Inactivation of Hepatitis A Virus (HAV) by Chlorine and Iodine in Water
1986-11-01
treatment practices utilizing chemical disinfection, primarily chlorination, are generally believed to * be effective in producing microbiologically safe...OCl) in 1 liter of HDFW. Stock solution was then diluted in tesi water (halogen demand-free, 0.01M phosphate buffer, pH 4.5, 7.0 or 9.5 in initial
Dominant oceanic bacteria secure phosphate using a large extracellular buffer
Zubkov, Mikhail V.; Martin, Adrian P.; Hartmann, Manuela; Grob, Carolina; Scanlan, David J.
2015-01-01
The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting 33P-phosphate-pulsed 32P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5–40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate. PMID:26198420
Innovative Microsystems: Novel Nanostructures to Capture Circulating Breast Cancer Cells
2009-05-01
temperature to promote a Schiff-base reaction. Recombinant protein G from E . coli (Zymed Lab Inc.) 50 μg/ml in Ca- and Mg-free phosphate-buffered...recombinant protein G from E . coli (Zymed Lab Inc.), at a concentration of 50 mg ml1 in 1 PBS, is incubated on the activated surface overnight at 4 C...reaction. Recombinant protein G from E . coli (Zymed Lab Inc.) 50 μg/ml in Ca- and Mg-free phosphate-buffered saline (CMF-PBS), is incubated on the
Common buffers, media, and stock solutions.
2001-05-01
This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.
Ren, Yueping; Chen, Jinli; Shi, Yugang; Li, Xiufen; Yang, Na; Wang, Xinhua
2017-11-01
Anolyte acidification is an inevitable restriction for the bioelectricity generation of buffer-free microbial fuel cells (MFCs). In this work, acidification of the buffer-free KCl anolyte has been thoroughly eliminated through anolyte recycling. The accumulated HCO 3 - concentration in the recycled KCl anolyte was above 50mM, which played as natural buffer and elevated the anolyte pH to above 8. The maximum power density (P max ) increased from 322.9mWm -2 to 527.2mWm -2 , which is comparable with the phosphate buffered MFC. Besides Geobacter genus, the gradually increased anolyte pH and conductivity induced the growing of electrochemically active Geoalkalibacter genus, in the anode biofilm. Anolyte recycling is a feasible strategy to strengthen the self-buffering capacity of buffer-free MFCs, thoroughly eliminate the anolyte acidification and prominently enhance the electric power. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein
NASA Astrophysics Data System (ADS)
Arai, Hirofumi; Berlett, Barbara S.; Chock, P. Boon; Stadtman, Earl R.
2005-07-01
Oxidation of low-density lipoprotein (LDL) may play an important role in atherosclerosis. We studied the effects of bicarbonate/CO2 and phosphate buffer systems on metal ion-catalyzed oxidation of LDL to malondialdehyde (MDA) and to protein carbonyl and MetO derivatives. Our results revealed that LDL oxidation in mixtures containing free iron or heme derivatives was much greater in bicarbonate/CO2 compared with phosphate buffer. However, when copper was substituted for iron in these mixtures, the rate of LDL oxidation in both buffers was similar. Iron-catalyzed oxidation of LDL was highly sensitive to inhibition by phosphate. Presence of 0.3-0.5 mM phosphate, characteristic of human serum, led to 30-40% inhibition of LDL oxidation in bicarbonate/CO2 buffer. Iron-catalyzed oxidation of LDL to MDA in phosphate buffer was inhibited by increasing concentrations of albumin (10-200 μM), whereas MDA formation in bicarbonate/CO2 buffer was stimulated by 10-50 μM albumin but inhibited by higher concentrations. However, albumin stimulated the oxidation of LDL proteins to carbonyl derivatives at all concentrations examined in both buffers. Conversion of LDL to MDA in bicarbonate/CO2 buffer was greatly stimulated by ADP, ATP, and EDTA but only when EDTA was added at a concentration equal to that of iron. At higher than stoichiometric concentrations, EDTA prevented oxidation of LDL. Results of these studies suggest that interactions between bicarbonate and iron or heme derivatives leads to complexes with redox potentials that favor the generation of reactive oxygen species and/or to the generation of highly reactive CO2 anion or bicarbonate radical that facilitates LDL oxidation. Freely available online through the PNAS open access option.Abbreviations: LDL, low-density lipoprotein; MDA, malondialdehyde; MetO, methionine sulfoxide.
NASA Astrophysics Data System (ADS)
Kemper, Björn; Schmidt, Lisa; Przibilla, Sabine; Rommel, Christina; Vollmer, Angelika; Ketelhut, Steffi; Schnekenburger, Jürgen; von Bally, Gert
2010-04-01
Digital holographic microscopy (DHM) provides label-free quantitative phase contrast with low demands on sample preparation. Nevertheless, for DHM measurements on fixed cells the mounting medium has to be considered while the phase contrast of living cells may be influenced by the used buffer solution. To quantify these effects, the maximum cell caused phase contrast and the visibility of the nucleoli were analyzed. A second aim of the study was to identify subcellular components in DHM phase contrast images. Therefore, comparative investigations using bright field imaging, DHM and fluorescence microscopy with 4',6- Diamidino-2-phenylindol (DAPI) staining were performed. DAPI-staining visualizes cell components containing DNA. The obtained results demonstrate exemplarily for two tumor cell lines that from DHM phase contrast images of fixed cells in phosphate buffer saline (PBS) cell thickness values are obtained which are comparable to living cells. Furthermore, it is shown that in many cases nucleus components can be identified only by DHM phase contrast.
Ljubić, Ivan; Matasović, Brunislav; Bonifačić, Marija
2013-11-07
A remarkable buffer-mediated control between free-radical substitution (FRS) and proton-coupled electron transfer (PCET) is demonstrated for the reaction between iodoethane and the α-hydroxyethyl radical in neutral aqueous solution in the presence of bicarbonate or phosphate buffer. The reaction is initiated by the γ-radiolysis of the water solvent, and the products, either the iodine atom (FRS) or anion (PCET), are analysed using ion chromatographic and spectrophotometric techniques. A detailed insight into the mechanism is gained by employing density functional theory (M06-2X), Møller-Plesset perturbation treatment to the second order (MP2), and multireference methods (CASSCF/CASPT2). Addition of a basic buffer anion is indispensable for the reaction to occur and the competition between the two channels depends subtly on its proton accepting affinity, with FRS being the dominant channel in the phosphate and PCET in the bicarbonate containing solutions. Unlike the former, the latter channel sustains a chain-like process which significantly enhances the dehalogenation. The present systems furnish an example of the novel PCET/FRS dichotomy, as well as insights into possibilities of its efficient control.
A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells
NASA Astrophysics Data System (ADS)
Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong
2014-12-01
In this study, a phosphorus-free anolyte is prepared by using bicarbonate to replace phosphate buffer for application in two chamber microbial fuel cells (MFCs). Optical density test and Bradford protein assay shows that this phosphorus-free anolyte effectively inhibits the growth and reproduction of microorganisms suspended in the solution and greatly reduces the suspended cell mass. As a result, it considerably enhances the coulombic efficiency (CE) of MFCs. When the acetate concentration is 11 mM, the CE of the MFC using the pH 7 phosphate-containing anolyte is 9.7% and the CE with the pH 8.3 phosphate-containing anolyte is 9.1%, while the CE of the MFC using the phosphorus-free anolyte (pH 8.3) achieves 26.6%. This study demonstrates that this phosphorus-free anolyte holds the potential to enhance the feasibility for practical applications of MFCs.
A reagent-free tubular biofilm reactor for on-line determination of biochemical oxygen demand.
Liu, Changyu; Zhao, Huijun; Gao, Shan; Jia, Jianbo; Zhao, Limin; Yong, Daming; Dong, Shaojun
2013-07-15
We reported a reagent-free tubular biofilm reactor (BFR) based analytical system for rapid online biochemical oxygen demand (BOD) determination. The BFR was cultivated using microbial seeds from activated sludge. It only needs tap water to operate and does not require any chemical reagent. The analytical performance of this reagent-free BFR system was found to be equal to or better than the BFR system operated using phosphate buffer saline (PBS) and high purity deionized water. The system can readily achieve a limit of detection of 0.25 mg O2 L(-1), possessing superior reproducibility, and long-term operational and storage stability. More importantly, we confirmed for the first time that the BFR system is capable of tolerating common toxicants found in wastewaters, such as 3,5-dichlorophenol and Zn(II), Cr(VI), Cd(II), Cu(II), Pb(II), Mn(II) and Ni(II), enabling the method to be applied to a wide range of wastewaters. The sloughing and clogging are the important attributes affecting the operational stability, hence, the reliability of most online wastewater monitoring systems, which can be effectively avoided, benefiting from the tubular geometry of the reactor and high flow rate conditions. These advantages, coupled with simplicity in device, convenience in operation and minimal maintenance, make such a reagent-free BFR analytical system promising for practical BOD online determination. Copyright © 2013 Elsevier B.V. All rights reserved.
Ion sensitivity of large-area epitaxial graphene film on SiC substrate
NASA Astrophysics Data System (ADS)
Mitsuno, Takanori; Taniguchi, Yoshiaki; Ohno, Yasuhide; Nagase, Masao
2017-11-01
We investigated the intrinsic ion sensitivity of graphene field-effect transistors (FETs) fabricated by a resist-free stencil mask lithography process from a large-scale graphene film epitaxially grown on a SiC substrate. A pH-adjusted phosphate-buffered solution was used for the measurement to eliminate the interference of other ions on the graphene FET's ion sensitivity. The charge neutrality point shifted negligibly with changing pH for the pH-adjusted phosphate-buffered solution, whereas for the mixed buffer solution, it shifted toward the negative gate voltage owing to the decrease in the concentration of phthalate ions. This phenomenon is contrary to that observed in previous reports. Overall, our results indicate that the graphene film is intrinsically insensitive to ions except for those with functional groups that interact with the graphene surface.
Behavior of soluble and immobilized acid phosphatase in hydro-organic media.
Wan, H; Horvath, C
1975-11-20
The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.
Evaluation of empirical process design relationships for ozone disinfection of water and wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finch, G.R.; Smith, D.W.
A research program was undertaken to examine the dose-response of Escherichia coli ATCC 11775 in ozone demand-free phosphate buffer solution and in a high quality secondary wastewater effluent with a total organic carbon content of 8 mg/L and a chemical oxygen demand of 26 mg/L. The studies were conducted in bench-scale batch reactors for both water types. In addition, studies using secondary effluent also were conducted in a pilot-scale, semi-batch reactor to evaluate scale-up effects. It was found that the ozone dose was the most important design parameter in both types of water. Contact time was of some importance inmore » the ozone demand-free water and had no detectable effect in the secondary effluent. Pilot-scale data confirmed the results obtained at bench-scale for the secondary effluent. Regression analysis of the logarithm of the E. coli response on the logarithm of the utilized ozone dose revealed that there was lack-of-fit using the model form which has been used frequently for the design of wastewater disinfection systems. This occurred as a result of a marked tailing effect of the log-log plot as the ozone dose increased and the kill increased. It was postulated that this was caused by some unknown physiological differences within the E. coli population due to age or another factor.« less
Proton transport by phosphate diffusion--a mechanism of facilitated CO2 transfer
1976-01-01
We have measured CO2 fluxes across phosphate solutions at different carbonic anhydrase concentrations, bicarbonate concentration gradients, phosphate concentrations, and mobilities. Temperature was 22-25 degrees C, the pH of the phosphate solutions was 7.0-7.3. We found that under physiological conditions of pH and pCO2 a facilitated diffusion of CO2 occurs in addition to free diffusion when (a) sufficient carbonic anhydrase is present, and (b) a concentration gradient of HCO3- is established along with a pCO2 gradient, and (c) the phosphate buffer has a mobility comparable to that of bicarbonate. When the phosphate was immobilized by attaching 0.25-mm-long cellulose particles, no facilitation of CO2 diffusion was detectable. A mechanism of facilitated CO2 diffusion in phosphate solutions analogous to that in albumin solutions was proposed on the basis of these findings: bicarbonate diffusion together with a facilitated proton transport by phosphate diffusion. A mathematical model of this mechanism was formulated. The CO2 fluxed predicted by the model agree quantitatively with the experimentally determined fluxes. It is concluded that a highly effective proton transport mechanism acts in solutions of mobile phosphate buffers. By this mechanism; CO2 transfer may be increased up to fivefold and proton transfer may be increased to 10,000-fold. PMID:6619
Toward an In Vivo Dissolution Methodology: A Comparison of Phosphate and Bicarbonate Buffers
Sheng, Jennifer J.; McNamara, Daniel P.; Amidon, Gordon L.
2011-01-01
Purpose To evaluate the difference between the pharmaceutical phosphate buffers and the gastrointestinal bicarbonates in dissolution of ketoprofen and indomethacin, to illustrate the dependence of buffer differential on biopharmaceutical properties of BCS II weak acids, and to recommend phosphate buffers equivalent to bicarbonates. Methods The intrinsic dissolution rates of, ketoprofen and indomethacin, were experimentally measured using rotating disk method at 37°C in USP SIF/FaSSIF and various concentrations of bicarbonates. Theoretical models including an improved reaction plane model and a film model were applied to estimate the surrogate phosphate buffers equivalent to the bicarbonates. Results Experimental results show that the intrinsic dissolution rates of ketoprofen and indomethacin, in USP and FaSSIF phosphate buffers are 1.5–3.0 times of that in the 15 mM bicarbonates. Theoretical analysis demonstrates that the buffer differential is largely dependent on the drug pKa and secondly on solubility, and weakly dependent on the drug diffusivity. Further, in accordance with the drug pKa, solubility and diffusivity, simple phosphate surrogate was proposed to match an average bicarbonate value (15 mM) of the upper gastrointestinal region. Specifically, phosphate buffers of 13–15 mM and 3–4 mM were recommended for ketoprofen and indomethacin, respectively. For both ketoprofen and indomethacin, the intrinsic dissolution using the phosphate surrogate buffers closely approximated the 15 mM bicarbonate buffer. Conclusions This work demonstrates the substantial difference between pharmaceutical phosphates and physiological bicarbonates in determining the drug intrinsic dissolution rates of BCS II weak acids, such as ketoprofen and indomethacin. Surrogate phosphates were recommended in order to closely reflect the in vivo dissolution of ketoprofen and indomethacin in gastrointestinal bicarbonates, which has significant implications for defining buffer systems for BCS II weak acids in developing in vitro bioequivalence dissolution methodology. PMID:19183104
Kinetics of Ozone Inactivation of Infectious Prion Protein
Ding, Ning; Price, Luke M.; Braithwaite, Shannon L.; Balachandran, Aru; Mitchell, Gordon; Belosevic, Miodrag
2013-01-01
The kinetics of ozone inactivation of infectious prion protein (PrPSc, scrapie 263K) was investigated in ozone-demand-free phosphate-buffered saline (PBS). Diluted infectious brain homogenates (IBH) (0.01%) were exposed to a predetermined ozone dose (10.8 ± 2.0 mg/liter) at three pHs (pH 4.4, 6.0, and 8.0) and two temperatures (4°C and 20°C). The inactivation of PrPSc was quantified by determining the in vitro destruction of PrPSc templating properties using the protein misfolding cyclic amplification (PMCA) assay and bioassay, which were shown to correlate well. The inactivation kinetics were characterized by both Chick-Watson (CW) and efficiency factor Hom (EFH) models. It was found that the EFH model fit the experimental data more appropriately. The efficacy of ozone inactivation of PrPSc was both pH and temperature dependent. Based on the EFH model, CT (disinfectant concentration multiplied by contact time) values were determined for 2-log10, 3-log10, and 4-log10 inactivation at the conditions under which they were achieved. Our results indicated that ozone is effective for prion inactivation in ozone-demand-free water and may be applied for the inactivation of infectious prion in prion-contaminated water and wastewater. PMID:23416994
Han, Chunyu; Chan, Zhulong; Yang, Fan
2015-01-01
Comparative efficiency of three extraction solutions, including the universal sodium phosphate buffer (USPB), the Tris-HCl buffer (UTHB), and the specific buffers, were compared for assays of soluble protein, free proline, superoxide radical (O2∙-), hydrogen peroxide (H2O2), and the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR) in Populus deltoide. Significant differences for protein extraction were detected via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Between the two universal extraction buffers, the USPB showed higher efficiency for extraction of soluble protein, CAT, GR, O2∙-, GPX, SOD, and free proline, while the UTHB had higher efficiency for extraction of APX, POD, and H2O2. When compared with the specific buffers, the USPB showed higher extraction efficiency for measurement of soluble protein, CAT, GR, and O2∙-, parallel extraction efficiency for GPX, SOD, free proline, and H2O2, and lower extraction efficiency for APX and POD, whereas the UTHB had higher extraction efficiency for measurement of POD and H2O2. Further comparisons proved that 100 mM USPB buffer showed the highest extraction efficiencies. These results indicated that USPB would be suitable and efficient for extraction of soluble protein, CAT, GR, GPX, SOD, H2O2, O2∙-, and free proline.
INACTIVATION OF HEPATITIS A VIRUS AND MODEL VIRUSES IN WATER BY FREE CHLORINE AND MONOCHLORAMINE
The kinetics and extent of inactivation of hepatitis A virus (HAV) as well as three other viruses, coxsackievirus B5 (CB5) and coliphages MS2 and X174, by 0.5 mg/l free chlorine, pH 6-10, and 10 mg/1 monochloramine, pH8, in 0.01 M phosphate buffer were determined. These results i...
ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems
NASA Astrophysics Data System (ADS)
de Wit, Rutger; Stal, Lucas J.; Lomstein, Bente Aa.; Herbert, Rodney A.; van Gemerden, Hans; Viaroli, Pierluigi; Cecherelli, Victor-Ugo; Rodríguez-Valera, Francisco; Bartoli, Marco; Giordani, Gianmarco; Azzoni, Roberta; Schaub, Bart; Welsh, David T.; Donnelly, Andrew; Cifuentes, Ana; Antón, Josefa; Finster, Kai; Nielsen, Lise B.; Pedersen, Anne-Grethe Underlien; Neubauer, Anne Turi; Colangelo, Marina A.; Heijs, Sander K.
2001-12-01
"Buffer capacities" has been defined in ecology as a holistic concept (e.g., Integration of Ecosystem Theories: A Pattern, second ed. Kluwer, Dordrecht, 1997, 388pp), but we show that it can also be worked out in mechanistic studies. Our mechanistic approach highlights that "buffering capacities" can be depleted progressively, and, therefore, we make a distinction between current and potential "buffering capacities". We have applied this concept to understand the limited "local stability" in seagrass ecosystems and their vulnerability towards structural changes into macro-algal dominated communities. We explored the following processes and studied how they confer buffering capacities to the seagrass ecosystem: (i) net autotrophy is persistent in Zostera noltii meadows where plant assimilation acts as a sink for nutrients, this contrasted with the Ulva system that shifted back and forth between net autotrophy and net heterotrophy; (ii) the Z. noltii ecosystem possesses a certain albeit rather limited capacity to modify the balance between nitrogen fixation and denitrification, i.e., it was found that in situ nitrogen fixation always exceeded denitrification; (iii) the nitrogen demand of organoheterotrophic bacteria in the sediment results in nitrogen retention of N in the sediment and hence a buffer against release of nitrogen compounds from sediments, (iv) habitat diversification in seagrass meadows provides shelter for meiofauna and hence buffering against adverse conditions, (v) sedimentary iron provides a buffer against noxious sulfide (note: bacterial sulfide production is enhanced in anoxic sediment niches by increased organic matter loading). On the other hand, in the coastal system we studied, sedimentary iron appears less important as a redox-coupled buffer system against phosphate loading. This is because most inorganic phosphate is bound to calcium rather than to iron. In addition, our studies have highlighted the importance of plant-microbe interactions in the seagrass meadows.
Comparison of Giardia lamblia and Giardia muris cyst inactivation by ozone.
Finch, G R; Black, E K; Labatiuk, C W; Gyürék, L; Belosevic, M
1993-11-01
Inactivation of Giardia lamblia and Giardia muris cysts was compared by using an ozone demand-free 0.05 M phosphate buffer in bench-scale batch reactors at 22 degrees C. Ozone was added to each trial from a concentrated stock solution for contact times of 2 and 5 min. The viability of the control and treated cysts was evaluated by using the C3H/HeN mouse and Mongolian gerbil models for G. muris and G. lamblia, respectively. The resistance of G. lamblia to ozone was not significantly different from that of G. muris under the study conditions, contrary to previously reported data that suggested G. lamblia was significantly more sensitive to ozone than G. muris was. The simple Ct value for 2 log unit inactivation of G. lamblia was 2.4 times higher than the Ct value recommended by the Surface Water Treatment Rule.
Effects of pH and Temperature on the Stability of Fumonisins in Maize Products.
Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata
2017-03-01
This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100-250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B₁ fumonisin (HFB₁) and partially hydrolysed B₁ fumonisin (isomers a and b: PHFB 1a and PHFB 1b , respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB₁, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB₁ molecules disintegrate.
Effects of pH and Temperature on the Stability of Fumonisins in Maize Products
Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata
2017-01-01
This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100–250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B1 fumonisin (HFB1) and partially hydrolysed B1 fumonisin (isomers a and b: PHFB1a and PHFB1b, respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB1, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB1 molecules disintegrate. PMID:28257053
Dissolution enhancement of atorvastatin calcium by co-grinding technique.
Prabhu, Priyanka; Patravale, Vandana
2016-08-01
Atorvastatin calcium (AC) is a BCS class II drug which shows poor bioavailability due to inadequate dissolution. Solid dispersions present a promising option to enhance the solubility of poorly soluble drugs. Co-grinding with hydrophilic excipients is an easy and economical technique to improve the solubility of poorly soluble drugs and is free from usage of organic solvents. The aim of the present study was to explore novel carrier VBP-1 (organosulphur compound) for formulating a solid dispersion by using a simple, commercially viable co-grinding technique to enhance the dissolution of AC and to develop an oral formulation of the same. Composition of the solid dispersion was optimized based on the release profile in pH 1.2 buffer. The optimized solid dispersion was further characterized for flow properties, DSC, FTIR spectroscopy, XRD, contact angle, SEM studies and release profile in phosphate buffer pH 6.8. The developed solid dispersion gave similar release profile as the innovator formulation (Lipitor® tablets) in both pH 1.2 buffer and phosphate buffer pH 6.8. The developed solid dispersion was formulated into hard gelatin capsules (size 3). The developed capsules were found to give similar release as the innovator formulation in both pH 1.2 buffer and phosphate buffer pH 6.8. The developed capsules were found to be stable for a period of 6 months. Anti-hyperlipidemic efficacy studies in rats showed higher reduction in cholesterol and triglyceride levels by the developed capsules in comparison to pure AC. In conclusion, novel carrier VBP-1 was successfully employed to enhance the dissolution of AC using co-grinding technique.
Shibata, Hiroko; Yoshida, Hiroyuki; Izutsu, Ken-Ichi; Goda, Yukihiro
2016-04-01
The aim of this study was to assess the effects of buffer systems (bicarbonate or phosphate at different concentrations) on the in vitro dissolution profiles of commercially available enteric-coated tablets. In vitro dissolution tests were conducted using an USP apparatus II on 12 enteric-coated omeprazole and rabeprazole tablets, including innovator and generic formulations in phosphate buffers, bicarbonate buffers and a media modified Hanks (mHanks) buffer. Both omeprazole and rabeprazole tablets showed similar dissolution profiles among products in the compendial phosphate buffer system. However, there were large differences between products in dissolution lag time in mHanks buffer and bicarbonate buffers. All formulations showed longer dissolution lag times at lower concentrations of bicarbonate or phosphate buffers. The dissolution rank order of each formulation differed between mHanks buffer and bicarbonate buffers. A rabeprazole formulation coated with a methacrylic acid copolymer showed the shortest lag time in the high concentration bicarbonate buffer, suggesting varied responses depending on the coating layer and buffer components. Use of multiple dissolution media during in vitro testing, including high concentration bicarbonate buffer, would contribute to the efficient design of enteric-coated drug formulations. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.
