and future crop production of 2030 and 2050 as water demand. We projected the future (2020-2100) runoff of dams located in Korea as water demand under future scenarios, RCP 4.5 and 8.5. The result showed severe water scarcity in Southern area of Korea both in the present and the future. It was due to increase of water demand and decrease of precipitation. It indicates that the water scarcity gets more intense in the future, and emphasizes the importance of water resource management of the southern part. This research will be valuable in establishing water resource management in agricultural sector for sustainable water availability in the future.

  20. Analysis of Water Use and Water Scarcity in Arid and Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Samayoa, S. D.

    2017-12-01

    Analysis of Water Use and Water Scarcity in Arid and Semi-arid Regions Susana Samayoa , Muhammed A. G. Chowdhury, Tushar Sinha Department of Environmental Engineering, Texas A & M University - Kingsville Freshwater sustainability in arid and semi-arid regions is highly uncertain under increasing demands due to population growth and urban development as well as limited water supply. In particular, six largest cities by population among the top twenty U.S. cities are located in Texas (TX), which also experience high variability in water availability due to frequent droughts and floods. Similarly, several regions in Arizona (AZ) are rapidly growing (e.g. Phoenix and Tucson) despite receiving scanty rainfall. Thus, the goal of this study is to analyze water use and water scarcity in watersheds within TX and AZ between 1985 and 2010. The water use data from U.S. Geological Survey (USGS) is analyzed by Hydrological Unit Code (HUC) - 8 within TX and AZ. Total freshwater use by county during 1985 and 2010 were converted into water use by HUC-8 using geospatial analysis. Water availability will be estimated by using a large scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC model will be calibrated and validated for multiple basins located in Texas and Arizona. The VIC model simulated total streamflow will be aggregated across the 1/8 degree grids that are within each HUC-8 to estimate water supply. The excess water for upstream HUC-8s (= local supply minus demands) will be routed, in addition to locally generated streamflow, to estimate water availability in downstream HUC-8s. Water Scarcity Index, defined as the ratio of total freshwater demand to supply, will be estimated during 1985 and 2010 to evaluate the effects of water availability and demands on scarcity. Finally, water scarcity and use will be analyzed by HUC-8s within TX and AZ. Such information could be useful in water resources management and planning. Keywords: Water scarcity, water use, water supply, VIC

  1. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Wisser, D.; Bierkens, M. F. P.

    2013-02-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over a large scale, a number of macro-scale hydrological models (MHMs) have been developed over the recent decades. However, few models consider the feedback between water availability and water demand, and even fewer models explicitly incorporate water allocation from surface water and groundwater resources. Here, we integrate a global water demand model into a global water balance model, and simulate water withdrawal and consumptive water use over the period 1979-2010, considering water allocation from surface water and groundwater resources and explicitly taking into account feedbacks between supply and demand, using two re-analysis products: ERA-Interim and MERRA. We implement an irrigation water scheme, which works dynamically with daily surface and soil water balance, and include a newly available extensive reservoir data set. Simulated surface water and groundwater withdrawal show generally good agreement with available reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, but groundwater use has been increasing more rapidly than surface water use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. The alteration is particularly large over the heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  2. Water availability and management for food security

    USDA-ARS?s Scientific Manuscript database

    Food security is directly linked to water security for food production. Water availability for crop production will be dependent upon precipitation or irrigation, soil water holding capacity, and crop water demand. The linkages among these components in rainfed agricultural systems shows the impact ...

  3. Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voisin, N.; Kintner-Meyer, M.; Skaggs, R.

    Recent studies have highlighted the potential impact of climate change on US electricity generation capacity by exploring the effect of changes in stream temperatures on available capacity of thermo-electric plants that rely on fresh-water cooling. However, little is known about the electric system impacts under extreme climate event such as drought. Vulnerability assessments are usually performed for a baseline water year or a specific drought, which do not provide insights into the full grid stress distribution across the diversity of climate events. In this paper we estimate the impacts of the water availability on the electricity generation and transmission inmore » the Western US grid for a range of historical water availability combinations. We softly couple an integrated water model, which includes climate, hydrology, routing, water resources management and socio-economic water demand models, into a grid model (production cost model) and simulate 30 years of historical hourly power flow conditions in the Western US grid. The experiment allows estimating the grid stress distribution as a function of inter-annual variability in regional water availability. Results indicate a clear correlation between grid vulnerability (as quantified in unmet energy demand and increased production cost) for the summer month of August and annual water availability. There is a 3% chance that at least 6% of the electricity demand cannot be met in August, and 21% chance of not meeting 0.5% of the load in the Western US grid. There is a 3% chance that at least 6% of the electricity demand cannot be met in August, and 21% chance of not meeting 0.1% or more of the load in the Western US grid. The regional variability in water availability contributes significantly to the reliability of the grid and could provide trade off opportunities in times of stress. This paper is the first to explore operational grid impacts imposed by droughts in the Western U.S. grid.« less

  4. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Future land-use related water demand in California

    USGS Publications Warehouse

    Wilson, Tamara; Sleeter, Benjamin M.; Cameron, D. Richard

    2016-01-01

    Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters(+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.

  6. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    NASA Astrophysics Data System (ADS)

    Cullis, James D. S.; Walker, Nicholas J.; Ahjum, Fadiel; Juan Rodriguez, Diego

    2018-02-01

    Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing additional water demands in some regions and making water available for other users in other regions with a declining future energy demand. This study presents a methodology for modelling the water-energy nexus that could be used to inform the sustainable development planning process in the water and energy sectors for both developed and developing countries.

  7. High-resolution integration of water, energy, and climate models to assess electricity grid vulnerabilities to climate change

    NASA Astrophysics Data System (ADS)

    Meng, M.; Macknick, J.; Tidwell, V. C.; Zagona, E. A.; Magee, T. M.; Bennett, K.; Middleton, R. S.

    2017-12-01

    The U.S. electricity sector depends on large amounts of water for hydropower generation and cooling thermoelectric power plants. Variability in water quantity and temperature due to climate change could reduce the performance and reliability of individual power plants and of the electric grid as a system. While studies have modeled water usage in power systems planning, few have linked grid operations with physical water constraints or with climate-induced changes in water resources to capture the role of the energy-water nexus in power systems flexibility and adequacy. In addition, many hydrologic and hydropower models have a limited representation of power sector water demands and grid interaction opportunities of demand response and ancillary services. A multi-model framework was developed to integrate and harmonize electricity, water, and climate models, allowing for high-resolution simulation of the spatial, temporal, and physical dynamics of these interacting systems. The San Juan River basin in the Southwestern U.S., which contains thermoelectric power plants, hydropower facilities, and multiple non-energy water demands, was chosen as a case study. Downscaled data from three global climate models and predicted regional water demand changes were implemented in the simulations. The Variable Infiltration Capacity hydrologic model was used to project inflows, ambient air temperature, and humidity in the San Juan River Basin. Resulting river operations, water deliveries, water shortage sharing agreements, new water demands, and hydroelectricity generation at the basin-scale were estimated with RiverWare. The impacts of water availability and temperature on electric grid dispatch, curtailment, cooling water usage, and electricity generation cost were modeled in PLEXOS. Lack of water availability resulting from climate, new water demands, and shortage sharing agreements will require thermoelectric generators to drastically decrease power production, as much as 50% during intensifying drought scenarios, which can have broader electricity sector system implications. Results relevant to stakeholder and power provider interests highlight the vulnerabilities in grid operations driven by water shortage agreements and changes in the climate.

  8. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    NASA Astrophysics Data System (ADS)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2011-08-01

    During the past decades, human water use more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water scarcity considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960-2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which is subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes and reservoirs by means of the global hydrological model PCR-GLOBWB. The results show a drastic increase in the global population living under water-stressed conditions (i.e., moderate to high water stress) due to the growing water demand, primarily for irrigation, which more than doubled from 1708/818 to 3708/1832 km3 yr-1 (gross/net) over the period 1960-2000. We estimate that 800 million people or 27 % of the global population were under water-stressed conditions for 1960. This number increased to 2.6 billion or 43 % for 2000. Our results indicate that increased water demand is the decisive factor for the heightened water stress, enhancing the intensity of water stress up to 200 %, while climate variability is often the main determinant of onsets for extreme events, i.e. major droughts. However, our results also suggest that in several emerging and developing economies (e.g., India, Turkey, Romania and Cuba) some of the past observed droughts were anthropogenically driven due to increased water demand rather than being climate-induced. In those countries, it can be seen that human water consumption is a major factor contributing to the high intensity of major drought events.

  9. Hindcast of water availability in regional aquifer systems using MODFLOW Farm Process

    USGS Publications Warehouse

    Schmid, Wolfgang; Hanson, Randall T.; Faunt, Claudia C.; Phillips, Steven P.

    2015-01-01

    Coupled groundwater and surface-water components of the hydrologic cycle can be simulated by the Farm Process for MODFLOW (MF-FMP) in both irrigated and non-irrigated areas and aquifer-storage and recovery systems. MF-FMP is being applied to three productive agricultural regions of different scale in the State of California, USA, to assess the availability of water and the impacts of alternative management decisions. Hindcast simulations are conducted for similar periods from the 1960s to near recent times. Historical groundwater pumpage is mostly unknown in one region (Central Valley) and is estimated by MF-FMP. In another region (Pajaro Valley), recorded pumpage is used to calibrate model-estimated pumpage. Multiple types of observations are used to estimate uncertain parameters, such as hydraulic, land-use, and farm properties. MF-FMP simulates how climate variability and water-import availability affect water demand and supply. MF-FMP can be used to predict water availability based on anticipated changes in anthropogenic or natural water demands. Keywords groundwater; surface-water; irrigation; water availability; response to climate variability/change

  10. The Indus basin in the framework of current and future water resources management

    NASA Astrophysics Data System (ADS)

    Laghari, A. N.; Vanham, D.; Rauch, W.

    2012-04-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries - Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation). Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions - and especially groundwater extractions - have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer) season (as well as sugar cane, cotton, maize and other crops) and wheat during the rabi (dry, winter) season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1) reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater) and water demands; (2) water quality conservation and investment in wastewater infrastructure; (3) the use of alternative water resources like the recycling of wastewater and desalination; (4) land use planning and soil conservation as well as flood management, with a focus on the reduction of erosion and resulting sedimentation as well as the restoration of ecosystem services like wetlands and natural floodplains. Water demand management options include: (1) the management of conjunctive use of surface and groundwater; as well as (2) the rehabilitation and modernization of existing infrastructure. Other demand management options are: (3) the increase of water productivity for agriculture; (4) crop planning and diversification including the critical assessment of agricultural export, especially (basmati) rice; (5) economic instruments and (6) changing food demand patterns and limiting post-harvest losses.

  11. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM atmore » the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops.« less

  12. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community-integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model - namely, the Global Water Availability Model (GWAM) - is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5° × 0.5° resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095, particularly with more stringent climate mitigation targets. Under the FFICT scenario, water scarcity is projected to increase, driven by higher water demands for bio-energy crops.

  13. Exploring the energy-water-food-climate nexus for the Indian Economy in 2030

    NASA Astrophysics Data System (ADS)

    Taheripour, F.; Hertel, T. W.; Gopalakrishnan, B. N.

    2014-12-01

    The economy of India is expected to face serious environmental challenges over the coming decades. Population growth, coupled with economic growth of nearly 7%/year to 2030 will translate into strong growth in energy demands - particularly electricity. The electricity sector's claim on total available water could grow from 4% to more than 10% in India in 2030, if the use of wet cooling technologies persists (IGES 2013). Water-saving, dry cooling technologies are available for coal-fired power plants, but this requires significant investment and must be done at the time of construction. Growing water demands from electricity generation, when coupled with industrial, residential and commercial demands, are projected to result in water shortages for irrigation in some key river basins such as Indus, Ganges, Subernarekha, Krishna, and Chotanagpui (Rosegrant et al., 2013). The resulting pressure on agricultural production is likely to be exacerbated by climate change, which itself may increase demands for irrigation as an adaptation strategy to higher temperatures and more variable rainfall (AgMIP, 2013). In this paper we examine the impact of water scarcity on economic growth, food, and energy security in India using an enhanced version of the GTAP-AEZ-WATER model. We find that investments in water-saving technology in the electricity sector are less costly than developing new water supply. However, even when these technologies are implemented, we project shortfalls in water available for irrigated agriculture. These shortfalls result in the contraction of irrigated area and diminished food production relative to the unconstrained baseline. However, trade could help India to mitigate a portion of this pressure by importing more food products from water abundant regions. In addition, allowing for the trading of water within river basins helps to alleviate some of the consequences of water scarcity.

  14. Projections of water resources availability in Crete for the 21st century under the global change perspective

    NASA Astrophysics Data System (ADS)

    Koutroulis, A. G.; Tsanis, I. K.; Jacob, D.

    2012-04-01

    A robust signal of a warmer and drier climate over the western Mediterranean region is projected from the majority of climate models. This effect appears more pronounced during warm periods, when the seasonal decrease of precipitation can exceed control climatology by 25-30%. The rapid development of Crete in the last 30 years has exerted strong pressures on the natural resources of the region. Urbanization and growth of agriculture, tourism and industry had strong impact on the water resources of island by substantially increasing water demand. The objective of this study is to analyze and assess the impact of global change on the water resources status for the island of Crete for a range of 24 different scenarios of projected hydro-climatological regime, demand and supply potential. Water resources application issues analyzed and facilitated within this study, focusing on a refinement of the future water demands of the island, and comparing with "state of the art" global climate model (GCM) results and an ensemble of regional climate models (RCMs) under three different emission scenarios, to estimate water resources availability, during the 21st century. A robust signal of water scarcity is projected for all the combinations of emission (A2, A1B and B1), demand and infrastructure scenarios. Despite the uncertainty of the assessments, the quantitative impact of the projected changes on water availability indicates that climate change plays an equally important role to water use and management in controlling future water status in a Mediterranean island like the island of Crete. The outcome of this analysis will assist in short and long-term strategic water resources planning by prioritizing water related infrastructure development.

  15. Water supply as a constraint on transmission expansion planning in the Western interconnection

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent C.; Bailey, Michael; Zemlick, Katie M.; Moreland, Barbara D.

    2016-12-01

    Consideration of water supply in transmission expansion planning (TEP) provides a valuable means of managing impacts of thermoelectric generation on limited water resources. Toward this opportunity, thermoelectric water intensity factors and water supply availability (fresh and non-fresh sources) were incorporated into a recent TEP exercise conducted for the electric interconnection in the Western United States. The goal was to inform the placement of new thermoelectric generation so as to minimize issues related to water availability. Although freshwater availability is limited in the West, few instances across five TEP planning scenarios were encountered where water availability impacted the development of new generation. This unexpected result was related to planning decisions that favored the development of low water use generation that was geographically dispersed across the West. These planning decisions were not made because of their favorable influence on thermoelectric water demand; rather, on the basis of assumed future fuel and technology costs, policy drivers and the topology of electricity demand. Results also projected that interconnection-wide thermoelectric water consumption would increase by 31% under the business-as-usual case, while consumption would decrease by 42% under a scenario assuming a low-carbon future. Except in a few instances, new thermoelectric water consumption could be accommodated with less than 10% of the local available water supply; however, limited freshwater supplies and state-level policies could increase use of non-fresh water sources for new thermoelectric generation. Results could have been considerably different if scenarios favoring higher-intensity water use generation technology or potential impacts of climate change had been explored. Conduct of this exercise highlighted the importance of integrating water into all phases of TEP, particularly joint management of decisions that are both directly (e.g., water availability constraint) and indirectly (technology or policy constraints) related to future thermoelectric water demand, as well as, the careful selection of scenarios that adequately bound the potential dimensions of water impact.

  16. Water supply as a constraint on transmission expansion planning in the Western interconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidwell, Vincent C.; Bailey, Michael; Zemlick, Katie M.

    Here, consideration of water supply in transmission expansion planning (TEP) provides a valuable means of managing impacts of thermoelectric generation on limited water resources. Toward this opportunity, thermoelectric water intensity factors and water supply availability (fresh and non-fresh sources) were incorporated into a recent TEP exercise conducted for the electric interconnection in the Western United States. The goal was to inform the placement of new thermoelectric generation so as to minimize issues related to water availability. Although freshwater availability is limited in the West, few instances across five TEP planning scenarios were encountered where water availability impacted the development ofmore » new generation. This unexpected result was related to planning decisions that favored the development of low water use generation that was geographically dispersed across the West. These planning decisions were not made because of their favorable influence on thermoelectric water demand; rather, on the basis of assumed future fuel and technology costs, policy drivers and the topology of electricity demand. Results also projected that interconnection-wide thermoelectric water consumption would increase by 31% under the business-as-usual case, while consumption would decrease by 42% under a scenario assuming a low-carbon future. Except in a few instances, new thermoelectric water consumption could be accommodated with less than 10% of the local available water supply; however, limited freshwater supplies and state-level policies could increase use of non-fresh water sources for new thermoelectric generation. Results could have been considerably different if scenarios favoring higher-intensity water use generation technology or potential impacts of climate change had been explored. Conduct of this exercise highlighted the importance of integrating water into all phases of TEP, particularly joint management of decisions that are both directly (e.g., water availability constraint) and indirectly (technology or policy constraints) related to future thermoelectric water demand, as well as, the careful selection of scenarios that adequately bound the potential dimensions of water impact.« less

  17. Water supply as a constraint on transmission expansion planning in the Western interconnection

    DOE PAGES

    Tidwell, Vincent C.; Bailey, Michael; Zemlick, Katie M.; ...

    2016-11-21

    Here, consideration of water supply in transmission expansion planning (TEP) provides a valuable means of managing impacts of thermoelectric generation on limited water resources. Toward this opportunity, thermoelectric water intensity factors and water supply availability (fresh and non-fresh sources) were incorporated into a recent TEP exercise conducted for the electric interconnection in the Western United States. The goal was to inform the placement of new thermoelectric generation so as to minimize issues related to water availability. Although freshwater availability is limited in the West, few instances across five TEP planning scenarios were encountered where water availability impacted the development ofmore » new generation. This unexpected result was related to planning decisions that favored the development of low water use generation that was geographically dispersed across the West. These planning decisions were not made because of their favorable influence on thermoelectric water demand; rather, on the basis of assumed future fuel and technology costs, policy drivers and the topology of electricity demand. Results also projected that interconnection-wide thermoelectric water consumption would increase by 31% under the business-as-usual case, while consumption would decrease by 42% under a scenario assuming a low-carbon future. Except in a few instances, new thermoelectric water consumption could be accommodated with less than 10% of the local available water supply; however, limited freshwater supplies and state-level policies could increase use of non-fresh water sources for new thermoelectric generation. Results could have been considerably different if scenarios favoring higher-intensity water use generation technology or potential impacts of climate change had been explored. Conduct of this exercise highlighted the importance of integrating water into all phases of TEP, particularly joint management of decisions that are both directly (e.g., water availability constraint) and indirectly (technology or policy constraints) related to future thermoelectric water demand, as well as, the careful selection of scenarios that adequately bound the potential dimensions of water impact.« less

  18. Land use and water use in the Antelope Valley, California

    USGS Publications Warehouse

    Templin, William E.; Phillips, Steven P.; Cherry, Daniel E.; DeBortoli, Myrna L.; Haltom, T.C.; McPherson, Kelly R.; Mrozek, C.A.

    1995-01-01

    Urban land use and water use in the Antelope Valley, California, have increased significantly since development of the valley began in the late 1800's.. Ground water has been a major source of water in this area because of limited local surface-water resources. Ground-water pumpage is reported to have increased from about 29,000 acre-feet in 1919 to about 400,000 acre-feet in the 1950's. Completion of the California Aqueduct to this area in the early 1970's conveyed water from the Sacramento-San Joaquin Delta, about 400 miles to the north. Declines in groundwater levels and increased costs of electrical power in the 1970's resulted in a reduction in the quantity of ground water that was pumped annually for irrigation uses. Total annual reported ground-water pumpage decreased to a low of about 53,200 acre-feet in 1983 and increased to about 91,700 acre-feet in 1991 as a result of rapid urban development and the 1987-92 drought. This increased urban development, in combination with several years of drought, renewed concern about a possible return to extensive depletion of ground-water storage and increased land subsidence.Increased water demands are expected to continue as a result of increased urban development. Water-demand forecasts in 1980 for the Antelope Valley indicated that total annual water demand by 2020 was expected to be about 250,000 acre-feet, with agricultural demand being about 65 percent of this total. In 1990, total water demand was projected to be about 175,000 acre-feet by 2010; however, agricultural water demand was expected to account for only 37 percent of the total demand. New and existing land- and water-use data were collected and compiled during 1992-93 to identify present and historical land and water uses. In 1993, preliminary forecasts for total water demand by 2010 ranged from about 127,500 to 329,000 acre-feet. These wide-ranging estimates indicate that forecasts can change with time as factors that affect water demand change and different forecasting methods are used. The forecasts using the MWD_MAIN (Metropolitan Water District of Southern California Municipal and Industrial Needs) water-demand forecasting system yielded the largest estimates of water demand. These forecasts were based on projections of population growth and other socioeconomic variables. Initial forecasts using the MWD_MAIN forecasting system commonly are considered "interim" or preliminary. Available historical and future socioeconomic data required for the forecasting system are limited for this area. Decisions on local water-resources demand management may be made by members of the Antelope Valley Water Group and other interested parties based on this report, other studies, their best judgement, and cumulative knowledge of local conditions. Potential water-resource management actions in the Antelope Valley include (1) increasing artificial ground-water recharge when excess local runoff (or imported water supplies) are available; (2) implementing water-conservation best-management practices; and (3) optimizing ground-water pumpage throughout the basin.

  19. Water resources of the Indianapolis area, Indiana

    USGS Publications Warehouse

    Roberts, Claude Martin; Widman, L.E.; Brown, P.N.

    1955-01-01

    Difficulties in supplying water have occurred and will continue to occur from time to time when demands on ground-water sources are excessively heavy for long periods of time and locally where pumped wells are too closely spaced. Under such conditions ground-water levels decline rapidly and remain depressed for some time. Such a condition may constitute what could be called a water shortage. As the demand for water increases there is need for conservation and wise use of available surface and ground-water supplies. 

  20. Agricultural Groundwater Demands in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Ho, M. W.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-12-01

    In the conterminous United States (CONUS), over 40% of water consumed for irrigation, livestock and domestic water is sourced from groundwater. The late 20th century and 21st century saw an expansion in irrigated agriculture across the CONUS that was accompanied by increased pumping of groundwater. Groundwater is typically used to mitigate impacts of drought on surface water supplies enabling water demands to be met as well as to augment sparse surface water resources in arid regions or where surface water availability is highly variable temporally and/or spatially. A Demand Sensitive Drought Index (DSDI) is used to examine the impacts of agricultural water needs on groundwater in the CONUS. The DSDI accounts for agricultural water deficits driven by low precipitation, high agricultural water demand, or a combination of both. Changes in groundwater levels relative to agricultural water deficits are characterized relative to precipitation during the growing season and winter precipitation. In several key irrigated agricultural regions in the CONUS, long-term trends in groundwater levels appear to reflect prolonged periods of surface water deficits resulting from land use and associated unsustainable water demands. These areas are subsequent unable to recover from persistent states of agricultural drought. Conversely, reductions in agricultural water demands for crops do not necessarily lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors. Calls to establish or reform groundwater policies have recently been made in an effort to achieve holistic groundwater management strategies that consider the human demands on both surface water and groundwater. There is a need for relevant groundwater policies to ensure that water demands are adequately managed across sectors without unsustainably depleting groundwater resources and to ensure efficient economic activity.

  1. Infrastructure sufficiency in meeting water demand under climate-induced socio-hydrological transition in the urbanizing Capibaribe River basin - Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Neto, A.; Scott, C. A.; Lima, E. A.; Montenegro, S. M. G. L.; Cirilo, J. A.

    2014-09-01

    Water availability for a range of human uses will increasingly be affected by climate change, especially in the arid and semiarid tropics. The main objective of this study is to evaluate the infrastructure sufficiency in meeting water demand under climate-induced socio-hydrological transition in the Capibaribe River basin (CRB). The basin has experienced spatial and sectoral (agriculture-to-urban) reconfiguration of water demands. Human settlements that were once dispersed, relying on intermittent sources of surface water, are now larger and more spatially concentrated, which increases water-scarcity effects. Based on the application of linked hydrologic and water-resources models using precipitation and temperature projections of the IPCC SRES (Special Report: Emissions Scenarios) A1B scenario, a reduction in rainfall of 26.0% translated to streamflow reduction of 60.0%. We used simulations from four members of the HadCM3 (UK Met Office Hadley Centre) perturbed physics ensemble, in which a single model structure is used and perturbations are introduced to the physical parameterization schemes in the model (Chou et al., 2012). We considered that the change of the water availability in the basin in the future scenarios must drive the water management and the development of adaptation strategies that will manage the water demand. Several adaptive responses are considered, including water-loss reductions, wastewater collection and reuse, and rainwater collection cisterns, which together have potential to reduce future water demand by 23.0%. This study demonstrates the vulnerabilities of the infrastructure system during socio-hydrological transition in response to hydroclimatic and demand variabilities in the CRB and also indicates the differential spatial impacts and vulnerability of multiple uses of water to changes over time. The simulations showed that the measures proposed and the water from interbasin transfer project of the São Francisco River had a positive impact over the water supply in the basin, mainly for human use. Industry and irrigation will suffer impact unless other measures are implemented for demand control.

  2. Improving the local relevance of large scale water demand predictions: the way forward

    NASA Astrophysics Data System (ADS)

    Bernhard, Jeroen; Reynaud, Arnaud; de Roo, Ad

    2016-04-01

    Securing adequate availability of fresh water is of vital importance for socio-economic development of present and future Europe. Due to strong heterogeneity in climate conditions, some regions receive an abundant supply of water, where other areas almost completely depend on limited river discharge from upstream catchments. Furthermore, water demand differs greatly between regions due to differences in population density and local presence of intensive water using industries and agriculture. This results in many situations all across Europe where competition between water users translates into relative scarcity and economic damage. Additionally it is expected that inter-related economic and demographic developments, as well as climate change are to only further increase the need for efficient management of our water resources in the future. Successful policy making for such complex problems requires a good understanding of the system and reliable forecasting of conditions. The extent and complexity of the water use system however, stands in high contrast with the poor state of available data and lack of reliable predictions for this multi-disciplinary topic. Although the matching of available water to its demand is a European-wide problem, the amount of data with pan-European coverage is limited and usually with a national resolution at best. This is hindering researchers and policy makers because it usually makes large scale water demand predictions little relevant due to the strong regional heterogenic nature of the problem. We present in our study a first attempt of European-wide water demand predictions based on consistent regional data and econometric methods for the household and industry sector. We gathered data on water consumption, water prices and other relevant variables at the highest spatial detail available from national statistical offices and other organizational bodies. This database provides the most detailed up to date picture of present water use and water prices. Subsequently, econometric estimates allow us to make a monetary valuation of water and identify the dominant drivers of domestic and industrial water demand per country. Combined with socio-economic, demographic and climate scenarios we made predictions for future Europe. Since this is a first attempt we obtained mixed results between countries when it comes to data availability and therefore model uncertainty. For some countries we have been able to develop robust predictions based on vast amounts of data while some other countries proved more challenging. We do feel however, that large scale predictions based on regional data are the way forward to provide relevant scientific policy support. In order to improve on our work it is imperative to further expand our database of consistent regional data. We are looking forward to any kind of input and would be very interested in sharing our data to collaborate towards a better understanding of the water use system.

  3. Water-saving interventions assessment framework: an application for the Urmia Lake Restoration Program

    NASA Astrophysics Data System (ADS)

    Shadkam, Somayeh; Oel, Pieter; Kabat, Pavel; Ludwig, Fulco

    2017-04-01

    Increasing water demand often results in unsustainable water use leaving insufficient amounts of water for sustaining natural environments. Therefore, to save natural resources water-saving interventions have been introduced to the environmental policy agenda in many (semi)-arid regions. Many policies, however, have failed reaching their objectives to increase water availability for the environment. This calls for a comprehensive tool to assess water-saving policies. Therefore, this study introduces a constructive framework to assess the policies by estimating five components: 1) Total water demand under socio-economic scenarios, 2) Water supply under climate change scenarios, 3) Water withdrawal for different sectors, 4) Water depletion and 5) Environmental flow. The framework, was applied to assess Urmia Lake Restoration Program (ULRP), which aims to restore the drying Urmia Lake in north-western Iran by increasing the lake inflow by 3.1×106m3yr-1. Results suggest that although the ULRP helps to increase inflow by up to 57% it is unlikely to fully reach its target. The analysis shows that there are three main reasons for the potential poor performance. The first reason is decreasing return flows due to increasing irrigation efficiency. This means that the expected increase in lake inflow volume is smaller than the volume saved by increasing irrigation efficiency. The second reason is increased depletion which is due to neglecting the fact that agricultural water demand is currently higher than available water for agriculture. As a result, increasing water use efficiency may result in increased water depletion. The third reason is ignoring the potential impact of climate change, which might decrease future water availability by 3% to 15%. Our analysis suggests that to reach the intervention target, measures need to focus on reducing Water demand and Water depletion rather than on reducing Water withdrawals. The assessment framework can be used to comprehensively assess water-saving intervention plans, particularly in water-stressed basins.

  4. ASSESSMENT AND MANAGEMENT OF TOXICS IN THE WATERSHED

    EPA Science Inventory

    The demand for water is beginning to outstrip the available supply of water. The truly insidious insult to freshwater supplies comes from anthropogenic impacts that pollute freshwater supplies and the surrounding watersheds, making even less water available for use.

    Wat...

  5. Modeling and Economic Analysis of Power Grid Operations in a Water Constrained System

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Xia, Y.; Veselka, T.; Yan, E.; Betrie, G.; Qiu, F.

    2016-12-01

    The power sector is the largest water user in the United States. Depending on the cooling technology employed at a facility, steam-electric power stations withdrawal and consume large amounts of water for each megawatt hour of electricity generated. The amounts are dependent on many factors, including ambient air and water temperatures, cooling technology, etc. Water demands from most economic sectors are typically highest during summertime. For most systems, this coincides with peak electricity demand and consequently a high demand for thermal power plant cooling water. Supplies however are sometimes limited due to seasonal precipitation fluctuations including sporadic droughts that lead to water scarcity. When this occurs there is an impact on both unit commitments and the real-time dispatch. In this work, we model the cooling efficiency of several different types of thermal power generation technologies as a function of power output level and daily temperature profiles. Unit specific relationships are then integrated in a power grid operational model that minimizes total grid production cost while reliably meeting hourly loads. Grid operation is subject to power plant physical constraints, transmission limitations, water availability and environmental constraints such as power plant water exit temperature limits. The model is applied to a standard IEEE-118 bus system under various water availability scenarios. Results show that water availability has a significant impact on power grid economics.

  6. Analyzing water resources

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report on water resources discusses problems in water measurement demand, use, and availability. Also discussed are sensing accuracies, parameter monitoring, and status of forecasting, modeling, and future measurement techniques.

  7. Integrated Energy-Water Planning in the Western and Texas Interconnections (Invited)

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.

    2013-12-01

    While thermoelectric power generation accounts for less than one percent of total water consumption in the western U.S, steady growth in demand is projected for this sector. Complexities and heterogeneity in water supply, water demand, and institutional controls make water development a challenging proposition throughout the West. A consortium of National Laboratories, the University of Texas and the Electric Power Research Institute are working with the Western Governors' Association and Western States Water Council to assist the Western Electricity Coordinating Council and the Electric Reliability Council of Texas to integrate water related issues into long-term transmission planning. Specifically, water withdrawal and consumption have been estimated for each western power plant and their susceptibility to climate impacts assessed. To assist with transmission planning, water availability and cost data have been mapped at the 8-digit Hydrologic Unit Code level for the conterminous western U.S. (1208 watersheds). Five water sources were individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water, municipal wastewater and brackish groundwater. Also mapped is projected growth in consumptive water demand to 2030. The relative costs (capital and O&M) to secure, convey, and treat the water as necessary have also been estimated for each source of water. These data configured into watershed level supply curves were subsequently used to constrain West-wide transmission planning. Results across a range of alternative energy futures indicate the impact of water availability and cost on the makeup and siting of future power generation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Water budgets at a 8-digit HUC level constructed by aggregating available water (all five sources) and subtracting projected change in demand for 2010-2030.

  8. Investigating the water consumption for electricity generation at Turkish power plants

    NASA Astrophysics Data System (ADS)

    El-Khozondar, Balkess; Aydinalp Koksal, Merih

    2017-11-01

    The water-energy intertwined relationship has recently gained more importance due to the high water consumption in the energy sector and to the limited availability of the water resources. The energy and electricity demand of Turkey is increasing rapidly in the last two decades. More thermal power plants are expected to be built in the near future to supply the rapidly increasing demand in Turkey which will put pressure on water availability. In this study, the water consumption for electricity generation at Turkish power plants is investigated. The main objectives of this study are to identify the amount of water consumed to generate 1 kWh of electricity for each generation technology currently used in Turkey and to investigate ways to reduce the water consumption at power plants expected to be built in the near future to supply the increasing demand. The various electricity generation technology mixture scenarios are analyzed to determine the future total and per generation water consumption, and water savings based on changes of cooling systems used for each technology. The Long-range Energy Alternatives Planning (LEAP) program is used to determine the minimum water consuming electricity generation technology mixtures using optimization approaches between 2017 and 2035.

  9. Water demand management research: A psychological perspective

    NASA Astrophysics Data System (ADS)

    Russell, Sally; Fielding, Kelly

    2010-05-01

    The availability of fresh water for human consumption is a critical global issue and one that will be exacerbated by the impacts of climate change. Water demand management has an important role to play in reducing the vulnerability of freshwater supplies to climate change impacts. In this paper, we argue that the field of psychology and environmental psychology in particular can make a vital contribution in understanding further the drivers of residential water demand. A growing body of literature in environmental psychology has examined the determinants of water conservation behavior, and this research has many potential applications for water demand policy. In this paper we offer a review of current psychological research that examines the five broad causes of residential water conservation behaviors: attitudes, beliefs, habits or routines, personal capabilities, and contextual factors. We assess how psychologists have studied water conservation behavior to date, identify shortcomings, and indicate how this research can be used to further promote residential water conservation and to inform evidence-based policy and practice.

  10. Developing America's Shale Reserves - Water Strategies For A Sustainable Future (Invited)

    NASA Astrophysics Data System (ADS)

    Shephard, L. E.; Oshikanlu, T.

    2013-12-01

    The development of shale oil and gas reserves over the last several years has had a significant impact on securing America's energy future while making substantial contributions to our nation's economic prosperity. These developments have also raised serious concerns about potential detrimental impacts to our environment (i.e., land, air and water) with much media attention focused on the impacts to our nation's fresh water supply. These concerns are being discussed across the nation often with little or no distinction that the nature of the water issues vary depending on local circumstances (e.g., depth of aquifer and reservoir zone, water demand and availability, availability of discharge wells, regulatory framework, etc.) and regional shale reservoir development strategies (depth of wells, length of laterals, fluid-type used for fracturing, etc.). Growing concerns over long standing drought conditions in some areas and competing demands for water from other sectors (e.g., agriculture, domestic, etc.) add even greater uncertainty relative to fresh water. Water demands for gas and oil wells vary from region to region but nominally range from 10 to 15 acre feet of water (4 to 6 million gallons) for drilling and hydraulic fracturing applications. Flowback water from the hydraulic fracturing process varies and can range from 5 to 40 % of the water used for drilling and 'fracing'. Produced water can be substantial, leading to significant volumes of 'disposed water' where injection wells are available. A science-based systems approach to water lifecycle management that incorporates leading-edge technology development and considers economic and social impacts is critical for the long-term sustainable development of shale reserves. Various water recycling and reuse technologies are being deployed within select regions across the nation with each having limited success depending on region. The efficacy of reuse technology will vary based on produced water quantity and quality, flow back rates and the associated economics. A significant contributor to the economics can be offsite transportation costs from hauling water to and from the drill site. While economics often drive decisions on technology and reuse, available water and infrastructure (water pipelines, injection wells, etc.) are also important contributors. In some regions effluent water (i.e., treated or untreated waste water) is playing an increasing role to reduce impacting 'fresh' water supplies for communities in regions where supply is limited and demand continues to increase. In many communities effluent water provides additional revenue to support infrastructure needs arising from accelerated population growth and economic expansion. The development strategy for shale reservoirs can be optimized to assure a sustainable future for water resources. A systems-based sustainable water strategy should be integrated into the regional reservoir development approach at the earliest possible stage with full consideration of the nature of regional water issues and reservoir development strategies impacting water demand and supply, available technology and potential social and economic impacts.

  11. Crop-specific seasonal estimates of irrigation-water demand in South Asia

    NASA Astrophysics Data System (ADS)

    Biemans, Hester; Siderius, Christian; Mishra, Ashok; Ahmad, Bashir

    2016-05-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight into these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation-water demand resulting from the typical practice of multiple cropping in South Asia was accounted for by introducing double cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest state-level statistics of India, Pakistan, Bangladesh and Nepal. The improvements in seasonal land use and cropping periods lead to lower estimates of irrigation-water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation-water demand differs sharply between seasons and regions; in Pakistan, winter (rabi) and monsoon summer (kharif) irrigation demands are almost equal, whereas in Bangladesh the rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply versus rain decreases sharply from west to east. Given the size and importance of South Asia improved regional estimates of food production and its irrigation-water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple cropping and monsoon-dependent planting dates should not be ignored.

  12. A Two-stage Approach for Water Demand Prediction under Constrained total water use and Water Environmental Capacity

    NASA Astrophysics Data System (ADS)

    He, Y.; Xiaohong, C.; Lin, K.; Wang, Z.

    2016-12-01

    Water demand (WD) is the basis for water allocation (WA) because it can fully reflect the pressure on water resources from population and socioeconomic development. To deal with the great uncertainties and the absence of consideration of water environmental capacity (WEC) in traditional water demand prediction methods, e.g. Statistical models, System Dynamics and quota method, this study develops a two-stage approach to predict WD under constrained total water use from the perspective of ecological restraint. Regional total water demand (RTWD) is constrained by WEC, available water resources amount and total water use quota. Based on RTWD, WD is allocated in two stages according to the game theory, including predicting sub regional total water demand (SRWD) by calculating the sub region weights based on the selected indicators of socioeconomic development and predicting industrial water demand (IWD) according to the game theory. Taking the Dongjiang river basin, South China as an example of WD prediction, according to its constrained total water use quota and WEC, RTWD in 2020 is 9.83 billion m3, and IWD for agriculture, industry, service, ecology (off-stream), and domesticity are 2.32 billion m3, 3.79 billion m3, 0.75 billion m3 , 0.18 billion m3and 1.79 billion m3 respectively. The results from this study provide useful insights for effective water allocation under climate change and the strict policy of water resources management.

  13. Ground water security and drought in Africa: linking availability, access, and demand.

    PubMed

    Calow, Roger C; Macdonald, Alan M; Nicol, Alan L; Robins, Nick S

    2010-01-01

    Drought in Africa has been extensively researched, particularly from meteorological, agricultural, and food security perspectives. However, the impact of drought on water security, particularly ground water dependent rural water supplies, has received much less attention. Policy responses have concentrated on food needs, and it has often been difficult to mobilize resources for water interventions, despite evidence that access to safe water is a serious and interrelated concern. Studies carried out in Ghana, Malawi, South Africa, and Ethiopia highlight how rural livelihoods are affected by seasonal stress and longer-term drought. Declining access to food and water is a common and interrelated problem. Although ground water plays a vital role in buffering the effects of rainfall variability, water shortages and difficulties in accessing water that is available can affect domestic and productive water uses, with knock-on effects on food consumption and production. Total depletion of available ground water resources is rarely the main concern. A more common scenario is a spiral of water insecurity as shallow water sources fail, additional demands are put on remaining sources, and mechanical failures increase. These problems can be planned for within normal development programs. Water security mapping can help identify vulnerable areas, and changes to monitoring systems can ensure early detection of problems. Above all, increasing the coverage of ground water-based rural water supplies, and ensuring that the design and siting of water points is informed by an understanding of hydrogeological conditions and user demand, can significantly increase the resilience of rural communities to climate variability.

  14. Supply-demand 3D dynamic model in water resources evaluation: taking Lebanon as an example

    NASA Astrophysics Data System (ADS)

    Fang, Hong; Hou, Zhimin

    2017-05-01

    In this paper, supply-demand 3D dynamic model is adopted to create a measurement of a region’s capacity to provide available water to meet the needs of its population. First of all, we draw a diagram between supply and demand. Then taking the main dynamic factors into account, we establish an index to evaluate the balance of supply and demand. The three dimension vector reflects the scarcity of industrial, agricultural and residential water. Lebanon is chosen as the object of case study, and we do quantitative analysis of its current situation. After data collecting and processing, we calculate the 3D vector in 2012, which reveals that agriculture is susceptible to water scarcity. Water resources of Lebanon are “physical rich” but “economic scarcity” according to the correlation chart and other statistical analysis.

  15. Drought Vulnerability of Thermoelectric Generation using Texas as a Case Study

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Duncan, I.; Reedy, R. C.

    2013-12-01

    Increasing extent, frequency, and intensity of droughts raises concerns about the vulnerability of thermoelectricity generation to water-shortages. In this study we evaluated the impact of the 2011 flash drought in Texas on electricity demand and water supply for power plants. The impacts of the drought were greater in sub-humid east Texas than in semiarid west Texas because most power plants are pre-adapted to low water availability in west Texas. This comparison between sub-humid and semiarid regions in Texas serves as a proxy for climatic differences between the eastern and western US. High temperatures with ≥100 days of triple digit temperatures raised annual electricity demands/generation by 6% and peak demands in August by 4% relative to 2010. The corresponding water demands/consumption for 2011 for thermoelectric generation was increased by ~10% relative to 2010. While electricity demand only increased slightly during the drought, water supply decreased markedly with statewide reservoir storage at record lows (58% of capacity). Reductions in reservoir storage would suggest that power plants should be vulnerable to water shortages; however, data show that power plants subjected to water shortages were flexible enough to adapt by switching to less water-intensive technologies. Some power plants switched from once-through cooling to cooling towers with more than an order of magnitude reduction in water withdrawals whereas others switched from steam turbines to combustion turbines (no cooling water requirements) when both were available. Recent increases in natural gas production by an order of magnitude and use in combined cycle plants enhances the robustness of the power-plant fleet to drought by reducing water consumption (~1/3rd of that for steam turbines), allowing plants to operate with (combined cycle generator) or without (combustion turbine generator) water, and as base-load or peaking plants to complement increasing wind generation. Drought vulnerability of the power plant fleet can be further enhanced by reducing demand and/or increasing supplies of water (e.g. use of nontraditional water sources: municipal waste water or brackish water) and increasing supplies of electricity. Our ability to cope with projected increases in droughts would be greatly improved by joint management of water and electricity.

  16. Household water demand and welfare loss for future Europe

    NASA Astrophysics Data System (ADS)

    Bernhard, Jeroen; Reynaud, Arnaud; Lanzanova, Denis; de Roo, Ad

    2015-04-01

    Matching the availability of water to its demand in Europe is a major challenge for the future due to expected economic and demographic developments and climate change. This means there is a growing need to estimate future water demand and to optimize the water allocation to all end users to counteract welfare loss. At the European scale it is currently not possible to assess the impact of social and economic changes on future water demand or to prioritize water allocation amongst different sectors based on economic damage without extensive use of assumptions and generalizations. Indeed, our review of existing regional optimization models for Europe reveals that the social-economic component of the water use system needs to be improved by complementing them with detailed water use estimates and cost/benefit functions in order to determine the optimal situation. Our study contributes to closing this knowledge gap for the European household sector by quantifying future water demand and the effect of water pricing, as well as providing a method for the calculation of monetary damage due to unmet demand at the highest spatial resolution possible. We used a water demand function approach in which household water consumption depends upon some exogenous drivers including water price, household income, population and household characteristics and climate conditions. For each European country, the annual water consumption per capita was calculated at regional level (NUTS3) and subsequently disaggregated to five kilometer grid level based on a population density map. In order to produce estimates of water demand, the evolution of the explanatory variables of the water demand functions and population density map were simulated until 2050 based on related variables such as GDP and demographic projections. The results of this study will be integrated into the JRC hydro-economic modelling framework for an assessment of the Water-Agriculture-Energy-Ecosystems Nexus.

  17. Sectoral contributions to surface water stress in the coterminous United States

    NASA Astrophysics Data System (ADS)

    Averyt, K.; Meldrum, J.; Caldwell, P.; Sun, G.; McNulty, S.; Huber-Lee, A.; Madden, N.

    2013-09-01

    Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model which considers regional trends in both water supply and demand. A snapshot of contemporary annual water demand is compared against different water supply regimes, including current average supplies, current extreme-year supplies, and projected future average surface water flows under a changing climate. In addition, we investigate the contributions of different water demand sectors to current water stress. On average, water supplies are stressed, meaning that demands for water outstrip natural supplies in over 9% of the 2103 watersheds examined. These watersheds rely on reservoir storage, conveyance systems, and groundwater to meet current water demands. Overall, agriculture is the major demand-side driver of water stress in the US, whereas municipal stress is isolated to southern California. Water stress introduced by cooling water demands for power plants is punctuated across the US, indicating that a single power plant has the potential to stress water supplies at the watershed scale. On the supply side, watersheds in the western US are particularly sensitive to low flow events and projected long-term shifts in flow driven by climate change. The WaSSI results imply that not only are water resources in the southwest in particular at risk, but that there are also potential vulnerabilities to specific sectors, even in the ‘water-rich’ southeast.

  18. Sustainability of water uses in managed hydrosystems: human- and climate-induced changes for the mid-21st century

    DOE PAGES

    Fabre, Julie; Ruelland, Denis; Dezetter, Alain; ...

    2016-08-02

    This paper assesses the sustainability of planned water uses in mesoscale river basins under multiple climate change scenarios, and contributes to determining the possible causes of unsustainability. We propose an assessment grounded in real-world water management issues, with water management scenarios built in collaboration with local water agencies. Furthermore, we present an analysis through indicators that relate to management goals and present the implications of climate uncertainty for our results, furthering the significance of our study for water management. A modeling framework integrating hydro-climatic and human dynamics and accounting for interactions between resource and demand was applied in two basinsmore » of different scales and with contrasting water uses: the Herault (2500 km 2, France) and the Ebro (85 000 km 2, Spain) basins. Natural streamflow was evaluated using a conceptual hydrological model. A demand-driven reservoir management model was designed to account for streamflow regulations from the main dams. Human water demand was estimated from time series of demographic, socioeconomic and climatic data. Environmental flows were accounted for by defining streamflow thresholds under which withdrawals were strictly limited. Finally indicators comparing water availability to demand at strategic resource and demand nodes were computed. This framework was applied under different combinations of climatic and water use scenarios for the mid-21st to differentiate the impacts of climate- and human-induced changes on streamflow and water balance. Results showed that objective monthly environmental flows would be guaranteed in current climate conditions in both basins, yet in several areas this could imply limiting human water uses more than once every 5 years. The impact of the tested climate projections on both water availability and demand could question the water allocations and environmental requirements currently planned for the coming decades. Water shortages for human use could become more frequent and intense, and the pressure on water resources and aquatic ecosystems could intensify. Furthermore, the causes of unsustainability vary across sub-basins and scenarios, and in most areas results are highly dependent on the climate change scenario.« less

  19. Sustainability of water uses in managed hydrosystems: human- and climate-induced changes for the mid-21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabre, Julie; Ruelland, Denis; Dezetter, Alain

    This paper assesses the sustainability of planned water uses in mesoscale river basins under multiple climate change scenarios, and contributes to determining the possible causes of unsustainability. We propose an assessment grounded in real-world water management issues, with water management scenarios built in collaboration with local water agencies. Furthermore, we present an analysis through indicators that relate to management goals and present the implications of climate uncertainty for our results, furthering the significance of our study for water management. A modeling framework integrating hydro-climatic and human dynamics and accounting for interactions between resource and demand was applied in two basinsmore » of different scales and with contrasting water uses: the Herault (2500 km 2, France) and the Ebro (85 000 km 2, Spain) basins. Natural streamflow was evaluated using a conceptual hydrological model. A demand-driven reservoir management model was designed to account for streamflow regulations from the main dams. Human water demand was estimated from time series of demographic, socioeconomic and climatic data. Environmental flows were accounted for by defining streamflow thresholds under which withdrawals were strictly limited. Finally indicators comparing water availability to demand at strategic resource and demand nodes were computed. This framework was applied under different combinations of climatic and water use scenarios for the mid-21st to differentiate the impacts of climate- and human-induced changes on streamflow and water balance. Results showed that objective monthly environmental flows would be guaranteed in current climate conditions in both basins, yet in several areas this could imply limiting human water uses more than once every 5 years. The impact of the tested climate projections on both water availability and demand could question the water allocations and environmental requirements currently planned for the coming decades. Water shortages for human use could become more frequent and intense, and the pressure on water resources and aquatic ecosystems could intensify. Furthermore, the causes of unsustainability vary across sub-basins and scenarios, and in most areas results are highly dependent on the climate change scenario.« less

  20. A First Estimation of County-Based Green Water Availability and Its Implications for Agriculture and Bioenergy Production in the United States

    DOE PAGES

    Xu, Hui; Wu, May

    2018-02-02

    Green water is vital for the terrestrial ecosystem, but water resource assessment often focuses on blue water. In this study, we estimated green water availability for major crops (i.e., corn, soybean, and wheat) and all other users(e.g., forest, grassland, and ecosystem services) at the county level in the United States. We estimated green water resources from effective rain(ER) using three different methods: Smith, U.S. Department of Agriculture-Soil Conservation Service (USDA-SCS), and the NHD plus V2 dataset. The analysis illustrates that, if green water meets all crop water demands, the fraction of green water resources available to all other users variesmore » significantly across regions, from the Northern Plains (0.71) to the Southeast (0.98). At the county level, this fraction varies from 0.23 to 1.0. Green water resources estimated using the three different ER methods present diverse spatiotemporal distribution patterns across regions, which could affect green water availability estimates. The water availability index for green water (WAI_R) was measured taking into account crop water demand and green water resources aggregated at the county level. Beyond these parameters, WAI_R also depends on the precipitation pattern, crop type and spatially differentiated regions. In addition, seasonal analysis indicated that WAI_R is sensitive to the temporal boundary of the analysis.« less

  1. A First Estimation of County-Based Green Water Availability and Its Implications for Agriculture and Bioenergy Production in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hui; Wu, May

    Green water is vital for the terrestrial ecosystem, but water resource assessment often focuses on blue water. In this study, we estimated green water availability for major crops (i.e., corn, soybean, and wheat) and all other users(e.g., forest, grassland, and ecosystem services) at the county level in the United States. We estimated green water resources from effective rain(ER) using three different methods: Smith, U.S. Department of Agriculture-Soil Conservation Service (USDA-SCS), and the NHD plus V2 dataset. The analysis illustrates that, if green water meets all crop water demands, the fraction of green water resources available to all other users variesmore » significantly across regions, from the Northern Plains (0.71) to the Southeast (0.98). At the county level, this fraction varies from 0.23 to 1.0. Green water resources estimated using the three different ER methods present diverse spatiotemporal distribution patterns across regions, which could affect green water availability estimates. The water availability index for green water (WAI_R) was measured taking into account crop water demand and green water resources aggregated at the county level. Beyond these parameters, WAI_R also depends on the precipitation pattern, crop type and spatially differentiated regions. In addition, seasonal analysis indicated that WAI_R is sensitive to the temporal boundary of the analysis.« less

  2. Spatial analysis of private tanker water markets in Jordan: Using a hydroeconomic multi-agent model to simulate non-observed water transfers

    NASA Astrophysics Data System (ADS)

    Klassert, Christian; Yoon, Jim; Gawel, Erik; Sigel, Katja; Klauer, Bernd; Talozi, Samer; Lachaut, Thibaut; Selby, Philip; Knox, Stephen; Gorelick, Steven; Tilmant, Amaury; Harou, Julien; Mustafa, Daanish; Medellin-Azuara, Josue; Rajsekhar, Deepthi; Avisse, Nicolas; Zhang, Hua

    2017-04-01

    The country of Jordan is characterized by severe water scarcity and deficient public water supply networks. To address these issues, Jordan's water sector authorities have adopted a water rationing scheme implemented by interrupting piped water supply for several days per week. As in many arid countries around the world, this has led to the emergence of private markets of small-scale providers, delivering water via tanker trucks. On the one hand, these markets play a crucial role in meeting residential and commercial water demands by balancing the shortcomings of the public supply system. On the other hand, providers partially rely on illegal abstractions from rural ground and surface water sources, thereby circumventing regulatory efforts to conserve these resources. Private tanker water markets, therefore, provide a substantial contribution to consumer welfare while jeopardizing freshwater resource sustainability. Thus, a better understanding of these markets is of great importance for the formulation of policy interventions pursuing freshwater sustainability in a socially acceptable manner. Direct assessments of the size of these markets or their responses to policy interventions are, however, impeded by their partially illegal nature and the resulting lack of available information. To overcome this data collection challenge, we use a hydroeconomic multi-agent model developed in the Jordan Water Project to indirectly simulate country-wide tanker water market activities on the basis of demand and supply estimates. The demand for tanker water is conceptualized as a residual demand, remaining after a water user has depleted all available cheap and qualitatively reliable piped water. It is derived from residential and commercial demand functions on the basis of survey data. Tanker water supply is determined by farm simulation models calculating the groundwater pumping cost and the agricultural opportunity cost of tanker water. Finally, a spatial market algorithm matches rural supplies with users' demands across the 89 subdistricts of Jordan. This algorithm is parameterized with survey data we collected on tanker operators' transport costs and profit expectations. The model is successfully validated with available data on tanker truck registrations and tanker water prices. Model results reveal the spatial distribution of the private tanker markets' freshwater extractions, sales quantities, and economic impacts on different water user groups across all of Jordan. The results confirm the quantitative importance of these markets for consumer welfare. A dynamic coupling of farm agents with a country-wide groundwater model allows us to capture feedbacks between tanker water markets and groundwater levels. This enables us to assess policy impacts over time. Model analyses show that policies aiming to mitigate the negative sustainability impacts of private tanker water markets need to simultaneously address the shortcomings of the piped water supply system in order to avoid undue burdens on water users.

  3. Inclusion of climatic and touristic factors in the analysis and modelling of the municipal water demand in a Mediterranean region

    NASA Astrophysics Data System (ADS)

    Toth, Elena; Bragalli, Cristiana; Neri, Mattia

    2017-04-01

    In Mediterranean regions, inherently affected by water scarcity conditions, the gap between water availability and demand may further increase in the near future due to both climatic and anthropogenic drivers. In particular, the high degree of urbanization and the concentration of population and activities in coastal areas is often severely impacting the water availability also for the residential sector. It is therefore crucial analysing the importance of both climatic and touristic factors as drivers for the water demand in such areas, to better understand and model the expected consumption in order to improve the water management policies and practices. The study presents an analysis referred to a large number of municipalities, covering almost the whole Romagna region, in Northern Italy, representing one of the most economically developed areas in Europe and characterized by an extremely profitable tourist industry, especially in the coastal cities. For this region it is therefore extremely important to assess the significance of the drivers that may influence the demand in the different periods of the year, that is climatic factors (rainfall depths and occurrence, temperature averages and extremes), but also the presence of tourists, in both official tourist accommodation structures and in holidays homes (and the latter are very difficult to estimate). Analyses on the Italian water industry at seasonal or monthly time scale has been so far, extremely limited in the literature by the scarce availability of data on the water demands, that are made public only as annual volumes. All the study municipalities are supplied by the same water company, who provided monthly consumption volumes data at the main inlet points of the entire distribution network for a period of 7 years (2009-2015). For the same period, precipitation and temperature data have been collected and summarised in indexes representing monthly averages, days of occurrence and over threshold values; in addition, information on the tourist flows, at monthly scale, have been collected and processed. Such data have been validated and aggregated at municipal or multi-municipal scale and are analysed, in particular in reference to a severe dry period occurred in 2011-2012, in order to understand the demand pattern and the users' response to a water scarcity condition, examining the influence of the different climatic and anthropogenic (touristic) drivers on the water demand. Finally, a non-linear model, based on a neural network architecture, was implemented for each municipality, for simulating the monthly water demand as a function of previous demands and of the identified climatic and touristic indexes: the outcomes of the models demonstrate the added value of the addition of determinants based on both climatic and touristic data and such value, as expected, is higher for the coastal municipalities, having a higher tourist vocation.

  4. The Potential Impacts of Climate Change on the Quality and Quantity of Freshwater Available to Humans in the Arctic

    NASA Astrophysics Data System (ADS)

    White, D. M.; Strang, E. T.; Alessa, L.; Hinzman, L.; Kliskey, A.

    2005-12-01

    The objective of this research is to understand how humans rely on freshwater at local and regional scales in selected parts of the Arctic, how these dependencies have changed in the recent past, and how they are likely to change in the future. The study seeks to incorporate likely effects of climate change on the hydrologic cycle and water availability to humans in the Arctic. The human demand for freshwater has risen dramatically over the past hundred years. Communities on the Seward Peninsula currently rely on both treated and traditional water sources for their drinking water. In many cases, availability of freshwater limits the use of both of these types of water sources. Future water demand predictions suggest that the demand for treated water will increase significantly as water systems are upgraded and the population of the area increases. Preliminary research indicates that water quality may by impacted by hydrologic changes, and further research is underway to determine the extent of these changes and how they will affect drinking water supplies on the Seward Peninsula. Understanding how climate change will impact the hydrology of this area will help minimize the impact these changes have on both engineered water systems and traditional water uses in the future. This presentation provides the most recent results of this research program. This study is being funded under the NSF Arctic System Science Program, Human Dimensions of the Arctic (OPP-0328686).

  5. Assessing the adequacy of water storage infrastructure capacity under hydroclimatic variability and water demands in the United States

    NASA Astrophysics Data System (ADS)

    Ho, M. W.; Devineni, N.; Cook, E. R.; Lall, U.

    2017-12-01

    As populations and associated economic activity in the US evolve, regional demands for water likewise change. For regions dependent on surface water, dams and reservoirs are critical to storing and managing releases of water and regulating the temporal and spatial availability of water in order to meet these demands. Storage capacities typically range from seasonal storage in the east to multi-annual and decadal-scale storage in the drier west. However, most dams in the US were designed with limited knowledge regarding the range, frequency, and persistence of hydroclimatic extremes. Demands for water supplied by these dams have likewise changed. Furthermore, many dams in the US are now reaching or have already exceeded their economic design life. The converging issues of aging dams, improved knowledge of hydroclimatic variability, and evolving demands for dam services result in a pressing need to evaluate existing reservoir capacities with respect to contemporary water demands, long term hydroclimatic variability, and service reliability into the future. Such an effort is possible given the recent development of two datasets that respectively address hydroclimatic variability in the conterminous United States over the past 555 years and human water demand related water stress over the same region. The first data set is a paleoclimate reconstruction of streamflow variability across the CONUS region based on a tree-ring informed reconstruction of the Palmer Drought Severity Index. This streamflow reconstruction suggested that wet spells with shorter drier spells were a key feature of 20th century streamflow compared with the preceding 450 years. The second data set in an annual cumulative drought index that is a measure of water balance based on water supplied through precipitation and water demands based on evaporative demands, agricultural, urban, and industrial demands. This index identified urban and regional hotspots that were particularly dependent on water transfers and vulnerable to persistent drought risk. These data sets are used in conjunction with the national inventory of dams to assess the current capacity of dams to meet water demands considering variability in streamflow over the past 555 years. A case study in the North-East US is presented.

  6. Review of water demand and water utilization studies for the Provo River drainage basin, and review of a study of the effects of the proposed Jordanelle Reservoir on seepage to underground mines, Bonneville unit of the central Utah project

    USGS Publications Warehouse

    Waddell, K.M.; Freethey, G.W.; Susong, D.D.; Pyper, G.E.

    1991-01-01

    Problem: Questions have been raised concerning the adequacy of available water to fulfill the needs of storage, exchanges, diversions, and instream flows, pursuant to existing water rights in the Provo River drainage basin part of the Bonneville Unit. Also, concern has been expressed about the potential for seepage of water from Jordanelle Reservoir to underground mines. The Utah Congressional Delegation requested that the U.S. Geological Survey (USGS) review the results of analyses performed by and for the USBR.Purpose and Scope: The purpose of this report is to present the results of the USGS review of (1) the hydrologic data, techniques, and model used by the USBR in their hydrologic analyses of the Provo River drainage basin and (2) the results of a study of the potential for seepage from the Jordanelle Reservoir to nearby underground mines.The USGS reviewed USBR-supplied water demands, water utilization studies, and models of seepage from Jordanelle Reservoir. The USBR estimated that about 90 percent of the water supply for Jordanelle Reservoir will be water from Strawberry Reservoir exchanged for water from the Provo River stored in Utah Lake. If the Utah State Engineer allows the USBR to claim an estimated 19,700 acre-feet of return flows from the CUP, only about 77 percent of the supply would be derived from exchange of existing water rights in Utah Lake. The USGS assumed that planned importations of water from the Uinta Basin will be available and deliverable to fulfill the proposed exchanges.Water rights and demands are important for determining water availability. The USGS did not conduct an independent review of water rights and demands. The USSR and Utah Division of Water Rights use different methods in some areas for determining stress on the system based on past records. The USSR used "historical observed diversions" and the Utah Division of Water Rights use "diversion entitlements", which may not be equal to the historical diversions. The USGS based its review upon water demands used by the USSR. The Utah Division of Water Rights has responsibility for granting and enforcing water rights, and the final decisions on how the rights will be adjudicated lies with the Utah Division of Water Rights and with the courts. The USGS review did not consider the draft water distribution plan for the Utah Lake drainage basin proposed by the Utah State Engineer (written commun., October 15,1991). This plan, when finalized, may have an effect on water availability to the CUP.

  7. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    NASA Astrophysics Data System (ADS)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper temperature of hot water during peak hot water demand and on that time between 06.00 and 10.00 hours, the hotel also experiences a low cooling demand. Subsequently, the temperature of hot water supplied drops down as low as 45 °C. The study was found that optimization on the TES can significantly minimize temperature variation of the hot water supplied to the hotel appliances. A TES of 30 m3 storage capacity is considered the optimum capacity which can reduce the temperature fluctuation from 17 K down to 3 K. The study also found that maintaining the storage temperature relatively lower than the condenser temperature could increase hot water production of the heat recovery system.

  8. An analytical method to determine ground water supply well network designs.

    PubMed

    MacMillan, Gordon James

    2009-01-01

    An analytical method is provided where the ground water practitioner can quickly determine the size (number of wells) and spacing of a well network capable of meeting a known ground water demand. In order to apply the method, two new parameters are derived that relate theoretical drawdown to the maximum drawdown that is achievable without mining the aquifer. The size of a well network is shown to be proportional to the ground water demand and inversely proportional to the transmissivity and available head. The spacing between wells in a supply well network is shown to be most sensitive to a derived parameter r(HA/3) , which is related to the available head and the propagation of drawdown away from a theoretical well if the total ground water demand was applied to that well. The method can be used to quickly determine the required spacing between wells in well networks of various sizes that are completed in confined aquifers with no leakance. Copyright © 2009 The Author(s). Journal Compilation © 2009 National Ground Water Association.

  9. How to meet the increasing demands of water, food and energy in the future?

    NASA Astrophysics Data System (ADS)

    Shi, Haiyun; Chen, Ji; Sivakumar, Bellie; Peart, Mervyn

    2017-04-01

    Regarded as a driving force in water, food and energy demands, the world's population has been increasing rapidly since the beginning of the 20th century. According to the medium-growth projection scenario of the United Nations, the world's population will reach 9.5 billion by 2050. In response to the continuously growing population during this century, water, food and energy demands have also been increasing rapidly, and social problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if no proper management strategies are adopted. Then, how to meet the increasing demands of water, food and energy in the future? This study focuses on the sustainable developments of population, water, food, energy and dams, and the significances of this study can be concluded as follows: First, we reveal the close association between dams and social development through analysing the related data for the period 1960-2010, and argue that construction of additional large dams will have to be considered as one of the best available options to meet the increasing water, food and energy demands in the future. We conduct the projections of global water, food and energy consumptions and dam development for the period 2010-2050, and the results show that, compared to 2010, the total water, food and energy consumptions in 2050 will increase by 20%, 34% and 37%, respectively. Moreover, it is projected that additional 4,340 dams will be constructed by 2050 all over the world. Second, we analyse the current situation of global water scarcity based on the related data representing water resources availability (per capita available water resources), dam development (the number of dams), and the level of economic development (per capita gross domestic product). At the global scale, water scarcity exists in more than 70% of the countries around the world, including 43 countries suffering from economic water scarcity and 129 countries suffering from physical water scarcity. At the continental scale, most countries of Africa, the south and west Asia, and the central Europe are suffering from water scarcity. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, we address the question of future dam development and predict the locations of future large dams around the world. The results show that there will be 1,433 large dams built in the future, mainly in the Tibet Plateau and the Yunnan-Guizhou Plateau in Asia, the East African Plateau and the western part of Africa, the Andes Mountains and the Brazilian Plateau region in South America, the Rocky Mountains in North America, the Alps in Europe, and the Murray-Darling Basin in Oceania. Taking into account of the current situation of global water scarcity, these large dams are most likely to be constructed in countries that have abundant total available water resources or per capita available water resources, no matter whether they are experiencing "economic water scarcity" or have sufficient financial support.

  10. A simple framework to analyze water constraints on seasonal transpiration in rubber tree (Hevea brasiliensis) plantations

    PubMed Central

    Sopharat, Jessada; Gay, Frederic; Thaler, Philippe; Sdoodee, Sayan; Isarangkool Na Ayutthaya, Supat; Tanavud, Charlchai; Hammecker, Claude; Do, Frederic C.

    2015-01-01

    Climate change and fast extension in climatically suboptimal areas threaten the sustainability of rubber tree cultivation. A simple framework based on reduction factors of potential transpiration was tested to evaluate the water constraints on seasonal transpiration in tropical sub-humid climates, according pedoclimatic conditions. We selected a representative, mature stand in a drought-prone area. Tree transpiration, evaporative demand and soil water availability were measured every day over 15 months. The results showed that basic relationships with evaporative demand, leaf area index and soil water availability were globally supported. However, the implementation of a regulation of transpiration at high evaporative demand whatever soil water availability was necessary to avoid large overestimates of transpiration. The details of regulation were confirmed by the analysis of canopy conductance response to vapor pressure deficit. The final objective of providing hierarchy between the main regulation factors of seasonal and annual transpiration was achieved. In the tested environmental conditions, the impact of atmospheric drought appeared larger importance than soil drought contrary to expectations. Our results support the interest in simple models to provide a first diagnosis of water constraints on transpiration with limited data, and to help decision making toward more sustainable rubber plantations. PMID:25610443

  11. Development of Chengdu and sustainable utilization of the ancient Dujiangyan Water-Conservancy Project

    NASA Astrophysics Data System (ADS)

    Huang, X.; You, J.; Yang, P.; Chai, X.

    2015-05-01

    The Dujiangyan Water-Conservancy Project is a great water irrigation works in Chinese cultural history, which led the Min River water to the vast Chengdu Plain, and created fertile and pretty "land of abundance". Now Chengdu is facing increased water demand stress due mainly to rapid urbanization. This paper first analyses the available water resources of Chengdu based on historical hydrological data from 1964 to 2008. The results show that the average annual water resources were 8.9 billion m3 in 1986 and 7.9 billion m3 in 2008 under various environmental conditions. The future tendency of water demand in city development planning is predicted by the Policy Dialogue Model (PODIUM). Finally, the strategies for water resources exploitation accompanying the sustainable development pattern are studied. The result illustrates that rational and careful management are required to balance the gap between water supply and demand

  12. Water Use and Management in the Bakken Shale Oil Play in North Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horner, R. M.; Harto, C. B.; Jackson, R. B.

    2016-03-15

    Oil and natural gas development in the Bakken shale play of North Dakota has grown substantially since 2008. This study provides a comprehensive overview and analysis of water quantity and management impacts from this development by (1) estimating water demand for hydraulic fracturing in the Bakken from 2008 to 2012; (2) compiling volume estimates for maintenance water, or brine dilution water; (3) calculating water intensities normalized by the amount of oil produced, or estimated ultimate recovery (EUR); (4) estimating domestic water demand associated with the large oil services population; (5) analyzing the change in wastewater volumes from 2005 to 2012;more » and (6) examining existing water sources used to meet demand. Water use for hydraulic fracturing in the North Dakota Bakken grew 5-fold from 770 million gallons in 2008 to 4.3 billion gallons in 2012. First-year wastewater volumes grew in parallel, from an annual average of 1 135 000 gallons per well in 2008 to 2 905 000 gallons in 2012, exceeding the mean volume of water used in hydraulic fracturing and surpassing typical 4-year wastewater totals for the Barnett, Denver, and Marcellus basins. Surprisingly, domestic water demand from the temporary oilfield services population in the region may be comparable to the regional water demand from hydraulic fracturing activities. Existing groundwater resources are inadequate to meet the demand for hydraulic fracturing, but there appear to be adequate surface water resources, provided that access is available.« less

  13. Water Use and Management in the Bakken Shale Oil Play in North Dakota.

    PubMed

    Horner, R M; Harto, C B; Jackson, R B; Lowry, E R; Brandt, A R; Yeskoo, T W; Murphy, D J; Clark, C E

    2016-03-15

    Oil and natural gas development in the Bakken shale play of North Dakota has grown substantially since 2008. This study provides a comprehensive overview and analysis of water quantity and management impacts from this development by (1) estimating water demand for hydraulic fracturing in the Bakken from 2008 to 2012; (2) compiling volume estimates for maintenance water, or brine dilution water; (3) calculating water intensities normalized by the amount of oil produced, or estimated ultimate recovery (EUR); (4) estimating domestic water demand associated with the large oil services population; (5) analyzing the change in wastewater volumes from 2005 to 2012; and (6) examining existing water sources used to meet demand. Water use for hydraulic fracturing in the North Dakota Bakken grew 5-fold from 770 million gallons in 2008 to 4.3 billion gallons in 2012. First-year wastewater volumes grew in parallel, from an annual average of 1,135,000 gallons per well in 2008 to 2,905,000 gallons in 2012, exceeding the mean volume of water used in hydraulic fracturing and surpassing typical 4-year wastewater totals for the Barnett, Denver, and Marcellus basins. Surprisingly, domestic water demand from the temporary oilfield services population in the region may be comparable to the regional water demand from hydraulic fracturing activities. Existing groundwater resources are inadequate to meet the demand for hydraulic fracturing, but there appear to be adequate surface water resources, provided that access is available.