Development of Cell Analysis Software for Cultivated Corneal Endothelial Cells.
Okumura, Naoki; Ishida, Naoya; Kakutani, Kazuya; Hongo, Akane; Hiwa, Satoru; Hiroyasu, Tomoyuki; Koizumi, Noriko
2017-11-01
To develop analysis software for cultured human corneal endothelial cells (HCECs). Software was designed to recognize cell borders and to provide parameters such as cell density, coefficient of variation, and polygonality of cultured HCECs based on phase contrast images. Cultured HCECs with high or low cell density were incubated with Ca-free and Mg-free phosphate-buffered saline for 10 minutes to reveal the cell borders and were then analyzed with software (n = 50). Phase contrast images showed that cell borders were not distinctly outlined, but these borders became more distinctly outlined after phosphate-buffered saline treatment and were recognized by cell analysis software. The cell density value provided by software was similar to that obtained using manual cell counting by an experienced researcher. Morphometric parameters, such as the coefficient of variation and polygonality, were also produced by software, and these values were significantly correlated with cell density (Pearson correlation coefficients -0.62 and 0.63, respectively). The software described here provides morphometric information from phase contrast images, and it enables subjective and noninvasive quality assessment for tissue engineering therapy of the corneal endothelium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garvey, Megan; Tepper, Katharina; Haupt, Caroline
Highlights: {yields} Sodium phosphate buffer accelerated A{beta}(1-40) nucleation relative to HEPES. {yields} A{beta}(1-40) fibrils formed in the two buffers show only minor structural differences. {yields} NMR revealed that A{beta}(1-40) histidine residues mediate buffer dependent changes. -- Abstract: The oligomerization of A{beta} peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Due to its biological relevance, phosphate is the most commonly used buffer system for studying the formation of A{beta} and other amyloid fibrils. Investigation into the characteristics and formation of amyloid fibrils frequently relies upon material formed in vitro, predominantly in phosphate buffers. Herein, we examine the effects onmore » the fibrillation and oligomerization mechanism of A{beta} peptide that occur due solely to the influence of phosphate buffer. We reveal that significant differences in amyloid fibrillation are observed due to fibrillation being initiated in phosphate or HEPES buffer (at physiological pH and temperature). Except for the differing buffer ions, all experimental parameters were kept constant. Fibril formation was assessed using fluorescently monitored kinetic studies, microscopy, X-ray fiber diffraction and infrared and nuclear magnetic resonance spectroscopies. Based on this set up, we herein reveal profound effects on the mechanism and speed of A{beta} fibrillation. The three histidine residues at positions 6, 13 and 14 of A{beta}(1-40) are instrumental in these mechanistic changes. We conclude that buffer plays a more significant role in fibril formation than has been generally acknowledged.« less
NASA Astrophysics Data System (ADS)
Li, M.; Whelan, M. J.; Wang, G.; White, S. M.
2012-12-01
The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg l-1 to 0.061 mg l-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.
NASA Astrophysics Data System (ADS)
Li, M.; Whelan, M. J.; Wang, G. Q.; White, S. M.
2013-05-01
The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus (P) behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg L-1 to 0.061 mg L-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.
Pikal-Cleland, Katherine A; Cleland, Jeffrey L; Anchordoquy, Thomas J; Carpenter, John F
2002-09-01
Previous studies have established that the selective precipitation of a less soluble buffer component during freezing can induce a significant pH shift in the freeze concentrate. During freezing of sodium phosphate solutions, crystallization of the disodium salt can produce a pH decrease as great as 3 pH units which can dramatically affect protein stability. The objective of our study was to determine how the presence of glycine (0-500 mM), a commonly used bulking agent in pharmaceutical protein formulations, affects the pH changes normally observed during freezing in sodium phosphate buffer solutions and to determine whether these pH changes contribute to instability of model proteins in glycine/phosphate formulations. During freezing in sodium phosphate buffers, the presence of glycine significantly influenced the pH. Glycine at the lower concentrations (< or = 50 mM) suppressed the pH decrease normally observed during freezing in 10 and 100 mM sodium phosphate buffer, possibly by reducing the nucleation rate of salt and thereby decreasing the extent of buffer salt crystallization. The presence of glycine at higher concentration (> 100 mM) in the sodium phosphate buffer resulted in a more complete crystallization of the disodium salt as indicated by the frozen pH values closer to the equilibrium value (pH 3.6). Although high concentrations of glycine can facilitate more buffer salt crystallization and these pH shifts may prove to be potentially damaging to the protein, glycine, in its amorphous state, can also act to stabilize a protein via the preferential exclusion mechanism. Copyright 2002 Wiley-Liss Inc.
NASA Astrophysics Data System (ADS)
Baldisserri, Carlo; Costa, Anna Luisa
2016-04-01
We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.
Mu, Luye; Droujinine, Ilia A; Rajan, Nitin K; Sawtelle, Sonya D; Reed, Mark A
2014-09-10
We demonstrate the versatility of Al2O3-passivated Si nanowire devices ("nanoribbons") in the analysis of enzyme-substrate interactions via the monitoring of pH change. Our approach is shown to be effective through the detection of urea in phosphate buffered saline (PBS), and penicillinase in PBS and urine, at limits of detection of <200 μM and 0.02 units/mL, respectively. The ability to extract accurate enzyme kinetics and the Michaelis-Menten constant (Km) from the acetylcholine-acetylcholinesterase reaction is also demonstrated.
Buffer Effects in the Solubility, Nucleation and Growth of Chicken Egg White Lysozyme
NASA Technical Reports Server (NTRS)
Gibson, Ursula J.
1999-01-01
The growth of protein crystals is important for determination of their three-dimensional structure, which relates to their biochemical functions and to the practical goal of designing pharmaceuticals to modify that function. While many proteins have been successfully crystallized by a variety of methods, there is still limited understanding of the process of nucleation and growth of even the simplest proteins. Chicken egg-white lysozyme (CEWL) is readily crystallized under a variety of conditions, and studies underway at MSFC are designed to elucidate the mechanisms by which the crystals nucleate and grow. We have investigated the effect of buffer choice on the solubility, nucleation and growth of CEWL. CEWL was purified by dialysis against a .05M phosphate buffer and chromatographic separation from contaminants in a sepharose column. Solubility studies were made as a function of buffer concentration for phosphate and formate buffers, and the nucleation and growth of crystals at 10 C was studied as a function of pH for oxalate, succinate, formate, butyrate, carbonate, phosphate and acetate buffer solutions. The solubility data support the conclusion that there is a solubility minimum as a function of buffer concentration for amphiphilic molecules, while no minimum is observed for a phosphate buffer. Nucleation is suppressed at pH greater than pKa for all buffers except phosphate. The aspect ratio of the (110) faces is shown to be a function of crystal size, rather than pH.
A calorimetric investigation of the interaction of the lac repressor with inducer.
Donnér, J; Caruthers, M H; Gill, S J
1982-12-25
A calorimetric study has been made of the interaction between the lac repressor and isopropyl-1-thio-beta-D-galactopyranoside (IPTG). The buffer-corrected enthalpy of reaction at 25 degrees C was found to be -15.6, -24.7, -4.6 kJ/mol of bound IPTG at pH 7.0, pH 8.1, and pH 9.0, respectively. This large range of enthalpy values is in contrast to a maximum difference in the free energy of the reaction of only 1.5 kJ/mol of bound IPTG between these pH values. The reaction was found by calorimetric measurements in different buffers to be accompanied by an uptake of 0.29 mol of protons/mol of bound IPTG at pH 8.1. The pH dependency of the reaction enthalpy suggests differences in the extent of protonation of the binding site and the involvement of H bonding with IPTG. The lack of strong hydrophobic contributions in the IPTG binding process is revealed by the absence of any determinable heat capacity change for the reaction at pH 7.0. The presence of phosphate buffer significantly alters the enthalpy of IPTG binding at higher pH values, but has little effect upon the binding constant. This implies that highly negative phosphate species change the nature of the IPTG binding site without any displacement of phosphate upon IPTG binding.
Vuletic, Lea; Peros, Kristina; Spalj, Stjepan; Rogic, Dunja; Alajbeg, Ivan
2014-01-01
To quantify changes in pH, buffering capacity and hydrogen carbonate, phosphate, protein and urea concentrations of stimulated saliva which occur during a 30-min measurement delay after saliva collection. The correlation between time-related chemical changes and changes of salivary pH and buffering capacity was assessed in order to explain the observed changes in salivary pH and buffering capacity. Stimulated saliva samples were collected from 30 volunteers after inducing salivation by chewing a piece of parafilm. Measurements of salivary variables were made immediately after saliva collection and again 30 min later, during which time the specimens were exposed to the atmosphere in collection cups at room temperature. Postponement of measurements resulted in a significant increase in pH and a significant decrease of buffering capacity, phosphate and urea concentration. The results suggest that the time-related pH increase could primarily be attributed to loss of dissolved carbon dioxide from saliva, and confirm the importance of hydrogen carbonate in the neutralisation of hydrogen ions, but they do not support the principle of catalysed phase-buffering for the hydrogen carbonate buffer system in saliva. A decrease in phosphate and urea concentration affects salivary buffering capacity. This study emphasises the importance of the standardisation of measurement time when measuring salivary pH, buffering capacity, phosphate and urea concentrations following the collection of saliva in order to obtain comparable results. It also provides a partial explanation of the mechanisms underlying the observed changes of pH and buffering capacity over time.
Beloff-Chain, Anne; Betto, P.; Bleszynski, W.; Catanzaro, Raffaella; Chain, E. B.; Dmitrovskii, A. A.; Longinotti, L.; Pocchiari, F.
1965-01-01
1. The influence of ATP on glucose metabolism was studied in the isolated rat diaphragm; it was shown that ATP increases the oxidation of glucose and the aerobic conversion of glucose into lactate, whereas it decreases glycogen synthesis. There was no influence of ATP on the anaerobic formation of lactate from glucose. 2. A maximum effect of ATP on the oxidation of glucose (about 160% increase) was obtained in the presence of 10mm-ATP; in the presence of 2mm-ATP the effect was about 65%, and was approximately constant from 10 to 90min. incubation period. 3. In a phosphate-free tris-buffered medium the oxidation of glucose was considerably decreased, but the percentage stimulation by ATP was about the same as in a phosphate-buffered medium. 4. ATP was shown to increase the oxidation of fructose, glucose 6-phosphate, glucose 1-phosphate, fructose 1,6-diphosphate and, to a much smaller extent, pyruvate. 5. ADP stimulated the oxidation of glucose to the same extent as ATP at a concentration of 2mm and the effect with AMP was only slightly less; IMP and adenosine had only a small stimulatory effect at this concentration, whereas inosine had no effect. PMID:16749165
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labatiuk, C.W.; Finch, G.R.; Belosevic, M.
1991-11-01
Giardia muris cyst viability after ozonation was compared by using fluorescein diacetate-ethidium bromide staining, the C3H/HeN mouse-G. muris model, and in vitro excystation. Bench-scale batch experiments were conducted under laboratory conditions (pH 6.7, 22C) in ozone-demand-free phosphate buffer. There was a significant difference between fluorogenic staining and infectivity with fluorogenic staining overestimating viability compared with infectivity estimates of viability. This suggests that viable cysts as indicated by fluorogenic dyes may not be able to complete the life cycle and produce an infection. No significant differences between infectivity and excystation and between fluorogenic staining and excystation were detected for inactivations upmore » to 99.9%. Only animal infectivity had the sensitivity to detect inactivations greater than 99.9%. Therefore, the animal model is the best method currently available for detecting high levels of G. muris cyst inactivation.« less
Ren, Shan; Park, Mi-Jin; Kim, Aera; Lee, Beom-Jin
2008-03-01
A reliable method to assess in vitro metabolic stability of rabeprazole and its modulation by Generally Recognized As Safe (GRAS)-listed pharmaceutical excipients was established in human liver microsomes. The metabolic stability of rabeprazole decreased as a function of incubation time, resulting in the formation of thioether rabeprazole via nonenzymatic degradation and enzymatic metabolism. Buffer type was also a determining factor for the degree of both nonenzymatic degradation and enzymatic metabolism. The net extent of enzymatic drug metabolism, obtained by calculating the difference in drug degradation between a microsome-present reaction system and a microsome-free solution, was about 9.20 +/- 0.67% in phosphate buffer and 2.27 +/- 1.76% in Tris buffer, respectively. Rabeprazole exhibited first-order kinetics in microsome-free solution but showed non-linear kinetics in the microsome-present reaction system. The maximal velocity, Vmax, in phosphate buffer was 5.07 microg mL(-1) h(-1) and the Michaelis-Menten constant, Km, was 10.39 microg mL(-1) by computer-fitting to the classical Michaelis-Menten equation for pattern of time-dependent change in the substrate concentration. The intact drug and its thioether form were well resolved and successfully identified by HPLC chromatography and liquid chromatography mass spectroscopy (LC/MS). The metabolic stability of rabeprazole was also modulated by the presence of pharmaceutical excipients. Among the five pharmaceutical excipients tested, poloxamer 188 and Gelucire 44/14 had potentially inhibitory effects on rabeprazole metabolism in human liver microsomes (p < 0.05). A greater understanding of metabolic stability and its modulation by pharmaceutical excipients would be useful for optimizing the bioavailability of rabeprazole at the early formulation stages.
Common stock solutions, buffers, and media.
2001-05-01
This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.
Solubility of ammonium acid urate nephroliths from bottlenose dolphins (Tursiops truncatus).
Argade, Sulabha; Smith, Cynthia R; Shaw, Timothy; Zupkas, Paul; Schmitt, Todd L; Venn-Watson, Stephanie; Sur, Roger L
2013-12-01
Nephrolithiasis has been identified in managed populations of bottlenose dolphins (Tursiops truncatus); most of these nephroliths are composed of 100% ammonium acid urate (AAU). Several therapies are being investigated to treat and prevent nephrolithiasis in dolphins including the alkalization of urine for dissolution of nephroliths. This study evaluates the solubility of AAU nephroliths in a phosphate buffer, pH range 6.0-8.0, and in a carbonate-bicarbonate buffer, pH range 9.0-10.8. AAU nephroliths were obtained from six dolphins and solubility studies were conducted using reverse-phase high performance liquid chromatography with ultraviolet detection at 290 nm. AAU nephroliths were much more soluble in a carbonate-bicarbonate buffer, pH range 9.0-10.8 compared to phosphate buffer pH range 6.0-8.0. In the pH range 6.0-8.0, the solubility was 45% lower in potassium phosphate buffer compared to sodium phosphate buffer. When citrate was used along with phosphate in the same pH range, the solubility was improved by 13%. At pH 7 and pH 8, 150 mM ionic strength buffer was optimum for dissolution. In summary, adjustment of urinary pH alone does not appear to be a useful way to treat AAU stones in bottlenose dolphins. Better understanding of the pathophysiology of AAU nephrolithiasis in dolphins is needed to optimize kidney stone prevention and treatment.
Aluminum elution and precipitation in glass vials: effect of pH and buffer species.
Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide
2015-02-01
Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.
Photo-degradation behaviour of roseoflavin in some aqueous solutions
NASA Astrophysics Data System (ADS)
Tyagi, A.; Penzkofer, A.; Mathes, T.; Hegemann, P.
2010-03-01
An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.
Watkinson, Allan; Soliakov, Andrei; Ganesan, Ashok; Hirst, Karie; Lebutt, Chris; Fleetwood, Kelly; Fusco, Peter C; Fuerst, Thomas R; Lakey, Jeremy H
2013-11-01
Aluminum salts are the most widely used vaccine adjuvants, and phosphate is known to modulate antigen-adjuvant interactions. Here we report an unexpected role for phosphate buffer in an anthrax vaccine (SparVax) containing recombinant protective antigen (rPA) and aluminum oxyhydroxide (AlOH) adjuvant (Alhydrogel). Phosphate ions bind to AlOH to produce an aluminum phosphate surface with a reduced rPA adsorption coefficient and binding capacity. However, these effects continued to increase as the free phosphate concentration increased, and the binding of rPA changed from endothermic to exothermic. Crucially, phosphate restored the thermostability of bound rPA so that it resembled the soluble form, even though it remained tightly bound to the surface. Batches of vaccine with either 0.25 mM (subsaturated) or 4 mM (saturated) phosphate were tested in a disease model at batch release, which showed that the latter was significantly more potent. Both formulations retained their potency for 3 years. The strongest aluminum adjuvant effects are thus likely to be via weakly attached or easily released native-state antigen proteins.
He, Guangli; Hu, Weihua; Li, Chang Ming
2015-11-01
We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.
Cristofoletti, Rodrigo; Dressman, Jennifer B
2016-06-01
The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. Copyright © 2016 Elsevier B.V. All rights reserved.
Buffer Modulation of Menadione-Induced Oxidative Stress in Saccharomyces cerevisiae
Lushchak, Oleh V.; Bayliak, Maria M.; Korobova, Olha V.; Levine, Rodney L.; Lushchak, Volodymyr I.
2012-01-01
The objective of this study was to compare in vivo the effects of bicarbonate and phosphate buffers on surviving and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. If at 25 mM concentration of buffers menadione only slightly reduced yeast surviving, at 50 mM concentration cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed. PMID:19843376
Buffer modulation of menadione-induced oxidative stress in Saccharomyces cerevisiae.
Lushchak, Oleh V; Bayliak, Maria M; Korobova, Olha V; Levine, Rodney L; Lushchak, Volodymyr I
2009-01-01
The objective of this study was to compare, in vivo, the effects of bicarbonate and phosphate buffers on survival and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. At 25 mM concentration of buffers, menadione only slightly reduced yeast surviving; at 50 mM concentration, cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed.
A Janus cobalt-based catalytic material for electro-splitting of water
NASA Astrophysics Data System (ADS)
Cobo, Saioa; Heidkamp, Jonathan; Jacques, Pierre-André; Fize, Jennifer; Fourmond, Vincent; Guetaz, Laure; Jousselme, Bruno; Ivanova, Valentina; Dau, Holger; Palacin, Serge; Fontecave, Marc; Artero, Vincent
2012-09-01
The future of energy supply depends on innovative breakthroughs regarding the design of cheap, sustainable and efficient systems for the conversion and storage of renewable energy sources. The production of hydrogen through water splitting seems a promising and appealing solution. We found that a robust nanoparticulate electrocatalytic material, H2-CoCat, can be electrochemically prepared from cobalt salts in a phosphate buffer. This material consists of metallic cobalt coated with a cobalt-oxo/hydroxo-phosphate layer in contact with the electrolyte and mediates H2 evolution from neutral aqueous buffer at modest overpotentials. Remarkably, it can be converted on anodic equilibration into the previously described amorphous cobalt oxide film (O2-CoCat or CoPi) catalysing O2 evolution. The switch between the two catalytic forms is fully reversible and corresponds to a local interconversion between two morphologies and compositions at the surface of the electrode. After deposition, the noble-metal-free coating thus functions as a robust, bifunctional and switchable catalyst.
Schepens, Marloes A A; ten Bruggencate, Sandra J M; Schonewille, Arjan J; Brummer, Robert-Jan M; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J
2012-04-01
An increased intestinal permeability is associated with several diseases. Previously, we have shown that dietary Ca decreases colonic permeability in rats. This might be explained by a calcium-phosphate-induced increase in luminal buffering capacity, which protects against an acidic pH due to microbial fermentation. Therefore, we investigated whether dietary phosphate is a co-player in the effect of Ca on permeability. Rats were fed a humanised low-Ca diet, or a similar diet supplemented with Ca and containing either high, medium or low phosphate concentrations. Chromium-EDTA was added as an inert dietary intestinal permeability marker. After dietary adaptation, short-chain fructo-oligosaccharides (scFOS) were added to all diets to stimulate fermentation, acidify the colonic contents and induce an increase in permeability. Dietary Ca prevented the scFOS-induced increase in intestinal permeability in rats fed medium- and high-phosphate diets but not in those fed the low-phosphate diet. This was associated with higher faecal water cytotoxicity and higher caecal lactate levels in the latter group. Moreover, food intake and body weight during scFOS supplementation were adversely affected by the low-phosphate diet. Importantly, luminal buffering capacity was higher in rats fed the medium- and high-phosphate diets compared with those fed the low-phosphate diet. The protective effect of dietary Ca on intestinal permeability is impaired if dietary phosphate is low. This is associated with a calcium phosphate-induced increase in luminal buffering capacity. Dragging phosphate into the colon and thereby increasing the colonic phosphate concentration is at least part of the mechanism behind the protective effect of Ca on intestinal permeability.
Pless-Petig, Gesine; Metzenmacher, Martin; Türk, Tobias R; Rauen, Ursula
2012-10-10
In modern biotechnology, there is a need for pausing cell lines by cold storage to adapt large-scale cell cultures to the variable demand for their products. We compared various cell culture media/solutions for cold storage of Vero-B4 kidney cells, a cell line widely used in biotechnology. Cold storage in RPMI 1640 medium, a recommended cell culture medium for Vero-B4 cells, surprisingly, strongly enhanced cold-induced cell injury in these cells in comparison to cold storage in Krebs-Henseleit buffer or other cell culture media (DMEM, L-15 and M199). Manufacturer, batch, medium supplements and the most likely components with concentrations outside the range of the other media/solutions (vitamin B12, inositol, biotin, p-aminobenzoic acid) did not cause this aggravation of cold-induced injury in RPMI 1640. However, a modified Krebs-Henseleit buffer with a low calcium concentration (0.42 mM), a high concentration of inorganic phosphate (5.6 mM), and glucose (11.1 mM; i.e. concentrations as in RPMI 1640) evoked a cell injury and loss of metabolic function corresponding to that observed in RPMI 1640. Deferoxamine improved cell survival and preserved metabolic function in modified Krebs-Henseleit buffer as well as in RPMI 1640. Similar Ca2+ and phosphate concentrations did not increase cold-induced cell injury in the kidney cell line LLC-PK1, porcine aortic endothelial cells or rat hepatocytes. However, more extreme conditions (Ca2+ was nominally absent and phosphate concentration raised to 25 mM as in the organ preservation solution University of Wisconsin solution) also increased cold-induced injury in rat hepatocytes and porcine aortic endothelial cells. These data suggest that the combination of low calcium and high phosphate concentrations in the presence of glucose enhances cold-induced, iron-dependent injury drastically in Vero-B4 cells, and that a tendency for this pathomechanism also exists in other cell types.
Wang, Lai-Hao; Li, Wen-Jie
2011-09-06
The electrochemical behaviors of thiazolidine (tetrahydrothiazole) on gold and platinum electrodes were investigated in a Britton-Robinson buffer (pH 2.77-11.61), acetate buffer (pH 4.31), phosphate buffer solutions (pH 2.11 and 6.38) and methanol or acetonitrile containing various supporting electrolytes. Detection was based on a gold wire electrochemical signal obtained with a supporting electrolyte containing 20% methanol-1.0 mM of phosphate buffer (pH 6.87, potassium dihydrogen phosphate and dipotassium hydrogen phosphate) as the mobile phase. Comparison with results obtained with a commercial amperometric detector shows good agreement. Using the chronoamperometric sensor with the current at a constant potential, and measurements with suitable experimental parameters, a linear concentration from 0.05 to 16 mg L-1 was found. The limit of quantification (LOQ) of the method for thiazolidine was found to be 1 ng.
Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E
2015-09-01
Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline; Barisani-Asenbauer, Talin
2017-06-01
To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal-limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT-based assay. The morphology of cells was also investigated. HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface.
Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline
2017-01-01
Purpose: To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal–limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. Methods: HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT–based assay. The morphology of cells was also investigated. Results: HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. Conclusions: We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface. PMID:28399036
Bureau, A; Lahet, J-J; Lenfant, F; Bouyer, F; Petitjean, M; Chaillot, B; Freysz, M
2005-08-01
The aggression of erythrocytes by an oxidative stress induces hemolysis. This paper aims to valid a model of erythrocytes in terms of composition of the phosphate buffer solution and of concentration of a well-known oxidant, AAPH. Three compositions of phosphate buffer solution are mixed with three concentrations of oxidant. The influence of these two parameters on hemolysis is independently studied by a variance analysis and a Kruskal-Wallis test when ANOVA is not available. The hemolysis rate increases with time at fixed oxidant concentration, but is not influenced by the composition of the buffer solution. The highest hemolysis rate, 90%, was only measured within 2 h with the highest oxidant concentration. If we retain this concentration of oxidant, the lower concentration of the buffer can by eliminated by a significant less hemolysis and the highest concentration of the buffer can by chosen in regard of the better precision for a similar hemolysis compared to the mean buffer. We hope to study the effect of anti-oxidant agent with such a model of erythrocytes.
Anres, Philippe; Delaunay, Nathalie; Vial, Jérôme; Thormann, Wolfgang; Gareil, Pierre
2013-02-01
The aim of this work was to clarify the mechanism taking place in field-enhanced sample injection coupled to sweeping and micellar EKC (FESI-Sweep-MEKC), with the utilization of two acidic high-conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI-Sweep-MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Jiewen; Bell, Leonard N
2017-04-01
Rebaudioside A is a natural noncaloric high-potency sweetener extracted from the leaves of Stevia rebaudiana. With rebaudioside A use increasing in foods, understanding the factors affecting its stability is necessary. This project evaluated the degradation rate constants of rebaudioside A in water, 0.1 M phosphate buffer, and 0.1 M citrate buffer at pH 3 and 7 as a function of ultraviolet (UV) light intensity (365 nm, 0 μW/cm 2 for dark conditions, 27 μW/cm 2 for low intensity, and 190 μW/cm 2 for high intensity) at 32.5 °C. Rebaudioside A stability was adversely affected by light exposure. The pseudo-1st-order degradation rate constants increased significantly (P < 0.05) with increasing light intensity in all solutions. Under dark conditions, rebaudioside A in phosphate buffers was more susceptible to breakdown than in water and citrate buffers at both pH levels. However, exposure to UV light resulted in rebaudioside A degradation occurring approximately 10 times faster in citrate than in phosphate buffers at both pH levels. The sensitivity of rebaudioside A to UV light was greater in citrate buffers than in water or phosphate buffers. The use of light-protective packaging for beverages containing rebaudioside A will improve its stability. © 2017 Institute of Food Technologists®.
Countercurrent distribution of biological cells
NASA Technical Reports Server (NTRS)
1982-01-01
It is known that the addition of phosphate buffer to two polymer aqueous phase systems has a strong effect on the partition behavior of cells and other particles in such mixtures. The addition of sodium phosphate to aqueous poly(ethylene glycol) dextran phase systems causes a concentration-dependent shift in binodial on the phase diagram, progressively lowering the critical conditions for phase separation as the phosphate concentration is increased. Sodium chloride produces no significant shift in the critical point relative to the salt-free case. Accurate determinations of the phase diagram require measurements of the density of the phases; data is presented which allows this parameter to be calculated from polarimetric measurements of the dextran concentrations of both phases. Increasing polymer concentrations in the phase systems produce increasing preference of the phosphate for the dextran-rich bottom phase. Equilibrium dialysis experiments showed that poly(ethylene glycol) effectively rejected phosphate, and to a lesser extent chloride, but that dextran had little effect on the distribution of either salt. Increasing ionic strength via addition of 0.15 M NaCl to phase systems containing 0.01 M phosphate produces an increased concentration of phosphate ions in the bottom dextran-rich phase, the expected effect in this type of Donnan distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Daquan; State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
We experimentally demonstrate a label-free sensor based on nanoslotted parallel quadrabeam photonic crystal cavity (NPQC). The NPQC possesses both high sensitivity and high Q-factor. We achieved sensitivity (S) of 451 nm/refractive index unit and Q-factor >7000 in water at telecom wavelength range, featuring a sensor figure of merit >2000, an order of magnitude improvement over the previous photonic crystal sensors. In addition, we measured the streptavidin-biotin binding affinity and detected 10 ag/mL concentrated streptavidin in the phosphate buffered saline solution.
Plasma-Mediated Release of Morphine from Synthesized Prodrugs
2013-01-01
UPLC )9 (Waters Inc.) was utilized for measurements of morphine, PDA and PDB. UPLC has the capability to perform rapid (< 10 min) and reproducible...for UPLC versus ~30-50 µL for HPLC. The term “morphine” refers to the free morphine alkaloid base (Malinkrodt, etc.) unless otherwise stated...Baseline UPLC profiles were obtained for phosphate buffered saline (PBS), morphine and PDA in esterase de-activated plasma. Plasma was precipitated by the
NASA Astrophysics Data System (ADS)
Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun
2013-10-01
Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.
Upreti, P; Bühlmann, P; Metzger, L E
2006-03-01
The pH buffering capacity of cheese is an important determinant of cheese pH. However, the effects of different constituents of cheese on its pH buffering capacity have not been fully clarified. The objective of this study was to characterize the chemical species and chemical equilibria that are responsible for the pH buffering properties of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), residual lactose (2.4 vs. 0.78%), and salt-to-moisture ratio (6.4 vs. 4.8%) were manufactured. The pH-titration curves for these cheeses were obtained by titrating cheese:water (1:39 wt/wt) dispersions with 1 N HCl, and backtitrating with 1 N NaOH. To understand the role of different chemical equilibria and the respective chemical species in controlling the pH of cheese, pH buffering was modeled mathematically. The 36 chemical species that were found to be relevant for modeling can be classified as cations (Na+, Ca2+, Mg2+), anions (phosphate, citrate, lactate), protein-bound amino acids with a side-chain pKa in the range of 3 to 9 (glutamate, histidine, serine phosphate, aspartate), metal ion complexes (phosphate, citrate, and lactate complexes of Na+, Ca2+, and Mg2+), and calcium phosphate precipitates. A set of 36 corresponding equations was solved to give the concentrations of all chemical species as a function of pH, allowing the prediction of buffering curves. Changes in the calculated species concentrations allowed the identification of the chemical species and chemical equilibria that dominate the pH buffering properties of cheese in different pH ranges. The model indicates that pH buffering in the pH range from 4.5 to 5.5 is predominantly due to a precipitate of Ca and phosphate, and the protonation equilibrium involving the side chains of protein-bound glutamate. In the literature, the precipitate is often referred to as amorphous colloidal calcium phosphate. A comparison of experimental data and model predictions shows that the buffering properties of the precipitate can be explained, assuming that it consists of hydroxyapatite [Ca5(OH)(PO4)3] or Ca3(PO4)2. The pH buffering in the region from pH 3.5 to 4.5 is due to protonation of side-chain carboxylates of protein-bound glutamate, aspartate, and lactate, in order of decreasing significance. In addition, pH buffering between pH 5 to 8 in the backtitration results from the reprecipitation of calcium and phosphate either as CaHPO4 or Ca4H(PO4)3.
A Chemist’s Perspective on the Role of Phosphorus at the Origins of Life
Fernández-García, Christian; Coggins, Adam J.
2017-01-01
The central role that phosphates play in biological systems, suggests they also played an important role in the emergence of life on Earth. In recent years, numerous important advances have been made towards understanding the influence that phosphates may have had on prebiotic chemistry, and here, we highlight two important aspects of prebiotic phosphate chemistry. Firstly, we discuss prebiotic phosphorylation reactions; we specifically contrast aqueous electrophilic phosphorylation, and aqueous nucleophilic phosphorylation strategies, with dry-state phosphorylations that are mediated by dissociative phosphoryl-transfer. Secondly, we discuss the non-structural roles that phosphates can play in prebiotic chemistry. Here, we focus on the mechanisms by which phosphate has guided prebiotic reactivity through catalysis or buffering effects, to facilitating selective transformations in neutral water. Several prebiotic routes towards the synthesis of nucleotides, amino acids, and core metabolites, that have been facilitated or controlled by phosphate acting as a general acid–base catalyst, pH buffer, or a chemical buffer, are outlined. These facile and subtle mechanisms for incorporation and exploitation of phosphates to orchestrate selective, robust prebiotic chemistry, coupled with the central and universally conserved roles of phosphates in biochemistry, provide an increasingly clear message that understanding phosphate chemistry will be a key element in elucidating the origins of life on Earth. PMID:28703763
Liu, Fang; Shokrollahi, Honaz
2015-05-15
Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products. Copyright © 2015 Elsevier B.V. All rights reserved.
SAR11 lipid renovation in response to phosphate starvation
Carini, Paul; Van Mooy, Benjamin A. S.; Thrash, J. Cameron; White, Angelicque; Zhao, Yanlin; Campbell, Emily O.; Fredricks, Helen F.; Giovannoni, Stephen J.
2015-01-01
Phytoplankton inhabiting oligotrophic ocean gyres actively reduce their phosphorus demand by replacing polar membrane phospholipids with those lacking phosphorus. Although the synthesis of nonphosphorus lipids is well documented in some heterotrophic bacterial lineages, phosphorus-free lipid synthesis in oligotrophic marine chemoheterotrophs has not been directly demonstrated, implying they are disadvantaged in phosphate-deplete ecosystems, relative to phytoplankton. Here, we show the SAR11 clade chemoheterotroph Pelagibacter sp. str. HTCC7211 renovates membrane lipids when phosphate starved by replacing a portion of its phospholipids with monoglucosyl- and glucuronosyl-diacylglycerols and by synthesizing new ornithine lipids. Lipid profiles of cells grown with excess phosphate consisted entirely of phospholipids. Conversely, up to 40% of the total lipids were converted to nonphosphorus lipids when cells were starved for phosphate, or when growing on methylphosphonate. Cells sequentially limited by phosphate and methylphosphonate transformed >75% of their lipids to phosphorus-free analogs. During phosphate starvation, a four-gene cluster was significantly up-regulated that likely encodes the enzymes responsible for lipid renovation. These genes were found in Pelagibacterales strains isolated from a phosphate-deficient ocean gyre, but not in other strains from coastal environments, suggesting alternate lipid synthesis is a specific adaptation to phosphate scarcity. Similar gene clusters are found in the genomes of other marine α-proteobacteria, implying lipid renovation is a common strategy used by heterotrophic cells to reduce their requirement for phosphorus in oligotrophic habitats. PMID:26056292
Diluents for stabilization of tuberculin
Magnusson, Mogens; Guld, Johannes; Magnus, Knut; Waaler, Hans
1958-01-01
Tuberculin is known to be adsorbed to containers and syringes. In the present paper, the adsorption which takes place in the ampoules has been studied in relation to the diluent for the tuberculin. Adsorption was most evident in dilutions prepared with saline or with phosphate buffer containing dextran. The inclusion in phosphate buffer diluent of small amounts of proteins or synthetic surface-active agents decreased or prevented adsorption. A boric-acid sodium-borate diluent containing gum arabic, previously recommended for the preparation of stabilized tuberculin dilutions, was found to be ineffective. The most suitable diluent for the preparation of stable tuberculin dilutions was a 0.05‰ solution of Tween 80 in phosphate-buffered saline; this diluent appeared to prevent adsorption under a variety of experimental conditions. The inclusion of Tween 80 in the diluent had little or no effect on the general storage stability of purified tuberculin. Sensitization experiments in guinea-pigs, rabbits and humans showed that no sensitization against Tween 80 need be feared when a 0.05‰ solution of Tween 80 in phosphate buffered saline is used in the preparation of tuberculin dilutions. PMID:13618720
Histological preparation of developing vestibular otoconia for scanning electron microscopy
NASA Technical Reports Server (NTRS)
Huss, D.; Dickman, J. D.
2003-01-01
The unique nature of vestibular otoconia as calcium carbonate biominerals makes them particularly susceptible to chemical deformation during histological processing. We fixed and stored otoconia from all three otolith endorgans of embryonic, hatchling and adult Japanese quail in glutaraldehyde containing either phosphate or non-phosphate buffers for varying lengths of time and processed them for scanning electron microscopy. Otoconia from all age groups and otolith endorgans processed in 0.1 M phosphate buffer (pH 7.4) showed abnormal surface morphology when compared to acetone fixed controls. Otoconia processed in 0.1 M sodium cacodylate or HEPES buffered artificial endolymph (pH 7.4) showed normal morphology that was similar to controls. The degree of otoconial deformation was directly related to the time exposed to phosphate buffer. Short duration exposure produced particulate deformations while longer exposures resulted in fused otoconia that formed solid sheets. Otoconial surface deformation and fusing was independent of the glutaraldehyde component of the histological processing. These findings should help vestibular researchers to develop appropriate histological processing protocols in future studies of otoconia.
Final report of the key comparison APMP.QM-K9: APMP comparison on pH measurement of phosphate buffer
NASA Astrophysics Data System (ADS)
Hioki, Akiharu; Ohata, Masaki; Cherdchu, Chainarong; Tangpaisarnkul, Nongluck
2011-01-01
The APMP.QM-K9 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phosphate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan, NMIJ, and the National Institute of Metrology of Thailand, NIMT, in August 2009. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K9, CCQM-K9.1 and CCQM-K9.2. The comparison material was a phosphate buffer of pH around 6.86 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the first APMP key comparison on pH measurement and the third APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004 and APMP.QM-P09 (a phthalate buffer) in 2006. The results can be used further by any participant to support its CMC claim for a phosphate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the temperature(s) used or the full temperature range between 15 °C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
Basmaci, F; Oztan, M D; Kiyan, M
2013-09-01
To evaluate ex vivo the effectiveness of single-file instrumentation techniques compared with serial Ni-Ti rotary instrumentation with several irrigation regimens in reducing E. faecalis within root canals. A total of 81 extracted human mandibular premolar teeth with a single root canal were infected with E. faecalis before and after canal preparation. Samples were divided randomly into 9 groups, as follows: group 1-A: sterile phosphate-buffered saline + Self-adjusting file, group 1-B: 5% sodium hypochlorite + 15% EDTA + Self-adjusting file, group 1-C: 5% sodium hypochlorite + 7% maleic acid + Self-adjusting file, group 2-A: sterile phosphate-buffered saline + Reciproc (R25), group 2-B: 5% sodium hypochlorite + 15% EDTA + Reciproc (R25), group 2-C: 5% sodium hypochlorite + 7% maleic acid + Reciproc (R25), group 3-A: sterile phosphate-buffered saline + ProTaper, group 3-B: 5% sodium hypochlorite + 15% EDTA + ProTaper, group 3-C: 5% sodium hypochlorite + 7% maleic acid + ProTaper. anova was used to analyse statistically the differences in terms of reduction in colony counts between the groups, and Dunn's post hoc test was used for multiple comparisons. All techniques and irrigation regimens significantly reduced the number of bacterial cells in the root canal (P < 0.001). Comparisons amongst the groups revealed significant differences between group 1A (sterile phosphate-buffered saline + Self-adjusting file)/group 1B (5% sodium hypochlorite + 15% EDTA + Self-adjusting file) (P = 0.031), group 1A (sterile phosphate-buffered saline + Self-adjusting file)/group 2C (5% sodium hypochlorite + 7% maleic acid + Reciproc) (P = 0.003), group 2A (sterile phosphate-buffered saline + Reciproc)/group 3B (5% sodium hypochlorite + 15% EDTA + ProTaper) (P = 0.036), group 3B (5% sodium hypochlorite + 15% EDTA + ProTaper)/group 1A (sterile phosphate-buffered saline + Self-adjusting file) (P < 0.001), and group 3C (5% sodium hypochlorite + 7% maleic acid + ProTaper)/group 1A (sterile phosphate-buffered saline + Self-adjusting file) (P = 0.033). No significant differences in terms of reduction in microbial counts were observed between single-file techniques (SAF and Reciproc) and serial Ni-Ti instrumentation technique (ProTaper) in combination with irrigants. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Salt Stability - The Effect of pHmax on Salt to Free Base Conversion.
Hsieh, Yi-Ling; Merritt, Jeremy M; Yu, Weili; Taylor, Lynne S
2015-09-01
The aim of this study was to investigate how the disproportionation process can be impacted by the properties of the salt, specifically pHmax. Five miconazole salts and four sertraline salts were selected for this study. The extent of conversion was quantified using Raman spectroscopy. A mathematical model was utilized to estimate the theoretical amount of conversion. A trend was observed that for a given series of salts of a particular basic compound (both sertraline and miconazole are bases), the extent of disproportionation increases as pHmax decreases. Miconazole phosphate monohydrate and sertraline mesylate, although exhibiting significantly different pHmax values (more than 2 units apart), underwent a similar extent of disproportionation, which may be attributed to the lower buffering capacity of sertraline salts. This work shows that the disproportionation tendency can be influenced by pHmax and buffering capacity and thus highlights the importance of selecting the appropriate salt form during the screening process in order to avoid salt-to-free form conversion.
O'Brien, H. Jr.; Hupf, H.B.; Wanek, P.M.
The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free /sup 125/I/sup -/ is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.
Instantaneous radioiodination of rose bengal at room temperature and a cold kit therefor
O'Brien, Jr., Harold A.; Hupf, Homer B.; Wanek, Philip M.
1981-01-01
The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free .sup.125 I.sup.- is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.
Laser Raman spectra of mono-, oligo- and polysaccharides in solution
NASA Astrophysics Data System (ADS)
Barrett, T. W.
We examined the Raman spectra of thirteen sugars—seven monosaccharides, two disaccharides, one trisaccharide and three polysaccharides—in the wavelength range 200—1700 cm -1 and (i) varied the phosphate buffered solution from pH 6.0 to 8.5 at constant ionic strength of 0.1 and (ii) varied HCl solutions from pH 0.8 to 5.0. As is to be expected with molecules containing COH groupings, all the molecular spectra are distinct. Of the thirteen sugars examined, only D-fructose 1,6-diphosphate (FDP) demonstrated spectral changes for the pH range 6.0—8.5 in phosphate buffer; but all exhibited band intensity enhancement in HCl at the lower pHs, but not band wavenumber changes. The results indicate that: (i) changes in the pH of the major intracellular buffer, phosphate, toward acidity, are able to hydrolyze the 1-phosphate group of FDP and the relative concentration of fructose 1-phosphate to fructose 6-phosphate is indicated by the intensity ratio of the 982 and 1080 cm -1 bands; (ii) it appears that all phosphate groups of FDP are hydrolyzed at pH 0.8 in HCl; and (iii) although conditions of extreme acidity are able to hydrolyze other sugars examined, there is no major degradation.
Mukai, Kazuo; Ouchi, Aya; Nagaoka, Shin-ichi; Nakano, Masahiko; Ikemoto, Kazuto
2016-01-01
Measurements of the reaction of sodium salt of pyrroloquinoline quinone (PQQNa2) with vitamin C (Vit C) were performed in phosphate-buffered solution (pH 7.4) at 25 °C under nitrogen atmosphere, using UV-vis spectrophotometry. The absorption spectrum of PQQNa2 decreased in intensity due to the reaction with Vit C and was changed to that of pyrroloquinoline quinol (PQQH2, a reduced form of PQQ). One molecule of PQQ was reduced by two molecules of Vit C producing a molecule of PQQH2 in the buffer solution. PQQH2, thus produced, was recycled to PQQ due to air oxidation. PQQ and Vit C coexist in many biological systems, such as vegetables, fruits, as well as in human tissues. The results obtained suggest that PQQ is reduced by Vit C and functions as an antioxidant in biological systems, because it has been reported that PQQH2 shows very high free-radical scavenging and singlet-oxygen quenching activities in buffer solutions.
Proteins contribute insignificantly to the intrinsic buffering capacity of yeast cytoplasm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poznanski, Jaroslaw; Szczesny, Pawel; Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw
Highlights: Black-Right-Pointing-Pointer We predicted buffering capacity of yeast proteome from protein abundance data. Black-Right-Pointing-Pointer We measured total buffering capacity of yeast cytoplasm. Black-Right-Pointing-Pointer We showed that proteins contribute insignificantly to buffering capacity. -- Abstract: Intracellular pH is maintained by a combination of the passive buffering of cytoplasmic dissociable compounds and several active systems. Over the years, a large portion of and possibly most of the cell's intrinsic (i.e., passive non-bicarbonate) buffering effect was attributed to proteins, both in higher organisms and in yeast. This attribution was not surprising, given that the concentration of proteins with multiple protonable/deprotonable groups in themore » cell exceeds the concentration of free protons by a few orders of magnitude. Using data from both high-throughput experiments and in vitro laboratory experiments, we tested this concept. We assessed the buffering capacity of the yeast proteome using protein abundance data and compared it to our own titration of yeast cytoplasm. We showed that the protein contribution is less than 1% of the total intracellular buffering capacity. As confirmed with NMR measurements, inorganic phosphates play a crucial role in the process. These findings also shed a new light on the role of proteomes in maintaining intracellular pH. The contribution of proteins to the intrinsic buffering capacity is negligible, and proteins might act only as a recipient of signals for changes in pH.« less
Structure-Function Relationship of Hydrophiidae Postsynaptic Neurotoxins
1990-09-18
24 hr. Buffer F consisted of 10 mM sodium phosphate, pH 7.5. containing 0.02% (w/v) lauryl sulfate (SDS), and 0.04% (w/v) sodium cholate. The...subjected to gel filtration on Sephadex G-50-50 using 10 mM sodium phosphate buffer (pH 6.5) containing 0.1 M NaCl. Samples were dissolved in 3.5 ml buffer...sequencing. Isolation of Cobrotoxin. The venom from NaJa naia atra was subjected to Sephadex G50-50 gel filtration pre-equilibrated with 10 mM sodium
Zochodne, D W; Murray, M; Nag, S; Riopelle, R J
1994-02-01
We explored the effects of chronic lumbar intrathecal NMDA infusion (mini-osmotic pumps) in Sprague-Dawley rats on motor and sensory axon integrity. Several different infusion protocols, each given over a 4 week period were examined: 0.15 M NMDA in phosphate buffered saline; phosphate buffered saline without NMDA; and 0.20 M magnesium sulfate plus 0.15 M NMDA; 0.35 M NMDA. In two additional protocols, 0.15 M NMDA or phosphate buffered saline were infused for a total of 8 weeks. Within 1-2 weeks of the onset of NMDA, but not phosphate buffered saline infusions, the rats exhibited irritability, circling, biting and excessive grooming resulting in loss of hair, and skin ulcerations from autotomy localized to lumbar and sacral innervated dermatomes. Co-infusion of NMDA with magnesium sulfate almost completely prevented these findings. The behavioural changes were not associated with abnormalities of sensory or motor conduction. Intrathecal infusion of NMDA induces a chronic "central" experimental pain disorder in rats, localized to the cord segment with the greatest exposure to the infusion, without involvement of peripheral sensory axons and sparing the axonal integrity of anterior horn cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winterbourn, C.C.; Sutton, H.C.
O2- was produced by gamma irradiation of formate solutions, by the action of xanthine oxidase on hypoxanthine and O2, and by the action of ferredoxin reductase on NADPH and paraquat in the presence of O2. Its reaction with H2O2 and various iron chelates was studied. Oxidation of deoxyribose to thiobarbituric acid-reactive products that was appropriately inhibited by OH. scavengers, or formate oxidation to CO2, was used to detect OH(.). With each source of O2-, and by these criteria, Fe(EDTA) efficiently catalyzed this (Haber-Weiss) reaction, but little catalysis was detectable with iron bound to DTPA, citrate, ADP, ATP, or pyrophosphate, ormore » without chelator in phosphate buffer. O2- produced from xanthine oxidase, but not from the other sources, underwent another iron-dependent reaction with H2O2, to produce an oxidant that did not behave as free OH(.). It was formed in phosphate or bicarbonate buffer, and caused deoxyribose oxidation that was readily inhibited by mannitol or Tris, but not by benzoate, formate, or dimethyl sulfoxide. It did not oxidize formate to CO2. Addition of EDTA changed the pattern of inhibition to that expected for a reaction of OH(.). The other chelators all inhibited deoxyribose oxidation, provided their concentrations were high enough. The results are compatible with iron bound to xanthine oxidase catalyzing production of a strong oxidant (which is not free OH.) from H2O2 and O2- produced by the enzyme.« less
Pankajakshan, Divya; Albuquerque, Maria T.P.; Evans, Joshua D.; Kamocka, Malgorzata M.; Gregory, Richard L.; Bottino, Marco C.
2016-01-01
Introduction Root canal disinfection and the establishment of an intracanal microenvironment conducive to the proliferation/differentiation of stem cells play a significant role in regenerative endodontics. This study was designed to (1) investigate the antimicrobial efficacy of triple antibiotic–containing nanofibers against a dual-species biofilm and (2) evaluate the ability of dental pulp stem cells (DPSCs) to adhere to and proliferate on dentin upon nanofiber exposure. Methods Seven-day-old dual-species biofilm established on dentin specimens was exposed for 3 days to the following: saline (control), antibiotic-free nanofibers (control), and triple antibiotic–containing nanofibers or a saturated triple antibiotic paste (TAP) solution (50 mg/mL in phosphate buffer solution). Bacterial viability was assessed using the LIVE/DEAD assay (Molecular Probes, Inc, Eugene, OR) and confocal laser scanning microscopy. For cyto-compatibility studies, dentin specimens after nanofiber or TAP (1 g/mL in phosphate buffer solution) exposure were evaluated for cell adhesion and spreading by actin-phalloidin staining. DPSC proliferation was assessed on days 1, 3, and 7. Statistics were performed, and significance was set at the 5% level. Results Confocal laser scanning microscopy showed significant bacterial death upon antibiotic-containing nanofiber exposure, differing significantly (P < .05) from antibiotic-free fibers and the control (saline). DPSCs showed enhanced adhesion/spreading on dentin specimens treated with antibiotic-containing nanofibers when compared with its TAP counterparts. The DPSC proliferation rate was similar on days 1 and 3 in antibiotic-free nanofibers, triple antibiotic–containing nanofibers, and TAP-treated dentin. Proliferation was higher (9-fold) on dentin treated with antibiotic-containing nanofibers on day 7 compared with TAP. Conclusions Triple antibiotic–containing polymer nanofibers led to significant bacterial death, whereas they did not affect DPSC attachment and proliferation on dentin. PMID:27663615
NASA Astrophysics Data System (ADS)
Wang, Xiaodeng; Zhou, Hongpeng; Zhang, Dingke; Pi, Mingyu; Feng, Jiajia; Chen, Shijian
2018-05-01
Developing stable and high-efficiency hydrogen generation electrocatalysts, particularly for the cathode hydrogen evolution reaction (HER), is an urgent challenge in energy conversion technologies. In this work, we have successfully synthesized Mn-doped NiP2 nanosheets on carbon cloth (Mn-NiP2 NSs/CC), which behaves as a higher efficient three dimensional HER electrocatalyst with better stability at all pH values than pure NiP2. Electrochemical tests demonstrate that the catalytic activity of NiP2 is enhanced by Mn doping. In 0.5 M H2SO4, this Mn-NiP2 NSs/CC catalyst drives 10 mA cm-2 at an overpotential of 69 mV, which is 20 mV smaller than pure NiP2. To achieve the same current density, it demands overpotentials of 97 and 107 mV in 1.0 M KOH and phosphate-buffered saline (PBS), respectively. Compared with pure NiP2, higher HER electrocatalytic performance for Mn-NiP2 NSs/CC can be attributed to its lower thermo-neutral hydrogen adsorption free energy, which is supported by density functional theory calculations.
Plasma creatinine and creatine quantification by capillary electrophoresis diode array detector.
Zinellu, Angelo; Caria, Marcello A; Tavera, Claudio; Sotgia, Salvatore; Chessa, Roberto; Deiana, Luca; Carru, Ciriaco
2005-07-15
Traditional clinical assays for nonprotein nitrogen compounds, such as creatine and creatinine, have focused on the use of enzymes or chemical reactions that allow measurement of each analyte separately. Most of these assays are mainly directed to urine quantification, so that their applicability on plasma samples is frequently hard to perform. This work describes a simple free zone capillary electrophoresis method for the simultaneous measurement of creatinine and creatine in human plasma. The effect of analytical parameters such as concentration and pH of Tris-phosphate running buffer and cartridge temperature on resolution, migration times, peak areas, and efficiency was investigated. Good separation was achieved using a 60.2-cm x 75-microm uncoated silica capillary, 75 mmol/L Tris-phosphate buffer, pH 2.25, at 15 degrees C, in less than 8 min. We compared the present method to a validated capillary electrophoresis assay, by measuring plasma creatinine in 120 normal subjects. The obtained data were compared by the Passing-Bablok regression and the Bland-Altman test. Moreover the performance of the developed method was assessed by measuring creatine and creatinine in 16 volunteers prior to and after a moderate physical exercise.
Microfluidic and Label-Free Multi-Immunosensors Based on Carbon Nanotube Microelectrodes
NASA Astrophysics Data System (ADS)
Tsujita, Yuichi; Maehashi, Kenzo; Matsumoto, Kazuhiko; Chikae, Miyuki; Takamura, Yuzuru; Tamiya, Eiichi
2009-06-01
We fabricated microfluidic and label-free multi-immunosensors by the integration of carbon nanotube (CNT)-arrayed electrodes and microchannels with pneumatic micropumps made of poly(dimethylsiloxane). In the microfluidic systems, four kinds of sample solutions were transported from each liquid inlet to microchannels using six pneumatic micropumps. As a result, two kinds of antibodies were immobilized onto different CNT electrodes using the microfluidic systems. Next, two kinds of cancer markers, prostate specific antigen and human chorionic gonadotropin in phosphate buffer solution, were simultaneously detected by differential pulse voltammetry. Therefore, microfludic multi-immunosensors based on CNT electrodes and pneumatic micropumps are useful for the development of multiplex hand-held biosensors.
Thermal stability of tagatose in solution.
Luecke, Katherine J; Bell, Leonard N
2010-05-01
Tagatose, a monosaccharide similar to fructose, has been shown to behave as a prebiotic. To deliver this prebiotic benefit, tagatose must not degrade during the processing of foods and beverages. The objective of this study was to evaluate the thermal stability of tagatose in solutions. Tagatose solutions were prepared in 0.02 and 0.1 M phosphate and citrate buffers at pHs 3 and 7, which were then held at 60, 70, and 80 degrees C. Pseudo-1st-order rate constants for tagatose degradation were determined. In citrate and phosphate buffers at pH 3, minimal tagatose was lost and slight browning was observed. At pH 7, tagatose degradation rates were enhanced. Degradation was faster in phosphate buffer than citrate buffer. Higher buffer concentrations also increased the degradation rate constants. Enhanced browning accompanied tagatose degradation in all buffer solutions at pH 7. Using the activation energies for tagatose degradation, less than 0.5% and 0.02% tagatose would be lost under basic vat and HTST pasteurization conditions, respectively. Although tagatose does breakdown at elevated temperatures, the amount of tagatose lost during typical thermal processing conditions would be virtually negligible. Practical Application: Tagatose degradation occurs minimally during pasteurization, which may allow for its incorporation into beverages as a prebiotic.
Test Results for Caustic Demand Measurements on Tank 241-AX-101 and Tank 241-AX-103 Archive Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doll, Stephanie R.; Bolling, Stacie D.
Caustic demand testing is used to determine the necessary amount of caustic required to neutralize species present in the Hanford tank waste and obtain a target molarity of free hydroxide for tank corrosion control. The presence and quantity of hydroxide-consuming analytes are just as important in determining the caustic demand as is the amount of free hydroxide present. No single data point can accurately predict whether a satisfactory hydroxide level is being met, as it is dependent on multiple factors (e.g., free hydroxide, buffers, amphoteric metal hydroxides, bicarbonate, etc.). This enclosure contains the caustic demand, scanning electron microscopy (SEM), polarizedmore » light microscopy (PLM), and X-ray diffraction (XRD) analysis for the tank 241-AX-101 (AX-101) and 241-AX-103 (AX-103) samples. The work was completed to fulfill a customer request outlined in the test plan, WRPS-1505529, “Test Plan and Procedure for Caustic Demand Testing on Tank 241-AX-101 and Tank 241-AX-103 Archive Samples.” The work results will provide a baseline to support planned retrieval of AX-101 and AX-103.« less
Bradshaw, J G; Peeler, J T; Twedt, R M
1977-09-01
The thermal resistance of spore crops produced from each of two ileal loop-reactive strains of Clostridium perfringens type A was determined in two suspending vehicles consisting of 0.067 M (pH 7.0) phosphate buffer and a commercial beef gravy. D115.6 values obtained in buffer and enumerated after pretreatment with sodium ethylenediaminetetraacetate and recovery in plating medium containing lysozyme were two- to threefold greater than those obtained without this treatment. D115.6 values obtained with beef gravy were less than those obtained in buffer with or without lysozyme; however, the D98.9 and D104.4 values were 1.3 to 2 times greater than those obtained in buffer with lysozyme. The z values were within the ranges reported by previous investigators.
Bradshaw, J G; Peeler, J T; Twedt, R M
1977-01-01
The thermal resistance of spore crops produced from each of two ileal loop-reactive strains of Clostridium perfringens type A was determined in two suspending vehicles consisting of 0.067 M (pH 7.0) phosphate buffer and a commercial beef gravy. D115.6 values obtained in buffer and enumerated after pretreatment with sodium ethylenediaminetetraacetate and recovery in plating medium containing lysozyme were two- to threefold greater than those obtained without this treatment. D115.6 values obtained with beef gravy were less than those obtained in buffer with or without lysozyme; however, the D98.9 and D104.4 values were 1.3 to 2 times greater than those obtained in buffer with lysozyme. The z values were within the ranges reported by previous investigators. PMID:199113
Stability of glucose oxidase and catalase adsorbed on variously activated 13X zeolite.
Pifferi, P G; Vaccari, A; Ricci, G; Poli, G; Ruggeri, O
1982-10-01
The use of 13X zeolite (0.1-0.4-mm granules), treated with 2N and 0.01N HCI, 0.01M citric acid, 0.1M citric-phosphate buffer (pH 3.6), and in untreated form to adsorb glucose oxidase of fungal origin and microbial catalase was examined. Physicochemical analysis of the support demonstrated that its crystalline structure, greatly altered by the HCl and buffer, could be partially maintained with citric acid. The specific adsorption of the enzymes increased with decreasing pH and proved to be considerable for all the supports. The stability with storage at 25 degrees C is strictly correlated with the titrable acidity of the activated zeolite expressed as meq NaOH/g and with pH value of the activation solution. It proved to be lower than 55 h for both enzymes if adsorbed on zeolite treated with 2N HCl, and 15-fold and 30-fold higher for glucose oxidase and catalase adsorbed, respectively, on zeolite treated with the 0.1M citric-phosphate buffer and 0.01M citric acid. The specific adsorption of glucose oxidase and catalase was, respectively, 1840 U/g at pH 3.0 and 6910 U/g at pH 5.0. Their half-life at 25 degrees C with storage at pH 3.5 for the former and at pH 5.0 for the latter was 800 and 1560 h vs. 40 and 110 h for the corresponding free enzymes.
USDA-ARS?s Scientific Manuscript database
Water- and phosphate buffer (35 mM Na2HPO4/NaH2PO4, pH 7.5)-washed cottonseed meals (abbreviated as WCM and BCM, respectively) could be low-cost and environmentally friendly protein-based adhesives as their preparation does not involve corrosive alkali and acid solutions that are needed for cottonse...
Martins, Dorival; English, Ann M.
2014-01-01
Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD) and in phosphate buffer (pH 7.4). Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media. PMID:24563848
Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E
2010-01-15
Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.
Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status
NASA Astrophysics Data System (ADS)
Kato, Takuya
2017-04-01
As the largest manufacturer of Cu(In,Ga)(Se,S)2 (CIGS) thin-film photovoltaic modules with more than 1 GW/year production volume, Solar Frontier K.K. has continuously improved module performance and small-area cell efficiencies in the laboratory. Because of our low-cost and environmentally-friendly process, Solar Frontier’s CIGS is a promising technology for the mass production of photovoltaic modules to fill ever-increasing demand. Recently we have achieved certified efficiencies of 22.3 and 22.0% on CdS-buffered and Cd-free buffered small-area cells, respectively, as well as 18.6% on a Cd-free mini-module. In this paper, a review of our CIGS technology and recent progress on the development of the module and the small-area cell is presented.
Yang, Jing-Hua; Shao, Jing; Wang, Hou-Yu; Dong, Jing-Yu; Fan, Liu-Yin; Cao, Cheng-Xi; Xu, Yu-Quan
2012-09-01
Herein, a simple novel free-flow electrophoresis (FFE) method was developed via introduction of organic solvent into the electrolyte system, increasing the solute solubility and throughput of the sample. As a proof of concept, phenazine-1-carboxylic acid (PCA) from Pseudomonas sp. M18 was selected as a model solute for the demonstration on feasibility of novel FFE method on account of its faint solubility in aqueous circumstance. In the developed method, the organic solvent was added into not only the sample buffer to improve the solubility of the solute, but also the background buffer to construct a uniform aqueous-organic circumstance. These factors of organic solvent percentage and types as well as pH value of background buffer were investigated for the purification of PCA in the FFE device via CE. The experiments revealed that the percentage and the types of organic solvent exerted major influence on the purification of PCA. Under the optimized conditions (30 mM phosphate buffer in 60:40 (v/v) water-methanol at an apparent pH 7.0, 3.26 mL/min background flux, 10-min residence time of injected sample, and 400 V), PCA could be continuously purified from its impurities. The flux of sample injection was 10.05 μL/min, and the recovery was up to 93.7%. An 11.9-fold improvement of throughput was found with a carrier buffer containing 40% (v/v) methanol, compared with the pure aqueous phase. The developed procedure is of evident significance for the purification of weak polarity solute via FFE. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015-09-01
hippocampal formation (Paxinos and Watson, 2005). The sections were mounted on 1% gelatin -coated slides and stored at -20°C until further histological... drying at room temperature overnight. Finally, sections were rinsed in xylene (2 times for 5 min) and coverslipped with DPX mounting media (Electron...0.1M phosphate buffered saline (3 x 5 min) and 0.1M phosphate buffer (3 x 5 min) and slides were allowed to dry for one hour before being
Cao, X M; Tian, Y; Wang, Z Y; Liu, Y W; Wang, C X
2016-07-03
Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method.
Formation kinetics of a novel product from photolysis of cytosine in phosphate-buffered solutions
NASA Astrophysics Data System (ADS)
Wenqing, Wang; Feng, Lin; Jilan, Wu
1999-01-01
For studying the role of phosphate in the origin of life and the effect of far-ultraviolet light induced photochemical damage to RNA, DNA and its components, it was found that the photolysis of nucleobases, nucleosides and nucleotides was strongly enhanced by phosphate under the irradiation of medium pressure mercury lamp (MPML). Ultraviolet irradiation (190-220 nm) of cytosine in 0.05 mol dm -3 phosphate buffered solution at pH 8-9 leads to the production of a novel compound C 4H 6N 3O 5P in the presence of oxygen. The main photoproduct has been isolated, purified and characterized by use of 1H- and 31P-NMR spectroscopy, elemental analysis, ultraviolet and infrared spectroscopy and electron impact mass spectrometry. Phosphate effect can be inhibited by amino acids. The formation mechanism of the photoproduct and the kinetics was studied.
Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick
2015-04-01
Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Miyaguchi, Hajime; Kuwayama, Kenji
2017-10-13
Zopiclone and its (S)-enantiomer (eszopiclone) are commonly prescribed for insomnia. Despite the high demand for enantioselective differentiation, the chiral analysis of zopiclone in hair has not been reported. In this study, a method for the enantioselective quantification of zopiclone in human hair was developed. The extraction medium and duration were optimized using real eszopiclone-positive hair samples. Specifically, micropulverized extraction with 3.0M ammonium phosphate buffer (pH 8.4) involving salting-out assisted liquid-liquid extraction with acetonitrile was utilized to minimize the degradation of zopiclone and for rapid and facile operation. On the other hand, recovery of the conventional solid-liquid extraction involved overnight soaking in 3.0M ammonium phosphate buffer (pH 8.4) was only 0.58±0.12% of the maximum recovery achieved by the present method due to the decomposition in the phosphate buffer. An excellent chiral separation (Rs=5.0) was achieved using a chiral stationary phase comprising cellulose tris(3,5-dichlorophenylcarbamate) and a volatile mobile phase of 10mM ammonium carbonate (pH 8.0)-acetonitrile (25:75, v/v). Detection was carried out using liquid chromatography/high resolution mass spectrometry (LC/HRMS) with electrospray ionization. A Q Exactive mass spectrometer equipped with a quadrupole-Orbitrap analyzer was used for detection. The concentration of 0.50pg/mg was defined as the lowest limit of quantification using 5mg of hair sample. Using the developed approach, the concentration of eszopiclone in hair after a single 2-mg dose was found to be 441pg/mg, which was higher than all the reported values regarding a single administration of zopiclone. After daily administration of racemic zopiclone (3.75mg/day), the concentrations of (R)-enantiomer and (S)-enantiomer in the black hair were 5.30-8.31ng/mg and 7.96-12.8ng/mg, respectively, and the concentration of the (S)-enantiomer was always higher than that of the (R)-enantiomer due to the enantioselective difference in the pharmacokinetics. Copyright © 2017 Elsevier B.V. All rights reserved.
40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium, and zinc salts of the phosphate esters; minimum oxyethylene content is 2 moles.... 14433-76-2) Emulsifier, solvent, cosolvent Diammonium phosphate (CAS Reg. No. 7783-28-0) Buffer...
40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium, and zinc salts of the phosphate esters; minimum oxyethylene content is 2 moles... phosphate (CAS Reg. No. 7783-28-0) Buffer, surfactant dibenzylidene sorbitol (32647-67-9) Thinning agent...
40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium, and zinc salts of the phosphate esters; minimum oxyethylene content is 2 moles... phosphate (CAS Reg. No. 7783-28-0) Buffer, surfactant dibenzylidene sorbitol (32647-67-9) Thinning agent...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, M.; Yamamura, H.I.; Roeske, W.R.
The binding and regulation of selected muscarinic agonists to putative subtypes in rat cerebral cortex and heart were studied. Parallel inhibition studies of (/sup 3/H)pirenzepine ((/sup 3/H)PZ) and (-)-(/sup 3/H)quinuclidinylbenzilate ((-)-(/sup 3/H)QNB)-labeled membranes were done with and without 30 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) at 25 degrees C in 10 mM Na-K-phosphate buffer which enhances PZ binding affinity and in modified Krebs-phosphate buffer, which mimics physiological conditions. Classical agonists such as carbachol, oxotremorine and acetylcholine inhibited (-)-(/sup 3/H)QNB binding to membranes with shallow Hill values (nH less than 1), were better fit to a 2-state model, were Gpp(NH)p-regulated and showed lowermore » affinity in modified Krebs-phosphate buffer than in 10 mM Na-K-phosphate buffer. Some agonists were not significantly better fit to a 2-state model in (/sup 3/H)PZ-labeled cortical membranes, especially in 10 mM Na-K-phosphate buffer. Whereas putative M1 and M2 binding sites distinguished by PZ possessed multiple agonist affinity states, as judged by carbachol, and agonist binding to (/sup 3/H)PZ-labeled sites were Gpp(NH)p modulated, the partial agonist pilocarpine and nonclassical agonist McN-A-343 (3-(m-chlorophenylcarbamoyloxy)-2-butynyl trimethylammonium chloride) showed little Gpp(NH)p-induced shift in (/sup 3/H)PZ-labeled cortical membranes in physiological conditions. Agonist binding to (-)-(/sup 3/H)QNB-labeled putative M2 cardiac sites was more sensitive to Gpp(NH)p than (-)-(/sup 3/H)QNB-labeled cortical sites. Carbachol and acetylcholine showed significant selectivity for putative M2 sites.« less
1985-11-19
10.6). Unbound toxoid was removed by washing three times with phosphate-buffered saline (pH 7.4) containing 0.05% Triton X-100 (Eastman Organic...MD) in phosphate-buffered saline was added. After a 90 min incubation period at 37*C, the excess conjugate was removed by washing each well three times...3. Cardella, M. A. 1964. Botulinum toxoids, p. 113-129. In K . H. Lewis and K . Cassel, Jr., (ed.), Botulism. U. S. Department of Health, Education
2015-10-25
in a defined medium composed of half-strength Marine Broth adjusted to pH 6, 7, or 8 in a 50 mM phosphate buffer, both growth characteristics and...work had broad phylogenetic diversity (Fig. 1) and were isolated from mostly marine environments. S. putrefaciens was the only strain that was not...the defined medium that supported growth of most of the strains tested was marine broth diluted to half strength with 50 mM phosphate buffer (½-MB
Bacterial Phosphating of Mild (Unalloyed) Steel
Volkland, Hans-Peter; Harms, Hauke; Müller, Beat; Repphun, Gernot; Wanner, Oskar; Zehnder, Alexander J. B.
2000-01-01
Mild (unalloyed) steel electrodes were incubated in phosphate-buffered cultures of aerobic, biofilm-forming Rhodococcus sp. strain C125 and Pseudomonas putida mt2. A resulting surface reaction leading to the formation of a corrosion-inhibiting vivianite layer was accompanied by a characteristic electrochemical potential (E) curve. First, E increased slightly due to the interaction of phosphate with the iron oxides covering the steel surface. Subsequently, E decreased rapidly and after 1 day reached −510 mV, the potential of free iron, indicating the removal of the iron oxides. At this point, only scattered patches of bacteria covered the surface. A surface reaction, in which iron was released and vivianite precipitated, started. E remained at −510 mV for about 2 days, during which the vivianite layer grew steadily. Thereafter, E increased markedly to the initial value, and the release of iron stopped. Changes in E and formation of vivianite were results of bacterial activity, with oxygen consumption by the biofilm being the driving force. These findings indicate that biofilms may protect steel surfaces and might be used as an alternative method to combat corrosion. PMID:11010888
Effects of Inulin and Sodium Carbonate in Phosphate-Free Restructured Poultry Steaks
NASA Astrophysics Data System (ADS)
Öztürk, B.; Serdaroğlu, M.
2017-09-01
Recently inorganic phosphates used in meat product formulations have caused negative impact on consumers due to their potential health risks. Therefore, utilization of natural ingredients as phosphate replacers has come into prominence as a novel research topic to meet consumer demands for clean-label trends. In this study, we objected to investigate the effects of inulin utilization either in the powder or gelled form, alone or in combination with sodium carbonate on quality of phosphate-free restructured chicken steaks. Total moisture, protein, lipid and ash values of the trial groups were in the range of 71.54-75.46%, 22.60-24.31%, 0.94-1.70% and 1.45-2.13%, respectively. pH of the samples was between 6.18-6.39, significant increments were recorded in samples containing inulin with sodium carbonate. L*, a* and b* values were recorded as 78.92-81.05, 1.76-3.05 and 10.80-11.94, respectively, where use of gelled inulin resulted in changes of L* and a* values. Utilization of inulin in combination with sodium carbonate decreased cook loss and enhanced product yield. Sensory scores in control group with phosphate showed a similar pattern to sensory scores in groups with inulin and sodium carbonate. During storage, purge loss and lipid oxidation rate were similar in control and inulin + sodium carbonate samples. The results showed that use of inulin in combination with sodium carbonate provided equivalent physical, chemical and sensory quality to phosphates in restructured chicken steaks.