  14. Long-term trends in field level irrigation water demand in Mahanadi delta districts - a hydrological modeling approach for coping with climate change

    NASA Astrophysics Data System (ADS)

    Raju Pokkuluri, Venkat; Rao, Diwakar Parsi Guru; Hazra, Sugata; Srikant Kulkarni, Sunil

    2017-04-01

    India uses its 85 percent of available water resources for irrigation making it the country with largest net irrigated area in the world. With one of the largest delta plains, sustaining the needs of irrigation supplies is critical for food security and coping with challenges of climate change. The extensive development of upstream river basins/catchments is posing serious challenge and constrains to the water availability to delta regions, which depend on the controlled/regulated flows from the upstream catchments. The irrigation water demands vary due to changes in agricultural practices, cropping pattern and changing climate conditions. Estimation of realistic irrigation water demand and its trend over time is critical for meeting the supplementary water needs of productive agricultural lands in delta plains and there by coping the challenges of extensive upstream river basin development and climate change. The present study carried out in delta districts of Mahanadi river in Odisha State of India, wherein the long-term trends in field level irrigation water requirements were estimated, both on spatial & temporal scales, using hydrological modeling framework. This study attempts to estimate field level irrigation water requirements through simulation of soil water balance during the crop growing season through process based hydrological modeling framework. The soil water balance computations were carried out using FAO-56 framework, by modifying the crop coefficient (Kc) proportional to the water stress coefficient (Ks), which is a function of root zone depletion of water. Daily meteorological data, spatial cropping pattern, terrain are incorporated in the soil water balance simulation in the model. The irrigation water demand is derived considering the exclusion of soil water stress for each model time step. The field level irrigation water requirement at 8 day interval had been estimated for the each Rabi season (post-monsoon) spanning over 1986 to 2015. The results indicate that irrigation water requirements show spatial and temporal changes and tend to deviate from notional/envisaged demands. Validation of estimated irrigation demand is attempted through correlation of gap in supply and demand with the trends in crop water stress and crop production during the study years. Crop water Stress Index (CWSI), which is the ratio of deficit of actual evapotranspiration (AET) from the potential evapotranspiration (PET) and is derived from MODIS Evapotranspiration data. Agricultural production data is used from State/Central government statistics. The attempted methodology provides opportunities to estimate future irrigation water demand under projected climate change scenarios and for planning for basin level water resources development sustaining the delta agriculture, which are projected to be more vulnerable to climate change.

  15. A summary view of water supply and demand in the San Francisco Bay Region, California

    USGS Publications Warehouse

    Rantz, Saul E.

    1972-01-01

    This report presents a summary view of the water-supply situation in the nine counties that comprise the San Francisco Bay region, California, and thereby provides water data, based on 1970 conditions, that are needed for regional planning. For the purpose of this study the nine-county region has been divided into 15 subregions on the basis of hydrologic and economic considerations. Firm water supply is tabulated for each subregion by source--ground water, surface water, and imported water. Water demand in 1970 is tabulated for each subregion by type of use or demand--public supply, rural self-supply, irrigation, self-supplied industrial water and thermoelectric power generation. The San Francisco Bay region is dependent to a large degree on imported water. Under 1970 conditions of development, the firm water supply is 2.2 million acre-feet per year; of that quantity, almost 1 million acre-feet per year is imported water. The water demand in 1970 was 1.9 million acre-feet, about half of which was consumed. Under 1970 conditions of water development and use, a series of dry years would probably necessitate some curtailment of irrigation activities in four of the subregions, where the bulk of the demands i for irrigation water. Under those same conditions there is generally ample water for municipal and industrial use throughout the region, except in eastern Marin County where the firm municipal supple does not exceed the 1970 demand for municipal and industrial water. Although the firm water supply of the San Francisco Bay region, including imported water, is generally adequate to meet present needs, supplemental supply will be required to meet increased demand in the future. The expansion of existing surface-water facilities and the construction of new surface-water projects, now considered feasible, could provide a combined firm supplemental yield of slightly more than 1 million acre-feet per year, almost three-fourths of which would be available for import by those subregions that might experience a water deficient in the future. However, any supplemental water that might be developed by such alternative methods as desalination of brackish or salt water, weather modification, and various conservation measure, will correspondingly reduce requirement for supplemental water from the more conventional sources. The aspect of water quality is not discussed in this paper. Because of the present availability of imported water of good or acceptable quality, water quality, as it affects the supply, is not a serious problem at this time, except perhaps in local areas adjacent to San Francisco Bay and in the Sacramento-San Joaquin Delta. In those areas ground water has been degraded by salinity intrusion. Although the prediction of future trends in population, land use, and water demand is beyond the scope of this report, there is not doubt that vigilance and careful planning will be required to prevent serious future deterioration of the quality of the water supply.

  16. The role of reservoir storage in large-scale surface water availability analysis for Europe

    NASA Astrophysics Data System (ADS)

    Garrote, L. M.; Granados, A.; Martin-Carrasco, F.; Iglesias, A.

    2017-12-01

    A regional assessment of current and future water availability in Europe is presented in this study. The assessment was made using the Water Availability and Adaptation Policy Analysis (WAAPA) model. The model was built on the river network derived from the Hydro1K digital elevation maps, including all major river basins of Europe. Reservoir storage volume was taken from the World Register of Dams of ICOLD, including all dams with storage capacity over 5 hm3. Potential Water Availability is defined as the maximum amount of water that could be supplied at a certain point of the river network to satisfy a regular demand under pre-specified reliability requirements. Water availability is the combined result of hydrological processes, which determine streamflow in natural conditions, and human intervention, which determines the available hydraulic infrastructure to manage water and establishes water supply conditions through operating rules. The WAAPA algorithm estimates the maximum demand that can be supplied at every node of the river network accounting for the regulation capacity of reservoirs under different management scenarios. The model was run for a set of hydrologic scenarios taken from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), where the PCRGLOBWB hydrological model was forced with results from five global climate models. Model results allow the estimation of potential water stress by comparing water availability to projections of water abstractions along the river network under different management alternatives. The set of sensitivity analyses performed showed the effect of policy alternatives on water availability and highlighted the large uncertainties linked to hydrological and anthropological processes.

  17. Assessment of impacts of climate change on surface water availability using coupled SWAT and WEAP models: case of upper Pangani River Basin, Tanzania

    NASA Astrophysics Data System (ADS)

    Kishiwa, Peter; Nobert, Joel; Kongo, Victor; Ndomba, Preksedis

    2018-05-01

    This study was designed to investigate the dynamics of current and future surface water availability for different water users in the upper Pangani River Basin under changing climate. A multi-tier modeling technique was used in the study, by coupling the Soil and Water Assessment Tool (SWAT) and Water Evaluation And Planning (WEAP) models, to simulate streamflows under climate change and assess scenarios of future water availability to different socio-economic activities by year 2060. Six common Global Circulation Models (GCMs) from WCRP-CMIP3 with emissions Scenario A2 were selected. These are HadCM3, HadGEM1, ECHAM5, MIROC3.2MED, GFDLCM2.1 and CSIROMK3. They were downscaled by using LARS-WG to station scale. The SWAT model was calibrated with observed data and utilized the LARS-WG outputs to generate future streamflows before being used as input to WEAP model to assess future water availability to different socio-economic activities. GCMs results show future rainfall increase in upper Pangani River Basin between 16-18 % in 2050s relative to 1980-1999 periods. Temperature is projected to increase by an average of 2 °C in 2050s, relative to baseline period. Long-term mean streamflows is expected to increase by approximately 10 %. However, future peak flows are estimated to be lower than the prevailing average peak flows. Nevertheless, the overall annual water demand in Pangani basin will increase from 1879.73 Mm3 at present (2011) to 3249.69 Mm3 in the future (2060s), resulting to unmet demand of 1673.8 Mm3 (51.5 %). The impact of future shortage will be more severe in irrigation where 71.12 % of its future demand will be unmet. Future water demands of Hydropower and Livestock will be unmet by 27.47 and 1.41 % respectively. However, future domestic water use will have no shortage. This calls for planning of current and future surface water use in the upper Pangani River Basin.

  18. Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources

    NASA Astrophysics Data System (ADS)

    Handyside, C. T.; Cruise, J.

    2017-12-01

    A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also, statistics such as the number of times certain WASSI thresholds are exceeded are calculated to show the impact of expanded irrigation during times of hydrologic drought and the coincident use of water by other sectors. Also, integrated downstream impacts of irrigation are also calculated through changes in flows through the whole river systems.

  19. Enhanced monitoring of the temporal and spatial relationships between water demand and water availability

    NASA Astrophysics Data System (ADS)

    Schneider, C. A.; Aggett, G. R.; Hattendorf, M. J.

    2007-12-01

    Better information on evapotranspiration (ET) is essential to better understanding of consumptive use of water by crops. RTi is using NASA Earth-sun System research results and METRIC (Mapping ET at high Resolution with Internalized Calibration) to increase the repeatability and accuracy of consumptive use estimates. METRIC, an image-processing model for calculating ET as a residual of the surface energy balance, utilizes the thermal band on various satellite remote sensors. Calculating actual ET from satellites can avoid many of the assumptions driving other methods of calculating ET over a large area. Because it is physically based and does not rely on explicit knowledge of crop type in the field, a large potential source of error should be eliminated. This paper assesses sources of error in current operational estimates of ET for an area of the South Platte irrigated lands of Colorado, and benchmarks potential improvements in the accuracy of ET estimates gained using METRIC, as well as the processing efficiency of consumptive use demand for large irrigated lands. Examples highlighting how better water planning decisions and water management can be achieved via enhanced monitoring of the temporal and spatial relationships between water demand and water availability are provided.

  20. Pan-European household and industrial water demand: regional relevant estimations

    NASA Astrophysics Data System (ADS)

    Bernhard, Jeroen; Reynaud, Arnaud; de Roo, Ad

    2016-04-01

    Sustainable water management is of high importance to provide adequate quality and quantity of water to European households, industries and agriculture. Especially since demographic, economic and climate changes are expected to increase competition for water between these sectors in the future. A shortage of water implies a reduction in welfare of households or damage to economic sectors. This socio-economic component should be incorporated into the decision-making process when developing water allocation schemes, requiring detailed water use information and cost/benefit functions. We now present the results of our study which is focused at providing regionally relevant pan-European water demand and cost-benefit estimations for the household and industry sector. We gathered consistent data on water consumption, water prices and other relevant variables at the highest spatial detail available from national statistical offices and other organizational bodies. This database provides the most detailed up to date picture of present water use and water prices across Europe. The use of homogeneous data allowed us to compare regions and analyze spatial patterns. We applied econometric methods to determine the main determinants of water demand and make a monetary valuation of water for both the domestic and industry sector. This monetary valuation is important to allow water allocation based on economic damage estimates. We also attempted to estimate how population growth, as well as socio-economic and climatic changes impact future water demand up to 2050 using a homogeneous method for all countries. European projections for the identified major drivers of water demand were used to simulate future conditions. Subsequently, water demand functions were applied to estimate future water use and potential economic damage caused by water shortages. We present our results while also providing some estimation of the uncertainty of our predictions.

  1. Application of Water Evaluation and Planning Model for Integrated Water Resources Management: Case Study of Langat River Basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Leong, W. K.; Lai, S. H.

    2017-06-01

    Due to the effects of climate change and the increasing demand on water, sustainable development in term of water resources management has become a major challenge. In this context, the application of simulation models is useful to duel with the uncertainty and complexity of water system by providing stakeholders with the best solution. This paper outlines an integrated management planning network is developed based on Water Evaluation and Planning (WEAP) to evaluate current and future water management system of Langat River Basin, Malaysia under various scenarios. The WEAP model is known as an integrated decision support system investigate major stresses on demand and supply in terms of water availability in catchment scale. In fact, WEAP is applicable to simulate complex systems including various sectors within a single catchment or transboundary river system. To construct the model, by taking account of the Langat catchment and the corresponding demand points, we defined the hydrological model into 10 sub-hydrological catchments and 17 demand points included the export of treated water to the major cities outside the catchment. The model is calibrated and verified by several quantitative statistics (coefficient of determination, R2; Nash-Sutcliffe efficiency, NSE and Percent bias, PBIAS). The trend of supply and demand in the catchment is evaluated under three scenarios to 2050, 1: Population growth rate, 2: Demand side management (DSM) and 3: Combination of DSM and reduce non-revenue water (NRW). Results show that by reducing NRW and proper DSM, unmet demand able to reduce significantly.

  2. Modeling Integrated Water-User Decisions with Intermittent Supplies

    NASA Astrophysics Data System (ADS)

    Lund, J. R.; Rosenberg, D.

    2006-12-01

    We present an economic-engineering method to estimate urban water use demands with intermittent water supplies. A two-stage, probabilistic optimization formulation includes a wide variety of water supply enhancement and conservation actions that individual households can adopt to meet multiple water quality uses with uncertain water availability. We embed the optimization in Monte-Carlo simulations to show aggregate effects at a utility (citywide) scale for a population of user conditions and decisions. Parametric analysis provides derivations of supply curves to subsidize conservation, demand responses to alternative pricing, and customer willingness-to-pay to avoid shortages. Results show a good empirical fit for the average and distribution of billed residential water use in Amman, Jordan. Additional outputs give likely market penetration rates for household conservation actions, associated water savings, and subsidies required to entice further adoption. We discuss new insights to size, target, market, and finance conservation programs and interpret a demand curve with block pricing.

  3. Integrating Infrastructure and Institutions for Water Security in Large Urban Areas

    NASA Astrophysics Data System (ADS)

    Padowski, J.; Jawitz, J. W.; Carrera, L.

    2015-12-01

    Urban growth has forced cities to procure more freshwater to meet demands; however the relationship between urban water security, water availability and water management is not well understood. This work quantifies the urban water security of 108 large cities in the United States (n=50) and Africa (n=58) based on their hydrologic, hydraulic and institutional settings. Using publicly available data, urban water availability was estimated as the volume of water available from local water resources and those captured via hydraulic infrastructure (e.g. reservoirs, wellfields, aqueducts) while urban water institutions were assessed according to their ability to deliver, supply and regulate water resources to cities. When assessing availability, cities relying on local water resources comprised a minority (37%) of those assessed. The majority of cities (55%) instead rely on captured water to meet urban demands, with African cities reaching farther and accessing a greater number and variety of sources for water supply than US cities. Cities using captured water generally had poorer access to local water resources and maintained significantly more complex strategies for water delivery, supply and regulatory management. Eight cities, all African, are identified in this work as having water insecurity issues. These cities lack sufficient infrastructure and institutional complexity to capture and deliver adequate amounts of water for urban use. Together, these findings highlight the important interconnection between infrastructure investments and management techniques for urban areas with a limited or dwindling natural abundance of water. Addressing water security challenges in the future will require that more attention be placed not only on increasing water availability, but on developing the institutional support to manage captured water supplies.

  4. America's Water in the 20th Century: Measures to address climate induced risk

    NASA Astrophysics Data System (ADS)

    Devineni, N.

    2017-12-01

    This work develops an understanding of water risk for USA considering linkages between water supply and competing demands. It explores how climate variability and changing water demands manifest as water deficits and how public-private management decisions determine regional water availability and drought resilience. We develop insights on regional water risks, infrastructure investments, sectoral allocation and policy modifications for America's future water sustainability. In this talk, I will focus on demonstrating how the variations in climate over the last century influenced changes in water use across the continent USA. A peak into our interactive modeling environment for future evolution of water use and supply will also be provided.

  5. Preparing for Future Water Resources Conflicts through Climate Change Adaptation Planning: A Case Study in Eastern Europe and Central Asia

    NASA Astrophysics Data System (ADS)

    Boehlert, B. B.; Neumann, J. E.; Strzepek, K.; Sutton, W.; Srivastava, J.

    2011-12-01

    Uncertainties posed by climate change and rapidly rising global water demand suggest that existing conflicts over water resources are likely to be exacerbated and new conflicts will appear where little or no conflict occurs today. Successfully planning for and preventing conflicts first requires a sound scientific understanding of the timing, location, and magnitude of water resource shortfalls, identification of the most appropriate climate adaptation options based on multiple criteria, and development of broad, multi-level consensus within the affected community. We recently applied this approach in a World Bank-funded adaptation assessment for the agricultural sectors of four countries in Eastern Europe and Central Asia-Albania, Macedonia, Moldova, and Uzbekistan. For each major basin, we first used a hydrological model to project changes in water availability through 2050 under country-specific high, medium, and low climate impact scenarios. Next, under the three climate scenarios, we projected changes in agricultural water demand using a crop model (i.e., AquaCrop and DSSAT), and changes in water demand in other sectors based on population projections and sectoral forecasts of changes in per capita use. We incorporated these water availability and demand projections-along with other characteristics of the water system such as water supply priorities, environmental and transboundary flow requirements, irrigation efficiency, and reservoir locations and volumes-into a monthly integrated water resource planning tool (the Water Evaluation And Planning tool, or WEAP) to generate projected unmet water demand under each climate scenario and to each sector through 2050. The findings suggest that the agricultural sector in each country (except the relatively water-rich Albania) would experience significant unmet water demands, up to 52 percent in the Syr Darya and Amu Darya River basins of Uzbekistan. Potential adaptation responses to address unmet water demands-such as improving farm and basin-level irrigation efficiency -were evaluated using multiple approaches, including participatory farmer consultations, modeling of net economic benefits, and expert assessment. Recommendations were further refined through consensus building discussions among stakeholders at National Conferences. By using sound analytical approaches to evaluate the impacts of climate change, and by consulting government ministries, in-country scientific and academic institutions, and farmers, the final sets of recommendations have gained wide support within the countries and have become strong candidates for multilateral investment. The work also provides a starting point for resolving transboundary conflicts between countries, including the existing disputes over the Amu Darya River between Uzbekistan and upstream Tajikistan, and between Macedonia and downstream Greece over the Vardar-Axios River.

  6. CALCULATING WATER CONSUMPTION AND WITHDRAWAL FROM POWER PLANTS GLOBALLYUsing machine learning, remote sensing and power plant data from the Power Watch platform

    NASA Astrophysics Data System (ADS)

    Kressig, A.

    2017-12-01

    BACKGROUND The Greenhouse Gas Protocol (GHGP), Scope 2 Guidance standardizes how companies measure greenhouse gas emissions from purchased or independently generated electricity (called "scope 2 emissions"). Additionally, the interlinkages between industrial or commercial (nonresidential) energy requirements and water demands have been studied extensively, mostly at the national or provincial scale, focused on industries involved in power generation. However there is little guidance available for companies to systematically and effectively quantify water withdrawals and consumption (herein referred to as "water demand") associated with purchased or acquired electricity(what we call "Scope 2 Water"). This lack of guidance on measuring a company's water demand from electricity use is due to a lack of data on average consumption and withdrawal rates of water associated with purchased electricity. OBJECTIVE There is growing demand from companies in the food, beverage, manufacturing, information communication and technology, and other sectors for a methodology to quantify Scope 2 water demands. By understanding Scope 2 water demands, companies could evaluate their exposure to water-related risks associated with purchased or acquired electricity, and quantify the water benefits of changing to less water-intensive sources of electricity and energy generation such as wind and solar. However, there has never been a way of quantifying Scope 2 Water consumption and withdrawals for a company across its international supply chain. Even with interest in understanding exposure to water related risk and measuring water use reductions, there has been no quantitative way of measuring this information. But WRI's Power Watch provides the necessary data to allow for the Scope 2 Water accounting, because it will provide water withdrawal and consumption rates associated with purchased electricity at the power plant level. By calculating the average consumption and withdrawal rates per unit of electricity produced across a grid region, companies can measure their water demand from facilities in that region. WRI is now developing a global dataset of grid level water consumption rates and developing a guidance for companies to report water demand across their supply chain and measure their reductions.

  7. Methods for Estimating Withdrawal and Return Flow by Census Block for 2005 and 2020 for New Hampshire

    USGS Publications Warehouse

    Hayes, Laura; Horn, Marilee A.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the New Hampshire Department of Environmental Services, estimated the amount of water demand, consumptive use, withdrawal, and return flow for each U.S. Census block in New Hampshire for the years 2005 (current) and 2020. Estimates of domestic, commercial, industrial, irrigation, and other nondomestic water use were derived through the use and innovative integration of several State and Federal databases, and by use of previously developed techniques. The New Hampshire Water Demand database was created as part of this study to store and integrate State of New Hampshire data central to the project. Within the New Hampshire Water Demand database, a lookup table was created to link the State databases and identify water users common to more than one database. The lookup table also allowed identification of withdrawal and return-flow locations of registered and unregistered commercial, industrial, agricultural, and other nondomestic users. Geographic information system data from the State were used in combination with U.S. Census Bureau spatial data to locate and quantify withdrawals and return flow for domestic users in each census block. Analyzing and processing the most recently available data resulted in census-block estimations of 2005 water use. Applying population projections developed by the State to the data sets enabled projection of water use for the year 2020. The results for each census block are stored in the New Hampshire Water Demand database and may be aggregated to larger political areas or watersheds to assess relative hydrologic stress on the basis of current and potential water availability.

  8. Simulation of projected water demand and ground-water levels in the Coffee Sand and Eutaw-McShan aquifers in Union County, Mississippi, 2010 through 2050

    USGS Publications Warehouse

    Hutson, Susan S.; Strom, E.W.; Burt, D.E.; Mallory, M.J.

    2000-01-01

    Ground water from the Eutaw-McShan and the Coffee Sand aquifers is the major source of supply for residential, commercial, and industrial purposes in Union County, Mississippi. Unbiased, scientifically sound data and assessments are needed to assist agencies in better understanding and managing available water resources as continuing development and growth places more stress on available resources. The U.S. Geological Survey, in cooperation with the Tennessee Valley Authority, conducted an investigation using water-demand and ground-water models to evaluate the effect of future water demand on groundwater levels. Data collected for the 12 public-supply facilities and the self-supplied commercial and industrial facilities in Union County were used to construct water-demand models. The estimates of water demand to year 2050 were then input to a ground-water model based on the U.S. Geological Survey finite-difference computer code, MODFLOW. Total ground-water withdrawals for Union County in 1998 were estimated as 2.85 million gallons per day (Mgal/d). Of that amount, municipal withdrawals were 2.55 Mgal/d with about 1.50 Mgal/d (59 percent) delivered to residential users. Nonmunicipal withdrawals were 0.296 Mgal/d. About 80 percent (2.27 Mgal/d) of the total ground-water withdrawal is produced from the Eutaw-McShan aquifer and about 13 percent (0.371 Mgal/d) from the Coffee Sand aquifer. Between normal- and high-growth conditions, total water demand could increase from 72 to 131 percent (2.9 Mgal/d in 1998 to 6.7 Mgal/d in year 2050) with municipal demand increasing from 77 to 146 percent (2.6 to 6.4 Mgal/d). Increased pumping to meet the demand for water was simulated to determine the effect on water levels in the Coffee Sand and Eutaw- McShan aquifers. Under baseline-growth conditions, increased water use by year 2050 could result in an additional 65 feet of drawdown in the New Albany area below year 2000 water levels in the Coffee Sand aquifer and about 120 feet of maximum drawdown in the Eutaw-McShan aquifer. Under normal-growth conditions, increased water use could result in an additional 65 feet of drawdown in the New Albany area below year 2000 water levels in the Coffee Sand aquifer and about 135 feet of maximum drawdown in the Eutaw-McShan aquifer. Under high-growth conditions, increased water use could result in 75 feet of drawdown in the New Albany area below year 2000 water levels in the Coffee Sand aquifer and about 190 feet of maximum drawdown in the Eutaw-McShan aquifer. The resulting highgrowth projected water level for the year 2050 at the center of the drawdown cone in the New Albany area is between 450 and 500 feet above the top of the Eutaw-McShan aquifer.

  9. Water demands in Kansas, 1944-84

    USGS Publications Warehouse

    Kenny, J.F.

    1986-01-01

    The State of Kansas has administered water rights according to an appropriations doctrine since 1945. Water rights are issued by the Kansas State Board of Agriculture, Division of Water Resources, for eight categories of beneficial use. Water rights data and limited information on reported water use are stored on a computerized State data base; the U.S. Geological Survey cooperates with the State on maintenance of this system. This report analyzes trends in appropriations from 1944-84 for surface and groundwater for three major categories of use: irrigation, public supply, and industry. Demands for water, represented by these appropriations, are compared for three geographic areas within the State. These areas correspond to general patterns of water availability, population, and enterprises. As of 1984, 87% of the water appropriated for the three major types of use was for irrigation; most of this demand was for groundwater in the western one-third of the State. Seventy-five percent of the water demands in the central one-third of Kansas were met by groundwater; appropriations for irrigation represent the largest demand on water supplies in this area but must compete with appropriations for public supply and industry. Demands for surface water have increased substantially only in the eastern part of the State for industrial use and public supplies. The most prominent trends in water rights permit activity were related to climatic fluctuations, particularly the drought of the 1950's, legislative changes in the 1970 's requiring permits, and growth of urban populations in the central and eastern areas of the State. Analysis of trends in water appropriations can be useful in understanding the water issues facing Kansas in the future. (Author 's abstract)

  10. Assessment of Resources and Needs for Water Development

    ERIC Educational Resources Information Center

    United Nations and Water, 1977

    1977-01-01

    Presents a brief history of water resource utilization, the present availability and uses of water, and strategies for water management. Three characteristic features of water demand management are explained: (1) emphasis on non-structural measures; (2) multi-dimensional organization and policies; (3) emphasis on research. (MA)

  11. Global network of embodied water flow by systems input-output simulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhanming; Chen, Guoqian; Xia, Xiaohua; Xu, Shiyun

    2012-09-01

    The global water resources network is simulated in the present work for the latest target year with statistical data available and with the most detailed data disaggregation. A top-down approach of systems inputoutput simulation is employed to track the embodied water flows associated with economic flows for the globalized economy in 2004. The numerical simulation provides a database of embodied water intensities for all economic commodities from 4928 producers, based on which the differences between direct and indirect water using efficiencies at the global scale are discussed. The direct and embodied water uses are analyzed at continental level. Besides, the commodity demand in terms of monetary expenditure and the water demand in terms of embodied water use are compared for the world as well as for three major water using regions, i.e., India, China, and the United States. Results show that food product contributes to a significant fraction for water demand, despite the value varies significantly with respect to the economic status of region.

  12. Demand-driven water withdrawals by Chinese industry: a multi-regional input-output analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Chen, Z. M.; Zeng, L.; Qiao, H.; Chen, B.

    2016-03-01

    With ever increasing water demands and the continuous intensification of water scarcity arising from China's industrialization, the country is struggling to harmonize its industrial development and water supply. This paper presents a systems analysis of water withdrawals by Chinese industry and investigates demand-driven industrial water uses embodied in final demand and interregional trade based on a multi-regional input-output model. In 2007, the Electric Power, Steam, and Hot Water Production and Supply sector ranks first in direct industrial water withdrawal (DWW), and Construction has the largest embodied industrial water use (EWU). Investment, consumption, and exports contribute to 34.6%, 33.3%, and 30.6% of the national total EWU, respectively. Specifically, 58.0%, 51.1%, 48.6%, 43.3%, and 37.5% of the regional EWUs respectively in Guangdong, Shanghai, Zhejiang, Jiangsu, and Fujian are attributed to international exports. The total interregional import/export of embodied water is equivalent to about 40% of the national total DWW, of which 55.5% is associated with the DWWs of Electric Power, Steam, and Hot Water Production and Supply. Jiangsu is the biggest interregional exporter and deficit receiver of embodied water, in contrast to Guangdong as the biggest interregional importer and surplus receiver. Without implementing effective water-saving measures and adjusting industrial structures, the regional imbalance between water availability and water demand tends to intensify considering the water impact of domestic trade of industrial products. Steps taken to improve water use efficiency in production, and to enhance embodied water saving in consumption are both of great significance for supporting China's water policies.

  13. Analysing water use patterns for demand management: the case of the city of Masvingo, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Dube, Emmanuel; van der Zaag, Pieter

    Water use in urban centres is dynamic, fluctuates, differs between high and low-income users, and tends to increase over time. Supply infrastructure can often hardly keep pace with increased water consumption. Given (a) the high cost of infrastructure development, (b) the recent emphasis on demand management, and (c) the social obligation to provide water services to the poor, urban water providers are faced with an important choice: whether to go the demand management route, or to continue constructing new infrastructure. This paper sheds light on some of the possibilities and constraints of both choices by providing a case study of the city of Masvingo in Zimbabwe. The paper analyses water use patterns in this city with a population of 70,000, located in a drought prone region of average rainfall of 600 mm/a. Water consumption has reached the limits of the water supply capacity. The paper first looks at the long-term water use pattern of the city as a whole and the factors that have caused the observed pattern using multiple linear regression. The paper then analyses the patterns of water use of rich and poor households, and attempts to assess the (im)possibilities of influencing these by means of an appropriate tariff structure. In projecting future demand, the paper then considers a number of interventions that could influence demand, which include leakage control, pressure management, awareness campaigns, free technical advice to water users, as well as a new tariff structure. It also discusses when new supply infrastructure should be available, depending on the various demand management measures taken.

  14. Water use, availability, and net demand in the Tennessee River watershed within Alabama, 2005

    USGS Publications Warehouse

    Gill, Amy C.; Harper, Michael J.; Littlepage, Thomas M.

    2013-01-01

    The U.S. Geological Survey worked in cooperation with the Alabama Department of Economic and Community Affairs—Office of Water Resources to estimate water use and water availability for 2005 for the portion of the Tennessee River watershed contained within the borders of the State of Alabama. Estimates of water use and availability are an important part of planning for population and economic growth in the Tennessee River watershed in Alabama. Total water use for the region in 2005 was 5,197 million gallons per day (Mgal/d). Total surface-water withdrawals were 5,139 Mgal/d, and total groundwater withdrawals were about 58 Mgal/d. About 92 percent of the total water withdrawn was surface water used for once-through cooling for thermoelectric power generation. Self-supplied industrial and public-supply water uses accounted for the next greatest uses of water, constituting approximately 49 and 42 percent, respectively, of the total water use excluding thermoelectric power use. Summaries of water use by county and subbasin indicated the areas of greatest water withdrawals and use within the Tennessee River watershed. Limestone (2,012 Mgal/d), Jackson (1,498 Mgal/d), and Colbert (1,363 Mgal/d) Counties were the counties with the greatest total water use in 2005 and had large amounts of water withdrawn for thermoelectric power generation. When water use from thermoelectric power generation was not considered, the counties with the greatest withdrawals were Morgan (124 Mgal/d), Madison (72 Mgal/d), Colbert (69 Mgal/d), and Lawrence (67 Mgal/d). The subbasin with the greatest total water use was Wheeler Lake (2,260 Mgal/d) in the Middle Tennessee—Elk subregion. Wheeler Lake subbasin also had the greatest public-supply, irrigation, industrial, mining, and thermoelectric withdrawals of any subbasin in the Tennessee River watershed within Alabama. Total water availability for the Tennessee River watershed within Alabama was estimated to be 34,567 Mgal/d by the Geological Survey of Alabama. Net water demand for the watershed was calculated by subtracting the Tennessee Valley Authority estimates of return flow from water withdrawals. The net water demand was 136 Mgal/d, which is less than 1 percent of the estimated water available.

  15. Quantifying the link between crop production and mined groundwater irrigation in China.

    PubMed

    Grogan, Danielle S; Zhang, Fan; Prusevich, Alexander; Lammers, Richard B; Wisser, Dominik; Glidden, Stanley; Li, Changsheng; Frolking, Steve

    2015-04-01

    In response to increasing demand for food, Chinese agriculture has both expanded and intensified over the past several decades. Irrigation has played a key role in increasing crop production, and groundwater is now an important source of irrigation water. Groundwater abstraction in excess of recharge (which we use here to estimate groundwater mining) has resulted in declining groundwater levels and could eventually restrict groundwater availability. In this study we used a hydrological model, WBMplus, in conjunction with a process based crop growth model, DNDC, to evaluate Chinese agriculture's recent dependence upon mined groundwater, and to quantify mined groundwater-dependent crop production across a domain that includes variation in climate, crop choice, and management practices. This methodology allowed for the direct attribution of crop production to irrigation water from rivers and reservoirs, shallow (renewable) groundwater, and mined groundwater. Simulating 20 years of weather variability and circa year 2000 crop areas, we found that mined groundwater fulfilled 20%-49% of gross irrigation water demand, assuming all demand was met. Mined groundwater accounted for 15%-27% of national total crop production. There was high spatial variability across China in irrigation water demand and crop production derived from mined groundwater. We find that climate variability and mined groundwater demand do not operate independently; rather, years in which irrigation water demand is high due to the relatively hot and dry climate also experience limited surface water supplies and therefore have less surface water with which to meet that high irrigation water demand. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Case Study Analysis of the Impacts of Water Acquisition for Hydraulic Fracturing on Local Water Availability

    EPA Science Inventory

    Hydraulic fracturing (HF) is used to develop unconventional gas reserves, but the technology requires large volumes of water, placing demands on local water resources and potentially creating conflict with other users and ecosystems. This study examines the balance between water ...

  17. Sorghum response to foliar application of phosphorus and potassium with saline water irrigation

    USDA-ARS?s Scientific Manuscript database

    Increasing demand for fresh water resources for urban and industrial uses is leading to limited availability of better quality water for crop irrigation. Therefore, crop response to poor quality irrigation water (ex: saline water), and strategies to mitigate the negative effects of poor quality irri...

  18. Coupling biophysical processes and water rights to simulate spatially distributed water use in an intensively managed hydrologic system

    NASA Astrophysics Data System (ADS)

    Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.

    2017-07-01

    Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.

  19. Research on water shortage risks and countermeasures in North China

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxiang; Fang, Wenxuan; Wu, Ziqin

    2017-05-01

    In the paper, a grey forecasting model and a population growth model are established for forecasting water resources supply and demand situation in the region, and evaluating the scarcity of water resources thereof in order to solve the problem of water shortage in North China. A concrete plan for alleviating water resources pressure is proposed with AHP as basis, thereby discussing the feasibility of the plan. Firstly, water resources supply and demand in the future 15 years are predicted. There are four sources for the demand of water resources mainly: industry, agriculture, ecology and resident living. Main supply sources include surface water and underground water resources. A grey forecasting method is adopted for predicting in the paper aiming at water resources demands since industrial, agricultural and ecological water consumption data have excessive decision factors and the correlation is relatively fuzzy. Since residents' water consumption is determined by per capita water consumption and local population, a logistic growth model is adopted to forecast the population. The grey forecasting method is used for predicting per capita water consumption, and total water demand can be obtained finally. International calculation standards are adopted as reference aiming at water supply. The grey forecasting method is adopted for forecasting surface water quantity and underground water quantity, and water resources supply is obtained finally. Per capita water availability in the region is calculated by comparing the water resources supply and demand. Results show that per capita water availability in the region is only 283 cubic meters this year, people live in serious water shortage region, who will suffer from water shortage state for long time. Then, sensitivity analysis is applied for model test. The test result is excellent, and the prediction results are more accurate. In the paper, the following measures are proposed for improving water resources condition in the region according to prediction results, such as construction of reservoirs, sewage treatment, water diversion project and other measures. A detailed water supply plan is formulated. Water supply weights of all measures are determined according to the AHP model. Solution is sought after original models are improved. Results show that water resources quantity per capita will be up to 2170 cubic meters or so this year, people suffer from moderate water shortage in the region, which can meet people's life needs and economic development needs basically. In addition, water resources quantity per capita is increased year by year, and it can reach mild water shortage level after 2030. In a word, local water resources dilemma can be effectively solved by the plan actually, and thoughts can be provided for decision makers.

  20. Water Availability and Use Pilot-A multiscale assessment in the U.S. Great Lakes Basin

    USGS Publications Warehouse

    Reeves, Howard W.

    2011-01-01

    Beginning in 2005, water availability and use were assessed for the U.S. part of the Great Lakes Basin through the Great Lakes Basin Pilot of a U.S. Geological Survey (USGS) national assessment of water availability and use. The goals of a national assessment of water availability and use are to clarify our understanding of water-availability status and trends and improve our ability to forecast the balance between water supply and demand for future economic and environmental uses. This report outlines possible approaches for full-scale implementation of such an assessment. As such, the focus of this study was on collecting, compiling, and analyzing a wide variety of data to define the storage and dynamics of water resources and quantify the human demands on water in the Great Lakes region. The study focused on multiple spatial and temporal scales to highlight not only the abundant regional availability of water but also the potential for local shortages or conflicts over water. Regional studies provided a framework for understanding water resources in the basin. Subregional studies directed attention to varied aspects of the water-resources system that would have been difficult to assess for the whole region because of either data limitations or time limitations for the project. The study of local issues and concerns was motivated by regional discussions that led to recent legislative action between the Great Lakes States and regional cooperation with the Canadian Great Lakes Provinces. The multiscale nature of the study findings challenges water-resource managers and the public to think about regional water resources in an integrated way and to understand how future changes to the system-driven by human uses, climate variability, or land-use change-may be accommodated by informed water-resources management.

  1. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruple, John; Keiter, Robert

    2010-03-01

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for watermore » often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.« less

  2. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    NASA Astrophysics Data System (ADS)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  3. Reliability-Productivity Curve, a Tool for Adaptation Measures Identification

    NASA Astrophysics Data System (ADS)

    Chávez-Jiménez, A.; Granados, A.; Garrote, L. M.

    2015-12-01

    Due to climate change effects, water scarcity problems would intensify in several regions. These problems are going to impact negatively in the water low-priority demands, since these will be reduced in favor of those with high-priority. An example would be the reduction of agriculture water resources in favor of the urban ones. Then, it is important the evaluation of adaptation measures for a better water resources management. An important tool to face this challenge is the economic valuation of the water demands' impact within a water resources system. In agriculture this valuation is usually performed through the water productivity evaluation. The water productivity evaluation requires detailed information regarding the different crops like the applied technology, the agricultural supplies management, the water availability, etc. This is a restriction for an evaluation at basin scale due to the difficulty of gathers this level of detailed information. Besides, only the water availability is taken into account, but not the period when the water is distributed (i.e. water resources reliability). Water resources reliability is one of the most important variables in water resources management. This research proposes a methodology to determine the agriculture water productivity, using as variables the crops information, the crops price, the water resources availability, and the water resources reliability, at a basin scale. This methodology would allow identifying general water resources adaptation measures, providing the basis for further detailed studies in critical regions.

  4. A Simultaneous Equation Demand Model for Block Rates

    NASA Astrophysics Data System (ADS)

    Agthe, Donald E.; Billings, R. Bruce; Dobra, John L.; Raffiee, Kambiz

    1986-01-01

    This paper examines the problem of simultaneous-equations bias in estimation of the water demand function under an increasing block rate structure. The Hausman specification test is used to detect the presence of simultaneous-equations bias arising from correlation of the price measures with the regression error term in the results of a previously published study of water demand in Tucson, Arizona. An alternative simultaneous equation model is proposed for estimating the elasticity of demand in the presence of block rate pricing structures and availability of service charges. This model is used to reestimate the price and rate premium elasticities of demand in Tucson, Arizona for both the usual long-run static model and for a simple short-run demand model. The results from these simultaneous equation models are consistent with a priori expectations and are unbiased.

  5. The water-food-energy nexus in Pakistan: a biophysical and socio-economic challenge

    NASA Astrophysics Data System (ADS)

    Grigg, Nicola; Foran, Tira; Darbas, Toni; Kirby, Mac; Colloff, Matthew J.; Ahmad, Mobin-ud-Din; Podger, Geoff

    2018-02-01

    We draw on previous work examining historical trends, likely future water use and food availability in Pakistan and extend the analysis to consider interactions with hydropower generation and the energy demand in food production due to pumping of groundwater for irrigation. Business-as-usual scenarios suggest growing demands for groundwater and energy use for food production as population grows rapidly. However, groundwater use is already unsustainable in many areas, and energy supply is failing to keep up with demand. Quantifying material linkages between water, food and energy provides a means to explore biophysical constraints. Characterising institutional constraints is equally important, as they can be significant barriers to effective stewardship of water, energy and food resources. The experience in Pakistan reinforces this finding, and we discuss the implications for hydrologists.

  6. Water for Agriculture in a Vulnerable Delta: A Case Study of Indian Sundarban

    NASA Astrophysics Data System (ADS)

    Das, S.; Bhadra, T.; Hazra, S.

    2015-12-01

    Indian Sundarban lies in the south-western part of the Ganges-Brahmaputra Delta and supports a 4.43 million strong population. The agrarian economy of Sundarban is dominated by rainfed subsistence rice farming. Unavailability of upstream fresh water, high salinity of river water of up to 32ppt, soil salinity ranging between 2dSm-1 to 19dSm-1, small land holdings of per capita 840 sq. metre and inadequate irrigation facilities are serious constraints for agricultural production in Sundarban. This paper assesses Cropping Intensity, Irrigation Intensity and Man-Cropland Ratio from Agriculture Census (2010-11) data and estimates the seasonal water demand for agriculture in different blocks of Sundarban. The research exposes the ever increasing population pressure on agriculture with an average Man Cropland Ratio of 1745 person/sq.km. In 2010-2011, the average cropping intensity was 129.97% and the irrigation intensity was 20.40%. The highest cropping and irrigation intensity have been observed in the inland blocks where shallow ground water is available for agriculture on the contrary, the lowest values have been observed in the southern blocks, due to existence of saline shallow ground water. The annual water demand for agriculture in Sundarban has been estimated as 2784 mcm. Available water from 70000 freshwater tanks and around 8000 numbers of shallow tube wells are not sufficient to meet the agricultural water demand. Existing irrigation sources and rainfall of 343 mcm fall far short of the water demand of 382 mcm during peak dry Season. Unavailability of fresh water restricts the food production, which endangers the food security of 87.5% of the people in Sundarban. To ensure the food security in changing climatic condition, expansion of irrigation network and harnessing of new water sources are essential. Large scale rainwater harvesting, rejuvenation and re-connection of disconnected river channels, artificial recharge within shallow aquifer to bring down its salinity can be some of the major policy options to meet the water demand for agriculture in Sundarban.

  7. Groundwater availability of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    USGS Publications Warehouse

    Vaccaro, J.J.; Kahle, S.C.; Ely, D.M.; Burns, E.R.; Snyder, D.T.; Haynes, J.V.; Olsen, T.D.; Welch, W.B.; Morgan, D.S.

    2015-09-22

    Changes in the system from predevelopment times. The model also is a useful tool for investigating water supply, water demand, management strategies, groundwater-surface water exchanges, and potential effects of changing climate on the hydrologic system.

  8. Simulating partially illegal markets of private tanker water providers on the country level: A multi-agent, hydroeconomic case-study of Jordan

    NASA Astrophysics Data System (ADS)

    Klassert, C. J. A.; Yoon, J.; Gawel, E.; Klauer, B.; Sigel, K.; Talozi, S.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Tilmant, A.; Harou, J. J.; Mustafa, D.; Medellin-Azuara, J.; Rajsekhar, D.; Avisse, N.; Zhang, H.

    2016-12-01

    In arid countries around the world, markets of private small-scale water providers, mostly delivering water via tanker trucks, have emerged to balance the shortcomings of public water supply systems. While these markets can provide substantial contributions to meeting customers' water demands, they often partially rely on illegal water abstractions, thus imposing an unregulated and unmonitored strain on ground and surface water resources. Despite their important impacts on water users' welfare and resource sustainability, these markets are still poorly understood. We use a multi-agent, hydroeconomic simulation model, developed as part of the Jordan Water Project, to investigate the role of these markets in a country-wide case-study of Jordan. Jordan's water sector is characterized by a severe and growing scarcity of water resources, high intermittency in the public water network, and a strongly increasing demand due to an unprecedented refugee crisis. The tanker water market serves an important role in providing water from rural wells to households and commercial enterprises, especially during supply interruptions. In order to overcome the lack of direct data about this partially illegal market, we simulate demand and supply for tanker water. The demand for tanker water is conceptualized as a residual demand, remaining after a water user has depleted all available cheap and qualitatively reliable piped water. It is derived from residential and commercial demand functions on the basis of survey data. Tanker water supply is determined by farm simulation models calculating the groundwater pumping cost and the agricultural opportunity cost of tanker water. A market algorithm is then used to match rural supplies with users' demands, accounting for survey data on tanker operators' transport costs and profit expectations. The model is used to gain insights into the size of the tanker markets in all 89 subdistricts of Jordan and their responsiveness to various policy interventions. A dynamic coupling of the model with a country-wide groundwater model allows for projections of the spatial development of the tanker market over time. Accounting for this important supply source will be essential for the formulation of any policy aiming to reconcile the interests of water users with resource sustainability.

  9. Minimizing irrigation water demand: An evaluation of shifting planting dates in Sri Lanka.

    PubMed

    Rivera, Ashley; Gunda, Thushara; Hornberger, George M

    2018-05-01

    Climate change coupled with increasing demands for water necessitates an improved understanding of the water-food nexus at a scale local enough to inform farmer adaptations. Such assessments are particularly important for nations with significant small-scale farming and high spatial variability in climate, such as Sri Lanka. By comparing historical patterns of irrigation water requirements (IWRs) to rice planting records, we estimate that shifting rice planting dates to earlier in the season could yield water savings of up to 6%. Our findings demonstrate the potential of low-cost adaptation strategies to help meet crop production demands in water-scarce environments. This local-scale assessment of IWRs in Sri Lanka highlights the value of using historical data to inform agricultural management of water resources when high-skilled forecasts are not available. Given national policies prioritizing in-country production and farmers' sensitivities to water stress, decision-makers should consider local degrees of climate variability in institutional design of irrigation management structures.

  10. A leader-follower-interactive method for regional water resources management with considering multiple water demands and eco-environmental constraints

    NASA Astrophysics Data System (ADS)

    Chen, Yizhong; Lu, Hongwei; Li, Jing; Ren, Lixia; He, Li

    2017-05-01

    This study presents the mathematical formulation and implementations of a synergistic optimization framework based on an understanding of water availability and reliability together with the characteristics of multiple water demands. This framework simultaneously integrates a set of leader-followers-interactive objectives established by different decision makers during the synergistic optimization. The upper-level model (leader's one) determines the optimal pollutants discharge to satisfy the environmental target. The lower-level model (follower's one) accepts the dispatch requirement from the upper-level one and dominates the optimal water-allocation strategy to maximize economic benefits representing the regional authority. The complicated bi-level model significantly improves upon the conventional programming methods through the mutual influence and restriction between the upper- and lower-level decision processes, particularly when limited water resources are available for multiple completing users. To solve the problem, a bi-level interactive solution algorithm based on satisfactory degree is introduced into the decision-making process for measuring to what extent the constraints are met and the objective reaches its optima. The capabilities of the proposed model are illustrated through a real-world case study of water resources management system in the district of Fengtai located in Beijing, China. Feasible decisions in association with water resources allocation, wastewater emission and pollutants discharge would be sequentially generated for balancing the objectives subject to the given water-related constraints, which can enable Stakeholders to grasp the inherent conflicts and trade-offs between the environmental and economic interests. The performance of the developed bi-level model is enhanced by comparing with single-level models. Moreover, in consideration of the uncertainty in water demand and availability, sensitivity analysis and policy analysis are employed for identifying their impacts on the final decisions and improving the practical applications.

  11. A high turndown, ultra low emission low swirl burner for natural gas, on-demand water heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Vi H.; Cheng, Robert K.; Therkelsen, Peter L.

    Previous research has shown that on-demand water heaters are, on average, approximately 37% more efficient than storage water heaters. However, approximately 98% of water heaters in the U.S. use storage water heaters while the remaining 2% are on-demand. A major market barrier to deployment of on-demand water heaters is their high retail cost, which is due in part to their reliance on multi-stage burner banks that require complex electronic controls. This project aims to research and develop a cost-effective, efficient, ultra-low emission burner for next generation natural gas on-demand water heaters in residential and commercial buildings. To meet these requirements,more » researchers at the Lawrence Berkeley National Laboratory (LBNL) are adapting and testing the low-swirl burner (LSB) technology for commercially available on-demand water heaters. In this report, a low-swirl burner is researched, developed, and evaluated to meet targeted on-demand water heater performance metrics. Performance metrics for a new LSB design are identified by characterizing performance of current on-demand water heaters using published literature and technical specifications, and through experimental evaluations that measure fuel consumption and emissions output over a range of operating conditions. Next, target metrics and design criteria for the LSB are used to create six 3D printed prototypes for preliminary investigations. Prototype designs that proved the most promising were fabricated out of metal and tested further to evaluate the LSB’s full performance potential. After conducting a full performance evaluation on two designs, we found that one LSB design is capable of meeting or exceeding almost all the target performance metrics for on-demand water heaters. Specifically, this LSB demonstrated flame stability when operating from 4.07 kBTU/hr up to 204 kBTU/hr (50:1 turndown), compliance with SCAQMD Rule 1146.2 (14 ng/J or 20 ppm NOX @ 3% O2), and lower CO emissions than state-of-the art water heaters. Overall, the results from this research show that the LSB could provide a simple, low cost burner solution for significantly extending operating range of on-demand water heaters while providing low NOX and CO emissions.« less

  12. Quantifying human impact on hydrological drought using an Earth System Model

    NASA Astrophysics Data System (ADS)

    van Huijgevoort, Marjolein; Chaney, Nathaniel; Malyshev, Sergey; Shevliakova, Elena; Milly, Chris

    2017-04-01

    Predicting the human impact on the present and future hydrological cycle remains a significant scientific challenge. Anthropogenic impact includes water management practices like diverting water for irrigation, abstraction of groundwater, and reservoirs. Hydrological extremes, in particular, are heavily affected by water management practices, due to the existing stress on the system during droughts and floods. Therefore, to prepare adaptation plans for hydrological extremes in the future, it is essential to account for water management and other human influences in Earth System Models. In this study we have implemented water management practices in the state-of-the-art GFDL land model, which includes terrestrial water, energy, and carbon balances. Both irrigation practices and reservoirs have been added in the land surface model component of the model. Irrigation amounts are determined from the soil water balance, the evaporative demand of the vegetation and fractional coverage of croplands. The resulting water demand is fulfilled by abstractions from surface water and groundwater. Reservoir outflow is dynamically coupled to the downstream water demand and available reservoir storage. Retrospective model simulations over the contiguous United States indicate a strong human influence on hydrological drought. A water management attribution analysis shows a significant impact on the water availability, mostly in the Midwest of the United States and California. Implementation of reservoirs alters the flow regime, thereby decreasing the short-term drought impact, however, in the case of multi-year drought, impacts are delayed due to the dependency on the reservoir outflow. Irrigation, on the other hand, decreases the water availability in rivers due to increased evapotranspiration leading to a higher drought impact. The average increase in evapotranspiration amounted up to 2 mm/day for cropland areas in California and Texas. Overall, the results show the importance of including water management in global scale models. This new modelling framework can be used to understand how humans will impact future water availability, water scarcity, and drought. Next steps will include coupled model simulations to investigate the human impact on feedbacks in land-atmosphere interactions.

  13. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  14. Assessing chronic and climate-induced water risk through spatially distributed cumulative deficit measures: A new picture of water sustainability in India

    NASA Astrophysics Data System (ADS)

    Devineni, Naresh; Perveen, Shama; Lall, Upmanu

    2013-04-01

    India is a poster child for groundwater depletion and chronic water stress. Often, water sustainability is measured through an estimate of the difference between the average supply and demand in a region. However, water supply and demand are highly variable in time and space. Hence, measures of scarcity need to reflect temporal imbalances even for a fixed location. We introduce spatially distributed indices of water stress that integrate over time variations in water supply and demand. The indices reflect the maximum cumulative deficit in a regional water balance within year and across years. This can be interpreted as the amount that needs to be drawn from external storage (either aquifers or surface reservoirs or interarea transfers) to meet the current demand pattern given a variable climate and renewable water supply. A simulation over a long period of record (historical or projected) provides the ability to quantify risk. We present an application at a district level in India considering more than a 100 year data set of rainfall as the renewable supply, and the recent water use pattern for each district. Consumption data are available through surveys at the district level, and consequently, we use this rather than river basins as the unit of analysis. The rainfall endogenous to each district is used as a potentially renewable water supply to reflect the supply-demand imbalances directly at the district level, independent of potential transfers due to upstream-induced runoff or canals. The index is useful for indicating whether small or large surface storage will suffice, or whether the extent of groundwater storage or external transfers, or changes in demand are needed to achieve a sustainable solution. Implications of the analysis for India and for other applications are discussed.

  15. Giving sustainable agriculture really good odds through innovative rainfall index insurance

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, C. P.; Muneepeerakul, R.

    2017-12-01

    Population growth, increasing demands for food, and increasingly uncertain and limited water availability amidst competing demands for water by other users and the environment call for a novel approach to manage water in food production systems to be developed now. Tapping into broad popularity of crop insurance as a risk management intervention, we propose an innovative rainfall index insurance program as a novel systems approach that addresses water conservation in food production systems by exploiting two common currencies that tie the food production systems and others together, namely water and money. Our novel methodology allows for optimizing diverse farm and financial strategies together, revealing strategy portfolios that result in greater water use efficiency and higher incomes at a lower level of water use. Furthermore, it allows targeted interventions to achieve reduction in irrigation water, while providing financial protection to farmers against the increasing uncertainty in water availability. Not only would such a tool result in efficiently less use of water, it would also encourage diversification in farm practices, which reduces the farm's vulnerability against crop price volatility and pest or disease outbreaks and contributes to more sustainable agriculture.

  16. Harmonizing human-hydrological system under climate change: A scenario-based approach for the case of the headwaters of the Tagus River

    NASA Astrophysics Data System (ADS)

    Lobanova, Anastasia; Liersch, Stefan; Tàbara, J. David; Koch, Hagen; Hattermann, Fred F.; Krysanova, Valentina

    2017-05-01

    Conventional water management strategies, that serve solely socio-economic demands and neglect changing natural conditions of the river basins, face significant challenges in governing complex human-hydrological systems, especially in the areas with constrained water availability. In this study we assess the possibility to harmonize the inter-sectoral water allocation scheme within a highly altered human-hydrological system under reduction in water availability, triggered by projected climate change applying scenario-based approach. The Tagus River Basin headwaters, with significant disproportion in the water resources allocation between the environmental and socio-economic targets were taken as a perfect example of such system out of balance. We propose three different water allocation strategies for this region, including two conventional schemes and one imposing shift to sustainable water management and environmental restoration of the river. We combine in one integrated modelling framework the eco-hydrological process-based Soil and Water Integrated Model (SWIM), coupled with the conceptual reservoir and water allocation modules driven by the latest bias-corrected climate projections for the region and investigate possible water allocation scenarios in the region under constrained water availability in the future. Our results show that the socio-economic demands have to be re-considered and lowered under any water allocation strategy, as the climate impacts may significantly reduce water availability in the future. Further, we show that a shift to sustainable water management strategy and river restoration is possible even under reduced water availability. Finally, our results suggest that the adaptation of complex human-hydrological systems to climate change and a shift to a more sustainable water management are likely to be parts of one joint strategy to cope with climate change impacts.

  17. Socioeconomic impacts of climate change on U.S. water supplies

    USGS Publications Warehouse

    Frederick, K.D.; Schwarz, G.E.

    1999-01-01

    A greenhouse warming would have major effects on water supplies and demands. A framework for examining the socioeconomic impacts associated with changes in the long-term availability of water is developed and applied to the hydrologic implications of the Canadian and British Hadley2 general circulation models (GCMs) for the 18 water resource regions in the conterminous United States. The climate projections of these two GCMs have very different implications for future water supplies and costs. The Canadian model suggests most of the nation would be much drier in the year 2030. Under the least-cost management scenario the drier climate could add nearly $105 billion to the estimated costs of balancing supplies and demands relative to the costs without climate change. Measures to protect instream flows and irrigation could result in significantly higher costs. In contrast, projections based on the Hadley model suggest water supplies would increase throughout much of the nation, reducing the costs of balancing water supplies with demands relative to the no-climate-change case.

  18. Integrated Modeling to Assess the Impacts of Changes in Climate and Socio Economics on Agriculture in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Malek, K.; Nelson, R.; Stockle, C.; Brady, M.; Dinesh, S.; Barber, M. E.; Yorgey, G.; Kruger, C.

    2012-12-01

    The objective of this work is to assess the impacts of climate change and socio economics on agriculture in the Columbia River basin (CRB) in the Pacific Northwest region of the U.S. and a portion of Southwestern Canada. The water resources of the CRB are managed to satisfy multiple objectives including agricultural withdrawal, which is the largest consumptive user of CRB water with 14,000 square kilometers of irrigated area. Agriculture is an important component of the region's economy, with an annual value over 5 billion in Washington State alone. Therefore, the region is relevant for applying a modeling framework that can aid agriculture decision making in the context of a changing climate. To do this, we created an integrated biophysical and socio-economic regional modeling framework that includes human and natural systems. The modeling framework captures the interactions between climate, hydrology, crop growth dynamics, water management and socio economics. The biophysical framework includes a coupled macro-scale physically-based hydrology model (the Variable Infiltration Capacity, VIC model), and crop growth model (CropSyst), as well as a reservoir operations simulation model. Water rights data and instream flow target requirements are also incorporated in the model to simulate the process of curtailment during water shortage. The economics model informs the biophysical model of the short term agricultural producer response to water shortage as well as the long term agricultural producer response to domestic growth and international trade in terms of an altered cropping pattern. The modeling framework was applied over the CRB for the historical period 1976-2006 and compared to a future 30-year period centered on the 2030s. Impacts of climate change on irrigation water availability, crop irrigation demand, frequency of curtailment, and crop yields are quantified and presented. Sensitivity associated with estimates of water availability, irrigation demand, crop yields, unmet demand and available instream flows due to climate inputs, hydrology and crop model parameterization, water management assumptions, model integration assumptions, as well as multiple socio economic alternatives are also presented. Compared to historical conditions, for the 2030s time period, our results show an average additional irrigation water demand requirement of 370 million cubic meters in the CRB, an increased frequency of curtailment and a revenue impact between 70 and $150 million resulting from adverse crop yield impacts due to curtailment in the state of Washington. The impacts vary spatially and some of the CRB tributary watersheds are impacted more than others, e.g., unmet demand in the Yakima River basin is expected to increase by 50%. Increased irrigation demand, coupled with decreased seasonal supply poses difficult water resources management questions in the region.

  19. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.

    PubMed

    Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen

    2010-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.

  20. Review of applications for SIMDEUM, a stochastic drinking water demand model with a small temporal and spatial scale

    NASA Astrophysics Data System (ADS)

    Blokker, Mirjam; Agudelo-Vera, Claudia; Moerman, Andreas; van Thienen, Peter; Pieterse-Quirijns, Ilse

    2017-04-01

    Many researchers have developed drinking water demand models with various temporal and spatial scales. A limited number of models is available at a temporal scale of 1 s and a spatial scale of a single home. The reasons for building these models were described in the papers in which the models were introduced, along with a discussion on their potential applications. However, the predicted applications are seldom re-examined. SIMDEUM, a stochastic end-use model for drinking water demand, has often been applied in research and practice since it was developed. We are therefore re-examining its applications in this paper. SIMDEUM's original purpose was to calculate maximum demands in order to design self-cleaning networks. Yet, the model has been useful in many more applications. This paper gives an overview of the many fields of application for SIMDEUM and shows where this type of demand model is indispensable and where it has limited practical value. This overview also leads to an understanding of the requirements for demand models in various applications.

  1. Water Accounting Priorities in the American West

    NASA Astrophysics Data System (ADS)

    Hanak, E.

    2017-12-01

    In regions facing water scarcity, understanding the water balance sheet—how much there is, who has claims to it, and what is actually being "spent"—is key to effectively managing supplies to meet a wide range of societal goals. This is a common challenge across the American West, a region needing to balance the water demands of large irrigated agricultural sectors, growing urban populations, and declining aquatic ecosystems—in a context of increasingly variable, and in some cases diminishing, water supplies. Many local urban water utilities, and some irrigation water suppliers, have developed sophisticated data systems for tracking water availability and use within their systems. But there are still major gaps in essential metrics at the scale of watersheds and river basins. On the supply side, key issues include understanding groundwater availability and surface-groundwater interactions. On the demand side, the biggest challenges relate to understanding groundwater use and return flows—the water that is returned to rivers or aquifers and is available for reuse. In addition, most states lack consistent accounting and data standards for sharing water availability, claims, and use information—and transparent systems for reporting information to users in ways that facilitates oversight and flexible tools such as water trading. Drawing on a detailed study of water accounting in 12 western states and 2 countries with similar water challenges (Escriva Bou et al. 2016, Accounting for Water in Dry Regions: A Comparative Review, Public Policy Institute of California), this talk provides insights on best practices that can help fill critical water accounting gaps.

  2. Trends and future challenges of water resources in the Tigris-Euphrates Rivers basin in Iraq

    NASA Astrophysics Data System (ADS)

    Issa, I. E.; Al-Ansari, N. A.; Sherwany, G.; Knutsson, S.

    2013-12-01

    Iraq is one of the riparian countries within basins of Tigris-Euphrates Rivers in the Middle East region. The region is currently facing water shortage problems due to the increase of the demand and climate changes. In the present study, average monthly water flow measurements for 15 stream flow gaging stations within basins of these rivers in Iraq with population growth rate data in some of its part were used to evaluate the reality of the current situation and future challenges of water availability and demand in Iraq. The results showed that Iraq receives annually 70.29 km3 of water 45.4 and 25.52 km3 from River Tigris and Euphrates respectively. An amount of 18.04 km3 is supplied by its tributaries inside Iraq. The whole amount of water in the Euphrates Rivers comes outside the Iraqi borders. Annual decrease of the water inflow is 0.1335 km3 yr-1 for Tigris and 0.245 km3 yr-1 for Euphrates. This implies the annual percentage reduction of inflow rates for the two rivers is 0.294 and 0.960% respectively. Iraq consumes annually 88.89% (63.05 km3) of incoming water from the two rivers, where about 60.43 and 39.57% are from Rivers Tigris and Euphrates respectively. Water demand increases annually by 0.896 km3; of which 0.5271 and 0.475 km3 within Tigris and Euphrates basins respectively. The average water demand in 2020 will increase to 42.844 km3 yr-1 for Tigris basin and for Euphrates 29.225 km3 yr-1 (total 72.069 km3 yr-1), while water availability will decrease to 63.46 km3 yr-1. This means that the overall water shortage will be restricted to 8.61 km3.

  3. Assessment of 21st century change of climate drivers to hydrological change across the Appalachian Region

    NASA Astrophysics Data System (ADS)

    Fernandez, R.; Zegre, N.

    2017-12-01

    Atmospheric water supply and demand largely drives the available water in the land surface. Precipitation (P) is the main supply of water to the land surface, while water demand largely depends on energy supply. Most frameworks that analyze climate change have limit their scope to changes in P and temperature as an indicator of energy. However, atmospheric water demand is not only dependent on temperature but also on variables such as solar radiation, air humidity and wind. For this study, we use the downscaled GCM outputs of (P) and calculate atmospheric water demand by aggregating solar radiation, temperature, relative humidity, and wind as potential evapotranspiration (EP) using the Penman-Monteith equation across the Appalachian Region. We investigate absolute changes in P and EP and changes in their relation or aridity index (AI=EP/P) to spatially determine places becoming wetter or drier. Moreover, we explore how their changes are distributed throughout the year, i.e. changes in the seasonality for P and widening of the intra-annual cycle of EP. The changes in seasonality can act as a further indicator of the partition of precipitation into evaporation or land surface water. Changes of precipitation that occur during summer are likely to be partitioned towards evapotranspiration whereas changes in winter are likely to be absorbed by land surface components of storage and runoff. Furthermore, widening of the intra-annual cycle of EP means that there will be water demand for a longer part of the year (earlier in spring and later in autumn). Our results show that places with lower mean annual temperature are likely to experience larger temperature changes. Regarding the AI, the Eastern Coasts of North and South Carolina, and Georgia as well as Mississippi, Alabama, Tennessee and Kentucky are likely to get drier. The states of New York, Pennsylvania, Ohio, Virginia, and inland North and South Carolina and Alabama are likely to become wetter, with West Virginia having mixed results. Most of the changes in P are projected to take place during winter in Ohio and New York, whereas they are likely to happen in summer south of Ohio and Pennsylvania. These results highlight areas where water availability will change given projected changes in atmospheric water supply and demand across the Appalachian region.

  4. Implications of water constraints for electricity capacity expansion in the United States

    NASA Astrophysics Data System (ADS)

    Liu, L.; Hejazi, M. I.; Iyer, G.; Forman, B. A.

    2017-12-01

    U.S. electricity generation is vulnerable to water supply since water is required for cooling. Constraints on the availability of water will therefore necessitate adaptive planning by the power generation sector. Hence, it is important to integrate restrictions in water availability in electricity capacity planning in order to better understand the economic viability of alternative capacity planning options. The study of the implications of water constraints for the U.S. power generation system is limited in terms of scale and robustness. We extend previous studies by including physical water constraints in a state-level model of the U.S. energy system embedded within a global integrated assessment model (GCAM-USA). We focus on the implications of such constraints for the U.S. electricity capacity expansion, integrating both supply and demand effects under a consistent framework. Constraints on the availability of water have two general effects across the U.S. First, water availability constraints increase the cost of electricity generation, resulting in reduced electrification of end-use sectors. Second, water availability constraints result in forced retirements of water-intensive technologies such as thermoelectric coal- and gas- fired technologies before the end of their natural lifetimes. The demand for electricity is then met by an increase in investments in less water-dependent technologies such as wind and solar photovoltaic. Our results show that the regional patterns of the above effects are heterogeneous across the U.S. In general, the impacts of water constraints on electricity capacity expansion are more pronounced in the West than in the East. This is largely because of lower water availability in the West compared to the East due to lower precipitation in the Western states. Constraints on the availability of water might also have important implications for U.S. electricity trade. For example, under severe constraints on the availability of water, some states flip from being net exporters of electricity to becoming net importers and vice versa. Our study demonstrates the impacts of water availability constraints on electricity capacity expansion in the U.S. and highlights the need to integrate such constraints into decision-making so as to better understand state-level challenges.

  5. Feedbacks between managed irrigation and water availability: Diagnosing temporal and spatial patterns using an integrated hydrologic model

    NASA Astrophysics Data System (ADS)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Groundwater-fed irrigation has been shown to deplete groundwater storage, decrease surface water runoff, and increase evapotranspiration. Here we simulate soil moisture-dependent groundwater-fed irrigation with an integrated hydrologic model. This allows for direct consideration of feedbacks between irrigation demand and groundwater depth. Special attention is paid to system dynamics in order to characterized spatial variability in irrigation demand and response to increased irrigation stress. A total of 80 years of simulation are completed for the Little Washita Basin in Southwestern Oklahoma, USA spanning a range of agricultural development scenarios and management practices. Results show regionally aggregated irrigation impacts consistent with other studies. However, here a spectral analysis reveals that groundwater-fed irrigation also amplifies the annual streamflow cycle while dampening longer-term cyclical behavior with increased irrigation during climatological dry periods. Feedbacks between the managed and natural system are clearly observed with respect to both irrigation demand and utilization when water table depths are within a critical range. Although the model domain is heterogeneous with respect to both surface and subsurface parameters, relationships between irrigation demand, water table depth, and irrigation utilization are consistent across space and between scenarios. Still, significant local heterogeneities are observed both with respect to transient behavior and response to stress. Spatial analysis of transient behavior shows that farms with groundwater depths within a critical depth range are most sensitive to management changes. Differences in behavior highlight the importance of groundwater's role in system dynamics in addition to water availability.

  6. Characterizing water use efficiency (WUE) and water deficit responses in apple (Malus X domestica and Malus sieversii)

    USDA-ARS?s Scientific Manuscript database

    Reduced availability of water for agricultural use has been forecast for much of the planet, due in part to global warming which has contributed to numerous cycles of drought and due in part to greater urban demand for water in large metropolitan areas. Strategic improvement of water use efficiency...

  7. Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays?

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Reedy, Robert C.; Nicot, Jean Philippe

    2014-12-01

    There is increasing concern about water constraints limiting oil and gas production using hydraulic fracturing (HF) in shale plays, particularly in semiarid regions and during droughts. Here we evaluate HF vulnerability by comparing HF water demand with supply in the semiarid Texas Eagle Ford play, the largest shale oil producer globally. Current HF water demand (18 billion gallons, bgal; 68 billion liters, bL in 2013) equates to ˜16% of total water consumption in the play area. Projected HF water demand of ˜330 bgal with ˜62 000 additional wells over the next 20 years equates to ˜10% of historic groundwater depletion from regional irrigation. Estimated potential freshwater supplies include ˜1000 bgal over 20 yr from recharge and ˜10 000 bgal from aquifer storage, with land-owner lease agreements often stipulating purchase of freshwater. However, pumpage has resulted in excessive drawdown locally with estimated declines of ˜100-200 ft in ˜6% of the western play area since HF began in 2009-2013. Non-freshwater sources include initial flowback water, which is ≤5% of HF water demand, limiting reuse/recycling. Operators report shifting to brackish groundwater with estimated groundwater storage of 80 000 bgal. Comparison with other semiarid plays indicates increasing brackish groundwater and produced water use in the Permian Basin and large surface water inputs from the Missouri River in the Bakken play. The variety of water sources in semiarid regions, with projected HF water demand representing ˜3% of fresh and ˜1% of brackish water storage in the Eagle Ford footprint indicates that, with appropriate management, water availability should not physically limit future shale energy production.

  8. Water availability, use, and estimated future water demand in the upper Duck River basin, middle Tennessee

    USGS Publications Warehouse

    Hutson, S.S.

    1993-01-01

    The Duck River in Tennessee supplied about 18.9 Mgal of water/d to Tullahoma, Manchester, Lewisburg, Columbia, and other cities. Municipal water use increased to 20.9 Mgal/d in 1990; projections indicate increases in demand for the next 25 yr. Socioeconomic and water use data from the basin for 1989 were used to calibrate the water use models within the Institute for Water Resources Municipal and Industrial Needs (IWR-MAIN) System. The models were used to estimate future water use demand in the basin for the years 1995, 2000, and 2015. Projections showed demands of about 24.3 Mgal/d in 1995; 28.3 Mgal/d in 2000; and 39.0 Mgal/d in 2015. Increases in withdrawals from the Duck River downstream from Shelbyville could reduce the minimum flow at Columbia from 119 to 83.8 cu feet/s. The study also included an overview of the potential for developing groundwater resources in the area. Statistical analyses of yields to 5,938 wells showed that the highest yields are in Coffee County, but 75 percent of the wells in Coffee County produced less than 30 gal/m. However, measurements of streamflow losses along tributaries to the Duck River suggest that the potential for development of groundwater does exist at specific sites.