Ardizzoni, E; Mulders, W; Sanchez-Padilla, E; Varaine, F; de Jong, B C; Rigouts, L
2014-08-01
Long transportation times of samples to culture laboratories can lead to higher contamination rates and significant loss of viability, resulting in lower culture positivity rates. Thin-layer agar (TLA) is a sensitive culture method for the isolation of Mycobacterium tuberculosis that has been optimised with N-acetyl-L-cysteine-sodium hydroxide (NALC-NaOH) decontaminated samples. The combination of the TLA culture method and other decontamination procedures has not been extensively validated. Among 390 smear-positive samples, we compared the culture positivity of samples decontaminated using the Petroff method vs. NALC-NaOH neutralised with phosphate buffer (PBS), applied to samples preserved with cetylpyridinium chloride (CPC) or CPC-free, and then of CPC-preserved samples decontaminated with NALC-NaOH neutralised using Difco neutralising buffer. The sediments were inoculated on TLA, and then on MGIT 960 or Löwenstein-Jensen (LJ) as gold standards. Decontamination with NALC-NaOH yielded higher culture positivity in TLA than in the Petroff method, which was further enhanced by neutralising CPC with the Difco buffer. Surprisingly, culture positivity on LJ also increased after using Difco buffer, suggesting that CPC may not be completely neutralised in egg-based medium. After transportation in CPC, decontamination using NALC-NaOH followed by neutralisation using Difco buffer resulted in the best recovery rates for samples inoculated on TLA and on LJ.
Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.
Lin, Ya-Ting; Liang, Chenju
2015-10-01
Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cao, X.M.; Tian, Y.; Wang, Z.Y.; Liu, Y.W.; Wang, C.X.
2016-01-01
ABSTRACT Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method. PMID:27459596
Bhusal, Prabhat; Rahiri, Jamie Lee; Sua, Bruce; McDonald, Jessica E; Bansal, Mahima; Hanning, Sara; Sharma, Manisha; Chandramouli, Kaushik; Harrison, Jeff; Procter, Georgina; Andrews, Gavin; Jones, David S; Hill, Andrew G; Svirskis, Darren
2018-06-01
An understanding of biological fluids at the site of administration is important to predict the fate of drug delivery systems in vivo. Little is known about peritoneal fluid; therefore, we have investigated this biological fluid and compared it to phosphate-buffered saline, a synthetic media commonly used for in vitro evaluation of intraperitoneal drug delivery systems. Human peritoneal fluid samples were analysed for electrolyte, protein and lipid levels. In addition, physicochemical properties were measured alongside rheological parameters. Significant inter-patient variations were observed with regard to pH (p < 0.001), buffer capacity (p < 0.05), osmolality (p < 0.001) and surface tension (p < 0.05). All the investigated physicochemical properties of peritoneal fluid differed from phosphate-buffered saline (p < 0.001). Rheological examination of peritoneal fluid demonstrated non-Newtonian shear thinning behaviour and predominantly exhibited the characteristics of an entangled network. Inter-patient and inter-day variability in the viscosity of peritoneal fluid was observed. The solubility of the local anaesthetic lidocaine in peritoneal fluid was significantly higher (p < 0.05) when compared to phosphate-buffered saline. Interestingly, the dissolution rate of lidocaine was not significantly different between the synthetic and biological media. Importantly, and with relevance to intraperitoneal drug delivery systems, the sustained release of lidocaine from a thermosensitive gel formulation occurred at a significantly faster rate into peritoneal fluid. Collectively, these data demonstrate the variation between commonly used synthetic media and human peritoneal fluid. The differences in drug release rates observed illustrate the need for bio-relevant media, which ultimately would improve in vitro-in vivo correlation.
2015-01-01
Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (Mn = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (Mn = 2000) and biotin-terminated PEG (Mn = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000–PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir2012, 28, 12861−1287022906305) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline. PMID:24898128
Zhao, Guangyao; Tong, Lemuel; Cao, Pengpeng; Nitz, Mark; Winnik, Mitchell A
2014-06-17
Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (M(n) = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (M(n) = 2000) and biotin-terminated PEG (M(n) = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000-PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir 2012, 28, 12861-12870) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline.
L'Hocine, Lamia; Pitre, Mélanie
2016-03-01
A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Pankajakshan, Divya; Albuquerque, Maria T P; Evans, Joshua D; Kamocka, Malgorzata M; Gregory, Richard L; Bottino, Marco C
2016-10-01
Root canal disinfection and the establishment of an intracanal microenvironment conducive to the proliferation/differentiation of stem cells play a significant role in regenerative endodontics. This study was designed to (1) investigate the antimicrobial efficacy of triple antibiotic-containing nanofibers against a dual-species biofilm and (2) evaluate the ability of dental pulp stem cells (DPSCs) to adhere to and proliferate on dentin upon nanofiber exposure. Seven-day-old dual-species biofilm established on dentin specimens was exposed for 3 days to the following: saline (control), antibiotic-free nanofibers (control), and triple antibiotic-containing nanofibers or a saturated triple antibiotic paste (TAP) solution (50 mg/mL in phosphate buffer solution). Bacterial viability was assessed using the LIVE/DEAD assay (Molecular Probes, Inc, Eugene, OR) and confocal laser scanning microscopy. For cytocompatibility studies, dentin specimens after nanofiber or TAP (1 g/mL in phosphate buffer solution) exposure were evaluated for cell adhesion and spreading by actin-phalloidin staining. DPSC proliferation was assessed on days 1, 3, and 7. Statistics were performed, and significance was set at the 5% level. Confocal laser scanning microscopy showed significant bacterial death upon antibiotic-containing nanofiber exposure, differing significantly (P < .05) from antibiotic-free fibers and the control (saline). DPSCs showed enhanced adhesion/spreading on dentin specimens treated with antibiotic-containing nanofibers when compared with its TAP counterparts. The DPSC proliferation rate was similar on days 1 and 3 in antibiotic-free nanofibers, triple antibiotic-containing nanofibers, and TAP-treated dentin. Proliferation was higher (9-fold) on dentin treated with antibiotic-containing nanofibers on day 7 compared with TAP. Triple antibiotic-containing polymer nanofibers led to significant bacterial death, whereas they did not affect DPSC attachment and proliferation on dentin. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
CHRISTENSEN, P A; ROBINSON, M; WIDDICOMBE, M
1955-01-01
Tested by the roll-tube method, the inclusion in Dubos medium of oleic acid, Tween 80, or glucose hastens colony growth of tubercle bacilli (BCG), but the variability in counts between replicate bottles is large, and the mean count is low compared with that obtained in media free of these substances.The addition of glycerol hastens the development of colonies, and counts on glycerol medium may differ from those on glycerol-free medium. BCG suspensions stored at about 23 degrees C or exposed to skyshine or sunlight become glycerol-sensitive. Results obtained with glycerol medium may not, therefore, always be acceptable.The preparation and use in the roll-tube method of a simple medium is described. This consists of horse serum, M/15 phosphate buffer, and agar, and is preferable to more complex media as it tends to give higher viable counts and is easier to store and prepare.Stored at about 23 degrees C, the viability of BCG is better preserved in neutral phosphate buffer than in suspending fluids containing Sauton medium; no such difference is noticed with cold storage.Glutamic acid added in a concentration of 0.35% is without effect on the viability of suspensions stored in the cold, but under certain conditions it may have some preserving value at higher storage temperatures.Exposure to daylight in the laboratory, even for several hours, does not kill BCG or render it glycerol-sensitive. Exposure to intense skyshine does kill, but the mortality observed at the South African Institute for Medical Research is low compared with that recorded elsewhere. Possible explanations of this discrepancy are discussed.
Christensen, P. Agerholm; Robinson, Mary; Widdicombe, Margaret
1955-01-01
Tested by the roll-tube method, the inclusion in Dubos medium of oleic acid, Tween 80, or glucose hastens colony growth of tubercle bacilli (BCG), but the variability in counts between replicate bottles is large, and the mean count is low compared with that obtained in media free of these substances. The addition of glycerol hastens the development of colonies, and counts on glycerol medium may differ from those on glycerol-free medium. BCG suspensions stored at about 23°C or exposed to skyshine or sunlight become glycerol-sensitive. Results obtained with glycerol medium may not, therefore, always be acceptable. The preparation and use in the roll-tube method of a simple medium is described. This consists of horse serum, M/15 phosphate buffer, and agar, and is preferable to more complex media as it tends to give higher viable counts and is easier to store and prepare. Stored at about 23°C, the viability of BCG is better preserved in neutral phosphate buffer than in suspending fluids containing Sauton medium; no such difference is noticed with cold storage. Glutamic acid added in a concentration of 0.35% is without effect on the viability of suspensions stored in the cold, but under certain conditions it may have some preserving value at higher storage temperatures. Exposure to daylight in the laboratory, even for several hours, does not kill BCG or render it glycerol-sensitive. Exposure to intense skyshine does kill, but the mortality observed at the South African Institute for Medical Research is low compared with that recorded elsewhere. Possible explanations of this discrepancy are discussed. PMID:14379008
Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven
2015-11-01
We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer-based formulations, especially at protein concentrations up to and including 115 mg/mL. Copyright © 2015 Elsevier B.V. All rights reserved.
Partition coefficients of some purine derivatives and its application to pharmacokinetics.
Chrzanowska, M; Sobiak, J; Kuehn, M; Dorawa, E; Hermann, T
2009-12-01
Metazathioprine (MAZA), a methylated derivative of azathioprine (AZA), demonstrated the greatest values of apparent and specific partition coefficients in n-octanol/phosphate buffer at pH 5.7 and pH 7.4 among purine derivatives such as 6-mercaptopurine (6-MP), 6-thioguanine (6-TG) and AZA. Introduction of a methyl group into the imidazole ring of AZA increases lipophilic properties of MAZA compared to AZA. Mass balance of purine derivatives in n-octanol and in phosphate buffer indicated their chemical stability in those media.
Myricetin solid lipid nanoparticles: Stability assurance from system preparation to site of action.
Gaber, Dina M; Nafee, Noha; Abdallah, Osama Y
2017-11-15
Myricetin - a natural flavonoid - has attracted a great interest due to its antioxidant and free-radical scavenging potential. However, its physicochemical instability critically impairs its dosage form design, evaluation and administration. In an attempt to protect from degradation, MYR was encapsulated into Gelucire-based solid lipid nanoparticles (SLNs). The impact of medium pH, processing temperature and different additives on the drug degradation either in free or nanoencapsulated form was assessed. MYR stability was further monitored in essential biorelevant fluids. Investigations have led to the recommendation that the presence of fat-soluble antioxidant is necessary during SLN preparation to protect the drug at high temperature. Meanwhile, physiological buffers as well as simulated fluids should be supplemented with stabilizers as tween 80 and Poloxamer 407, in addition to water-soluble antioxidant such as sodium sulfite. Interestingly, mucin-containing fluids are suggested to provide better protection to MYR, in contrast, cell culture media do not guarantee MYR stability. The degradation kinetics changed from 1st to 2nd order mechanism after MYR nanoencapsulation. In presence of the aforementioned additives, MYR-SLNs significantly reduced the drug degradation rate constant up to 300-folds and prolonged the half-life time up to 4500-folds compared to free MYR in physiological buffers (One-way ANOVA, p<0.05). As a proof of concept, in vitro release experiment in presence of phosphate buffer (pH7.4) supplemented with these additives ensured sustained release of MYR over >8h with no signs of degradation. The study emphasizes virtuous guidance regarding appropriate nanoencapsulation conditions and evaluation attributes ensuing MYR physicochemical stability. Copyright © 2017. Published by Elsevier B.V.
Hedberg, Jonas; Karlsson, Hanna L; Hedberg, Yolanda; Blomberg, Eva; Odnevall Wallinder, Inger
2016-05-01
Copper nanoparticles (Cu NPs) are increasingly used in various biologically relevant applications and products, e.g., due to their antimicrobial and catalytic properties. This inevitably demands for an improved understanding on their interactions and potential toxic effects on humans. The aim of this study was to investigate the corrosion of copper nanoparticles in various biological media and to elucidate the speciation of released copper in solution. Furthermore, reactive oxygen species (ROS) generation and lung cell (A549 type II) membrane damage induced by Cu NPs in the various media were studied. The used biological media of different complexity are of relevance for nanotoxicological studies: Dulbecco's modified eagle medium (DMEM), DMEM(+) (includes fetal bovine serum), phosphate buffered saline (PBS), and PBS+histidine. The results show that both copper release and corrosion are enhanced in DMEM(+), DMEM, and PBS+histidine compared with PBS alone. Speciation results show that essentially no free copper ions are present in the released fraction of Cu NPs in neither DMEM(+), DMEM nor histidine, while labile Cu complexes form in PBS. The Cu NPs were substantially more membrane reactive in PBS compared to the other media and the NPs caused larger effects compared to the same mass of Cu ions. Similarly, the Cu NPs caused much more ROS generation compared to the released fraction only. Taken together, the results suggest that membrane damage and ROS formation are stronger induced by Cu NPs and by free or labile Cu ions/complexes compared with Cu bound to biomolecules. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chopra, Shruti; Motwani, Sanjay K.; Ahmad, Farhan J.; Khar, Roop K.
2007-11-01
Simple, accurate, reproducible, selective, sensitive and cost effective UV-spectrophotometric methods were developed and validated for the estimation of trigonelline in bulk and pharmaceutical formulations. Trigonelline was estimated at 265 nm in deionised water and at 264 nm in phosphate buffer (pH 4.5). Beer's law was obeyed in the concentration ranges of 1-20 μg mL -1 ( r2 = 0.9999) in deionised water and 1-24 μg mL -1 ( r2 = 0.9999) in the phosphate buffer medium. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 4.04 × 10 3 L mol -1 cm -1 and 0.0422 μg cm -2/0.001A in deionised water; and 3.05 × 10 3 L mol -1 cm -1 and 0.0567 μg cm -2/0.001A in phosphate buffer media, respectively. These methods were tested and validated for various parameters according to ICH guidelines. The detection and quantitation limits were found to be 0.12 and 0.37 μg mL -1 in deionised water and 0.13 and 0.40 μg mL -1 in phosphate buffer medium, respectively. The proposed methods were successfully applied for the determination of trigonelline in pharmaceutical formulations (vaginal tablets and bioadhesive vaginal gels). The results demonstrated that the procedure is accurate, precise, specific and reproducible (percent relative standard deviation <2%), while being simple and less time consuming and hence can be suitably applied for the estimation of trigonelline in different dosage forms and dissolution studies.
Control of brown stain: in Eastern white pine
Robert E. Stutz; Peter Koch; Millard L. Oldham
1961-01-01
Degrade caused by brown stain and blue stain in eastern white pine was virtually eliminated by the use of sap stain chemicals and sodium azide. Combinations of buffered sodium azide with both sodium pentachlorophenate plus borax and buffered ethyl mercury phosphate were effective.
Professional commitment: Does it buffer or intensify job demands?
Nesje, Kjersti
2017-04-01
The purpose of this study is to investigate whether professional commitment can be seen as a moderator in the relationship between job demands and emotional exhaustion among Norwegian nurses. Inspired by the job demands-resources model, this study explores whether having a strong commitment to the nursing profession can be seen as a resource that buffers the effect of job demands on emotional exhaustion or, conversely, intensifies the impact of job demands. A survey that comprised Norwegian nurses who had graduated three years previously (N = 388) was conducted. Multiple regression was performed to test the hypothesis. The results provide support to a buffering effect; thus, individuals with a higher degree of professional commitment conveyed a weaker association between job demands and emotional exhaustion compared with nurses with a lower degree of commitment. Developing a better understanding of the potential buffering effect of professional commitment is of great interest. The present study is the first to utilize professional commitment as a resource within the job demands-resources framework. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Developing procedures for the large-scale purification of human serum butyrylcholinesterase.
Saxena, Ashima; Luo, Chunyuan; Doctor, Bhupendra P
2008-10-01
Human serum butyrylcholinesterase (Hu BChE) is the most viable candidate for the prophylactic treatment of organophosphate poisoning. A dose of 200 mg/70 kg is predicted to protect humans against 2x LD(50) of soman. Therefore, the aim of this study was to develop procedures for the purification of gram quantities of this enzyme from outdated human plasma or Cohn Fraction IV-4. The purification of Hu BChE was accomplished by batch adsorption on procainamide-Sepharose-CL-4B affinity gel followed by ion-exchange chromatography on a DEAE-Sepharose column. For the purification of enzyme from Cohn Fraction IV-4, it was resuspended in 25 mM sodium phosphate buffer, pH 8.0, and fat was removed by decantation, prior to batch adsorption on procainamide-Sepharose gel. In both cases, the procainamide gel was thoroughly washed with 25 mM sodium phosphate buffer, pH 8.0, containing 0.05 M NaCl, and the enzyme was eluted with the same buffer containing 0.1 M procainamide. The enzyme was dialyzed and the pH was adjusted to 4.0 before loading on the DEAE column equilibrated in sodium acetate buffer, pH 4.0. The column was thoroughly washed with 25 mM sodium phosphate buffer, pH 8.0 containing 0.05 M NaCl before elution with a gradient of 0.05-0.2M NaCl in the same buffer. The purity of the enzyme following these steps ranged from 20% to 40%. The purity of the enzyme increased to >90% by chromatography on an analytical procainamide affinity column. Results show that Cohn Fraction IV-4 is a much better source than plasma for the large-scale isolation of purified Hu BChE.
Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng
2014-01-01
It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes' ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion.
el-Briak, Hasna; Durand, Denis; Nurit, Josiane; Munier, Sylvie; Pauvert, Bernard; Boudeville, Phillipe
2002-01-01
By mixing CaHPO(4) x 2H(2)O (DCPD) and CaO with water or sodium phosphate buffers as liquid phase, a calcium phosphate cement was obtained. Its physical and mechanical properties, such as compressive strength, initial and final setting times, cohesion time, dough time, swelling time, dimensional and thermal behavior, and injectability were investigated by varying different parameters such as liquid to powder (L/P) ratio (0.35-0.7 ml g(-1)), molar calcium to phosphate (Ca/P) ratio (1.67-2.5) and the pH (4, 7, and 9) and the concentration (0-1 M) of the sodium phosphate buffer. The best results were obtained with the pH 7 sodium phosphate buffer at the concentration of 0.75 M. With this liquid phase, physical and mechanical properties depended on the Ca/P and L/P ratios, varying from 3 to 11 MPa (compressive strength), 6 to 10 min (initial setting time), 11 to 15 min (final setting time), 15 to 30 min (swelling time), 7 to 20 min (time of 100% injectability). The dough or working time was over 16 min. This cement expanded during its setting (1.2-5 % according to Ca/P and L/P ratios); this would allow a tight filling. Given the mechanical and rheological properties of this new DCPD/CaO-based cement, its use as root canal sealing material can be considered as classical calcium hydroxide or ZnO/eugenol-based pastes, without or with a gutta-percha point. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 447-453, 2002
NASA Astrophysics Data System (ADS)
Saikiran, M.; Sato, D.; Pandey, S. S.; Kato, T.
2016-04-01
A model far-red sensitive symmetrical squaraine dye (SQ-3) and unsymmetrical near infra-red sensitive cyanine dye (UCD-1) bearing direct-COOH functionalized indole ring were synthesized, characterized and subjected to photophysical investigations including their interaction with bovine serum albumin (BSA) as a model protein in phosphate buffer solution (PBS). Both of the dyes exhibit strong interaction with BSA in phosphate buffer with high apparent binding constant. A judicious tuning of hydrophobic main backbone with reactive functionality for associative interaction with active site of BSA has been found to be necessary for BSA detection in PBS.
Solubilization of Therapeutic Agents in Micellar Nanomedicines
Vuković, Lela; Madriaga, Antonett; Kuzmis, Antonina; Banerjee, Amrita; Tang, Alan; Tao, Kevin; Shah, Neil; Král, Petr; Onyuksel, Hayat
2014-01-01
We use atomistic molecular dynamics simulations to reveal the binding mechanisms of therapeutic agents in PEG-ylated micellar nanocarriers (SSM). In our experiments, SSM in buffer solutions can solubilize either ≈ 11 small bexarotene molecules or ≈ 6 (2 in low ionic strength buffer) human vasoactive intestinal peptide (VIP) molecules. Free energy calculations reveal that molecules of the poorly water soluble drug bexarotene can reside at the micellar ionic interface of the PEG corona, with their polar ends pointing out. Alternatively, they can reside in the alkane core center, where several bexarotene molecules can self-stabilize by forming a cluster held together by a network of hydrogen bonds. We also show that highly charged molecules, such as VIP, can be stabilized at the SSM ionic interface by Coulombic coupling between their positively charged residues and the negatively charged phosphate head-groups of the lipids. The obtained results illustrate that atomistic simulations can reveal drug solubilization character in nanocarriers and be used in efficient optimization of novel nanomedicines. PMID:24283508
Berrang, M E; Cosby, D E; Cox, N A; Cason, J A; Richardson, K E
2015-12-01
Salmonella is a human pathogen that can accompany live broilers to the slaughter plant, contaminating fully processed carcasses. Feed is one potential source of Salmonella to growing broilers. Monitoring feed for the presence of Salmonella is part of good agricultural practice. The first step in culturing feed for Salmonella (which may be at low numbers and sub-lethally stressed) is to add it to a pre-enrichment broth which is incubated for 24 h. During the course of pre-enrichment, extraneous bacteria metabolize carbohydrates in some feed and excrete acidic byproducts, causing the pH to drop dramatically. An acidic pre-enrichment pH can injure or kill Salmonella resulting in a failure to detect, even if it is present and available to infect chickens. The objective of this study was to test an array of buffering chemistries to prevent formation of an injurious acidic environment during pre-enrichment of feed in peptone water. Five grams of feed were added to 45 mL of peptone water buffered with carbonate, Tris pH 8, and phosphate buffering ingredients individually and in combination. Feed was subjected to a pre-enrichment at 35°C for 24 h; pH was measured at 0, 18, and 24 h. Standard phosphate buffering ingredients at concentrations up to 4 times the normal formulation were unable to fully prevent acidic conditions. Likewise, carbonate and Tris pH 8 were not fully effective. The combination of phosphate, carbonate, and Tris pH 8 was the most effective buffer tested. It is recommended that a highly buffered pre-enrichment broth be used to examine feed for the presence of Salmonella. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Singh, R; Kristensen, S; Tønnesen, H H
2013-03-01
The influence of vehicle properties and excipients on the hydrolytic and photochemical stability of curcumin in Pluronic preparations, and the interactions between curcumin and Pluronics was investigated. Curcumin was found to be degraded by general acid-base catalyzed hydrolytic degradation in alkaline preparations. The degradation rate of curcumin was higher in carbonate buffer than in phosphate buffer (pH 8.8), while it was higher in phosphate buffer than in citrate buffer (pH 7.8). At pH 8.0-8.8 the degradation rate of curcumin increased compared to preparations with pH <8.0. The stabilizing effect of the Pluronics against hydrolytic degradation of curcumin was only detectable at pH 8.0-8.8, and it was highest for F127 and lowest for P85, in phosphate buffer pH 8.8. An increase in the ionic strength increased the stabilization against hydrolytic degradation of curcumin by all Pluronics. Addition of ethanol decreased the hydrolytic stability of curcumin in all Pluronics. Addition of PEG 400 decreased the hydrolytic stability in preparation with either P123 or F127 while the degradation in preparations with P85 remained the same as in P85 preparations without PEG 400. Vehicle properties and excipients did not to any large degree influence the spectroscopic properties or the photostability of curcumin in Pluronic preparations. Photochemical half life of curcumin was in the minutes range. Spectrophotometric data indicate that Pluronic aggregates most likely solubilize curcumin through hydrophobic interactions, although hydrogen-bonding may also be involved.
Litvinov, Julia; Wang, Yi-Ju; George, Jinnie; Chinwangso, Pawilai; Brankovic, Stanko; Willson, Richard C.; Litvinov, Dmitri
2013-01-01
This paper describes synthesis of ultrathin pinhole-free insulating aluminum oxide layers for electronic device protection in corrosive liquid environments, such as phosphate buffered saline (PBS) or clinical fluids, to enable emerging biomedical applications such as biomolecular sensors. A pinhole-free 25-nm thick amorphous aluminum oxide layer has been achieved using ultra-high vacuum DC magnetron reactive sputtering of aluminum in oxygen/argon plasma followed by oxygen plasma post-processing. Deposition parameters were optimized to achieve the best corrosion protection of lithographically defined device structures. Electrochemical deposition of copper through the aluminum oxide layers was used to detect the presence (or absence) of pinholes. FTIR, XPS, and spectroscopic ellipsometry were used to characterize the material properties of the protective layers. Electrical resistance of the copper device structures protected by the aluminum oxide layers and exposed to a PBS solution was used as a metric to evaluate the long-term stability of these device structures. PMID:23682201
Gayán, Elisa; Condón, Santiago; Álvarez, Ignacio; Nabakabaya, Maria
2013-01-01
Survival rates of Escherichia coli and Staphylococcus aureus after high-pressure treatment in buffers that had large or small reaction volumes (ΔV°), and which therefore underwent large or small changes in pH under pressure, were compared. At a low buffer concentration of 0.005 M, survival was, as expected, better in MOPS (morpholinepropanesulfonic acid), HEPES, and Tris, whose ΔV° values are approximately 5.0 to 7.0 cm3 mol−1, than in phosphate or dimethyl glutarate (DMG), whose ΔV° values are about −25 cm3 mol−1. However, at a concentration of 0.1 M, survival was unexpectedly better in phosphate and DMG than in MOPS, HEPES, or Tris. This was because the baroprotective effect of phosphate and DMG increased much more rapidly with increasing concentration than it did with MOPS, HEPES, or Tris. Further comparisons of survival in solutions of salts expected to cause large electrostriction effects (Na2SO4 and CaCl2) and those causing lower electrostriction (NaCl and KCl) were made. The salts with divalent ions were protective at much lower concentrations than salts with monovalent ions. Buffers and salts both protected against transient membrane disruption in E. coli, but the molar concentrations necessary for membrane protection were much lower for phosphate and Na2SO4 than for HEPES and NaCl. Possible protective mechanisms discussed include effects of electrolytes on water compressibility and kosmotropic and specific ion effects. The results of this systematic study will be of considerable practical significance in studies of pressure inactivation of microbes under defined conditions but also raise important fundamental questions regarding the mechanisms of baroprotection by ionic solutes. PMID:23624471
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Asgari, Hamed
2018-05-01
In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.
Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik
2017-09-15
The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantification of the internal resistance distribution of microbial fuel cells.
Fan, Yanzhen; Sharbrough, Evan; Liu, Hong
2008-11-01
Identifying the limiting factors in a microbial fuel cell (MFC) system requires qualifying the contribution of each component of an MFC to internal resistance. In this study, a new method was developed to calculate the internal resistance distribution of an MFC. Experiments were conducted to identify the limiting factors in single-chamber MFCs by varying the anode surface areas, cathode surface areas, and phosphate buffer concentrations. For the MFCs with equally sized electrodes (7 cm2) and 200 mM phosphate buffer, the anode contributed just 5.4% of the internal resistance, while the cathode and the electrolyte each contributed 47.3%, indicating that the anode was not the limiting factor in power generation. The limitation of the cathode was further revealed by the 780% higher area-specific resistance (284.4 omega cm2) than the 32.3 omega cm2 of the anode. The electrolyte limitation was also evidenced by the greatly increased contribution of electrolyte in internal resistance from 47.3 to 78.2% when the concentration of phosphate buffer was decreased from 200 to 50 mM. An anodic power density of 6860 mW/m2 was achieved at a current density of 2.62 mA/cm2 using the MFCs with an anode/cathode area ratio of 1/14 and 200 mM phosphate buffer. The method was also successfully applied to analyze the internal resistance distribution of the two chamber MFCs from a previously reported study. The comparison of the internal resistances of the two air cathode systems indicates that the much lower resistances, including anode, cathode, and membrane resistances, contributed to the much better performance of the single-chamber MFCs than the two-chamber system.
Factors buffering against the effects of job demands: how does age matter?
Besen, Elyssa; Matz-Costa, Christina; James, Jacquelyn B; Pitt-Catsouphes, Marcie
2015-02-01
Given the increasing role that paid work is likely to play in older adulthood in the coming decades, the goal of this study was to understand the circumstances under which work is related to mental health for older adults and whether these circumstances differ by age. Using a multiworksite sample of 1,812 U.S. workers age 18 to 81, we use the life-span theory of control to hypothesize that older and younger workers may benefit differentially from job and personal control in the context of high job demands. Results suggest that for younger workers with high personal control, job control buffers the impact of job demands on mental health. For older workers, personal control alone buffers the impact of job demands on mental health. This study adds to previous research by addressing how the factors thought to buffer against the effects of job demands differ cross-sectionally by age. © The Author(s) 2012.
Datta, Kamal; Weinfeld, Michael; Neumann, Ronald D; Winters, Thomas A
2007-02-01
End groups contribute to the structural complexity of radiation-induced DNA double-strand breaks (DSBs). As such, end-group structures may affect a cell's ability to repair DSBs. The 3'-end groups of strand breaks caused by gamma radiation, or oxidative processes, under oxygenated aqueous conditions have been shown to be distributed primarily between 3'-phosphoglycolate and 3'-phosphate, with 5'-phosphate ends in both cases. In this study, end groups of the high-LET-like DSBs caused by 125I decay were investigated. Site-specific DNA double-strand breaks were produced in plasmid pTC27 in the presence or absence of 2 M DMSO by 125I-labeled triplex-forming oligonucleotide targeting. End-group structure was assessed enzymatically as a function of the DSB end to serve as a substrate for ligation and various forms of end labeling. Using this approach, we have demonstrated 3'-hydroxyl (3'-OH) and 3'-phosphate (3'-P) end groups and 5'-ends (> or = 42%) terminated by phosphate. A 32P postlabeling assay failed to detect 3'-phosphoglycolate in a restriction fragment terminated by the 125I-induced DNA double-strand break, and this is likely due to restricted oxygen diffusion during irradiation as a frozen aqueous solution. Even so, end-group structure and relative distribution varied as a function of the free radical scavenging capacity of the irradiation buffer.
Optimizing Fungal DNA Extraction Methods from Aerosol Filters
NASA Astrophysics Data System (ADS)
Jimenez, G.; Mescioglu, E.; Paytan, A.
2016-12-01
Fungi and fungal spores can be picked up from terrestrial ecosystems, transported long distances, and deposited into marine ecosystems. It is important to study dust-borne fungal communities, because they can stay viable and effect the ambient microbial populations, which are key players in biogeochemical cycles. One of the challenges of studying dust-borne fungal populations is that aerosol samples contain low biomass, making extracting good quality DNA very difficult. The aim of this project was to increase DNA yield by optimizing DNA extraction methods. We tested aerosol samples collected from Haifa, Israel (polycarbonate filter), Monterey Bay, CA (quartz filter) and Bermuda (quartz filter). Using the Qiagen DNeasy Plant Kit, we tested the effect of altering bead beating times and incubation times, adding three freeze and thaw steps, initially washing the filters with buffers for various lengths of time before using the kit, and adding a step with 30 minutes of sonication in 65C water. Adding three freeze/thaw steps, adding a sonication step, washing with a phosphate buffered saline overnight, and increasing incubation time to two hours, in that order, resulted in the highest increase in DNA for samples from Israel (polycarbonate). DNA yield of samples from Monterey (quart filter) increased about 5 times when washing with buffers overnight (phosphate buffered saline and potassium phophate buffer), adding a sonication step, and adding three freeze and thaw steps. Samples collected in Bermuda (quartz filter) had the highest increase in DNA yield from increasing incubation to 2 hours, increasing bead beating time to 6 minutes, and washing with buffers overnight (phosphate buffered saline and potassium phophate buffer). Our results show that DNA yield can be increased by altering various steps of the Qiagen DNeasy Plant Kit protocol, but different types of filters collected at different sites respond differently to alterations. These results can be used as preliminary results to continue developing fungi DNA extraction methods. Developing these methods will be important as dust storms are predicted to increase due to increased draughts and anthropogenic activity, and the fungal communities of these dust-storms are currently relatively understudied.
Fluorophotometric measurement of the buffering action of human tears in vivo.
Yamada, M; Kawai, M; Mochizuki, H; Hata, Y; Mashima, Y
1998-10-01
The buffering action of human tears is thought to be important to keep its pH constant. We measured the change in pH in the precorneal tear film in vivo when the acidic solution is challenged, using a fluorophotometric technique. Twelve eyes from 6 healthy subjects were entered in this study. Each subject was pretreated with either one drop of 0.4% oxybuprocaine for once (light anesthesia), three times (deep anesthesia), or none (controls). The measurement was initiated by instilling 20 microl of 0.067 M phosphate buffer at pH 5.5 containing 2 mM bis-carboxyethyl-carboxyfluorescein free acid, a pH sensitive dye, into the subject's eye. The pH was determined by the ratio of fluorescent intensities at two excitation wavelengths (490 and 430 nm). pH recovery time (PHRT) as defined by the time required for pH to reach 95% of pH at equilibrium was used for the marker of tear buffering action. Tear turnover rate was also determined using the fluorescent decay curve at 430 nm, which was independent of pH, but dependent on dye concentration. Immediately after the instillation, the pH value in the tear film was around 6.0-6.5 in all cases. The tear film rapidly became more alkaline, reaching its normal value in 2.3 +/- 0.5 min in untreated eyes. The pretreatment with 0.4% oxybuprocaine retarded the neutralization process. A single regression analysis revealed that the PHRT had a significant negative correlation with the tear turnover rate (r = -0.78). Our results suggest that the neutralization process of tears largely depends on the tear turnover rate. The buffering action of tears in vivo consists of the tear turnover as well as its chemical buffering capacity.
Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland.
Badhe, Neha; Saha, Shaswati; Biswas, Rima; Nandy, Tapas
2014-10-01
The role of algal biofilm in a pilot-scale, free-surface, up-flow constructed wetland (CW), was studied for its effect on chemical oxygen demand (COD), ammonia and phosphate removal during three seasons-autumn, winter and early spring. Effect of hydraulic retention time (HRT) was also investigated in presence and absence of algal biofilm. Principal Component Analysis was used to identify the independent factors governing the performance of CW. The study showed algal biofilm significantly improved nutrient removal, especially phosphate. Ammonia removal varied with HRT, biofilm and ambient temperature. Increase in biofilm thickness affected ammonia removal efficiency adversely. Algal biofilm-assisted COD removal compensated for reduced macrophyte density during winter. Two-way ANOVA test and the coefficients of dependent factors derived through multiple linear regression model confirmed role of algal biofilm in improving nutrient removal in CW. The study suggests that algal biofilm can be a green solution for bio-augmenting COD and nutrient removal in CW. Copyright © 2014 Elsevier Ltd. All rights reserved.
Arjunan, Krishna P; Clyne, Alisa Morss
2011-01-01
Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), recently emerged as an efficient tool in medical applications. Liquids and endothelial cells were treated with a non-thermal dielectric barrier discharge plasma. Plasma treatment of phosphate buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration in serum-free medium. ROS concentration in cells peaked 1 hour after treatment. 4.2 J/cm(2) increased cell proliferation, 2D and 3D migration, as well as tube formation. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers for hydrogen peroxide and hydroxyl radicals abrogated these angiogenic effects. Non-thermal plasma may be a potential tool for applying ROS in precise doses to enhance vascularization.
Willemse, Bernadette M; de Jonge, Jan; Smit, Dieneke; Depla, Marja F I A; Pot, Anne Margriet
2012-07-01
Healthcare workers in nursing homes are faced with high job demands that can have a detrimental impact on job-related outcomes, such as job satisfaction. Job resources may have a buffering role on this relationship. The Demand-Control-Support (DCS) Model offers a theoretical framework to study how specific job resources can buffer the adverse effects of high demands, and can even activate positive consequences of high demands. The present study tests the moderating (i.e. buffering and activating) effects of decision authority and coworker- and supervisor support that are assumed by the hypotheses of the DCS Model. A national cross-sectional survey was conducted with an anonymous questionnaire. One hundred and thirty six living arrangements that provide nursing home care for people with dementia in the Netherlands. Fifteen healthcare workers per living arrangement. In total, 1147 people filled out the questionnaires (59% response rate). Hierarchical multilevel regression analyses were conducted to test the assumption that the effect of job demands on the dependent variables is buffered or activated the most when both decision authority and social support are high. This moderation is statistically represented by three-way interactions (i.e. demands×authority×support), while lower-order effects are taken into account (i.e. two-way interactions). The hypotheses are supported when three-way interaction effects are found in the expected direction. The dependent variables studied are job satisfaction, emotional exhaustion, and personal accomplishment. The proposed buffering and activation hypotheses of the DCS Model were not supported in our study. Three-way interaction effects were found for emotional exhaustion and personal accomplishment, though not in the expected direction. In addition, two-way interaction effects were found for job satisfaction and emotional exhaustion. Decision authority was found to buffer the adverse effect of job demands and to activate healthcare staff. Supervisor support was found to buffer the adverse effect of job demands on emotional exhaustion in situations with low decision authority. Finally, coworker support was found to have an adverse effect on personal accomplishment in high strain situations. Findings reveal that decision authority in particular makes healthcare workers in nursing homes less vulnerable to adverse effects of high job demands, and promotes positive consequences of work. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vehicle influence on permeation through intact and compromised skin.
Gujjar, Meera; Banga, Ajay K
2014-09-10
The purpose of this study was to compare the transdermal permeation of a model compound, diclofenac diethylamine, from a hydrophilic and lipophilic vehicle across in vitro models simulating compromised skin. Mineral oil served as a lipophilic vehicle while 10mM phosphate buffered saline served as a hydrophilic vehicle. Compromised skin was simulated by tape stripping, delipidization, or microneedle application and compared with intact skin as a control. Transepidermal water loss was measured to assess barrier function. Skin compromised with tape stripping and delipidization significantly (p<0.05) increased permeation of diclofenac diethylamine compared to intact and microneedle treated skin with phosphate buffered saline vehicle. A similar trend in permeation was observed with mineral oil as the vehicle. For both vehicles, permeation across skin increased in the same order and correlated with degree of barrier impairment as indicated by transepidermal water loss values: intact
Delanaye, Lisiane; Bahri, Mohamed Ali; Tfibel, Francis; Fontaine-Aupart, Marie-Pierre; Mouithys-Mickalad, Ange; Heine, Bélinda; Piette, Jacques; Hoebeke, Maryse
2006-03-01
The aggregation process of pyropheophorbide-a methyl ester (PPME), a second-generation photosensitizer, was investigated in various solvents. Absorption and fluorescence spectra showed that the photosensitizer was under a monomeric form in ethanol as well as in dimyristoyl-L-alpha-phosphatidylcholine liposomes while it was strongly aggregated in phosphate buffer. A quantitative determination of reactive oxygen species production by PPME in these solvents has been undertaken by electron spin resonance associated with spin trapping technique and absorption spectroscopy. In phosphate buffer, both electron spin resonance and absorption measurements led to the conclusion that singlet oxygen production was not detectable while hydroxyl radical production was very weak. In liposomes and ethanol, singlet oxygen and hydroxyl radical production increased highly; the singlet oxygen quantum yield was determined to be 0.2 in ethanol and 0.13 in liposomes. The hydroxyl radical production origin was also investigated. Singlet oxygen was formed from PPME triplet state deactivation in the presence of oxygen. Indeed, the triplet state formation quantum yield of PPME was found to be about 0.23 in ethanol, 0.15 in liposomes (too small to be measured in PBS).
Ping, Jinglei; Blum, Jacquelyn E; Vishnubhotla, Ramya; Vrudhula, Amey; Naylor, Carl H; Gao, Zhaoli; Saven, Jeffery G; Johnson, Alan T Charlie
2017-08-01
Advances in techniques for monitoring pH in complex fluids can have a significant impact on analytical and biomedical applications. This study develops flexible graphene microelectrodes (GEs) for rapid (<5 s), very-low-power (femtowatt) detection of the pH of complex biofluids by measuring real-time Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current is varied monotonically and systematically with the pH, with a resolution of ≈0.2 pH unit. The current-pH dependence is well described by a hybrid analytical-computational model, where the electric double layer derives from an intrinsic, pH-independent (positive) charge associated with the graphene-water interface and ionizable (negative) charged groups. For ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, shows a strong signal associated with ferritin disassembly and the release of ferric ions at pH ≈2.0. For samples of human serum, the Faradaic current shows a reproducible rapid (<20 s) response to pH. By combining the Faradaic current and real-time current variation, the methodology is potentially suitable for use to detect tumor-induced changes in extracellular pH. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The characterisation and design improvement of a paper-based E.coli impedimetric sensor
NASA Astrophysics Data System (ADS)
Bezuidenhout, P.; Kumar, S.; Wiederoder, M.; Schoeman, J.; Land, K.; Joubert, T.-H.
2016-02-01
This paper describes the development and optimisation of a paper-based E. coli impedimetric biosensor for water quality monitoring. Impedimetric biosensing is advantageous because it is a highly sensitive, label-free, real-time method for the detection of biological species. An impedimetric biosensor measures the change in impedance caused by specific capture of a target on the sensor surface. Each biosensor consists of a pair of photo paper-based inkjet printed electrodes. An impedance analyser was used to measure the impedance at frequencies ranging from 1 kHz to 1 MHz at 1V. The parameters that were investigated to achieve enhanced sensor performance were buffer type, antibody attachment method, measurement frequency, electrode layout, and conductive material. A 0.04M PBS (phosphate buffered saline) solution achieves better results compared to a less conductive 0.04M PB (potassium phosphate dibasic) solution. The direct adsorption of anti-E. coli antibodies onto the sensor surface yielded better results than attaching the sensor to a lateral flow test. The resistive component had a greater impact on the detected impedance, therefore an optimal frequency of 1 MHz was identified. Geometrical electrode designs that maximise the resistive change between the electrodes were utilised. Both lower cost silver and bio-compatible gold ink were validated as electrode materials. The impedance change generated by the selective capture of E. coli K-12, ranging in concentration from 103 to 107 colony forming units per millilitre (cfu/ml), showed a detection limit of 105 cfu/ml.
Lu, Dingqiang; Xu, Qiuda; Pang, Guangchang; Lu, Fuping
2018-06-05
An electrochemical double-layer Au nanoparticle membrane immunosensor was developed using an electrochemical biosensing signal amplification system with Au nanoparticles, thionine, chitosan, and horseradish peroxidase, which was fabricated using double self-adsorption of Au nanoparticle sol followed by anti-α-fetoprotein Balb/c mouse monoclonal antibody adsorption. The AuNPs sol was characterized by spectrum scanning and transmission electron microscopy. The immunosensor was characterized by atomic force microscopy, cyclic voltammetry, and alternating-current impedance during each stage of adsorption and assembly. The amperometric I-t curve method was used to measure α-fetoprotein (AFP) diluted in phosphate buffered saline. The result indicated a wide linear range, and the change rate of steady-current before and after immune response had linear correlation within the range 0.1-10 4 pg/mL AFP. The current change rate equation was △I = 5.82334 lgC + 37.01195 (R 2 = 0.9922). The lowest limit of detection was 0.03 pg/mL (S/N = 3), and the reproducibility of the sensor was good. Additionally, the sensor could be stably stored above phosphate buffered saline at 4 °C for more than 24 days. More importantly, the sensor is label-free, reagentless and low fouling, making it capable of assaying AFP in real serum samples without suffering from significant interference or biofouling.
Saha, N; Hong, S H; Wong, H A; Jeyaseelan, K; Tay, J S
1991-12-01
Biochemical characteristics of one non-deficient fast G6PD variant (GdSingapore) and six different deficient variants (three new, two Mahidol, one each of Indonesian and Mediterranean) were studied among the Malays of Singapore. The GdSingapore variant had normal enzyme activity (82%) and fast electrophoretic mobilities (140% in TEB buffer, 160% in phosphate and 140% in Tris-HCl buffer systems respectively). This variant is further characterized by normal Km for G6P; utilization of analogues (Gal6P, 2dG6P; dAmNADP), heat stability and pH optimum. The other six deficient G6PD variants had normal electrophoretic mobility in TEB buffer with enzyme activities ranging from 1 to 12% of GdB+. The biochemical characteristics identity them to be 2 Mahidol, 1 Indonesian and 1 Mediterranean variants and three new deficient variants.
Larson, E L; Strom, M S; Evans, C A
1980-01-01
Tests were performed using the sterile bag technique to determine the effects of type of sampling solution, use of antiseptic neutralizers, and solution temperature on the detection and quantitation of bacteria on hands. Using paired hand cultures, three sampling solutions were compared: quarter-strength Ringer solution, a phosphate buffer containing Triton X-100, and the same buffer containing antiseptic neutralizers. The phosphate buffer containing Triton X-100 was significantly better than quarter-strength Ringer solution in mean bacterial yield; the neutralizer-containing sampling solution was slightly better than Triton X-100-containing solution, although differences were not significant at the P = 0.05 level. Temperature (6 or 23 degrees C) of the sampling solution showed no consistent effect on bacterial yield from hands tested with the fluid containing neutralizers. PMID:7012171
The effect of the type of HA on the degradation of PLGA/HA composites.
Naik, Ashutosh; Shepherd, David V; Shepherd, Jennifer H; Best, Serena M; Cameron, Ruth E
2017-01-01
The aim of this study is to explore the importance of the potentially competing effects of buffering effects of the calcium phosphate filler and particle-mediated water sorption on the degradation products of poly(d,l lactide-co-glycolide (50:50))(PLGA)/hydroxyapatite(HA) composites. Further the influence of type of HA on the mechanical properties of the composites was investigated. Phase pure HA was synthesised via a reaction between aqueous solutions of calcium hydroxide and orthophosphoric acid. The powder produced was either used as produced (uncalcined) or calcined in air or calcined in a humidified argon atmosphere. An in-vitro degradation study was carried out in phosphate buffered saline (PBS). The results obtained indicated that the degradation rate of the composite might be better understood if both the buffering effects and the rate of water sorption by the composites are considered. Copyright © 2016 Elsevier B.V. All rights reserved.
The Role of Newly Discovered Exotoxin (S Toxin) in Pseudomonas aeruginosa Infections
1979-08-01
sodium or potassium phosphate 6.0-8.0 N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) 6.5-8.5 tris 7.0-9.5 sodium borate 7.5-9.5 sodium...was found to be variable with respect to whether sodium or potassium phosphate buffer was used. With sodium phosphate, virtually all the enzyme...activity bound was eluted between 20-100.2M phosphate at pH 6.8. With the potassium salt, elution occurs at 400-?00mM KP04. Since very little protein was
Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng
2014-01-01
Background It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. Materials and methods We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes’ ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. Results The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. Conclusion These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion. PMID:24333060
Pinteric, L; Manery, J F; Chaudry, I H; Madapallimattam, G
1975-05-01
Membranes of human erythrocytes were prepared by stepwise osmotic hemolysis in Ca2+-free solutions. Examination with the electron microscope after negative staining showed some short, conelike protuberances on the surface of about 20 percent of the ghosts, while 80 percent were round, intact spheres. After Ca2+ treatment, all membranes were round and intact. After exposure to ethylenediaminetetraacetic acid (EDTA) (1.0 mM, pH 7.4), the entire ghost surface was covered with long, thin extrusions called stromalytic forms (about 460 per cell). Their sizes, shapes, and fine structure are described. Exposure to ionic calcium (1.4 times 10-minus 4M) abolished the EDTA-induced stromalytic forms. A second exposure to EDTA reversed this Ca2+ effect. ATP, like EDTA, produced stromalytic forms. EDTA-induced stromalytic forms were also abolished by Zn2+, La3+, and Nd3+ at concentrations of 1-5 times 10-minus 4 M. Mg2+ at 10-minus 2 M was ineffective. Ghosts were prepared by graded lysis in various buffers. Those prepared in phosphate were the most stable and provided consistent EDTA effects and Ca2+ reversal. Ghosts in Tris-HCl showed breakdown unless salt was added. Moderately satisfactory ghosts were also obtained in Hepes-NaOH buffer and salt.