  9. Reviving the Ganges Water Machine: potential

    NASA Astrophysics Data System (ADS)

    Amarasinghe, Upali Ananda; Muthuwatta, Lal; Surinaidu, Lagudu; Anand, Sumit; Jain, Sharad Kumar

    2016-03-01

    The Ganges River basin faces severe water challenges related to a mismatch between supply and demand. Although the basin has abundant surface water and groundwater resources, the seasonal monsoon causes a mismatch between supply and demand as well as flooding. Water availability and flood potential is high during the 3-4 months (June-September) of the monsoon season. Yet, the highest demands occur during the 8-9 months (October-May) of the non-monsoon period. Addressing this mismatch, which is likely to increase with increasing demand, requires substantial additional storage for both flood reduction and improvements in water supply. Due to hydrogeological, environmental, and social constraints, expansion of surface storage in the Ganges River basin is problematic. A range of interventions that focus more on the use of subsurface storage (SSS), and on the acceleration of surface-subsurface water exchange, has long been known as the Ganges Water Machine (GWM). The approach of the GWM for providing such SSS is through additional pumping and depleting of the groundwater resources prior to the onset of the monsoon season and recharging the SSS through monsoon surface runoff. An important condition for creating such SSS is the degree of unmet water demand. The paper shows that the potential unmet water demand ranging from 59 to 124 Bm3 year-1 exists under two different irrigation water use scenarios: (i) to increase irrigation in the Rabi (November-March) and hot weather (April-May) seasons in India, and the Aman (July-November) and Boro (December-May) seasons in Bangladesh, to the entire irrigable area, and (ii) to provide irrigation to Rabi and the hot weather season in India and the Aman and Boro seasons in Bangladesh to the entire cropped area. However, the potential for realizing the unmet irrigation demand is high only in 7 sub-basins in the northern and eastern parts, is moderate to low in 11 sub-basins in the middle, and has little or no potential in 4 sub-basins in the western part of the Ganges basin. Overall, a revived GWM plan has the potential to meet 45-84 Bm3year-1 of unmet water demand.

  10. Climate Forecasts and Water Resource Management: Applications for a Developing Country

    NASA Astrophysics Data System (ADS)

    Brown, C.; Rogers, P.

    2002-05-01

    While the quantity of water on the planet earth is relatively constant, the demand for water is continuously increasing. Population growth leads to linear increases in water demand, and economic growth leads to further demand growth. Strzepek et al. calculate that with a United Nations mean population estimate of 8.5 billion people by 2025 and globally balanced economic growth, water use could increase by 70% over that time (Strzepek et al., 1995). For developing nations especially, supplying water for this growing demand requires the construction of new water supply infrastructure. The prospect of designing and constructing long life-span infrastructure is clouded by the uncertainty of future climate. The availability of future water resources is highly dependent on future climate. With realization of the nonstationarity of climate, responsible design emphasizes resiliency and robustness of water resource systems (IPCC, 1995; Gleick et al., 1999). Resilient systems feature multiple sources and complex transport and distribution systems, and so come at a high economic and environmental price. A less capital-intense alternative to creating resilient and robust water resource systems is the use of seasonal climate forecasts. Such forecasts provide adequate lead time and accuracy to allow water managers and water-based sectors such as agriculture or hydropower to optimize decisions for the expected water supply. This study will assess the use of seasonal climate forecasts from regional climate models as a method to improve water resource management in systems with limited water supply infrastructure

  11. The Community Water Model (CWATM) / Development of a community driven global water model

    NASA Astrophysics Data System (ADS)

    Burek, Peter; Satoh, Yusuke; Greve, Peter; Kahil, Taher; Wada, Yoshihide

    2017-04-01

    With a growing population and economic development, it is expected that water demands will increase significantly in the future, especially in developing regions. At the same time, climate change is expected to alter spatial patterns of hydrological cycle and will have global, regional and local impacts on water availability. Thus, it is important to assess water supply, water demand and environmental needs over time to identify the populations and locations that will be most affected by these changes linked to water scarcity, droughts and floods. The Community Water Model (CWATM) will be designed for this purpose in that it includes an accounting of how future water demands will evolve in response to socioeconomic change and how water availability will change in response to climate. CWATM represents one of the new key elements of IIASA's Water program. It has been developed to work flexibly at both global and regional level at different spatial resolutions. The model is open source and community-driven to promote our work amongst the wider water community worldwide and is flexible enough linking to further planned developments such as water quality and hydro-economic modules. CWATM will be a basis to develop a next-generation global hydro-economic modeling framework that represents the economic trade-offs among different water management options over a basin looking at water supply infrastructure and demand managements. The integrated modeling framework will consider water demand from agriculture, domestic, energy, industry and environment, investment needs to alleviate future water scarcity, and will provide a portfolio of economically optimal solutions for achieving future water management options under the Sustainable Development Goals (SDG) for example. In addition, it will be able to track the energy requirements associated with the water supply system e.g., pumping, desalination and interbasin transfer to realize the linkage with the water-energy economy. In a bigger framework of nexus - water, energy, food, ecosystem - CWATM will be coupled to the existing IIASA models including the Integrated Assessment Model MESSAGE and the global land and ecosystem model GLOBIOM in order to realize an improved assessments of water-energy-food-ecosystem nexus and associated feedback. Our vision for the short to medium term work is to introduce water quality (e.g., salinization in deltas and eutrophication associated with mega cities) into CWATM and to consider qualitative and quantitative measures of transboundary river and groundwater governance into an integrated modelling framework.

  12. 76 FR 31973 - Draft WaterSMART Strategic Implementation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... best available science to understand the impacts of climate change on water supplies; and provide... and time. It is increasingly recognized that water is the primary means through which climate change... environment, and will identify adaptive measures needed to address climate change and future demands. Within...

  13. Water budget of the Calera Aquifer in Zacatecas, Mexico

    USDA-ARS?s Scientific Manuscript database

    In the Calera Aquifer Region of the State of Zacatecas, Mexico, limited rainfall and low agricultural water use efficiency in combination with fast growing industrial and urban water demand are contributing to groundwater depletion at an unsustainable rate. Limited data and planning tools were avail...

  14. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. T.; Lockwood, B.; Schmid, Wolfgang

    2014-11-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within ;water-balance subregions; (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori. The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and assumptions of 2009 urban water demand and land use. Water supplied directly from precipitation, and indirectly from reuse, captured local runoff, and groundwater is necessary but inadequate to satisfy agricultural demand without coastal and regional storage depletion that facilitates seawater intrusion. These facilities reduce potential seawater intrusion by about 45% with groundwater levels in the four regions served by the CDS projected to recover to levels a few feet above sea level. The projected recoveries are not high enough to prevent additional seawater intrusion during dry-year periods or in the deeper aquifers where pumpage is greater. While these facilities could reduce coastal pumpage by about 55% of the historical 2000-2009 pumpage for these regions, and some of the water is delivered in excess of demand, other coastal regions continue to create demands on coastal pumpage that will need to be replaced to reduce seawater intrusion. In addition, inland urban and agricultural demands continue to sustain water levels below sea level causing regional landward gradients that also drive seawater intrusion. Seawater intrusion is reduced by about 45% but it supplies about 55% of the recovery of groundwater levels in the coastal regions served by the CDS. If economically feasible, water from summer agricultural runoff and tile-drain returnflows could be another potential local source of water that, if captured and reused, could offset the imbalance between supply and demand as well as reducing discharge of agricultural runoff into the National Marine Sanctuary of Monterey Bay. A BMP update (2012) identifies projects and programs that will fund a conservation program and will provide additional, alternative water sources to reduce or replace coastal and inland pumpage, and to replenish the aquifers with managed aquifer recharge in an inland portion of the Pajaro Valley.

  15. Mapping of Temporal Surface-water Resources Availability and Agricultural Adaptability due to Climate Change and Anthropogenic Activity in a Hot Semi-arid Region of Maharashtra State, India

    NASA Astrophysics Data System (ADS)

    Roy, A.; Inamdar, A. B.

    2016-12-01

    Major part of Godavari River Basin is intensely drought prone and climate vulnerable in the Western Maharashtra State, India. The economy of the state depends on the agronomic productivity of this region. So, it is necessary to regulate the effects of existing and upcoming hydro-meteorological advances in various strata. This study investigates and maps the surface water resources availability and vegetation, their decadal deviations with multi-temporal LANDSAT images; and finally quantifies the agricultural adaptations. This work involves the utilization of Remote Sensing and GIS with Hydrological modeling. First, climatic trend analysis is carried out with NCEP dataset. Then, multi-temporal LANDSAT images are classified to determine the decadal LULC changes and correlated to the community level hydrological demand. Finally, NDVI, NDWI and SWAT model analysis are accomplished to determine irrigated and non-irrigated cropping area for identifying the agricultural adaptations. The analysis shows that the mean value of annual and monsoon rainfall is significantly decreasing, whereas the mean value of annual and summer temperature is increasing significantly and the winter temperature is decreasing. The analysis of LANDSAT images shows that the surface water availability is highly dependent on climatic conditions. Barren-lands are most dynamic during the study period followed by, vegetation, and water bodies. The spatial extent of barren-lands is increased drastically during the climate vulnerable years replacing the vegetation and surface water bodies. Hence, the barren lands are constantly increasing and the vegetation cover is linearly decreasing, whereas the water extent is changing either way in a random fashion. There appears a positive correlation between surface water and vegetation occurrence; as they are fluctuating in a similar fashion in all the years. The vegetation cover is densely replenished around the dams and natural water bodies which serve as the water supply stations for the irrigation purposes. Moreover, there is a shift to non-irrigated and less water demanding crops, from more water demanding crops, which is a conspicuous adaptation. Hence, the study shows there are alteration in meteorological predictors, land cover, agricultural practices and surface water availability.

  16. Understanding the climate-included variations in the seasonal water demands of irrigated crops in Northern India

    NASA Astrophysics Data System (ADS)

    Bhattarai, N.; Jain, M.

    2016-12-01

    Expected changes in temperature and precipitation patterns in the rice-wheat belt of Northern India have implications for balancing crop water demand and available water resources. Because the impacts of water scarcity and reduced crop production are realized at a local scale, water-saving interventions are most effective when implemented locally. However, a paucity of fine-scale studies on the relationship between variations in climate and crop water demand has limited our ability to effectively implement such interventions. In an effort to better understand the responses of irrigated crops to changing climate in Northern India at finer-scales, we propose a remote sensing based semi-empirical approach. First, we employ a multi-model surface energy balance (SEB) approach to map seasonal evapotranspiration (ET)/water use (1995-2015) at 30 to 100 m resolution from space and investigate how seasonal and inter-annual variations in temperature and precipitation are associated with regional surface-energy budgets. Second, using remote estimates of ET and other biophysical variables, such as vegetation indices, land surface temperature, and albedo, we will explain the possible relationships between climate change and seasonal water demands of crops. Our estimates of high/moderate resolution (30 to 100 m) seasonal ET maps can make clear distinctions between impacts of climate variations on crop water demand at field, plot, and regional scales in Northern India. Finally, by improving our ability to identify targeted area for water-saving interventions, this study supports agricultural resiliency of Northern India in the face of climate change.

  17. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    NASA Astrophysics Data System (ADS)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  18. From Hydroclimatic Prediction to Negotiated and Risk Managed Water Allocation and Reservoir Operation (Invited)

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2013-12-01

    The availability of long lead climate forecasts that can in turn inform streamflow, agricultural, ecological and municipal/industrial and energy demands provides an opportunity for innovations in water resources management that go beyond the current practices and paradigms. In a practical setting, managers seek to meet registered demands as well as they can. Pricing mechanisms to manage demand are rarely invoked. Drought restrictions and operations are implemented as needed, and pressures from special interest groups are sometimes accommodated through a variety of processes. In the academic literature, there is a notion that demand curves for different sectors could be established and used for "optimal management". However, the few attempts to implement such ideas have invariably failed as elicitation of demand elasticity and socio-political factors is imperfect at best. In this talk, I will focus on what is worth predicting and for whom and how operational risks for the water system can be securitized while providing a platform for priced and negotiated allocation of the resources in the presence of imperfect forecasts. The possibility of a national or regional market for water contracts as part of the framework is explored, and its potential benefits and pitfalls identified.

  19. 76 FR 33361 - Notice of Availability of the Final Environmental Impact Statement for the Madera Irrigation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Impact Statement for the Madera Irrigation District Water Supply Enhancement Project located in Madera... Madera Irrigation District Water Supply Enhancement Project (MID WSEP). Reclamation proposes to approve... supply reliability and flexibility for current and future water demand, and reduce local overdraft, MID...

  20. A review of water use in the U.S. electric power sector: insights from systems-level perspectives

    EPA Science Inventory

    Thermoelectric power production comprised 41% of total freshwater withdrawals in the U.S., surpassing even agriculture. This review highlights scenarios of the electric sector’s future demands for water, including scenarios that limit both CO2 and water availability. A number o...

  1. Intersects between Land, Energy, Water and the Climate System

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Skaggs, R.; Wilson, T.

    2012-12-01

    Climate change affects water, and land resources, and with growing human activity, each of these sectors relies increasingly on the others for critical resources. Events such as drought across the South Central U.S. during 2011 demonstrate that climatic impacts within each of these sectors can cascade through interactions between sectors. Energy, water, and land resources are each vulnerable to impacts on either of the other two sectors. For example, energy systems inherently require land and water. Increased electricity demands to contend with climate change can impose additional burdens on overly subscribed water resources. Within this environment, energy systems compete for water with agriculture, human consumption, and other needs. In turn, climate driven changes in landscape attributes and land use affect water quality and availability as well as energy demands. Diminishing water quality and availability impose additional demands for energy to access and purify water, and for land to store and distribute water. In some situations, interactions between water, energy, and land resources make options for reducing greenhouse gas emissions vulnerable to climate change. Energy options such as solar power or biofuel use can reduce net greenhouse gas emissions as well as U.S. dependence on foreign resources. As a result, the U.S. is expanding renewable energy systems. Advanced technology such as carbon dioxide capture with biofuels may offer a means of removing CO2 from the atmosphere. But as with fossil fuels, renewable energy sources can impose significant demands for water and land. For example, solar power mayrequire significant land to site facilities and water for cooling or to produce steam. Raising crops to produce biofuels uses arable land and water that might otherwise be available for food production. Thus, warmer and drier climate can compromise these renewable energy resources, and drought can stress water supplies creating competition between energy production and agriculture. These kinds of stresses often initiate innovated technological developments, such as dry cooling to reduce water demands in the U.S. Southwest for utility-scalesolar development, however, the need for large areas of land remain, and often, large land tracts in this region are under Federal ownership and used as conservation or wildlife refuges. Conflicting stakeholder views, institutional commitments, and international concerns can constrain options for reducing vulnerability to climate change, and interactions among water, energy, and land resource sectors can intensify such constraints. While management decisions may focus primarily on one of these resource sectors, where the three sectors are tightly coupled, options for mitigating or adapting to climate change may be limited more than expected. For example, the Columbia River Treaty between Canada and the U.S. emphasizes hydroelectric power and flood control, but with warmer temperatures and drier summers projected for the Northwest, diminishing water supplies will result in increased pumping for resource production (i.e., deeper groundwater) and transmission. Finally, coordinated water management for agriculture, ecosystem services, and hydropower will be an important aspect of adaptation not necessarily accommodated by the Treaty.

  2. Are sustainable water resources possible in northwestern India?

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Devineni, N.; Perveen, S.; Robertson, A. W.; Lall, U.

    2012-12-01

    Sustainable water resources can have many definitions with the simplest as a supply-demand problem, with climate dictating the supply of water and human water use the demand. One sign of a system that is not sustainable would be falling groundwater tables, as is the case in northwest India. This region serves as the country's breadbasket, and irrigated agriculture is ubiquitous. The state of Punjab alone produces 22% of the country's wheat and 13% of all the country's grains while only accounting for 1.5% of the country's area. Although the region receives an average precipitation of 600mm per year, it is dominated by monsoonal rainfall with streamflow augmented by upstream snowmelt and glacial melt in spring and summer that is released from a large dam into canals. Large agricultural water demands occur both during the rainy season as well as during the drier winter season. Water and food security are inextricably linked here, and when considering how to manage water sustainably, the consequences on agriculture must also be considered. In this study, we evaluate what a sustainable water resources system would look like in this region, accounting for current climate, crop water demands, and available reservoir storage. The effects of multiple water-saving scenarios are considered, such as crop choice, cropped area, and the use of forecasts in irrigation scheduling. We find that the current system is untenable and hard decisions will have to be made by policymakers in order to halt the depletion of groundwater and manage the region's water resources in a sustainable, effective manner. This work serves as a prototype for evaluating water resources in other regions with high seasonal variability in rainfall and streamflow and large irrigation demands.

  3. Water use efficiency at basin and farm scales

    Treesearch

    Ehsan Goodarzi; Lotfollah Ziaei; Saeid Eslamian

    2016-01-01

    The available water resources in basins are becoming scarce while demands for water are considerably increasing among various sectors due to economic and population growths. Water deficiency is becoming a main constraint for sustainable regional development and it is the primary motivation in creating water to supply user requirements in particular for agricultural ...

  4. Impacts of forest biomass removal on water yield across the United States

    Treesearch

    Ge Sun; Liangxia Zhang; Kai Duan; Benjamin Rau

    2017-01-01

    Water is essential to all forms of life on earth and is a powerful, integrated indicator of environmental health and ecosystem sustainability (Asbjornsen et al. 2015). In some areas of the United States, water availability and water quality are declining as a result of urbanization, climate change, and increased water demand for agricul- tural irrigation, power...

  5. Impacts of multiple stresses on water demand and supply across the southeastern United States

    Treesearch

    Ge Sun; Steven G. McNulty; Jennifer A. Moore Myers; Erika C. Cohen

    2008-01-01

    Assessment of long-term impacts of projected changes in climate, population, and land use and land cover on regional water resource is critical to the sustainable development of the southeastern United States. The objective of this study was to fully budget annual water availability for water supply (precipitation ) evapotranspiration + groundwater supply + return flow...

  6. Roof-top solar energy potential under performance-based building energy codes: The case of Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izquierdo, Salvador; Montanes, Carlos; Dopazo, Cesar

    2011-01-15

    The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality,more » PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). (author)« less

  7. Assessment of climate change impact on water diversion strategies of Melamchi Water Supply Project in Nepal

    NASA Astrophysics Data System (ADS)

    Shrestha, Sangam; Shrestha, Manish; Babel, Mukand S.

    2017-04-01

    This paper analyzes the climate change impact on water diversion plan of Melamchi Water Supply Project (MWSP) in Nepal. The MWSP is an interbasin water transfer project aimed at diverting water from the Melamchi River of the Indrawati River basin to Kathmandu Valley for drinking water purpose. Future temperature and precipitation of the basin were predicted using the outputs of two regional climate models (RCMs) and two general circulation models (GCMs) under two representative concentration pathway (RCP) scenarios which were then used as inputs to Soil and Water Assessment Tool (SWAT) to predict the water availability and evaluate the water diversion strategies in the future. The average temperature of the basin is projected to increase by 2.35 to 4.25 °C under RCP 4.5 and RCP 8.5, respectively, by 2085s. The average precipitation in the basin is projected to increase by 6-18 % in the future. The annual water availability is projected to increase in the future; however, the variability is observed in monthly water availability in the basin. The water supply and demand scenarios of Kathmandu Valley was also examined by considering the population increase, unaccounted for water and water diversion from MWSP in the future. It is observed that even with the additional supply of water from MWSP and reduction of unaccounted for water, the Kathmandu Valley will be still under water scarcity in the future. The findings of this study can be helpful to formulate water supply and demand management strategies in Kathmandu Valley in the context of climate change in the future.

  8. Towards the assessment of climate change and human activities impacts on the water resources of the Ebro catchment (Spain)

    NASA Astrophysics Data System (ADS)

    Milano, M.; Ruelland, D.; Dezetter, A.; Ardoin-Bardin, S.; Thivet, G.; Servat, E.

    2012-04-01

    Worldwide studies modelling the hydrological response to global changes have proven the Mediterranean area as one of the most vulnerable region to water crisis. It is characterised by limited and unequally distributed water resources, as well as by important development of its human activities. Since the late 1950s, water demand in the Mediterranean basin has doubled due to a significant expansion of irrigated land and urban areas, and has maintained on a constant upward curve. The Ebro catchment, third largest Mediterranean basin, is very representative of this context. Since the late 1970s, a negative trend in mean rainfall has been observed as well as an increase in mean temperature. Meanwhile, the Ebro River discharge has decreased by about 40%. However, climate alone cannot explain this downward trend. Another factor is the increase in water consumption for agricultural and domestic uses. Indeed, the Ebro catchment is a key element in the Spanish agricultural production with respectively 30% and 60% of the meat and fruit production of the country. Moreover, population has increased by 20% over the catchment since 1970 and the number of inhabitant doubles each summer due to tourism attraction. Finally, more than 250 storage dams have been built over the Ebro River for hydropower production and irrigation water supply purposes, hence regulating river discharge. In order to better understand the respective influence of climatic and anthropogenic pressures on the Ebro hydrological regime, an integrated water resources modelling framework was developed. This model is driven by water supplies, generated by a conceptual rainfall-runoff model and by a storage dam module that accounts for water demands and environmental flow requirements. Water demands were evaluated for the most water-demanding sector, i.e. irrigated agriculture (5 670 Hm3/year), and the domestic sector (252 Hm3/year), often defined as being of prior importance for water supply. A water allocation module has also been implemented in the model. The ability of water resources to satisfy the water demands is assessed by computing a water allocation index which depends on site priorities and supply preferences. This modelling framework was applied to eight sub-catchments, each one representative of typical climatic or water use conditions within the basin, over the 1971-1990 period. The results show the interest of integrated modelling to address water resources vulnerability. The hydrological response to climatic and anthropogenic variations witnesses the influence of both these pressures on water resources availability. Moreover, the water allocation index makes it possible to highlight the growing competition among users, especially during the summer season. The developed methodology hence provides us a more complete analysis to support decision-making compared to uncoupled analysis. This study is a first step towards evaluating future water resources availability and ability to satisfy water demands under climatic and anthropogenic pressures scenarios.

  9. 10 CFR 436.30 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (3) Entering into negotiations with electric, water, and gas utilities to design cost-effective... regulations. The provisions of this subpart are controlling with regard to energy savings performance... manage electricity demand conducted by gas, water, or electric utilities and generally available to...

  10. Quantification of Water Energy Nexus for Sustainable Development at Local Level: Case Study of Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Grover, S.; Tayal, S.

    2014-12-01

    Interdependency between water and energy is generally transacted in trade-off mode; where either of the resource gets affected because of the other. Generally this trade-off is commonly known as water-energy nexus. Many studies have been undertaken in various parts of the world using various approaches to tease out the intricate nexus. This research has adopted a different approach to quantify the inter-dependency. The adopted approach made an attempt to tease out the nexus from demand side for both the resources. For water demand assessment PODIUM Sim model was used and for other parameters available secondary data was used. Using this approach percentage share of water for energy and energy for water was estimated. For an informed decision making and sustainable development, assessment was carried out at state level as most of the policies are made specifically for the state. The research was done for the southernmost state of India, Tamil Nadu which is a rapidly growing industrial hub. Tamil Nadu is energy and water intensive state and the analysis shows that the share of water demand from energy sector compared to water demand from other major sectors is miniscule. While, the energy demand in water sector for various processes in different sectors compared to energy demand as total has a comparable share of range 15-25%. This analysis indicated the relative risk sectors face in competition for the resource. It point outs that water sector faces fierce competition with other sectors for energy. Moreover, the results of the study has assessed that state has negative water balance, which may make access to water more energy intensive with time. But, a projection into future scenario with an assumption based on the ongoing policy program of improving irrigation efficiency was made. It provided a solution of a potential positive equilibrium which conserves both water and energy. This scenario gave promising results which indicated less of water demand from agricultural sector which is the most water intensive sector in the state, less requirement of energy for irrigation and improvement in overall water balance of the state.With the changing climate and growing population, resources at crisis can be managed sustainably if this nexus is decoded to understand the interdependency.

  11. Competing effects of groundwater withdrawals and climate change on water availability in semi-arid India

    NASA Astrophysics Data System (ADS)

    Sishodia, R. P.; Shukla, S.

    2017-12-01

    India, a global leader in groundwater use (250 km3/yr), is experiencing groundwater depletion. There has been a 130-fold increase in number of irrigation wells since 1960. Anticipated future increase in groundwater demand is likely to exacerbate the water availability in the semi-arid regions of India. Depending on the direction of change, future climate change may either worsen or enhance the water availability. This study uses an integrated hydrologic modeling approach (MIKE SHE MIKE 11) to compare and combine the effects of future (2040-2069) increased groundwater withdrawals and climate change on surface and groundwater flows and availability for an agricultural watershed in semi-arid south India. Modeling results showed that increased groundwater withdrawals in the future resulted in reduced surface flows (25%) and increased frequency and duration (90 days/yr) of well drying. In contrast, projected future increase in rainfall (7-43%) under the changed climate showed increased groundwater recharge (15-67%) and surface flows (9-155%). Modeling results suggest that the positive effects of climate change may enhance the water availability in this semi-arid region of India. However, in combination with increased withdrawals, climate change was shown to increase the well drying and reduce the water availability especially during dry years. A combination of management options such as flood to drip conversion, energy subsidy reductions and water storage can support increased groundwater irrigated area in the future while mitigating the well drying. A cost-benefit analysis showed that dispersed water storage and flood to drip conversion can be highly cost-effective in this semi-arid region. The study results suggest that the government and management policies need to be focused towards an integrated management of demand and supply to create a sustainable food-water-energy nexus in the region.

  12. Water Resource Planning Under Future Climate and Socioeconomic Uncertainty in the Cauvery River Basin in Karnataka, India

    PubMed Central

    Conway, Declan; Dessai, Suraje; Stainforth, David A.

    2018-01-01

    Abstract Decision‐Making Under Uncertainty (DMUU) approaches have been less utilized in developing countries than developed countries for water resources contexts. High climate vulnerability and rapid socioeconomic change often characterize developing country contexts, making DMUU approaches relevant. We develop an iterative multi‐method DMUU approach, including scenario generation, coproduction with stakeholders and water resources modeling. We apply this approach to explore the robustness of adaptation options and pathways against future climate and socioeconomic uncertainties in the Cauvery River Basin in Karnataka, India. A water resources model is calibrated and validated satisfactorily using observed streamflow. Plausible future changes in Indian Summer Monsoon (ISM) precipitation and water demand are used to drive simulations of water resources from 2021 to 2055. Two stakeholder‐identified decision‐critical metrics are examined: a basin‐wide metric comprising legal instream flow requirements for the downstream state of Tamil Nadu, and a local metric comprising water supply reliability to Bangalore city. In model simulations, the ability to satisfy these performance metrics without adaptation is reduced under almost all scenarios. Implementing adaptation options can partially offset the negative impacts of change. Sequencing of options according to stakeholder priorities into Adaptation Pathways affects metric satisfaction. Early focus on agricultural demand management improves the robustness of pathways but trade‐offs emerge between intrabasin and basin‐wide water availability. We demonstrate that the fine balance between water availability and demand is vulnerable to future changes and uncertainty. Despite current and long‐term planning challenges, stakeholders in developing countries may engage meaningfully in coproduction approaches for adaptation decision‐making under deep uncertainty. PMID:29706676

  13. Water Resource Planning Under Future Climate and Socioeconomic Uncertainty in the Cauvery River Basin in Karnataka, India.

    PubMed

    Bhave, Ajay Gajanan; Conway, Declan; Dessai, Suraje; Stainforth, David A

    2018-02-01

    Decision-Making Under Uncertainty (DMUU) approaches have been less utilized in developing countries than developed countries for water resources contexts. High climate vulnerability and rapid socioeconomic change often characterize developing country contexts, making DMUU approaches relevant. We develop an iterative multi-method DMUU approach, including scenario generation, coproduction with stakeholders and water resources modeling. We apply this approach to explore the robustness of adaptation options and pathways against future climate and socioeconomic uncertainties in the Cauvery River Basin in Karnataka, India. A water resources model is calibrated and validated satisfactorily using observed streamflow. Plausible future changes in Indian Summer Monsoon (ISM) precipitation and water demand are used to drive simulations of water resources from 2021 to 2055. Two stakeholder-identified decision-critical metrics are examined: a basin-wide metric comprising legal instream flow requirements for the downstream state of Tamil Nadu, and a local metric comprising water supply reliability to Bangalore city. In model simulations, the ability to satisfy these performance metrics without adaptation is reduced under almost all scenarios. Implementing adaptation options can partially offset the negative impacts of change. Sequencing of options according to stakeholder priorities into Adaptation Pathways affects metric satisfaction. Early focus on agricultural demand management improves the robustness of pathways but trade-offs emerge between intrabasin and basin-wide water availability. We demonstrate that the fine balance between water availability and demand is vulnerable to future changes and uncertainty. Despite current and long-term planning challenges, stakeholders in developing countries may engage meaningfully in coproduction approaches for adaptation decision-making under deep uncertainty.

  14. Water Resource Planning Under Future Climate and Socioeconomic Uncertainty in the Cauvery River Basin in Karnataka, India

    NASA Astrophysics Data System (ADS)

    Bhave, Ajay Gajanan; Conway, Declan; Dessai, Suraje; Stainforth, David A.

    2018-02-01

    Decision-Making Under Uncertainty (DMUU) approaches have been less utilized in developing countries than developed countries for water resources contexts. High climate vulnerability and rapid socioeconomic change often characterize developing country contexts, making DMUU approaches relevant. We develop an iterative multi-method DMUU approach, including scenario generation, coproduction with stakeholders and water resources modeling. We apply this approach to explore the robustness of adaptation options and pathways against future climate and socioeconomic uncertainties in the Cauvery River Basin in Karnataka, India. A water resources model is calibrated and validated satisfactorily using observed streamflow. Plausible future changes in Indian Summer Monsoon (ISM) precipitation and water demand are used to drive simulations of water resources from 2021 to 2055. Two stakeholder-identified decision-critical metrics are examined: a basin-wide metric comprising legal instream flow requirements for the downstream state of Tamil Nadu, and a local metric comprising water supply reliability to Bangalore city. In model simulations, the ability to satisfy these performance metrics without adaptation is reduced under almost all scenarios. Implementing adaptation options can partially offset the negative impacts of change. Sequencing of options according to stakeholder priorities into Adaptation Pathways affects metric satisfaction. Early focus on agricultural demand management improves the robustness of pathways but trade-offs emerge between intrabasin and basin-wide water availability. We demonstrate that the fine balance between water availability and demand is vulnerable to future changes and uncertainty. Despite current and long-term planning challenges, stakeholders in developing countries may engage meaningfully in coproduction approaches for adaptation decision-making under deep uncertainty.

  15. Irrigation strategies that use cutout for optimum boll maturation and yield where growing season duration is limited

    USDA-ARS?s Scientific Manuscript database

    Irrigation water availability is decreasing due to declining water sources and greater competition. Many producers must now comply with annual pumping restrictions that may limit overall productivity of crops like corn (Zea mays L.). Cotton [Gossypium hirsutum (L.)] water demand is less than corn, b...

  16. Disinfection of Vegetative Cells of Bacillus anthracis

    DTIC Science & Technology

    2016-03-01

    1. INTRODUCTION Disinfection of Bacillus anthracis spores in drinking water is well documented in peer-reviewed literature (Adcock et al., 2004... Disinfection kinetics of vegetative cells of Bacillus anthracis in water with free available chlorine ([FAC] 2 mg/L) and monochloramine ([MC] 2 mg/L) were...anthracis. Bacillus anthracis cells Drinking water Chlorine demand-free (CDF

  17. Water and Climate Impacts on Power System Operations: The Importance of Cooling Systems and Demand Response Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macknick, Jordan; Zhou, Ella; O'Connell, Matthew

    The U.S. electricity sector is highly dependent upon water resources; changes in water temperatures and water availability can affect operational costs and the reliability of power systems. Despite the importance of water for power system operations, the effects of changes in water characteristics on multiple generators in a system are generally not modeled. Moreover, demand response measures, which can change the magnitude and timing of loads and can have beneficial impacts on power system operations, have not yet been evaluated in the context of water-related power vulnerabilities. This effort provides a first comprehensive vulnerability and cost analysis of water-related impactsmore » on a modeled power system and the potential for demand response measures to address vulnerability and cost concerns. This study uniquely combines outputs and inputs of a water and power plant system model, production cost, model, and relative capacity value model to look at variations in cooling systems, policy-related thermal curtailments, and demand response measures to characterize costs and vulnerability for a test system. Twenty-five scenarios over the course of one year are considered: a baseline scenario as well as a suite of scenarios to evaluate six cooling system combinations, the inclusion or exclusion of policy-related thermal curtailments, and the inclusion or exclusion of demand response measures. A water and power plant system model is utilized to identify changes in power plant efficiencies resulting from ambient conditions, a production cost model operating at an hourly scale is used to calculate generation technology dispatch and costs, and a relative capacity value model is used to evaluate expected loss of carrying capacity for the test system.« less

  18. Future Climate Impacts on Crop Water Demand and Groundwater Longevity in Agricultural Regions

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Sahoo, S.; Elliott, J. W.; Foster, I.

    2016-12-01

    Improving groundwater management practices under future drought conditions in agricultural regions requires three steps: 1) estimating the impacts of climate and drought on crop water demand, 2) projecting groundwater availability given climate and demand forcing, and 3) using this information to develop climate-smart policy and water use practices. We present an innovative combination of models to address the first two steps, and inform the third. Crop water demand was simulated using biophysical crop models forced by multiple climate models and climate scenarios, with one case simulating climate adaptation (e.g. modify planting or harvest time) and another without adaptation. These scenarios were intended to represent a range of drought projections and farm management responses. Nexty, we used projected climate conditions and simulated water demand across the United States as inputs to a novel machine learning-based groundwater model. The model was applied to major agricultural regions relying on the High Plains and Mississippi Alluvial aquifer systems in the US. The groundwater model integrates input data preprocessed using single spectrum analysis, mutual information, and a genetic algorithm, with an artificial neural network model. Model calibration and test results indicate low errors over the 33 year model run, and strong correlations to groundwater levels in hundreds of wells across each aquifer. Model results include a range of projected groundwater level changes from the present to 2050, and in some regions, identification and timeframe of aquifer depletion. These results quantify aquifer longevity under climate and crop scenarios, and provide decision makers with the data needed to compare scenarios of crop water demand, crop yield, and groundwater response, as they aim to balance water sustainability with food security.

  19. Modelling water use in global hydrological models: review, challenges and directions

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; de Graaf, I.; Wada, Y.; Wanders, N.; Van Beek, L. P.

    2017-12-01

    During the late 1980s and early 1990s, awareness of the shortage of global water resources lead to the first detailed global water resources assessments using regional statistics of water use and observations of meteorological and hydrological variables. Shortly thereafter, the first macroscale hydrological models (MHM) appeared. In these models, blue water (i.e., surface water and renewable groundwater) availability was calculated by accumulating runoff over a stream network and comparing it with population densities or with estimated water demand for agriculture, industry and households. In this talk we review the evolution of human impact modelling in global land models with a focus on global water resources, touching upon developments of the last 15 years: i.e. calculating human water scarcity; estimating groundwater depletion; adding dams and reservoirs; fully integrating water use (demand, withdrawal, consumption, return flow) in the hydrology; simulating the effects of land use change. We show example studies for each of these steps. We identify We identify major challenges that hamper the further development of integrated water resources modelling. Examples of these are: 1) simulating reservoir operations; 2) including local infrastructure and redistribution; 3) using the correct allocations rules; 4) projecting future water demand and water use. For each of these challenges we signify promising directions for further research.

  20. Mapping Water Resources, Allocation and Consumption in the Mills River Basin

    NASA Astrophysics Data System (ADS)

    Hodes, J.; Jeuland, M. A.; Barros, A. P.

    2014-12-01

    Mountain basins and the headwaters of river basins along the foothills of major mountain ranges are undergoing rapid environmental change due to urban development, land acquisition by investors, population increase, and climate change. Classical water infrastructure in these regions is primarily designed to meet human water demand associated with agriculture, tourism, and economic development. Often overlooked and ignored is the fundamental interdependence of human water demand, ecosystem water demand, water rights and allocation, and water supply. A truly sustainable system for water resources takes into account ecosystem demand along with human infrastructure and economic demand, as well as the feedbacks that exist between them. Allocation policies need to take into account basin resilience that is the amount of stress the system can handle under varying future scenarios. Changes in stress on the system can be anthropogenic in the form of population increase, land use change, economic development, or may be natural in the form of climate change and decrease in water supply due to changes in precipitation. Mapping the water rights, supply, and demands within the basin can help determine the resiliency and sustainability of the basin. Here, we present a coupled natural human system project based in the French Broad River Basin, in the Southern Appalachians. In the first phase of the project, we are developing and implementing a coupled hydro-economics modeling framework in the Mills River Basin (MRB), a tributary of the French Broad. The Mills River Basin was selected as the core basin for implementing a sustainable system of water allocation that is adaptive and reflects the interdependence of water dependent sectors. The headwaters of the Mills River are in the foothills of the Appalachians, and are currently under substantial land use land cover (LULC) change pressure for agricultural purposes. In this regard, the MRB is representative of similar headwater basins in regions of complex terrain undergoing similar pressures such as the Andes and Himalayas. First results of the project including a quantitative organigram mapping water availability, water consumption, and the relationships among water stakeholders within the basin will be presented.

  1. Water availability and usage on the New Mexico/Mexico border.

    PubMed

    Li, Yongmei; Arnold, Stephen D; Kozel, Charles; Forster-Cox, Sue

    2005-10-01

    New Mexico, one of four states on the U.S./Mexico border, is faced with a pressing concern--lack of water. Since the region is either arid or semiarid, it is chronically short of continually available surface-water resources. Groundwater resources are used beyond their capacity to be recharged, and most surface-water resources are used to the maximum. The quality of groundwater varies widely. As a result of nonpoint- and point-source contamination, as well as natural occurrence, water in some areas is too salty or has high levels of natural uranium, fluoride, or arsenic. To date, the New Mexico Environment Department (NMED) has recognized 1,400 cases of groundwater contamination, and 1,907 water supply wells have been affected (NMED, 2001a). Of approximate 4,000 miles of coninously flowing rivers and streams in New Mexico, 92 perent are affected by nonpoint sources of pollution (NMED, 2001b). Numerous critical water issues exist along the New Mexico/Mexico border as a result of the impending critical issue of water availability, usage, and quality, as well as the fast-growing population. Related public health problems along the New Mexico/Mexico border are indicative of the need for a holistic, concrete, and sustainable solution to meet water demands in New Mexico. In order to accomplish the goals an objectives of Border XXI, Healthy People 2010, and Heathy Border 2010, a comprehensive statewide water management plan is needed. Solutions to the water demands of the region will be addressed in a subsequent manuscript.

  2. Using info-Gap Decision Theory for Water Resources Planning Under Severe Uncertainty

    NASA Astrophysics Data System (ADS)

    Korteling, B.; Brazier, R.; Kapelan, Z.; Dessai, S.

    2012-12-01

    Water resource managers are required to develop comprehensive water resource plans based on severely uncertain information of the effects of climate change on local hydrology and future socio-economic changes on localised demand. In England and Wales, current water resource planning methodologies include a headroom estimation process that quantifies uncertainty based on only one point of an assumed range of deviations from the expected climate and projected demand 25 years into the future. There are many situations where there is not enough knowledge to be able to estimate a representative probability of occurrence, or to be confident that the tails of an assumed probability distribution will not exhibit unexpected skewness, or that the kurtosis of a distribution differs from the norm. These situations can be considered severely uncertain. Information-Gap decision theory offers a method to sample a wider range of uncertainty than with traditional methods, and as a result, compare the robustness of various water resource management options under conditions of severe uncertainty. A more robust management option is one that delivers the same level of performance as other options at higher levels of uncertainty. A case study is based on a Water Supply Area that encompasses the county of Cornwall in southwest England containing 17 reservoirs and 19 demand nodes. The performance success of management options are evaluated primarily by measures of water availability including a reservoir risk measure that tests the probability and magnitude that strategic reservoir storage levels fall below the drought management curve under adverse conditions and also a safety margin deficit that tests how quickly reservoir levels can return to optimum operating levels in favourable conditions. Multi-Criteria Decision Analysis (MCDA) is used to test the effectiveness of different management options with different weightings for metrics other than water availability including; capital and operating costs, costs to customers, carbon emissions, environmental impact and social acceptability. Findings show that beyond the uncertainty range explored with the traditional headroom method, preference reversals can occur, i.e. some management options that underperform at lower uncertainties, outperform at higher levels of uncertainty. This study also shows that when 50% or more of the population adopts demand side management, efficiency related measures and innovative options such as rainwater collection can perform equally well or better than some supply side options. The additional use of MCDA shifts the focus away from reservoir expansion options that perform best with respect to water availability, to combined strategies that include innovative demand side management actions of rainwater collection and greywater reuse as well as efficiency measures and additional regional transfers. This research illustrates how an Info-Gap based approach can offer a comprehensive picture of potential supply/demand futures and a rich variety of information to support adaptive management of water systems under severe uncertainty.

  3. Agent-Based Modelling of Agricultural Water Abstraction in Response to Climate, Policy, and Demand Changes: Results from East Anglia, UK

    NASA Astrophysics Data System (ADS)

    Swinscoe, T. H. A.; Knoeri, C.; Fleskens, L.; Barrett, J.

    2014-12-01

    Freshwater is a vital natural resource for multiple needs, such as drinking water for the public, industrial processes, hydropower for energy companies, and irrigation for agriculture. In the UK, crop production is the largest in East Anglia, while at the same time the region is also the driest, with average annual rainfall between 560 and 720 mm (1971 to 2000). Many water catchments of East Anglia are reported as over licensed or over abstracted. Therefore, freshwater available for agricultural irrigation abstraction in this region is becoming both increasingly scarce due to competing demands, and increasingly variable and uncertain due to climate and policy changes. It is vital for water users and policy makers to understand how these factors will affect individual abstractors and water resource management at the system level. We present first results of an Agent-based Model that captures the complexity of this system as individual abstractors interact, learn and adapt to these internal and external changes. The purpose of this model is to simulate what patterns of water resource management emerge on the system level based on local interactions, adaptations and behaviours, and what policies lead to a sustainable water resource management system. The model is based on an irrigation abstractor typology derived from a survey in the study area, to capture individual behavioural intentions under a range of water availability scenarios, in addition to farm attributes, and demographics. Regional climate change scenarios, current and new abstraction licence reforms by the UK regulator, such as water trading and water shares, and estimated demand increases from other sectors were used as additional input data. Findings from the integrated model provide new understanding of the patterns of water resource management likely to emerge at the system level.

  4. Characterizing water use efficiency (WUE) and water deficit responses in apple (Malus x domestica Borkh. and Malus steversii Ledeb.) M. Roem

    USDA-ARS?s Scientific Manuscript database

    Reduced availability of water for agricultural use has been forecast for much of the planet. This is due in part to global warming, which has contributed to numerous cycles of drought worldwide, and due in part to greater urban demand for water in large metropolitan areas. Strategic improvement of...

  5. 7 CFR 14.6 - Criteria for determining the pri- mary purpose of payments with respect to potential exclusion...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conservation includes actions that, for a given level of water supply, reduce the demand for or use of water by... reuse of water, thereby making existing supplies available for other current or future uses; or (iv) Improving land management practices for the purpose of reducing water use, loss, waste, increasing the...

  6. Relative controls of natural and socio-economic drivers on water availability over India: an exploratory modelling analysis

    NASA Astrophysics Data System (ADS)

    Deshmukh, A.; Singh, R.; Kumar, R.

    2017-12-01

    India, a water stressed nation with an estimated per capita water availability of 1500m3/year/person, is projected to surpass China in population to become the most populous country by 2022. This increasing population will further exacerbate the water stress, which will also vary due to climate and land use change. Here, we quantify the relative controls on per capita water availability from climatic, non-climatic and socio-economic factors. We achieve this by using several definitions of per capita water availability and accounting for virtual water trade transfer. Our exploratory analysis employs the recently developed probabilistic Budyko framework modified to account for inter-regional virtual water trade. We find that the Indo-Gangetic plains and Southeastern parts of India emerge as vulnerable regions where a growing population will lead to a drastic reduction in per capita water availability. The proposed framework can serve as a prototype for understanding the relative importance of socio-economic interventions versus water infrastructure or demand reduction investments.

  7. Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales

    USGS Publications Warehouse

    Stephenson, N.L.

    1998-01-01

    Correlative approaches to understanding the climatic controls of vegetation distribution have exhibited at least two important weaknesses: they have been conceptually divorced across spatial scales, and their climatic parameters have not necessarily represented aspects of climate of broad physiological importance to plants. Using examples from the literature and from the Sierra Nevada of California, I argue that two water balance parameters-actual evapotranspiration (AET) and deficit (D)-are biologically meaningful, are well correlated with the distribution of vegetation types, and exhibit these qualities over several orders of magnitude of spatial scale (continental to local). I reach four additional conclusions. (1) Some pairs of climatic parameters presently in use are functionally similar to AET and D; however, AET and D may be easier to interpret biologically. (2) Several well-known climatic parameters are biologically less meaningful or less important than AET and D, and consequently are poorer correlates of the distribution of vegetation types. Of particular interest, AET is a much better correlate of the distributions of coniferous and deciduous forests than minimum temperature. (3) The effects of evaporative demand and water availability on a site's water balance are intrinsically different. For example, the 'dry' experienced by plants on sunward slopes (high evaporative demand) is not comparable to the 'dry' experienced by plants on soils with low water-holding capacities (low water availability), and these differences are reflected in vegetation patterns. (4) Many traditional topographic moisture scalars-those that additively combine measures related to evaporative demand and water availability are not necessarily meaningful for describing site conditions as sensed by plants; the same holds for measured soil moisture. However, using AET and D in place of moisture scalars and measured soil moisture can solve these problems.

  8. Water use demand in the Crans-Montana-Sierre region (Switzerland)

    NASA Astrophysics Data System (ADS)

    Bonriposi, M.; Reynard, E.

    2012-04-01

    Crans-Montana-Sierre is an Alpine touristic region located in the driest area of Switzerland (Rhone River Valley, Canton of Valais), with both winter (ski) and summer (e.g. golf) tourist activities. Climate change as well as societal and economic development will in future significantly modify the supply and consumption of water and, consequently, may fuel conflicts of interest. Within the framework of the MontanAqua project (www.montanaqua.ch), we are researching more sustainable water management options based on the co-ordination and adaptation of water demand to water availability under changing biophysical and socioeconomic conditions. This work intends to quantify current water uses in the area and consider future scenarios (around 2050). We have focused upon the temporal and spatial characteristics of resource demand, in order to estimate the spatial footprint of water use (drinking water, hydropower production, irrigation and artificial snowmaking), in terms of system, infrastructure, and organisation of supply. We have then quantified these as precisely as possible (at the monthly temporal scale and at the municipality spatial scale). When the quantity of water was not measurable for practical reasons or for lack of data, as for the case for irrigation or snowmaking, an alternative approach was applied. Instead of quantifying how much water was used, the stress was put on the water needs for irrigating agricultural land or on the optimal meteorological conditions necessary to produce artificial snow. A huge summer peak and a smaller winter peak characterize the current regional water consumption estimation. The summer peak is mainly caused by irrigation and secondly by drinking water demand. The winter peak is essentially due to drinking water and snowmaking. Other consumption peaks exist at the municipality scale but they cannot be observed at the regional scale. The results show a major variation in water demand between the 11 concerned municipalities and between the various uses. All this confirms the necessity of modelling the future demand of water, which would allow prediction of possible future use conflicts. In a second phase of the project, the collected data will be introduced into WEAP (the Water Evaluation And Planning system) model, in order to estimate the future water demand of the Crans-Montana-Sierre region. This hydrologic model is distinct from most similar models because of its ability to integrate climate and socio-economic scenarios (Hansen, 1994). Reference Hansen, E. 1994. WEAP - A system for tackling water resource problems. In Water Management Europe 1993/94: An Annual Review of the European Water and Wastewater Industry. Stockholm Environment Institute: Stockholm.

  9. Assessing surface water availability considering human water use and projected climate variability

    NASA Astrophysics Data System (ADS)

    Ashraf, Batool; AghaKouchak, Amir; Mousavi-Baygi, Mohammd; Moftakhari, Hamed; Anjileli, Hassan

    2017-04-01

    Climate variability along with anthropogenic activities alter the hydrological cycle and local water availability. The overarching goal of this presentation is to demonstrate the compounding interactions between human water use/withdrawals and climate change and variability. We focus on Karkheh River basin and Urmia basin, in western Iran, that have high level of human activity and water use, and suffer from low water productivity. The future of these basins and their growth relies on sustainable water resources and hence, requires a holistic, basin-wide management to cope with water scarcity challenges. In this study, we investigate changes in the hydrology of the basin including human-induced alterations of the system, during the past three decades. Then, we investigate the individual and combined effects of climate variability and human water withdrawals on surface water storage in the 21st century. We use bias-corrected historical simulations and future projections from ensemble mean of eleven General Circulation Models (GCMs) under two climate change scenarios RCP4.5 and RCP8.5. The results show that, hydrology of the studied basins are significantly dominated by human activities over the baseline period (1976 - 2005). Results show that the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades have put significant stress on water resources. We evaluate a number of future water demand scenarios and their interactions with future climate projections. Our results show that by the end of the 21st century, the compounding effects of increased irrigation water demand and precipitation variability may lead to severe local water scarcity in these basins. Our study highlights the necessity for understanding and considering the compounding effects of human water use and future climate projections. Such studies would be useful for improving water management and developing adaption plans in water scarce regions.

  10. China’s rising hydropower demand challenges water sector

    PubMed Central

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P. W.; Guan, Dabo

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 109 m3 (Gm3), or 22% of China’s total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm3 yr−1 or 3.6 m3 of water to produce a GJ (109 J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability. PMID:26158871

  11. China's rising hydropower demand challenges water sector.

    PubMed

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P W; Guan, Dabo

    2015-07-09

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 10(9) m(3) (Gm(3)), or 22% of China's total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm(3) yr(-1) or 3.6 m(3) of water to produce a GJ (10(9) J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability.

  12. China's water, energy and food nexus - an assessment of the sustainability of the "3 Red Lines" water policies in the Haihe Basin

    NASA Astrophysics Data System (ADS)

    Qin, Ying; Allwood, Julian; Richards, Keith

    2016-04-01

    Population growth and economic development continue to put increasing pressures on China's limited resources which are further exacerbated by the country's substantial regional variations in both natural and socioeconomic conditions. China's pursuit of water, energy and food security faces trade-offs and tensions and the Haihe Basin exemplifies these issues. The river basin contains the capital region of Beijing, Hebei and Tianjin which are already experiencing stress and shortfalls of water resources as a result of intense competition for limited resources. To tackle water scarcity and promote more sustainable use of water, the government has implemented national and regional "3 Red Lines" water policies but they are not integrated with energy and food policies. The aim of this analysis is to assess the sustainability of the regional "3 Red Lines" water targets and their compatibility with energy and food security. This study uses a spatially-explicit, integrated resource model which integrates a hydrological model (GWAVA) with energy and food sub-models in order to analyse current and future resource availability and demand. To assess resource futures, different demand and supply scenarios were analysed up to 2030. Results are visualised as maps and connected Sankey diagrams and outputs are compared with the "3 Red Lines" water targets as well as against indicators related to land and energy policies. The results show that under a business-as-usual scenario, total water demands for Beijing, Tianjin and Hebei are unlikely to comply with future water targets. Reducing water use in the industry and agriculture sectors will be critical in this water-scarce region and whilst efficiency improvements are important, technology choices appear to make the most significant impact e.g. irrigation method for agriculture and cooling technology for power generation. However, both these water saving-measures have trade-offs in energy consumption. Proposed water saving plans of changing the cropping system to grow less wheat could also significantly reduce the demand for water but has trade-offs in maintaining national food security. Given the region's limited water availability, growing demands from competing sectors as well as groundwater use restrictions, future supply will become more reliant on other sources i.e. water transfer, desalination and recycled water which are all power intensive. The approach used in this study enables the identification of critical trade-offs between resource security measures and policies. This would allow decision makers to visualise and better understand the inter-dependencies between resources and not be blindsided by unintended consequences in the pursuit of energy, water and food security.

  13. Implications of various land use change scenarios on global water scarcity over the 21st century

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hejazi, M. I.; Vernon, C. R.; Li, X.; Le Page, Y.; Calvin, K. V.

    2017-12-01

    While the effects of land use and land cover change (LULCC) on hydrological processes (e.g., runoff, peak flow and discharge) and water availability have been extensively researched, the impacts of LULCC on water scarcity has been rarely investigated. Water scarcity, usually defined as the ratio of water demand to available renewable water supply. The involved water demand is an important human-dimension factor, which is affected by both socio-economic conditions (e.g., population, income) as well as LULCC (e.g., the amount of land we dedicate for food, feed, and fuel crops). Recent studies have assessed the combined effects of climate change and human interventions (e.g., dams, water withdrawals and LULCC) on water scarcity, but none to date has focused on the implications of different pathways of LULCC alone on water scarcity. We establish a set of LULCC scenarios under changing climate and socioeconomic pathways using an integrated assessment model - Global Change Assessment Model (GCAM), which integrates natural systems (e.g., water supply, ecosystems, climate) and human systems (e.g., water demand, land use, economy, food, energy, population). The LULCC scenarios encompass varying degrees of protected areas, different magnitudes of crop/bioenergy production and subsidies, and whether to penalize potential land use emissions from bioenergy production (e.g., loss of wood carbon stock from land conversion). Then we investigate how water scarcity responds to LULCC and how the distribution of global population under severe water stress varies in the 21st century. Preliminary results indicate that the LULCC-induced changes in water scarcity are overall small at the global scale (<2%), but significant (5%-10%) in areas where LULCC is substantial (e.g., deforestation in South America and equatorial Africa). This study highlights the role of land use policies in determining the fate of water stress and population being affected. Findings from this research could be used to inform strategies focused on alleviating water stress around the world.

  14. Rainwater harvesting systems for low demanding applications.

    PubMed

    Sanches Fernandes, Luís F; Terêncio, Daniela P S; Pacheco, Fernando A L

    2015-10-01

    A rainwater harvesting system (RHS) was designed for a waste treatment facility located near the town of Mirandela (northern Portugal), to be used in the washing of vehicles and other equipment, the cleaning of outside concrete or asphalt floors, and the watering of green areas. Water tank volumes representing 100% efficiency (Vr) were calculated by the Ripple method with different results depending on two consumption scenarios adopted for irrigation. The RHS design was based on a precipitation record spanning a rather long period (3 decades). The calculated storage capacities fulfilled the water demand even when prolonged droughts occurred during that timeframe. However, because the drought events have been rather scarce the Vr values were considered oversized and replaced by optimal volumes. Notwithstanding the new volumes were solely half of the original Vr values, the projected RHS efficiency remained very high (around 90%) while the probability of system failure (efficiency<100%) stayed very low (in the order of 5%). In both scenarios, the economic savings related to the optimization of Vr were noteworthy, while the investment's return periods decreased substantially from the original to the optimized solutions. A high efficiency with a low storage capacity is typical of low demanding applications of rainwater harvesting, where water availability (Vw) largely exceeds water demand (Cw), that is to say where demand fractions (Cw/Vw) are very low. Based on the results of a literature review covering an ample geographic distribution and describing a very large number of demand fraction scenarios, a Cw/Vw=0.8 was defined as the threshold to generally distinguish the low from the high demanding RHS applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Future Water Management in the South Platte River Basin: Impacts of Hydraulic Fracturing, Population, Agriculture, and Climate Change in a Semi-Arid Region.

    NASA Astrophysics Data System (ADS)

    Walker, E. L.; Hogue, T. S.; Anderson, A. M.; Read, L.

    2015-12-01

    In semi-arid basins across the world, the gap between water supply and demand is growing due to climate change, population growth, and shifts in agriculture and unconventional energy development. Water conservation efforts among residential and industrial water users, recycling and reuse techniques and innovative regulatory frameworks for water management strive to mitigate this gap, however, the extent of these strategies are often difficult to quantify and not included in modeling water allocations. Decision support systems (DSS) are purposeful for supporting water managers in making informed decisions when competing demands create the need to optimize water allocation between sectors. One region of particular interest is the semi-arid region of the South Platte River basin in northeastern Colorado, where anthropogenic and climatic effects are expected to increase the gap between water supply and demand in the near future. Specifically, water use in the South Platte is impacted by several high-intensity activities, including unconventional energy development, i.e. hydraulic fracturing, and large withdrawals for agriculture; these demands are in addition to a projected population increase of 100% by 2050. The current work describes the development of a DSS for the South Platte River basin, using the Water Evaluation and Planning system software (WEAP) to explore scenarios of how variation in future water use in the energy, agriculture, and municipal sectors will impact water allocation decisions. Detailed data collected on oil and gas water use in the Niobrara shale play will be utilized to predict future sector use. We also employ downscaled climate projections for the region to quantify the potential range of water availability in the basin under each scenario, and observe whether or not, and to what extent, climate may impact management decisions at the basin level.

  16. Water stress, water salience, and the implications for water supply planning

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Islam, S.

    2017-12-01

    Effectively addressing the water supply challenges posed by urbanization and climate change requires a holistic understanding of the water supply system, including the impact of human behavior on system dynamics. Decision makers have limits to available information and information processing capacity, and their attention is not equally distributed among risks. The salience of a given risk is higher when increased attention is directed to it and though perceived risk may increase, real risk does not change. Relevant to water supply planning is how and when water stress results in an increased salience of water risks. This work takes a socio-hydrological approach to develop a water supply planning model that includes water consumption as an endogenous variable, in the context of Las Vegas, NV. To understand the benefits and limitations of this approach, this model is compared to a traditional planning model that uses water consumption scenarios. Both models are applied to project system reliability and water stress under four streamflow and demographic scenarios, and to assess supply side responses to changing conditions. The endogenous demand model enables the identification of feedback between both supply and demand management decisions on future water consumption and system performance. This model, while specific to the Las Vegas case, demonstrates a prototypical modeling framework capable of examining water-supply demand interactions by incorporating water stress driven conservation.

  17. An annual quasidifference approach to water price elasticity

    NASA Astrophysics Data System (ADS)

    Bell, David R.; Griffin, Ronald C.

    2008-08-01

    The preferred price specification for retail water demand estimation has not been fully settled by prior literature. Empirical consistency of price indices is necessary to enable testing of competing specifications. Available methods of unbiasing the price index are summarized here. Using original rate information from several hundred Texas utilities, new indices of marginal and average price change are constructed. Marginal water price change is shown to explain consumption variation better than average water price change, based on standard information criteria. Annual change in quantity consumed per month is estimated with differences in climate variables and the new quasidifference marginal price index. As expected, the annual price elasticity of demand is found to vary with daily high and low temperatures and the frequency of precipitation.

  18. Use of reclaimed water for power plant cooling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J. A.; Environmental Science Division

    2007-10-16

    Freshwater demands are steadily increasing throughout the United States. As its population increases, more water is needed for domestic use (drinking, cooking, cleaning, etc.) and to supply power and food. In arid parts of the country, existing freshwater supplies are not able to meet the increasing demands for water. New water users are often forced to look to alternative sources of water to meet their needs. Over the past few years, utilities in many locations, including parts of the country not traditionally water-poor (e.g., Georgia, Maryland, Massachusetts, New York, and North Carolina) have needed to reevaluate the availability of watermore » to meet their cooling needs. This trend will only become more extreme with time. Other trends are likely to increase pressure on freshwater supplies, too. For example, as populations increase, they will require more food. This in turn will likely increase demands for water by the agricultural sector. Another example is the recent increased interest in producing biofuels. Additional water will be required to grow more crops to serve as the raw materials for biofuels and to process the raw materials into biofuels. This report provides information about an opportunity to reuse an abundant water source -- treated municipal wastewater, also known as 'reclaimed water' -- for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Innovations for Existing Plants research program (Feeley 2005). This program initiated an energy-water research effort in 2003 that includes the availability and use of 'nontraditional sources' of water for use at power plants. This report represents a unique reference for information on the use of reclaimed water for power plant cooling. In particular, the database of reclaimed water user facilities described in Chapter 2 is the first comprehensive national effort to identify and catalog those plants that are using reclaimed water for cooling.« less

  19. Multi-resolution integrated modeling for basin-scale water resources management and policy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Hoshin V.; Brookshire, David S.; Springer, E. P.

    Approximately one-third of the land surface of the Earth is considered to be arid or semi-arid with an annual average of less than 12-14 inches of rainfall. The availability of water in such regions is of course, particularly sensitive to climate variability while the demand for water is experiencing explosive population growth. The competition for available water is exerting considerable pressure on the water resources management. Policy and decision makers in the southwestern U.S. increasingly have to cope with over-stressed rivers and aquifers as population and water demands grow. Other factors such as endangered species and Native American water rightsmore » further complicate the management problems. Further, as groundwater tables are drawn down due to pumping in excess of natural recharge, considerable (potentially irreversible) environmental impacts begin to be felt as, for example, rivers run dry for significant portions of the year, riparian habitats disappear (with consequent effects on the bio-diversity of the region), aquifers compact resulting in large scale subsidence, and water quality begins to suffer. The current drought (1999-2002) in the southwestern U.S. is raising new concerns about how to sustain the combination of agricultural, urban and in-stream uses of water that underlie the socio-economic and ecological structure in the region. The water stressed nature of arid and semi-arid environments means that competing water uses of various kinds vie for access to a highly limited resource. If basin-scale water sustainability is to be achieved, managers must somehow achieve a balance between supply and demand throughout the basin, not just for the surface water or stream. The need to move water around a basin such as the Rio Grande or Colorado River to achieve this balance has created the stimulus for water transfers and water markets, and for accurate hydrologic information to sustain such institutions [Matthews et al. 2002; Brookshire et al 2003; Krause, Chermak Brookshire, 2003].« less

  20. Conceptualizing the dynamics of a drought affected agricultural community

    NASA Astrophysics Data System (ADS)

    Kuil, Linda; Carr, Gemma; Viglione, Alberto; Bloeschl, Guenter

    2015-04-01

    Climate and especially water availability and variability play an important role in the development of our societies. This can be seen through the vast investments that are made in reaching water security and the economic impact regions experience when the rains fail. However, the limit of available fresh water is increasingly felt as our population increases and the demand for water continues to rise. But how do we as society respond? Are periods of drought making us more resilient? The answer to this question is sought through the development of a stylized model that is built within the spirit of the Easter Island model by Brander and Taylor and aimed at capturing the essence of the dynamics of water supply and demand. By explicitly incorporating feedbacks, but keeping the framework simple, the model seeks to understand qualitative behavior of our socio-hydrological system as opposed to predicting exact pathways. The model shows that carrying capacity dynamics are a determining factor for continued growth. Future work will explore the underlying relationships further, among others, through examination of case studies.

  1. Water Availability--The Connection Between Water Use and Quality

    USGS Publications Warehouse

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  2. Impact of climate change on water resources status: A case study for Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Koutroulis, Aristeidis G.; Tsanis, Ioannis K.; Daliakopoulos, Ioannis N.; Jacob, Daniela

    2013-02-01

    SummaryAn assessment of the impact of global climate change on the water resources status of the island of Crete, for a range of 24 different scenarios of projected hydro-climatological regime is presented. Three "state of the art" Global Climate Models (GCMs) and an ensemble of Regional Climate Models (RCMs) under emission scenarios B1, A2 and A1B provide future precipitation (P) and temperature (T) estimates that are bias adjusted against observations. The ensemble of RCMs for the A1B scenario project a higher P reduction compared to GCMs projections under A2 and B1 scenarios. Among GCMs model results, the ECHAM model projects a higher P reduction compared to IPSL and CNCM. Water availability for the whole island at basin scale until 2100 is estimated using the SAC-SMA rainfall-runoff model And a set of demand and infrastructure scenarios are adopted to simulate potential water use. While predicted reduction of water availability under the B1 emission scenario can be handled with water demand stabilized at present values and full implementation of planned infrastructure, other scenarios require additional measures and a robust signal of water insufficiency is projected. Despite inherent uncertainties, the quantitative impact of the projected changes on water availability indicates that climate change plays an important role to water use and management in controlling future water status in a Mediterranean island like Crete. The results of the study reinforce the necessity to improve and update local water management planning and adaptation strategies in order to attain future water security.

  3. Analysis of water supply and demand in high mountain cities of Bolivia under growing population and changing climate

    NASA Astrophysics Data System (ADS)

    Kinouchi, T.; Mendoza, J.; Asaoka, Y.; Fuchs, P.

    2017-12-01

    Water resources in La Paz and El Alto, high mountain capital cities of Bolivia, strongly depend on the surface and subsurface runoff from partially glacierized catchments located in the Cordillera Real, Andes. Due to growing population and changing climate, the balance between water supply from the source catchments and demand for drinking, agriculture, industry and hydropower has become precarious in recent years as evidenced by a serious drought during the 2015-2016 El Nino event. To predict the long-term availability of water resources under changing climate, we developed a semi-distributed glacio-hydrological model that considers various runoff pathways from partially glacierized high-altitude catchments. Two GCM projections (MRI-AGCM and INGV-ECHAM4) were used for the prediction with bias corrected by reanalysis data (ERA-INTERIM) and downscaled to target areas using data monitored at several weather stations. The model was applied to three catchments from which current water resources are supplied and eight additional catchments that will be potentially effective in compensating reduced runoff from the current water resource areas. For predicting the future water demand, a cohort-component method was used for the projection of size and composition of population change, considering natural and social change (birth, death and transfer). As a result, total population is expected to increase from 1.6 million in 2012 to 2.0 million in 2036. The water demand was predicted for given unit water consumption, non-revenue water rate (NWR), and sectorial percentage of water consumption for domestic, industrial and commercial purposes. The results of hydrological simulations and the analysis of water demand indicated that water supply and demand are barely balanced in recent years, while the total runoff from current water resource areas will continue to decrease and unprecedented water shortage is likely to occur since around 2020 toward the middle of 21st century even if NWR is improved. We showed that the runoff from a partially-glacierized catchment located in the vicinity of the current water resource catchments can greatly compensate the projected shortage in water supply. Therefore, consensus building on diverting water from the new catchment will be critical for sustainable development of the region.

  4. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    NASA Astrophysics Data System (ADS)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  5. EnviroAtlas - Industrial Water Demand by 12-Digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes industrial water demand attributes which provide insight into the amount of water currently used for manufacturing and production of commodities in the contiguous United States. The values are based on 2005 water demand and Dun and Bradstreet's 2009/2010 source data, and have been summarized by watershed or 12-digit hydrologic unit code (HUC). For the purposes of this metric, industrial water use includes chemical, food, paper, wood, and metal production. The industrial water is for self-supplied only such as by private wells or reservoirs. Sources include either surface water or groundwater. This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. Developing resilience to England's future droughts: time for cap and trade?

    PubMed

    Mitchell, Gordon; McDonald, Adrian

    2015-02-01

    Much of England is seriously water stressed and future droughts will present major challenges to the water industry if socially and economically damaging supply restrictions are to be avoided. Demand management is seen as a key mechanism for alleviating water stress, yet there are no truly effective incentives to encourage widespread adoption of the behavioural and technological demand management practices available. Water pricing could promote conservation, but on its own it is an inefficient tool for dealing with short term restriction in water supply. Raising prices over the short term in response to a drought is likely to be ineffectual in lowering demand sufficiently; conversely, maintaining high prices over the long term implies costs to the consumer which are needlessly high most of the time. We propose a system for developing resilience to drought in highly water stressed areas, based on a cap and trade (C&T) model. The system would represent a significant innovation in England's water market. However, international experience shows that C&T is successful in other sectors, and need not be overly complex. Here, we open the debate on how a C&T system might work in England. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Identifying Hotspots in Land and Water Resource Uses on the Way towards Achieving the Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Palazzo, A.; Havlik, P.; Van Dijk, M.; Leclere, D.

    2017-12-01

    Agriculture plays a key role in achieving adequate food, water, and energy security (as summarized in the Sustainable Development Goals SDGs) as populations grow and incomes rise. Yet, agriculture is confronted with an enormous challenge to produce more using less. Land and water resources are projected to be strongly affected by climate change demand and agriculture faces growing competition in the demand for these resources. To formulate policies that contribute to achieving the SDGs, policy makers need assessments that can anticipate and navigate the trade-offs within the water/land/energy domain. Assessments that identify locations or hotspots where trade-offs between the multiple, competing users of resources may exist must consider both the local scale impacts of resource use as well as regional scale socioeconomic trends, policies, and international markets that further contribute to or mitigate the impacts of resource trade-offs. In this study, we quantify impacts of increased pressure on the land system to provide agricultural and bioenergy products under increasingly scarce water resources using a global economic and land use model, GLOBIOM. We model the supply and demand of agricultural products at a high spatial resolution in an integrated approach that considers the impacts of global change (socioeconomic and climatic) on the biophysical availability and the growing competition of land and water. We also developed a biodiversity module that relates changes in land uses to changes in local species richness and global species extinction risk. We find that water available for agriculture and freshwater ecosystems decreases due to climate change and growing demand from other sectors (domestic, energy and industry) (Fig 1). Climate change impacts will limit areas suitable for irrigation and may lead to an expansion of rainfed areas in biodiverse areas. Impacts on food security from climate change are significant in some regions (SSA and SA) and policies that protect environmental stream flows compound that effect (Fig 2).

  8. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.

    2015-05-01

    Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.

  9. Assessing hydrological drought risk for the irrigation sector in future climate scenarios: lessons learned from the Apulia case study (Italy)

    NASA Astrophysics Data System (ADS)

    Critto, Andrea; Torresan, Silvia; Ronco, Paolo; Zennaro, Federica; Santini, Monia; Trabucco, Antonio; Marcomini, Antonio

    2016-04-01

    Climate change is already affecting the frequency of drought events which may threaten the current stocks of water resources and thus the availability of freshwater for the irrigation. The achievement of a sustainable equilibrium between the availability of water resources and the irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. In this sense, the improvement (of existing) and the development of (new) appropriate risk assessment methods and tools to evaluate the impact of drought events on irrigated crops is fundamental in order to assure that the agricultural yields are appropriate to meet the current and future food and market demand. This study evaluates the risk of hydrological drought on the irrigated agronomic compartment of Apulia, a semi-arid region in Southern Italy. We applied a stepwise Regional Risk Assessment (RRA) procedure, based on the consecutive analysis of hazards, exposure, vulnerability and risks, integrating the qualitative and quantitative available information. Future climate projections for the timeframes 2021-2050 and 2041-2070 were provided by COSMO-CLM under the radiative forcing RCP4.5 and RCP8.5. The run-off feeding the water stocks of the most important irrigation reservoirs in Apulia was then modeled with Arc-SWAT. Hence, the hazard analysis was carried out in order to estimate the degree of fulfillment of actual irrigation demand satisfied by water supply of different reservoirs in future scenarios. Vulnerability of exposed irrigated crops was evaluated depending on three factors accounting for crop yield variation vs water stress, water losses along the irrigation network, diversification of water supply. Resulting risk and vulnerability maps allowed: the identification of Reclamation Consortia at higher risk of not fulfilling their future irrigation demand (e.g. Capitanata Reclamation Consortia in RCP8.5 2041-2070 scenario); the ranking of most affected crops (e.g. fruit trees and vineyards); and finally, the characterization of vulnerability pattern of irrigation systems. Major achievements included the definition of a portfolio of science-driven adaptation strategies to reduce the risk pattern at both agronomic level (preferring crops with low vulnerability score, as olive groves) and at structural level (differentiating the water stocks and supplies and reducing losses and inefficiencies).