Tsunehiro, Masaya; Meki, Yuma; Matsuoka, Kanako; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru
2013-04-15
A simple and efficient method based on magnetic-bead technology has been developed for the separation of phosphorylated and nonphosphorylated low-molecular-weight biomolecules, such as nucleotides, phosphorylated amino acids, or phosphopeptides. The phosphate-binding site on the bead is an alkoxide-bridged dinuclear zinc(II) complex with 1,3-bis(pyridin-2-ylmethylamino)propan-2-olate (Phos-tag), which is linked to a hydrophilic cross-linked agarose coating on a magnetic core particle. All steps for the phosphate-affinity separation are conducted in buffers of neutral pH with 50 μL of the magnetic beads in a 1.5-mL microtube. The entire separation protocol for phosphomonoester-type compounds, from addition to elution, requires less than 12 min per sample if the buffers and the zinc(II)-bound Phos-tag magnetic beads have been prepared in advance. The phosphate-affinity magnetic beads are reusable at least 15 times without a decrease in their phosphate-binding ability and they are stable for three months in propan-2-ol. Copyright © 2013 Elsevier B.V. All rights reserved.
2003-02-28
of Health p53 tumor suppressor PBS phosphate buffered saline PCO2 partial pressure of carbon dioxide PO2 partial pressure of oxygen PCR...buffered saline TTBS tween-20 tris buffered saline TonEBP tonicity-response enhancer binding protein TSNRP TriService Nursing Research Program...growth and metabolism (Hochstrasser, 1995; Deshaies, 1999). Although traditionally seen as no more than a means of eliminating no longer needed
NASA Technical Reports Server (NTRS)
Gibson, U. J.; Horrell, E. E.; Kou, Y.; Pusey, Marc
2000-01-01
We have measured the nucleation and aspect ratio of CEWL crystals grown by vapor diffusion in acetate, butyrate, carbonate, succinate, and phosphate buffers in a range of pH spanning the pK(sub a) of these buffers. The nucleation numbers drop off significantly in the vicinity of pK(sub a) for each of the buffers except the phosphate system, in which we used only the pH range around the second titration point(pK2). There is a concomitant increase in the sizes of the crystals. Some typical nucleation number results are shown. These data support and extend other observations. In addition, we have examined changes in aspect ratio which accompany the suppression of nucleation within each buffer system. The length of the face in the [001] direction was measured, and compared to the width of the (110) face in the [110] type directions. We find that while the aspect ratio of the crystals is affected by pH, it is dominated by a correlation with the size of the crystals. Small crystals are longer in the [0011 direction than crystals that are larger (higher pH within a buffer system). This relationship is found to hold independent of the choice of buffer. These results are consistent with those of Judge et al, who used a batch process which resulted in uniform sizing of crystals at each pH. In these experiments, we specifically avoid agitating the protein/salt buffer mixture when combining the two. This permits the formation of a range of sizes at a given pH. The results for a .05 M acetate 5% NaCl buffer are also shown. We will discuss these results in light of a growth model.
Sungthongjeen, Srisagul; Sriamornsak, Pornsak; Pitaksuteepong, Tasana; Somsiri, Atawit; Puttipipatkhachorn, Satit
2004-02-12
The aim of this work was to assess the effect of 2 formulation variables, the pectin type (with different degrees of esterification [DEs]) and the amount of calcium, on drug release from pectin-based matrix tablets. Pectin matrix tablets were prepared by blending indomethacin (a model drug), pectin powder, and various amounts of calcium acetate and then tableting by automatic hydraulic press machine. Differential scanning calorimetry, powder x-ray diffraction, and Fourier transformed-infrared spectroscopy studies of the compressed tablets revealed no drug-polymer interaction and the existence of drug with low crystallinity. The in-vitro release studies in phosphate buffer (United States Pharmacopeia) and tris buffer indicated that the lower the DE, the greater the time for 50% of drug release (T50). This finding is probably because of the increased binding capacity of pectin to calcium. However, when the calcium was excluded, the pectins with different DEs showed similar release pattern with insignificant difference of T50. When the amount of calcium acetate was increased from 0 to 12 mg/tablet, the drug release was significantly slower. However, a large amount of added calcium (ie, 24 mg/tablet) produced greater drug release because of the partial disintegration of tablets. The results were more pronounced in phosphate buffer, where the phosphate ions induced the precipitation of calcium phosphate. In conclusion, both pectin type and added calcium affect the drug release from the pectin-based matrix tablets.
Biaxially textured composite substrates
Groves, James R.; Foltyn, Stephen R.; Arendt, Paul N.
2005-04-26
An article including a substrate, a layer of a metal phosphate material such as an aluminum phosphate material upon the surface of the substrate, and a layer of an oriented cubic oxide material having a rock-salt-like structure upon the metal phosphate material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon a layer of a buffer material such as a SrTi.sub.x Ru.sub.1-x O.sub.3 layer.
Biocorrosion Evaluation on a Zr-Cu-Ag-Ti Metallic Glass
NASA Astrophysics Data System (ADS)
Kumar, Shresh; Anwar, Rebin; Ryu, Wookha; Park, E. S.; Vincent, S.
2018-04-01
Metallic glasses are in high demand for fabrication of variety of innovative products, in particular surgical and biomedical tools and devices owing to its excellent biocompatible properties. In the present investigation, a novel Zr39.5Cu50.5Ag4Ti6 metallic glass composition was synthesized using melt spinning technique. Potentiodynamic polarization studies were conducted to investigate bio-corrosion behaviour of Zr39.5Cu50.5Ag4Ti6 metallic glass. The test were conducted in various simulated artificial body conditions such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution. The bio-corrosion results of metallic glass were compared with traditional biomaterials. The study aims to provide bio-compatible properties of Zr39.5Cu50.5Ag4Ti6 metallic glass.
O'Donnell, Emma; Landolt, Kathleen; Hazi, Agnes; Dragano, Nico; Wright, Bradley J
2015-01-01
We assessed in an experimental design whether the stress response towards a work task was moderated by the autonomy to choose a break during the assigned time to complete the task. This setting is defined in accordance with the theoretical framework of the job-demand-control (JDC) model of work related stress. The findings from naturalistic investigations of a stress-buffering effect of autonomy (or 'buffer hypothesis') are equivocal and the experimental evidence is limited, especially with relation to physiological indices of stress. Our objective was to investigate if increased autonomy in a particular domain (break time control) was related with adaptive physiology using objective physiological markers of stress; heart rate variability (HRV) and salivary alpha amylase (sAA). We used a within-subject design and the 60 female participants were randomly assigned to an autonomy (free timing of break) and standard conditions (fixed timing of break) of a word processing task in a simulated office environment in a random order. Participants reported increased perceptions of autonomy, no difference in demand and performed worse in the task in the break-time autonomy versus the standard condition. The results revealed support for the manipulation of increased autonomy, but in the opposing direction. Increased autonomy was related with dysregulated physiological reactivity, synonymous with typical increased stress responses. Potentially, our findings may indicate that autonomy is not necessary a resource but could become an additional stressor when it adds additional complexity while the amount of work (demands) remains unchanged. Further, our findings underscore the need to collect objective physiological evidence of stress to supplement self-reported information. Self-report biases may partially explain the inconsistent findings with the buffer hypothesis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kawasaki, Kosei; Kamagata, Yoichi
2017-11-01
Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H 2 O 2 ) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659-7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H 2 O 2 formation in agar. The H 2 O 2 formation was pH dependent: H 2 O 2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H 2 O 2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H 2 O 2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H 2 O 2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H 2 O 2 from PT medium, these observations indicate that although H 2 O 2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H 2 O 2 levels in media prepared by autoclaving agar and phosphate buffer together (PT medium). In this study, we investigated the factors affecting H 2 O 2 formation from agar. H 2 O 2 formation is pH dependent, and ammonium ions promote this phosphate-catalyzed H 2 O 2 formation. Amendment of catalase or pyruvate, a well-known H 2 O 2 -scavenging agent, effectively eliminated H 2 O 2 Yet results suggest that growth-inhibiting factor(s) that cannot be eliminated by pyruvate (but can be by catalase) are present in PT medium. Copyright © 2017 American Society for Microbiology.
Kamagata, Yoichi
2017-01-01
ABSTRACT Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H2O2) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659–7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H2O2 formation in agar. The H2O2 formation was pH dependent: H2O2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H2O2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H2O2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H2O2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H2O2 from PT medium, these observations indicate that although H2O2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H2O2 levels in media prepared by autoclaving agar and phosphate buffer together (PT medium). In this study, we investigated the factors affecting H2O2 formation from agar. H2O2 formation is pH dependent, and ammonium ions promote this phosphate-catalyzed H2O2 formation. Amendment of catalase or pyruvate, a well-known H2O2-scavenging agent, effectively eliminated H2O2. Yet results suggest that growth-inhibiting factor(s) that cannot be eliminated by pyruvate (but can be by catalase) are present in PT medium. PMID:28821549
Hegde, Rahul J; Thakkar, Janhavi B
2017-01-01
This study aimed to compare and evaluate the changes in the salivary flow rate, pH, and buffering capacity before and after chewing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gums in children. Sixty children aged between 8 and 12 years were selected for the study. They were randomly divided into Group 1 (CPP-ACP chewing gum) and Group 2 (xylitol-containing chewing gum) comprising thirty children each. Unstimulated and stimulated saliva samples at 15 and 30 min interval were collected from all children. All the saliva samples were estimated for salivary flow rate, pH, and buffering capacity. Significant increase in salivary flow rate, pH, and buffering capacity from baseline to immediately after spitting the chewing gum was found in both the study groups. No significant difference was found between the two study groups with respect to salivary flow rate and pH. Intergroup comparison indicated a significant increase in salivary buffer capacity in Group 1 when compared to Group 2. Chewing gums containing CPP-ACP and xylitol can significantly increase the physiochemical properties of saliva. These physiochemical properties of saliva have a definite relation with caries activity in children.
NASA Astrophysics Data System (ADS)
Yuan, Xin; Yu, Dunji; Gao, Li-Lan; Gao, Hong
2016-05-01
This work reports the uniaxial ratcheting and fatigue behavior of a duplex Mg-Li-Al alloy under the influence of phosphate-buffered solution corrosion. Microstructural observations reveal pitting and filament corrosion defects, which impair the load-bearing capacity of the alloy and cause stress concentration, thus leading to an accelerated accumulation of ratcheting strain and shortened fatigue life under the same nominal loading conditions. Comparing Smith model, Smith-Watson-Topper model, and Paul-Sivaprasad-Dhar model, a ratcheting fatigue life prediction model based on the Broberg damage rule and the Paul-Sivaprasad-Dhar model was proposed, and the model yielded a superior prediction for the studied magnesium alloy.
The Preparation of Capsaicin-Chitosan Microspheres (CCMS) Enteric Coated Tablets
Chen, Jian; Huang, Gui-Dong; Tan, Si-Rong; Guo, Jiao; Su, Zheng-Quan
2013-01-01
This study aimed to research the preparation and content determination of capsaicin-chitosan microspheres (CCMS) enteric coated tablets. The core tablets were prepared with the method of wet granulation. Nine formulae were designed to determine the optimal formula of the core tablet. Eudragit L100 was used to prepare the CCMS enteric-coated tablets. The effect of enteric coated formulation variables such as content of talc (10%, 25% and 40%), plasticisers (TEC and DBS), dosage of plasticiser (10%, 20% and 30%) and coating weight (2%, 3% and 5%) were evaluated for drug release characteristics. The in vitro release was studied using 0.1 N HCl and pH 6.8 phosphate buffer. Enteric coated tablets without ruptures or swelling behaviour over 2 h in 0.1 N HCl indicated that these tablets showed acid resistance. The accumulated release rate in phosphate buffer (pH 6.8) revealed that the prepared tablets were able to sustain drug release into the intestine and a first-order release was obtained for capsaicin. This research is the first report of the preparation and content determination of CCMS enteric coated tablets. The sustained release behavior of enteric coated formulations in pH 6.8 phosphate buffer demonstrated that it would be a potential drug delivery platform for sustained delivery of gastric irritant drugs. PMID:24351818
Albumin adsorption onto surfaces of urine collection and analysis containers☆
Robinson, Mary K.; Caudill, Samuel P.; Koch, David D.; Ritchie, James; Hortin, Glen; Eckfeldt, John H.; Sandberg, Sverre; Williams, Desmond; Myers, Gary; Miller, W. Greg
2017-01-01
Background Adsorption of albumin onto urine collection and analysis containers may cause falsely low concentrations. Methods We added 125I-labeled human serum albumin to urine and to phosphate buffered solutions, incubated them with 22 plastic container materials and measured adsorption by liquid scintillation counting. Results Adsorption of urine albumin (UA) at 5–6 mg/l was <0.9%; and at 90 mg/l was <0.4%. Adsorption was generally less at pH 8 than pH 5 but only 3 cases had p <0.05. Adsorption from 11 unaltered urine samples with albumin 5–333 mg/l was <0.8%. Albumin adsorption for the material with greatest binding was extrapolated to the surface areas of 100 ml and 2 l collection containers, and to instrument sample cups and showed <1% change in concentration at 5 mg/l and <0.5% change at 20 mg/l or higher concentrations. Adsorption of albumin from phosphate buffered solutions (2–28%) was larger than that from urine. Conclusions Albumin adsorption differed among urine samples and plastic materials, but the total influence of adsorption was <1% for all materials and urine samples tested. Adsorption of albumin from phosphate buffered solutions was larger than that from urine and could be a limitation for preparations used as calibrators. PMID:24513540
Albumin adsorption onto surfaces of urine collection and analysis containers.
Robinson, Mary K; Caudill, Samuel P; Koch, David D; Ritchie, James; Hortin, Glen; Eckfeldt, John H; Sandberg, Sverre; Williams, Desmond; Myers, Gary; Miller, W Greg
2014-04-20
Adsorption of albumin onto urine collection and analysis containers may cause falsely low concentrations. We added (125)I-labeled human serum albumin to urine and to phosphate buffered solutions, incubated them with 22 plastic container materials and measured adsorption by liquid scintillation counting. Adsorption of urine albumin (UA) at 5-6 mg/l was <0.9%; and at 90 mg/l was <0.4%. Adsorption was generally less at pH8 than pH5 but only 3 cases had p<0.05. Adsorption from 11 unaltered urine samples with albumin 5-333 mg/l was <0.8%. Albumin adsorption for the material with greatest binding was extrapolated to the surface areas of 100 ml and 2l collection containers, and to instrument sample cups and showed <1% change in concentration at 5 mg/l and <0.5% change at 20 mg/l or higher concentrations. Adsorption of albumin from phosphate buffered solutions (2-28%) was larger than that from urine. Albumin adsorption differed among urine samples and plastic materials, but the total influence of adsorption was <1% for all materials and urine samples tested. Adsorption of albumin from phosphate buffered solutions was larger than that from urine and could be a limitation for preparations used as calibrators. Copyright © 2014 Elsevier B.V. All rights reserved.
Ramos, Macarena; Aranda, Angela; Garcia, Elena; Reuvers, Thea; Hooghuis, Henny
2003-06-15
A simple and sensitive high-performance liquid chromatographic (HPLC) method has been developed for the determination of five different quinolones: enrofloxacin, ciprofloxacin, sarafloxacin, oxolinic acid and flumequine in pork and salmon muscle. The method includes one extraction and clean-up step for the five quinolones together which are detected in two separated HPLC runs by means of their fluorescence. The proposed analytical method involves homogenizing of the tissue sample with 0.05 M phosphate buffer, pH 7.4 and clean-up by Discovery DS-18 cartridges. For chromatographic separation a Symmetry C(18) column is used in two different runs: (1) ciprofloxacin, enrofloxacin and sarafloxacin with acetonitrile-0.02 M phosphate buffer pH 3.0 (18:82) as mobile phase and the detector at excitation wavelength: 280 nm and emission wavelength 450 nm; and (2) oxolinic acid and flumequine with acetonitrile-0.02 M phosphate buffer pH 3.0 (34:66) as mobile phase and excitation wavelength: 312 nm and emission wavelength: 366 nm. Detection limit was as low as 5 ng g(-1), except for sarafloxacin which had a limit of 10 ng g(-1). Standard curves using blank muscle tissues spiked at different levels showed a good linear correlation coefficient, r(2) higher than 0.999 for all quinolones.
NASA Astrophysics Data System (ADS)
Chen, Fei-Yan; Yi, Jing-Wei; Gu, Zhe-Jia; Tang, Bin-Bing; Li, Jian-Qi; Li, Li; Kulkarni, Padmakar; Liu, Li; Mason, Ralph P.; Tang, Qun
2016-03-01
On-demand drug delivery is becoming feasible via the design of either exogenous or endogenous stimulus-responsive drug delivery systems. Herein we report the development of gadolinium arsenite nanoparticles as a self-delivery platform to store, deliver and release arsenic trioxide (ATO, Trisenox), a clinical anti-cancer drug. Specifically, unloading of the small molecule drug is triggered by an endogenous stimulus: inorganic phosphate (Pi) in the blood, fluid, and soft or hard tissue. Kinetics in vitro demonstrated that ATO is released with high ON/OFF specificity and no leakage was observed in the silent state. The nanoparticles induced tumor cell apoptosis, and reduced cancer cell migration and invasion. Plasma pharmacokinetics verified extended retention time, but no obvious disturbance of phosphate balance. Therapeutic efficacy on a liver cancer xenograft mouse model was dramatically potentiated with reduced toxicity compared to the free drug. These results suggest a new drug delivery strategy which might be applied for ATO therapy on solid tumors.On-demand drug delivery is becoming feasible via the design of either exogenous or endogenous stimulus-responsive drug delivery systems. Herein we report the development of gadolinium arsenite nanoparticles as a self-delivery platform to store, deliver and release arsenic trioxide (ATO, Trisenox), a clinical anti-cancer drug. Specifically, unloading of the small molecule drug is triggered by an endogenous stimulus: inorganic phosphate (Pi) in the blood, fluid, and soft or hard tissue. Kinetics in vitro demonstrated that ATO is released with high ON/OFF specificity and no leakage was observed in the silent state. The nanoparticles induced tumor cell apoptosis, and reduced cancer cell migration and invasion. Plasma pharmacokinetics verified extended retention time, but no obvious disturbance of phosphate balance. Therapeutic efficacy on a liver cancer xenograft mouse model was dramatically potentiated with reduced toxicity compared to the free drug. These results suggest a new drug delivery strategy which might be applied for ATO therapy on solid tumors. Electronic supplementary information (ESI) available: HRTEM image and electron diffraction pattern of individual GdAsOx NPs, cell viability measurements after 48 and 72 hours of incubation, body weight change curves, hematology curves, liver function curves, and renal function curves. See DOI: 10.1039/c6nr00536e
Lawlis, V B; Roche, T E
1980-11-20
NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex was compared at 10 microM free Ca2+ or in the absence of Ca2+ (i.e., less than 1.0 nM free Ca2+). In the presence of Ca2+, NADH inhibition was appreciably decreased for a wide range of NADH:NAD+ ratios. A half-maximal decrease in NADH inhibition occurred at slightly less than 1 microM free Ca/+ (as determined with EGTA-Ca buffers). Of necessity this was observed on top of an effect of Ca2+ on the S0.5 for alpha-ketoglutarate which was decreased by Ca2+ with a half-maximal effect at a similar concentration. The effect of Ca2+ on NADH inhibition was not observed in assays of the dihydrolipoyl dehydrogenase component (using dihydrolipoamide as a substrate) or in assays of bovine kidney pyruvate dehydrogenase complex. This indicates that the overall reaction catalyzed by the alpha-ketoglutarate dehydrogenase complex is required to elicit the effect of Ca2+ on NADH inhibition. At a fixed alpha-ketoglutarate concentration (50 microM), removal of Ca2+ reduced the activity of the alpha-ketoglutarate dehydrogenase complex by 8.5-fold (due to an increase in S0.5 for alpha-ketoglutarate) and, in the presence of different NADH:NAD+ ratios, decreased the activity of the complex by 50 to 100-fold. Effects of the phosphate potential (ATP/ADPxPi) or a combination of the phosphate potential and NADH:NAD+ ratio are also described. The possibility that the level of intramitochondrial free Ca/+ serves as a signal amplifier normally coupled to the energy state of mitochondria is discussed.
Tannate complexes of antihistaminic drug: sustained release and taste masking approaches.
Rahman, Ziyaur; Zidan, Ahmed S; Berendt, Robert T; Khan, Mansoor A
2012-01-17
The aim of this investigation was to evaluate the complexation potential of brompheniramine maleate (BPM) and tannic acid (TA) for sustained release and taste masking effects. The complexes (1:1-1:7 TA to BPM ratio) were prepared by the solvent evaporation method using methanol, phosphate buffer pH 6.8 or 0.1N HCl as common solvents. The complexes were characterized microscopically by scanning electron microscopy (SEM), chemically by Fourier transform infrared (FTIR) and solid-state NMR (SSNMR), thermally by differential scanning calorimetry (DSC), for crystallinity by powder X-ray powder diffraction (PXRD), for organoleptic evaluation by electronic tongue (e-tongue), and for solubility in 0.1N HCl and phosphate buffer pH 6.8. The dissolution studies were carried out using the USP II method at 50 rpm in 500 ml of dissolution media (0.1N HCl or phosphate buffer pH 6.8). SEM images revealed that the morphology of complexes were completely different from the individual components, and all complexes had the same morphological characteristics, irrespective of the solvent used for their preparation, pH or ratio of BPM and TA. The FTIR spectra showed the presence of chemical interactions between the TA and BPM. DSC, PXRD and SSNMR indicated that the drug lost its crystalline nature by formation of the complex. Complexation has significantly reduced the solubility of BPM and sustained the drug release up to 24h in phosphate buffer pH 6.8 media. The bitter taste of the BPM was completely masked which was indicated by Euclidean distance values which was far from the drug but near to its placebo in the complexes in all ratios studied. The taste masked complexes can be potentially developed as suitable dosage forms for pediatric use. In summary, complexation of BPM and TA effectively sustained the dissolution and masked the bitter taste of drug for the development of suitable dosage forms for pediatric use. Published by Elsevier B.V.
Vorst, Keith L; Todd, Ewen C D; Rysert, Elliot T
2004-10-01
Four sampling devices, a sterile environmental sponge (ES), a sterile cotton-tipped swab (CS), a sterile calcium alginate fiber-tipped swab (CAS), and a one-ply composite tissue (CT), were evaluated for quantitative recovery of Listeria monocytogenes from a food-grade stainless steel surface. Sterile 304-grade stainless steel plates (6 by 6 cm) were inoculated with approximately 106 CFU/cm2 L. monocytogenes strain Scott A and dried for 1 h. The ES and CT sampling devices were rehydrated in phosphate buffer solution. After plate swabbing, ES and CT were placed in 40 ml of phosphate buffer solution, stomached for 1 min and hand massaged for 30 s. Each CS and CAS device was rehydrated in 0.1% peptone before swabbing. After swabbing, CS and CAS were vortexed in 0.1% peptone for 1 min. Samples were spiral plated on modified Oxford agar with modified Oxford agar Rodac Contact plates used to recover any remaining cells from the stainless steel surface. Potential inhibition from CT was examined in both phosphate buffer solution and in a modified disc-diffusion assay. Recovery was 2.70, 1.34, and 0.62 log greater using CT compared with ES, CS, and CAS, respectively, with these differences statistically significant (P < 0.001) for ES and CT and for CAS, CS, and CT (P < 0.05). Rodac plates were typically overgrown following ES, positive after CS and CAS, and negative after CT sampling. CT was noninhibitory in both phosphate buffer solution and the modified disc-diffusion assay. Using scanning electron microscopy, Listeria cells were observed on stainless steel plates sampled with each sampling device except CT. The CT device, which is inexpensive and easy to use, represents a major improvement over other methods in quantifying L. monocytogenes on stainless steel surfaces and is likely applicable to enrichment of environmental samples.
Chain, Ernst B.; Sender, Peter M.