  10. Simulation and analysis of soil-water conditions in the Great Plains and adjacent areas, central United States, 1951-80

    USGS Publications Warehouse

    Dugan, Jack T.; Zelt, Ronald B.

    2000-01-01

    Ground-water recharge and consumptive-irrigation requirements in the Great Plains and adjacent areas largely depend upon an environment extrinsic to the ground-water system. This extrinsic environment, which includes climate, soils, and vegetation, determines the water demands of evapotranspiration, the availability of soil water to meet these demands, and the quantity of soil water remaining for potential ground-water recharge after these demands are met. The geographic extent of the Great Plains contributes to large regional differences among all elements composing the extrinsic environment, particularly the climatic factors. A soil-water simulation program, SWASP, which synthesizes selected climatic, soil, and vegetation factors, was used to simulate the regional soil-water conditions during 1951-80. The output from SWASP consists of several soil-water characteristics, including surface runoff, infiltration, consumptive water requirements, actual evapotranspiration, potential recharge or deep percolation under various conditions, consumptive irrigation requirements, and net fluxes from the ground-water system under irrigated conditions. Simulation results indicate that regional patterns of potential recharge, consumptive irrigation requirements, and net fluxes from the ground-water system under irrigated conditions are largely determined by evapotranspiration and precipitation. The local effects of soils and vegetation on potential recharge cause potential recharge to vary by more than 50 percent in some areas having similar climatic conditions.

  11. Recreational demand for Tuskegee National Forest, a non-market valuation

    Treesearch

    Ellene Kebede; Mudiayi Ngandu; John Schelhas; Doris Batalia

    2006-01-01

    The demand for outdoor recreational activities has been increasing in the United States and is a significant part of the lifestyle in the South over the last few years. Forest recreational opportunities are available on public owned forests. and some provide amenities such as. drinking water, electricity, flush toilets. and sewer at each campsite. Some charge a form of...

  12. Increased performance in the short-term water demand forecasting through the use of a parallel adaptive weighting strategy

    NASA Astrophysics Data System (ADS)

    Sardinha-Lourenço, A.; Andrade-Campos, A.; Antunes, A.; Oliveira, M. S.

    2018-03-01

    Recent research on water demand short-term forecasting has shown that models using univariate time series based on historical data are useful and can be combined with other prediction methods to reduce errors. The behavior of water demands in drinking water distribution networks focuses on their repetitive nature and, under meteorological conditions and similar consumers, allows the development of a heuristic forecast model that, in turn, combined with other autoregressive models, can provide reliable forecasts. In this study, a parallel adaptive weighting strategy of water consumption forecast for the next 24-48 h, using univariate time series of potable water consumption, is proposed. Two Portuguese potable water distribution networks are used as case studies where the only input data are the consumption of water and the national calendar. For the development of the strategy, the Autoregressive Integrated Moving Average (ARIMA) method and a short-term forecast heuristic algorithm are used. Simulations with the model showed that, when using a parallel adaptive weighting strategy, the prediction error can be reduced by 15.96% and the average error by 9.20%. This reduction is important in the control and management of water supply systems. The proposed methodology can be extended to other forecast methods, especially when it comes to the availability of multiple forecast models.

  13. Sensitivity of future U.S. water shortages to socioeconomic and climate drivers: A case study in Georgia using an integrated human-earth system modeling framework

    DOE PAGES

    Scott, Michael J.; Daly, Don S.; Hejazi, Mohamad I.; ...

    2016-02-06

    Here, one of the most important interactions between humans and climate is in the demand and supply of water. Humans withdraw, use, and consume water and return waste water to the environment for a variety of socioeconomic purposes, including domestic, commercial, and industrial use, production of energy resources and cooling thermal-electric power plants, and growing food, fiber, and chemical feed stocks for human consumption. Uncertainties in the future human demand for water interact with future impacts of climatic change on water supplies to impinge on water management decisions at the international, national, regional, and local level, but until recently toolsmore » were not available to assess the uncertainties surrounding these decisions. This paper demonstrates the use of a multi-model framework in a structured sensitivity analysis to project and quantify the sensitivity of future deficits in surface water in the context of climate and socioeconomic change for all U.S. states and sub-basins. The framework treats all sources of water demand and supply consistently from the world to local level. The paper illustrates the capabilities of the framework with sample results for a river sub-basin in the U.S. state of Georgia.« less

  14. Growing ethanol sector drives corn supply chain shift for the last decade

    NASA Astrophysics Data System (ADS)

    Kim, T.; Schmitt, J.; Brauman, K. A.; Smith, T. M.; Suh, K.

    2017-12-01

    The US is the largest producer in the world, 89% of corn production uses in domestic demands in 2012. Carbon emission and irrigated water usage in the corn farming stage are hot-spot in the meat production sectors, comprise 37% of all US corn demand. The annual capacity of the ethanol sector increases from 6.5 billion gallons to 15.3 billion gallons for the last decade. The growth of corn demand in ethanol sector makes corn supply chain shift. Most of the ethanol plants located in the Mid-west where is the top 12 corn producing states. Therefore animal feeds take more supply from the other states. The purpose of this study is to estimate environmental impacts and water scarcity associated embedded corn by the temporal and spatial corn supply chain model based on a cost minimization. We use publicly available county-level data on corn production, feed demands, aggregative carbon emission and irrigated water usage in farming state, and a water depletion index as a metric for determining water scarcity. The water stressed counties produce 23.3% of US total corn production in 2012, and the irrigated corn is 14.2%. We simulated the corn supply chain using linear programming and developed the web-based visualization tools called FoodS3 (Food Systems Supply-chain Sustainability tool, http://foods3.org).

  15. Investigating deficit irrigation as a climate-smart farming option

    USDA-ARS?s Scientific Manuscript database

    Global water supplies available for irrigation are declining while food demand continues to rise. Deficit irrigation offers a promising strategy to reduce water use with minimal impacts to yields, but is likely to have a range of impacts on soil nutrient cycling processes and climate change mitigati...

  16. National water management in the Republic of South Africa — Towards a consultative partnership with diverse users in a semi-arid country

    NASA Astrophysics Data System (ADS)

    Conley, Alan H.; Midgley, Desmond C.

    1988-07-01

    A resourceful holistic water management strategy has been developed for ensuring equitable provision of adequate quantities of water of satisfactory quality at acceptable risk and affordable cost to a wide international range of competing user groups subject to adverse physical and hydrological factors and under rapidly changing social conditions. Scarce resource allocation strategies, based on scientific studies and supported by modern data processing facilities, focus primarily on supply, demand and quality. Supply management implies creation of the best combination of affordable elements of infrastructure for bulk water supplies from available runoff, groundwater, re-use, imports and unconventional sources, sized to meet determinable requirements with appropriate degrees of assurance, coupled with continuous optimization of system operation. Demand management seeks optimum allocation of available supplies to towns, power generation, industry, mining, agriculture, forestry, recreation and ecology, according to priority criteria determined from scientific, economic and socioeconomic studies. Quality management strategies relate to the control of salination, eutrophication and pollution from both diffuse and point sources. As the combined demands of complex First and Third World societies and economies on the available resources rise, increasing attention has to be paid to finding practical compromises to facilitate handling of conflict between legitimate users having widely divergent interests, aspirations and levels of sophistication. For optimum joint utilization, the central regulating authority is striving to forge a consultative partnership within which to promote, among the widest possible spectrum of users, enlightened understanding of the opportunities and limitations in handling complex international, social, political, legal, economic and financial issues associated with water development. These cannot readily be resolved by the methods of traditional hydrological sciences alone.

  17. Distribution of Quercus agrifolia mycorrhizae deep within weathered bedrock: a potential mechanism for transport of stored water

    Treesearch

    M. Bornyasz; R. Graham; M. Allen

    2002-01-01

    In southwestern California, Quercus agrifolia distribution closely matches regions of granitic regolith. High annual evapotranspiration demand and inherent shallow soil conditions lead to a dependence on a deep rooting system and an ability to access water from deep within the regolith. Most of the plant available water in weathered granitic rock is...

  18. Compounded effects of heat waves and droughts over the Western Electricity Grid: spatio-temporal scales of impacts and predictability toward mitigation and adaptation.

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Kintner-Meyer, M.; Skaggs, R.; Xie, Y.; Wu, D.; Nguyen, T. B.; Fu, T.; Zhou, T.

    2016-12-01

    Heat waves and droughts are projected to be more frequent and intense. We have seen in the past the effects of each of those extreme climate events on electricity demand and constrained electricity generation, challenging power system operations. Our aim here is to understand the compounding effects under historical conditions. We present a benchmark of Western US grid performance under 55 years of historical climate, and including droughts, using 2010-level of water demand and water management infrastructure, and 2010-level of electricity grid infrastructure and operations. We leverage CMIP5 historical hydrology simulations and force a large scale river routing- reservoir model with 2010-level sectoral water demands. The regulated flow at each water-dependent generating plants is processed to adjust water-dependent electricity generation parameterization in a production cost model, that represents 2010-level power system operations with hourly energy demand of 2010. The resulting benchmark includes a risk distribution of several grid performance metrics (unserved energy, production cost, carbon emission) as a function of inter-annual variability in regional water availability and predictability using large scale climate oscillations. In the second part of the presentation, we describe an approach to map historical heat waves onto this benchmark grid performance using a building energy demand model. The impact of the heat waves, combined with the impact of droughts, is explored at multiple scales to understand the compounding effects. Vulnerabilities of the power generation and transmission systems are highlighted to guide future adaptation.

  19. Sectoral Vulnerabilities to Changing Water Resources: Current and Future Tradeoffs between Supply and Demand in the Conterminous U.S

    NASA Astrophysics Data System (ADS)

    Meldrum, J.; Averyt, K.; Caldwell, P.; Sun, G.; Huber-lee, A. T.; McNulty, S.

    2012-12-01

    Assessing the sustainability of human activities depends, in part, on the availability of water supplies to meet the demands of those activities. Thermoelectric cooling, agriculture, and municipal uses all compete for water supplies, but each sector differs in its characteristic ratio of water consumption versus withdrawals. This creates different implications for contributing to water supply stress and, conversely, vulnerabilities within each sector to changing water supplies. In this study, we use two measures of water stress, relating to water withdrawals and to water consumption, and calculate the role of each of these three sectors in contributing to the two different measures. We estimate water stress with an enhanced version of the Water Supply Stress Index (WaSSI), calculating the ratio of water demand to water supply at the 8-digit Hydrologic Unit Code (HUC) scale (Sun et al. 2008, 2011; Caldwell et al. 2011). Current water supplies are based on an integrated water balance and flow routing model of the conterminous United States, which accounts for surface water supply, groundwater supply, and major return flows. Future supplies are based on simulated regional changes in streamflow in 2050 from an ensemble of 12 climate models (Milly et al. 2005). We estimate water demands separately for agriculture, municipal uses, and thermoelectric cooling, with the first two based on Kenny et al. (2005) and the last on the approach of Averyt et al. (2011). We find substantial regional variation not only in the overall WaSSI for withdrawals and consumption but also in contribution of the three water use sectors to that total. Results suggest that the relative vulnerabilities of different sectors of human activity to water supply stress vary spatially and that policies for alleviating that stress must consider the specific, regional context of the tradeoffs between competing water demands. Ref's: Averyt, K., Fisher, J., Huber-Lee, A., Lewis, A., Macknick, J., Madden, N., Rogers, J., and Tellinghuisen, S. 2011. Freshwater use by US power plants: electricity's thirst for a precious resource. A report of the Energy and Water in a Warming World initiative, Cambridge, MA: Union of Concerned Scientists, 52 pp. Caldwell, P., Sun, G., McNulty, S., Cohen, E., and Moore Myers, J. 2011. Modeling Impacts of Environmental Change on Ecosystem Services across the Conterminous United States, in: Proceedings of the Fourth Interagency Conference on Research in the Watersheds, Fairbanks, AK, 26-30 Sept 2011, 63-69. Kenny, J., Barber, N., Hutson, S., Linsey, K., Lovelace, J., and Maupin, M. 2009. Estimated use of water in the United States in 2005. US Geological Survey Circular 1344, 52 pp. Milly, P. C. D., Dunne, K. A., and Vecchia, A. V. 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438(7066):347-350. Sun, G., McNulty, S., Moore Myers, J., and Cohen, E. 2008. Impacts of multiple stresses on water demand and supply across the Southeastern United States. Journal of American Water Resources Association 44(6):1441-1457. Sun, G., Caldwell, P., Noormets, A., Cohen, E., McNulty, S., Treasure, E., Domec, J., Mu, Q., Xiao, J., John, R., and Chen, J. 2011. Upscaling key ecosystem functions across the Conterminous United States by a water-centric ecosystem model, J. Geophys. Res., 116.

  20. Soil-Water Balance (SWB) model estimates of soil-moisture variability and groundwater recharge in the South Platte watershed, Colorado

    NASA Astrophysics Data System (ADS)

    Anderson, A. M.; Walker, E. L.; Hogue, T. S.; Ruybal, C. J.

    2015-12-01

    Unconventional energy production in semi-arid regions places additional stress on already over-allocated water systems. Production of shale gas and oil resources in northern Colorado has rapidly increased since 2010, and is expected to continue growing due to advances in horizontal drilling and hydraulic fracturing. This unconventional energy production has implications for the availability of water in the South Platte watershed, where water demand for hydraulic fracturing of unconventional shale resources reached ~16,000 acre-feet in 2014. Groundwater resources are often exploited to meet water demands for unconventional energy production in regions like the South Platte basin, where surface water supply is limited and allocated across multiple uses. Since groundwater is often a supplement to surface water in times of drought and peak demand, variability in modeled recharge estimates can significantly impact projected availability. In the current work we used the Soil-Water Balance Model (SWB) to assess the variability in model estimates of actual evapotranspiration (ET) and soil-moisture conditions utilized to derive estimates of groundwater recharge. Using both point source and spatially distributed data, we compared modeled actual ET and soil-moisture derived from several potential ET methods, such as Thornthwaite-Mather, Jense-Haise, Turc, and Hargreaves-Samani, to historic soil moisture conditions obtained through sources including the Gravity Recovery and Climate Experiment (GRACE). In addition to a basin-scale analysis, we divided the South Platte watershed into sub-basins according to land cover to evaluate model capabilities of estimating soil-moisture parameters with variations in land cover and topography. Results ultimately allow improved prediction of groundwater recharge under future scenarios of climate and land cover change. This work also contributes to complementary subsurface groundwater modeling and decision support modeling in the South Platte.

  1. The role of storage capacity in coping with intra-annual runoff variability on a global scale

    NASA Astrophysics Data System (ADS)

    Gaupp, Franziska; Hall, Jim; Dadson, Simon

    2015-04-01

    Intra-annual variability poses a risk to water security in many basins as runoff is unevenly distributed over the year. Areas such as Northern Africa, Australia and the South-Western USA are characterized by a high coefficient of variability of monthly runoff. Analyzing the global risk of water scarcity, this study examines 680 basin-country units (BCUs) (403 river basins divided by country borders). By calculating the water balance for each BCU, the interplay of runoff on the one hand and domestic, industrial and environmental water needs on the other hand is shown. In contrast to other studies on average water scarcity, this work focuses on variability of water supply as metrics based on annual average water availability and demand can underestimate the risk of scarcity. The model is based on the assumption that each country-basin with sub-basins and tributaries can be treated as one single reservoir with storage capacity aggregated over that BCU. It includes surface runoff and the possibility to withdraw groundwater as water supply. The storage capacity of each BCU represents the ability to transfer water from wet months to dry months in order to buffer and cope with intra-annual water supply variability and to meet total water demand. Average monthly surface runoff per country-basin for the period 1979 to 2012 is derived from outcomes of the hydrological model Mac-PDM. Mac-PDM is forced with monthly ERAI-Interim reanalysis climate data on a one degree resolution. Groundwater withdrawal capacity, total water demand and storage capacity are taken from the IMPACT model provided by the International Food Research Institute (IFPRI). Storage refers to any kind of surface reservoir whose water can be managed and used for human activities in the industrial, domestic and agricultural sectors. Groundwater withdrawal capacity refers to the technological capacity to pump water rather than the amount of groundwater available. Total water demand includes consumptive water use from the industrial, domestic and agricultural sectors and varies between months. Due to a lack of data, the 2010 figures for groundwater withdrawal capacity are assumed to be equally distributed over 12 months without accounting for possible variation within a year. For runoff and water demand, monthly data are used. Our study shows that storage capacity helps to cope with intra-annual water variability and thereby decreases the risk of water scarcity. Several cases emerge where water security is critically dependent on transboundary flows such as the Nile in Egypt or the Aral Drainage in Uzbekistan. Furthermore, we calculate environmental flow requirements using the Variable Monthly Flow (VMF) method and analyse the effects of abstraction and dam construction on environmental flows. For each BCU, we examine whether environmental water requirements can be met with given human abstractions. Additionally, water scarcity is examined for the case when water is reserved for the environment and cannot be abstracted for human purposes.

  2. Modeling the impacts of climate change, landuse change, and human population dynamics on water availability and demands in the Southeastern U.S.

    Treesearch

    Ge Sun; Erika Cohen; David Wear

    2005-01-01

    The objective of this study is to develop a method to fully budget annual water supply (Precipitation - Evapotranspiration (ET) + Groundwater supply + Return Flow) and water use from thermoelectric, irrigation, domestic, industry, livestock, minirig, and commercial uses at the regional scale. We used a generalized annual ET model that estimates water loss as a function...

  3. Mapping water availability, projected use and cost in the western United States

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent C.; Moreland, Barbara D.; Zemlick, Katie M.; Roberts, Barry L.; Passell, Howard D.; Jensen, Daniel; Forsgren, Christopher; Sehlke, Gerald; Cook, Margaret A.; King, Carey W.; Larsen, Sara

    2014-05-01

    New demands for water can be satisfied through a variety of source options. In some basins surface and/or groundwater may be available through permitting with the state water management agency (termed unappropriated water), alternatively water might be purchased and transferred out of its current use to another (termed appropriated water), or non-traditional water sources can be captured and treated (e.g., wastewater). The relative availability and cost of each source are key factors in the development decision. Unfortunately, these measures are location dependent with no consistent or comparable set of data available for evaluating competing water sources. With the help of western water managers, water availability was mapped for over 1200 watersheds throughout the western US. Five water sources were individually examined, including unappropriated surface water, unappropriated groundwater, appropriated water, municipal wastewater and brackish groundwater. Also mapped was projected change in consumptive water use from 2010 to 2030. Associated costs to acquire, convey and treat the water, as necessary, for each of the five sources were estimated. These metrics were developed to support regional water planning and policy analysis with initial application to electric transmission planning in the western US.

  4. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the model is managed by a Web GIS to support the visualization of the results and the participation of the stakeholders. The activation of the information loop allows farmers to decide the most profitable crop option on the basis of an expected water supply. Knowing the farmers decisions, the water supply strategy (i.e., the regulation of Lake Como) is then optimized with respect to the actual irrigation demand of the crops. By recursively running this procedure, the farmers and the water manager will exchange information until the system converges to an equilibrium. Our results show that the proposed co-adaptation loop is able to enhance the efficiency of agricultural water management practices and foster crop production. Moreover, the analysis of the co-evolution of the two systems under change allows to estimate the potential for the approach to mitigate climate change adverse impacts.

  5. Modeling integrated water user decisions in intermittent supply systems

    NASA Astrophysics Data System (ADS)

    Rosenberg, David E.; Tarawneh, Tarek; Abdel-Khaleq, Rania; Lund, Jay R.

    2007-07-01

    We apply systems analysis to estimate household water use in an intermittent supply system considering numerous interdependent water user behaviors. Some 39 household actions include conservation; improving local storage or water quality; and accessing sources having variable costs, availabilities, reliabilities, and qualities. A stochastic optimization program with recourse decisions identifies the infrastructure investments and short-term coping actions a customer can adopt to cost-effectively respond to a probability distribution of piped water availability. Monte Carlo simulations show effects for a population of customers. Model calibration reproduces the distribution of billed residential water use in Amman, Jordan. Parametric analyses suggest economic and demand responses to increased availability and alternative pricing. It also suggests potential market penetration for conservation actions, associated water savings, and subsidies to entice further adoption. We discuss new insights to size, target, and finance conservation.

  6. Evolving demand for ecosystem services and their impact in a coastal New England watershed

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Green, M. B.; Pellerin, B. A.; Duncan, J. M.; Gettel, G. M.; Hopkinson, C.; Polsky, C.; Pontius, R.

    2009-12-01

    Human demands for ecosystem services (e.g. provision of food and water; regulation of waste) change over space and time as society, economy, and environment evolve. The distribution of population relative to watershed boundaries determines supply and demand of ecosystem services, which in turn affects watershed water and nutrient budgets. A watershed perspective is helpful to assess whether such services are sustainable with respect to freshwater and coastal ecosystems. We determined how demand for three ecosystem services (ES): food production, clean water supply, and removal of excess nutrients has changed over the last two hundred years (1800-present) in the watersheds draining to Plum Island Sound (drainage area = ~600 km2), located in Essex County MA., part of the Boston Metropolitan Area. The watersheds have gone through three distinct phases of ES demand over this period: 1) provision of food and fiber during the agricultural period (1600-1800’s), 2) increasing provision of water during the period of forest regrowth and agricultural abandonment (1880 - 1950), and 3) regulation of nitrogen pollution and provision of water during the suburban period (1950-present). As a result of changing ES, net interbasin nitrogen transfers out of the basin peaked in the mid 1800’s, water exports peaked 1960-1980 (averaging 27% of annual runoff), and net nitrogen transfers into the basin peaked in the 1960’s and stabilized thereafter (averaging 2.5x atmospheric deposition rates). ES provided by the Plum Island basins disproportionately benefited people living outside the basin prior to 1950 (e.g. internal water use was < 10% of total water extracted for domestic consumption), but were increasingly used by people living within the basin in the late 20th century (e.g. internal water use about 25-30% of total withdrawal). However, demands for ES from the Plum Island watersheds have not been accelerating in the recent suburban period despite continued population growth. With respect to water supply, demand has not been accelerating in part because summer-low flows have led to the import of alternative water supplies available outside the basin, suggesting that feedbacks between biophysical effects and society occur when the limits of ES have been reached and tradeoffs that would occur with further acceleration are unacceptable. A watershed and historical perspective extended to the contemporary period is helpful for understanding how competing demands for ecosystem services evolve over time, how they influence downstream ecosystems, and how biogeophysical changes feed back to influence human actions.

  7. Integrating wastewater reuse in water resources management for hotels in arid coastal regions - Case Study of Sharm El Sheikh, Egypt.

    PubMed

    Lamei, A; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water (using reverse osmosis) for their domestic water supply, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their potable and non-potable water needs. There is normally a contractual agreement stating a minimum amount of water that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). Hotels have to carefully analyse their water requirements in order to determine which percentage of the hotel's peak water demand should be used in the contract in order to reduce water costs and avoid the risk of water shortage. This paper describes a model to optimise the contracted-for irrigation water supply with the objective function to minimise total water cost to hotels. It analyses what the contracted-for irrigation water supply of a given hotel should be, based on the size of the green irrigated area on one hand and the unit prices of the different types of water on the other hand. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh (Sharm), Egypt. This paper presents costs of wastewater treatment using waste stabilisation ponds, which is the prevailing treatment mechanism in the case study area for centralised plants, as well as aerobic/anaerobic treatment used for decentralised wastewater treatment plants in the case study area. There is only one centralised wastewater treatment plant available in the city exerting monopoly and selling treated wastewater to hotels at a much higher price than the actual cost that a hotel would bear if it treated its own wastewater. Contracting for full peak irrigation demand is the highest total cost option. Contracting for a portion of the peak irrigation demand and complementing the rest from desalination water is a cheaper option. A better option still is to complement the excess irrigation demand from the company that treats and sells wastewater, if available or from another wastewater treatment company at a higher cost (but at a cost cheaper than that of desalination water) mainly due to the high demand season and the additional cost of trucking. In some cases, however, like in Sharm, the amount of treated wastewater is limited and variable during the year and some hotels have no choice but to partially use desalination water for irrigation. A conscious strategy for water management should rely solely on treated wastewater on-site. This can be achieved by: increasing the efficiency of the irrigation system, reducing the area of high-water consuming plantation (e.g. turf grass) and/or shifting to drought resistant plants including less water-consuming or salt tolerant turf grass.

  8. Integrated urban water management for residential areas: a reuse model.

    PubMed

    Barton, A B; Argue, J R

    2009-01-01

    Global concern over growing urban water demand in the face of limited water resources has focussed attention on the need for better management of available water resources. This paper takes the "fit for purpose" concept and applies it in the development of a model aimed at changing current practices with respect to residential planning by integrating reuse systems into the design layout. This residential reuse model provides an approach to the design of residential developments seeking to maximise water reuse. Water balance modelling is used to assess the extent to which local water resources can satisfy residential demands with conditions based on the city of Adelaide, Australia. Physical conditions include a relatively flat topography and a temperate climate, with annual rainfall being around 500 mm. The level of water-self-sufficiency that may be achieved within a reuse development in this environment is estimated at around 60%. A case study is also presented in which a conventional development is re-designed on the basis of the reuse model. Costing of the two developments indicates the reuse scenario is only marginally more expensive. Such costings however do not include the benefit to upstream and downstream environments resulting from reduced demand and discharges. As governments look to developers to recover system augmentation and environmental costs the economics of such approaches will increase.

  9. Human-water interactions in Colorado: Evaluating the impacts of population growth, energy development and dynamic industries on water resource management

    NASA Astrophysics Data System (ADS)

    Hogue, Terri; Walker, Ella; Read, Laura

    2016-04-01

    The gap between water supply and demand is growing in the western U.S. due to climate change, rapid population growth, intensive agricultural production, wide-spread energy development and changing industrial use. Water conservation efforts among residential and industrial water users, recycling and reuse techniques, and innovative regulatory frameworks strive to mitigate this gap, however, the extent of these management strategies are often difficult to quantify and are typically not included in prediction of future water allocations. Water use on the eastern slope in Colorado (Denver-Metro region) is impacted by high-intensity activities, including unconventional energy development, large withdrawals for agriculture, and increasing demand for recreational industries. These demands are in addition to a projected population increase of 100% by 2050 in the South Platte River basin, which encompasses the Denver-Metro region. The current presentation focuses on the quantification of regional sector water use utilzing a range of observations and technologies (including remote sensing) and integration into a regional decision support system. We explore scenarios of future water use in the energy, agriculture, and municipal/industrial sectors, and discuss the potential water allocation tradeoffs to various stakeholders. We also employ climate projections to quantify the potential range of water availability under various scenarios and observe the extent to which future climate may influence regional management decisions.

  10. Plant Demands Require Reliable Instrumentation.

    ERIC Educational Resources Information Center

    McClain, Terry L.; Goswami, Santosh R.

    1979-01-01

    Listed are available control parameters including basic definitions and concepts and methods of measurement. The application of these parameters to the control of water and wastewater treatment plants is also outlined. (CS)

  11. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    NASA Astrophysics Data System (ADS)

    Stigter, T. Y.; Monteiro, J. P.; Nunes, L. M.; Vieira, J.; Cunha, M. C.; Ribeiro, L.; Nascimento, J.; Lucas, H.

    2009-01-01

    This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells. For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s-1 of high quality groundwater (55% of the regional demand), requiring only disinfection (900 l s-1) or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make the water supply system extremely vulnerable, with a high risk of groundwater salinization and ecosystem degradation.

  12. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    NASA Astrophysics Data System (ADS)

    Stigter, T. Y.; Monteiro, J. P.; Nunes, L. M.; Vieira, J.; Cunha, M. C.; Ribeiro, L.; Nascimento, J.; Lucas, H.

    2009-07-01

    This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells. For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s-1 of high quality groundwater (55% of the regional demand), requiring only disinfection (900 l s-1) or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make the water supply system extremely vulnerable, with a high risk of groundwater salinization and ecosystem degradation.

  13. The National Water Data Exchange (NAWDEX)

    USGS Publications Warehouse

    Edwards, Melvin D.

    1977-01-01

    The National Water Data Exchange (NAWDEX) was established in 1976 to assist users of water data to identify, locate, and acquire needed data. NAWDEX is a confederation of water-oriented organizations working together to provide more timely and convenient access to their data. A directory of sources of water data and a nationwide index of available water data are maintained for the storage and dissemination of information on available water data. Assistance services are provided through a nationwide network of Local Assistance Centers. This network consists of 51 Centers located in 45 states and Puerto Rico. The Centers provide convenient access to NAWDEX services as well as making local-area expertise available in the identification and location of needed data. Additional Centers will be added to the network, as needed, to meet demands. NAWDEX is centrally managed by a Program Office located within the U.S. Geological Survey 's Water Resources Division in Reston, Virginia. (Woodard-USGS)

  14. Evaluating water conservation and reuse policies using a dynamic water balance model.

    PubMed

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  15. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions

    NASA Astrophysics Data System (ADS)

    Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli

    2018-01-01

    Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were assessed and implemented to alleviate water shortages. The negative impacts from the South-to-North Water Transfer Project (Middle Route) in the mid-lower reaches of the Hanjiang River Basin can be avoided through the dynamic control of FLWLs in Danjiangkou Reservoir, under the historical and future RCP2.6 and RCP4.5 scenarios. However, the effects of adaptation measures are limited due to their own constraints, such as the characteristics of the reservoirs influencing the FLWLs. The utilization of storm water appears necessary to meet future water demand. Overall, the results indicate that the framework for assessing the effects of adaptation measures on water resources allocation might aid water resources management, not only in the study area but also in other places where water availability conditions vary due to climate change and human activities.

  16. Climate change impact on water resources - Example of an anthropized basin (Llobregat, Spain)

    NASA Astrophysics Data System (ADS)

    Versini, P.-A.; Pouget, L.; Mc Ennis, S.; Guiu Carrio, R.; Sempere-Torres, D.; Escaler, I.

    2012-04-01

    The impact of climate change is one of the central topics of study by water agencies and companies. Indeed, the forecasted increase of atmospheric temperature may change the amount, frequency and intensity of precipitation and affect the hydrological cycle: runoff, infiltration, aquifer recharge, etc… Moreover, global change combining climate change but also land use and water demand changes, may cause very important impacts on water availability and quality. Global change scenarios in Spain describe a general trend towards increased temperature and water demand, and reduced precipitation as a result of its geographical situation and socio-economic characteristics. The European project WATER CHANGE (included in the LIFE + Environment Policy and Governance program) aims to develop a modeling system to assess the Global Change impacts, and their associated uncertainties, on water availability for water supply and water use. Its objective is to help river basin agencies and water companies in their long term planning and in the definition of adaptation measures. This work presents the results obtained by applying the modelling system to the Llobregat river basin (Spain). This is an anthropized catchment of about 5000 km2, where water resources are used for different purposes, such as drinking water production, agriculture irrigation, industry and hydroelectric energy production. Based on future global change scenarios, the water resources system has been assessed in terms of water deficit and supply. A cost-benefit analysis has also been conducted in order to evaluate every realistic measure that could optimize and improve the system.

  17. More Water Resources but Less for Irrigation: Adaptation Strategy of the Yellow River in a Changing Environment

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Yin, Y. Y.

    2015-12-01

    The Yellow River is the primary source of freshwater to the northern China. Increasing population and socio-economic development have put great pressure on water resources of the river basin. The anticipated climate and socio-economic changes may further increase water stress. Development of adaptation strategies would have significant implications for water and food security of this region. In this study, the outputs of multiple hydrological models forced with the bias-corrected climatic variables from multiple global climate models were used to assess the change in renewable water resources of the river basin in the 21st century. The outputs of multiple crop models were used to assess the change in agricultural water demand. The domestic and industrial water demands were estimated based on the future socio-economic conditions under the Shared Socio-economic Pathways (SSPs). Besides basic ecosystem needs for water which must be met, the water use in domestic and industrial sectors is considered to have a higher priority than the agricultural water use when water is insufficient. The results show that the renewable water resources of the basin would increase as global mean temperature increases while the water demand would grow much more rapidly, largely due to water demand increase in domestic and industrial sectors. In most of the sub-basins of the Yellow River basin, the available water resources can not sustain all the water use sectors starting from the next a few decades. As more water resources would be appropriated by domestic and industrial sectors, a part of irrigated area had to be converted to rainfed agriculture which led to a large reduction in food production. This study highlights the linked water and food security in a changing environment and suggests that the trade-off should be considered when developing regional adaptation strategies.

  18. Proposing water balance method for water availability estimation in Indonesian regional spatial planning

    NASA Astrophysics Data System (ADS)

    Juniati, A. T.; Sutjiningsih, D.; Soeryantono, H.; Kusratmoko, E.

    2018-01-01

    The water availability (WA) of a region is one of important consideration in both the formulation of spatial plans and the evaluation of the effectiveness of actual land use in providing sustainable water resources. Information on land-water needs vis-a-vis their availability in a region determines the state of the surplus or deficit to inform effective land use utilization. How to calculate water availability have been described in the Guideline in Determining the Carrying Capacity of the Environment in Regional Spatial Planning. However, the method of determining the supply and demand of water on these guidelines is debatable since the determination of WA in this guideline used a rational method. The rational method is developed the basis for storm drain design practice and it is essentially a peak discharge method peak discharge calculation method. This paper review the literature in methods of water availability estimation which is described descriptively, and present arguments to claim that water balance method is a more fundamental and appropriate tool in water availability estimation. A better water availability estimation method would serve to improve the practice in preparing formulations of Regional Spatial Plan (RSP) as well as evaluating land use capacity in providing sustainable water resources.

  19. Water-resources data for the United States: water year 2011

    USGS Publications Warehouse

    ,

    2011-01-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by NWISWeb. Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. From 1962 until 2005, reports were published by State as paper documents, although most reports since the mid-1990s are also available in electronic form through this web page. Reports prior to 1962 were published in occasional USGS Water-Supply Papers and other reports.

  20. Water-resources data for the United States: water year 2010

    USGS Publications Warehouse

    ,

    2010-01-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by NWISWeb. Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. From 1962 until 2005, reports were published by State as paper documents, although most reports since the mid-1990s are also available in electronic form through this web page. Reports prior to 1962 were published in occasional USGS Water-Supply Papers and other reports.

  1. Water-resources data for the United States: water year 2007

    USGS Publications Warehouse

    ,

    2007-01-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by NWISWeb. Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. From 1962 until 2005, reports were published by State as paper documents, although most reports since the mid-1990s are also available in electronic form through this web page. Reports prior to 1962 were published in occasional USGS Water-Supply Papers and other reports.

  2. Water-resources data for the United States: water year 2008

    USGS Publications Warehouse

    ,

    2008-01-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by NWISWeb. Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. From 1962 until 2005, reports were published by State as paper documents, although most reports since the mid-1990s are also available in electronic form through this web page. Reports prior to 1962 were published in occasional USGS Water-Supply Papers and other reports.

  3. Combined use of neutron thermalization and electromagnetic sensing in assessing soil water dynamics

    USDA-ARS?s Scientific Manuscript database

    Agriculture is by far the largest consumer of available fresh water, accounting for 70% of withdrawals worldwide. By meeting increased future demands for food and fiber, our needs will need to be met by improving the efficient use of both irrigation and precipitation for crop production. Field crop ...

  4. Assessing topographic patterns in moisture use and stress using a water balance approach

    Treesearch

    James M. Dyer

    2009-01-01

    Through its control on soil moisture patterns, topography's role in influencing forest composition is widely recognized. This study addresses shortcomings in traditional moisture indices by employing a water balance approach, incorporating topographic and edaphic variability to assess fine-scale moisture demand and moisture availability. Using GIS and readily...

  5. Ecophysiology and genetic variation in domestication of Sphaeralcea and Shepherdia species for the Intermountain West

    Treesearch

    Chalita Sriladda

    2011-01-01

    Low-water landscaping is an essential tool for water conservation in the arid Intermountain West (IMW) for managing limited supplies and population-driven increased demand. The IMW harbors a large number of drought-tolerant native species that have potential for use in the low-water use landscape (LWL). However, many species are not available in the nursery trade due...

  6. Future water supply and demand in response to climate change and agricultural expansion in Texas

    NASA Astrophysics Data System (ADS)

    Lee, K.; Zhou, T.; Gao, H.; Huang, M.

    2016-12-01

    With ongoing global environmental change and an increasing population, it is challenging (to say the least) to understand the complex interactions of irrigation and reservoir systems. Irrigation is critical to agricultural production and food security, and is a vital component of Texas' agricultural economy. Agricultural irrigation currently accounts for about 60% of total water demand in Texas, and recent occurrences of severe droughts has brought attention to the availability and use of water in the future. In this study, we aim to assess future agricultural irrigation water demand, and to estimate how changes in the fraction of crop irrigated land will affect future water availability in Texas, which has the largest farm area and the highest value of livestock production in the United States. The Variable Infiltration Capacity (VIC) model, which has been calibrated and validated over major Texas river basins during the historical period, is employed for this study. The VIC model, coupling with an irrigation scheme and a reservoir module, is adopted to simulate the water management and regulations. The evolution on agricultural land is also considered in the model as a changing fraction of crop for each grid cell. The reservoir module is calibrated and validated based on the historical (1915-2011) storage records of major reservoirs in Texas. The model is driven by statistically downscaled climate projections from Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The lowest (RCP 2.6) and highest (RC P8.5) greenhouse-gas concentration scenarios are adopted for future projections to provide an estimate of uncertainty bounds. We expect that our results will be helpful to assist decision making related to reservoir operations and agricultural water planning for Texas under future climate and environmental changes.

  7. A tale of integrated regional water supply planning: Meshing socio-economic, policy, governance, and sustainability desires together

    NASA Astrophysics Data System (ADS)

    Asefa, Tirusew; Adams, Alison; Kajtezovic-Blankenship, Ivana

    2014-11-01

    In 1998, Tampa Bay Water, the largest wholesale water provider in South East USA with over 2.3 million customers, assumed the role of planning, developing, and operating water supply sources from six local water supply utilities through an Interlocal Agreement. Under the agreement, cities and counties served by the agency would have their water supply demands met unequivocally and share the cost of delivery and/or development of new supplies based on their consumption, allowing a more holistic approach to manage resources in the region. Consequently, the agency was able to plan and execute several components of its Long-Term Master Water Plan to meet the region's demand, as well as diversify its sources of water supply. Today, the agency manages a diverse and regionally interconnected water supply system that includes 13 wellfields, two surface water supply sources, off-site reservoir storage, a sea water desalination plant, a surface water treatment plant, and 14 pumping/booster stations. It delivers water through 390 km of large diameter pipe to 19 potable water connections. It uses state-of-the-practice computer tools to manage short and long-term operations and planning. As a result, after the agency's inception, groundwater pumpage was reduced by more than half in less than a decade-by far one of the largest cutback and smaller groundwater utilization rate compared to other utilities in Florida or elsewhere. The region was able to witness a remarkable recovery in lake and wetland water levels through the agency's use of this diverse mix of supply sources. For example, in the last three years, 45-65% of water supply came from groundwater sources, 35-45% from surface water sources and 1-9% from desalinated seawater-very different from 100% groundwater only supply just few years ago. As an "on demand" wholesale water provider, the agency forecasts water supply availability and expected water demands from seasonal to decadal time frames using a suite of forecasting tools and a structured decision-making process. This paper presents a case study of the approach taken by Tampa Bay Water to meet the region's growing water demands while satisfying other competing objectives in a sustainable fashion and documents the remarkable environmental improvement observed in the area.

  8. 100 years of California’s water rights system: patterns, trends and uncertainty

    NASA Astrophysics Data System (ADS)

    Grantham, Theodore E.; Viers, Joshua H.

    2014-08-01

    For 100 years, California’s State Water Resources Control Board and its predecessors have been responsible for allocating available water supplies to beneficial uses, but inaccurate and incomplete accounting of water rights has made the state ill-equipped to satisfy growing societal demands for water supply reliability and healthy ecosystems. Here, we present the first comprehensive evaluation of appropriative water rights to identify where, and to what extent, water has been dedicated to human uses relative to natural supplies. The results show that water right allocations total 400 billion cubic meters, approximately five times the state’s mean annual runoff. In the state’s major river basins, water rights account for up to 1000% of natural surface water supplies, with the greatest degree of appropriation observed in tributaries to the Sacramento and San Joaquin Rivers and in coastal streams in southern California. Comparisons with water supplies and estimates of actual use indicate substantial uncertainty in how water rights are exercised. In arid regions such as California, over-allocation of surface water coupled with trends of decreasing supply suggest that new water demands will be met by re-allocation from existing uses. Without improvements to the water rights system, growing human and environmental demands portend an intensification of regional water scarcity and social conflict. California’s legal framework for managing its water resources is largely compatible with needed reforms, but additional public investment is required to enhance the capacity of the state’s water management institutions to effectively track and regulate water rights.

  9. Agricultural Model for the Nile Basin Decision Support System

    NASA Astrophysics Data System (ADS)

    van der Bolt, Frank; Seid, Abdulkarim

    2014-05-01

    To analyze options for increasing food supply in the Nile basin the Nile Agricultural Model (AM) was developed. The AM includes state-of-the-art descriptions of biophysical, hydrological and economic processes and realizes a coherent and consistent integration of hydrology, agronomy and economics. The AM covers both the agro-ecological domain (water, crop productivity) and the economic domain (food supply, demand, and trade) and allows to evaluate the macro-economic and hydrological impacts of scenarios for agricultural development. Starting with the hydrological information from the NileBasin-DSS the AM calculates the available water for agriculture, the crop production and irrigation requirements with the FAO-model AquaCrop. With the global commodity trade model MAGNET scenarios for land development and conversion are evaluated. The AM predicts consequences for trade, food security and development based on soil and water availability, crop allocation, food demand and food policy. The model will be used as a decision support tool to contribute to more productive and sustainable agriculture in individual Nile countries and the whole region.

  10. High Resolution Map of Water Supply and Demand for North East United States

    NASA Astrophysics Data System (ADS)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2012-12-01

    Accurate estimates of water supply and demand are crucial elements in water resources management and modeling. As part of our NSF-funded EaSM effort to build a Northeast Regional Earth System Model (NE-RESM) as a framework to improve our understanding and capacity to forecast the implications of planning decisions on the region's environment, ecosystem services, energy and economic systems through the 21st century, we are producing a high resolution map (3' x 3' lat/long) of estimated water supply and use for the north east region of United States. Focusing on water demand, results from this study enables us to quantify how demand sources affect the hydrology and thermal-chemical water pollution across the region. In an attempt to generate this 3-minute resolution map in which each grid cell has a specific estimated monthly domestic, agriculture, thermoelectric and industrial water use. Estimated Use of Water in the United States in 2005 (Kenny et al., 2009) is being coupled to high resolution land cover and land use, irrigation, power plant and population data sets. In addition to water demands, we tried to improve estimates of water supply from the WBM model by improving the way it controls discharge from reservoirs. Reservoirs are key characteristics of the modern hydrologic system, with a particular impact on altering the natural stream flow, thermal characteristics, and biogeochemical fluxes of rivers. Depending on dam characteristics, watershed characteristics and the purpose of building a dam, each reservoir has a specific optimum operating rule. It means that literally 84,000 dams in the National Inventory of Dams potentially follow 84,000 different sets of rules for storing and releasing water which must somehow be accounted for in our modeling exercise. In reality, there is no comprehensive observational dataset depicting these operating rules. Thus, we will simulate these rules. Our perspective is not to find the optimum operating rule per se but to find composite behaviors that are consistent with the nominal use of each reservoir and their impacts on observed stream gage behaviors. We decided to use Artificial Neural Networks (ANN) in this context. We see as an important advantage of ANN, its ability to detect complex nonlinear relations between input and output data, which makes it a valuable tool for time series prediction and fitness approximation. High quality, measured parameters are available throughout the United States; thus, we are able to use measured data to train and test ANN and operate reservoirs in a way that simulates real world reservoirs' behavior more accurately. By using economics, population, land cover and climate change estimates for 21st century, we are seeking to forecast in a systematic manner all major facets of future water supply and use in north east United States which will enable us to identify locations prone to water stress due to urban and domestic or agriculture and irrigation water demand, quantify change in chemical and thermal pollution of rivers and availability of water for power generation.

  11. Water security and its challenges for Malaysia

    NASA Astrophysics Data System (ADS)

    Malek, M. A.; Nor, M. A. M.; P, Leong Y.

    2013-06-01

    Water Security in Malaysia is a national issue. The Malaysian water services industry faces issues which need to be tackled immediately for it to be viable and sustainable. Among them are the decentralized water services sector, ineffective governance structure, unsustainable tariffs, huge investments required to develop the water supply and sewerage infrastructure, inefficient operation by the operators and high non-revenue water (NRW) losses. In Malaysia, the "Sectorial" approach embedded in the present water management system and its transformation towards "Integrated Water Resources Management" (IWRM), is still in a state of inertia. This paper presents the need to transform, from a "Supply" Management mode (a characteristic of a developing country) to a "Water Demand" Management mode (a characteristic of a developed country). Issues on "Water Demand" Management for the Environment which can be a threat to the need for sustainable development for biodiversity are highlighted here. Reliable water accounting systems are found still lacking in this country, especially in the Agriculture and Environmental Sectors, where figures are still highly based on "traditional" assumptions. Water Quality deterioration remains an issue especially for the Water Supply and Environment Sectors. Available surface water resource is depleting in many regions and states in the Peninsular. Apart from the Reduce, Reuse and Recycle (3R) option for surface water, another option would be to begin a concerted effort for groundwater exploitation. However there are still grey areas of knowledge in the groundwater resources in this country for affirmative decisions and development of appropriate policies. It is also found that, there are no concerted plans to prepare the public for the change from "Supply" Management to "Demand" Management. In a developed nation, this change is through stakeholder platforms and supported by appropriate policies, rules and regulations that are based on validated Sciences, Technologies and Innovations (STI). Transforming from "Supply" Management to "Demand" Management is a formidable task. This requires the wisdom and knowledge of all experts in the Water Resources Sector.

  12. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use. After describing federal policy actions that could influencemore » freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.« less

  13. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    USGS Publications Warehouse

    Hanson, Randall T.; Lockwood, Brian; Schmid, Wolfgang

    2014-01-01

    The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and assumptions of 2009 urban water demand and land use. Water supplied directly from precipitation, and indirectly from reuse, captured local runoff, and groundwater is necessary but inadequate to satisfy agricultural demand without coastal and regional storage depletion that facilitates seawater intrusion. These facilities reduce potential seawater intrusion by about 45% with groundwater levels in the four regions served by the CDS projected to recover to levels a few feet above sea level. The projected recoveries are not high enough to prevent additional seawater intrusion during dry-year periods or in the deeper aquifers where pumpage is greater. While these facilities could reduce coastal pumpage by about 55% of the historical 2000–2009 pumpage for these regions, and some of the water is delivered in excess of demand, other coastal regions continue to create demands on coastal pumpage that will need to be replaced to reduce seawater intrusion. In addition, inland urban and agricultural demands continue to sustain water levels below sea level causing regional landward gradients that also drive seawater intrusion. Seawater intrusion is reduced by about 45% but it supplies about 55% of the recovery of groundwater levels in the coastal regions served by the CDS. If economically feasible, water from summer agricultural runoff and tile-drain returnflows could be another potential local source of water that, if captured and reused, could offset the imbalance between supply and demand as well as reducing discharge of agricultural runoff into the National Marine Sanctuary of Monterey Bay. A BMP update (2012) identifies projects and programs that will fund a conservation program and will provide additional, alternative water sources to reduce or replace coastal and inland pumpage, and to replenish the aquifers with managed aquifer recharge in an inland portion of the Pajaro Valley.

  14. Estimating residential price elasticity of demand for water: A contingent valuation approach

    NASA Astrophysics Data System (ADS)

    Thomas, John F.; Syme, Geoffrey J.

    1988-11-01

    Residential households in Perth, Western Australia have access to privately extracted groundwater as well as a public mains water supply, which has been charged through a two-part block tariff. A contingent valuation approach is developed to estimate price elasticity of demand for public supply. Results are compared with those of a multivariate time series analysis. Validation tests for the contingent approach are proposed, based on a comparison of predicted behaviors following hypothesised price changes with relevant independent data. Properly conducted, the contingent approach appears to be reliable, applicable where the available data do not favor regression analysis, and a fruitful source of information about social, technical, and behavioral responses to change in the price of water.

  15. Ensuring water availability in Mekelle City, Northern Ethiopia: evaluation of the water supply sub-project

    NASA Astrophysics Data System (ADS)

    Oyedotun, Temitope D. Timothy

    2017-11-01

    The need and demand for water in the world are becoming acute with the growing population. This is mostly pressing in developing countries of which Mekelle City in Northern Ethiopia is not an exception. World Bank borehole-support sub-project was aimed at addressing this challenge. The evaluation of the intervention indicates that there is a significant increase in water supply in the city because of the sub-project. However, the increase in water supply has not been able to meet up with the already established and increasing demand. Coupled with this challenge are: the limited capacity of human capital and expertise that will ensure the proper management of borehole interventions; insufficient cost recovery for proper operation and maintenance of the projects; loss of land and farmlands and lack of compensations because of the projects which affect the livelihood.

  16. [Patterns and characteristics of ecological water demand in west arid zone of China--a case study of green corridor in the lower reaches of Tarim River].

    PubMed

    Wang, Ranghui; Lu, Xinming; Song, Yudong; Fan, Zili; Ma, Yingjie

    2003-04-01

    Ecological water demand has some characteristics. The ecological water demand that was used for protection of the green corridor in the lower reaches of Tarim River was chiefly water demand by natural vegetation below Daxihaizi reservoir, and it included gross restoration water amount of ground water level and gross stand water amount in all over the lower reaches of Tarim River. The gross restoration water amount of ground water level mainly included restoration water amount of ground water level and lateral discharge, as well as evaporation of the course. Based on the drainage target of Alagan in 2005, gross ecological water demand was the gross water amount of restoration ground water level between Daxihaizi and Alagan, which would be 13.20 x 10(8) m3. Meanwhile, the annual average water demand would be 2.64 x 10(8) m3. Because the drainage target and vegetation protection target would be all Taitema lake in 2010, the gross ecological water demand included not only the gross water amount of restoration ground water level between Alagan and Taitema lake, but also the ecological stand water amount between Daxihaizi and Taitema lake, which would be 18.32 x 10(8) m3. Meanwhile, the annual average water demand would be 3.66 x 10(8) m3. From the year 2010 to 2030, the gross ecological water demand would be consisted of two parts (the gross stand water amount between Daxihaizi and Alagan, and the water demand by increased vegetation of 18.67 x 10(4) hm2), and the total ecological water demand during the 20 years would be 139.00 x 10(8) m3. Meanwhile, the annual average water demand would be 6.95 x 10(8) m3.

  17. Exploring the impact of co-varying water availability and energy price on productivity and profitability of Alpine hydropower

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Botter, Martina; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Alpine hydropower systems are experiencing dramatic changes both from the point of view of hydrological conditions, e.g., water availability and frequency of extremes events, and of energy market conditions, e.g., partial or total liberalization of the market and increasing share of renewable power sources. Scientific literature has, so far, mostly focused on the analysis of climate change impacts and associated uncertainty on hydropower operation, underlooking the consequences that socio-economic changes, e.g., energy demand and/or price changes, can have on hydropower productivity and profitability. In this work, we analyse how hydropower reservoir operation is affected by changes in both water availability and energy price. We consider stochastically downscaled climate change scenarios of precipitation and temperature to simulate reservoir inflows using a physically explicit hydrological model. We consider different scenarios of energy demand and generation mix to simulate energy prices using an electricity market model, which includes different generation sources, demand sinks, and features of the transmission lines. We then use Multi-Objective optimization techniques to design the operation of hydropower reservoirs for different purposes, e.g. maximization of revenue and/or energy production. The objective of the work is to assess how the tradeoffs between the multiple operating objectives evolve under different co-varying climate change and socio-economic scenarios and to assess the adaptive capacity of the system. The modeling framework is tested on the real-world case study of the Mattmark reservoir in Switzerland.

  18. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  19. Past, present, and future of water data delivery from the U.S. Geological Survey

    USGS Publications Warehouse

    Hirsch, Robert M.; Fisher, Gary T.

    2014-01-01

    We present an overview of national water databases managed by the U.S. Geological Survey, including surface-water, groundwater, water-quality, and water-use data. These are readily accessible to users through web interfaces and data services. Multiple perspectives of data are provided, including search and retrieval of real-time data and historical data, on-demand current conditions and alert services, data compilations, spatial representations, analytical products, and availability of data across multiple agencies.

  20. Balancing food security and water demand for freshwater ecosystems

    NASA Astrophysics Data System (ADS)

    Pastor, Amandine; Palazzo, Amanda; Havlik, Petr; Obersteiner, Michael; Biemans, Hester; Wada, Yoshihide; Kabat, Pavel; Ludwig, Fulco

    2017-04-01

    Water is not an infinite resource and demand from irrigation, household and industry is constantly increasing. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 8.5 W/m2 (RCP8.5), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 40% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on climate change mitigation/adaptation when exposure and sensitivity to climate change is high and/or on adaptation measures to face increasing water demand. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while others might consider improving their trade policy to avoid food shortage.

  1. Disaggregating residential water demand for improved forecasts and decision making

    NASA Astrophysics Data System (ADS)

    Woodard, G.; Brookshire, D.; Chermak, J.; Krause, K.; Roach, J.; Stewart, S.; Tidwell, V.

    2003-04-01

    Residential water demand is the product of population and per capita demand. Estimates of per capita demand often are based on econometric models of demand, usually based on time series data of demand aggregated at the water provider level. Various studies have examined the impact of such factors as water pricing, weather, and income, with many other factors and details of water demand remaining unclear. Impacts of water conservation programs often are estimated using simplistic engineering calculations. Partly as a result of this, policy discussions regarding water demand management often focus on water pricing, water conservation, and growth control. Projecting water demand is often a straight-forward, if fairly uncertain process of forecasting population and per capita demand rates. SAHRA researchers are developing improved forecasts of residential water demand by disaggregating demand to the level of individuals, households, and specific water uses. Research results based on high-resolution water meter loggers, household-level surveys, economic experiments and recent census data suggest that changes in wealth, household composition, and individual behavior may affect demand more than changes in population or the stock of landscape plants, water-using appliances and fixtures, generally considered the primary determinants of demand. Aging populations and lower fertility rates are dramatically reducing household size, thereby increasing the number of households and residences for a given population. Recent prosperity and low interest rates have raised home ownership rates to unprecented levels. These two trends are leading to increased per capita outdoor water demand. Conservation programs have succeeded in certain areas, such as promoting drought-tolerant native landscaping, but have failed in other areas, such as increasing irrigation efficiency or curbing swimming pool water usage. Individual behavior often is more important than the household's stock of water-using fixtures, and ranges from hedonism (installing pools and whirlpool tubs) to satisficing (adjusting irrigation timers only twice per year) to acting on deeply-held conservation ethics in ways that not only fail any benefit-cost test, but are discouraged, or even illegal (reuse of gray water and black water). Research findings are being captured in dynamic simulation models that integrate social and natural science to create tools to assist water resource managers in providing sustainable water supplies and improving residential water demand forecasts. These models feature simple, graphical user interfaces and output screens that provide decision makers with visual, easy-to-understand information at the basin level. The models reveal connections between various supply and demand components, and highlight direct impacts and feedback mechanisms associated with various policy options.

  2. Food security in the face of climate change, population growth, and resource constraints: implications for Bangladesh.

    PubMed

    Faisal, Islam M; Parveen, Saila

    2004-10-01

    Ensuring food security has been one of the major national priorities of Bangladesh since its independence in 1971. Now, this national priority is facing new challenges from the possible impacts of climate change in addition to the already existing threats from rapid population growth, declining availability of cultivable land, and inadequate access to water in the dry season. In this backdrop, this paper has examined the nature and magnitude of these threats for the benchmark years of 2030 and 2050. It has been shown that the overall impact of climate change on the production of food grains in Bangladesh would probably be small in 2030. This is due to the strong positive impact of CO2 fertilization that would compensate for the negative impacts of higher temperature and sea level rise. In 2050, the negative impacts of climate change might become noticeable: production of rice and wheat might drop by 8% and 32%, respectively. However, rice would be less affected by climate change compared to wheat, which is more sensitive to a change in temperature. Based on the population projections and analysis of future agronomic innovations, this study further shows that the availability of cultivable land alone would not be a constraint for achieving food self-sufficiency, provided that the productivity of rice and wheat grows at a rate of 10% or more per decade. However, the situation would be more critical in terms of water availability. If the dry season water availability does not decline from the 1990 level of about 100 Bm3, there would be just enough water in 2030 for meeting both the agricultural and nonagricultural needs. In 2050, the demand for irrigation water to maintain food self-sufficiency would be about 40% to 50% of the dry season water availability. Meeting such a high agricultural water demand might cause significant negative impacts on the domestic and commercial water supply, fisheries, ecosystems, navigation, and salinity management.

  3. Vulnerability of Water Resources under Climate and Land Use Change: Evaluation of Present and Future Threats for Austria

    NASA Astrophysics Data System (ADS)

    Nachtnebel, Hans-Peter; Wesemann, Johannes; Herrnegger, Mathew; Senoner, Tobias; Schulz, Karsten

    2015-04-01

    Climate and Land Use Change can have severe impacts on natural water resources needed for domestic, agricultural and industrial water use. In order to develop adaptation strategies, it is necessary to assess the present and future vulnerability of the water resources on the basis of water quantity, water quality and adaptive capacity indicators. Therefore a methodological framework was developed within the CC-Ware project and a detailed assessment was performed for Austria. The Water Exploitation Index (WEI) is introduced as a quantitative indicator. It is defined as the ratio between the water demand and the water availability. Water availability is assessed by a high resolution grid-based water balance model, utilizing the meteorological information from bias corrected regional climate models. The demand term can be divided into domestic, agricultural and industrial water demand and is assessed on the water supply association level. The Integrated Groundwater Pollution Load Index (GWPLI) represents an indicator for areas at risk regarding water quality, considering agricultural loads (nitrate pollution loads), potential erosion and potential risks from landfills. Except for the landfills, the information for the current situation is based on the CORINE Landcover data. Future changes were predicted utilizing the PRELUDE land use scenarios. Since vulnerability is also dependent on the adaptive capacity of a system, the Adaptive Capacity Index is introduced. The Adaptive Capacity Index thereby combines the Ecosystem Service Index (ESSI), which represents three water related ecosystem services (Water Provision, Water Quantity Regulation and Water Quality Regulation) and the regional economic capacity expressed by the gross value added. On the basis of these indices, the Overall Vulnerability of the water resources can be determined for the present and the future. For Austria the different indices were elaborated. Maps indicating areas of different levels of vulnerability were developed. A comparison with existing data (River Basin Management Plan and Groundwater Chemistry Regulation) shows a good agreement between the elaborated maps and observations for the present state. The Overall Vulnerability is very low and low for most parts of Austria, especially in the forested alpine region. Bigger cities like Vienna, Graz and Linz show medium vulnerabilities, due to the high water demand and low ecosystem services. Only in the north-eastern and south-eastern part of the country some water supply associations with high and very high overall vulnerability exist. Groundwater recharge is quite small in these regions and the water quality is limited due to intense agriculture and possible threats through landfills. The developed framework allows an evaluation of water quantity and quality vulnerabilities for large scales for the present and the future. Including ecosystem services and gross value added an overall vulnerability can be determined.

  4. The Potential for Snow to Supply Human Water Demand in the Present and Future

    NASA Technical Reports Server (NTRS)

    Mankin, Justin S.; Viviroli, Daniel; Singh, Deepti; Hoekstra, Arjen Y.; Diffenbaugh, Noah S.

    2015-01-01

    Runoff from snowmelt is regarded as a vital water source for people and ecosystems throughout the Northern Hemisphere (NH). Numerous studies point to the threat global warming poses to the timing and magnitude of snow accumulation and melt. But analyses focused on snow supply do not show where changes to snowmelt runoff are likely to present the most pressing adaptation challenges, given sub-annual patterns of human water consumption and water availability from rainfall. We identify the NH basins where present spring and summer snowmelt has the greatest potential to supply the human water demand that would otherwise be unmet by instantaneous rainfall runoff. Using a multi-model ensemble of climate change projections, we find that these basins - which together have a present population of approx. 2 billion people - are exposed to a 67% risk of decreased snow supply this coming century. Further, in the multi-model mean, 68 basins (with a present population of more than 300 million people) transition from having sufficient rainfall runoff to meet all present human water demand to having insufficient rainfall runoff. However, internal climate variability creates irreducible uncertainty in the projected future trends in snow resource potential, with about 90% of snow-sensitive basins showing potential for either increases or decreases over the near-term decades. Our results emphasize the importance of snow for fulfilling human water demand in many NH basins, and highlight the need to account for the full range of internal climate variability in developing robust climate risk management decisions.

  5. EnviroAtlas - Fresno, CA - Domestic Water Demand per Day by U.S. Census Block Group

    EPA Pesticide Factsheets

    As included in this EnviroAtlas dataset, community level domestic water demand is calculated using locally available water use data per capita in gallons of water per day (GPD), distributed dasymetrically, and summarized by Census block group. Domestic water use, as defined in this case, is intended to represent residential indoor and outdoor water use (e.g., cooking hygiene, landscaping, pools, etc.) for primary residences (i.e., excluding second homes and tourism rentals). For the purposes of this metric, these publicly-supplied estimates are also applied and considered representative of local self-supplied water use. Specific to Fresno, CA, urban water management plan data is available through the California Department of Water Resources (CADWR). Suppliers that provide over 3,000 acre-feet or serve more than 3,000 connections are required to evaluate future water supplies and implement plans to reduce 2010 baseline consumption by 20% by 2020. Within the EnviroAtlas Fresno study area, there are two service providers, City of Fresno and City of Clovis, with baseline 2010 water use estimates of 313 and 249 GPD respectively.This dataset was produced by the U.S. EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is availab

  6. EnviroAtlas - Phoenix, AZ - Domestic Water Demand per Day by U.S. Census Block Group

    EPA Pesticide Factsheets

    As included in this EnviroAtlas dataset, community level domestic water demand is calculated using locally available water use data per capita in gallons of water per day (GPD), distributed dasymetrically, and summarized by census block group. Domestic water use, as defined in this case, is intended to represent residential indoor and outdoor water use (e.g., cooking hygiene, landscaping, pools, etc.) for primary residences (i.e., excluding second homes and tourism rentals). For the purposes of this metric, these publicly-supplied estimates are also applied and considered representative of local self-supplied water use. Within the EnviroAtlas Phoenix boundary, there are 53 service providers with 2000-2009 water use estimates ranging from 108 to 366 GPD.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. Assessment of global water security: moving beyond water scarcity assessment

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Gain, A. K.; Giupponi, C.

    2015-12-01

    Water plays an important role in underpinning equitable, stable and productive societies, and the ecosystems on which we depend. Many international river basins are likely to experience 'low water security' over the coming decades. Hence, ensuring water security along with energy and food securities has been recognised as priority goals in Sustainable Development Goals (SDGs) by the United Nations. This water security is not rooted only in the limitation of physical resources, i.e. the shortage in the availability of freshwater relative to water demand, but also on social and economic factors (e.g. flawed water planning and management approaches, institutional incapability to provide water services, unsustainable economic policies). Until recently, advanced tools and methods are available for assessment of global water scarcity. However, integrating both physical and socio-economic indicators assessment of water security at global level is not available yet. In this study, we present the first global understanding of water security using a spatial multi-criteria analysis framework that goes beyond available water scarcity assessment. For assessing water security at global scale, the term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The Water security index is calculated by aggregating the indicators using both simple additive weighting (SAW) and ordered weighted average (OWA).

  8. State Water Resource Competition and the Resulting Consequences of Diminished Water Supply

    DTIC Science & Technology

    2014-10-01

    world . Because this realization is becoming more and more prevalent, the human survival instinct is prompting competition and conflict over water...the main contributing factors in creating a more interdependent world when it comes to freshwater. Freshwater availability has diminished over time...climate change, appears to be changing the landscape of our world for the worse. Along with a new landscape comes new demand for resource

  9. Integrated water resources management of the Ichkeul basin taking into account the durability of its wetland ecosystem using WEAP model

    NASA Astrophysics Data System (ADS)

    Shabou, M.; Lili-Chabaane, Z.; Gastli, W.; Chakroun, H.; Ben Abdallah, S.; Oueslati, I.; Lasram, F.; Laajimi, R.; Shaiek, M.; Romdhane, M. S.; Mnajja, A.

    2012-04-01

    The Conservation of coastal wetlands in the Mediterranean area is generally faced with development issues. It is the case of Tunisia where the precipitation is irregular in time and space. For the equity of water use (drinking, irrigation), there is a planning at the national level allowing the possibility of water transfer from regions rich in water resources to poor ones. This plan was initially done in Tunisia without taking into account the wetlands ecosystems and their specificities. The main purpose of this study is to find a model able to integrate simultaneously available resources and various water demands within a watershed by taking into account the durability of related wetland ecosystems. It is the case of the Ichkeul basin. This later is situated in northern of Tunisia, having an area of 2080 km2 and rainfall of about 600 mm/year. Downstream this basin, the Ichkeul Lake is characterized by a double alternation of seasonal high water and low salinity in winter and spring and low water levels and high salinity in summer and autumn that makes the Ichkeul an exceptional ecosystem. The originality of this hydrological system of Lake-marsh conditions is related to the presence of aquatic vegetation in the lake and special rich and varied hygrophilic in the marshes that constitutes the main source of food for large migrating water birds. After the construction of three dams on the principle rivers that are feeding the Ichkeul Lake, aiming particularly to supply the local irrigation and the drinking water demand of cities in the north and the east of Tunisia, freshwater inflow to the lake is greatly reduced causing a hydrological disequilibrium that influences the ecological conditions of the different species. Therefore, to ensure the sustainability of the water resources management, it's important to find a trade off between the existing hydrological and ecological systems taking into account water demands of various users (drinking, irrigation fishing, and ecosystem sustainability). All these particularities of the Ichkeul watershed are modeled through the use of WEAP model (Water Evaluation and planning system). This model aims to incorporate supply, demand, water quality and ecological considerations into a practical yet robust tool for integrated water resources planning. For surface water supply, WEAP requires among other data head flow, and evaporation rate for every reach. For quantifying demands, a GIS water resources and uses was implemented on the watershed. Many studies were done to prepare the input data. WEAP results show that the pressure on Ichkeul water resources is increasing leading to greater problems of unsatisfied demand. Different solutions were tested and evaluated. This study illustrates that WEAP offers the possibility to compare several scenarios of water management concerning dams, aquifers and demands. Therefore it could be used to negotiate and discuss water sharing between all stakeholders to improve integrated water resources management.

  10. The energy cost of water independence: the case of Singapore.

    PubMed

    Vincent, Lenouvel; Michel, Lafforgue; Catherine, Chevauché; Pauline, Rhétoré

    2014-01-01

    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency.

  11. Evaluating a novel tiered scarcity adjusted water budget and pricing structure using a holistic systems modelling approach.

    PubMed

    Sahin, Oz; Bertone, Edoardo; Beal, Cara; Stewart, Rodney A

    2018-06-01

    Population growth, coupled with declining water availability and changes in climatic conditions underline the need for sustainable and responsive water management instruments. Supply augmentation and demand management are the two main strategies used by water utilities. Water demand management has long been acknowledged as a least-cost strategy to maintain water security. This can be achieved in a variety of ways, including: i) educating consumers to limit their water use; ii) imposing restrictions/penalties; iii) using smart and/or efficient technologies; and iv) pricing mechanisms. Changing water consumption behaviours through pricing or restrictions is challenging as it introduces more social and political issues into the already complex water resources management process. This paper employs a participatory systems modelling approach for: (1) evaluating various forms of a proposed tiered scarcity adjusted water budget and pricing structure, and (2) comparing scenario outcomes against the traditional restriction policy regime. System dynamics modelling was applied since it can explicitly account for the feedbacks, interdependencies, and non-linear relations that inherently characterise the water tariff (price)-demand-revenue system. A combination of empirical water use data, billing data and customer feedback on future projected water bills facilitated the assessment of the suitability and likelihood of the adoption of scarcity-driven tariff options for a medium-sized city within Queensland, Australia. Results showed that the tiered scarcity adjusted water budget and pricing structure presented was preferable to restrictions since it could maintain water security more equitably with the lowest overall long-run marginal cost. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Development of an Integrated Agricultural Planning Model Considering Climate Change

    NASA Astrophysics Data System (ADS)

    Santikayasa, I. P.

    2016-01-01

    The goal of this study is to develop an agriculture planning model in order to sustain the future water use under the estimation of crop water requirement, water availability and future climate projection. For this purpose, the Citarum river basin which is located in West Java - Indonesia is selected as the study area. Two emission scenarios A2 and B2 were selected. For the crop water requirement estimation, the output of HadCM3 AOGCM is statistically downscale using SDSM and used as the input for WEAP model developed by SEI (Stockholm Environmental Institute). The reliability of water uses is assessed by comparing the irrigation water demand and the water allocation for the irrigation area. The water supply resources are assessed using the water planning tool. This study shows that temperature and precipitation over the study area are projected to increase in the future. The water availability was projected to increase under both A2 and B2 emission scenarios in the future. The irrigation water requirement is expected to decrease in the future under A2 and B2 scenarios. By comparing the irrigation water demand and water allocation for irrigation, the reliability of agriculture water use is expected to change in the period of 2050s and 2080s while the reliability will not change in 2020s. The reliability under A2 scenario is expected to be higher than B2 scenario. The combination of WEAP and SDSM is significance to use in assessing and allocating the water resources in the region.

  13. Integrated Energy-Water Planning in the Western and Texas Interconnections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidwell, Vincent; Gasper, John; Goldstein, Robert

    2013-07-29

    While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. An integrated Energy-Water Decision Support System (DSS) is being developed that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water availability and cost for long-range transmission planning. The project brings together electric transmission planners (Western Electricity Coordinating Council and Electric Reliabilitymore » Council of Texas) with western water planners (Western Governors’ Association and the Western States Water Council). This paper lays out the basic framework for this integrated Energy-Water DSS.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operationalmore » water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.« less

  15. Scenario analysis for sustainable development of Chongming Island: water resources sustainability.

    PubMed

    Ni, Xiong; Wu, Yanqing; Wu, Jun; Lu, Jian; Wilson, P Chris

    2012-11-15

    With the socioeconomic and urban development of Chongming Island (the largest alluvial island in the world), water demand is rapidly growing. To make adjustments to the water utilization structure of each industry, allocate limited water resources, and increase local water use efficiency, this study performed a scenario analysis for the water sustainability of Chongming Island. Four different scenarios were performed to assess the water resource availability by 2020. The growth rate for water demand will be much higher than that of water supply under a serious situation prediction. The water supply growth volume will be 2.22 × 10(8)m(3) from 2010 to 2020 under Scenario I and Scenario II while the corresponding water demand growth volume will be 2.74 × 10(8)m(3) and 2.64 × 10(8)m(3), respectively. There will be a rapid growth in water use benefit under both high and low development modes. The water use benefit will be about 50 CNY/m(3) under Scenarios I and II in 2020. The production structure will need to be adjusted for sustainable utilization of water resources. Sewage drainage but not the forest and grass coverage rate will be a major obstacle to future development and environmental quality. According to a multi-level fuzzy comprehensive evaluation, Scenario II is finally deemed to be the most desirable plan, suggesting that the policy of rapid socioeconomic development and better environmental protection may achieve the most sustainable development of Chongming Island in the future. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Agent-based Modeling to Simulate the Diffusion of Water-Efficient Innovations and the Emergence of Urban Water Sustainability

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Giacomoni, M.; Shafiee, M. E.; Berglund, E.

    2014-12-01

    The sustainability of water resources is threatened by urbanization, as increasing demands deplete water availability, and changes to the landscape alter runoff and the flow regime of receiving water bodies. Utility managers typically manage urban water resources through the use of centralized solutions, such as large reservoirs, which may be limited in their ability balance the needs of urbanization and ecological systems. Decentralized technologies, on the other hand, may improve the health of the water resources system and deliver urban water services. For example, low impact development technologies, such as rainwater harvesting, and water-efficient technologies, such as low-flow faucets and toilets, may be adopted by households to retain rainwater and reduce demands, offsetting the need for new centralized infrastructure. Decentralized technologies may create new complexities in infrastructure and water management, as decentralization depends on community behavior and participation beyond traditional water resources planning. Messages about water shortages and water quality from peers and the water utility managers can influence the adoption of new technologies. As a result, feedbacks between consumers and water resources emerge, creating a complex system. This research develops a framework to simulate the diffusion of water-efficient innovations and the sustainability of urban water resources, by coupling models of households in a community, hydrologic models of a water resources system, and a cellular automata model of land use change. Agent-based models are developed to simulate the land use and water demand decisions of individual households, and behavioral rules are encoded to simulate communication with other agents and adoption of decentralized technologies, using a model of the diffusion of innovation. The framework is applied for an illustrative case study to simulate water resources sustainability over a long-term planning horizon.

  17. Hydrogeology and ground-water resources of Ngatik Island, Sapwuahfik Atoll, State of Pohnpei, Federated States of Micronesia

    USGS Publications Warehouse

    Anthony, S.S.

    1996-01-01

    The lens of fresh ground water on Ngatik Island contains about 509 million gallons of potable water. Recharge to the freshwater lens is estimated to be 990,000 gallons per day on the basis of an estimated mean annual rainfall of 160 inches. The long-term average sustainable yield is estimated to be about 280,000 gallons per day. The estimated demand for water is about 30,000 gallons per day. Shallow-vertical-tube-wells or horizontal-infiltration wells could be used to develop the freshwater lens. The effect of development on the lens can be determined by monitoring the chloride concentration of water from a network of shallow-water-table wells and deep driven wells. The ground-water resource on Ngatik can be used in conjunction with individual rainwater-catchment systems: rainwater can be used for drinking and cooking and ground water can be used for sanitary purposes. When rainwater- catchment systems fail during extended dry periods, ground water would be available to meet the total demand.

  18. Hydrogeology and ground-water resources of Pingelap Island, Pingelap Atoll, State of Pohnpei, Federated States of Micronesia

    USGS Publications Warehouse

    Anthony, S.S.

    1996-01-01

    The lens of fresh ground water on Pingelap Island, Pingelap Atoll contains about 384 million gallons of potable water. Recharge to the freshwater lens is estimated to be 230,000 gallons per day on the basis of an average annual rainfall of 160 inches. The long-term average sustainable yield is estimated to be about 69,000 gallons per day. The estimated demand for water is about 50,000 gallons per day. Shallow-vertical-tube wells or horizontal-infiltration wells could be used to develop the freshwater lens. The effect of development on the lens can be determined by monitoring the chloride concentration of water from a network of shallow-water-table wells and deep driven wells. The ground-water resource on Pingelap can be used in conjunction with individual rainwater-catchment systems: rainwater can be used for drinking and cooking, and ground water can be used for sanitary uses. When rainwater-catchment systems fail during extended dry periods, ground water would be available to meet the total demand.

  19. Hydrogeology and ground-water resources of Kahlap Island, Mwoakilloa Atoll, State of Pohnpei, Federated States of Micronesia

    USGS Publications Warehouse

    Anthony, S.S.

    1996-01-01

    The lens of fresh ground water on Kahlap Island contains about 21.3 million gallons of potable water. Recharge to the freshwater lens is estimated to be 125,000 gallons per day on the basis of a mean annual rainfall of 120 inches. The long-term average sustainable yield is estimated to be about 17,300 gallons per day. The estimated demand for water is about 13,500 gallons per day. Shallow-vertical-tube wells or horizontal- infiltration wells could be used to develop the freshwater lens. The effect of development on the lens can be determined by monitoring the chloride concentration of water from a network of shallow- water-table and deep driven wells. The ground- water resource on Kahlap can be used in conjunc- tion with individual rainwater-catchment systems: rainwater can be used for drinking and cooking, and ground water can be used for sanitary uses. When rainwater-catchment systems fail during extended dry periods, ground water would be available to meet the total demand.

  20. Global CLEWs model - A novel application of OSeMOSYS

    NASA Astrophysics Data System (ADS)

    Avgerinopoulos, Georgios; Pereira Ramos, Eunice; Howells, Mark

    2017-04-01

    Over the past years, studies that analyse Nexus issues from a holistic point of view and not energy, land or water separately have been gaining momentum. This project aims at giving insights into global issues through the application and the analysis of a global scale OSeMOSYS model. The latter -which is based on a fully open and amendable code- has been used successfully in the latest years as it has been the producing fully accessible energy models suitable for capacity building and policy making suggestions. This study develops a CLEWs (climate, land, energy and water) model with the objective of interrogating global challenges (e.g. increasing food demand) and international trade features, with policy priorities on food security, resource efficiency, low-carbon energy and climate change mitigation, water availability and vulnerability to water stress and floods, water quality, biodiversity and ecosystem services. It will for instance assess (i) the impact of water constraints on food security and human development (clean water for human use; industrial and energy water demands), as well as (ii) the impact of climate change on aggravating or relieving water problems.

  1. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analyticalmore » models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.« less

  2. Identifying water price and population criteria for meeting future urban water demand targets

    NASA Astrophysics Data System (ADS)

    Ashoori, Negin; Dzombak, David A.; Small, Mitchell J.

    2017-12-01

    Predictive models for urban water demand can help identify the set of factors that must be satisfied in order to meet future targets for water demand. Some of the explanatory variables used in such models, such as service area population and changing temperature and rainfall rates, are outside the immediate control of water planners and managers. Others, such as water pricing and the intensity of voluntary water conservation efforts, are subject to decisions and programs implemented by the water utility. In order to understand this relationship, a multiple regression model fit to 44 years of monthly demand data (1970-2014) for Los Angeles, California was applied to predict possible future demand through 2050 under alternative scenarios for the explanatory variables: population, price, voluntary conservation efforts, and temperature and precipitation outcomes predicted by four global climate models with two CO2 emission scenarios. Future residential water demand in Los Angeles is projected to be largely driven by price and population rather than climate change and conservation. A median projection for the year 2050 indicates that residential water demand in Los Angeles will increase by approximately 36 percent, to a level of 620 million m3 per year. The Monte Carlo simulations of the fitted model for water demand were then used to find the set of conditions in the future for which water demand is predicted to be above or below the Los Angeles Department of Water and Power 2035 goal to reduce residential water demand by 25%. Results indicate that increases in price can not ensure that the 2035 water demand target can be met when population increases. Los Angeles must rely on furthering their conservation initiatives and increasing their use of stormwater capture, recycled water, and expanding their groundwater storage. The forecasting approach developed in this study can be utilized by other cities to understand the future of water demand in water-stressed areas. Improving water demand forecasts will help planners understand and optimize future investments in water supply infrastructure and related programs.

  3. Assessment of Climate Change Impacts on Agricultural Water Demands and Crop Yields in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.

    2012-12-01

    Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary between crops due to plant specific sensitivities to temperature, solar radiation and the vapor pressure deficits. Shifts in the growth period to earlier in the year, shortened growth period for annual crops as well as extended fall growth can also exert important influences. Projected increases in CO2 concentrations in the late 21st century exert very significant influences on ET and yield for many crops. To characterize potential impacts and the range of uncertainty, changes in total agricultural water demands and yields were computed assuming that current crop types and acreages in 21 Central Valley regional planning areas remained constant throughout the 21st century for each of the 5 representative future climate scenarios.

  4. Estimating household water demand using revealed and contingent behaviors: Evidence from Vietnam

    NASA Astrophysics Data System (ADS)

    Cheesman, Jeremy; Bennett, Jeff; Son, Tran Vo Hung

    2008-11-01

    This article estimates the water demand of households using (1) municipal water exclusively and (2) municipal water and household well water in the capital city of Dak Lak Province in Vietnam. Household water demands are estimated using a panel data set formed by pooling household records of metered municipal water consumption and their stated preferences for water consumption contingent on hypothetical water prices. Estimates show that households using municipal water exclusively have very price inelastic demand. Households using municipal and household well water have more price elastic, but still inelastic, simultaneous water demand and treat municipal water and household well water as substitutes. Household water consumption is influenced by household water storage and supply infrastructure, income, and socioeconomic attributes. The demand estimates are used to forecast municipal water consumption by households in Buon Ma Thuot following an increase to the municipal water tariff to forecast the municipal water supply company's revenue stream following a tariff increase and to estimate the consumer surplus loss resulting from municipal water supply shortages.

  5. Addressing water resources risk in England and Wales: Long term infrastructure planning in a private, regulated industry

    NASA Astrophysics Data System (ADS)

    Turner, Sean

    2015-04-01

    Water resources planning is a complex and challenging discipline in which decision makers must deal with conflicting objectives, contested socio-economic values and vast uncertainties, including long term hydrological variability. The task is arguably more demanding in England and Wales, where private water companies must adhere to a rigid set of regulatory planning guidelines in order to justify new infrastructural investments. These guidelines prescribe a "capacity expansion" approach to planning: ensure that a deterministic measure of supply, known as "Deployable Output," meets projected demand over a 25-year planning horizon. Deployable Output is derived using a method akin to yield analysis and is commensurate with the maximum rate of supply that a water resources system can sustain without incurring failure under a simulation of historical recorded hydrological conditions. This study examines whether Deployable Output analysis is fit to serve an industry in which: water companies are seeking to invest in cross-company water transfer schemes to deal with loss of water availability brought about by European environmental legislation and an increase in demand driven by population growth; water companies are expected address potential climate change impacts through their planning activities; and regulators wish to benchmark water resource system performance across the separate companies. Of particular interest, then, is the adequacy of Deployable Output analysis as a means to measuring current and future water shortage risk and comparing across supply systems. Data from the UK National River Flow Archive are used to develop a series of hypothetical reservoir systems in two hydrologically contrasting regions -- northwest England/north Wales and Southeast England. The systems are varied by adjusting the draft ratio (ratio of target annual demand to mean annual inflow), the inflow diversity (covariance of streamflow sequences supplying the system), the strength of interconnectivity in the system (water transfer capability as proportion of demand), and the proportion of the target demand that can be drafted from climate-independent supply sources (such as plentiful groundwater supplies or desalination). The reservoir capacities are then adjusted such that all systems are perfectly and equally balanced under current design standards (Deployable Output equals demand) before being subjected to comprehensive reliability, resilience, vulnerability analysis using stochastically-derived replicates of the inflow sequences. Results indicate significant discrepancies in performance, highlighting major deficiencies with the currently-accepted planning metrics as a means to measuring and comparing water shortage risk across supply systems. These discrepancies are evident in both regions examined. The work highlights a need for a reassessment of the prescribed planning methodology to better reflect aspects of water shortage risk, particularly resilience and vulnerability.

  6. China's water shortage could shake world food security.

    PubMed

    Brown, L R; Halweil, B

    1998-01-01

    This report indicates the global concern about China's water shortages and describes basin supplies, global availability of grain, and reasons for water losses. There is little precise data on how land productivity will be affected by declines in irrigation. Reports from the "China Daily" indicate that the 1995 grain harvest in Shandong province declined by 2.7 million tons (food for 9 million people) due to water failures of the Yellow River. A delegate at the 1998 National People's Congress pointed out that rural villages nationwide had shortages of 30 billion cu. m and losses of 20 million tons of grain production. About 70% of grain harvests rely on irrigation. Water demand for residential use and industrial use is likely to increase and compete with farm use. One unlikely option is to divert irrigation water to cities as needed and import grain. The entire agricultural, energy, and industrial economies need to be made more water efficient. Agriculture will need to produce more water efficient crops and livestock products and less water intensive energy supplies. Another alternative is to divert water from one location to another. Water pricing could reinforce efficiency of use. Use of composting toilets could reduce human residential water demand. Urban capacity building should rely on separate industrial and residential wastewater systems. Investing in technologies for industry can reduce water demand among paper and steel producers. The fastest growing grain market is in North Africa and the Middle East. Trends in principal grain exporting countries with 85% of global exports indicate no growth in grain production for export since 1980.

  7. Hydrogeology of Webb County, Texas

    USGS Publications Warehouse

    Lambert, Rebecca B.

    2004-01-01

    IntroductionWebb County, in semiarid South Texas on the U.S.-Mexico border, is a region confronted by increasing stresses on natural resources. Laredo (fig. 1), the largest city in Webb County (population 193,000 in 2000), was one of the 10 fastest-growing metropolitan areas in the country during 1990-2000 (Perry and Mackun, 2001). Commercial and industrial activities have expanded throughout the region to support the maquiladora industry (manufacturing plants in Mexico) along the border and other growth as a result of the passage of the North American Free Trade Agreement. The Rio Grande currently (2002) is the primary source of public water supply for Laredo and other cities along the border in Webb County (fig. 1). Other cities, such as Bruni and Mirando City in the southeastern part of the county, rely on ground-water supplies to meet municipal demands. Increased water demand associated with development and population growth in the region has increased the need for the City of Laredo and Webb County to evaluate alternative water sources to meet future demand. Possible options include (1) supplementing the surface-water supply with ground water, and (2) applying artificial storage and recovery (ASR) technology to recharge local aquifers. These options raise issues regarding the hydraulic capability of the aquifers to store economically substantial quantities of water, current or potential uses of the resource, and possible effects on the quality of water resulting from mixing ground water with alternative source waters. To address some of these issues, the U.S. Geological Survey (USGS), in cooperation with the City of Laredo, began a study in 1996 to assess the ground-water resources of Webb County. A hydrogeologic study was conducted to review and analyze available information on the hydrogeologic units (aquifers and confining units) in Webb County, to locate available wells in the region with water-level and water-quality information from the aquifers, and to analyze the hydraulic properties of the aquifers. The purpose of this report is to document the findings of the study. The information is organized by hydrogeologic unit and presented on this and six other sheets.

  8. The science, information, and engineering needed to manage water availability and quality in 2050: Chapter 23

    USGS Publications Warehouse

    Hirsch, Robert M.

    2012-01-01

    This chapter explores four water resources issues: 1) hydrologic variability, hazards, water supply and ecosystem preservation; 2) urban landscape design; 3) non-point source water quality, and 4) climate change, resiliency, and nonstationarity. It also considers what science, technology, and engineering practice may be needed in the coming decades to sustain water supplies and ecosystems in the face of increasing stresses from a growing demand for water. Dealing with these four water resource issues in the highly uncertain future would will demand predictive models that are rooted in real-world data. In a non-stationary world, continuity of observations is crucial. All watersheds are influenced by human actions through changes in land use, water use, and climate. The focus of water planning and management between today and 2050 will depend more than ever on collection and analysis of long-term data to learn about the evolving state of the system, understanding ecosystem processes in the water and on the landscape, and finding innovative ways to manage water as a shared resource. This includes sharing water with our neighbors on the landscape, sharing with the other species that depend on water, and sharing with future generations.

  9. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Wisser, D.; Bierkens, M. F. P.

    2014-01-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive Global Reservoir and Dams data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and subnational statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and interannual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  10. Global Modeling of Withdrawal, Allocation and Consumptive Use of Surface Water and Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Wisser, D.; Bierkens, M. F.

    2014-12-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive global reservoir data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  11. Development of a Hydrologic Model to Assess the Feasibility of Water Leasing in the Middle Rio Grande Basin

    NASA Astrophysics Data System (ADS)

    Garner, C. B.; Boyle, D. P.; Lamorey, G. W.; Bassett, S. D.

    2007-12-01

    The demand for water in the southwestern United States has increased in tandem with a rapid growth of population over the past 50 years. With ever increasing demands being placed on available water supplies, improving water management becomes crucial to the sustainability of the region's water resources. The National Science Foundation (NSF) Science and Technology Center (STC) for the Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) is interested in the feasibility of water leasing as a method for more efficiently distributing water among competing users. Economists working on the project will run water leasing simulations in an auction-type environment to understand the pros and cons of water leasing in a free market system. To include hydrologic processes in the water leasing simulations, an MMS-PRMS hydrologic model was developed for a portion of the Middle Rio Grande Basin (MRGB) near Albuquerque, New Mexico. This portion of the MRGB contains a detailed network of diversions, canals, and drains that transport water through the system. In order to capture the complexity of the system, the model was developed using the highest resolution information available. In the model, each Hydrologic Response Unit (HRU) is represented as a trader. To achieve the 15 trader limit desired by economists, the model structure was simplified using two basic constraints; 1) HRUs having a common source and point of return to the river were lumped; and 2) HRUs with less than 20% agricultural land use were omitted from the auction simulations. A new Evapotranspiration (ET) module was implemented in the model to better estimate ET associated with different crops. Modules were also developed so that the end user has the flexibility to manipulate water deliveries based on crop type and land use. The MMS- PRMS model for the MRGB should help economists determine if the incentive to profit by selling or buying water can make more efficient use of the available water supply.

  12. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Flörke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; van Vliet, M. T. H.; Yillia, P.; Ringler, C.; Burek, P.; Wiberg, D.

    2016-01-01

    To sustain growing food demand and increasing standard of living, global water use increased by nearly 6 times during the last 100 years, and continues to grow. As water demands get closer and closer to the water availability in many regions, each drop of water becomes increasingly valuable and water must be managed more efficiently and intensively. However, soaring water use worsens water scarcity conditions already prevalent in semi-arid and arid regions, increasing uncertainty for sustainable food production and economic development. Planning for future development and investments requires that we prepare water projections for the future. However, estimations are complicated because the future of the world's waters will be influenced by a combination of environmental, social, economic, and political factors, and there is only limited knowledge and data available about freshwater resources and how they are being used. The Water Futures and Solutions (WFaS) initiative coordinates its work with other ongoing scenario efforts for the sake of establishing a consistent set of new global water scenarios based on the shared socio-economic pathways (SSPs) and the representative concentration pathways (RCPs). The WFaS "fast-track" assessment uses three global water models, namely H08, PCR-GLOBWB, and WaterGAP. This study assesses the state of the art for estimating and projecting water use regionally and globally in a consistent manner. It provides an overview of different approaches, the uncertainty, strengths and weaknesses of the various estimation methods, types of management and policy decisions for which the current estimation methods are useful. We also discuss additional information most needed to be able to improve water use estimates and be able to assess a greater range of management options across the water-energy-climate nexus.

  13. Modeling Global Water Use for the 21st Century: Water Futures and Solutions (WFaS) Initiative and Its Approaches

    NASA Technical Reports Server (NTRS)

    Wada, Y.; Florke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; van Vliet, M. T. H.; Yillia, P.; Ringler, C.; hide

    2016-01-01

    To sustain growing food demand and increasing standard of living, global water use increased by nearly 6 times during the last 100 years, and continues to grow. As water demands get closer and closer to the water availability in many regions, each drop of water becomes increasingly valuable and water must be managed more efficiently and intensively. However, soaring water use worsens water scarcity conditions already prevalent in semi-arid and arid regions, increasing uncertainty for sustainable food production and economic development. Planning for future development and investments requires that we prepare water projections for the future. However, estimations are complicated because the future of the world's waters will be influenced by a combination of environmental, social, economic, and political factors, and there is only limited knowledge and data available about freshwater resources and how they are being used. The Water Futures and Solutions (WFaS) initiative coordinates its work with other ongoing scenario efforts for the sake of establishing a consistent set of new global water scenarios based on the shared socio-economic pathways (SSPs) and the representative concentration pathways (RCPs). The WFaS "fast track" assessment uses three global water models, namely H08, PCR-GLOBWB, and WaterGAP. This study assesses the state of the art for estimating and projecting water use regionally and globally in a consistent manner. It provides an overview of different approaches, the uncertainty, strengths and weaknesses of the various estimation methods, types of management and policy decisions for which the current estimation methods are useful. We also discuss additional information most needed to be able to improve water use estimates and be able to assess a greater range of management options across the water-energy-climate nexus.

  14. Modeling global water use for the 21st century: Water Futures and Solutions (WFaS) initiative and its approaches

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Flörke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; van Vliet, M. T. H.; Yillia, P.; Ringler, C.; Wiberg, D.

    2015-08-01

    To sustain growing food demand and increasing standard of living, global water use increased by nearly 6 times during the last 100 years and continues to grow. As water demands get closer and closer to the water availability in many regions, each drop of water becomes increasingly valuable and water must be managed more efficiently and intensively. However, soaring water use worsens water scarcity condition already prevalent in semi-arid and arid regions, increasing uncertainty for sustainable food production and economic development. Planning for future development and investments requires that we prepare water projections for the future. However, estimations are complicated because the future of world's waters will be influenced by a combination of environmental, social, economic, and political factors, and there is only limited knowledge and data available about freshwater resources and how they are being used. The Water Futures and Solutions initiative (WFaS) coordinates its work with other on-going scenario efforts for the sake of establishing a consistent set of new global water scenarios based on the Shared Socioeconomic Pathways (SSPs) and the Representative Concentration Pathways (RCPs). The WFaS "fast-track" assessment uses three global water models, namely H08, PCR-GLOBWB, and WaterGAP. This study assesses the state of the art for estimating and projecting water use regionally and globally in a consistent manner. It provides an overview of different approaches, the uncertainty, strengths and weaknesses of the various estimation methods, types of management and policy decisions for which the current estimation methods are useful. We also discuss additional information most needed to be able to improve water use estimates and be able to assess a greater range of management options across the water-energy-climate nexus.

  15. EnviroAtlas - Domestic Water Demand by 12-Digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes domestic water demand attributes which provide insight into the amount of water currently used for indoor and outdoor residential purposes in the contiguous United States. The values are based on 2010 water demand and 2010 population distribution, and have been summarized by subwatershed, or 12-digit hydrologic unit code (HUC12). For the purposes of this metric, domestic water use includes residential uses, such as for drinking, bathing, cleaning, landscaping, and pools. Depending on the location, domestic water can be self-supplied, such as by private wells, or publicly-supplied, such as by municipalities. Sources include surface water and groundwater. Estimates are for primary residences only (i.e., excluding second homes and tourism rentals). This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. Food and Water Gaps to 2050

    NASA Astrophysics Data System (ADS)

    Grafton, Q.

    2014-12-01

    This presentation reviews the pressures, threats and risks to food availability and water based on projected global population growth to 2050. An original model, the Global Food and Water System (GWFS) Platform, is introduced and used to explore food deficits under various scenarios and also the implications for future water gaps. The GWFS platform can assess the effects of crop productivity on food production and incorporates data from 19 major food producing nations to generate a global projection of food and water gaps. Preliminary results indicate that while crop food supply is able to meet global crop food demand by 2050, this is possible only with 'input intensification' that includes increased average rates of water and fertiliser use per hectare and at least a 20% increase in average yield productivity (once and for all). Increased water withdrawals for agriculture with input intensification would, absent any increases in withdrawals in the manufacturing or household uses, would place the world very close to the limits of a safe operating space in terms overall water use by 2050. While global crop food supply can meet projected global demand with input intensification, this still results in large and growing crop food deficits to 2050 in some countries, especially in South Asia, where climate change is expected to increase variability of rainfall and, in some places, reduce overall freshwater availability. While beyond the confines of the GWFS Platform the implications of expected water withdrawals on the environment in particular locations are also briefly reviewed.

  17. A generic method for projecting and valuing domestic water uses, application to the Mediterranean basin at the 2050 horizon.

    NASA Astrophysics Data System (ADS)

    Neverre, Noémie; Dumas, Patrice

    2014-05-01

    The aim is to be able to assess future domestic water demands in a region with heterogeneous levels of economic development. This work offers an original combination of a quantitative projection of demands (similar to WaterGAP methodology) and an estimation of the marginal benefit of water. This method is applicable to different levels of economic development and usable for large-scale hydroeconomic modelling. The global method consists in building demand functions taking into account the impact of both the price of water and the level of equipment, proxied by economic development, on domestic water demand. Our basis is a 3-blocks inverse demand function: the first block consists of essential water requirements for food and hygiene; the second block matches intermediate needs; and the last block corresponds to additional water consumption, such as outdoor uses, which are the least valued. The volume of the first block is fixed to match recommended basic water requirements from the literature, but we assume that the volume limits of blocks 2 and 3 depend on the level of household equipment and therefore evolve with the level of GDP per capita (structural change), with a saturation. For blocks 1 and 2 we determine the value of water from elasticity, price and quantity data from the literature, using the point-extension method. For block 3, we use a hypothetical zero-cost demand and maximal demand with actual water costs to linearly interpolate the inverse demand function. These functions are calibrated on the 24 countries part of the Mediterranean basin using data from SIMEDD, and are used for the projection and valuation of domestic water demands at the 2050 horizon. They enable to project total water demand, and also the respective shares of the different categories of demand (basic demand, intermediate demand and additional uses). These projections are performed under different combined scenarios of population, GDP and water costs.

  18. Bibliography of publications relating to ground water in Connecticut

    USGS Publications Warehouse

    Cushman, R.V.

    1950-01-01

    In 1939, when it became necessary to curtail the work being carried on by the Works Progress Administration, cooperation was arranged between the Federal Ecological Survey and the State Water Commission to continue investigations relative to the over-development of ground-water supplies in the New Haven area. From time to time additional funds have been made available to meet growing demands by the State for data on its ground-water supplied and the present cooperative program between the U.S. Geological Survey and the State Water Commission is a continuation of the original arrangement. It is estimated that about 14 per cont of the State has been covered by recent ground-water surveys and in addition some data are available for another 20 per cent of he State.

  19. The Cauvery river basin in southern India: major challenges and possible solutions in the 21st century.

    PubMed

    Vanham, D; Weingartner, R; Rauch, W

    2011-01-01

    India is facing major challenges in its water resources management (WRM) sector. Water shortages are attributed to issues such as an explosion in population, rapid urbanization and industrialization, environmental degradation and inefficient water use, all aggravated by changing climate and its impacts on demand, supply and water quality. This paper focuses on the contemporary and future situation in the Cauvery river basin in Southern India, shared by different states, predominantly Karnataka and Tamil Nadu. As water issues largely fall under the authority of the states, inter-state water disputes have a long tradition in the Cauvery river basin. Future changes in precipitation during the two monsoon seasons will only increase these tensions. Both states depend on the arrival of these monsoon rains to water their crops and to replenish the groundwater. The paper identifies the major challenges and general possible solutions for sustainable WRM within the river basin. It synthesises the relevant literature, describes practices that should be addressed in the scope of integrated WRM--including water availability increase and demand management--and stresses the need for further quantitative analyses.

  20. Social and Structural Patterns of Drought-Related Water Conservation and Rebound

    NASA Astrophysics Data System (ADS)

    Gonzales, Patricia; Ajami, Newsha

    2017-12-01

    Water use practices and conservation are the result of complex sociotechnical interactions of political, economic, hydroclimatic, and social factors. While the drivers of water demand have been extensively studied, they have traditionally been applied to models that assume stationary relationships between these various factors, and usually do not account for potential societal changes in response to increased scarcity awareness. For example, following a period of sustained low demand such as during a drought, communities often increase water use during a hydrologically wet period, a phenomenon known as "rebounding" water use. Previous experiences show the extent of this rebound is not a straightforward function of policy and efficiency improvements, but may also reflect short-term or long-lasting change in community behavior, which are not easily captured by models that assume stationarity. In this work, we develop a system dynamics model to represent water demand as a function of both structural and social factors. We apply this model to the analysis of three diverse water utilities in the San Francisco Bay Area between 1980 and 2017, identifying drought response trends and drivers over time. Our model is consistent with empirical patterns and historical context of water use in California, and provides important insights on the rebound phenomenon that can be extended to other locations. This comparative assessment indicates that policies, public outreach, and better data availability have played a key role in raising public awareness of water scarcity, especially with the raise of the internet era in recent years.

  1. Global Water Resources Under Future Changes: Toward an Improved Estimation

    NASA Astrophysics Data System (ADS)

    Islam, M.; Agata, Y.; Hanasaki, N.; Kanae, S.; Oki, T.

    2005-05-01

    Global water resources availability in the 21st century is going to be an important concern. Despite its international recognition, however, until now there are very limited global estimates of water resources, which considered the geographical linkage between water supply and demand, defined by runoff and its passage through river network. The available studies are again insufficient due to reasons like different approaches in defining water scarcity, simply based on annual average figures without considering the inter-annual or seasonal variability, absence of the inclusion of virtual water trading, etc. In this study, global water resources under future climate change associated with several socio-economic factors were estimated varying over both temporal and spatial scale. Global runoff data was derived from several land surface models under the GSWP2 (Global Soil Wetness Project) project, which was further processed through TRIP (Total Runoff Integrated Pathways) river routing model to produce a 0.5x0.5 degree grid based figure. Water abstraction was estimated for the same spatial resolution for three sectors as domestic, industrial and agriculture. GCM outputs from CCSR and MRI were collected to predict the runoff changes. Socio-economic factors like population and GDP growth, affected mostly the demand part. Instead of simply looking at annual figures, monthly figures for both supply and demand was considered. For an average year, such a seasonal variability can affect the crop yield significantly. In other case, inter-annual variability of runoff can cause for an absolute drought condition. To account for vulnerabilities of a region to future changes, both inter-annual and seasonal effects were thus considered. At present, the study assumed the future agricultural water uses to be unchanged under climatic changes. In this connection, EPIC model is underway to use for estimating future agricultural water demand under climatic changes on a monthly basis. From the estimation of present stress level (withdrawal to resource ratio), the months between January to May was found to have the highest number of population above water stress level, while the months between June to August having lower population in stress. The regions suffering from high seasonal variability are those of Asian monsoon zone, south-central Africa and central-east part of South America. Inter-annual variability, on the other hand, is dominant mostly along the Middle-east or Sahara regions and the western part of South America and Latin America. Virtual water trading among countries was estimated on per capita basis. It shows that many Middle east countries are able to compensate their water stress significantly through virtual water trading. The overall effect of climate change on lowering of river runoff mostly affected Europe, southern part of China and Latin America. India or Central Africa have better runoff availability under changing climate, but still subject to a higher water stress because of socio-economic factors like high population growth and expected increase in rate of water uses. Decrease in population as well as saturation level of maximum water uses along most European countries, on the contrary, relaxed the pressure of lowering river runoff, causing no significant change in future stress.

  2. Methods for and estimates of 2003 and projected water use in the Seacoast Region, Southeastern New Hampshire

    USGS Publications Warehouse

    Horn, Marilee A.; Moore, Richard B.; Hayes, Laura; Flanagan, Sarah M.

    2008-01-01

    New methods were developed to estimate water use in 2003 and future water demand in 2017 and 2025 in the Seacoast region in southeastern New Hampshire, which has experienced a 37-percent population increase during 1980 to 2000. Water-use activities for which estimates were developed include water withdrawal, delivery, demand, consumptive use, release, return flow, and transfer by registered and aggregated unregistered (less than 20,000 gallons per day (gal/d)) users at the census-block and town scales. Estimates of water use rely on understanding what influences water demand and its associated consumptive use, because changes in demand and consumptive use affect withdrawal and return flow. Domestic water demand was estimated using a per capita water demand model that related metered deliveries to domestic users with census block and block-group data. The model was used to predict annual, summer, and winter per capita water-demand coefficients for each census block. Significant predictors of domestic water demand include population per housing unit, median value of owner-occupied single family homes, median year of housing construction (with 1900 as the base value), population density, housing unit density, and proportion of housing units that are in urban areas. Mean annual domestic per capita water-demand coefficient in the Seacoast region was 75 gal/d; the coefficient increased to 91 gal/d during the summer and decreased to 65 gal/d during the winter. Domestic consumptive use was estimated as the difference between annual and winter domestic water demand. Estimates of commercial and industrial water demand were based on coefficients derived from reported use and metered deliveries. Projections of water demand in 2017 and 2025 were determined by using the housing and employee projections for those years developed through a Transportation Demand Model and applying current domestic and non-domestic coefficients. Water demand in 2003 was estimated as 25.8 million gallons per day (Mgal/d), 35 percent of which was during the summer months of June, July, and August. Domestic water demand was 18.6 Mgal/d (72 percent), commercial water demand was 3.7 Mgal/d (14 percent), industrial water demand was 2.9 Mgal/d (11 percent), irrigation water demand was 0.3 Mgal/d (1 percent), and mining and aquaculture water demand was 0.2 Mgal/d (1 percent). Domestic consumptive use for the Seacoast region was 16 percent of domestic water demand, which translates to a loss of 3 Mgal/d over the entire Seacoast region. In 2003, water withdrawal was 771.2 Mgal/d, of which 742.2 Mgal/d was instream use for hydroelectric power generation and thermoelectric power cooling. The remaining 29.0 Mgal/d was withdrawn by community water systems (22.6 Mgal/d; 72 percent), domestic users (6.4 Mgal/d; 21 percent), commercial users (1.0 Mgal/d; 3 percent), industrial users (1.0 Mgal/d; 3 percent), irrigation (0.2 Mgal/d; 1 percent) and other users (less than 0.1 Mgal/d). Return flow for 2003 was 772.2 Mgal/d, of which 742.0 Mgal/d was returned following use for hydroelectric power generation and thermoelectric plant cooling. The remaining 30.2 Mgal/d was returned by community wastewater systems (20.2 Mgal/d; 68 percent), domestic users (7.8 Mgal/d; 26 percent), commercial users (1.2 Mgal/d; 3 percent), industrial users (0.8 Mgal/d; 3 percent), and other users (0.1 Mgal/d). Domestic water demand is projected to increase by 54 percent to 28.7 Mgal/d from 2003 to 2025 based on projection of future population growth. Non-domestic (commercial, industrial, irrigation, and mining) water demand is projected to increase by 66 percent to 11.8 Mgal/d from 2003 to 2025.

  3. USGS Water Data for Washington

    USGS Publications Warehouse

    ,

    2009-01-01

    The U.S. Geological Survey (USGS) has been investigating the water resources of Washington State since the latter part of the 19th century. During this time, demand for water has evolved from primarily domestic and stock needs to the current complex requirements for public-water supplies, irrigation, power generation, navigation, ecological needs, and numerous other uses. Water-resource data collected by the USGS in Washington have been, or soon will be, published by the USGS Washington Water Science Center (WAWSC) in numerous data and interpretive reports. Most of these reports are available online at the WAWSC web page http://wa.water.usgs.gov/pubs/

  4. Economic concepts to address future water supply-demand imbalances in Iran, Morocco and Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hellegers, Petra; Immerzeel, Walter; Droogers, Peter

    2013-10-01

    In Middle East and North Africa (MENA) countries, renewable groundwater and surface water supply are limited while demand for water is growing rapidly. Climate change is expected to increase water demand even further. The main aim of this paper is to evaluate the water supply-demand imbalances in Iran, Morocco and Saudi Arabia in 2040-2050 under dry, average and wet climate change projections and to show on the basis of the marginal cost and marginal value of water the optimum mix of supply-side and demand-side adjustments to address the imbalance. A hydrological model has been used to estimate the water supply-demand imbalance. Water supply and demand curves have been used to explore for which (marginal value of) water usage the marginal cost of supply-enhancement becomes too expensive. The results indicate that in the future in all cases, except in Iran under the wet climate projection, the quantity of water demanded has to be reduced considerably to address the imbalance, which is indeed what is currently happening already.

  5. Development of a Pilot Learning Module on Water Energy Nexus Using a Data-Analytic and Hypothesis-Driven Approach

    NASA Astrophysics Data System (ADS)

    Eldardiry, H. A.; Unruh, H. G., Sr.; Habib, E. H.; Tidwell, V. C.

    2016-12-01

    Recent community initiatives have identified key foundational knowledge gaps that need to be addressed before transformative solutions can be made in the area of Food, Energy and Water (FEW) nexus. In addition, knowledge gaps also exist in the area of FEW education and needs to be addressed before we can make an impact on building the next generation FEW workforces. This study reports on the development of a pilot learning-module that focuses on two elements of the FEW nexus, Energy and Water. The module follows an active-learning approach to develop a set of student-centered learning activities using FEW datasets situated in real-world settings in the contiguous US. The module is based on data-driven learning exercises that incorporate different geospatial layers and manipulate datasets at a watershed scale representing the eight-digit Hydrologic Unit Code (HUC8). Examples of such datasets include water usage by different demand sectors (available from the US Geological Survey, USGS), and power plants stratified by energy source, cooling technology, and plant capacity (available from the US Energy Information Administration, EIA). The module is structured in three sections: (1) introduction to the water and energy systems, (2) quantifying stresses on water system at a catchment scale, and (3) scenario-based analysis on the interdependencies in the water-energy systems. Following a data-analytic framework, the module guides students to make different assumptions about water use growth rates and see how these new water demands will impinge on freshwater supplies. The module engages students in analysis that examines how thermoelectric water use would depend on assumptions about future demand for electricity, power plant fuel source, cooling type, and carbon sequestration. Students vary the input parameters, observe and assess the effect on water use, and address gaps via non-potable water resources (e.g., municipal wastewater). The module is implemented using a web-based platform where datasets, lesson contents, and student learning activities are presented within a geo-spatial context. The presentation will share insight on how the dynamics of FEW systems can be taught using meaningful educational experiences that promote students' understanding of FEW systems and their complex inter-connections.

  6. Cactus, Riparian Habitat, and Turf Grass: Water Budget and Policy Implications of Vegetation Change Under Urban Heat Island and Effluent Irrigation in the Southwest U.S.

    NASA Astrophysics Data System (ADS)

    Scott, C. A.

    2008-12-01

    This paper assesses the impacts of two urban growth drivers--urban heat island (UHI) and effluent irrigation--on the landscaping vegetation component of water budgets in semi-arid southern Arizona, and has policy significance for other urbanizing regions facing water scarcity. Landscaping irrigation, accounting for up to half of the study area's urban water demand, is influenced by vegetation type, UHI temperature and evapotranspiration, and water type (potable or effluent). Conservation programs that have resulted in widespread adoption of low-flow indoor plumbing fixtures and appliances currently identify irrigation of lawns, trees, and other landscaping as targets to reduce water use. At the same time, however, high water-demand turf grass is expanding on golf courses, public parks, and campuses that are irrigated using effluent that historically has supported riparian corridor habitat. Tucson, Arizona's UHI over 1969-2006 is characterized by a 0.043 degC/yr increase in annual average differences between urban - nonurban minimum temperatures (Tmin). The most pronounced trends in urban Tmin increases are 0.097 degC/yr for the months of March, April, May, and June corresponding to the pre- monsoon period of highest outdoor water demand. The UHI Tmax and reference evapotranspiration trends are less marked but indicate increasing irrigation demand for both residential and public landscaping. Normalized difference vegetation index (NDVI) from Landsat Thematic Mapper for 1984-2005 shows that vegetation, particularly turf on golf courses, is increasing in Tucson's expanding urban fringe but has largely stabilized or is marginally decreasing in the urban core. Regression analysis of NDVI with water use (records only available for 2000-2006) shows mixed results. The tradeoff between water conservation for residential landscaping and expanding turf grass on public landscaping at the cost of riparian corridors is explored from dual water budget and policy perspectives.

  7. Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Baltar, Federico; Arístegui, Javier; Sintes, Eva; Gasol, Josep M.; Reinthaler, Thomas; Herndl, Gerhard J.

    2010-05-01

    It is generally assumed that sinking particulate organic carbon (POC) constitutes the main source of organic carbon supply to the deep ocean's food webs. However, a major discrepancy between the rates of sinking POC supply (collected with sediment traps) and the prokaryotic organic carbon demand (the total amount of carbon required to sustain the heterotrophic metabolism of the prokaryotes; i.e., production plus respiration, PCD) of deep-water communities has been consistently reported for the dark realm of the global ocean. While the amount of sinking POC flux declines exponentially with depth, the concentration of suspended, buoyant non-sinking POC (nsPOC; obtained with oceanographic bottles) exhibits only small variations with depth in the (sub)tropical Northeast Atlantic. Based on available data for the North Atlantic we show here that the sinking POC flux would contribute only 4-12% of the PCD in the mesopelagic realm (depending on the primary production rate in surface waters). The amount of nsPOC potentially available to heterotrophic prokaryotes in the mesopelagic realm can be partly replenished by dark dissolved inorganic carbon fixation contributing between 12% to 72% to the PCD daily. Taken together, there is evidence that the mesopelagic microheterotrophic biota is more dependent on the nsPOC pool than on the sinking POC supply. Hence, the enigmatic major mismatch between the organic carbon demand of the deep-water heterotrophic microbiota and the POC supply rates might be substantially smaller by including the potentially available nsPOC and its autochthonous production in oceanic carbon cycling models.

  8. Modeling and managing urban water demand through smart meters: Benefits and challenges from current research and emerging trends

    NASA Astrophysics Data System (ADS)

    Cominola, A.; Giuliani, M.; Castelletti, A.; Piga, D.; Rizzoli, A. E.

    2015-12-01

    Urban population growth, climate and land use change are expected to boost residential water demand in urban contexts in the next decades. In such a context, developing suitable demand-side management strategies is essential to meet future water demands, pursue water savings, and reduce the costs for water utilities. Yet, the effectiveness of water demand management strategies (WDMS) relies on our understanding of water consumers' behavior, their consumption habits, and the water use drivers. While low spatial and temporal resolution water consumption data, as traditionally gathered for billing purposes, hardly support this understanding, the advent of high-resolution, smart metering technologies allowed for quasi real-time monitoring water consumption at the single household level. This, in turn, is advancing our ability in characterizing consumers' behavior, modeling, and designing user-oriented residential water demand management strategies. Several water smart metering programs have been rolled-out in the last two decades worldwide, addressing one or more of the following water demand management phases: (i) data gathering, (ii) water end-uses characterization, (iii) user modeling, (iv) design and implementation of personalized WDMS. Moreover, the number of research studies in this domain is quickly increasing and big economic investments are currently being devoted worldwide to smart metering programs. With this work, we contribute the first comprehensive review of more than 100 experiences in the field of residential water demand modeling and management, and we propose a general framework for their classification. We revise consolidated practices, identify emerging trends and highlight the challenges and opportunities for future developments given by the use of smart meters advancing residential water demand management. Our analysis of the status quo of smart urban water demand management research and market constitutes a structured collection of information supporting the development of integrated procedures in the field of urban water management, as well as common actions aiding the collaboration with other sectors, as the nexus with energy demand management.

  9. Water requirements of selected industries

    USGS Publications Warehouse

    ,; Mussey, Orville D.; Conklin, Howard L.; Durfor, Charles N.; Otts, Louis Ethelbert; Walling, Faulkner B.

    1955-01-01

    The early industries in America generally were established when and where demands for the products of industry arose. Most of the early industries were so located that their increasing requirements for transportation, raw materials, market, labor, and water supply could be satisfied economically. Many of these original plant locations have continued as modern industrial centers and their output has increased manyfold in meeting the demands of our growing Nation. The recent and current industrial expansion and the trend toward the growth of chemical industries, many Of which are heavy users of water, has resulted in a tremendous increase in the total withdrawal of water for industrial use as well as a large increase in the per capita use of water. This increase in industrial water requirement has strained the capacity of the developed water supplies in many areas, and in some instances the adequacy of the potential water supplies is questionable. The Geological Survey is engaged in preparing and publishing a series of reports describing the developed and undeveloped water resources of many important industrial areas. This work was started initially at the request of the National Securities Resources Board as a means to insure that water supplies are adequate for our rapidly expanding industrial development. Although many factors contribute to establishing the feasibility or even the limits of future industrial development, the one relating to available water supply is extremely important. A knowledge of the water requirements of various industries is valuable therefore in planning the logical development in any area where water supply is a critical factor. Thus far very little suitable information on the water requirements of our major industries is available for general planning. An inventory of unit water-use values in industry therefore would be generally helpful and also might tend to stimulate water-conservation methods. To obtain such information, investigations

  10. Constraints and potential for efficient inter-sectoral water allocations in Tanzania

    NASA Astrophysics Data System (ADS)

    Kashaigili, Japhet J.; Kadigi, Reuben M. J.; Sokile, Charles S.; Mahoo, Henry F.

    In many sub-Saharan African countries, there are conflicts over water uses in most river basins. In Tanzania, conflicts are becoming alarming and are exacerbated by increasing water demands due to rapid population growth and expanding economic activities. This paper reviews the major constraints and potential for achieving efficient systems of allocating water resources to different uses and users in Tanzania. The following constraints are identified: (a) the lack of active community involvement in management of water resources, (b) conflicting institutions and weak institutional capacities both in terms of regulations and protection of interests of the poor, (c) the lack of data and information to inform policy and strategies for balanced water allocation, and (d) inadequate funds for operation, maintenance and expansion of water supply systems. Despite these constraints, there are also opportunities for improving water allocation and management systems in the country. These include: the available reserve of both surface and groundwater resources, which remain unexploited; high demand for water services; a high potential for investing in the water sector; and availability of basic infrastructure and elements of institutional framework that can be improved. The paper recommends the use of combined variants of water allocation devices which (a) meet different water requirements and ensure desirable multiple-use outcomes, (b) facilitate the classification of water resources in terms of desired environmental protection levels, (c) allow reforms in water utilization to achieve equity and meet changing social and economic priorities, (d) facilitate the development of effective local institutions, (e) put in place the legal system that assigns rights to water resources and describes how those rights may be transferred, (f) enforce the rights and punish infringements on those rights, and (g) use cost-effective pricing systems to ensure that payment for water uses cover development, operational and management costs.

  11. Modeling water demand when households have multiple sources of water

    NASA Astrophysics Data System (ADS)

    Coulibaly, Lassina; Jakus, Paul M.; Keith, John E.

    2014-07-01

    A significant portion of the world's population lives in areas where public water delivery systems are unreliable and/or deliver poor quality water. In response, people have developed important alternatives to publicly supplied water. To date, most water demand research has been based on single-equation models for a single source of water, with very few studies that have examined water demand from two sources of water (where all nonpublic system water sources have been aggregated into a single demand). This modeling approach leads to two outcomes. First, the demand models do not capture the full range of alternatives, so the true economic relationship among the alternatives is obscured. Second, and more seriously, economic theory predicts that demand for a good becomes more price-elastic as the number of close substitutes increases. If researchers artificially limit the number of alternatives studied to something less than the true number, the price elasticity estimate may be biased downward. This paper examines water demand in a region with near universal access to piped water, but where system reliability and quality is such that many alternative sources of water exist. In extending the demand analysis to four sources of water, we are able to (i) demonstrate why households choose the water sources they do, (ii) provide a richer description of the demand relationships among sources, and (iii) calculate own-price elasticity estimates that are more elastic than those generally found in the literature.

  12. Evaluating options for balancing the water-electricity nexus in California: part 1--securing water availability.

    PubMed

    Tarroja, Brian; AghaKouchak, Amir; Sobhani, Reza; Feldman, David; Jiang, Sunny; Samuelsen, Scott

    2014-11-01

    The technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions were compared. Part 1 of the study focused on determining the scale of the options required to secure water availability and compared the effectiveness of different options. A spatially and temporally resolved model of California's major surface reservoirs was developed, and its sensitivity to urban water conservation, desalination, and water reuse was examined. Potential capacities of the different options were determined. Under historical (baseline) hydrology conditions, many individual options were found to be capable of securing water availability alone. Under climate change augment conditions, a portfolio approach was necessary. The water savings from many individual options other than desalination were insufficient in the latter, however, relying on seawater desalination alone requires extreme capacity installations which have energy, brine disposal, management, and cost implications. The importance of identifying and utilizing points of leverage in the system for choosing where to deploy different options is also demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Quantifying Water Stress Using Total Water Volumes and GRACE

    NASA Astrophysics Data System (ADS)

    Richey, A. S.; Famiglietti, J. S.; Druffel-Rodriguez, R.

    2011-12-01

    Water will follow oil as the next critical resource leading to unrest and uprisings globally. To better manage this threat, an improved understanding of the distribution of water stress is required today. This study builds upon previous efforts to characterize water stress by improving both the quantification of human water use and the definition of water availability. Current statistics on human water use are often outdated or inaccurately reported nationally, especially for groundwater. This study improves these estimates by defining human water use in two ways. First, we use NASA's Gravity Recovery and Climate Experiment (GRACE) to isolate the anthropogenic signal in water storage anomalies, which we equate to water use. Second, we quantify an ideal water demand by using average water requirements for the domestic, industrial, and agricultural water use sectors. Water availability has traditionally been limited to "renewable" water, which ignores large, stored water sources that humans use. We compare water stress estimates derived using either renewable water or the total volume of water globally. We use the best-available data to quantify total aquifer and surface water volumes, as compared to groundwater recharge and surface water runoff from land-surface models. The work presented here should provide a more realistic image of water stress by explicitly quantifying groundwater, defining water availability as total water supply, and using GRACE to more accurately quantify water use.

  14. Simulation of the water balance of boreal watersheds of northeastern British Columbia, Canada using MIKE SHE, an integrated hydrological model

    NASA Astrophysics Data System (ADS)

    Abadzadesahraei, S.; Déry, S.; Rex, J. F.

    2016-12-01

    Northeastern British Columbia (BC) is undergoing rapid development for oil and gas extraction, largely depending on subsurface hydraulic fracturing (fracking), which relies on available freshwater. Even though this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. Further, BC statistics predict that the northeastern region's population will increase by 30% over the next 25 years, thereby amplifying the demands of domestic and industrial water usage. Hence, given the increasing demands for surface water in the complex wetlands of northeastern BC, obtaining accurate long-term water balance information is of vital importance. Thus, this study aims to simulate the 1979-2014 water balance at two boreal watersheds using the MIKE SHE model. More specifically, this research intends to quantify the historical, and regional, water budgets and their associated hydrological processes at two boreal watersheds—the Coles Lake and Tsea Lake watersheds—in northeastern BC. The development of coupled groundwater and surface water model of these watersheds are discussed. The model setup, calibration process, and results are presented, focusing on the water balance of boreal watersheds. Hydrological components within these watersheds are quantified through a combination of intensive fieldwork, observational data, analysis and numerical modeling. The output from the model provides important information for decision makers to manage water resources in northeastern BC. Keywords: Northeastern BC; boreal watershed; water balance; MIKE SHE hydrological model.

  15. Prescribing for water sports.

    PubMed

    Legerton, J A

    1993-01-01

    Recreation is a dynamic aspect of modern day life. Providing the ametropic patient with equal access to recreation fulfills the mission of the eye care professional. The astute practitioner must balance the ethical values of prescribing in the best interest of the patient with the desire to do no harm. Knowledge of the demands presented by water sports and of the risks presented by the aqueous environment must be balanced with an understanding of available contact lenses, proper regimens for lens wear and care, and the appropriate use of available protective eyewear. Patient education and instruction is also necessary for the management of risk and to optimize the benefits of vision correction for water sports.

  16. Evaluating the hydrological functioning and the supply of water provisioning services to support the ecosystem-water-food-energy nexus in the Arno river basin

    NASA Astrophysics Data System (ADS)

    Pacetti, Tommaso; Willaarts, Barbara; Caporali, Enrica; Schroeder Esselbach, Boris

    2017-04-01

    Water, flowing in a basin, underpins key provisioning ecosystem services like freshwater supply, food and energy production. River basin management largely determines the type of water-related ecosystem services (WES) that are provided and the extent to which trade-offs and synergies might arise. Gaining insights on the ecohydrological behavior of a basin and on the conflicting anthropic pressures on the available water resources allows to identify the most important WES, as well as the existence of WES supply and demand hotspots. This information is crucial for water resources management and, in the context of the European Union, also required to comply with the requirements of the Water Framework Directive (WFD). The purpose of this research is to quantify the provisioning WES in the upstream part of the Arno river basin (Central Italy) and identify WES hotspots and fluxes. Current information on how water is allocated in the Arno basin remains scarce, despite the increasing water demand by some sectors, particularly irrigation, and a number of emerging conflicts among users. It is expected that research outputs can support the improvement of the existing management framework, moving from the classical DPSIR (Driving forces, Pressure, State, Impact e Response) approach, where impacts must be reduced or mitigated, to a more proactive framework to support the sustainability of the Arno basin and meet the different policy goals. The eco-hydrological model SWAT (Soil Water Assessment Tool) is applied to spatially quantify the provision of WES. The preliminary results of this research indicate that the highest amount of water yield, i.e. net amount of water that contributes to streamflow and represents the main blue water fund, originates in the northern part of the basin, characterized by forest areas. In contrast, the southern part of the basin, which is mainly agriculturally used, gives a minor contribution to the overall water yield, in direct proportion to the precipitation. In order to highlight the role of green water in irrigated land, potential green water funds are also estimated on the basis of the available soil water content simulated by SWAT. The water provisioning for the different sectorial uses, which represent the actual flow of the ecosystem services, have been estimated for every sector at the subbasin or municipality scale: agriculture is the most water intensive sector followed by industrial, domestic and hydropower water use. Comparing the water withdrawals and the water yield, WES supply (mainly located in the northern part of the basin) and demand hotspots (mainly in the central and southern part of the basin) are identified. This analysis framework highlights WES fluxes that connect supply and demand areas and supports the understanding of the tradeoffs between different water users, aiming at the improvement of the WES provision within the water resources system.

  17. Regional Water System Vulnerabilities and Strengths for Unavoidable Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.; Palaniappan, M.; Christian-Smith, J.; Cooley, H.

    2011-12-01

    A wide range of options are available to help water systems prepare and adapt for unavoidable climate impacts, but these options vary depending on region, climatic conditions, economic status, and technical infrastructure in place. Drawing on case studies from the United States, India, and elsewhere, and from both urban and agricultural water systems, risks to water supply and quality are evaluated and summarized and categories of responses to help improve the effectiveness of adaptation policies are reviewed. Among the issues to be discussed are characteristics unique to developing country cities, such as the predominance of informal actors in the water sector. The formal, or government sector, which often exclusively manages water access and distribution in developed country cities, is only one among many players in the water sector in developing country cities. Informal access to water includes direct access by individuals through private groundwater systems, private water markets using vendors or sales of bottled water, and rainwater harvesting systems on individual homes. In this environment, with already existing pressures on water availability and use, the impacts of climate change on water will be strongly felt. This complicates planning for water supply and demand and risks increasing already prevalent water insecurity, especially for urban poor. In wealthier countries, any planning for water-related climate impacts tends to take the form of "business as usual" responses, such as efforts to expand supply with new infrastructure, manage demand through conservation programs, or simply put off addressing the problem to the next generation of managers and users. These approaches can be effective, but also risk missing unusual, non-linear, or threshold impacts. Examples of more informed and innovative efforts to substantively address climate change risks will be presented.

  18. Modeling the Dynamic Water Resource Needs of California's Coastal Watersheds

    NASA Astrophysics Data System (ADS)

    Alford, C.

    2009-12-01

    Many watersheds face formidable water supply challenges when it comes to managing water availability to meet diverse water supply and ecosystem management objectives. California’s central coast watersheds are no exception, and both the scarcity of water resources during drier water years and mandates to establish minimum instream flows for salmon habitat have prompted interests in reassessing water management strategies for several of these watersheds. Conventional supply-oriented hydrologic models, however, are not adequate to fully investigate and describe the reciprocal implications of surface water demands for human use and the maintenance of instream flows for salmon habitat that vary both temporally and spatially within a watershed. In an effort to address this issue I developed a coastal watershed management model based on the San Gregorio watershed utilizing the Water Evaluation and Planning (WEAP) system, which permits demand-side prioritization at a time step interval and spatial resolution that captures functional supply and demand relationships. Physiographic input data such as soil type, land cover, elevation, habitat, and water demand sites were extrapolated at a sub-basin level in a GIS. Time-series climate data were collected and processed utilizing the Berkeley Water Center Data Cube at daily time steps for the period 1952 through September 2009. Recent synoptic flow measurements taken at seven tributary sites during the 2009 water year, water depth measured by pressure transducers at six sites within the watershed from September 2005 through September 2009, and daily gauge records from temporary gauges installed in 1981 were used to assess the hydrologic patterns of sub-basins and supplement historic USGS gauge flow records. Empirical functions were used to describe evapotranspiration, surface runoff, sub-surface runoff, and deep percolation. Initial model simulations carried out under both dry and wet water year scenarios were able to capture representative hydrological conditions in both the sample watershed case and an initial test case that utilized base data from a watershed with minimal land disturbance. Results from this study provide valuable insight into the effects of water use through a variety of climactic conditions and provide potential strategies for policy makers, regulators, and stakeholders to strengthen adaptive capacity to achieve sustainable water use within coastal watersheds.

  19. Potable water for a city: a historic perspective from Bruges, Belgium

    NASA Astrophysics Data System (ADS)

    Vandenbohede, A.; Vandevyvere, E.

    2014-06-01

    Contributing to the optimisation of drinking-water supplies is a key responsibility for professional hydrogeologists. Thus, it is interesting to look back and put current-day practices in the framework of historic evolution and past achievements. The water supply of Bruges (Belgium), with an innovative supply system already established by the end of the 13th century, forms an interesting case study. The supply system consisted of an underground network of pipes feeding public and private wells. A special construction, the Water House, was built to overcome a topographical height difference. Population growth and industrial expansion during the 19th century increased the water demand and new solutions were necessary. Tap water became available from 1925 onwards and, as a stopgap measure to meet demand, deep groundwater was used. This invoked a lively debate among the city council, scientists and entrepreneurs, whereby both water quality and quantity were discussed. Although based on a lack of modern understanding of the groundwater system, some arguments, both pro or contra, look very familiar to current-day hydrogeologists.

  20. Residential water demand model under block rate pricing: A case study of Beijing, China

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yang, Z. F.

    2009-05-01

    In many cities, the inconsistency between water supply and water demand has become a critical problem because of deteriorating water shortage and increasing water demand. Uniform price of residential water cannot promote the efficient water allocation. In China, block water price will be put into practice in the future, but the outcome of such regulation measure is unpredictable without theory support. In this paper, the residential water is classified by the volume of water usage based on economic rules and block water is considered as different kinds of goods. A model based on extended linear expenditure system (ELES) is constructed to simulate the relationship between block water price and water demand, which provide theoretical support for the decision-makers. Finally, the proposed model is used to simulate residential water demand under block rate pricing in Beijing.

  1. Modelling Per Capita Water Demand Change to Support System Planning

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Islam, S.

    2016-12-01

    Water utilities have a number of levers to influence customer water usage. These include levers to proactively slow demand growth over time such as building and landscape codes as well as levers to decrease demands quickly in response to water stress including price increases, education campaigns, water restrictions, and incentive programs. Even actions aimed at short term reductions can result in long term water usage declines when substantial changes are made in water efficiency, as in incentives for fixture replacement or turf removal, or usage patterns such as permanent lawn watering restrictions. Demand change is therefore linked to hydrological conditions and to the effects of past management decisions - both typically included in water supply planning models. Yet, demand is typically incorporated exogenously using scenarios or endogenously using only price, though utilities also use rules and incentives issued in response to water stress and codes specifying standards for new construction to influence water usage. Explicitly including these policy levers in planning models enables concurrent testing of infrastructure and policy strategies and illuminates interactions between the two. The City of Las Vegas is used as a case study to develop and demonstrate this modeling approach. First, a statistical analysis of system data was employed to rule out alternate hypotheses of per capita demand decrease such as changes in population density and economic structure. Next, four demand sub-models were developed including one baseline model in which demand is a function of only price. The sub-models were then calibrated and tested using monthly data from 1997 to 2012. Finally, the best performing sub-model was integrated with a full supply and demand model. The results highlight the importance of both modeling water demand dynamics endogenously and taking a broader view of the variables influencing demand change.

  2. Application of stakeholder-based and modelling approaches for supporting robust adaptation decision making under future climatic uncertainty and changing urban-agricultural water demand

    NASA Astrophysics Data System (ADS)

    Bhave, Ajay; Dessai, Suraje; Conway, Declan; Stainforth, David

    2016-04-01

    Deep uncertainty in future climate change and socio-economic conditions necessitates the use of assess-risk-of-policy approaches over predict-then-act approaches for adaptation decision making. Robust Decision Making (RDM) approaches embody this principle and help evaluate the ability of adaptation options to satisfy stakeholder preferences under wide-ranging future conditions. This study involves the simultaneous application of two RDM approaches; qualitative and quantitative, in the Cauvery River Basin in Karnataka (population ~23 million), India. The study aims to (a) determine robust water resources adaptation options for the 2030s and 2050s and (b) compare the usefulness of a qualitative stakeholder-driven approach with a quantitative modelling approach. For developing a large set of future scenarios a combination of climate narratives and socio-economic narratives was used. Using structured expert elicitation with a group of climate experts in the Indian Summer Monsoon, climatic narratives were developed. Socio-economic narratives were developed to reflect potential future urban and agricultural water demand. In the qualitative RDM approach, a stakeholder workshop helped elicit key vulnerabilities, water resources adaptation options and performance criteria for evaluating options. During a second workshop, stakeholders discussed and evaluated adaptation options against the performance criteria for a large number of scenarios of climatic and socio-economic change in the basin. In the quantitative RDM approach, a Water Evaluation And Planning (WEAP) model was forced by precipitation and evapotranspiration data, coherent with the climatic narratives, together with water demand data based on socio-economic narratives. We find that compared to business-as-usual conditions options addressing urban water demand satisfy performance criteria across scenarios and provide co-benefits like energy savings and reduction in groundwater depletion, while options reducing agricultural water demand significantly affect downstream water availability. Water demand options demonstrate potential to improve environmental flow conditions and satisfy legal water supply requirements for downstream riparian states. On the other hand, currently planned large scale infrastructural projects demonstrate reduced value in certain scenarios, illustrating the impacts of lock-in effects of large scale infrastructure. From a methodological perspective, we find that while the stakeholder-driven approach revealed robust options in a resource-light manner and helped initiate much needed interaction amongst stakeholders, the modelling approach provides complementary quantitative information. The study reveals robust adaptation options for this important basin and provides a strong methodological basis for carrying out future studies that support adaptation decision making.

  3. The water footprint of sweeteners and bio-ethanol.

    PubMed

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Y

    2012-04-01

    An increasing demand for food together with a growing demand for energy crops result in an increasing demand for and competition over water. Sugar cane, sugar beet and maize are not only essential food crops, but also important feedstock for bio-ethanol. Crop growth requires water, a scarce resource. This study aims to assess the green, blue and grey water footprint (WF) of sweeteners and bio-ethanol from sugar cane, sugar beet and maize in the main producing countries. The WFs of sweeteners and bio-ethanol are mainly determined by the crop type that is used as a source and by agricultural practise and agro-climatic conditions; process water footprints are relatively small. The weighted global average WF of sugar cane is 209 m(3)/tonne; for sugar beet this is 133 m(3)/tonne and for maize 1222 m(3)/tonne. Large regional differences in WFs indicate that WFs of crops for sweeteners and bio-ethanol can be improved. It is more favourable to use maize as a feedstock for sweeteners or bio-ethanol than sugar beet or sugar cane. The WF of sugar cane contributes to water stress in the Indus and Ganges basins. In the Ukraine, the large grey WF of sugar beet contributes to water pollution. In some western European countries, blue WFs of sugar beet and maize need a large amount of available blue water for agriculture. The allocation of the limited global water resources to bio-energy on a large scale will be at the cost of water allocation to food and nature. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    NASA Astrophysics Data System (ADS)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  5. Evaluating Outdoor Water Use Demand under Changing Climatic and Demographic Conditions: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Kanta, L.

    2016-12-01

    Outdoor water use for landscape and irrigation constitutes a significant end use in residential water demand. In periods of water shortages, utilities may reduce garden demands by implementing irrigation system audits, rebate programs, local ordinances, and voluntary or mandatory water use restrictions. Because utilities do not typically record outdoor and indoor water uses separately, the effects of policies for reducing garden demands cannot be readily calculated. The volume of water required to meet garden demands depends on the housing density or lawn size, type of vegetation, climatic conditions, efficiency of garden irrigation systems, and consumer water-use behaviors. Many existing outdoor demand estimation methods are deterministic and do not include consumer responses to conservation campaigns. In addition, mandatory restrictions may have a substantial impact on reducing outdoor demands, but the effectiveness of mandatory restrictions depends on the timing and the frequency of restrictions, in addition to the distribution of housing density and consumer types within a community. This research investigates a garden end-use model by coupling an agent-based modeling approach and a mechanistic-stochastic water demand model to create a methodology for estimating garden demand and evaluating demand reduction policies. The garden demand model is developed for two water utilities, using a diverse data sets, including residential customer billing records, records of outdoor conservation programs, frequency and type of mandatory water use restrictions, lot size distribution, population growth, and climatic data. A set of garden irrigation parameter values, which are based on the efficiency of irrigation systems and irrigation habits of consumers, are determined for a set of conservation ordinances and restrictions. The model parameters are then validated using customer water usage data from the participating water utilities. A sensitivity analysis is conducted for garden irrigation parameters to determine the most significant factors that should be considered by water utilities to reduce outdoor demand. Data from multiple sources and the agent-based modeling methodology are integrated using a holistic approach to assist utilities in efficiently and sustainably managing outdoor demand.

  6. Evaluating Outdoor Water Use Demand under Changing Climatic and Demographic Conditions: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Berglund, E. Z.; Soh, M. H.

    2017-12-01

    Outdoor water-use for landscape and irrigation constitutes a significant end-use in total residential water demand. In periods of water shortages, utilities may reduce garden demands by implementing irrigation system audits, rebate programs, local ordinances, and voluntary or mandatory water-use restrictions. Because utilities do not typically record outdoor and indoor water-uses separately, the effects of policies for reducing garden demands cannot be readily calculated. The volume of water required to meet garden demands depends on the housing density, lawn size, type of vegetation, climatic conditions, efficiency of garden irrigation systems, and consumer water-use behaviors. Many existing outdoor demand estimation methods are deterministic and do not include consumer responses to conservation campaigns. In addition, mandatory restrictions may have a substantial impact on reducing outdoor demands, but the effectiveness of mandatory restrictions depends on the timing and the frequency of restrictions, in addition to the distribution of housing density and consumer types within a community. This research investigates a garden end-use model by coupling an agent-based modeling approach and a mechanistic-stochastic water demand model to create a methodology for estimating garden demand and evaluating demand reduction policies. The garden demand model is developed for two water utilities, using a diverse data sets, including residential customer billing records, outdoor conservation programs, frequency and type of mandatory water-use restrictions, lot size distribution, population growth, and climatic data. A set of garden irrigation parameter values, which are based on the efficiency of irrigation systems and irrigation habits of consumers, are determined for a set of conservation ordinances and restrictions. The model parameters are then validated using customer water usage data from the participating water utilities. A sensitivity analysis is conducted for garden irrigation parameters to determine the most significant factors that should be considered by water utilities to reduce outdoor demand. Data from multiple sources and the agent-based modeling methodology are integrated using a holistic approach to assist utilities in efficiently and sustainably managing outdoor demand.

  7. Climate change impacts on food system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  8. Mapping water availability, cost and projected consumptive use in the eastern United States with comparisons to the west

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent C.; Moreland, Barbie D.; Shaneyfelt, Calvin R.; Kobos, Peter

    2018-01-01

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. With the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31 contiguous states in the eastern US complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source of water; and is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as areas of concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered ‘water rich’ roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. Little effort was noted on the part of eastern or western water managers to quantify non-fresh water resources.

  9. Applications of remote sensing to water resources

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Analyses were made of selected long-term (1985 and beyond) objectives, with the intent of determining if significant data-related problems would be encountered and to develop alternative solutions to any potential problems. One long-term objective selected for analysis was Water Availability Forecasting. A brief overview was scheduled in FY-77 of the objective -- primarily a fact-finding study to allow Data Management personnel to gain adequate background information to perform subsequent data system analyses. This report, includes discussions on some of the larger problems currently encountered in water measurement, the potential users of water availability forecasts, projected demands of users, current sensing accuracies, required parameter monitoring, status of forecasting modeling, and some measurement accuracies likely to be achievable by 1980 and 1990.

  10. Methodology to Analyse the actual and the future effect of water scarcity on the available water resources in Meguellil watershed

    NASA Astrophysics Data System (ADS)

    Oueslati, I.; Lili-Chabaane, Z.; Shabou, M.; Zribi, M.; Ben Issa, N.; chakroun, H.; Galafassi, D.; Rathwell, K.; Hoff, H.; Pizzigalli, C.

    2012-04-01

    Scarcity often has its roots in water shortage, and it is in the arid and semiarid regions affected by droughts and wide climate variability, combined with population growth and economic development, that the problems of water scarcity are most acute. The Merguellil watershed, situated in the center of Tunisia, represents exactly this state of fact where the agriculture is the main consumer with about 80% of the total water resources because of the continuous increase and intensification of irrigated area. The surface water can satisfy a very low portion of this demand; consequently, the groundwater is overexploited. The irrigation sector is divided into public and private. While the public irrigated areas are well known, the private ones are not sufficiently controlled mainly the water volumes pumped from the aquifer. Therefore, a sustainable management of all available water resources and meeting as much as possible all water demands, is crucial. To analyze the actual and future water balance of the Merguellil watershed, and to identify critical trends and thresholds and effective solutions, a WEAP (Water Evaluation and Planning system) application has been developed. It utilizes a constrained optimization algorithm to allocate water among competing demands in a basin. The year 2009 is considered as the reference one which represents the basic definition of the water system as it currently exists, and forms the foundation of all scenarios analysis. Three scenarios were compared to the reference one. The first combines between the reduction of 10% in precipitation, as it is forseen by the regional climate model RCA (driven by ECHAM5) that provides statistic data of precipitation until 2050, and the increase of 2% per year in irrigated area in the kairouan plain deduced from the land use maps dating from 1991/1992 to 2009/2010 obtained by multi dates remote sensing data. The second scenario is the application of a deficit irrigation that respects the yield reduction related to each existing crop. The third one tests the effect of the three hypotheses together on the water resources: reduction in precipitation, increase in irrigated area and deficit irrigation. Merguellil WEAP model demonstrates how different management options to face water shortage can be evaluated and compared for future climate, land use change and technology development scenarios.

  11. Ground-water hydrology of James City County, Virginia

    USGS Publications Warehouse

    Harsh, John F.

    1980-01-01

    Urbanization and increase in water demand prompted a 2-year study of groundwater availability and quality in the county of James City. The coastal-plain sediments, parts of which underlie the county, are the largest source of groundwater in Virginia. Four aquifers form the complex aquifer system. Hydraulic characteristics vary from aquifer to aquifer and from place to place. The Cretaceous aquifer furnishes nearly all the water for industrial and municipal needs. Movement of water in the Cretaceous aquifer is toward cones of depression formed by pumping centers at Williamsburg and Dow Badische Co. All aquifers contain water that generally meets State standards for drinking water. Water in the Cretaceous aquifer is of the sodium chloride bicarbonate type. As depth of aquifer increases, the concentrations of dissolved solids and chloride also increase. Saline water (more than 250 milligrams per liter) occupies the deeper parts of the confined aquifers. The amount of water stored in the coastal sediments is estimated to be 650-1300 billion gallons. An increase in pumpage to accomodate the expected daily demand of 9.8 million gallons per day in year 2000 is feasible provided pumpage is distributed over the county. (USGS)

  12. Season-ahead streamflow forecast informed tax strategies for semi-arid water rights markets

    NASA Astrophysics Data System (ADS)

    Delorit, J. D.; Block, P. J.

    2016-12-01

    In many semi-arid regions multisectoral demands stress available water supplies. The Elqui River valley of north central Chile, which draws on limited capacity reservoirs supplied largely by annually variable snowmelt, is one of these cases. This variability forces water managers to develop demand-based allocation strategies which have typically resulted in water right volume reductions, applied equally per right. Compounding this issue is often deferred or delayed infrastructure investments, which has been linked Chile's Coasian approach to water markets, under which rights holders do not pay direct procurement costs, non-use fees, nor taxes. Here we build upon our previous research using forecasts of likely water rights reductions, informed by season-ahead prediction models of October-January (austral growing season) streamflow, to construct annual, forecast-sensitive, per right tax. We believe this tax, to be borne by right holders, will improve the beneficial use of water resources by stimulating water rights trading and improving system efficiency by generating funds for infrastructure investment, thereby reducing free-ridership and conflict between rights holders. Research outputs will include sectoral per right tax assessments, tax revenue generation, Elqui River valley economic output, and water rights trading activity.

  13. Hydrologic modeling for monitoring water availability in Eastern and Southern Africa

    NASA Astrophysics Data System (ADS)

    McNally, A.; Harrison, L.; Shukla, S.; Pricope, N. G.; Peters-Lidard, C. D.

    2017-12-01

    Severe droughts in 2015, 2016 and 2017 in Ethiopia, Southern Africa, and Somalia have negatively impacted agriculture and municipal water supplies resulting in food and water insecurity. Information from remotely sensed data and field reports indicated that the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation (FLDAS) accurately tracked both the anomalously low soil moisture, evapotranspiration and runoff conditions. This work presents efforts to more precisely monitor how the water balance responds to water availability deficits (i.e. drought) as estimated by the FLDAS with CHIRPS precipitation, MERRA-2 meteorological forcing and the Noah33 land surface model.Preliminary results indicate that FLDAS streamflow estimates are well correlated with observed streamflow where irrigation and other channel modifications are not present; FLDAS evapotranspiration (ET) is well correlated with ET from the Operational Simplified Surface Energy Balance model (SSEBop) in Eastern and Southern Africa. We then use these results to monitor availability, and explore trends in water supply and demand.

  14. Influences of climate change on water resources availability in Jinjiang Basin, China.

    PubMed

    Sun, Wenchao; Wang, Jie; Li, Zhanjie; Yao, Xiaolei; Yu, Jingshan

    2014-01-01

    The influences of climate change on water resources availability in Jinjiang Basin, China, were assessed using the Block-wise use of the TOPmodel with the Muskingum-Cunge routing method (BTOPMC) distributed hydrological model. The ensemble average of downscaled output from sixteen GCMs (General Circulation Models) for A1B emission scenario (medium CO2 emission) in the 2050s was adopted to build regional climate change scenario. The projected precipitation and temperature data were used to drive BTOPMC for predicting hydrological changes in the 2050s. Results show that evapotranspiration will increase in most time of a year. Runoff in summer to early autumn exhibits an increasing trend, while in the rest period of a year it shows a decreasing trend, especially in spring season. From the viewpoint of water resource availability, it is indicated that it has the possibility that water resources may not be sufficient to fulfill irrigation water demand in the spring season and one possible solution is to store more water in the reservoir in previous summer.

  15. A data-driven emulation framework for representing water-food nexus in a changing cold region

    NASA Astrophysics Data System (ADS)

    Nazemi, A.; Zandmoghaddam, S.; Hatami, S.

    2017-12-01

    Water resource systems are under increasing pressure globally. Growing population along with competition between water demands and emerging effects of climate change have caused enormous vulnerabilities in water resource management across many regions. Diagnosing such vulnerabilities and provision of effective adaptation strategies requires the availability of simulation tools that can adequately represent the interactions between competing water demands for limiting water resources and inform decision makers about the critical vulnerability thresholds under a range of potential natural and anthropogenic conditions. Despite a significant progress in integrated modeling of water resource systems, regional models are often unable to fully represent the contemplating dynamics within the key elements of water resource systems locally. Here we propose a data-driven approach to emulate a complex regional water resource system model developed for Oldman River Basin in southern Alberta, Canada. The aim of the emulation is to provide a detailed understanding of the trade-offs and interaction at the Oldman Reservoir, which is the key to flood control and irrigated agriculture in this over-allocated semi-arid cold region. Different surrogate models are developed to represent the dynamic of irrigation demand and withdrawal as well as reservoir evaporation and release individually. The nan-falsified offline models are then integrated through the water balance equation at the reservoir location to provide a coupled model for representing the dynamic of reservoir operation and water allocation at the local scale. The performance of individual and integrated models are rigorously examined and sources of uncertainty are highlighted. To demonstrate the practical utility of such surrogate modeling approach, we use the integrated data-driven model for examining the trade-off in irrigation water supply, reservoir storage and release under a range of changing climate, upstream streamflow and local irrigation conditions.

  16. Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin

    NASA Astrophysics Data System (ADS)

    Abdella, E. J.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Due to the growing pressure in water resource and climate change there is great uncertainty in the availability of water for existing as well as proposed irrigation and hydropower projects in the Upper Blue Nile basin (longitude 34oE and 39oE and latitude 7oN and 12oN). This study quantitatively assessed the impact of climate change on the hydrological regime of the basin which intern affect water availability for different use including hydropower and irrigation. Ensemble of four bias corrected regional climate models (RCM) of CORDEX Africa domain and two scenarios (RCP 4.5 and RCP 8.5) were used to determine climate projections for future (2021-2050) period. The outputs from the climate models used to drive the calibrated Soil and Water Assessment Tool (SWAT) hydrologic model to simulate future runoff. The simulated discharge were used as input to a Water Evaluation and Planning (WEAP) water allocation model to determine the implication in hydropower and irrigation potential of the basin. The WEAP model was setup to simulate three scenarios which includes Current, Medium-term (by 2025) and Long-term (by 2050) Development scenario. The projected mean annual temperature of the basin are warmer than the baseline (1982 - 2005) average in the range of 1 to 1.4oC. Projected mean annual precipitation varies across the basin in the range of - 3% to 7%, much of the expected increase is in the highland region of the basin. The water use simulation indicate that the current annual average irrigation water demand in the basin is 1.29Bm3y-1 with 100% coverage. By 2025 and 2050, with the development of new schemes and changing climate, water demand for irrigation is estimated to increase by 2.5 Bm3y-1 and 3.4 Bm3y-1 with 99 % and 96% coverage respectively. Simulation for domestic water demand coverage for all scenarios shows that there will be 100% coverage for the two major cities in the basin. The hydropower generation simulation indicate that 98% of hydroelectricity potential could be produced if all planed dams are constructed. The results in this study demonstrate the general idea of future water availability for different purpose in the basin, but uncertainties still exist in the projected future climate and simulated runoff. Optimal operation of existing and proposed reservoirs is also crucial in the context of climate change.

  17. Water demands for expanding energy development

    USGS Publications Warehouse

    Davis, G.H.; Wood, Leonard A.

    1974-01-01

    Water is used in producing energy for mining and reclamation of mined lands, onsite processing, transportation, refining, and conversion of fuels to other forms of energy. In the East, South, Midwest, and along the seacoasts, most water problems are related to pollution rather than to water supply. West of about the 100th meridian, however, runoff is generally less than potential diversions, and energy industries must compete with other water users. Water demands for extraction of coal, oil shale, uranium, and oil and gas are modest, although large quantities of water are used in secondary recovery operations for oil. The only significant use of water for energy transportation, aside from in-stream navigation use, is for slurry lines. Substantial quantities of water are required in the retorting and the disposal of spent oil shale. The conversion of coal to synthetic gas or oil or to electric power and the generation of electric power with nuclear energy require large quantities of water, mostly for cooling. Withdrawals for cooling of thermal-electric plants is by far the largest category of water use in energy industry, totaling about 170 billion gallons (644 million m3) per day in 1970. Water availability will dictate the location and design of energy-conversion facilities, especially in water deficient areas of the West.

  18. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    PubMed

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  19. Energy Requirements by the Water Sector in the Southwestern US: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Averyt, K.; Yates, D. N.; Meldrum, J.

    2014-12-01

    Climate, energy, and water are fundamentally linked such that shifts in one sector have cascading impacts on the others. Consideration of the integrated system is necessary to fully understand the individual risk profile of each sector. In defining vulnerabilities and potential adaptations, the policy and regulatory environment must be considered alongside the biological and physical systems. Take, for example, the Southwestern U.S., a naturally arid system, where water availability is declining as a consequence of climate change and population growth. Adaptations by the water sector to convey, store, and develop new water sources (e.g. desalination, groundwater pumping, water-reuse) are strategies designed to enhance sustainability of the sector. But, the energy requirements embedded in these management techniques pose challenges to electric utilities. West wide, approximately 20% of total electricity generation goes toward supplying and heating water. If future investments made by the water sector to deal with changing supply and demand regimes continue to follow current trends, the dependence of water on energy availability will grow, meaning that the water supply will be increasingly reliant on the electricity system. Here, we use the example of long-term aridity and the recent drought in the Western US to illustrate the tradeoffs and challenges inherent at the nexus between energy and water. We present long-term trends in the energy intensity of water supplies in the Southwestern US, with a specific focus on groundwater systems. Projected energy requirements for proposed and future conveyance systems are discussed. The potential impacts of reduced flows on the Colorado River on the energy demands for groundwater pumping in the Lower Colorado River Basin are highlighted.

  20. Examining Projected Changes in Weather & Air Quality Extremes Between 2000 & 2030 using Dynamical Downscaling

    EPA Science Inventory

    Climate change may alter regional weather extremes resulting in a range of environmental impacts including changes in air quality, water quality and availability, energy demands, agriculture, and ecology. Dynamical downscaling simulations were conducted with the Weather Research...

  1. A Satellite Data-Driven, Client-Server Decision Support Application for Agricultural Water Resources Management

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Maneta, Marco P.; Kimball, John S.

    2016-01-01

    Water cycle extremes such as droughts and floods present a challenge for water managers and for policy makers responsible for the administration of water supplies in agricultural regions. In addition to the inherent uncertainties associated with forecasting extreme weather events, water planners need to anticipate water demands and water user behavior in a typical circumstances. This requires the use decision support systems capable of simulating agricultural water demand with the latest available data. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. In previous work we have demonstrated novel methodologies to use satellite-based observational technologies, in conjunction with hydro-economic models and state of the art data assimilation methods, to enable robust regional assessment and prediction of drought impacts on agricultural production, water resources, and land allocation. These methods create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents. The methods can be driven with information from existing satellite-derived operational products, such as the Satellite Irrigation Management Support system (SIMS) operational over California, the Cropland Data Layer (CDL), and using a modified light-use efficiency algorithm to retrieve crop yield from the synergistic use of MODIS and Landsat imagery. Here we present an integration of this modeling framework in a client-server architecture based on the Hydra platform. Assimilation and processing of resource intensive remote sensing data, as well as hydrologic and other ancillary information occur on the server side. This information is processed and summarized as attributes in water demand nodes that are part of a vector description of the water distribution network. With this architecture, our decision support system becomes a light weight 'app' that connects to the server to retrieve the latest information regarding water demands, land use, yields and hydrologic information required to run different management scenarios. Furthermore, this architecture ensures all agencies and teams involved in water management use the same, up-to-date information in their simulations.

  2. A satellite data-driven, client-server decision support application for agricultural water resources management

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Johnson, L.; Kimball, J. S.

    2016-12-01

    Water cycle extremes such as droughts and floods present a challenge for water managers and for policy makers responsible for the administration of water supplies in agricultural regions. In addition to the inherent uncertainties associated with forecasting extreme weather events, water planners need to anticipate water demands and water user behavior in atypical circumstances. This requires the use decision support systems capable of simulating agricultural water demand with the latest available data. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. In previous work we have demonstrated novel methodologies to use satellite-based observational technologies, in conjunction with hydro-economic models and state of the art data assimilation methods, to enable robust regional assessment and prediction of drought impacts on agricultural production, water resources, and land allocation. These methods create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents. The methods can be driven with information from existing satellite-derived operational products, such as the Satellite Irrigation Management Support system (SIMS) operational over California, the Cropland Data Layer (CDL), and using a modified light-use efficiency algorithm to retrieve crop yield from the synergistic use of MODIS and Landsat imagery. Here we present an integration of this modeling framework in a client-server architecture based on the Hydra platform. Assimilation and processing of resource intensive remote sensing data, as well as hydrologic and other ancillary information occur on the server side. This information is processed and summarized as attributes in water demand nodes that are part of a vector description of the water distribution network. With this architecture, our decision support system becomes a light weight `app` that connects to the server to retrieve the latest information regarding water demands, land use, yields and hydrologic information required to run different management scenarios. Furthermore, this architecture ensures all agencies and teams involved in water management use the same, up-to-date information in their simulations.

  3. Assessing the Influence of Human Activities on Global Water Resources Using an Advanced Land Surface Model

    NASA Astrophysics Data System (ADS)

    Pokhrel, Y.; Hanasaki, N.; Koirala, S.; Kanae, S.; Oki, T.

    2010-12-01

    In order to examine the impact of human intervention on the global hydrological cycle, a Land Surface Model was enhanced with schemes to assess the anthropogenic disturbance on the natural water flow at the global scale. Four different schemes namely; reservoir operation, crop growth, environmental flow, and anthropogenic water withdrawal modules from a state-of-the-art global water resources assessment model called H08 were integrated into an offline version of LSM, Minimal Advance Treatment of Surface Interaction and Runoff (MATSIRO). MATSIRO represents majority of the hydrological processes of water and energy exchange between the land surface and the atmosphere on a physical basis and is designed to be coupled with GCM. The integrated model presented here thus has the capability to simulate both natural and anthropogenic flows of water globally at a spatial resolution of 1°x1°, considering dam operation, domestic, industrial and agricultural water withdrawals and environmental flow requirements. The model can also be coupled with climate models to assess the impact of human activities on the climate system. A simple groundwater scheme was also incorporated and the model can be used to assess the change in water table due to groundwater pumping for irrigation. The model was validated by comparing simulated soil moisture, river discharge and Terrestrial Water Storage Anomaly (TWSA) with observations. The model performs well in simulating TWSA as compared to GRACE observation in different river basins ranging from very wet to very dry. Soil moisture cannot be validated globally because of the lack of validation datasets. For Illinois region, where long term soil moisture observations are available, the model captures the seasonal variation quite well. The simulated global potential irrigation demand is about 1100km3/year, which is within the range of previously published estimates based on various water balance models and LSMs. The model has an advanced option to limit water withdrawal from river channels based on water availability and environmental flow requirements. Results showed that about three-fourth of the irrigation demand can be met from surface-water (rivers, small and medium-sized reservoirs). Therefore, one-fourth of the demand must have been supplied by groundwater. Further analysis of modeled groundwater pumping for irrigation is needed to examine the extent of groundwater withdrawal and its impact on water table fluctuations.

  4. Efficient management of municipal water: water scarcity in Taiz City, Yemen - issues and options

    NASA Astrophysics Data System (ADS)

    Noaman, A.; Al-Sharjabe, A. W.

    2015-04-01

    The city of Taiz is the third largest city in Yemen, located about 250 km south of Sana'a and about 90 km inland from the Red Sea. Taiz is situated on the foothills and slopes of the Jabal Saber Mountain at elevations between 1100 and 1600 m a.s.l. Its population is rapidly increasing and is expected to grow from about 580 000 in 2012 to over 1 000 000 in 2020. Water supply is the most pressing problem in the city of Taiz today due to the significant shortages of supply (the average consumption is 23 L/d) caused by the depletion of existing water resources and the lack of a clear direction in dealing with the problem. This forces frequent service interruptions (30-40 days) and the service is rarely extended to new users (only 57% of the population are covered). Sanitation is another daunting problem. The (poorly maintained) sewerage network covers only 44% of the population. In several unsewered areas to the north, east and west of the city, raw sewage is disposed of directly into wadis, which causes a health hazard and threatens to contaminate groundwater resources. The proper computation of demand and supply is based on the various fields. It was performed under this study with a particular model: the Water Evaluation and Planning System (WEAP) developed by the Stockholm Environment Institute (SEI). WEAP is supported by a geographical information system (GIS). The available and relevant data on poverty and social indicators, water use and sources, surface runoff, surface and groundwater availability, groundwater depletion and management, crop production areas, soil cover, maps, and meteorological information were gathered from a number of sources. There are only two ways to decrease the water deficit: by increasing water supply or decreasing the water demand. Any adaptation project aims at one of the two. Six projects are proposed, with three in each category (1, 2 and 3 to decrease demand, and 4, 5 and 6 to increase supply): - Project 1: Improvement of irrigation methods - Project 2: Improvement of the water distribution network in Taiz City - Project 3: Water re-use - Project 4: Water harvesting - Project 5: Brackish water treatment - Project 6: Desalinization of sea water

  5. America's water: Agricultural water demands and the response of groundwater

    NASA Astrophysics Data System (ADS)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  6. Life cycle based analysis of demands and emissions for residential water-using appliances.

    PubMed

    Lee, Mengshan; Tansel, Berrin

    2012-06-30

    Environmental impacts of energy and water demand and greenhouse gas emissions from three residential water-using appliances were analyzed using life cycle assessment (LCA) based approach in collaboration of economic input-output model. This study especially focused on indirect consumption and environmental impacts from end-use/demand phase of each appliance. Water-related activities such as water supply, water heating and wastewater treatment were included in the analysis. The results showed that environmental impacts from end-use/demand phase are most significant for the water system, particularly for the energy demand for water heating (73% for clothes washer and 93% for showerheads). Reducing water/hot water consumption during the end-use/demand phase is expected to improve the overall water-related energy burden and water use sustainability. In the analysis of optimal lifespan for appliances, the estimated values (8-21 years) using energy consumption balance approach were found to be lower than that using other methods (10-25 years). This implies that earlier replacement with efficiency models is encouraged to minimize the environmental impacts of the product. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The effects of withdrawals and drought on groundwater availability in the Northern Guam Lens Aquifer, Guam

    USGS Publications Warehouse

    Gingerich, Stephen B.

    2013-01-01

    Owing to population growth, freshwater demand on Guam has increased in the past and will likely increase in the future. During the early 1970s to 2010, groundwater withdrawals from the limestone Northern Guam Lens Aquifer, the main source of freshwater on the island, tripled from about 15 to 45 million gallons per day. Because of proposed military relocation to Guam and expected population growth, freshwater demand on Guam is projected to increase further. The expected increased demand for groundwater has led to concern over the long-term sustainability of withdrawals from existing and proposed wells. A three-dimensional numerical groundwater flow and transport model was developed to simulate the effects of hypothetical withdrawal and recharge scenarios on water levels and on the transition zone between freshwater and saltwater. The model was constructed by using average recharge during 1961–2005 and withdrawals from 2010. Hydraulic properties used to construct the model were initially based on published estimates but ultimately were adjusted to obtain better agreement between simulated and measured water levels and salinity profiles in the modeled area. Two hypothetical groundwater withdrawal scenarios were simulated: no withdrawal to simulate predevelopment conditions and withdrawal at 2010 rates under a 5-year drought. Simulation results indicate that prior to pumping; the fresh-water lens was 10 to 50 feet thicker in the Yigo-Tumon basin and more than 50 feet thicker in the Hagåtña basin. Results also indicate that continuing the 2010 withdrawal distribution during a 5-year drought would result in decreased water levels, a thinner freshwater lens, and increased salinity of water pumped from wells. The available water with an acceptable salinity (chloride concentration less than 200 milligrams per liter) would decrease from about 34 million gallons per day to 11.5 million gallons per day after 5 years but recover to pre-drought levels 5 years after the return of average recharge conditions. Five additional scenarios were simulated to assess groundwater demand projections and proposed new well sites for the Department of Defense and Guam Water Authority wells under average and drought conditions. Simulation results from these projected withdrawal scenarios indicate decreased water levels, a thinner freshwater lens, increased water salinity, and unacceptable salinity at several current withdrawal sites. However, for the scenario including projected U.S. Marine Corps demands (46.62 million gallons per day, including 10 proposed wells) more than 40 million gallons per day of the withdrawn groundwater remains in the acceptable category. During a 5-year drought, this same pumping distribution results in only about 15 million gallons per day of withdrawn groundwater having acceptable salinity. A scenario in which groundwater withdrawal was redistributed in an attempt to maximize withdrawal while maintaining acceptable salinities in the withdrawn water was simulated. The redistributed withdrawal simulates about 47 million gallons per day of withdrawal with more than 41 million gallons per day of withdrawal with acceptable salinity.

  8. Price elasticity reconsidered: Panel estimation of an agricultural water demand function

    NASA Astrophysics Data System (ADS)

    Schoengold, Karina; Sunding, David L.; Moreno, Georgina

    2006-09-01

    Using panel data from a period of water rate reform, this paper estimates the price elasticity of irrigation water demand. Price elasticity is decomposed into the direct effect of water management and the indirect effect of water price on choice of output and irrigation technology. The model is estimated using an instrumental variables strategy to account for the endogeneity of technology and output choices in the water demand equation. Estimation results indicate that the price elasticity of agricultural water demand is -0.79, which is greater than that found in previous studies.

  9. Incorporating human-water dynamics in a hyper-resolution land surface model

    NASA Astrophysics Data System (ADS)

    Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.

    2017-12-01

    The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in a hyper-resolution LSM this work allows for progress on hydrological monitoring and predictions, as well as drought preparedness and water impact assessments at relevant decision-making scales.

  10. Water resource accounting for a mining area in India.

    PubMed

    Chaulya, S K

    2004-01-01

    A water resource accounting study has been carried out for a limestone mining area located in Thondamuthur block of Coimbatore district under Tamilnadu state in India. The major source of surface water in the region is south-west and north-west monsoons during July-August and October-November, respectively. During the winter season, groundwater levels range from 13 to 25 m below the surface whereas during the summer season it varies from 20 to 30 m. The thickness of the weathered zone ranges from 10 to 40 m and the depth to bedrock ranges from 50 to 55 m. The groundwater is generally potable. The average annual rainfall during the twelve-year period (1988-1999) is 590 mm. Out of the total rainfall, around 11% is lost as surface runoff, 10% is lost through evaporation and transpiration, 30% is utilized for consumptive used, 16% is absorbed as subsoil loss and remaining only 33% is stored as groundwater recharge. Again out of total groundwater recharge only 85% is utilizable groundwater. The annual utilizable groundwater resource available in the area is 79.220 million cubic metre (MCM). Whereas, total groundwater demand for the region is 68.922 MCM, and breakup of industrial, domestic and agricultural demands are 0.020, 5.956 and 62.946 MCM, respectively. Therefore, at present the stage of groundwater development or utilization for the area is around 87%, and falls under 'Dark' category. The 'Dark' category indicates that the utilization of groundwater is more than 85% of available groundwater resource. This situation has to be controlled by immediate initiation of suitable measures for groundwater recharge. The identified recharge zones in the block along with the recommended recharging methodology are summarized in this paper. The paper includes a comprehensive site description, status of the water resource and demand, identification of recharge zones and recharging techniques, and recommends a water supply augmentation strategy for enhancement of water resources in the region.

  11. Diel plant water use and competitive soil cation exchange interact to enhance NH 4 + and K + availability in the rhizosphere

    DOE PAGES

    Espeleta, Javier F.; Cardon, Zoe G.; Mayer, K. Ulrich; ...

    2016-11-12

    Hydro-biogeochemical processes in the rhizosphere regulate nutrient and water availability, and thus ecosystem productivity. We hypothesized that two such processes often neglected in rhizosphere models — diel plant water use and competitive cation exchange — could interact to enhance availability of K + and NH 4 +, both high-demand nutrients. A rhizosphere model with competitive cation exchange was used to investigate how diel plant water use (i.e., daytime transpiration coupled with no nighttime water use, with nighttime root water release, and with nighttime transpiration) affects competitive ion interactions and availability of K + and NH 4 +. Competitive cation exchangemore » enabled lowdemand cations that accumulate against roots (Ca 2+, Mg 2+, Na +) to desorb NH 4 + and K + from soil, generating non-monotonic dissolved concentration profiles (i.e. ‘hotspots’ 0.1–1 cm from the root). Cation accumulation and competitive desorption increased with net root water uptake. Daytime transpiration rate controlled diel variation in NH 4 + and K + aqueous mass, nighttime water use controlled spatial locations of ‘hotspots’, and day-to-night differences in water use controlled diel differences in ‘hotspot’ concentrations. Finally, diel plant water use and competitive cation exchange enhanced NH 4 + and K + availability and influenced rhizosphere concentration dynamics. Demonstrated responses have implications for understanding rhizosphere nutrient cycling and plant nutrient uptake.« less

  12. Methane Hydrates: More Than a Viable Aviation Fuel Feedstock Option

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    Demand for hydrocarbon fuels is steadily increasing, and greenhouse gas emissions continue to rise unabated with the energy demand. Alternate fuels will be coming on line to meet that demand. This report examines the recovering of methane from methane hydrates for fuel to meet this demand rather than permitting its natural release into the environment, which will be detrimental to the planet. Some background on the nature, vast sizes, and stability of sedimentary and permafrost formations of hydrates are discussed. A few examples of the severe problems associated with methane recovery from these hydrates are presented along with the potential impact on the environment and coastal waters. Future availability of methane from hydrates may become an attractive option for aviation fueling, and so future aircraft design associated with methane fueling is considered.

  13. Climate change: a call for adaptation and mitigation strategies

    USDA-ARS?s Scientific Manuscript database

    Projected climate change is expected to substantially affect crop and livestock production, and water availability and quality. Concomitantly, the agricultural community is faced with a challenge of increasing food production by more than 70% to meet demand from global population increase by the mid...

  14. Advanced Decentralized Water/Energy Network Design for ...

    EPA Pesticide Factsheets

    In order to provide a water infrastructure that is more sustainable into and beyond the 21st century, drinking water distribution systems and wastewater collection systems must account for our diminishing water supply, increasing demands, climate change, energy cost and availability. Water efficiency must be equally addressed with energy efficiency going far beyond simply adding low flow toilets and faucets in new buildings and retro-fits. Thus, it is the goal of this research project to address these water-related issues as they relate to the U.S. Environmental Protection Agency’s (EPA) mission to safeguard human health and the environment. To inform the public.

  15. Vegetative community control of freshwater availability: Phoenix Islands case study

    NASA Astrophysics Data System (ADS)

    Engels, M.; Heinse, R.

    2014-12-01

    On small low islands with limited freshwater resources, terrestrial plant communities play a large role in moderating freshwater availability. Freshwater demands of vegetative communities are variable depending on the composition of the community. Hence, changes to community structure from production crop introductions, non-native species invasions, and climate change, may have significant implications for freshwater availability. Understanding how vegetative community changes impact freshwater availability will allow for better management and forecasting of limited freshwater supplies. To better understand these dynamics, we investigated three small tropical atolls in the Phoenix Island Protected Area, Kiribati. Despite their close proximity, these islands receive varying amounts of rainfall, are host to different plant communities and two of the islands have abandoned coconut plantations. Using electromagnetic induction, ground penetrating radar, soil samples, climate and satellite data, we present preliminary estimates of vegetative water demand for different tropical plant communities.

  16. A review on potential use of low-temperature water in the urban environment as a thermal-energy source

    NASA Astrophysics Data System (ADS)

    Laanearu, J.; Borodinecs, A.; Rimeika, M.; Palm, B.

    2017-10-01

    The thermal-energy potential of urban water sources is largely unused to accomplish the up-to-date requirements of the buildings energy demands in the cities of Baltic Sea Region. A reason is that the natural and excess-heat water sources have a low temperature and heat that should be upgraded before usage. The demand for space cooling should increase in near future with thermal insulation of buildings. There are a number of options to recover heat also from wastewater. It is proposed that a network of heat extraction and insertion including the thermal-energy recovery schemes has potential to be broadly implemented in the region with seasonally alternating temperature. The mapping of local conditions is essential in finding the suitable regions (hot spots) for future application of a heat recovery schemes by combining information about demands with information about available sources. The low-temperature water in the urban environment is viewed as a potential thermal-energy source. To recover thermal energy efficiently, it is also essential to ensure that it is used locally, and adverse effects on environment and industrial processes are avoided. Some characteristics reflecting the energy usage are discussed in respect of possible improvements of energy efficiency.

  17. Estimating a Global Hydrological Carrying Capacity Using GRACE Observed Water Stress

    NASA Astrophysics Data System (ADS)

    An, K.; Reager, J. T.; Famiglietti, J. S.

    2013-12-01

    Global population is expected to reach 9 billion people by the year 2050, causing increased demands for water and potential threats to human security. This study attempts to frame the overpopulation problem through a hydrological resources lens by hypothesizing that observed groundwater trends should be directly attributed to human water consumption. This study analyzes the relationships between available blue water, population, and cropland area on a global scale. Using satellite data from NASA's Gravity Recovery and Climate Experiment (GRACE) along with land surface model data from the Global Land Data Assimilation System (GLDAS), a global groundwater depletion trend is isolated, the validity of which has been verified in many regional studies. By using the inherent distributions of these relationships, we estimate the regional populations that have exceeded their local hydrological carrying capacity. Globally, these populations sum to ~3.5 billion people that are living in presently water-stressed or potentially water-scarce regions, and we estimate total cropland is exceeding a sustainable threshold by about 80 million km^2. Key study areas such as the North China Plain, northwest India, and Mexico City were qualitatively chosen for further analysis of regional water resources and policies, based on our distributions of water stress. These case studies are used to verify the groundwater level changes seen in the GRACE trend . Tfor the many populous, arid regions of the world that have already begun to experience the strains of high water demand.he many populous, arid regions of the world have already begun to experience the strains of high water demand. It will take a global cooperative effort of improving domestic and agricultural use efficiency, and summoning a political will to prioritize environmental issues to adapt to a thirstier planet. Global Groundwater Depletion Trend (Mar 2003-Dec 2011)

  18. Forecasting domestic water demand in the Haihe river basin under changing environment

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Jun; Zhang, Jian-Yun; Shahid, Shamsuddin; Xie, Yu-Xuan; Zhang, Xu

    2018-02-01

    A statistical model has been developed for forecasting domestic water demand in Haihe river basin of China due to population growth, technological advances and climate change. Historical records of domestic water use, climate, population and urbanization are used for the development of model. An ensemble of seven general circulation models (GCMs) namely, BCC-CSM1-1, BNU-ESM, CNRM-CM5, GISS-E2-R, MIROC-ESM, PI-ESM-LR, MRI-CGCM3 were used for the projection of climate and the changes in water demand in the Haihe River basin under Representative Concentration Pathways (RCPs) 4.5. The results showed that domestic water demand in different sub-basins of the Haihe river basin will gradually increase due to continuous increase of population and rise in temperature. It is projected to increase maximum 136.22 × 108 m3 by GCM BNU-ESM and the minimum 107.25 × 108 m3 by CNRM-CM5 in 2030. In spite of uncertainty in projection, it can be remarked that climate change and population growth would cause increase in water demand and consequently, reduce the gap between water supply and demand, which eventually aggravate the condition of existing water stress in the basin. Water demand management should be emphasized for adaptation to ever increasing water demand and mitigation of the impacts of environmental changes.

  19. Mapping water availability, cost and projected consumptive use in the Eastern United States with comparisons to the West

    DOE PAGES

    Tidwell, Vincent; Moreland, Barbara D.; Shaneyfelt, Calvin; ...

    2017-11-08

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source ofmore » water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered "water rich" roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resources.« less

  20. Mapping water availability, cost and projected consumptive use in the Eastern United States with comparisons to the West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidwell, Vincent; Moreland, Barbara D.; Shaneyfelt, Calvin

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source ofmore » water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered "water rich" roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resources.« less

  1. Linking poverty levels to water resource use and conflicts in rural Tanzania

    NASA Astrophysics Data System (ADS)

    Madulu, Ndalahwa F.

    Water scarcity is an important environmental constraint to development. Water availability is closely linked to human welfare and health by affecting nutrition status and quantity of drinking water especially for the poor. It has impacts on household labour because of the time and energy spent in obtaining it. These problems are more keenly felt among the poor households and in the agricultural subsistence economy. In many areas, the demand for water has been increasing due to rapid population growth, economic development, and climatic change. Water scarcity also stimulates social conflicts between various water users: individuals, communities, industries, livestock, wildlife, agriculture etc. Consequently, local communities have evolved strategies for coping with water stress and drought. These strategies include use of various sources of water, inaction to strict bye-laws regarding the use of water, crop diversification, wage labour, and possibly seasonal migration. The available strategies are likely to vary from one area to another. Some of these actions have measurable longterm demographic consequences, particularly if water stress is severe or repetitive. Although most governments and donor organizations often put much emphasis on the provision of water for drinking purposes, there is clear evidence that the supply of water for other uses has equal importance especially among rural communities. This observation suggests that putting too much emphasis on drinking water needs, addresses a rather insignificant part of the problem of water resources and biases the range of solutions which are likely to be proposed for perceived shortages. The presence of other water uses necessitates the provision of multi-purpose water sources that can serve a number of contrasting functions. This demand-responsive approach can enable the local communities and the poor households to choose the type of services they require on the basis of perceived needs and their ability to manage the water scheme.

  2. Assessing the potential of economic instruments for managing drought risk at river basin scale

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, M.; Lopez-Nicolas, A.; Macian-Sorribes, H.

    2015-12-01

    Economic instruments work as incentives to adapt individual decisions to collectively agreed goals. Different types of economic instruments have been applied to manage water resources, such as water-related taxes and charges (water pricing, environmental taxes, etc.), subsidies, markets or voluntary agreements. Hydroeconomic models (HEM) provide useful insight on optimal strategies for coping with droughts by simultaneously analysing engineering, hydrology and economics of water resources management. We use HEMs for evaluating the potential of economic instruments on managing drought risk at river basin scale, considering three criteria for assessing drought risk: reliability, resilience and vulnerability. HEMs allow to calculate water scarcity costs as the economic losses due to water deliveries below the target demands, which can be used as a vulnerability descriptor of drought risk. Two generic hydroeconomic DSS tools, SIMGAMS and OPTIGAMS ( both programmed in GAMS) have been developed to evaluate water scarcity cost at river basin scale based on simulation and optimization approaches. The simulation tool SIMGAMS allocates water according to the system priorities and operating rules, and evaluate the scarcity costs using economic demand functions. The optimization tool allocates water resources for maximizing net benefits (minimizing total water scarcity plus operating cost of water use). SIMGAS allows to simulate incentive water pricing policies based on water availability in the system (scarcity pricing), while OPTIGAMS is used to simulate the effect of ideal water markets by economic optimization. These tools have been applied to the Jucar river system (Spain), highly regulated and with high share of water use for crop irrigation (greater than 80%), where water scarcity, irregular hydrology and groundwater overdraft cause droughts to have significant economic, social and environmental consequences. An econometric model was first used to explain the variation of the production value of irrigated agriculture during droughts, assessing revenue responses to varying crop prices and water availability. Hydroeconomic approaches were then used to show the potential of economic instruments in setting incentives for a more efficient management of water resources systems.

  3. Water supply and management concepts

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1965-01-01

    If I had to cite one fact about water in the United States which would be not only the most important but also the most informative, the one I would choose would k this: Over 50 percent of all the water presently being used in the United States is used by industry, and nearly all of that is used for cooling.The large amount of attention recently being given to water shortage and the expected rapid increase in demand for water is probably to some extent clouded because there are certain simple facts about water availability and water use which, though readily available, are not generally either known or understood.Probably most people react to information in the public press about present and possible future water shortages with the thought that it is going to be more difficult in the future to supply the ordinary household with water for drinking, washing, and tbe culinary arts. As a matter of fact that may be true to some extent, but it is not the salient aspect.

  4. Storing Water in California's Hidden Reservoirs

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Rohde, M. M.; Szeptycki, L.; Freyberg, D. L.

    2014-12-01

    California is experiencing one of its worst droughts in history; in early 2014, the Governor released the Water Action Plan outlining opportunities to secure reliable water supplies. Groundwater recharge and storage is suggested as an alternative to surface storage, but little research has been conducted to see if groundwater recharge is a competitive alternative to other water-supply infrastructure projects. Although groundwater recharge and storage data are not readily available, several voter-approved bonds have helped finance groundwater recharge and storage projects and can be used as a proxy for costs, geographic distribution, and interest in such projects. We mined and analyzed available grant applications submitted to the Department of Water Resources that include groundwater recharge and storage elements. We found that artificial recharge can be cheaper than other water-supply infrastructure, but the cost was dependent on the source of water, the availability and accessibility of infrastructure used to capture and convey water, and the method of recharge. Bond applications and funding awards were concentrated in the Central Valley and southern California - both are regions of high water demand. With less than 60% of proposals funded, there are opportunities for groundwater recharge and storage to play a bigger role in securing California's water supplies.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espeleta, Javier F.; Cardon, Zoe G.; Mayer, K. Ulrich

    Hydro-biogeochemical processes in the rhizosphere regulate nutrient and water availability, and thus ecosystem productivity. We hypothesized that two such processes often neglected in rhizosphere models — diel plant water use and competitive cation exchange — could interact to enhance availability of K + and NH 4 +, both high-demand nutrients. A rhizosphere model with competitive cation exchange was used to investigate how diel plant water use (i.e., daytime transpiration coupled with no nighttime water use, with nighttime root water release, and with nighttime transpiration) affects competitive ion interactions and availability of K + and NH 4 +. Competitive cation exchangemore » enabled lowdemand cations that accumulate against roots (Ca 2+, Mg 2+, Na +) to desorb NH 4 + and K + from soil, generating non-monotonic dissolved concentration profiles (i.e. ‘hotspots’ 0.1–1 cm from the root). Cation accumulation and competitive desorption increased with net root water uptake. Daytime transpiration rate controlled diel variation in NH 4 + and K + aqueous mass, nighttime water use controlled spatial locations of ‘hotspots’, and day-to-night differences in water use controlled diel differences in ‘hotspot’ concentrations. Finally, diel plant water use and competitive cation exchange enhanced NH 4 + and K + availability and influenced rhizosphere concentration dynamics. Demonstrated responses have implications for understanding rhizosphere nutrient cycling and plant nutrient uptake.« less

  6. Accounting for Water Insecurity in Modeling Domestic Water Demand

    NASA Astrophysics Data System (ADS)

    Galaitsis, S. E.; Huber-lee, A. T.; Vogel, R. M.; Naumova, E.

    2013-12-01

    Water demand management uses price elasticity estimates to predict consumer demand in relation to water pricing changes, but studies have shown that many additional factors effect water consumption. Development scholars document the need for water security, however, much of the water security literature focuses on broad policies which can influence water demand. Previous domestic water demand studies have not considered how water security can affect a population's consumption behavior. This study is the first to model the influence of water insecurity on water demand. A subjective indicator scale measuring water insecurity among consumers in the Palestinian West Bank is developed and included as a variable to explore how perceptions of control, or lack thereof, impact consumption behavior and resulting estimates of price elasticity. A multivariate regression model demonstrates the significance of a water insecurity variable for data sets encompassing disparate water access. When accounting for insecurity, the R-squaed value improves and the marginal price a household is willing to pay becomes a significant predictor for the household quantity consumption. The model denotes that, with all other variables held equal, a household will buy more water when the users are more water insecure. Though the reasons behind this trend require further study, the findings suggest broad policy implications by demonstrating that water distribution practices in scarcity conditions can promote consumer welfare and efficient water use.

  7. Modelling climate change impacts on tourism demand: A comparative study from Sardinia (Italy) and Cap Bon (Tunisia).

    PubMed

    Köberl, Judith; Prettenthaler, Franz; Bird, David Neil

    2016-02-01

    Tourism represents an important source of income and employment in many Mediterranean regions, including the island of Sardinia (Italy) and the Cap Bon peninsula (Tunisia). Climate change may however impact tourism in both regions, for example, by altering the regions' climatic suitability for common tourism types or affecting water availability. This paper assesses the potential impacts of climate change on tourism in the case study regions of Sardinia and Cap Bon. Direct impacts are studied in a quantitative way by applying a range of climate scenario data on the empirically estimated relationship between climatic conditions and tourism demand, using two different approaches. Results indicate a potential for climate-induced tourism revenue gains especially in the shoulder seasons during spring and autumn, but also a threat of climate-induced revenue losses in the summer months due to increased heat stress. Annual direct net impacts are nevertheless suggested to be (slightly) positive in both case study regions. Significant climate-induced reductions in total available water may however somewhat counteract the positive direct impacts of climate change by putting additional water costs on the tourism industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Quantifying Groundwater Availability in Fractured Rock Aquifers of Northern Ugandan Refugee Settlements

    NASA Astrophysics Data System (ADS)

    Frederiks, R.; Lowry, C.; Mutiibwa, R.; Moisy, S.; Thapa, L.; Oriba, J.

    2017-12-01

    In the past two years, Uganda has witnessed an influx of nearly one million refugees who have settled in the sparsely populated northwestern region of the country. This rapid population growth has created high demand for clean water resources. Water supply has been unable to keep pace with demand because the fractured rock aquifers underlying the region often produce low yielding wells. To facilitate management of groundwater resources, it is necessary to quantify the spatial distribution of groundwater. In fractured rock aquifers, there is significant spatial variability in water storage because fractures must be both connected and abundant for water to be extracted in usable quantities. Two conceptual models were evaluated to determine the groundwater storage mechanism in the fractured crystalline bedrock aquifers of northwestern Uganda where by permeability is controlled by faulting, which opens up fractures in the bedrock, or weathering, which occurs when water dissolves components of rock. In order to test these two conceptual models, geologic well logs and available hydrologic data were collected and evaluated using geostatistical and numerical groundwater models. The geostatistical analysis focused on identifying spatially distributed patterns of high and low water yield. The conceptual models were evaluated numerically using four inverse groundwater MODFLOW models based on head and estimated flux targets. The models were based on: (1) the mapped bedrock units using an equivalent porous media approach (2) bedrock units with the addition of known fault zones (3) bedrock units with predicted units of deep weathering based on surface slopes, and (4) bedrock units with discrete faults and simulated weathered zones. Predicting permeable zones is vital for water well drilling in much of East Africa and South America where there is an abundance of both fractured rock and tectonic activity. Given that the population of these developing regions is growing, the demand for sufficient clean water is likely to increase significantly in the next few decades. Thus, it is necessary to improve our ability to predict locations of permeable zones in fractured rock aquifers.

  9. Drivers of Change in Managed Water Resources: Modeling the Impacts of Climate and Socioeconomic Changes Using the US Midwest as a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voisin, Nathalie; Leung, Lai-Yung R.; Hejazi, Mohamad I.

    A global integrated assessment model including a water-demand model driven by socio-economics, is coupled in a one-way fashion with a land surface hydrology – routing – water resources management model. The integrated modeling framework is applied to the U.S. Upper Midwest (Missouri, Upper Mississippi, and Ohio) to advance understanding of the regional impacts of climate and socio-economic changes on integrated water resources. Implications for future flow regulation, water supply, and supply deficit are investigated using climate change projections with the B1 and A2 emission scenarios, which affect both natural flow and water demand. Changes in water demand are driven bymore » socio-economic factors, energy and food demands, global markets and prices. The framework identifies the multiple spatial scales of interactions between the drivers of changes (natural flow and water demand) and the managed water resources (regulated flow, supply and supply deficit). The contribution of the different drivers of change are quantified regionally, and also evaluated locally, using covariances. The integrated framework shows that water supply deficit is more predictable over the Missouri than the other regions in the Midwest. The predictability of the supply deficit mostly comes from long term changes in water demand although changes in runoff has a greater contribution, comparable to the contribution of changes in demand, over shorter time periods. The integrated framework also shows that spatially, water demand drives local supply deficit. Using elasticity, the sensitivity of supply deficit to drivers of change is established. The supply deficit is found to be more sensitive to changes in runoff than to changes in demand regionally. It contrasts with the covariance analysis that shows that water demand is the dominant driver of supply deficit over the analysed periods. The elasticity indicates the level of mitigation needed to control the demand in order to reduce the vulnerability of the integrated system in future periods. The elasticity analyses also emphasize the need to address uncertainty with respect to changes in natural flow in integrated assessment.« less

  10. From hydrological regimes to water use regimes: influence of the type of habitat on drinking water demand dynamics in alpine tourist resorts.

    NASA Astrophysics Data System (ADS)

    Calianno, Martin

    2017-04-01

    In the last decades, integrated water resources management studies produced integrated models that focus mainly on the assessment of water resources and water stress in the future. In some cases, socioeconomic development results to cause more impacts on the evolution of water systems than climate (Reynard et al., 2014). There is thus a need to develop demand-side approaches in the observation and modeling of human-influenced hydrological systems (Grouillet et al., 2015). We define the notion of water use cycle to differentiate water volumes that are withdrawn from the hydrological system and that circulate through anthropic hydro-systems along various steps: withdrawals, distribution, demands, consumption, restitution (Calianno et al., submitted). To address the spatial distribution and the temporal dynamics of the water use cycle, we define the concepts of water use basins and water use regimes (Calianno et al., submitted). The assessment of the temporal variability of water demands is important at thin time steps in touristic areas, where water resource regimes and water demands are highly variable. This is the case for are alpine ski resorts, where the high touristic season (winter) takes place during the low flow period in nival and glacio-nival basins. In this work, a monitoring of drinking water demands was undergone, at high temporal resolution, on different types of buildings in the ski resort of Megève (France). A dataset was created, from which a typology of water demand regimes was extracted. The analysis of these temporal signatures highlighted the factors influencing the volumes and the dynamics of drinking water demand. The main factors are the type of habitat (single family, collective, house, apartment blocks), the presence of a garden or an infrastructure linked to high standing chalets (pool, spa), the proportion of permanent and temporary habitat, the presence of snow in the ski resort. Also, temporalities linked to weekends and weekly tourism are observed. This typology of water demand regimes is at tool that can be developed to reproduce the temporal dynamics of water demands, when knowing the characteristics of habitat in a given region. References: Calianno M, Reynard E, Milano M (in prep). Water use cycle in tourist mountain territories: water demand basins and regimes. To be submitted to Water Resources Management. Calianno M, Reynard E, Milano M, Buchs A (submitted). Quantifier les usages de l'eau : concepts, terminologie et confusions. Submitted to VertigO. Grouillet B, Fabre J, Ruelland D, Dezetter A (2015) Historical reconstruction and 2050 projections of water demand under anthropogenic and climate changes in two contrasted mediterranean catchments. J Hydrol 522:684-696. Reynard E, Bonriposi M, Graefe O, Homewood C, Huss M, Kauzlaric M, Liniger H, Rey E, Rist S, Schädler B, Schneider F, Weingartner R (2014) Interdisciplinary assessment of complex regional water systems and their future evolution: how socioeconomic drivers can matter more than climate. WIREs Water 1(4):413-426.

  11. A System Dynamics Modeling of Water Supply and Demand in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Parajuli, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.

    2017-12-01

    The rise in population and change in climate have posed the uncertainties in the balance between supply and demand of water. The current study deals with the water management issues in Las Vegas Valley (LVV) using Stella, a system dynamics modeling software, to model the feedback based relationship between supply and demand parameters. Population parameters were obtained from Center for Business and Economic Research while historical water demand and conservation practices were modeled as per the information provided by local authorities. The water surface elevation of Lake Mead, which is the prime source of water supply to the region, was modeled as the supply side whereas the water demand in LVV was modeled as the demand side. The study was done from the period of 1989 to 2049 with 1989 to 2012 as the historical one and the period from 2013 to 2049 as the future period. This study utilizes Coupled Model Intercomparison Project data sets (2013-2049) (CMIP3&5) to model different future climatic scenarios. The model simulates the past dynamics of supply and demand, and then forecasts the future water budget for the forecasted future population and future climatic conditions. The results can be utilized by the water authorities in understanding the future water status and hence plan suitable conservation policies to allocate future water budget and achieve sustainable water management.

  12. Decision Support System for an efficient irrigation water management in semi arid environment

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Islam, M.; Hafeez, M. M.; Flugel, W. A.

    2009-12-01

    A significant increase in agricultural productivity over the last few decades has protected the world from episodes of hunger and food shortages. Water management in irrigated agriculture was instrumental in achieving those gains. Water resources are under high pressure due to rapid population growth and increased competition among various sectors. Access to reliable data on water availability, quantity and quality can provide the necessary foundation for sound management of water resources. There are many traditional methods for matching water demand and supply, however imbalances between demand and supply remain inevitable. It is possible to reduce the imbalances considerably through development of appropriate irrigation water management tool that take into account various factors such as soil type, irrigation water supply, and crop water demand. All components of water balance need to be understood and quantified for efficient and sustainable management of water resources. Application of an intelligent Decision Support System (DSS) is becoming significant. A DSS incorporates knowledge and expertise within the decision support framework. It is an integrated set of data, functions, models and other relevant information that efficiently processes input data, simulates models and displays the results in a user friendly format. It helps in decision-making process, to analyse the problem and explore various scenarios to make the most appropriate decision for water management. This paper deals with the Coleambally Irrigation Area (CIA) located in Murrumbidgee catchment, NSW, Australia. An Integrated River Information System called Coleambally IRIS has been developed to improve the irrigation water management ranging from farm to sub-system and system level. It is a web-based information management system with a focus on time series and geospatial hydrological, climatic and remote sensing data including land cover class, surface temperature, soil moisture, Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI) and Evapotranspiration (ET). Coleambally IRIS provides user friendly environment for data input and output, and an adaptable set of functions for data analysis, management and decision making to develops strategies for sustainable irrigation water management. Coleambally IRIS is used to assist the managers of irrigation service provider and the farmers in their decision making by providing relevant information over the web. The developed DSS has been practically used in managing irrigation water under the current drought conditions. The DSS will be further extended for forecasting irrigation water demand in the future.

  13. Energy—Water Interdependence

    NASA Astrophysics Data System (ADS)

    Moran, E. H.; Tindall, J. A.; Campbell, A. A.

    2010-12-01

    ABSTRACT Energy and water security and sustainability have become a national and global priority. The continued security and economic health of any country depends on a sustainable supply of both energy and water because these two critical natural resources are inexorably linked. The production of energy requires large volumes of water while the treatment and distribution of water is equally dependent upon readily available, low-cost energy. In the U.S. and other countries, irrigated agriculture and thermoelectric generation withdrawals of fresh water are approximately equal however; they are growing due to increasing population. Within the U.S. electricity production requires about 190,000 million gallons of freshwater per day, accounting for over 40 percent of all daily freshwater withdrawals in the U.S. The indirect use of water (home lighting and electric appliances) is approximately equal to its direct use (watering lawns and taking showers). Current trends of water use and availability suggest that meeting future water and energy demands to support continued economic global development will require improved utilization and management of both energy and water resources. Primary concerns include: (1) Increasing populations require more food and energy; this may cause direct competition between the two largest water users for limited water resources (energy and agriculture); (2) Population growth and economic expansion projections indicate the U.S. alone will require an additional 393,000 MW of new generating capacity (equivalent to about 1,000 new 400 MW plants) by the year 2020 - other countries particularly India and China have similar trends; and (3) Potential environmental and ecological restrictions on the use of water for power generation such as the restrictions on cooling water withdrawals and cooling water use for nuclear power plants to protect aquatic species and habitat and the environment may reduce usable supplies. The U.S. and other Nation's abilities to meet the increasing demand for affordable water and energy are being seriously challenged by these emerging issues. This research presents potential solutions for security and sustainability of these systems, which are a pressing global priority.

  14. Analysis of long-term climate change on per capita water demand in urban versus suburban areas in the Portland metropolitan area, USA

    NASA Astrophysics Data System (ADS)

    Parandvash, G. Hossein; Chang, Heejun

    2016-07-01

    We investigated the impacts of long-term climate variability and change on per capita water demand in urban and suburban service areas that have different degrees of development density in the Portland metropolitan area, USA. Together with historical daily weather and water production data, socioeconomic data such as population and unemployment rate were used to estimate daily per capita water demand in the two service areas. The structural time series regression model results show that the sensitivity of per capita water demand to both weather and unemployment rate variables is higher in suburban areas than in urban areas. This is associated with relatively higher proportional demand by the residential sector in the suburban area. The estimated coefficients of the historical demand model were used to project the mid-21st century (2035-2064) per capita water demand under three climate change scenarios that represent high (HadGEM2-ES), medium (MIROC5), and low (GFDL) climate changes. Without climate adaptation, compared to the historical period between 1983 and 2012, per capita water demand is projected to increase by 10.6% in the 2035-2064 period under the HadGEM2-ES in suburban areas, while per capita demand is projected to increase by 4.8% under the same scenario in urban areas. Our findings have implications for future urban water resource management and land use planning in the context of climate variability and change. A tight integration between water resource management and urban planning is needed for preparing for climate adaptation in municipal water planning and management.

  15. Planning for community resilience to future United States ...

    EPA Pesticide Factsheets

    Costs of repairing and expanding aging infrastructure and competing demands for water from other sectors such as industry and agriculture are stretching water managers’ abilities to meet essential domestic drinking water needs for future generations. Using Bayesian statistical modeling on past and present water use, we project domestic water demand in the context of four climate scenarios developed by the Intergovernmental Panel on Climate Change as part of the their Special Report on Emission Scenarios (SRES). We compare 2010 demand to projections of domestic water demand for the years 2030, 2060 and 2090 for the four SRES scenarios. Results indicate that the number of counties exceeding fifty percent or greater demand over 2010 levels increases through 2090 for two of the scenarios and plateaus around 2050 for the other two. Counties experiencing the largest increases in water demand are concentrated in the states of California, Texas, and isolated portions of the Mid-West, Southeast, and Mid-Atlantic. Closer examination of the spatial distribution of high demand counties reveals that they are typically found near or adjacent to metropolitan centers, potentially placing greater stress on already taxed systems. Identifying these counties allows for targeted adaptive management and policies, economic incentives, and legislation to be focused towards locations that are potentially the most vulnerable. We describe a new approach for projecting water demand into

  16. Water resources vulnerability assessment in the Adriatic Sea region: the case of Corfu Island.

    PubMed

    Kanakoudis, Vasilis; Tsitsifli, Stavroula; Papadopoulou, Anastasia; Cencur Curk, Barbara; Karleusa, Barbara

    2017-09-01

    Cross-border water resources management and protection is a complicated task to achieve, lacking a common methodological framework. Especially in the Adriatic region, water used for drinking water supply purposes pass from many different countries, turning its management into a hard task to achieve. During the DRINKADRIA project, a common methodological framework has been developed, for efficient and effective cross-border water supply and resources management, taking into consideration different resources types (surface and groundwater) emphasizing in drinking water supply intake. The common methodology for water resources management is based on four pillars: climate characteristics and climate change, water resources availability, quality, and security. The present paper assesses both present and future vulnerability of water resources in the Adriatic region, with special focus on Corfu Island, Greece. The results showed that climate change is expected to impact negatively on water resources availability while at the same time, water demand is expected to increase. Water quality problems will be intensified especially due to land use changes and salt water intrusion. The analysis identified areas where water resources are more vulnerable, allowing decision makers develop management strategies.

  17. Adding the human dimension to drought: an example from Chile

    NASA Astrophysics Data System (ADS)

    Rangecroft, Sally; Van Loon, Anne; Maureira, Héctor; Rojas, Pablo; Alejandro Gutiérrez Valdés, Sergio; Verbist, Koen

    2016-04-01

    Drought and water scarcity are important hazards and can lead to severe socio-economic impacts in many regions of the world. Given the interlinked interactions and feedbacks of hydrological droughts and their impacts and management, we need tools to evaluate these complexities and effects on the availability of water resources. Here we use a real-world case study of the Huasco basin (Northern Chile) in which we quantify the influence of human activities on hydrological drought signals. In this arid region, Andean snowmelt provides water essential for users, with agriculture acting as the main water consumer (85% of total). An increasing water demand from different water sectors (agriculture, mining, and domestic water usage) has increased pressure on available water and its management. Consequently, the Santa Juana dam was built by 1995 to increase irrigation security for downstream users, and recent management and restrictions have been established with the objective to limit impacts of hydrological droughts across the basin. The feedbacks between water availability and water management are explored for this water stressed region in Chile. Hydro-meteorological (e.g. precipitation, temperature, streamflow, reservoir levels) variables have been analysed to assess trends and drought patterns. Data over the past three decades has indicated a decrease in surface water supply, with the basin entering a situation of water scarcity during the recent multiyear drought (2007 - to-date), partly caused by meteorological drought and partly by abstraction. During this period, water supply failed to meet the demands of water users, resulting in the implementation of water restrictions. As well as the necessary continuous hydro-meteorological data, here we used information on human water users and scenario modeling, allowing for the analysis and quantification of feedbacks. This work highlights the importance of local knowledge, especially in understanding water laws, rights, regulations and therefore interpretation of the data and results. We will repeat the analysis done in Chile in a diverse series of case studies across the world to reflect different natural and human influences on the water cycle. This will enable an increased understanding of our influence on water resources and the feedbacks involved, which may be both positive and negative. Ultimately, this research will develop a methodology for identifying and quantifying human activities and use this information in combination with water management modeling and forecasting for effective drought early warning and risk management.

  18. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    USGS Publications Warehouse

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  19. Voluntary Management of Residential Water Demand in Low and Middle-Low Income Households: Case Study of Soacha (colombia)

    NASA Astrophysics Data System (ADS)

    Acosta, R.; Rodriguez, J. P.

    2016-12-01

    Water resources availability is a global concern due to increasing demands, decreasing quality and uncertain spatio-temporal variability (United Nations, 2009). In urban contexts research on efficient water use is a priority to cope with the future vulnerability of water supplies as a result of the impacts of climate change (Bates et al, 2008). Following the proposed methodologies of He and Kua (2013) for implementing programs to promote sustainable energy consumption, we focused on the use of educational strategies to promote a voluntary rationalization of residential water demand. We collaborated with three schools in Soacha (Colombia) where students ranging from 12 to 15 years participated in the project as promoters of educational campaigns inside their families, covering 120 low and middle-low income households. Three intervention or treatment strategies (i.e. e-learning, in-person active learning activities and graphical learning tools) were carried out over a period of 5 months. We analyzed the effects of the treatments strategies in reducing water consumption rates and the dependence of this variable on socio-demographic, economic, environmental, and life quality factors by using personal interviews and self reported water saving technics. The results showed that educational campaigns have a positive effect on reducing consumption in the households. Graphical learning tools accounted for the highest reduction in water consumption. Moreover, the results of the study suggests that socio-economic factors such as type of house, social level, income, and life quality variables significantly affect the variability in water consumption, which is an important fact to consider in similar cases where communities face difficult socio-economic conditions, displacement or high rates of urban growth.

  20. Florida Agriculture - Utilizing TRMM to Analyze Sea Breeze Thunderstorm Patterns During El Nino Southern Oscillations and Their Effects Upon Available Fresh Water for South Florida Agricultural Planning and Management

    NASA Technical Reports Server (NTRS)

    Billiot, Amanda; Lee, Lucas; McKee, Jake; Cooley, Zachary Clayton; Mitchell, Brandie

    2010-01-01

    This project utilizes Tropical Rainfall Measuring Mission (TRMM) and Landsat satellite data to assess the impact of sea breeze precipitation upon areas of agricultural land use in southern Florida. Water is a critical resource to agriculture, and the availability of water for agricultural use in Florida continues to remain a key issue. Recent projections of statewide water use by 2020 estimate that 9.3 billion gallons of water per day will be demanded, and agriculture represents 47% of this demand (Bronson 2003). Farmers have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. Sea breeze thunderstorms are responsible for much of the rainfall delivered to Florida during the wet season (May-October) and have been recognized as an important overall contributor of rainfall in southern Florida (Almeida 2003). TRMM satellite data was used to analyze how sea breeze-induced thunderstorms during El Nino and La Nina affected interannual patterns of precipitation in southern Florida from 1998-2009. TRMM's Precipitation Radar and Microwave Imager provide data to quantify water vapor in the atmosphere, precipitation rates and intensity, and the distribution of precipitation. Rainfall accumulation data derived from TRMM and other microwave sensors were used to analyze the temporal and spatial variations of rainfall during each phase of the El Nino Southern Oscillation (ENSO). Through the use of TRMM and Landsat, slight variations were observed, but it was determined that neither sea breeze nor total rainfall patterns in South Florida were strongly affected by ENSO during the study period. However, more research is needed to characterize the influence of ENSO on summer weather patterns in South Florida. This research will provide the basis for continued observations and study with the Global Precipitation Measurement Mission.

  1. Estimating the own-price elasticity of demand for irrigation water in the Musi catchment of India

    NASA Astrophysics Data System (ADS)

    Davidson, Brian; Hellegers, Petra

    2011-10-01

    SummaryAs irrigation water is an input into a production process, its demand must be 'derived'. According to theory, a derived demand schedule should be downward sloping and dependent on the outputs produced from it, the prices of other inputs and the price of the water itself. Problems arise when an attempt is made to estimate the demand for irrigation water and the resulting own-price elasticity of demand, as the uses to which water is put are spatially, temporarily and geographically diverse. Because water is not generally freely traded, what normally passes for an estimate of the own-price elasticity of demand for irrigation water is usually a well argued assumption or an estimate that is derived from a simulation model of a hypothesized producer. Such approaches tend to provide an inadequate explanation of what is an extremely complex and important relationship. An adequate explanation of the relationship between the price and the quantity demanded of water should be one that not only accords with the theoretical expectations, but also accounts for the diversity of products produced from water (which includes the management practices of farmers), the seasons in which it is used and over the region within which it is used. The objective in this article is to present a method of estimating the demand curve for irrigation water. The method uses actual field data which is collated using the Residual Method to determine the value of the marginal product of water deployed over a wide range of crops, seasons and regions. These values of the marginal products, all which must lie of the input demand schedule for water, are then ordered from the highest value to the lowest. Then, the amount of irrigation water used for each product, in each season and in each region is cumulatively summed over the range of uses according to the order of the values of the marginal products. This data, once ordered, is then used to econometrically estimate the demand schedule from which the own-price elasticity of demand for irrigation water can be derived. To illustrate the method, the values of the marginal product of water deployed in the Musi catchment in India are used to determine an own-price elasticity of demand for irrigation water which has some positive value to producers of approximately -0.64. For water that is most highly valued, the elasticity was found to be highly elastic at -2.12, while less valued water used in agriculture was far more inelastic at -0.44. Finally, for almost 36% of water deployed in the catchment the elasticity was logically determined to be perfectly elastic.

  2. Greywater reuse: A strategy for water demand management in Harare?

    NASA Astrophysics Data System (ADS)

    Madungwe, Emaculate; Sakuringwa, Saniso

    Greywater is wastewater from baths, sinks and washing machines, accounting for about 60% of the outflow from homes. It contains little pathogens and 90% less nitrogen than toilet water, so does not require the same treatment process. With the increasing demand for freshwater, its use may reduce irrigation water needs, increasing its availability of freshwater for other primary uses. Agriculture is the main water consumer in Africa, which cannot be compromised due to its role in domestic food security and export supplies. The purpose of this paper is to demonstrate findings of the research done on benefits of greywater reuse in some countries, applicable to African countries. In Australia, greywater reuse has reduced freshwater demand, strain on wastewater treatment plants and energy consumption. Aquifer recharge has improved due to increased infiltration flows from greywater uses. In Lebanon, greywater is a valuable resource for encouraging plant growth from nutrients that may otherwise have been wasted. Palestine shares similar climate and water scarcity conditions with most arid sub-Saharan African countries, yet utilizes grey water in production of crops and citrus fruits. Thus use of grey water should be possible in African cities such as Harare, where nearly two thirds of the population rely on agriculture for livelihoods. The problem of blue green algae in sewerage ponds and water reservoirs is significantly reduced by household reuse of grey water in Mexico. Water savings are increased and expenses reduced, as illustrated by the reduction in consumption of municipality freshwater supplies in South African urban areas. Rural communities and schools in Namibia and Egypt have raised funds from grey water reuse in banana plantations. A possible constraint to this strategy could be the unavailability of appropriate technology for primary treatment of grey water before reuse. This strategy may pose health risks where water quality tests are unknown or unavailable but can be overcome through educational campaigns. Supporting data and evidence on safety and benefits of grey water is required to achieve regulatory approval of grey water use.

  3. Evaluation of water stress and groundwater storage using a global hydrological model

    NASA Astrophysics Data System (ADS)

    Shiojiri, D.; Tanaka, K.; Tanaka, S.

    2017-12-01

    United Nations reported the number of people will reach 9.7 billion in 2050, and this rapid growth of population will increase water use. To prevent global water shortage, it is important to identify the problematic areas in order to maintain water resources sustainability. Moreover, groundwater availability is decreasing in some areas due to excessive groundwater extraction compared to the groundwater recharge capacity. The development of a hydrological model that can simulate the current status of the world's water resources represents an important tool to achieve sustainable water resources management. In this study, a global hydrological simulation is conducted at a 20km spatial resolution using the land surface model SiBUC, which is coupled to the river routing model HydroBEAM. In the river routing model, we evaluate water stress by comparing the excess of water demand with the river water demand. Areas with high water stress are seen in United States, India, and east part of China; however, for the case of Africa the overall water stress is zero. This could be because rain-fed agriculture is the norm in Africa and thus irrigation water demand is low, which affects water stress index. Sustainability of groundwater resources is also evaluated in the river routing model by setting a virtual groundwater tank. When the amount of groundwater withdrawal constantly exceeds groundwater recharge, the volume in the tank falls below zero and the area is regarded as unsustainable in terms of groundwater usage. Such areas are mostly seen in central United States, northeast China, the region between northwest India and Pakistan. In the simulation with SiBUC, the amount of groundwater recharge is assumed as the proportion of water that flows from the second to the third soil layer. This proportion will be estimated by comparing monthly variations of terrestrial water storage (TWS) derived from the observations of the GRACE satellite with the simulated TWS variations. From this comparison, the suitability of the simulated amount of groundwater will also assess.

  4. Identifying the causes of water crises: A configurational frequency analysis of 22 basins world wide

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Gorelick, S.; Lambin, E.; Rozelle, S.; Thompson, B.

    2010-12-01

    Freshwater "scarcity" has been identified as being a major problem world-wide, but it is surprisingly hard to assess if water is truly scarce at a global or even regional scale. Most empirical water research remains location specific. Characterizing water problems, transferring lessons across regions, to develop a synthesized global view of water issues remains a challenge. In this study we attempt a systematic understanding of water problems across regions. We compared case studies of basins across different regions of the world using configurational frequency analysis. Because water crises are multi-symptom and multi-causal, a major challenge was to categorize water problems so as to make comparisons across cases meaningful. In this study, we focused strictly on water unsustainability, viz. the inability to sustain current levels of the anthropogenic (drinking water, food, power, livelihood) and natural (aquatic species, wetlands) into the future. For each case, the causes of three outcome variables, groundwater declines, surface water declines and aquatic ecosystem declines, were classified and coded. We conducted a meta-analysis in which clusters of peer-reviewed papers by interdisciplinary teams were considered to ensure that the results were not biased towards factors privileged by any one discipline. Based on our final sample of 22 case study river basins, some clear patterns emerged. The meta-analysis suggests that water resources managers have long overemphasized the factors governing supply of water resources and while insufficient attention has been paid to the factors driving demand. Overall, uncontrolled increase in demand was twice as frequent as declines in availability due to climate change or decreased recharge. Moreover, groundwater and surface water declines showed distinct causal pathways. Uncontrolled increases in demand due to lack of credible enforcement were a key factor driving groundwater declines; while increased upstream abstractions, inadequate infrastructure investments, and pollution were dominant causes of surface water declines.

  5. Integrated Water Resources Planning and Management in Arid/Semi-arid Regions: Data, Modeling, and Assessment

    NASA Astrophysics Data System (ADS)

    Gupta, H.; Liu, Y.; Wagener, T.; Durcik, M.; Duffy, C.; Springer, E.

    2005-12-01

    Water resources in arid and semi-arid regions are highly sensitive to climate variability and change. As the demand for water continues to increase due to economic and population growth, planning and management of available water resources under climate uncertainties becomes increasingly critical in order to achieve basin-scale water sustainability (i.e., to ensure a long-term balance between supply and demand of water).The tremendous complexity of the interactions between the natural hydrologic system and the human environment means that modeling is the only available mechanism for properly integrating new knowledge into the decision-making process. Basin-scale integrated models have the potential to allow us to study the feedback processes between the physical and human systems (including institutional, engineering, and behavioral components); and an integrated assessment of the potential second- and higher-order effects of political and management decisions can aid in the selection of a rational water-resources policy. Data and information, especially hydrological and water-use data, are critical to the integrated modeling and assessment for water resources management of any region. To this end we are in the process of developing a multi-resolution integrated modeling and assessment framework for the south-western USA, which can be used to generate simulations of the probable effects of human actions while taking into account the uncertainties brought about by future climatic variability and change. Data are being collected (including the development of a hydro-geospatial database) and used in support of the modeling and assessment activities. This paper will present a blueprint of the modeling framework, describe achievements so far and discuss the science questions which still require answers with a particular emphasis on issues related to dry regions.

  6. Analysis of Future Streamflow Regimes under Global Change Scenarios in Central Chile for Ecosystem Sustainability

    NASA Astrophysics Data System (ADS)

    Henriquez Dole, L. E.; Gironas, J. A.; Vicuna, S.

    2015-12-01

    Given the critical role of the streamflow regime for ecosystem sustainability, modeling long term effects of climate change and land use change on streamflow is important to predict possible impacts in stream ecosystems. Because flow duration curves are largely used to characterize the streamflow regime and define indices of ecosystem health, they were used to represent and analyze in this study the stream regime in the Maipo River Basin in Central Chile. Water and Environmental Assessment and Planning (WEAP) model and the Plant Growth Model (PGM) were used to simulate water distribution, consumption in rural areas and stream flows on a weekly basis. Historical data (1990-2014), future land use scenarios (2030/2050) and climate change scenarios were included in the process. Historical data show a declining trend in flows mainly by unprecedented climatic conditions, increasing interest among users on future streamflow scenarios. In the future, under an expected decline in water availability coupled with changes in crop water demand, water users will be forced to adapt by changing water allocation rules. Such adaptation actions would in turns affect the streamflow regime. Future scenarios for streamflow regime show dramatic changes in water availability and temporal distribution. Annual weekly mean flows can reduce in 19% in the worst scenario and increase in 3.3% in the best of them, and variability in streamflow increases nearly 90% in all scenarios under evaluation. The occurrence of maximum and minimum monthly flows changes, as June instead of July becomes the driest month, and December instead of January becomes the month with maximum flows. Overall, results show that under future scenarios streamflow is affected and altered by water allocation rules to satisfy water demands, and thus decisions will need to consider the streamflow regime (and habitat) in order to be sustainable.

  7. An Integrated Hydrologic-Economic Modeling Tool for Evaluating Water Management Responses to Climate Change in the Boise River Basin

    NASA Astrophysics Data System (ADS)

    Schmidt, R. D.; Taylor, R. G.; Stodick, L. D.; Contor, B. A.

    2009-12-01

    A recent federal interagency report on climate change and water management (Brekke et. al., 2009) describes several possible management responses to the impacts of climate change on water supply and demand. Management alternatives include changes to water supply infrastructure, reservoir system operations, and water demand policies. Water users in the Bureau of Reclamation’s Boise Project (located in the Lower Boise River basin in southwestern Idaho) would be among those impacted both hydrologically and economically by climate change. Climate change and management responses to climate change are expected to cause shifts in water supply and demand. Supply shifts would result from changes in basin precipitation patterns, and demand shifts would result from higher evapotranspiration rates and a longer growing season. The impacts would also extend to non-Project water users in the basin, since most non-Project groundwater pumpers and drain water diverters rely on hydrologic externalities created by seepage losses from Boise Project water deliveries. An integrated hydrologic-economic model was developed for the Boise basin to aid Reclamation in evaluating the hydrologic and economic impacts of various management responses to climate change. A spatial, partial-equilibrium, economic optimization model calculates spatially-distinct equilibrium water prices and quantities, and maximizes a social welfare function (the sum of consumer and producers surpluses) for all agricultural and municipal water suppliers and demanders (both Project and non-Project) in the basin. Supply-price functions and demand-price functions are exogenous inputs to the economic optimization model. On the supply side, groundwater and river/reservoir models are used to generate hydrologic responses to various management alternatives. The response data is then used to develop water supply-price functions for Project and non-Project water users. On the demand side, crop production functions incorporating crop distribution, evapotranspiration rates, irrigation efficiencies, and crop prices are used to develop water demand-price functions for agricultural water users. Demand functions for municipal and industrial water users are also developed. Recent applications of the integrated model have focused on the hydrologic and economic impacts of demand management alternatives, including large-scale canal lining conservation measures, and market-based water trading between canal diverters and groundwater pumpers. A supply management alternative being investigated involves revising reservoir rule curves to compensate for climate change impacts on timing of reservoir filling.

  8. Management Options During the 2011-2012 Drought on the Apalachicola River: A Systems Dynamic Model Evaluation.

    PubMed

    Leitman, S; Pine, W E; Kiker, G

    2016-08-01

    The Apalachicola-Chattahoochee-Flint River basin (ACF) is a large watershed in the southeastern United States. In 2012, the basin experienced the second year of a severe drought and the third multi-year drought in the last 15 years. During severe droughts, low reservoir and river levels can cause economic and ecological impacts to the reservoir, river, and estuarine ecosystems. During drought, augmenting Apalachicola River discharge through upstream reservoir releases and demand management are intuitive and often-suggested solutions to minimizing downstream effects. We assessed whether the existing reservoir system could be operated to minimize drought impacts on downstream water users and ecosystems through flow augmentation. Our analysis finds that in extreme drought such as observed during 2012, increases in water releases from reservoir storage are insufficient to even increase Apalachicola River discharge to levels observed in the 2007 drought. This suggests that there is simply not enough water available in managed storage to offset extreme drought events. Because drought frequency and intensity is predicted to increase under a variety of climate forecasts, our results demonstrate the need for a critical assessment of how water managers will meet increasing water demands in the ACF. Key uncertainties that should be addressed include (1) identifying the factors that led to extremely low Flint River discharge in 2012, and (2) determining how water "saved" via demand management is allocated to storage or passed to downstream ecosystem needs as part of the ongoing revisions to the ACF Water Control Manual by the US Army Corps of Engineers.

  9. Management Options During the 2011-2012 Drought on the Apalachicola River: A Systems Dynamic Model Evaluation

    NASA Astrophysics Data System (ADS)

    Leitman, S.; Pine, W. E.; Kiker, G.

    2016-08-01

    The Apalachicola-Chattahoochee-Flint River basin (ACF) is a large watershed in the southeastern United States. In 2012, the basin experienced the second year of a severe drought and the third multi-year drought in the last 15 years. During severe droughts, low reservoir and river levels can cause economic and ecological impacts to the reservoir, river, and estuarine ecosystems. During drought, augmenting Apalachicola River discharge through upstream reservoir releases and demand management are intuitive and often-suggested solutions to minimizing downstream effects. We assessed whether the existing reservoir system could be operated to minimize drought impacts on downstream water users and ecosystems through flow augmentation. Our analysis finds that in extreme drought such as observed during 2012, increases in water releases from reservoir storage are insufficient to even increase Apalachicola River discharge to levels observed in the 2007 drought. This suggests that there is simply not enough water available in managed storage to offset extreme drought events. Because drought frequency and intensity is predicted to increase under a variety of climate forecasts, our results demonstrate the need for a critical assessment of how water managers will meet increasing water demands in the ACF. Key uncertainties that should be addressed include (1) identifying the factors that led to extremely low Flint River discharge in 2012, and (2) determining how water "saved" via demand management is allocated to storage or passed to downstream ecosystem needs as part of the ongoing revisions to the ACF Water Control Manual by the US Army Corps of Engineers.

  10. Agriculture and Energy: Implications for Food Security, Water, and Land Use

    NASA Astrophysics Data System (ADS)

    Tokgoz, S.; Zhang, W.; Msangi, S.; Bhandary, P.

    2011-12-01

    Sustainable production of agricultural commodities and growth of international trade in these goods are challenged as never before by supply-side constraints (such as climate change, water and land scarcity, and environmental degradation) and by demand-side dynamics (volatility in food and energy markets, the strengthening food-energy linkage, population growth, and income growth). On the one hand, the rapidly expanding demand can potentially create new market opportunities for agriculture. On the other hand, there are many threats to a sufficient response by the supply side to meet this growing and changing demand. Agricultural production systems in many countries are neither resource-efficient, nor producing according to their full potential. The stock of natural resources such as land, water, nutrients, energy, and genetic diversity is shrinking relative to demand, and their use must become increasingly efficient in order to reduce environmental impacts and preserve the planet's productive capacity. World energy prices have increased rapidly in recent years. At the same time, agriculture has become more energy-intensive. Higher energy costs have pushed up the cost of producing, transporting and processing agricultural commodities, driving up commodity prices. Higher energy costs have also affected water use and availability through increased costs of water extraction, conveyance and desalinization, higher demand for hydroelectric power, and increased cost of subsidizing water services. In the meantime, the development of biofuels has diverted increasing amounts of agricultural land and water resources to the production of biomass-based renewable energy. This more "intensified" linkage between agriculture and energy comes at a time when there are other pressures on the world's limited resources. The related high food prices, especially those in the developing countries, have led to setbacks in the poverty alleviation effort among the global community with more population under hunger and poverty. In light of these threats and opportunities facing the global food system, the proposed study takes a long-term perspective and addresses the main medium and long- term drivers of agricultural markets using the International Model for Policy Analysis of Agricultural Commodities and Trade developed by the Environment and Production Technology Division of IFPRI to project future production, consumption, and trade of key agricultural commodities. The main objective of the study is to analyze the link between energy and agricultural markets, focusing on the "new" role of agriculture as a supplier of energy for transportation through biofuels, and the subsequent impact on land use and demand for water from the agricultural sector. In this context, this study incorporates various scenarios of future energy demand and energy price impacts on global agricultural markets (food prices and food security), water use implications (irrigation water consumption by agricultural sector), and land use implications (changes in national and global crop area). The scenarios are designed to understand the impact of energy prices on biofuel production, cost of production for agricultural crops, conversion of rainfed area to irrigated area, and necessary levels of crop productivity growth to counter these effects.

  11. Water impact studies. [impact of remote sensing techniques on management storage, flow, and delivery of California water

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1973-01-01

    An investigation has begun into the potential impact of using modern remote sensing techniques as an aid in managing, even on a day-to-day basis, the storage, flow, and delivery of water made available through the California Water Project. It is obvious that the amount of this impact depends upon the extent to which remote sensing is proven to be useful in improving predictions of both the amount of water that will be available and the amount that will be needed. It is also proposed to investigate the potential impact of remote sensing techniques as an aid in monitoring, and perhaps even in directing, changes in land use and life style being brought about through the increased availability of water in central and southern California as a result of the California Water Project. The impact of remote sensing can be of appreciable significance only if: (1) the induced changes are very substantial ones; (2) remote sensing is found, in this context, to be very useful and potentially very cost effective; and (3) resource managers adopt this new technology. Analyses will be conducted of the changing economic bases and the new land use demands resulting from increased water availability in central and southern California.

  12. The future of irrigated agriculture under environmental flow requirements restrictions

    NASA Astrophysics Data System (ADS)

    Pastor, Amandine; Palazzo, Amanda; Havlik, Petr; Kabat, Pavel; Obersteiner, Michael; Ludwig, Fulco

    2016-04-01

    Water is not an infinite resource and demand from irrigation, household and industry is constantly increasing. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 8.5 W/m2 (RCP8.5), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 40% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on climate change mitigation/adaptation when exposure and sensitivity to climate change is high and/or on adaptation measures to face increasing water demand. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while others might consider improving their trade policy to avoid food shortage.

  13. Examining the coupling of carbon and nitrogen cycles in Southern Appalachian streams: Understanding the role of dissolved organic nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, Brian D; Bernhardt, Emily; Roberts, Brian

    Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolvedmore » organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.« less

  14. Modeling Hydrological Processes in New Mexico-Texas-Mexico Border Region

    NASA Astrophysics Data System (ADS)

    Samimi, M.; Jahan, N. T.; Mirchi, A.

    2017-12-01

    Efficient allocation of limited water resources to competing use sectors is becoming increasingly critical for water-scarce regions. Understanding natural and anthropogenic processes affecting hydrological processes is key for efficient water management. We used Soil and Water Assessment Tool (SWAT) to model governing hydrologic processes in New Mexico-Texas-Mexico border region. Our study area includes the Elephant Butte Irrigation District (EBID), which manages water resources to support irrigated agriculture. The region is facing water resources challenges associated with chronic water scarcity, over-allocation, diminishing water supply, and growing water demand. Agricultural activities rely on conjunctive use of Rio Grande River water supply and groundwater withdrawal. The model is calibrated and validated under baseline conditions in the arid and semi-arid climate in order to evaluate potential impacts of climate change on the agricultural sector and regional water availability. We highlight the importance of calibrating the crop growth parameters, evapotranspiration, and groundwater recharge to provide a realistic representation of the hydrological processes and water availability in the region. Furthermore, limitations of the model and its utility to inform stakeholders will be discussed.

  15. Water balance in irrigation districts. Uncertainty in on-demand pressurized networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Calvo, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco Vicente

    2015-04-01

    In on-demand pressurized irrigation distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a PRV behavioral model, validated in laboratory, coupled with an on-demand irrigation district waterworks, composed by a distribution network and a multi-pump station. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been simulated. The effect of demand concentration peaks has been estimated.

  16. The Impact of Politics in Local Education: Navigating White Water

    ERIC Educational Resources Information Center

    Owen, Jane C.

    2006-01-01

    Today, administrators must assume a different mindset if public schools are to remain viable and functional. Changing populations resulting in heterogeneous communities, the diversity of community values, and the finite resources available to meet the infinite desires of a demanding constituency have created the necessity for political acumen on…

  17. Motel DHW Retrofit--Dallas, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar-energy system designed to provide 65% of total domestic-hot-water (DHW) demands for 100-room motel in Dallas, Texas is subject of a report now available. System is retrofit, and storage-tank size was limited to 1,000 gallons (3,785 1) by size of room where it is located.

  18. Estimating Environmental Co-benefits of U.S. GHG Reduction Pathways Using the GCAM-USA Integrated Assessment Model

    EPA Science Inventory

    Previous studies have shown that mitigating climate change through curbing greenhouse gas (GHG) emissions can bring about substantial environmental co-benefits, such as for air quality and reductions in energy-related water demand. A variety of pathways are available for reducing...

  19. Influences of Climate Change on Water Resources Availability in Jinjiang Basin, China

    PubMed Central

    Wang, Jie; Li, Zhanjie; Yao, Xiaolei

    2014-01-01

    The influences of climate change on water resources availability in Jinjiang Basin, China, were assessed using the Block-wise use of the TOPmodel with the Muskingum-Cunge routing method (BTOPMC) distributed hydrological model. The ensemble average of downscaled output from sixteen GCMs (General Circulation Models) for A1B emission scenario (medium CO2 emission) in the 2050s was adopted to build regional climate change scenario. The projected precipitation and temperature data were used to drive BTOPMC for predicting hydrological changes in the 2050s. Results show that evapotranspiration will increase in most time of a year. Runoff in summer to early autumn exhibits an increasing trend, while in the rest period of a year it shows a decreasing trend, especially in spring season. From the viewpoint of water resource availability, it is indicated that it has the possibility that water resources may not be sufficient to fulfill irrigation water demand in the spring season and one possible solution is to store more water in the reservoir in previous summer. PMID:24701192

  20. Whole Watershed Management to Maximize Total Water Storage: Case Study of the American-Cosumnes River Basin

    NASA Astrophysics Data System (ADS)

    Goharian, E.; Gailey, R.; Medellin-Azuara, J.; Maples, S.; Adams, L. E.; Sandoval Solis, S.; Fogg, G. E.; Dahlke, H. E.; Harter, T.; Lund, J. R.

    2016-12-01

    Drought and unrelenting water demands by urban, agricultural and ecological entities present a need to manage and perhaps maximize all the major stores of water, including mountain snowpack and soil moisture, surface reservoirs, and groundwater reservoirs for the future. During drought, the over-exploitations of groundwater, which supplies up to 60% of California's agricultural water demand, has caused serious overdraft in many areas. Moreover, owing to climate change, faster and earlier snowmelt in Mediterranean climate systems such as California dictates that less water can be stored in reservoirs. If we are to substantially compensate for this loss of stored water without drastically cutting back water supply, a new era of radically increased groundwater recharge will be needed. Managed aquifer recharge (MAR) has become a common and fast-growing management option, especially in areas with high water availability variation intra- and inter-annually. Enhancing the recharge by the use of peak runoff requires integrated river basin management to improve prospects to downstream users and ecology. This study implements a quantitative approach to assess the physical and economic feasibility of MAR for American-Cosumnes River basin, CA. For this purpose, two scenarios are considered, the pre-development condition which is represented by unimpaired flows, and the other one in which available peak flow releases from Folsom reservoir derived from the CalSim II hydrologic simulation model will be employed to estimated available water for recharge. Preliminary results show peak flows during winter (Dec-Feb) and extended winter (Nov-Mar) from the American River flow can be captured within a range of 64,000 to 198,000 af/month through the Folsom South Canal for recharge. Changes in groundwater storage are estimated by using California Central Valley Groundwater-Surface Water Simulation Model (C2VSim). Results show increasing groundwater recharge benefits not only the regional groundwater storage, but also increases the groundwater storage in adjacent areas. Finally, results confirm that replenishing excess surface water during wet seasons can reduce the overdraft and help manage the groundwater in a more sustainable fashion. In addition, economic and policy implications of MAR are discussed.

  1. Spatiotemporal Assessment of Groundwater Resources in the South Platte Basin, Colorado

    NASA Astrophysics Data System (ADS)

    Ruybal, C. J.; McCray, J. E.; Hogue, T. S.

    2015-12-01

    The South Platte Basin is one of the most economically diverse and fastest growing basins in Colorado. Strong competition for water resources in an over-appropriated system brings challenges to meeting future water demands. Balancing the conjunctive use of surface water and groundwater from the South Platte alluvial aquifer and the Denver Basin aquifer system is critical for meeting future demands. Over the past decade, energy development in the basin has added to the competition for water resources, highlighting the need to advance our understanding of the availability and sustainability of groundwater resources. Current work includes evaluating groundwater storage changes and recharge regimes throughout the South Platte Basin under competing uses, e.g. agriculture, oil and gas, urban, recreational, and environmental. The Gravity Recovery and Climate Experiment satellites in conjunction with existing groundwater data is used to evaluate spatiotemporal variability in groundwater storage and identify areas of high water stress. Spatiotemporal data will also be utilized to develop a high resolution groundwater model of the region. Results will ultimately help stakeholders in the South Platte Basin better understand groundwater resource challenges and contribute to Colorado's strategic future water planning.

  2. Hydrological research in Ethiopia

    NASA Astrophysics Data System (ADS)

    Gebremichael, M.

    2012-12-01

    Almost all major development problems in Ethiopia are water-related: food insecurity, low economic development, recurrent droughts, disastrous floods, poor health conditions, and low energy condition. In order to develop and manage existing water resources in a sustainable manner, knowledge is required about water availability, water quality, water demand in various sectors, and the impacts of water resource projects on health and the environment. The lack of ground-based data has been a major challenge for generating this knowledge. Current advances in remote sensing and computer simulation technology could provide alternative source of datasets. In this talk, I will present the challenges and opportunities in using remote sensing datasets and hydrological models in regions such as Africa where ground-based datasets are scarce.

  3. Evaluation of nonpotable ground water in the desert area of southeastern California for powerplant cooling

    USGS Publications Warehouse

    Steinemann, Anne C.

    1989-01-01

    Powerplant siting is dependent upon many factors; in southern California the prevailing physical constraint is water availability. Increasing land-use and other environmental concerns preclude further sites along the coast. A review of available hydrologic data was made of 142 ground-water basins in the southeast California desert area to ascertain if any could be feasible sources of nonpotable powerplant cooling water. Feasibility implies the capacity to sustain a typical 1,000-megawatt electrical-power generating plant for 30 years with an ample supply of ground water for cooling. Of the 142 basins reviewed, 5 met or exceeded established hydrologic criteria for supplying the water demands of a typical powerplant. These basins are: (1) middle Amargosa valley, (2) Soda Lake valley, (3) Caves Canyon valley, (4) Chuckwalla Valley, and (5) Calzona-Vidal Valley. Geohydrologic evaluations of these five basins assessed the occurrence and suitability of ground water and effects of long-term pumping. An additional six basins met or exceeded hydrologic criteria, with qualifications, for providing powerplant cooling water. The remaining 131 basins either did not meet the criteria, or available data were insufficient to determine if the basins would meet the criteria.

  4. Assessment of Spatio-temporal Barren-lands Expansion and Agricultural Adaptation due to Climate Change and Anthropogenic Activity: A Geospatial Approach in Hot Semi-arid Region of Maharashtra State, India

    NASA Astrophysics Data System (ADS)

    Roy, A.; Inamdar, A. B.

    2017-12-01

    Major parts of Upper Godavari River Basin are intensely drought prone and climate vulnerable in Maharashtra State, India. The economy of the state depends on the agronomic productivity of this region. So, it is necessary to monitor and regulate the effects of climate change and anthropogenic activity on agricultural land in that region. This study investigates and maps the barren-lands and alteration of agricultural lands, their decadal deviations with the multi-temporal LANDSAT satellite images; and finally quantifies the agricultural adaptations. This work involves the utilization of remote sensing and GIS tools and modeling. First, climatic trend analysis is carried out with dataset obtained from India Meteorological Department. Then, multi-temporal LANDSAT images are classified (Level I, hybrid classification technique are followed) to determine the decadal Land Use Land Cover (LULC) changes and correlated with the agricultural water demand. Finally, various LANDSAT band analysis is conducted to determine irrigated and non-irrigated cropping area estimation and identifying the agricultural adaptations. The analysis of LANDSAT images shows that barren-lands are most increased class during the study period. The overall spatial extent of barren-lands are increased drastically during the study period. The geospatial study (class-to-class conversion study) shows that, most of the conversion of the barren-lands are from the agricultural land and reserve or open forests. The barren-lands are constantly increasing and the agricultural land is linearly decreasing. Hence, there is an inverse correlation between barren-lands and agricultural land. Moreover, there is a shift to non-irrigated and less water demanding crops, from more water demanding crops, which is a noticeable adaptation. The surface-water availability is highly dependent on rainfall and/or climatic conditions. It is changing either way in a random fashion based upon the quantity of rainfall occurred in near preceding years. The agricultural lands are densely replenished around the dams and natural water bodies which serve as the water supply stations for the irrigation purposes. Hence, the study shows there are alteration in LULC, agricultural practices and surface-water availability and expansion of barren-lands.

  5. WaterSMART-The Colorado River Basin focus-area study

    USGS Publications Warehouse

    Bruce, Breton W.

    2012-01-01

    Increasing demand for the limited water resources of the United States continues to put pressure on water-resource agencies to balance the competing needs of ecosystem health with municipal, agricultural, and recreational uses. In 2007, the U.S. Geological Survey (USGS) identified a National Water Census as one of six pivotal future science directions for the USGS in the following decade. The envisioned USGS National Water Census would evaluate large-scale effects of changes in land use and land cover, water use, and climate on water availability, water quality, and human and aquatic ecosystem health. The passage of the SECURE (Science and Engineering to Comprehensively Understand and Responsibly Enhance) Water Act in 2009 was a key step towards implementing the USGS National Water Census. Section 9508 of the Act authorizes a "national water availability and use assessment program" within the USGS (1) to provide a more accurate assessment of the status of the water resources of the United States; and (2) to develop the science for improved forecasts of the availability of water for future economic, energy production, and environmental uses. Initial funding for the USGS to begin working on the National Water Census came with the approval of the U.S. Department of the Interior's WaterSMART (Sustain and Manage America's Resources for Tomorrow) Initiative. The WaterSMART Initiative provides funding to the USGS, Bureau of Reclamation, and U.S. Department of Energy to achieve a sustainable water strategy to meet the Nation's water needs. WaterSMART funding also allowed the USGS to begin the national Water Availability and Use Assessment, as called for under the SECURE Water Act.

  6. Integrating a distributed hydrological model and SEEA-Water for improving water account and water allocation management under a climate change context.

    NASA Astrophysics Data System (ADS)

    Jauch, Eduardo; Almeida, Carina; Simionesei, Lucian; Ramos, Tiago; Neves, Ramiro

    2015-04-01

    The crescent demand and situations of water scarcity and droughts are a difficult problem to solve by water managers, with big repercussions in the entire society. The complexity of this question is increased by trans-boundary river issues and the environmental impacts of the usual adopted solutions to store water, like reservoirs. To be able to answer to the society requirements regarding water allocation in a sustainable way, the managers must have a complete and clear picture of the present situation, as well as being able to understand the changes in the water dynamics both in the short and long time period. One of the available tools for the managers is the System of Environmental-Economic Accounts for Water (SEEA-Water), a subsystem of SEEA with focus on water accounts, developed by the United Nations Statistical Division (UNSD) in collaboration with the London Group on Environmental Accounting, This system provides, between other things, with a set of tables and accounts for water and water related emissions, organizing statistical data making possible the derivation of indicators that can be used to assess the relations between economy and environment. One of the main issues with the SEEA-Water framework seems to be the requirement of large amounts of data, including field measurements of water availability in rivers/lakes/reservoirs, soil and groundwater, as also precipitation, irrigation and other water sources and uses. While this is an incentive to collecting and using data, it diminishes the usefulness of the system on countries where this data is not yet available or is incomplete, as it can lead to a poor understanding of the water availability and uses. Distributed hydrological models can be used to fill missing data required by the SEEA-Water framework. They also make it easier to assess different scenarios (usually soil use, water demand and climate changes) for a better planning of water allocation. In the context of the DURERO project (www.durero.eu), the hydrological model MOHID LAND (www.mohid.com) was used to model the Douro river basin providing information to the SEEA-Water system for the Portuguese side of the basin. The model was also used to model the Tâmega river watershed, a sub-basin of the Douro basin, with different climate change scenarios, using the results to build the SEEA-Water accounts for this pilot river basin. The aim of the present work was to understand the potential of the integration of a distributed hydrological model with the SEEA-Water framework and how this can help improving water allocation management and water account under a climate change context.

  7. Climate change hampers endangered species through intensified moisture-related plant stresses (Invited)

    NASA Astrophysics Data System (ADS)

    Bartholomeus, R.; Witte, J.; van Bodegom, P.; Dam, J. V.; Aerts, R.

    2010-12-01

    With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. As both the supply and demand of oxygen and water depend strongly on the prevailing meteorological conditions, both oxygen and water stress were calculated dynamically in time to capture climate change effects. We demonstrate that increased rainfall variability in interaction with predicted changes in temperature and CO2, affects soil moisture conditions and plant oxygen and water demands such, that both oxygen stress and water stress will intensify due to climate change. Moreover, these stresses will increasingly coincide, causing variable stress conditions. These variable stress conditions were found to decrease future habitat suitability, especially for plant species that are presently endangered. The future existence of such species is thus at risk by climate change, which has direct implications for policies to maintain endangered species, as applied by international nature management organisations (e.g. IUCN). Our integrated mechanistic analysis of two stresses combined, which has never been done so far, reveals large impacts of climate change on species extinctions and thereby on biodiversity.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Daniel Arthur

    In recent years, rising populations and regional droughts have caused coal-fired power plants to temporarily curtail or cease production due to a lack of available water for cooling. In addition, concerns about the availability of adequate supplies of cooling water have resulted in cancellation of plans to build much-needed new power plants. These issues, coupled with concern over the possible impacts of global climate change, have caused industry and community planners to seek alternate sources of water to supplement or replace existing supplies. The Department of Energy, through the National Energy Technology Laboratory (NETL) is researching ways to reduce themore » water demands of coal-fired power plants. As part of the NETL Program, ALL Consulting developed an internet-based Catalog of potential alternative sources of cooling water. The Catalog identifies alternative sources of water, such as mine discharge water, oil and gas produced water, saline aquifers, and publicly owned treatment works (POTWs), which could be used to supplement or replace existing surface water sources. This report provides an overview of the Catalog, and examines the benefits and challenges of using these alternative water sources for cooling water.« less

  9. Household water use and conservation models using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.

    2013-10-01

    The increased availability of end use measurement studies allows for mechanistic and detailed approaches to estimating household water demand and conservation potential. This study simulates water use in a single-family residential neighborhood using end-water-use parameter probability distributions generated from Monte Carlo sampling. This model represents existing water use conditions in 2010 and is calibrated to 2006-2011 metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in the eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost-effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.

  10. Household water use and conservation models using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.

    2013-04-01

    The increased availability of water end use measurement studies allows for more mechanistic and detailed approaches to estimating household water demand and conservation potential. This study uses, probability distributions for parameters affecting water use estimated from end use studies and randomly sampled in Monte Carlo iterations to simulate water use in a single-family residential neighborhood. This model represents existing conditions and is calibrated to metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.

  11. Estimating environmental co-benefits of U.S. low-carbon pathways using an integrated assessment model with state-level resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Yang; Shi, Wenjing; Smith, Steven J.

    There are many technological pathways that can lead to reduced carbon dioxide (CO 2) emissions. However, these pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. This study uses an integrated assessment model with state-level resolution of the U.S. energy system to compare environmental impacts of alternative low-carbon pathways. One set of pathways emphasizes nuclear energy and carbon capture and storage (NUC/CCS), while another set emphasizes renewable energy (RE). These are compared with pathways in which all technologies are available. Air pollutant emissions, mortality costs attributable to particulate matter less thanmore » 2.5 microns in diameter (PM2.5), and energy-related water demands are evaluated for 50% and 80% CO 2 reduction targets in the U.S. in 2050. The RE low-carbon pathways require less water withdrawal and consumption than the NUC/CCS pathways because of the large cooling demands of nuclear power and CCS. However, the NUC/CCS low-carbon pathways produce greater health benefits, mainly because the NUC/CCS assumptions result in less primary PM2.5 emissions from residential wood combustion. Environmental co-benefits differ among states because of factors such as existing technology stock, resource availability, and environmental and energy policies. An important finding is that biomass in the building sector can offset some of the health co-benefits of the low-carbon pathways even though it plays only a minor role in reducing CO 2 emissions.« less

  12. Integrated modelling to assess long-term water supply capacity of a meso-scale Mediterranean catchment.

    PubMed

    Collet, Lila; Ruelland, Denis; Borrell-Estupina, Valérie; Dezetter, Alain; Servat, Eric

    2013-09-01

    Assessing water supply capacity is crucial to meet stakeholders' needs, notably in the Mediterranean region. This region has been identified as a climate change hot spot, and as a region where water demand is continuously increasing due to population growth and the expansion of irrigated areas. The Hérault River catchment (2500 km(2), France) is a typical example and a negative trend in discharge has been observed since the 1960s. In this context, local stakeholders need first to understand the processes controlling the evolution of water resources and demands in the past to latter evaluate future water supply capacity and anticipate the tensions users could be confronted to in the future. A modelling framework is proposed at a 10-day time step to assess whether water resources have been able to meet water demands over the last 50 years. Water supply was evaluated using hydrological modelling and a dam management model. Water demand dynamics were estimated for the domestic and agricultural sectors. A water supply capacity index is computed to assess the extent and the frequency to which water demand has been satisfied at the sub-basin scale. Simulated runoff dynamics were in good agreement with observations over the calibration and validation periods. Domestic water demand has increased considerably since the 1980s and is characterized by a seasonal peak in summer. Agricultural demand has increased in the downstream sub-basins and decreased upstream where irrigated areas have decreased. As a result, although most water demands were satisfied between 1961 and 1980, irrigation requirements in summer have sometimes not been satisfied since the 1980s. This work is the first step toward evaluating possible future changes in water allocation capacity in the catchment, using future climate change, dam management and water use scenarios. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Water Availability for Shale Gas Development in Sichuan Basin, China.

    PubMed

    Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner

    2016-03-15

    Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.

  14. Water demand forecasting: review of soft computing methods.

    PubMed

    Ghalehkhondabi, Iman; Ardjmand, Ehsan; Young, William A; Weckman, Gary R

    2017-07-01

    Demand forecasting plays a vital role in resource management for governments and private companies. Considering the scarcity of water and its inherent constraints, demand management and forecasting in this domain are critically important. Several soft computing techniques have been developed over the last few decades for water demand forecasting. This study focuses on soft computing methods of water consumption forecasting published between 2005 and 2015. These methods include artificial neural networks (ANNs), fuzzy and neuro-fuzzy models, support vector machines, metaheuristics, and system dynamics. Furthermore, it was discussed that while in short-term forecasting, ANNs have been superior in many cases, but it is still very difficult to pick a single method as the overall best. According to the literature, various methods and their hybrids are applied to water demand forecasting. However, it seems soft computing has a lot more to contribute to water demand forecasting. These contribution areas include, but are not limited, to various ANN architectures, unsupervised methods, deep learning, various metaheuristics, and ensemble methods. Moreover, it is found that soft computing methods are mainly used for short-term demand forecasting.

  15. A Multi-Sector Assessment of the Effects of Climate Change at the Energy-Water-Land Nexus in the US

    NASA Astrophysics Data System (ADS)

    McFarland, J.; Sarofim, M. C.; Martinich, J.

    2017-12-01

    Rising temperatures and changing precipitation patterns due to climate change are projected to alter many sectors of the US economy. A growing body of research has examined these effects in the energy, water, and agricultural sectors. Rising summer temperatures increase the demand for electricity. Changing precipitation patterns effect the availability of water for hydropower generation, thermo-electric cooling, irrigation, and municipal and industrial consumption. A combination of changes to temperature and precipitation alter crop yields and cost-effective farming practices. Although a significant body of research exists on analyzing impacts to individual sectors, fewer studies examine the effects using a common set of assumptions (e.g., climatic and socio-economic) within a coupled modeling framework. The present analysis uses a multi-sector, multi-model framework with common input assumptions to assess the projected effects of climate change on energy, water, and land-use in the United States. The analysis assesses the climate impacts for across 5 global circulation models for representative concentration pathways (RCP) of 8.5 and 4.5 W/m2. The energy sector models - Pacific Northwest National Lab's Global Change Assessment Model (GCAM) and the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) - show the effects of rising temperature on energy and electricity demand. Electricity supply in ReEDS is also affected by the availability of water for hydropower and thermo-electric cooling. Water availability is calculated from the GCM's precipitation using the US Basins model. The effects on agriculture are estimated using both a process-based crop model (EPIC) and an agricultural economic model (FASOM-GHG), which adjusts water supply curves based on information from US Basins. The sectoral models show higher economic costs of climate change under RCP 8.5 than RCP 4.5 averaged across the country and across GCM's.

  16. Pollution source localization in an urban water supply network based on dynamic water demand.

    PubMed

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  17. Hydrogeology and simulation of regional ground-water-level declines in Monroe County, Michigan

    USGS Publications Warehouse

    Reeves, Howard W.; Wright, Kirsten V.; Nicholas, J.R.

    2004-01-01

    Observed ground-water-level declines from 1991 to 2003 in northern Monroe County, Michigan, are consistent with increased ground-water demands in the region. In 1991, the estimated ground-water use in the county was 20 million gallons per day, and 80 percent of this total was from quarry dewatering. In 2001, the estimated ground-water use in the county was 30 million gallons per day, and 75 percent of this total was from quarry dewatering. Prior to approximately 1990, the ground-water demands were met by capturing natural discharge from the area and by inducing leakage through glacial deposits that cover the bedrock aquifer. Increased ground-water demand after 1990 led to declines in ground-water level as the system moves toward a new steady-state. Much of the available natural discharge from the bedrock aquifer had been captured by the 1991 conditions, and the response to additional withdrawals resulted in the observed widespread decline in water levels. The causes of the observed declines were explored through the use of a regional ground-water-flow model. The model area includes portions of Lenawee, Monroe, Washtenaw, and Wayne Counties in Michigan, and portions of Fulton, Henry, and Lucas Counties in Ohio. Factors, including lowered water-table elevations because of below average precipitation during the time period (1991 - 2001) and reduction in water supply to the bedrock aquifer because of land-use changes, were found to affect the regional system, but these factors did not explain the regional decline. Potential ground-water capture for the bedrock aquifer in Monroe County is limited by the low hydraulic conductivity of the overlying glacial deposits and shales and the presence of dense saline water within the bedrock as it dips into the Michigan Basin to the west and north of the county. Hydrogeologic features of the bedrock and the overlying glacial deposits were included in the model design. An important step of characterizing the bedrock aquifer was the determination of inputs and outputs of water—leakage from glacial deposits and flows across model boundaries. The imposed demands on the groundwater system create additional discharge from the bedrock aquifer, and this discharge is documented by records and estimates of water use including: residential and industrial use, irrigation, and quarry dewatering. Hydrologic characterization of Monroe County and surrounding areas was used to determine the model boundaries and inputs within the ground-water model. MODFLOW-2000 was the computer model used to simulate ground-water flow. Predevelopment, 1991, and 2001 conditions were simulated with the model. The predevelopment model did not include modern water use and was compared to information from early settlement of the county. The 1991 steady-state model included modern demands on the ground-water system and was based on a significant amount of data collected for this and previous studies. The predevelopment and 1991 simulations were used to calibrate the numerical model. The simulation of 2001 conditions was based on recent data and explored the potential ground-water levels if the current conditions persist. Model results indicate that the ground-water level will stabilize in the county near current levels if the demands imposed during 2001 are held constant.

  18. Trading the Economic Value of Unsatisfied Municipal Water Demand

    NASA Astrophysics Data System (ADS)

    Telfah, Dua'a. B.; Minciardi, Riccardo; Roth, Giorgio

    2018-06-01

    Modelling and optimization techniques for water resources allocation are proposed to identify the economic value of the unsatisfied municipal water demand against demands emerging from other sectors. While this is always an important step in integrated water resource management perspective, it became crucial for water scarce Countries. In fact, since the competition for the resource is high, they are in crucial need to trade values which will help them in satisfying their policies and needs. In this framework, hydro-economic, social equity and environmental constraints need to be satisfied. In the present study, a hydro-economic decision model based on optimization schemes has been developed for water resources allocation, that enable the evaluation of the economic cost of a deficiency in fulfilling the municipal demand. Moreover, the model enables efficient water resources management, satisfying the demand and proposing additional water resources options. The formulated model is designed to maximize the demand satisfaction and minimize water production cost subject to system priorities, preferences and constraints. The demand priorities are defined based on the effect of demand dissatisfaction, while hydrogeological and physical characteristics of the resources are embedded as constraints in the optimization problem. The application to the City of Amman is presented. Amman is the Capital City of the Hashemite Kingdom of Jordan, a Country located in the south-eastern area of the Mediterranean, on the East Bank of the Jordan River. The main challenge for Jordan, that threat the development and prosperity of all sectors, is the extreme water scarcity. In fact, Jordan is classified as semi-arid to arid region with limited financial resources and unprecedented population growth. While the easy solution directly goes to the simple but expensive approach to cover the demand, case study results show that the proposed model plays a major role in providing directions to decision makers to orient their policies and strategies in order to achieve sustainability of scarce water resources, satisfaction of the minimum required demand as well as financial sustainability. In addition, results map out national needs and priorities that are crucial in understanding and controlling the complexity of Jordan's water sector, mainly for the city of Amman.

  19. What limits evaporation from Mediterranean oak woodlands The supply of moisture in the soil, physiological control by plants or the demand by the atmosphere?

    NASA Astrophysics Data System (ADS)

    Baldocchi, Dennis D.; Xu, Liukang

    2007-10-01

    The prediction of evaporation from Mediterranean woodland ecosystems is complicated by an array of climate, soil and plant factors. To provide a mechanistic and process-oriented understanding, we evaluate theoretical and experimental information on water loss of Mediterranean oaks at three scales, the leaf, tree and woodland. We use this knowledge to address: what limits evaporation from Mediterranean oak woodlands - the supply of moisture in the soil, physiological control by plants or the demand by the atmosphere? The Mediterranean climate is highly seasonal with wet winters and hot, dry summers. Consequently, available sunlight is in surplus, causing potential evaporation to far exceed available rainfall on an annual basis. Because the amount of precipitation to support woody plants is marginal, Mediterranean oaks must meet their limited water supply by a variety of means. They do so by: (1) constraining the leaf area index of the landscape by establishing a canopy with widely spaced trees; (2) reducing the size of individual leaves; (3) by adopting physiological characteristics that meter the use of water (e.g. regulating stomatal, leaf nitrogen/photosynthetic capacity and/or hydraulic conductance); (4), by tapping deep supplies of water in the soil; (5) and/or by adopting a deciduous life form, which reduces the time interval that the vegetation transpires.

  20. Estimation of the sustainable geothermal potential of Vienna

    NASA Astrophysics Data System (ADS)

    Tissen, Carolin; Benz, Susanne A.; Keck, Christiane A.; Bayer, Peter; Blum, Philipp

    2017-04-01

    Regarding the limited availability of fossil fuels and the absolute necessity to reduce CO2 emissions in order to mitigate the worldwide climate change, renewable resources and new energy systems are required to provide sustainable energy for the future. Shallow geothermal energy holds a huge untapped potential especially for heating and hot water, which represent up to 50% of the global energy demand. Previous studies quantified the capacity of shallow geothermal energy for closed and open systems in cities such as Vienna, London (Westminster) and Ludwigsburg in Germany. In the present study, these approaches are combined and also include the anthropogenic heat input by the urban heat island (UHI) effect. The objective of the present study is therefore to estimate the sustainable geothermal potential of Vienna. Furthermore, the amount of energy demand for heating and hot water that can be supplied by open and closed geothermal systems will be determined. The UHI effect in Vienna is reflected in higher ground water temperatures within the city centre (14 ˚ C to 18 ˚ C) in comparison to lower ones in rural areas (10 ˚ C to 13 ˚ C). A preliminary estimation of the anthropogenic heat flow into the ground water caused by elevated basement temperatures and land surface temperatures is 3,5 × 108 kWh/a. This additional heat flow leads to a total geothermal potential which is 2.5 times larger than the estimated annual energy demand for heating and hot water in Vienna.

  1. Demand driven decision support for efficient water resources allocation in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens

    2014-05-01

    Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.

  2. An energy balance concept for habitability.

    PubMed

    Hoehler, Tori M

    2007-12-01

    Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.

  3. Estimates of future water demand for selected water-service areas in the Upper Duck River basin, central Tennessee; with a section on Methodology used to develop population forecasts for Bedford, Marshall, and Maury counties, Tennessee, from 1993 through 2050

    USGS Publications Warehouse

    Hutson, S.S.; Schwarz, G.E.

    1996-01-01

    Estimates of future water demand were determined for selected water-service areas in the upper Duck River basin in central Tennessee through the year 2050. The Duck River is the principal source of publicly-supplied water in the study area providing a total of 15.6 million gallons per day (Mgal/d) in 1993 to the cities of Columbia, Lewisburg, Shelbyville, part of southern Williamson County, and several smaller communities. Municipal water use increased 19 percent from 1980 to 1993 (from 14.5 to 17.2 Mgal/d). Based on certain assumptions about socioeconomic conditions and future development in the basin, water demand should continue to increase through 2050. Projections of municipal water demand for the study area from 1993 to 2015 were made using econometric and single- coefficient (unit-use) requirement models of the per capita type. The models are part of the Institute for Water Resources-Municipal and Industrial Needs System, IWR-MAIN. Socioeconomic data for 1993 were utilized to calibrate the models. Projections of water demand in the study area from 2015 to 2050 were made using a single- coefficient requirement model. A gross per capita use value (unit-requirement) was estimated for each water-service area based on the results generated by IWR-MAIN for year 2015. The gross per capita estimate for 2015 was applied to population projections for year 2050 to calculate water demand. Population was projected using the log-linear form of the Box-Cox regression model. Water demand was simulated for two scenarios. The scenarios were suggested by various planning agencies associated with the study area. The first scenario reflects a steady growth pattern based on present demographic and socioeconomic conditions in the Bedford, Marshall, and Maury/southern Williamson water-service areas. The second scenario considers steady growth in the Bedford and Marshall water-service areas and additional industrial and residential development in the Maury/southern Williamson water-service area beginning in 2000. For the study area, water demand for scenario one shows an increase of 121 percent (from 17.2 to 38 Mgal/d) from 1993 to 2050. In scenario two, simulated water demand increases 150 percent (17.2 to 43 Mgal/d) from 1993 to 2050.

  4. Changes in Water-Food-Energy Nexus in India and its consistency with changes in Monsoon

    NASA Astrophysics Data System (ADS)

    Barik, B.; Ghosh, S.; Pathak, A.

    2017-12-01

    Meeting the growing demand for food, water, and energy for a densely populated country like India is a major challenge. Green Revolution helped to maintain the food security, with Government policies such as distribution of electricity at a subsidised rate, resulting in an unregulated withdrawal of groundwater. Thus, the depleting groundwater went unnoticed as the high agricultural productivity overshadowed it. Here we present a comprehensive analysis which assess the present status of the water-food-energy nexus in India. We find that with the growth of population and consequent increase in the food demands, the food production has also increased, and this has been made possible with the intensification of irrigation. However, during the recent decade (after 1996), the increase in food production has not been sufficient to meet its growing demands, precipitating a decline in the per-capita food availability. Also, there has been a decline in the groundwater storage in India during the last decade, as derived from the Gravity Recovery and Climate Experiment (GRACE) data. Regional studies reveal contrasting trends, where North-western India and the middle Ganga basin show a decrease in the groundwater storage as opposed to an increasing storage over western-central India. We also find that, after a drought, the groundwater storage drops but is unable to recover to its original condition even after good monsoon years. The groundwater storage reveals a very strong negative correlation with the electricity consumption for agricultural usage, which may also be considered as a proxy for groundwater pumped for irrigation in a region. The electricity usage for agricultural purposes has an increasing trend and, interestingly, it does not have any correlation with the monsoon rainfall. This reveals an important finding that the irrigation has been intensified irrespective of rainfall. This also resulted in a decreasing correlation between the food production and monsoon rainfall, revealing the increasing dependency of agricultural activities on irrigation. We conclude that irrigation has become essential for agriculture to meet the food demand; hence, it should be judiciously regulated and controlled, based on the water availability from monsoon rainfall.

  5. ­­Drought, water conservation, and water demand rebound in California

    NASA Astrophysics Data System (ADS)

    Gonzales, P.; Ajami, N.

    2017-12-01

    There is growing recognition that dynamic community values, preferences, and water use behaviors are important drivers of water demand in addition to external factors such as temperature and precipitation. Water demand drivers have been extensively studied, yet they have traditionally been applied to models that assume static conditions and usually do not account for potential societal changes in response to increased scarcity awareness. For example, following a period of sustained low demand such as during a drought, communities often increase water use during a hydrologically wet period, a phenomenon known as "rebounding" water use. Yet previous experiences show the extent of this rebound is not a straightforward function of policy and efficiency improvements, but may also reflect short-term or long-lasting change in community behavior, which are not easily captured by models that assume stationarity. In this study we explore cycles of decreased water demand during drought and subsequent water use rebound observed in California in recent decades. We have developed a novel dynamic system model for water demand in three diverse but interconnected service areas in the San Francisco Bay Area, exposing local trends of changing water use behaviors and long-term impacts on water demand since 1980 to the present. In this model, we apply the concept of social memory, defined as a community's inherited knowledge about hazardous events or degraded environmental conditions from past experiences. While this concept has been applied to further conceptual understanding of socio-hydrologic systems in response to hydrological extremes, to the best of our knowledge this the first study to incorporate social memory to model the water demand rebound phenomenon and to use such a model in the examination of changing dynamics validated by historical data. In addition, we take a closer look at water demand during the recent historic drought in California from 2012-16, and relate our long-term insights to recent events and statewide trends. This comparative modeling exercise shows that increased public awareness during droughts can be related to systematic changes in the way diverse communities respond to near- and long-term conservation incentives.

  6. Integrating the simulation of domestic water demand behaviour to an urban water model using agent based modelling

    NASA Astrophysics Data System (ADS)

    Koutiva, Ifigeneia; Makropoulos, Christos

    2015-04-01

    The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model integration is that it allows the investigation of the effects of different water demand management strategies to an urban population's water demand behaviour and ultimately the effects of these policies to the volume of domestic water demand and the water resources system. The proposed modelling platform is optimised to simulate the effects of water policies during the Athens drought period of 1988-1994. The calibrated modelling platform is then applied to evaluate scenarios of water supply, water demand and water demand management strategies.

  7. Droughts in the US: Modeling and Forecasting for Agriculture-Water Management and Adaptation

    NASA Astrophysics Data System (ADS)

    Perveen, S.; Devineni, N.; Lall, U.

    2012-12-01

    More than half of all US counties are currently mired in a drought that is considered the worst in decades. A persistent drought can not only lead to widespread impacts on water access with interstate implications (as has been shown in the Southeast US and Texas), chronic scarcity can emerge as a risk in regions where fossil aquifers have become the primary source of supply and are being depleted at rates much faster than recharge (e.g., Midwestern US). The standardized drought indices on which the drought declarations are made in the US so far consider only the static decision frameworks—where only the supply is the control variable and not the water consumption. If a location has low demands, drought as manifest in the usual indices does not really have "proportionate" social impact. Conversely, a modest drought as indicated by the traditional measures may have significant impacts where demand is close to the climatological mean value of precipitation. This may also lead to drought being declared too late or too soon. Against this fact, the importance of improved drought forecasting and preparedness for different sectors of the economy becomes increasingly important. The central issue we propose to address through this paper is the construction and testing of a drought index that considers regional water demands for specific purposes (e.g., crops, municipal use) and their temporal distribution over the year for continental US. Here, we have highlighted the use of the proposed index for three main sectors: (i) water management organizations, (ii) optimizing agricultural water use, and (iii) supply chain water risk. The drought index will consider day-to-day climate variability and sectoral demands to develop aggregate regional conditions or disaggregated indices for water users. For the daily temperature and precipitation data, we are using NLDAS dataset that is available from 1949 onwards. The national agricultural statistics services (NASS) online database has been accessed for the agricultural data at the county level. Preliminary analyses show that large parts of Midwest and Southern parts of Florida and California are prone to multiyear droughts. This can primarily be attributed to high agricultural and/or urban water demands coupled with high interannual variability in supply. We propose to develop season-ahead and monthly updated forecasts of the drought index for informing the drought management plans. Given the already customized (sector specific) nature of the proposed drought index and its ability to represent the variability in both supply and demand, the early warning or forecasting of the index would not only complement the drought early warning systems in place by the national integrated drought information system (NIDIS) but also help in prescribing the ameliorative measures for adaptation.

  8. Water shortage risk assessment considering large-scale regional transfers: a copula-based uncertainty case study in Lunan, China.

    PubMed

    Gao, Xueping; Liu, Yinzhu; Sun, Bowen

    2018-06-05

    The risk of water shortage caused by uncertainties, such as frequent drought, varied precipitation, multiple water resources, and different water demands, brings new challenges to the water transfer projects. Uncertainties exist for transferring water and local surface water; therefore, the relationship between them should be thoroughly studied to prevent water shortage. For more effective water management, an uncertainty-based water shortage risk assessment model (UWSRAM) is developed to study the combined effect of multiple water resources and analyze the shortage degree under uncertainty. The UWSRAM combines copula-based Monte Carlo stochastic simulation and the chance-constrained programming-stochastic multiobjective optimization model, using the Lunan water-receiving area in China as an example. Statistical copula functions are employed to estimate the joint probability of available transferring water and local surface water and sampling from the multivariate probability distribution, which are used as inputs for the optimization model. The approach reveals the distribution of water shortage and is able to emphasize the importance of improving and updating transferring water and local surface water management, and examine their combined influence on water shortage risk assessment. The possible available water and shortages can be calculated applying the UWSRAM, also with the corresponding allocation measures under different water availability levels and violating probabilities. The UWSRAM is valuable for mastering the overall multi-water resource and water shortage degree, adapting to the uncertainty surrounding water resources, establishing effective water resource planning policies for managers and achieving sustainable development.

  9. Decomposing climate-induced temperature and water effects on the expansion and operation of the US electricity system

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Eurek, K.; Macknick, J.; Steinberg, D. C.; Averyt, K.; Badger, A.; Livneh, B.

    2017-12-01

    Climate change has the potential to affect the supply and demands of the U.S. power sector. Rising air temperatures can affect the seasonal and total demand for electricity, alter the thermal efficiency of power plants, and lower the maximum capacity of electric transmission lines. Changes in hydrology can affect seasonal and total availability of water used for power plant operations. Prior studies have examined some climate impacts on the electricity sector, but there has been no systematic study quantifying and comparing the importance of these climate-induced effects in isolation and in combination. Here, we perform a systematic assessment using the Regional Energy Deployment System (ReEDS) electricity sector model in combination with downscaled climate results from four models in the CMIP5 archive that provide contrasting temperature and precipitation trends for key regions in the U.S. The ReEDS model captures dynamic climate and hydrological resource data .when choosing the cost optimal mix of generation resources necessary to balance supply and demand for electricity. We examine how different climate-induced changes in air temperature and water availability, considered in isolation and in combination, may affect energy and economic outcomes at a regional and national level from the present through 2050. Results indicate that temperature-induced impacts on electricity consumption show consistent trends nationwide across all climate scenarios. Hydrological impacts and variability differ by model and tend to have a minor effect on national electricity trends, but can be important determinants regionally. Taken together, this suggests that isolated climate change impacts on the electricity system depend on the geographic scale of interest - the effect of rising temperatures on demand, which is qualitatively robust to the choice of climate model, largely determines impacts on generation, capacity and cost at the national level, whereas other impact pathways may dominate at regional level.

  10. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems

    USGS Publications Warehouse

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.

    2005-01-01

    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability of the river to assimilate wastewater treatment plant effluent. Our study illustrates the types of changes that river ecosystems might experience under future climates. Copyright ?? 2005 John Wiley & Sons, Ltd.

  11. Effect of Population Growths on Water Resources in Dubai Emirate, United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Al-Nuaimi, Hind S.; Murad, Ahmed A.

    The Emirate of Dubai is situated to the north of the United Arab Emirates on the Arabian Gulf. Due to its political stability and strong economy, people are continuing to immigrate to Dubai and this will enhance the stress on water resources. Therefore, demands for water will increase significantly in Dubai. The scarcity of water resources in Dubai is evident. The total production of water in the Dubai has increased to 61,478 million gallons in 2004. About 58,808 million gallons has been produced from the desalination plants in 2004. The production of freshwater from the main aquifers is about 2763 and 2655 million gallons for the years 2003 and 2004, respectively. The reduction of groundwater in 2004 may be ascribed to the low amount of rainfall and to the decreasing capacity of the aquifers. Treated wastewater is another source for water whose quantity was increased from 72 m3 to about 107 m3 in 2000 and 2004, respectively. The increase in water production in Dubai to meet the demand corresponds to population growth and this might be attributed to the political stability and strong economy. Moreover, major problems related to the water resources have appeared and affected the availability of freshwater in Dubai. These problems include: lowering water level and groundwater deterioration. This paper is aimed to assess the impacts of population growth on water resources in Dubai.

  12. Water challenges of the future; how scientific understanding can help

    NASA Astrophysics Data System (ADS)

    Young, G.

    2012-04-01

    Demands for water resources are diverse and are increasing as human populations grow and become more concentrated in urban areas and as economies develop. Water is essential for many uses including the basic human needs of food and the maintenance of good health, for many industries and the creation of electrical energy and as vital for the sustenance of the natural ecosystems on which all life is dependent. At the same time threats from water - floods, droughts - are increasing with these extreme events becoming more common and more intense in many regions of the world and as more people locate in flood- and drought-prone regions. In general, the challenges for water managers are thus becoming greater; managers not only are having to make increasingly difficult decisions regarding allocation of water resources between competing uses as demand outstrips supply, but they also have to take measures to protect societies from the ravages of extreme events. The intensity of the challenges facing water managers is not uniform throughout the world - many nations in the less developed world experiencing far greater problems than most highly developed nations - but the trend towards greater challenges is clear. Decision-makers, whether at the international, national, provincial or local level benefit from reliable information on water resources. They need information on the availability in quantity and quality of water from a variety of sources - surface waters, aquifers or from artificial sources such as re-cycling of wastewater and desalination techniques. Managers also need reliable predictions on water availability for the various uses to which water is put - such predictions are needed on time scales from weeks to decades to inform decision-making. Predictions are also needed on the probabilities of occurrence of extreme events. Thus hydrological scientists developing predictive models and working within a fast-changing world have much to contribute to the needs of society.

  13. Meeting multiple demands: Water transaction opportunities for environmental benefits promoting adaptation to climate change

    NASA Astrophysics Data System (ADS)

    McCoy, Amy

    2015-04-01

    In arid regions, the challenge of balancing water use among a diversity of sectors expands in lock step with conditions of water stress that are exacerbated by climate variability, prolonged drought, and growing water-use demands. The elusiveness of achieving a sustainable balance under conditions of environmental change in the southwestern United States is evidenced by reductions in both overall water availability and freshwater ecosystem health, as well as by recent projections of shortages on the Colorado River within the next five years. The water sustainability challenge in this region, as well as drylands throughout the world, can therefore be viewed through the lens of water stress, a condition wherein demands on land and water -- including the needs of freshwater ecosystems -- exceed reliable supplies, and the full range of water needs cannot be met without tradeoffs across multiple uses. Water stress influences not only ecosystems, but a region's economy, land management, quality of life, and cultural heritage -- each of which requires water to thrive. With respect to promoting successful adaptation to climate change, achieving full water sustainability would allow for water to be successfully divided among water users -- including municipalities, agriculture, and freshwater ecosystems -- at a level that meets the goals of water users and the governing body. Over the last ten to fifteen years, the use of transactional approaches in the western U.S., Mexico, and Australia has proven to be a viable management tool for achieving stream flow and shallow aquifer restoration. By broad definition, environmental water transactions are an equitable and adaptable tool that brings diverse stakeholders to the table to facilitate a fair-market exchange of rights to use water in a manner that benefits both water users and the environment. This talk will present a basic framework of necessary stakeholder engagement, hydrologic conditions, enabling laws and policies, pertinent tools and techniques, and potential ecological outcomes that are essential components of environmental water transactions in the western United States. The overarching goal of the presentation seeks to explore ways in which environmental transactions can contribute to the protection and restoration of streams and shallow aquifers in arid and semi-arid regions across the globe.

  14. Mining residential water and electricity demand data in Southern California to inform demand management strategies

    NASA Astrophysics Data System (ADS)

    Cominola, A.; Spang, E. S.; Giuliani, M.; Castelletti, A.; Loge, F. J.; Lund, J. R.

    2016-12-01

    Demand side management strategies are key to meet future water and energy demands in urban contexts, promote water and energy efficiency in the residential sector, provide customized services and communications to consumers, and reduce utilities' costs. Smart metering technologies allow gathering high temporal and spatial resolution water and energy consumption data and support the development of data-driven models of consumers' behavior. Modelling and predicting resource consumption behavior is essential to inform demand management. Yet, analyzing big, smart metered, databases requires proper data mining and modelling techniques, in order to extract useful information supporting decision makers to spot end uses towards which water and energy efficiency or conservation efforts should be prioritized. In this study, we consider the following research questions: (i) how is it possible to extract representative consumers' personalities out of big smart metered water and energy data? (ii) are residential water and energy consumption profiles interconnected? (iii) Can we design customized water and energy demand management strategies based on the knowledge of water- energy demand profiles and other user-specific psychographic information? To address the above research questions, we contribute a data-driven approach to identify and model routines in water and energy consumers' behavior. We propose a novel customer segmentation procedure based on data-mining techniques. Our procedure consists of three steps: (i) extraction of typical water-energy consumption profiles for each household, (ii) profiles clustering based on their similarity, and (iii) evaluation of the influence of candidate explanatory variables on the identified clusters. The approach is tested onto a dataset of smart metered water and energy consumption data from over 1000 households in South California. Our methodology allows identifying heterogeneous groups of consumers from the studied sample, as well as characterizing them with respect to consumption profiles features and socio- demographic information. Results show how such better understanding of the considered users' community allows spotting potentially interesting areas for water and energy demand management interventions.

  15. Method for predicting water demand for crop uses in New Jersey in 1990, 2000, 2010, and 2020, and for estimating water use for livestock and selected sectors of the food-processing industry in New Jersey in 1987

    USGS Publications Warehouse

    Clawges, R.M.; Titus, E.O.

    1993-01-01

    A method was developed to predict water demand for crop uses in New Jersey. A separate method was developed to estimate water use for livestock and selected sectors of the food-processing industry in 1987. Predictions of water demand for field- grown crops in New Jersey were made for 1990, 2000, 2010, and 2020 under three climatological scenarios: (1) wet year, (2) average year, and (3) drought year. These estimates ranged from 4.10 times 10 to the 9th power to 16.82 times 10 to the 9th power gal (gallons). Irrigation amounts calculated for the three climatological scenarios by using a daily water-balance model were multiplied by predicted numbers of irrigated acreage. Irrigated acreage was predicted from historical crop-irrigation data and from predictions of harvested acreage produced by using a statistical model relating population to harvested acreage. Predictions of water demand for cranberries and container-grown nursery crops also were made for 1990, 2000, 2010, and 2020. Predictions of water demand under the three climatological scenarios were made for container- grown nursery crops, but not for cranberries, because water demand for cranberries varies little in response to climatological factors. Water demand for cranberries was predicted to remain constant at 4.43 times 10 to the 9th power gal through the year 2020. Predictions of water demand for container-grown nursery crops ranged from 1.89 times 10 to the 9th power to 3.63 times 10 to the 9th power gal. Water-use for livestock in 1987 was estimated to be 0.78 times 10 to the 9th power gal, and water use for selected sectors of the food-processing industry was estimated to be 3.75 times 10 to the 9th power gal.

  16. Water supply, demand, and quality indicators for assessing the spatial distribution of water resource vulnerability in the Columbia River Basin

    USGS Publications Warehouse

    Chang, Heejun; Jung, Il-Won; Strecker, Angela L.; Wise, Daniel; Lafrenz, Martin; Shandas, Vivek; ,; Yeakley, Alan; Pan, Yangdong; Johnson, Gunnar; Psaris, Mike

    2013-01-01

    We investigated water resource vulnerability in the US portion of the Columbia River basin (CRB) using multiple indicators representing water supply, water demand, and water quality. Based on the US county scale, spatial analysis was conducted using various biophysical and socio-economic indicators that control water vulnerability. Water supply vulnerability and water demand vulnerability exhibited a similar spatial clustering of hotspots in areas where agricultural lands and variability of precipitation were high but dam storage capacity was low. The hotspots of water quality vulnerability were clustered around the main stem of the Columbia River where major population and agricultural centres are located. This multiple equal weight indicator approach confirmed that different drivers were associated with different vulnerability maps in the sub-basins of the CRB. Water quality variables are more important than water supply and water demand variables in the Willamette River basin, whereas water supply and demand variables are more important than water quality variables in the Upper Snake and Upper Columbia River basins. This result suggests that current water resources management and practices drive much of the vulnerability within the study area. The analysis suggests the need for increased coordination of water management across multiple levels of water governance to reduce water resource vulnerability in the CRB and a potentially different weighting scheme that explicitly takes into account the input of various water stakeholders.

  17. The Influence of Heavy Metals and Water Parameters on the Composition and Abundance of Water Bugs (Insecta: Hemiptera) in the Kerian River Basin, Perak, Malaysia

    PubMed Central

    Ishadi, Nur Adibah Mohd; Rawi, Che Salmah Md; Ahmad, Abu Hassan; Abdul, Nurul Huda

    2014-01-01

    The hemipteran (Insecta) diversity in the upper part of the Kerian River Basin was low with only 8 families and 16 genera recorded at 4 study sites from 3 rivers. Water bug composition varied among sampling sites (Kruskal-Wallis χ 2 = 0.00, p<0.05) but was not affected by wet-dry seasons (Z = 0.00, p>0.05). All recorded water parameters were weakly associated with generic abundance but the biochemical oxygen demand (BOD), chemical oxygen demand (COD), Water Quality Index (WQI) and heavy metals (zinc and manganese) showed relatively strong positive or negative relations with hemipteran diversity and richness (H’ and R2). Within the ranges of measured water parameters, the WQI was negatively associated with hemipteran diversity and richness, implying the tolerance of the water bugs to the level of pollution encountered in the river basin. Based on its highest abundance and occurrence (ISI), Rhagovelia was the most important genus and along with Rheumatogonus and Paraplea, these genera were common at all study sites. In conclusion, habitat availability and suitability together with some environmental parameters influenced the abundance and composition of hemipterans in this river basin. PMID:27073600

  18. Inclusion of tank configurations as a variable in the cost optimization of branched piped-water networks

    NASA Astrophysics Data System (ADS)

    Hooda, Nikhil; Damani, Om

    2017-06-01

    The classic problem of the capital cost optimization of branched piped networks consists of choosing pipe diameters for each pipe in the network from a discrete set of commercially available pipe diameters. Each pipe in the network can consist of multiple segments of differing diameters. Water networks also consist of intermediate tanks that act as buffers between incoming flow from the primary source and the outgoing flow to the demand nodes. The network from the primary source to the tanks is called the primary network, and the network from the tanks to the demand nodes is called the secondary network. During the design stage, the primary and secondary networks are optimized separately, with the tanks acting as demand nodes for the primary network. Typically the choice of tank locations, their elevations, and the set of demand nodes to be served by different tanks is manually made in an ad hoc fashion before any optimization is done. It is desirable therefore to include this tank configuration choice in the cost optimization process itself. In this work, we explain why the choice of tank configuration is important to the design of a network and describe an integer linear program model that integrates the tank configuration to the standard pipe diameter selection problem. In order to aid the designers of piped-water networks, the improved cost optimization formulation is incorporated into our existing network design system called JalTantra.

  19. 78 FR 77417 - Notice of Intent To Prepare a Supplemental Environmental Impact Statement for the Little Otter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... availability. The Missouri Drought Plan places Caldwell County in a region classified as having ``severe surface and groundwater supply drought vulnerability.'' Digital models estimate that existing water sources could supply only 37 percent of the county's demand during the drought of record. In addition, the...

  20. Crops in silico: Generating virtual crops using an integrative and multi-scale modeling platform

    USDA-ARS?s Scientific Manuscript database

    There are currently 795 million hungry people in the world and 98 percent of them are in developing countries. Food demand is expected to increase by 70% by 2050. With a reduction in arable land, decreases in water availability, and an increasing impact of climate change, innovative technologies are...

  1. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    USGS Publications Warehouse

    Krstolic, Jennifer L.

    2015-01-01

    Time-series analyses were used to investigate changes in habitat availability with increased water withdrawals of 10, 20, and almost 50 percent (48.6 percent) up to the 2040 amounts projected by local water supply plans. Adult and sub-adult smallmouth bass frequently had habitat availability outside the normal range for habitat conditions during drought years, yet 10- or 20-percent increases in withdrawals did not contribute to a large reduction in habitat. When withdrawals were increased by 50 percent, there was an additional decrease in habitat. During 2002 drought scenarios, reduced habitat availability for sub-adult redbreast sunfish or river chub was only slightly evident with 50-percent increased withdrawal scenarios. Recreational habitat represented by canoeing decreased lower than normal during the 2002 drought. For a recent normal year, like 2012, increased water-withdrawal scenarios did not affect habitat availability for fish such as adult and sub-adult smallmouth bass, sub-adult redbreast sunfish, or river chub. Canoeing habitat availability was within the normal range most of 2012, and increased water-withdrawal scenarios showed almost no affect. For both ecological fish habitat and recreational canoeing habitat, the antecedent conditions (habitat within normal range of habitat or below normal) appear to govern whether additional water withdrawals will affect habitat availability. As human populations and water demands increase, many of the ecological or recreational stresses may be lessened by managing the timing of water withdrawals from the system.

  2. Historical upscaling of the socio-hydrological cycle: Three cases from the Mediterranean Spain

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel; Sanchis-Ibor, Carles

    2015-04-01

    Understanding the co-evolution between hydrological and socio-economic systems is vital to assess how anthropogenic and natural systems will evolve and interact in the future. Examining past socio-hydrological changes is therefore important to produce knowledge able to develop socio-hydrological models for predicting the future hydrology and society evolution patterns. As noticeable climate changes leading to higher water stress are expected in the Mediterranean Europe, socio-hydrological processes are likely to suffer considerable modifications in the XXI century, driving to potential conflicts as water demand increases while water resources fall. The goal of this contribution is to identify the hydro-social processes that have caused water conflicts, and how they have been solved in the Mediterranean Spain. The method is based in the analysis of historical documents, available since the Middle Ages. Once historical water conflicts (always well-documented) were located, a socio-hydrological "causal loop" is formulated, determining what caused that conflict, what factors or chain of factors were involved, and how it was addressed. Repeating that process for all the reported water conflicts allow us to gain insight into their driving forces, the socio-hydrological relationships linked to those, and the successful (and unsuccessful) strategies employed to address them. Three cases were selected from the Mediterranean Spain: the Mijares, the Turia and the Jucar river basins. All of them share similar documental sources (the Royal Archives, courts' archives, municipal archives and farmers' archives), similar climate and similar socio-economic backgrounds. Moreover, all of them are predicted to suffer similar climate change impacts. Irrigation is their major water demand. In these three rivers, during the last millennia, successive waterscapes have been constructed by different societies, in a prolonged process of institutional and environmental up-scaling, from the local level to the basin level, based on collaborative actions through multistakeholder partnerships and agreements. Irrigation development has played a major role in the evolutionary trend of the hydro-social cycle in the three basins, determining water demands and uses, and boosting institutional building. Following the main historical institutional milestones and examining the historical changes in water uses, remarkable differences can be found among the three cases, enhancing the high sensitivity of the hydrological processes with respect to socio-economic factors. Therefore, comparing them is adequate to find out those high-sensitive factors and the way they provoke the differences between the basins. The casual loop created a basin closure - basin reopening cycle. Basin closures were associated to increasing demands by population growth, irrigation and immigration, causing drought vulnerability. Basin reopenings corresponded to the building of regulation facilities (reservoirs, canals), the availability of new water sources (groundwater, regenerated water), or a change in the management strategies (conjunctive use). During basin closure, users fought during droughts but united to prevent new users' access to water. During reopenings, water use quickly increased, leading to basin closures. User conflicts were solved by user agreement in water sharing or by law requirement, establishing a new management policy. New-user conflicts were solved when the basin reopened again and those potential users gained access to water.

  3. A methodology for quantifying and mapping ecosystem services provided by watersheds

    USGS Publications Warehouse

    Villamagna, Amy M.; Angermeier, Paul L.

    2015-01-01

    Watershed processes – physical, chemical, and biological – are the foundation for many benefits that ecosystems provide for human societies. A crucial step toward accurately representing those benefits, so they can ultimately inform decisions about land and water management, is the development of a coherent methodology that can translate available data into the ecosystem services (ES) produced by watersheds. Ecosystem services (ES) provide an instinctive way to understand the tradeoffs associated with natural resource management. We provide a synthesis of common terminology and explain a rationale and framework for distinguishing among the components of ecosystem service delivery, including: an ecosystem’s capacity to produce a service; societal demand for the service; ecological pressures on this service; and flow of the service to people. We discuss how interpretation and measurement of these components can differ among provisioning, regulating, and cultural services and describe selected methods for quantifying ES components as well as constraints on data availability. We also present several case studies to illustrate our methods, including mapping capacity of several water purification services and demand for two forms of wildlife-based recreation, and discuss future directions for ecosystem service assessments. Our flexible framework treats service capacity, demand, ecological pressure, and flow as separate but interactive entities to better evaluate the sustainability of service provision across space and time and to help guide management decisions.

  4. Hydrological Modeling and WEB-GIS for the Water Resource Management

    NASA Astrophysics Data System (ADS)

    Pierleoni, A.; Bellezza, M.; Casadei, S.; Manciola, P.

    2006-12-01

    Water resources are a strategically natural resource although they can be extremely susceptible to degradation. As a matter of fact the increasing demand from multipurpose uses, which often are in competition amongst themselves, seems to affect the concept of sustainability per se', thus highlighting phenomena of quality-quantity degradation of water resources. In this context, the issue of water resource management rises to a more important role, especially when, other then the traditional uses for civil, industrial and agronomic purposes, environmental demands are taken into consideration. In particular, for environmental demands we mean: to preserve minimal flows, to conserve ecosystems and biodiversities, to protect and improve the environment and finally also the recreational facilities. In the present work, two software tools are presented; they combine the scientific aspect of the issues with a feasible and widely accessible application of the mathematical modeling in techno-operative fields within a sustainable management policy of the water resource at the basin scale. The first evaluation model of the available superficial water resource bases its algorithms upon regionalization procedures of flow parameters deduced from the geomorphologic features of the soil of the basin (BFI, Area) and presents, as output, a set of duration curves (DC) of the natural, measurable (natural after withdrawal), and residual (discharge usable for dissipative use) flow. The hydrological modeling combined with a GIS engine allows to process the dataset and regionalize the information of each section of the hydrographic network, in order to attain information about the effect of upriver withdrawals, in terms of evaluation parameters (measurable DC) to maintain an optimal water supply all along the entire downstream network. This model, projected with a WEB interface developed in PERL and connected to a MySQL database, has also been tested at the basin and sub-basin scale as an effective decision support system (DSS). The second software tool is a simulation model of a managed water resource for multipurpose uses. The algorithm is based on a topological sketch of the hydrographic network in terms of "Nodes" and "Links" combined with computation procedures for managing the water resource of big reservoirs. The peculiar feature of this method is that it performs a preliminary budget between the total available amount and the demand over a time span longer than the simulation step (week, month). During the managing phase, four different allocation methods are available: proportional, percentage, priority and balanced priority, hence this tool becomes flexible and allows to simulate many different management policies. This project was developed in JAVA and as a workstation product. Both software tools will be handled in a single system that, combined with a GIS map engine, is an integrated model for managing the water resource at the basin scale. The final aim of this project is to be able to share these scientific tools and hydrological data among many institutional uses. For this purpose, a WEB-based system, under the control of an administrator, provides on the one hand the possibility to easily keep the database up-to-date and on the other, the possibility to share data and retrieve the results of the procedures optimized for managing superficial water resources at the basin scale.

  5. Using System Dynamic Model and Neural Network Model to Analyse Water Scarcity in Sudan

    NASA Astrophysics Data System (ADS)

    Li, Y.; Tang, C.; Xu, L.; Ye, S.

    2017-07-01

    Many parts of the world are facing the problem of Water Scarcity. Analysing Water Scarcity quantitatively is an important step to solve the problem. Water scarcity in a region is gauged by WSI (water scarcity index), which incorporate water supply and water demand. To get the WSI, Neural Network Model and SDM (System Dynamic Model) that depict how environmental and social factors affect water supply and demand are developed to depict how environmental and social factors affect water supply and demand. The uneven distribution of water resource and water demand across a region leads to an uneven distribution of WSI within this region. To predict WSI for the future, logistic model, Grey Prediction, and statistics are applied in predicting variables. Sudan suffers from severe water scarcity problem with WSI of 1 in 2014, water resource unevenly distributed. According to the result of modified model, after the intervention, Sudan’s water situation will become better.

  6. Green and blue water demand from large-scale land acquisitions in Africa

    PubMed Central

    Johansson, Emma Li; Fader, Marianela; Seaquist, Jonathan W.; Nicholas, Kimberly A.

    2016-01-01

    In the last decade, more than 22 million ha of land have been contracted to large-scale land acquisitions in Africa, leading to increased pressures, competition, and conflicts over freshwater resources. Currently, 3% of contracted land is in production, for which we model site-specific water demands to indicate where freshwater appropriation might pose high socioenvironmental challenges. We use the dynamic global vegetation model Lund–Potsdam–Jena managed Land to simulate green (precipitation stored in soils and consumed by plants through evapotranspiration) and blue (extracted from rivers, lakes, aquifers, and dams) water demand and crop yields for seven irrigation scenarios, and compare these data with two baseline scenarios of staple crops representing previous water demand. We find that most land acquisitions are planted with crops that demand large volumes of water (>9,000 m3⋅ha−1) like sugarcane, jatropha, and eucalyptus, and that staple crops have lower water requirements (<7,000 m3⋅ha−1). Blue water demand varies with irrigation system, crop choice, and climate. Even if the most efficient irrigation systems were implemented, 18% of the land acquisitions, totaling 91,000 ha, would still require more than 50% of water from blue water sources. These hotspots indicate areas at risk for transgressing regional constraints for freshwater use as a result of overconsumption of blue water, where socioenvironmental systems might face increased conflicts and tensions over water resources. PMID:27671634

  7. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    NASA Astrophysics Data System (ADS)

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  8. Estimating environmental co-benefits of U.S. low-carbon pathways using an integrated assessment model with state-level resolution.

    PubMed

    Ou, Yang; Shi, Wenjing; Smith, Steven J; Ledna, Catherine M; West, J Jason; Nolte, Christopher G; Loughlin, Daniel H

    2018-04-15

    There are many technological pathways that can lead to reduced carbon dioxide emissions. However, these pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. This study uses an integrated assessment model with state-level resolution of the energy system to compare environmental impacts of alternative low-carbon pathways for the United States. One set of pathways emphasizes nuclear energy and carbon capture and storage, while another set emphasizes renewable energy, including wind, solar, geothermal power, and bioenergy. These are compared with pathways in which all technologies are available. Air pollutant emissions, mortality costs attributable to particulate matter smaller than 2.5 μm in diameter, and energy-related water demands are evaluated for 50% and 80% carbon dioxide reduction targets in 2050. The renewable low-carbon pathways require less water withdrawal and consumption than the nuclear and carbon capture pathways. However, the renewable low-carbon pathways modeled in this study produce higher particulate matter-related mortality costs due to greater use of biomass in residential heating. Environmental co-benefits differ among states because of factors such as existing technology stock, resource availability, and environmental and energy policies.

  9. A Decision Support System for Demand Management of the Rio Conchos Basin, Mexico

    NASA Astrophysics Data System (ADS)

    Stewart, S.; Valdes, J.; Gastelum, J.; Brookshire, D.; Aparicio, J.; Hidalgo, J.; Velazco, I.

    2003-12-01

    There is a need for integrated models of transboundary watersheds such as that of the Rio Grande/Rio Bravo (RGRB) along the US/Mexico border. We present the first stage an interdisciplinary effort to develop a semi-distributed regional dynamic simulation model (DSM) for examining water issues in the Lower RGRB basin. The RGRB serves as the border between the U.S. and Mexico. We focus first on the Conchos River basin, which contributes approximately 70-80% of the surface flow in the lower RGRB basin. Irrigated agriculture has historically been the major user of water and irrigated acreage continues to expand, but it faces increasing competition from industrial development, maquiladoras, and increasing residential water demand. International agreements such as the Treaty of 1944 between the US and Mexico stipulate that the flows in the RGRB are equally split. Yet uncertainties remain due to vagaries in the legislation. For example, Mexico is required to provide an average of 350,000 AF/yr over a five-year cycle, unless "extraordinary drought" occurs, although the Treaty does not define extraordinary. The characterization of droughts poses a significant problem for hydrometeorologists and water resource engineers. Our simulation model incorporates drought indices developed to characterize droughts in semi-arid and arid regions and statistical approaches to examine the spatial influence of droughts. To examine the effects of various structural and institutional changes to water use in the basin to meet the requirements of the Treaty and simulate climactic issues, we model agricultural, municipal, and industrial water demands that are directly linked to sectors of the regional economy using input output (IO) models. IO models can be used to examine how changes in water deliveries to the agricultural or manufacturing sectors affect the level of output, employment, and wages in the regional economy. All model outputs will be incorporated into a decision support system that will provide a tool to simulate hydrological profiles, ecosystem variability, changes in irrigation technology, and changes in management regimes within the basin and will serve to inform decision-makers of the water demand and supply changes necessary to meet the needs of international obligations and growing populations in the short and long term. The initial set of available management options include water banking and water trading within each country as well as irrigation standards, application efficiency, and water banking across borders.

  10. Determinants of the use of alternatives to arsenic-contaminated shallow groundwater: an exploratory study in rural West Bengal, India.

    PubMed

    Delaire, Caroline; Das, Abhijit; Amrose, Susan; Gadgil, Ashok; Roy, Joyashree; Ray, Isha

    2017-10-01

    Shallow groundwater containing toxic concentrations of arsenic is the primary source of drinking water for millions of households in rural West Bengal, India. Often, this water also contains unpleasant levels of iron and non-negligible fecal contamination. Alternatives to shallow groundwater are increasingly available, including government-built deep tubewells, water purchased from independent providers, municipal piped water, and household filters. We conducted a survey of 501 households in Murshidabad district in 2014 to explore what influenced the use of available alternatives. Socioeconomic status and the perceived likelihood of gastrointestinal (GI) illness (which was associated with dissatisfaction with iron in groundwater) were the primary determinants of the use of alternatives. Arsenic knowledge was limited. The choice amongst alternatives was influenced by economic, social, and aesthetic factors, but not by health risk perceptions. The use of purchased water was rarely exclusive and was strongly associated with socioeconomic status, suggesting that this form of market-based water provision does not ensure universal access. Demand for purchased water appeared to decrease significantly shortly after free piped water became available at public taps. Our results suggest that arsenic mitigation interventions that also address co-occurring water problems (iron, GI illness) could be more effective than a focus on arsenic alone.

  11. Forecasting urban water demand: A meta-regression analysis.

    PubMed

    Sebri, Maamar

    2016-12-01

    Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike. Copyright © 2016. Published by Elsevier Ltd.

  12. Root Responses to Altered Ecosystem N/P Stoichiometry in a Mediterranean Tree-Grass Ecosystem

    NASA Astrophysics Data System (ADS)

    Nair, Richard; Moreno, Gerado; Morris, Kendalynn; Schrumpf, Marion; Migliavacca, Mirco

    2017-04-01

    Biological components of the soil system (plant roots, fungi, microbes) may respond to biogeochemical drivers (e.g. nutrient status, water availability, C availability) in dissimilar ways due to differing scales, activities and access to resources. Understanding individual components and their phenology in the soil system is therefore critical to interpret overall fluxes. In seasonally dry systems, plants balance belowground investment with other growth and maintenance in life strategies where water limitations (in dry periods), nutrient limitations (in wet periods) and temperature/light limitations (in winter) interact, varying the need to invest in gaining these three resources throughout the year. Additionally, root growth may also be desynchronized with overall nutrient demand due to the ability to take up nutrients outside of seasonal periods of demand for storage and subsequent reallocation. We examined root responses to an ecosystem level stoichiometry (+N / +N+P) manipulation experiment at a highly instrumented site in a strongly seasonal semi-arid tree-grass ('dehesa') system (Majadas del Tietar, Spain). We are interested in whether root growth and phenology is affected by differing demand for nutrients/water both between sites and at tree and grass-dominated subsites. Many non-invasive, ecosystem-scale methods to measure changes in biogeochemical cycling focus only on integrated whole-system fluxes or above-ground change and it is difficult to extract a root signal. However, local soil respiration fluxes and root growth introduces a variety of method-dependent artefacts and drawbacks necessitating multiple approaches and careful interpretation. Therefore, in coordination with indirect measurements (subcanopy fluxes via eddy covariance, soil respiration chambers) we are using direct soil coring, ingrowth cores and repeatable measurements from custom-built minirhizotron systems to attempt to assess site-level variation in root biomass and phenology. In this presentation, we show initial results from manual minirhizotron measurements and direct root biomass measurements at Majadas del Tietar indicating that +N and +N+P additions are driving increased root biomass, primarily in areas of open grassland rather than under canopies. We interpret differences in root observations within the context of water, nutrient availability, whole plant and site-level trends.

  13. Assessment of the water supply:demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives.

    PubMed

    Boithias, Laurie; Acuña, Vicenç; Vergoñós, Laura; Ziv, Guy; Marcé, Rafael; Sabater, Sergi

    2014-02-01

    Spatial differences in the supply and demand of ecosystem services such as water provisioning often imply that the demand for ecosystem services cannot be fulfilled at the local scale, but it can be fulfilled at larger scales (regional, continental). Differences in the supply:demand (S:D) ratio for a given service result in different values, and these differences might be assessed with monetary or non-monetary metrics. Water scarcity occurs where and when water resources are not enough to meet all the demands, and this affects equally the service of water provisioning and the ecosystem needs. In this study we assess the value of water in a Mediterranean basin under different global change (i.e. both climate and anthropogenic changes) and mitigation scenarios, with a non-monetary metric: the S:D ratio. We computed water balances across the Ebro basin (North-East Spain) with the spatially explicit InVEST model. We highlight the spatial and temporal mismatches existing across a single hydrological basin regarding water provisioning and its consumption, considering or not, the environmental demand (environmental flow). The study shows that water scarcity is commonly a local issue (sub-basin to region), but that all demands are met at the largest considered spatial scale (basin). This was not the case in the worst-case scenario (increasing demands and decreasing supply), as the S:D ratio at the basin scale was near 1, indicating that serious problems of water scarcity might occur in the near future even at the basin scale. The analysis of possible mitigation scenarios reveals that the impact of global change may be counteracted by the decrease of irrigated areas. Furthermore, the comparison between a non-monetary (S:D ratio) and a monetary (water price) valuation metrics reveals that the S:D ratio provides similar values and might be therefore used as a spatially explicit metric to valuate the ecosystem service water provisioning. © 2013.

  14. Water resources thesaurus: A vocabulary for indexing and retrieving the literature of water resources research and development

    USGS Publications Warehouse

    ,

    1980-01-01

    This Water Resources Thesaurus encompasses such broad research areas as the hydrologic cycle, supply of and demand for water, conservation and best use of available supplies of water, methods of increasing supplies, and the economic, legal, social, engineering, recreational, biological, geographical, ecological, and qualitative aspects of water resources. This volume represents a major revision of the previous edition of the Thesaurus, published in 1971. The principal source of terms for this edition has been the indexing used in Selected Water Resources Abstracts (SWRA). Since its inception in 1968, SWRA has indexed tens of thousands of publications. Its indexing terminology has been developed by expert abstracters and researchers, and represents the range of disciplines related to research, development, and management of water resources.

  15. [Implementation of the new drinking water regulation section sign 18: monitoring of drinking water systems in houses--water for public use].

    PubMed

    Hentschel, W; Voigt, K; Heudorf, U

    2006-08-01

    The monitoring of drinking water based on the drinking water regulation is one of the central tasks of public health authorities in Germany. With the coming into force of the new drinking water regulation in the year 2003 also water supply plants "from which water is made available for the public, in particular in schools, kindergartens, hospitals, restaurants and other communal facilities" must be supervised for the first time (TrinkwV section sign 18). Thus, for Frankfurt/Main the number of the facilities/objects which are to be supervised rose from approx. 300 to approx. 4,700. Since appropriate expansion of personnel was not possible, innovative solutions were in demand for implementation of these tasks. These are introduced here.

  16. EPA's Safe and Sustainable Water Resources Research ...

    EPA Pesticide Factsheets

    Increasing demands for sources of clean water—combined with changing land use practices, population growth, aging infrastructure, and climate change and variability—pose significant threats to our water resources. Failure to manage the Nation’s waters in an integrated, sustainable manner can jeopardize human and aquatic ecosystem health, which can impact our society and economy.Through innovative science and engineering, the SSWR Research Program is developing cost-effective, sustainable solutions to 21st century complex water issues and proactively developing solutions to emerging concerns. Our research is helping to ensure that clean, adequate, and equitable supplies of water are available to support human health and resilient aquatic ecosystems, now and into the future. To share information on EPA's water research program

  17. Assessment and management of water resources in Egypt to face drought and water scarcity

    NASA Astrophysics Data System (ADS)

    Wolters, Wouter; El Guindy, Samia; Salah El Deen, Magdy; Roest, Koen; Smit, Robert; Froebrich, Jochen

    2013-04-01

    Egypt is one of the countries hardest hit by global and climate change. Challenges include population growth; increased demands for food, water, and energy; as well as changing land use patterns and urbanization. Egypt's part of the Mediterranean is characterized by a very complex hydrological system, as it lacks rainfall (Cairo average 30 mm/year) and it is completely dependent on the Nile river flow. The growth of the Egyptian population and its economy in the near future leads to an increase in the demand for water and the overall water allocation priority basically is: first drinking water, then industry, and whatever is remaining will be available for agriculture and nature. Because the agricultural sector uses more than 80 per cent of available water, the main option available to reduce water scarcity in the priority sectors of the economy is to allocate less to the agriculture sector. Scientifically based advances in facing future drought and water scarcity through innovations increasing yields and food security by measures leading to "more crop per drop" are required. New and modern large- and medium-scale agriculture is being developed in desert areas with participation of the private sector for investments. To prepare the farming community and others elsewhere, for the future situation of water shortages, a paradigm shift is needed. New farming systems under tight water supply conditions are in development to prepare for a future with less water. Egyptian farming systems need a major transition to prevent further marginalization of agriculture, which would also have a major impact on food security. Central to this transition should be the increase of value generated per volume available water, also referred to as "more crop per drop" or "more cash per splash". There is room for the urgently required improvement: the present return on water in agriculture in Egypt is about US 0.25 /m3, where values of over US 1 /m3 are "easily" reached elsewhere. Moreover, innovations on resource efficiency enabling use of rest and by-products of one agricultural activity as an input for another one will be profitable for the food producers and will also be better for the environment. The creative design process to reach the required technological and policy innovations contributes to the developed adaptation strategy to face drought and water scarcity. Results will incorporate some previously un-thought of options. The issues of water scarcity and drought have consequences and implications that can no longer be adequately addressed by any one of the Ministries alone. Many other government departments and agencies must be involved and decisions will have to be made at the highest political level. All policies in Egypt must be conscious of the limitations in water availability, and water policies need to address technological developments as well as the full range of other issues, including: macro-economic factors, economic issues that influence farm-level decisions, development of human capital, governance, and financial risk management.

  18. Assessing the impacts of climate change on agricultural production in the Columbia River basin: incorporating water management

    NASA Astrophysics Data System (ADS)

    Adam, J. C.; Rajagopalan, K.; Stockle, C. O.; Yorgey, G.; Kruger, C. E.; Chinnayakanahalli, K.; Nelson, R.

    2014-12-01

    Changes in global population, food consumption and climate lead to a food security challenge for the future. Water resources, agricultural productivity and the relationships between them will to a large extent dictate how we address this challenge. Although food security is a global issue, impacts of climate change on water resources and agricultural productivity, as well as viability of adaptation strategies, are location specific; e.g., it is important to consider the regional regulatory environment. Our work focuses on the Columbia River basin (CRB) of the Pacific Northwest US. The water resources of the CRB are heavily managed to meet competing demands. There also exists a legal system for individuals/groups to obtain rights to use the publicly owned water resources, and the possibility of curtailing (i.e., restricting) some of these water rights in times of shortage. It is important to include an approximation of this water resource regulation and water rights curtailment process in modeling water availability and impacts of water shortages on agricultural production. The overarching objective of this work is to apply an integrated hydrologic-crop-water management modeling framework over the CRB to characterize the impacts of climate change on irrigation water demands, irrigation water availability, water shortages, and associated impacts in the 2030s. Results indicate that climate change has both positive and negative effects on agricultural production in the CRB and this varies by region and crop type. Certain watersheds that are already water stressed are projected to experience increasing stress in the future. Although, climate change results in increased water shortages and water rights curtailment in the region, this does not necessarily translate into an increased negative effect on yields; some crops are projected to increase in yield despite curtailment. This could be attributed to higher water use efficiency under elevated CO2 levels as well crops moving through growth stages earlier in the season with wetter and warmer spring conditions. Incorporating regulations into integrated modeling framework results in a more realistic assessment of climate change impacts.

  19. Reconnaissance of ground-water resources in the vicinity of Gunnison and Crested Butte, West-central Colorado

    USGS Publications Warehouse

    Giles, T.F.

    1980-01-01

    Hydrologic data was collected in the Gunnison-Crested Butte area , Colo., to determine the availability and chemical quality of groundwater. Parts of the area have undergone rapid population growth in recent years due to an increase of winter sports activities. This rapid growth has resulted in a demand for additional domestic, recreational, and municipal water supplies. Maximum yields of 100 gallons per minute are available from wells completed in the alluvial aquifers while as much as 60 gallons per minute may be obtained from wells completed in the Dakota and Entrada Sandstones. Yields from other aquifers generally are less than 25 gallons per minute. Calcium magnesium bicarbonate water is the predominant water type in the study area. Dissolved solids concentrations ranged from 30 to 829 milligrams per liter and hardness ranged from 18 to 400 milligrams per liter. (USGS)

  20. Water availability and land subsidence in the Central Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Faunt, Claudia C.; Sneed, Michelle; Traum, Jon; Brandt, Justin T.

    2016-05-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  1. Water availability and land subsidence in the Central Valley, California, USA

    USGS Publications Warehouse

    Faunt, Claudia; Sneed, Michelle; Traum, Jonathan A.; Brandt, Justin

    2016-01-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  2. GRACE satellite observations reveal the severity of recent water over-consumption in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solander, Kurt C.; Reager, John T.; Wada, Yoshihide

    Changes in the climate and population growth will critically impact the future supply and demand of water, leading to large uncertainties for sustainable resource management. In the absence of on-the-ground measurements to provide spatially continuous, high-resolution information on water supplies, satellite observations can provide essential insight. Here, we develop a technique using observations from the Gravity Recovery and Climate Experiment (GRACE) satellite to evaluate the sustainability of surface water and groundwater use over the continental United States. We determine the annual total water availability for 2003–2015 using the annual variability in GRACE-derived total water storage for 18 major watersheds. Themore » long-term sustainable water quantity available to humans is calculated by subtracting an annual estimate of the water needed to maintain local ecosystems, and the resulting water volumes are compared to reported consumptive water use to determine a sustainability fraction. We find over-consumption is highest in the southwest US, where increasing stress trends were observed in all five basins and annual consumptive use exceeded 100% availability twice in the Lower Colorado basin during 2003–2015. By providing a coarse-scale evaluation of sustainable water use from satellite and ground observations, the established framework serves as a blueprint for future large-scale water resource monitoring.« less

  3. GRACE satellite observations reveal the severity of recent water over-consumption in the United States

    DOE PAGES

    Solander, Kurt C.; Reager, John T.; Wada, Yoshihide; ...

    2017-08-18

    Changes in the climate and population growth will critically impact the future supply and demand of water, leading to large uncertainties for sustainable resource management. In the absence of on-the-ground measurements to provide spatially continuous, high-resolution information on water supplies, satellite observations can provide essential insight. Here, we develop a technique using observations from the Gravity Recovery and Climate Experiment (GRACE) satellite to evaluate the sustainability of surface water and groundwater use over the continental United States. We determine the annual total water availability for 2003–2015 using the annual variability in GRACE-derived total water storage for 18 major watersheds. Themore » long-term sustainable water quantity available to humans is calculated by subtracting an annual estimate of the water needed to maintain local ecosystems, and the resulting water volumes are compared to reported consumptive water use to determine a sustainability fraction. We find over-consumption is highest in the southwest US, where increasing stress trends were observed in all five basins and annual consumptive use exceeded 100% availability twice in the Lower Colorado basin during 2003–2015. By providing a coarse-scale evaluation of sustainable water use from satellite and ground observations, the established framework serves as a blueprint for future large-scale water resource monitoring.« less

  4. The Future of Water Security in Metropolitan Region of Sao Paulo Through Different Climate Scenarios

    NASA Astrophysics Data System (ADS)

    Gesualdo, G. C.; Oliveira, P. T. S.; Rodrigues, D. B. B.

    2017-12-01

    Achieving a balance between water availability and demand is one of the most pressing environmental challenges in the twenty-first century. This challenge is exacerbated by, climate change, which has already affected the water balance of landscapes globally by intensifying runoff, reducing snowpacks, and shifting precipitation regimes. Understanding these changes is crucial to identifying future water availability and developing sustainable management plans, especially in developing countries. Here, we address the developing country water balance challenge by assessing the influence of climate change on the water availability in the Jaguari basin, Southeastern Brazil. The Jaguari basin is one of the main sources of freshwater for 9 million people in the Metropolitan Region of São Paulo. This region represents about 7% of the Brazil's Gross Domestic Product. The critical importance of the water balance challenge in this area has been highlighted recently when a major drought in southeastern Brazil revealed the vulnerability of current water management systems. Still today, the per capita water availability in the region remains severely limited. To help address this water balance challenge, we use a modeling approach to predict future water vulnerabilities of this region under different climate scenarios. Here, we calibrated and validated a lumped conceptual model using HYMOD to evaluate future scenarios using downscaled climate models resulting from HadGEM2-ES and MIROC5 GCMs forced by RCP4.5 and RCP8.5 scenarios. We also present future directions which include bias correction from long-term weather station data and an empirical uncertainty assessment. Our results provide an important overview of climate change impacts on streamflow and future water availability in the Jaguari basin, which can be used to guide the basin`s water security plans and strategies.

  5. A Marginal Cost Based "Social Cost of Carbon" Provides Inappropriate Guidance in a World That Needs Rapid and Deep Decarbonization

    NASA Astrophysics Data System (ADS)

    Morgan, M. G.; Vaishnav, P.; Azevedo, I. L.; Dowlatabadi, H.

    2016-12-01

    Rising temperatures and changing precipitation patterns due to climate change are projected to alter many sectors of the US economy. A growing body of research has examined these effects in the energy, water, and agricultural sectors. Rising summer temperatures increase the demand for electricity. Changing precipitation patterns effect the availability of water for hydropower generation, thermo-electric cooling, irrigation, and municipal and industrial consumption. A combination of changes to temperature and precipitation alter crop yields and cost-effective farming practices. Although a significant body of research exists on analyzing impacts to individual sectors, fewer studies examine the effects using a common set of assumptions (e.g., climatic and socio-economic) within a coupled modeling framework. The present analysis uses a multi-sector, multi-model framework with common input assumptions to assess the projected effects of climate change on energy, water, and land-use in the United States. The analysis assesses the climate impacts for across 5 global circulation models for representative concentration pathways (RCP) of 8.5 and 4.5 W/m2. The energy sector models - Pacific Northwest National Lab's Global Change Assessment Model (GCAM) and the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) - show the effects of rising temperature on energy and electricity demand. Electricity supply in ReEDS is also affected by the availability of water for hydropower and thermo-electric cooling. Water availability is calculated from the GCM's precipitation using the US Basins model. The effects on agriculture are estimated using both a process-based crop model (EPIC) and an agricultural economic model (FASOM-GHG), which adjusts water supply curves based on information from US Basins. The sectoral models show higher economic costs of climate change under RCP 8.5 than RCP 4.5 averaged across the country and across GCM's.

  6. European large-scale farmland investments and the land-water-energy-food nexus

    NASA Astrophysics Data System (ADS)

    Siciliano, Giuseppina; Rulli, Maria Cristina; D'Odorico, Paolo

    2017-12-01

    The escalating human demand for food, water, energy, fibres and minerals have resulted in increasing commercial pressures on land and water resources, which are partly reflected by the recent increase in transnational land investments. Studies have shown that many of the land-water issues associated with land acquisitions are directly related to the areas of energy and food production. This paper explores the land-water-energy-food nexus in relation to large-scale farmland investments pursued by investors from European countries. The analysis is based on a "resource assessment approach" which evaluates the linkages between land acquisitions for agricultural (including both energy and food production) and forestry purposes, and the availability of land and water in the target countries. To that end, the water appropriated by agricultural and forestry productions is quantitatively assessed and its impact on water resource availability is analysed. The analysis is meant to provide useful information to investors from EU countries and policy makers on aspects of resource acquisition, scarcity, and access to promote responsible land investments in the target countries.

  7. Compounding Impacts of Climate Change and Increased Human Water Withdrawal on Urmia Lake Water Availability

    NASA Astrophysics Data System (ADS)

    Alborzi, A.; Moftakhari, H.; Azaranfar, A.; Mallakpour, I.; Ashraf, B.; AghaKouchak, A.

    2017-12-01

    In recent decades, climate change and increase in human water withdrawal, combined, have caused ecological degradation in several terminal lakes worldwide. Among them, the shallow and hyper-saline Urmia Lake in Iran has experienced about 6 meters drawdown in lake level and 80% reduction in surface area. Here, we assess the imposed stress on Urmia Basin's water availability and Lake's ecological condition in response to coupled climate change and human-induced water withdrawal. A generalized river basin decision support system model consisting network flow is developed to simulate the basin-lake interactions under a wide range of scenarios. This model explicitly includes water management infrastructure, reservoirs, and irrigation and municipal water use. Studied scenarios represent a wide range of historic climate and water use scenarios including a historical baseline, future increase in water demand, and also improved water efficiency. In this presentation, we show the lake's water level, as a measure of lake's ecological health, under the compounding effects of the climate condition (top-down) and water use (bottom-up) scenarios. This method illustrates what combinations lead to failure in meeting the lake's ecological level.

  8. Climate variability and demand growth as drivers of water scarcity in the Turkwel river basin: a bottom-up risk assessment of a data-sparse basin in Kenya

    NASA Astrophysics Data System (ADS)

    Hirpa, F. A.; Dyer, E.; Hope, R.; Dadson, S. J.

    2017-12-01

    Sustainable water management and allocation are essential for maintaining human well-being, sustaining healthy ecosystems, and supporting steady economic growth. The Turkwel river basin, located in north-western Kenya, experiences a high level of water scarcity due to its arid climate, high rainfall variability, and rapidly growing water demand. However, due to sparse hydro-climatic data and limited literature, the water resources system of the basin has been poorly understood. Here we apply a bottom-up climate risk assessment method to estimate the resilience of the basin's water resources system to growing demand and climate stressors. First, using a water resource system model and historical climate data, we construct a climate risk map that depicts the way in which the system responds to climate change and variability. Then we develop a set of water demand scenarios to identify the conditions that potentially lead to the risk of unmet water demand and groundwater depletion. Finally, we investigate the impact of climate change and variability by stress testing these development scenarios against historically strong El Niño/Southern Oscillation (ENSO) years and future climate projections from multiple Global Circulation Models (GCMs). The results reveal that climate variability and increased water demand are the main drivers of water scarcity in the basin. Our findings show that increases in water demand due to expanded irrigation and population growth exert the strongest influence on the ability of the system to meet water resource supply requirements, and in all cases considered increase the impacts of droughts caused by future climate variability. Our analysis illustrates the importance of combining analysis of future climate risks with other development decisions that affect water resources planning. Policy and investment decisions which maximise water use efficiency in the present day are likely to impart resilience to climate change and variability under a wide range of future scenarios and therefore constitute low regret measures for climate adaptation.

  9. Optimal crop selection and water allocation under limited water supply in irrigation

    NASA Astrophysics Data System (ADS)

    Stange, Peter; Grießbach, Ulrike; Schütze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.

  10. Are we running out of water?

    USGS Publications Warehouse

    Nace, Raymond L.

    1967-01-01

    Water supplies are not running out, but time is getting short to stem waste of water and destructive exploitation of the environment before harm is done that may be irreparable. Most of the world's water is oceanic brine. Of the waters on the land, most is frozen in Antarctica and Greenland. Only a small part of continental water is available for use and management. The discharge of rivers to the sea is a close measure of the availability of liquid water, but ground-water reservoirs have important functions as inexpensive equalizers of water supply. Soil moisture is a major factor in the water economy, and its function usually is overlooked in assessments of water use and future water demand. Despite outcries of water shortage, the principal use of water in advanced countries is as a medium for waste disposal. In reality, despite regional maldistribution of water, United States supplies are adequate, given rational management. Also, contrary to common belief, water pollution is primarily a problem of economics, not of health. A paramount problem in most parts of the world is the shortage of water development and management facilities, not a shortage of water. The International Hydrological Decade is a program to awaken people everywhere to the crucial importance of water in man's future and to promote rational approach to water problems.

  11. Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability

    NASA Astrophysics Data System (ADS)

    Papoulakos, Konstantinos; Pollakis, Giorgos; Moustakis, Yiannis; Markopoulos, Apostolis; Iliopoulou, Theano; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2017-04-01

    Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  12. Climate change impacts on water availability: developing regional scenarios for agriculture of the Former Soviet Union countries of Central Asia

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Dronin, N.

    2010-12-01

    Water is the major factor, limiting agriculture of the five Former Soviet Union (FSU) of Central Asia. Elevated topography prevents moist and warm air from the Atlantic and Indian Oceans from entering the region.With exception of Kazakhstan, agriculture is generally restricted to oases and irrigated lands along the major rivers and canals. Availability of water for irrigation is the major factor constraining agriculture in the region, and conflicts over water are not infrequent. The current water crisis in the region is largely due to human activity; however the region is also strongly impacted by the climate. In multiple locations, planned and autonomous adaptations to climate change have already resulted in changes in agriculture, such as a dramatic increase in irrigation, or shift in crops towards the ones better suited for warmer and dryer climate; however, it is hard to differentiate between the effects of overall management improvement and the avoidance of climate-related losses. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and discuss the impact of climate change on future development of the region.

  13. Techniques for water demand analysis and forecasting: Puerto Rico, a case study

    USGS Publications Warehouse

    Attanasi, E.D.; Close, E.R.; Lopez, M.A.

    1975-01-01

    The rapid economic growth of the Commonwealth-of Puerto Rico since 1947 has brought public pressure on Government agencies for rapid development of public water supply and waste treatment facilities. Since 1945 the Puerto Rico Aqueduct and Sewer Authority has had the responsibility for planning, developing and operating water supply and waste treatment facilities on a municipal basis. The purpose of this study was to develop operational techniques whereby a planning agency, such as the Puerto Rico Aqueduct and Sewer Authority, could project the temporal and spatial distribution of .future water demands. This report is part of a 2-year cooperative study between the U.S. Geological Survey and the Environmental Quality Board of the Commonwealth of Puerto Rico, for the development of systems analysis techniques for use in water resources planning. While the Commonwealth was assisted in the development of techniques to facilitate ongoing planning, the U.S. Geological Survey attempted to gain insights in order to better interface its data collection efforts with the planning process. The report reviews the institutional structure associated with water resources planning for the Commonwealth. A brief description of alternative water demand forecasting procedures is presented and specific techniques and analyses of Puerto Rico demand data are discussed. Water demand models for a specific area of Puerto Rico are then developed. These models provide a framework for making several sets of water demand forecasts based on alternative economic and demographic assumptions. In the second part of this report, the historical impact of water resources investment on regional economic development is analyzed and related to water demand .forecasting. Conclusions and future data needs are in the last section.

  14. Embodied water analysis for Hebei Province, China by input-output modelling

    NASA Astrophysics Data System (ADS)

    Liu, Siyuan; Han, Mengyao; Wu, Xudong; Wu, Xiaofang; Li, Zhi; Xia, Xiaohua; Ji, Xi

    2018-03-01

    With the accelerating coordinated development of the Beijing-Tianjin-Hebei region, regional economic integration is recognized as a national strategy. As water scarcity places Hebei Province in a dilemma, it is of critical importance for Hebei Province to balance water resources as well as make full use of its unique advantages in the transition to sustainable development. To our knowledge, related embodied water accounting analysis has been conducted for Beijing and Tianjin, while similar works with the focus on Hebei are not found. In this paper, using the most complete and recent statistics available for Hebei Province, the embodied water use in Hebei Province is analyzed in detail. Based on input-output analysis, it presents a complete set of systems accounting framework for water resources. In addition, a database of embodied water intensity is proposed which is applicable to both intermediate inputs and final demand. The result suggests that the total amount of embodied water in final demand is 10.62 billion m3, of which the water embodied in urban household consumption accounts for more than half. As a net embodied water importer, the water embodied in the commodity trade in Hebei Province is 17.20 billion m3. The outcome of this work implies that it is particularly urgent to adjust industrial structure and trade policies for water conservation, to upgrade technology and to improve water utilization. As a result, to relieve water shortages in Hebei Province, it is of crucial importance to regulate the balance of water use within the province, thus balancing water distribution in the various industrial sectors.

  15. Closing the 21st century global water gap: costs and effectiveness of adaptation measures

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Droogers, P.; Hunink, J.; Buitink, J.; Sutanudjaja, E.; Karssenberg, D.; Van Beek, L. P.; Straatsma, M. W.

    2017-12-01

    Water scarcity affects a major part of the globe, and is expected to increase significantly until 2100 as a result of climate change and socioeconomic developments. Yet, global projections are unavailable on the effectiveness and costs of adaptation measures to close the future water gap under global change. Here, we present a 21st century projection of the closure of the water gap under two contrasting climate and socio-economic scenarios: RCP2.6/SSP1(s1) and RCP8.5/SSP5(s5). We coupled a global hydrological model to water demand and redistribution model, and forced them with five General Circulation Models (GCMs) to assess the future water gap for 1604 water provinces covering most of the global land mass. Subsequently, using so-called water availability cost curves, we determined the water gap reduction that could be achieved by increasingly aggressive and expensive sets of adaptation measures, respectively aimed at improving agriculture, increasing water supply, and reducing water demands. Our results show that for s1, the water gap peaks around 2050 and declines towards 2100. Contrastingly, for s5, the gap increases linearly. Hotspots in water scarcity are found in the USA, India, and China. The proposed adaptation sets reduce the water gap, but for the majority of the hotspots are not sufficient to close the water gap completely. The median annual adaptation costs for the proposed measures amount to less than 2% of the GDP of the affected water provinces. Although these costs are already substantial, they do leave room for additional unorthodox adaptation measures.

  16. Microcomputer Applications in Planning Catalog

    DTIC Science & Technology

    1987-09-01

    supply options they have. Input Population , point of demand (town or rural water system), per capita use, livestock demand, price of PVC pipe, ENR...assumption be made that all structures are of one construction type (ie. 2-story, 11/2- story, brick, wood frame ) Reports A 00033 A text-oriented...processors: id, location, volume of water use, water source, service area water demands, population level, emergency POC, chemical and energy consumption

  17. Water-food-energy nexus with changing agricultural scenarios in India during recent decades

    NASA Astrophysics Data System (ADS)

    Barik, Beas; Ghosh, Subimal; Saheer Sahana, A.; Pathak, Amey; Sekhar, Muddu

    2017-06-01

    Meeting the growing water and food demands in a densely populated country like India is a major challenge. It requires an extensive investigation into the changing patterns of the checks and balances behind the maintenance of food security at the expense of depleting groundwater, along with high energy consumption. Here we present a comprehensive set of analyses which assess the present status of the water-food-energy nexus in India, along with its changing pattern, in the last few decades. We find that with the growth of population and consequent increase in the food demands, the food production has also increased, and this has been made possible with the intensification of irrigation. However, during the recent decade (after 1996), the increase in food production has not been sufficient to meet its growing demands, precipitating a decline in the per-capita food availability. We also find a statistically significant declining trend of groundwater storage in India during the last decade, as derived from the Gravity Recovery and Climate Experiment (GRACE) satellite datasets. Regional studies reveal contrasting trends between northern and western-central India. North-western India and the middle Ganga basin show a decrease in the groundwater storage as opposed to an increasing storage over western-central India. Comparison with well data reveals that the highest consistency of GRACE-derived storage data with available well measurements is in the middle Ganga basin. After analysing the data for the last 2 decades, we further showcase that, after a drought, the groundwater storage drops but is unable to recover to its original condition even after good monsoon years. The groundwater storage reveals a very strong negative correlation with the electricity consumption for agricultural usage, which may also be considered as a proxy for groundwater pumped for irrigation in a region. The electricity usage for agricultural purposes has an increasing trend and, interestingly, it does not have any correlation with the monsoon rainfall as computed with the original or de-trended variables. This reveals an important finding that the irrigation has been intensified irrespective of rainfall. This also resulted in a decreasing correlation between the food production and monsoon rainfall, revealing the increasing dependency of agricultural activities on irrigation. We conclude that irrigation has now become essential for agriculture to meet the food demand; however, it should be judiciously regulated and controlled, based on the water availability from monsoon rainfall, specifically after the drought years, as it is essential to recover from the deficits suffered previously.

  18. Can deficit irrigation techniques be used to enhance phosphorus and water use efficiency and benefit crop yields?

    NASA Astrophysics Data System (ADS)

    Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.

    2015-04-01

    Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable across studies (at laboratory, greenhouse and field scales). Aiming to understand this variation, two sets of results are presented. Firstly, the effects of soil type on responses to DRW, and relationships between soil gravimetric water content and matric potential and thresholds at which DRW increases P availability, are shown and physiological implications suggested (from laboratory experiments). Further evidence is given for the role of the microbial biomass in elevated P availability, and P increased in soil that was partially air-dried and maintained above -1.5 MPa, the permanent wilting point. Secondly, effects of DRW on soil P availability, plant P nutrition, water use and physiology in pot-grown plants are shown (from glasshouse experiments). Soil P availability has been quantified by water and sodium bicarbonate extracts, and plant P concentrations via ICP-OES. Further understanding the effects of soil water status on P cycling is needed to improve irrigation and other management strategies to optimise P and water use efficiencies and crop yields. Thus, future experiments will investigate how different sources of P (organic and inorganic) respond to DRW regimes (including field experiments).

  19. Ground-water recharge in humid areas of the United States: A summary of Ground-Water Resources Program studies, 2003-2006

    USGS Publications Warehouse

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  20. Risk assessment of agricultural water requirement based on a multi-model ensemble framework, southwest of Iran

    NASA Astrophysics Data System (ADS)

    Zamani, Reza; Akhond-Ali, Ali-Mohammad; Roozbahani, Abbas; Fattahi, Rouhollah

    2017-08-01

    Water shortage and climate change are the most important issues of sustainable agricultural and water resources development. Given the importance of water availability in crop production, the present study focused on risk assessment of climate change impact on agricultural water requirement in southwest of Iran, under two emission scenarios (A2 and B1) for the future period (2025-2054). A multi-model ensemble framework based on mean observed temperature-precipitation (MOTP) method and a combined probabilistic approach Long Ashton Research Station-Weather Generator (LARS-WG) and change factor (CF) have been used for downscaling to manage the uncertainty of outputs of 14 general circulation models (GCMs). The results showed an increasing temperature in all months and irregular changes of precipitation (either increasing or decreasing) in the future period. In addition, the results of the calculated annual net water requirement for all crops affected by climate change indicated an increase between 4 and 10 %. Furthermore, an increasing process is also expected regarding to the required water demand volume. The most and the least expected increase in the water demand volume is about 13 and 5 % for A2 and B1 scenarios, respectively. Considering the results and the limited water resources in the study area, it is crucial to provide water resources planning in order to reduce the negative effects of climate change. Therefore, the adaptation scenarios with the climate change related to crop pattern and water consumption should be taken into account.

  1. Different parameter and technique affecting the rate of evaporation on active solar still -a review

    NASA Astrophysics Data System (ADS)

    A, Muthu Manokar; D, Prince Winston; A. E, Kabeel; Sathyamurthy, Ravishankar; T, Arunkumar

    2018-03-01

    Water is one of the essential sources for the endurance of human on the earth. As earth having only a small amount of water resources for consumption purpose people in rural and urban areas are getting affected by consuming dirty water that leads to water-borne diseases. Even though ground water is available in small quantity, it has to be treated properly before its use for internal consumption. Brackish water contains dissolve and undissolved contents, and hence it is not suitable for the household purpose. Nowadays, distillation process is done by using passive and active solar stills. The major problem in using passive solar still is meeting higher demand for fresh water. The fresh water production from passive solar still is critically low to meet the demand. To improve the productivity of conventional solar still, input feed water is preheated by integrating the solar still to different collector panels. In this review article, the different parameters that affect the rate of evaporation in an active solar still and the different methods incorporated has been presented. In addition to active distillation system, forced convection technique can be incorporated to increase the yield of fresh water by decreasing the temperature of cover. Furthermore, it is identified that the yield of fresh water from the active desalination system can be improved by sensible and latent heat energy storage. This review will motivate the researchers to decide appropriate active solar still technology for promoting development.

  2. Coastal Algorithms and On-Demand Processing- The Lessons Learnt from CoastColour for Sentinel 3

    NASA Astrophysics Data System (ADS)

    Brockmann, Carsten; Doerffer, Roland; Boettcher, Martin; Kramer, Uwe; Zuhlke, Marco; Pinnock, Simon

    2015-12-01

    The ESA DUE CoastColour Project has been initiated to provide water quality products for important costal zones globally. A new 5 component bio-optical model was developed and used in a 3-step approach for regional processing of ocean colour data. The L1P step consists of radiometric and geometric system corrections, and top-of-atmosphere pixel classification including cloud screening, sun glint risk masking or detection of floating vegetation. The second step includes the atmospheric correction and is providing the L2R product, which comprises marine reflectances with error characterisation and normalisation. The third step is the in-water processing which produces IOPs, attenuation coefficient and water constituent concentrations. Each of these steps will benefit from the additional bands on OLCI. The 5 component bio-optical model will already be used in the standard ESA processing of OLCI, and also part of the pixel classification methods will be part of the standard products. Other algorithm adaptation are in preparation. Another important advantage of the CoastColour approach is the highly configurable processing chain which allows adaptation to the individual characteristics of the area of interest, temporal window, algorithm parametrisation and processing chain configuration. This flexibility is made available to data users through the CoastColour on-demand processing service. The complete global MERIS Full and Reduced Resolution data archive is accessible, covering the time range from 17. May 2002 until 08. April 2012, which is almost 200TB of in-put data available online. The CoastColour on-demand processing service can serve as a model for hosted processing, where the software is moved to the data instead of moving the data to the users, which will be a challenge with the large amount of data coming from Sentinel 3.

  3. Sensitivity analysis of water consumption in an office building

    NASA Astrophysics Data System (ADS)

    Suchacek, Tomas; Tuhovcak, Ladislav; Rucka, Jan

    2018-02-01

    This article deals with sensitivity analysis of real water consumption in an office building. During a long-term real study, reducing of pressure in its water connection was simulated. A sensitivity analysis of uneven water demand was conducted during working time at various provided pressures and at various time step duration. Correlations between maximal coefficients of water demand variation during working time and provided pressure were suggested. The influence of provided pressure in the water connection on mean coefficients of water demand variation was pointed out, altogether for working hours of all days and separately for days with identical working hours.

  4. Price impact on urban residential water demand: A dynamic panel data approach

    NASA Astrophysics Data System (ADS)

    ArbuéS, Fernando; BarberáN, Ramón; Villanúa, Inmaculada

    2004-11-01

    In this paper, we formulate and estimate a model of residential water demand with the aim of evaluating the potential of pricing policies as a mechanism for managing residential water. The proposed econometric model offers a new perspective on urban water demand analysis by combining microlevel data with a dynamic panel data estimation procedure. The empirical application suggests that residential users are more responsive to a lagged average price specification. Another result of the estimated model is that price is a moderately effective tool in reducing residential water demand within the present range of prices, with the estimated values for income elasticity and "elasticity of consumption with respect to family size" reinforcing this conclusion.

  5. User's Guide to the Water-Analysis Screening Tool (WAST): A Tool for Assessing Available Water Resources in Relation to Aquatic-Resource Uses

    USGS Publications Warehouse

    Stuckey, Marla H.; Kiesler, James L.

    2008-01-01

    A water-analysis screening tool (WAST) was developed by the U.S. Geological Survey, in partnership with the Pennsylvania Department of Environmental Protection, to provide an initial screening of areas in the state where potential problems may exist related to the availability of water resources to meet current and future water-use demands. The tool compares water-use information to an initial screening criteria of the 7-day, 10-year low-flow statistic (7Q10) resulting in a screening indicator for influences of net withdrawals (withdrawals minus discharges) on aquatic-resource uses. This report is intended to serve as a guide for using the screening tool. The WAST can display general basin characteristics, water-use information, and screening-indicator information for over 10,000 watersheds in the state. The tool includes 12 primary functions that allow the user to display watershed information, edit water-use and water-supply information, observe effects downstream from edited water-use information, reset edited values to baseline, load new water-use information, save and retrieve scenarios, and save output as a Microsoft Excel spreadsheet.

  6. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes

    PubMed Central

    Immerzeel, W. W.; Kraaijenbrink, P. D. A.; Shrestha, A. B.; Bierkens, M. F. P.

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin’s water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members. PMID:27828994

  7. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.

    PubMed

    Lutz, A F; Immerzeel, W W; Kraaijenbrink, P D A; Shrestha, A B; Bierkens, M F P

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members.

  8. Representing Water Scarcity in Future Agricultural Assessments

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Lopez, Jose R.; Ruane, Alexander C.; Young, Charles A.; Scanlon, Bridget R.; Rosenzweig, Cynthia

    2017-01-01

    Globally, irrigated agriculture is both essential for food production and the largest user of water. A major challenge for hydrologic and agricultural research communities is assessing the sustainability of irrigated croplands under climate variability and change. Simulations of irrigated croplands generally lack key interactions between water supply, water distribution, and agricultural water demand. In this article, we explore the critical interface between water resources and agriculture by motivating, developing, and illustrating the application of an integrated modeling framework to advance simulations of irrigated croplands. We motivate the framework by examining historical dynamics of irrigation water withdrawals in the United States and quantitatively reviewing previous modeling studies of irrigated croplands with a focus on representations of water supply, agricultural water demand, and impacts on crop yields when water demand exceeds water supply. We then describe the integrated modeling framework for simulating irrigated croplands, which links trends and scenarios with water supply, water allocation, and agricultural water demand. Finally, we provide examples of efforts that leverage the framework to improve simulations of irrigated croplands as well as identify opportunities for interventions that increase agricultural productivity, resiliency, and sustainability.

  9. A modeling framework for evaluating the drought resilience of a surface water supply system under non-stationarity

    DOE PAGES

    Zhao, Gang; Gao, Huilin; Kao, Shih -Chieh; ...

    2018-05-23

    Here, the future resilience of water supply systems is unprecedentedly challenged by non-stationary processes, such as fast population growth and a changing climate. A thorough understanding of how these non-stationarities impact water supply resilience is vital to support sustainable decision making, particularly for large cities in arid and/or semi-arid regions. In this study, a novel modeling framework, which integrates hydrological processes and water management, was established over a representative water limited metropolitan area to evaluate the impacts of water availability and water demand on reservoir storage and water supply reliability. In this framework, climate change induced drought events were selectedmore » from statistically downscaled Coupled Model Intercomparison Project Phase 5 outputs under the Representative Concentration Pathway 8.5 scenario, while future water demand was estimated by the product of projected future population and per capita water use. Compared with the first half of the 21st century (2000–2049), reservoir storage and water supply reliability during the second half century (2050–2099) are projected to reduce by 16.1% and 14.2%, respectively. While both future multi-year droughts and population growth will lower water supply resilience, the uncertainty associated with future climate projection is larger than that associated with urbanization. To reduce the drought risks, a combination of mitigation strategies (e.g., additional conservation, integrating new water sources, and water use redistribution) was found to be the most efficient approach and can significantly improve water supply reliability by as much as 15.9%.« less

  10. A modeling framework for evaluating the drought resilience of a surface water supply system under non-stationarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Gang; Gao, Huilin; Kao, Shih -Chieh

    Here, the future resilience of water supply systems is unprecedentedly challenged by non-stationary processes, such as fast population growth and a changing climate. A thorough understanding of how these non-stationarities impact water supply resilience is vital to support sustainable decision making, particularly for large cities in arid and/or semi-arid regions. In this study, a novel modeling framework, which integrates hydrological processes and water management, was established over a representative water limited metropolitan area to evaluate the impacts of water availability and water demand on reservoir storage and water supply reliability. In this framework, climate change induced drought events were selectedmore » from statistically downscaled Coupled Model Intercomparison Project Phase 5 outputs under the Representative Concentration Pathway 8.5 scenario, while future water demand was estimated by the product of projected future population and per capita water use. Compared with the first half of the 21st century (2000–2049), reservoir storage and water supply reliability during the second half century (2050–2099) are projected to reduce by 16.1% and 14.2%, respectively. While both future multi-year droughts and population growth will lower water supply resilience, the uncertainty associated with future climate projection is larger than that associated with urbanization. To reduce the drought risks, a combination of mitigation strategies (e.g., additional conservation, integrating new water sources, and water use redistribution) was found to be the most efficient approach and can significantly improve water supply reliability by as much as 15.9%.« less

  11. Reviving the "Ganges Water Machine": where and how much?

    NASA Astrophysics Data System (ADS)

    Muthuwatta, Lal; Amarasinghe, Upali A.; Sood, Aditya; Surinaidu, Lagudu

    2017-05-01

    Runoff generated in the monsoon months in the upstream parts of the Ganges River basin (GRB) contributes substantially to downstream floods, while water shortages in the dry months affect agricultural production in the basin. This paper examines the potential for subsurface storage (SSS) in the Ganges basin to mitigate floods in the downstream areas and increase the availability of water during drier months. The Soil and Water Assessment Tool (SWAT) is used to estimate sub-basin water availability. The water availability estimated is then compared with the sub-basin-wise unmet water demand for agriculture. Hydrological analysis reveals that some of the unmet water demand in the sub-basin can be met provided it is possible to capture the runoff in sub-surface storage during the monsoon season (June to September). Some of the groundwater recharge is returned to the stream as baseflow and has the potential to increase dry season river flows. To examine the impacts of groundwater recharge on flood inundation and flows in the dry season (October to May), two groundwater recharge scenarios are tested in the Ramganga sub-basin. Increasing groundwater recharge by 35 and 65 % of the current level would increase the baseflow during the dry season by 1.46 billion m3 (34.5 % of the baseline) and 3.01 billion m3 (71.3 % of the baseline), respectively. Analysis of pumping scenarios indicates that 80 000 to 112 000 ha of additional wheat area can be irrigated in the Ramganga sub-basin by additional SSS without reducing the current baseflow volumes. Augmenting SSS reduces the peak flow and flood inundated areas in Ramganga (by up to 13.0 % for the 65 % scenario compared to the baseline), indicating the effectiveness of SSS in reducing areas inundated under floods in the sub-basin. However, this may not be sufficient to effectively control the flood in the downstream areas of the GRB, such as in the state of Bihar (prone to floods), which receives a total flow of 277 billion m3 from upstream sub-basins.

  12. An interoperability experiment for sharing hydrological rating tables

    NASA Astrophysics Data System (ADS)

    Lemon, D.; Taylor, P.; Sheahan, P.

    2013-12-01

    The increasing demand on freshwater resources is requiring authorities to produce more accurate and timely estimates of their available water. Calculation of continuous time-series of river discharge and storage volumes generally requires rating tables. These approximate relationships between two phenomena, such as river level and discharge, and allow us to produce continuous estimates of a phenomenon that may be impractical or impossible to measure directly. Standardised information models or access mechanisms for rating tables are required to support sharing and exchange of water flow data. An Interoperability Experiment (IE) is underway to test an information model that describes rating tables, the observations made to build these ratings, and river cross-section data. The IE is an initiative of the joint World Meteorological Organisation/Open Geospatial Consortium's Hydrology Domain Working Group (HydroDWG) and the model will be published as WaterML2.0 part 2. Interoperability Experiments (IEs) are low overhead, multiple member projects that are run under the OGC's interoperability program to test existing and emerging standards. The HydroDWG has previously run IEs to test early versions of OGC WaterML2.0 part 1 - timeseries. This IE is focussing on two key exchange scenarios: Sharing rating tables and gauging observations between water agencies. Through the use of standard OGC web services, rating tables and associated data will be made available from water agencies. The (Australian) Bureau of Meteorology will retrieve rating tables on-demand from water authorities, allowing the Bureau to run conversions of data within their own systems. Exposing rating tables and gaugings for online analysis and educational purposes. A web client will be developed to enable exploration and visualization of rating tables, gaugings and related metadata for monitoring points. The client gives a quick view into available rating tables, their periods of applicability and the standard deviation of observations against the relationship. An example of this client running can be seen at the link provided. The result of the IE will form the basis for the standardisation of WaterML2.0 part 2. The use of the standard will lead to increased transparency and accessibility of rating tables, while also improving general understanding of this important hydrological concept.

  13. Managing water with better institutions: Building flexibility, innovation and lessons of best practices

    NASA Astrophysics Data System (ADS)

    Msangi, S.

    2014-12-01

    Changing socio-economic conditions and global environmental change continue to put pressure on critical natural resources necessary for sustaining ecosystems and human well-being - including water. Increasing variability in water availability, deepening droughts and continuing demands and consumptive use have posed problems for resource managers and policy makers in many regions. While in some regions it is still possible to enhance supply, such as in under-exploited water basins in Africa - the majority of the world's heaviest water users are facing situations that call for more demand-side adjustments. This necessitates a change from engineering-focused solutions to more economic ones, especially where the costs of increasing supply (such as through de-salinization) are prohibitively expensive, or have unacceptable consequences for environmental sustainability. Despite many years and decades of studying water resource management problems, there is still too little guidance as to what institutional best-practices should be followed. Water resources tend to touch on a number of areas managed by different government departments and ministries (agriculture, aquaculture & fisheries, industry, natural resources, etc) - but there is still no common understanding of what the best governance arrangements are that lead to improved sectoral performance (however that is measured). Given the continuing efforts to invest in water resources management and development by major multi-lateral organizations such as the World Bank and the African Development Bank - this kind of institutional guidance is critical, if countries are to make the most of these investments. In this presentation, we review a number of cases in which previously supply-side oriented approaches have to be dealt with from the demand side, and why institutional flexibility and innovation is so important. We draw from examples of community-based groundwater management in India, groundwater overdraft management in China and the US, and try and synthesize some key priorities for further research and policy dialogue that are needed to enhance the sustainability of water resources in critical basins.

  14. Water use for electricity in the United States: an analysis of reported and calculated water use information for 2008

    NASA Astrophysics Data System (ADS)

    Averyt, K.; Macknick, J.; Rogers, J.; Madden, N.; Fisher, J.; Meldrum, J.; Newmark, R.

    2013-03-01

    Water use by the electricity sector represents a significant portion of the United States water budget (41% of total freshwater withdrawals; 3% consumed). Sustainable management of water resources necessitates an accurate accounting of all water demands, including water use for generation of electricity. Since 1985, the Department of Energy (DOE) Energy Information Administration (EIA) has collected self-reported data on water consumption and withdrawals from individual power generators. These data represent the only annual collection of water consumption and withdrawals by the electricity sector. Here, we compile publically available information into a comprehensive database and then calculate water withdrawals and consumptive use for power plants in the US. In effect, we evaluate the quality of water use data reported by EIA for the year 2008. Significant differences between reported and calculated water data are evident, yet no consistent reason for the discrepancies emerges.

  15. A case study of ethanol water demand during industrial phase in Brazil

    NASA Astrophysics Data System (ADS)

    Hernandes, T.; Scarpare, F. V.; Guarenghi, M.; Pereira, T.; Galdos, M. V.

    2012-12-01

    Thayse A. D. Hernandesb, Fábio V. Scarparea, Marjorie M. Guarenghib, Tássia P. Pereirab, Marcelo V. Galdosa a Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, São Paulo, Brazil, E-mail: fabio.scarpare@bioetanol.org.br b Faculdade de Engenharia Mecânica, Unicamp, Cidade Universitária "Zeferino Vaz", CEP 13083-860, Campinas, SP, Brazil In São Paulo State, the water resources have being used by sugarcane industry responsibly, through high reuse rates that may reach 95% during industrial process. The average amount of catchment water stays around 2.0 m3 Mg 1 of industrial sugarcane stalk. However, in some modern mills which use higher technical level of closed water circuit, the standard goal for sugarcane industry, 1.0 m3 Mg 1 can be reached. In some regions where the uptake water for industrial segment is high as in São Paulo State, water use assessment is desired for sustainable ethanol production. Thus, two regions in São Paulo State with two plants each were taken as a case study aiming to assess ethanol water demand during the industrial phase. Araraquara was the first study region where the water demand was classified as in critical condition in 2010 according to the Water and Electrical Energy Department of São Paulo State (DAEE). The industrial activities were responsible for 50% of the water catchment. Araçatuba was the second study region where water demand was classified as being of concern (DAEE) due to high percentage of catchment water for industrial activities, around 90%. Data regarding the amount of millable cane processed, days of the plant operation, ratio of cane used for ethanol production in 2010/2011 season were used for direct water demand estimation considering different water catchment scenarios of 2.0, 1.0 and 0.7 (technological development prediction scenario) m3 Mg-1 of millable cane. For indirect water demand estimation, data regarding installed capacity of each unit and ethanol production efficiency (number of liters per millable ton of cane) were used considering the same water catchment scenarios. In terms of absolute values, mills in Araçatuba showed higher water consumption than in Araraquara (0.24 and 0.17 m3 s-1 respectively) for water catchment scenarios of 2.0 m3 Mg-1. Regarding the water use per ethanol produced (liter of water use per liter of ethanol produced), mills in Araçatuba also showed higher values, 0.035 than in Araraquara, 0.014 around 60%. Considering all scenarios, the industrial water demand for ethanol production was always the double for Araçatuba due a higher amount of collected water in that region. In the current water uptake scenario (2.0 m3 Mg-1), the mills involvement in industrial water demand was 22% in Araçatuba and 10% in Araraquara. Taking into account the total water demand in both regions, the amount of water demand for ethanol production was 21% and 5% respectively for Araçatuba and Araraquara. In the future, when the water uptake scenario will reach 0.7 m3 Mg-1 it will provide a 65% saving of water in both regions. Our results suggest that the ethanol industry did not represent high pressure on water resources in those analyzed regions.

  16. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  17. Quantifying Crop Specific Blue and Green Water Footprints and the Spatial Allocation of Virtual Water in China

    NASA Astrophysics Data System (ADS)

    Pan, J.; Smith, T.; McLaughlin, D.

    2016-12-01

    China, which had a population of 1.38 billion in 2013, is expected to peak at about 1.45 billion around 2030, with per capita food demand likely to increase significantly. The population growth and diet change make prospects of future available water and food worrisome for China. Quantitative estimates of crop specific blue and green water footprints provide useful insight about the roles of different water sources and give guidance for agricultural and water resource planning. This study uses reanalysis methods to merge diverse datasets, including information on water fluxes and land use, to estimate crop-specific green and blue water consumption at 0.5 degree spatial resolution. The estimates incorporate, through constraints in the reanalysis procedure, important physical connections between the water and land resources that support agriculture. These connections are important since land use affects evapotranspiration and runoff while water availability and crop area affect crop production and virtual water content. The results show that green water accounts for 86% and blue water accounts for 14% of the total national agricultural water footprint, respectively. The water footprints of cereals (wheat, maize and rice) and soybeans account for 51% of the total agricultural water footprint. Cereals and soybeans together account for 85% of the total blue water footprint.

  18. Water use trends and demand projections in the Northwest Florida Water Management District

    USGS Publications Warehouse

    Marella, R.L.; Mokray, M.F.; Hallock-Solomon, Michael

    1998-01-01

    The Northwest Florida Water Management District is located in the western panhandle of Florida and encompasses about 11,200 square miles. In 1995, the District had an estimated population of 1.13 million, an increase of about 47 percent from the 1975 population of 0.77 million. Over 50 percent of the resident population lives within 10 miles of the coast. In addition, hundreds of thousands of visitors come to the coastal areas of the panhandle during the summer months for recreation or vacation purposes. Water withdrawn to meet demands for public supply, domestic self-supplied, commercial-industrial, agricultural irrigation, and recreational irrigation purposes in the District increased 18 percent (52 million gallons per day) between 1970 and 1995. The greatest increases were for public supply and domestic self-supplied (99 percent increase) and for agricultural irrigation (60 percent increase) between 1970 and 1995. In 1995, approximately 70 percent of the water withdrawn was from ground-water sources, with the majority of this from the Floridan aquifer system. The increasing water demands have affected water levels in the Floridan aquifer system, especially along the coastal areas. The Northwest Florida Water Management District is mandated under the Florida Statutes (Chapter 373) to protect and manage the water resources in this area of the State. The mandate requires that current and future water demands be met, while water resources and water-dependent natural systems are sustained. For this project, curve fitting and extrapolation were used to project most of the variables (population, population served by public supply, and water use) to the years 2000, 2005, 2010, 2015, and 2020. This mathematical method involves fitting a curve to historical population or water-use data and then extending this curve to arrive at future values. The population within the region is projected to reach 1,596,888 by the year 2020, an increase of 41 percent between 1995 and 2020. Most of the population in this region will continue to reside in the urban areas of Pensacola and Tallahassee, and along the coastal areas. The population served by public water supply is projected to reach 1,353,836 by the year 2020, an increase of nearly 46 percent between 1995 and 2020. Total water demand for the Northwest Florida Water Management District is projected to reach 940.2 million gallons per day in 2000, 1,003.1 million gallons per day in 2010, and 1,059.1 million gallons per day in 2020. Excluding water withdrawn for power generation from these totals, water demands will increase 34 percent between 1995 and 2020, and 58 percent between 1970 and 2020. Specifically, public supply demands are projected to increase 74.1 million gallons per day (53 percent) and domestic self-supplied and small public supply systems demands are projected to increase 9.1 million gallons per day (28 percent) between 1995 and 2020. Commercial- industrial self-supplied demands are projected to increase about 16.9 million gallons per day (13 percent) between 1995 and 2020. Agricultural and recreational irrigation demands combined are projected to increase 16.8 million gallons per day (48 percent) between 1995 and 2020. Water demands for power generation are projected to increase about 53.9 million gallons per day (10 percent) between 1995 and 2020. Although power generation water use shows a projected increase during this time, plant capacities are not expected to change dramatically.

  19. Optimization of ground-water withdrawal in the lower Fox River communities, Wisconsin

    USGS Publications Warehouse

    Walker, J.F.; Saad, D.A.; Krohelski, J.T.

    1998-01-01

    Pumping from closely spaced wells in the Central Brown County area and the Fox Cities area near the north shore of Lake Winnebago has resulted in the formation of deep cones of depression in the vicinity of the two pumping centers. Water-level measurements indicate there has been a steady decline in water levels in the vicinity of these two pumping centers for the past 50 years. This report describes the use of ground-water optimization modeling to efficiently allocate the ground-water resources in the Lower Fox River Valley. A 3-dimensional ground-water flow model was used along with optimization techniques to determine the optimal withdrawal rates for a variety of management alternatives. The simulations were conducted separately for the Central Brown County area and the Fox Cities area. For all simulations, the objective of the optimization was to maximize total ground-water withdrawals. The results indicate that ground water can supply nearly all of the projected 2030 demand for Central Brown County municipalities if all of the wells are managed (including the city of Green Bay), 8 new wells are installed, and the water-levels are allowed to decline to 100 ft below the bottom of the confining unit. Ground water can supply nearly all of the projected 2030 demand for the Fox Cities if the municipalities in Central Brown County convert to surface water; if Central Brown County municipalities follow the optimized strategy described above, there will be a considerable shortfall of available ground water for the Fox Cities communities. Relaxing the water-level constraint in a few wells, however, would likely result in increased availability of water. In all cases examined, optimization alternatives result in a rebound of the steady-state water levels due to projected 2030 withdrawal rates to levels at or near the bottom of the confining unit, resulting in increased well capacity. Because the simulations are steady-state, if all of the conditions of the model remain the same these withdrawal rates would be sustainable in perpetuity.

  20. Estimating irrigation water use in the humid eastern United States

    USGS Publications Warehouse

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to develop the models as well as two independent validation datasets from Georgia and Virginia that were not used in model development. Irrigation water-use estimates from the logistic regression method more closely matched mean reported irrigation rates than estimates from the crop-water-demand model when compared to the irrigation data used to develop the equations. The root mean squared errors (RMSEs) for the logistic regression estimates of mean annual irrigation ranged from 0.3 to 2.0 inches (in.) for the five crop types; RMSEs for the crop-water-demand models ranged from 1.4 to 3.9 in. However, when the models were applied and compared to the independent validation datasets from southwest Georgia from 2010, and from Virginia from 1999 to 2007, the crop-water-demand model estimates were as good as or better at predicting the mean irrigation volume than the logistic regression models for most crop types. RMSEs for logistic regression estimates of mean annual irrigation ranged from 1.0 to 7.0 in. for validation data from Georgia and from 1.8 to 4.9 in. for validation data from Virginia; RMSEs for crop-water-demand model estimates ranged from 2.1 to 5.8 in. for Georgia data and from 2.0 to 3.9 in. for Virginia data. In general, regression-based models performed better in areas that had quality daily or weekly irrigation data from which the regression equations were developed; however, the regression models were less reliable than the crop-water-demand models when applied outside the area for which they were developed. In most eastern coastal states that do not have quality irrigation data, the crop-water-demand model can be used more reliably. The development of predictive models of irrigation water use in this study was hindered by a lack of quality irrigation data. Many mid-Atlantic and New England states do not require irrigation water use to be reported. A survey of irrigation data from 14 eastern coastal states from Maine to Georgia indicated that, with the exception of the data in Georgia, irrigation data in the states that do require reporting commonly did not contain requisite ancillary information such as irrigated area or crop type, lacked precision, or were at an aggregated temporal scale making them unsuitable for use in the development of predictive models. Confidence in the reliability of either modeling method is affected by uncertainty in the reported data from which the models were developed or validated. Only through additional collection of quality data and further study can the accuracy and uncertainty of irrigation water-use estimates be improved in the humid eastern United States.

Top