1973-01-01
In the absence of glucose, insulin stimulated the incorporation of 14C-labelled amino acids into protein by perfused rat hearts that had been previously substantially depleted of endogenous glucose, glucose 6-phosphate and glycogen by substrate-free perfusion. This stimulation was also demonstrated in hearts perfused with buffer containing 2-deoxy-d-glucose, an inhibitor of glucose utilization. It is concluded that insulin exerts an effect on protein synthesis independent of its action on glucose metabolism. Streptozotocin-induced diabetes was found to have no effect either on 14C-labelled amino acid incorporation by the perfused heart or on the polyribosome profile and amino acid-incorporating activity of polyribosomes prepared from the non-perfused hearts of these insulin-deficient rats, which show marked abnormalities in glucose metabolism. Protein synthesis was not diminished in the perfused hearts from rats treated with anti-insulin antiserum. The significance of these findings is discussed in relation to the reported effects of insulin deficiency on protein synthesis in skeletal muscle. PMID:4269308
Passive transport and binding of lead by human red blood cells.
Simons, T J
1986-09-01
The uptake of Pb into human red blood cells has been studied using Pb buffers. Passive Pb movements can be studied conveniently when the cells are depleted of adenosine 5'-triphosphate (ATP), to eliminate active transport, and of inorganic phosphate, to prevent precipitation of lead phosphate. Pb can cross the membrane passively in either direction. Influx and efflux show similar properties. Passive Pb transport is strongly stimulated by HCO3-, and is reduced by replacing Cl- with ClO4-. It is inhibited by low concentrations of 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS) and 4,4'-diisothiocyanostilbene-2.2'-disulphonic acid (DIDS), characteristic inhibitors of anion transport. Pb uptake is unaffected by varying the external concentrations of Na+, K+ and Ca2+. When Pb enters the cell, it binds mainly to haemoglobin. The ratio of bound Pb:free Pb2+ in the cytosol is estimated to be 6000:1. Pb binding to haemoglobin is unaffected by oxygenation. Binding to albumin is quantitatively similar to binding to haemoglobin. The implications of these results for the transport and binding of Pb in the blood are discussed.
Rustom, Laurence E.; Boudou, Thomas; Lou, Siyu; Pignot-Paintrand, Isabelle; Nemke, Brett W.; Lu, Yan; Markel, Mark D.; Picart, Catherine; Wagoner Johnson, Amy J.
2016-01-01
The increasing demand for bone repair solutions calls for the development of efficacious bone scaffolds. Biphasic calcium phosphate (BCP) scaffolds with both macropores and micropores (MP) have improved healing compared to those with macropores and no micropores (NMP), but the role of micropores is unclear. Here, we evaluate capillarity induced by micropores as a mechanism that can affect bone growth in vivo. Three groups of cylindrical scaffolds were implanted in pig mandibles for three weeks: MP were implanted either dry (MP-Dry), or after submersion in phosphate buffered saline, which fills pores with fluid and therefore suppresses micropore-induced capillarity (MP-Wet); NMP were implanted dry. The amount and distribution of bone in the scaffolds were quantified using micro-computed tomography. MP-Dry had a more homogeneous bone distribution than MP-Wet, although the average bone volume fraction, BVF¯, was not significantly different for these two groups (0.45±0.03 and 0.37±0.03, respectively). There was no significant difference in the radial bone distribution of NMP and MP-Wet, but the BVF¯ of NMP was significantly lower among the three groups (0.25±0.02). These results suggest that micropore-induced capillarity enhances bone regeneration by improving the homogeneity of bone distribution in BCP scaffolds. The explicit design and use of capillarity in bone scaffolds may lead to more effective treatments of large and complex bone defects. PMID:27544807
High Job Demands, Still Engaged and Not Burned Out? The Role of Job Crafting.
Hakanen, Jari J; Seppälä, Piia; Peeters, Maria C W
2017-08-01
Traditionally, employee well-being has been considered as resulting from decent working conditions arranged by the organization. Much less is known about whether employees themselves can make self-initiated changes to their work, i.e., craft their jobs, in order to stay well, even in highly demanding work situations. The aim of this study was to use the job demands-resources (JD-R model) to investigate whether job crafting buffers the negative impacts of four types of job demands (workload, emotional dissonance, work contents, and physical demands) on burnout and work engagement. A questionnaire study was designed to examine the buffering role of job crafting among 470 Finnish dentists. All in all, 11 out of 16 possible interaction effects of job demands and job crafting on employee well-being were significant. Job crafting particularly buffered the negative effects of job demands on burnout (7/8 significant interactions) and to a somewhat lesser extent also on work engagement (4/8 significant interactions). Applying job crafting techniques appeared to be particularly effective in mitigating the negative effects of quantitative workload (4/4 significant interactions). By demonstrating that job crafting can also buffer the negative impacts of high job demands on employee well-being, this study contributed to the JD-R model as it suggests that job crafting may even be possible under high work demands, and not only in resourceful jobs, as most previous studies have indicated. In addition to the top-down initiatives for improving employee well-being, bottom-up approaches such as job crafting may also be efficient in preventing burnout and enhancing work engagement.
Gera, N; Doores, S
2011-03-01
Inactivation of Escherichia coli and Listeria monocytogenes were investigated in buffer and milk upon treatment with ultrasound waves (USW). In addition, sonoprotective effect of milk components and ultrasound-induced changes in bacterial cells were investigated using scanning electron microscopy (SEM). Bacterial cells were added to phosphate buffer, whole milk, skim milk, or simulated milk ultrafiltrate (SMUF). To determine the sonoprotective effect of milk components, lactose (5%), casein (3%), or β lactoglobulin (0.3%) was added to SMUF. Samples were sonicated with 24 kHz pulse USW while maintaining the system temperature between 30 to 35 °C. Aliquots were drawn at set times during sonication and bacteria were enumerated by surface plating appropriate dilutions on selective and nonselective media plates. Escherichia coli exhibited significantly higher D values in whole (2.43 min) and skim milk (2.41 min) than phosphate buffer (2.19 min). Listeria monocytogenes also showed higher D values in whole (9.31 min) and skim milk (8.61 min) compared to phosphate buffer (7.63 min). Data suggest that milk exerts a sonoprotective effect on these bacteria. Escherichia coli exhibited a log-linear inactivation kinetics followed by tailing whereas L. monocytogenes showed 1st-order kinetics throughout. Among the milk components tested, presence of lactose in SMUF resulted in significantly higher D values than SMUF for both organisms suggesting that lactose was exerting a protective effect on bacteria. SEM images showed that USW caused mechanical damage to the cell wall and cell membrane of bacteria leading to their inactivation.
Erosion of water-based cements evaluated by volumetric and gravimetric methods.
Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F
2003-05-01
To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.
Torres, R; Viñas, I; Usall, J; Remón, D; Teixidó, N
2012-08-01
Determining the populations of biocontrol agents applied as a postharvest treatment on fruit surfaces is fundamental to the assessment of the microorganisms' ability to colonise and persist on fruit. To obtain maximum recovery, we must develop a methodology that involves both diluent and processing methods and that does not affect the viability of the microorganisms. The effect of diluent composition was evaluated using three diluents: phosphate buffer, peptone saline and buffered peptone saline. An additional study was performed to compare three processing methods (shaking plus sonication, stomaching and shaking plus centrifugation) on the recovery efficiency of Pantoea agglomerans strain CPA-2 from apples, oranges, nectarines and peaches treated with this biocontrol agent. Overall, slight differences occurred among diluents, although the phosphate buffer maintained the most ideal pH for CPA-2 growth (between 5.2 and 6.2). Stomaching, using the phosphate buffer as diluent, was the best procedure for recovering and enumerating the biocontrol agent; this fact suggested that no lethal effects from naturally occurring antimicrobial compounds present on the fruit skins and/or produced when the tissues were disrupted affected the recovery of the CPA-2 cells, regardless of fruit type. The growth pattern of CPA-2 on fruits maintained at 20°C and under cold conditions was similar to that obtained in previous studies, which confirms the excellent adaptation of this strain to conditions commonly used for fruit storage. Copyright © 2012 Elsevier B.V. All rights reserved.
In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications.
Rondelli, G; Torricelli, P; Fini, M; Giardino, R
2005-03-01
The electrochemical impedance spectroscopy (EIS) technique was used for the study of the electrochemical behaviour of Ni-free austenitic stainless steel for orthopaedic applications. Experiments were carried out using four different test solutions: (i) phosphate-buffered saline (PBS), (ii) minimum essential medium (MEM), (iii) MEM + 10% fetal calf serum (FCS), (iv) MEM + 10% fetal calf serum + L929 fibroblast cell line (Cell). Bode-phase spectra showed the presence of two maxima and were fitted with an equivalent circuit characterized by two parallel combinations (Resistance, Constant Phase Element). The (R(1), CPE(1)) branch was assigned to the inner compact passive film and the (R(2), CPE(2)) branch to the external porous film. The resistance of the inner film R(1), here directly related to the material's uniform corrosion resistance, raised with the immersion time and increased in the following order: PBS
In vitro behaviour of three biocompatible glasses in composite implants.
Varila, Leena; Lehtonen, Timo; Tuominen, Jukka; Hupa, Mikko; Hupa, Leena
2012-10-01
Poly(L,DL-lactide) composites containing filler particles of bioactive glasses 45S5 and S53P4 were compared with a composite containing a slowly dissolving glass S68. The in vitro reactivity of the composites was studied in simulated body fluid, Tris-buffered solution, and phosphate buffered saline. The high processing temperature induced thermal degradation giving cavities in the composites containing 45S5 and S53P4, while good adhesion of S68 to the polymer was observed. The cavities partly affected the in vitro reactivity of the composites. The degradation of the composites containing the bioactive glasses was faster in phosphate buffered saline than in the two other solutions. Hydroxyapatite precipitation suggesting bone tissue bonding capability was observed on these two composites in all three solutions. The slower dissolution of S68 glass particles and the limited hydroxyapatite precipitation suggested that this glass has potential as a reinforcing composition with the capability to guide bone tissue growth in biodegradable polymer composites.
Wedemeyer, Gary A.; Nelson, Nancy C.
1977-01-01
Ozone and chlorine inactivation curves were determined in three water types at 20 °C for the destruction of the fish pathogens Aeromonas salmonicida, the etiologic agent of furunculosis, and the enteric redmouth bacterium (ERM). In phosphate-buffered distilled water, 0.01 mg/ℓ ozone inactivated 103 cells/ml of ERM and A. salmonicida in 1/2 and 10 min, respectively. Chlorine at this concentration had little effect on either pathogen and a residual of at least 0.05 mg/ℓ was needed to achieve a complete kill within a 10-min contact time. In soft lake water (30 mg/ℓ as CaCO3) a chlorine residual of 0.1 mg/ℓ rapidly inactivated A. salmonicida and ERM but in hard water (120 mg/ℓ) A. salmonicida was more resistant and 0.2 mg/ℓ chlorine was required. Ozonation of the two lake waters at 90 mg O3∙h−1∙ℓ−1 (equivalent to a 0.01 mg/ℓ residual in ozone demand-free water) was required to destroy both pathogens within 10 min.In untreated soft lake water 103 cells/ml of A. salmonicida survived only 2 days, while the ERM bacterium (103 cells/ml) survived even after 20 day s in soft and hard untreated lake waters.
The quantitation of buffering action I. A formal & general approach.
Schmitt, Bernhard M
2005-03-15
Although "buffering" as a homeostatic mechanism is a universal phenomenon, the quantitation of buffering action remains controversial and problematic. Major shortcomings are: lack of a buffering strength unit for some buffering phenomena, multiple and mutually incommensurable units for others, and lack of a genuine ratio scale for buffering strength. Here, I present a concept of buffering that overcomes these shortcomings. Briefly, when, for instance, some "free" H+ ions are added to a solution (e.g. in the form of strong acid), buffering is said to be present when not all H+ ions remain "free" (i.e., bound to H2O), but some become "bound" (i.e., bound to molecules other than H2O). The greater the number of H+ ions that become "bound" in this process, the greater the buffering action. This number can be expressed in two ways: 1) With respect to the number of total free ions added as "buffering coefficient b", defined in differential form as b = d(bound)/d(total). This measure expresses buffering action from nil to complete by a dimensionless number between 0 and 1, analogous to probabilites. 2) With respect to the complementary number of added ions that remain free as "buffering ratio B", defined as the differential B = d(bound)/d(free). The buffering ratio B provides an absolute ratio scale, where buffering action from nil to perfect corresponds to dimensionless numbers between 0 and infinity, and where equal differences of buffering action result in equal intervals on the scale. Formulated in purely mathematical, axiomatic form, the concept reveals striking overlap with the mathematical concept of probability. However, the concept also allows one to devise simple physical models capable of visualizing buffered systems and their behavior in an exact yet intuitive way. These two measures of buffering action can be generalized easily to any arbitrary quantity that partitions into two compartments or states, and are thus suited to serve as standard units for buffering action. Some exemplary treatments of classical and non-classical buffering phenomena are presented in the accompanying paper.
Khachatryan, Lavrent; Dellinger, Barry
2011-11-01
A chemical spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was employed to measure the production of hydroxyl radical (·OH) in aqueous suspensions of 5% Cu(II)O/silica (3.9% Cu) particles containing environmentally persistent free radicals (EPFRs) of 2-monochlorophenol (2-MCP). The results indicate: (1) a significant differences in accumulated DMPO-OH adducts between EPFR containing particles and non-EPFR control samples, (2) a strong correlation between the concentration of DMPO-OH adducts and EPFRs per gram of particles, and (3) a slow, constant growth of DMPO-OH concentration over a period of days in solution containing 50 μg/mL EPFRs particles + DMPO (150 mM) + reagent balanced by 200 μL phosphate buffered (pH = 7.4) saline. However, failure to form secondary radicals using standard scavengers, such as ethanol, dimethylsulfoxide, sodium formate, and sodium azide, suggests free hydroxyl radicals may not have been generated in solution. This suggests surface-bound, rather than free, hydroxyl radicals were generated by a surface catalyzed-redox cycle involving both the EPFRs and Cu(II)O. Toxicological studies clearly indicate these bound free radicals promote various types of cardiovascular and pulmonary disease normally attributed to unbound free radicals; however, the exact chemical mechanism deserves further study in light of the implication of formation of bound, rather than free, hydroxyl radicals.
Tencer, Michal; Berini, Pierre
2008-11-04
We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.
Plotnikov, Nikolay V; Prasad, B Ram; Chakrabarty, Suman; Chu, Zhen T; Warshel, Arieh
2013-10-24
Understanding the nature of the free-energy surfaces for phosphate hydrolysis is a prerequisite for understanding the corresponding key chemical reactions in biology. Here, the challenge has been to move to careful ab initio QM/MM (QM(ai)/MM) free-energy calculations, where obtaining converging results is very demanding and computationally expensive. This work describes such calculations, focusing on the free-energy surface for the hydrolysis of phosphate monoesters, paying special attention to the comparison between the one water (1W) and two water (2W) paths for the proton-transfer (PT) step. This issue has been explored before by energy minimization with implicit solvent models and by nonsystematic QM/MM energy minimization, as well as by nonsystematic free-energy mapping. However, no study has provided the needed reliable 2D (3D) surfaces that are necessary for reaching concrete conclusions. Here we report a systematic evaluation of the 2D (3D) free-energy maps for several relevant systems, comparing the results of QM(ai)/MM and QM(ai)/implicit solvent surfaces, and provide an advanced description of the relevant energetics. It is found that the 1W path for the hydrolysis of the methyl diphosphate (MDP) trianion is 6-9 kcal/mol higher than that the 2W path. This difference becomes slightly larger in the presence of the Mg(2+) ion because this ion reduces the pKa of the conjugated acid form of the phosphate oxygen that accepts the proton. Interestingly, the BLYP approach (which has been used extensively in some studies) gives a much smaller difference between the 1W and 2W activation barriers. At any rate, it is worth pointing out that the 2W transition state for the PT is not much higher that the common plateau that serves as the starting point of both the 1W and 2W PT paths. Thus, the calculated catalytic effects of proteins based on the 2W PT mechanistic model are not expected to be different from the catalytic effects predicted using the 1W PT mechanistic model, which was calibrated on the observed barrier in solution and in which the TS charge distribution was similar to the that of the plateau (as was done in all of our previous EVB studies).
2015-01-01
A new 18F-labeled tetrazine derivative was developed aiming at optimal radiochemistry, fast reaction kinetics in inverse electron-demand Diels–Alder cycloaddition (IEDDA), and favorable pharmacokinetics for in vivo bioorthogonal chemistry. The radiolabeling of the tetrazine was achieved in high yield, purity, and specific activity under mild reaction conditions via conjugation with 5-[18F]fluoro-5-deoxyribose, providing a glycosylated tetrazine derivative with low lipophilicity. The 18F-tetrazine showed fast reaction kinetics toward the most commonly used dienophiles in IEDDA reactions. It exhibited excellent chemical and enzymatic stability in mouse plasma and in phosphate-buffered saline (pH 7.41). Biodistribution in mice revealed favorable pharmacokinetics with major elimination via urinary excretion. The results indicate that the glycosylated 18F-labeled tetrazine is an excellent candidate for in vivo bioorthogonal chemistry applications in pretargeted PET imaging approaches. PMID:26819667
Radiotherapy Measurements with a Deoxyribonucleic Acid Doublestrand-Break Dosimeter
NASA Astrophysics Data System (ADS)
Obeidat, Mohammad Ali
Many types of dosimeters are used in the clinic to measure radiation dose for therapy but none of them directly measures the biological effect of this dose. The overall purpose of this work was to develop a dosimeter that measures biological damage in the form of double-strand breaks to deoxyribonucleic acid. This dosimeter could provide a more biologically relevant measure of radiation damage than the currently utilized dosimeters. A pair of oligonucleotides was designed to fabricate this dosimeter. One is labeled with a 5'-end biotin and the other with a 5'-end 6 Fluorescein amidite (fluorescent dye excited at 495?nanometer, with a peak emission at 520 nanometer). These were designed to adhere to certain locations on the pRS316 vector and serve as the primers for polymerase chain reactions. The end product of this reaction is a 4 kilo-base pair double strands deoxyribonucleic acid fragment with biotin on one end and 6 Fluorescein amidite oligonucleotide on the other attached to streptavidin beads. The biotin end connects the double strands deoxyribonucleic acid to the streptavidin bead. These bead-connected double strands deoxyribonucleic acid were suspended in 50 microliter of phosphate-buffered saline and placed into a tube for irradiation. Following irradiation of the deoxyribonucleic acid dosimeter, we take advantage of the magnetic properties of the streptavidin bead by placing our sample microtube against a magnet. The magnetic field pulls the streptavidin beads against the side of the tube. If a double-strand-break has occurred for a double strands deoxyribonucleic acid, the fluorescein end of the double strands deoxyribonucleic acid becomes free and is no longer attached to the bead or held against the side of the microtube. The free fluorescein following a double-strand-break in double strands deoxyribonucleic acid is referred to here as supernatant. The supernatant is extracted and placed in another microtube, while the unbroken double strands deoxyribonucleic acid remain attached to the beads and stay in the microtube (Fig. 4). Those beads were re-suspended with 50 microliter of phosphate-buffered saline again (called beads), then we placed both supernatant and beads in a reader microplate and we read the fluorescence signal for both with a fluorescence reader (BioTek Synergy 2). These beads and supernatant fluorescence signals are denoted by B and S, respectively. The relative amount of supernatant fluorescence counts is proportional to the probability of a double-strand-break. The probability of double-strand-break was calculated with the following equation: (S-BG)/(S+B-2BG) (1). where S was the supernatant fluorescence intensity (related to the number of double strands deoxyribonucleic acid with double-strand breaks), B was the re-suspended beads fluorescence intensity (related to the number of double strands deoxyribonucleic acid without double-strand breaks), and BG was the phosphate-buffered saline fluorescence intensity (related to the background signal). There are two advantages that this type of dosimeter has over the gel separation technique. First, it is important to irradiate deoxyribonucleic acid in a solution that has similar osmolarity and ion concentrations to that in a human, such as phosphate-buffered saline. A gel dosimeter would require a transfer to gel to separate deoxyribonucleic acid, whereas our dosimeter can be separated in this solution. Currently, we use pipettes to manually perform this separation, but this step could be automated. Second, the magnetic deoxyribonucleic acid separation technique is much faster than that for gel electrophoresis. Calibration of radiotherapy equipment isn't something that happens in national science laboratories, with only world-leading experts. This is something that happens locally at every cancer clinic, with physicists that do not have the luxury of focusing solely on this one measurement. For this reason, ease of use is critical for this type of technology. (Abstract shortened by ProQuest.).
Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water.
Beltrán, Fernando J; Aguinaco, Almudena; García-Araya, Juan F; Oropesa, Ana
2008-08-01
In this study, water containing the pharmaceutical compound sulfamethoxazole (SMT) was subjected to the various treatments of different oxidation processes involving ozonation, and photolysis and catalysis under different experimental conditions. Removal rates of SMT and total organic carbon (TOC), from experiments of simple UVA radiation, ozonation (O(3)), catalytic ozonation (O(3)/TiO(2)), ozone photolysis (O(3)/UVA), photocatalytic oxidation (O(2)/TiO(2)/UVA) and photocatalytic ozonation (O(3)/UVA/TiO(2)), have been compared. Photocatalytic ozonation leads to the highest SMT removal rate (pH 7 in buffered systems, complete removal is achieved in less than 5min) and total organic carbon (in unbuffered systems, with initial pH=4, 93% TOC removal is reached). Also, lowest ozone consumption per TOC removed and toxicity was achieved with the O(3)/UVA/TiO(2) process. Direct ozone and free radical reactions were found to be the principal mechanisms for SMT and TOC removal, respectively. In photocatalytic ozonation, with buffered (pH 7) aqueous solutions phosphates (buffering salts) and accumulation of bicarbonate scavengers inhibit the reactions completely on the TiO(2) surface. As a consequence, TOC removal diminishes. In all cases, hydrogen peroxide plays a key role in TOC mineralization. According to the results obtained in this work the use of photocatalytic ozonation is recommended to achieve a high mineralization degree of water containing SMT type compounds.
NASA Astrophysics Data System (ADS)
Wissenwasser, J.; Vellekoop, M. J.; Kapferer, W.; Lepperdinger, G.; Heer, R.
2011-11-01
An impedance measurement system with probe signal frequencies up to 50 kHz with AC-probe voltages below 30 mV rms was integrated for wireless and battery-free monitoring of microbiological cell cultures. The here presented modular design and the use of state-of-the-art components greatly eases adoptions to a wide range of biotechnological applications without the need of bulky LCR-meters or potentiostats. The device had a power consumption of less than 2.5 mA at a 3.3 V single power supply and worked trouble-free within the humid environment of a cell culture incubator. Measurements on lumped RC-elements showed an error of less than 1% for absolute values and less than 1° regarding the phase of the complex impedance. The performance of sensor devices with interdigitated electrode structures for the measurement of adherent cell cultures was tested in the presence of phosphate-buffered saline solution in the humid atmosphere of an incubator for biological cell cultures.
Sun, Jian; Zhang, Yaping; Liu, Guoguang; Ning, Xunan; Wang, Yujie; Liu, Jingyong
2015-09-01
A novel bioelectrochemical system (BES) operated with polarity reversion was explored for simultaneous anaerobic/aerobic treatment of azo dye and production of bioelectricity under extremely low buffer. The Congo red was first decolorized in anode, with completed color removal in 35 h. The resultant decolorization intermediates were then mineralized after the anode reversed to aerobic biocathode, evidenced by 55 % chemical oxygen demand (COD) removal in 200 h. The mineralization efficiency was further increased to 70 % when the period of the half-cycle was prolonged to 375 h. Meanwhile, the BES produced a continuous stable positive/negative alternate voltage output under 5 mM phosphate buffer because of the self-neutralization of the accumulated protons and hydroxyl ions in electrolyte. The electrode performance was significantly improved, which was indicated by alleviated electrode polarization, due to in situ use of accumulated protons and hydroxyl ions and enhanced electron transfer in the presence of Congo red and its degradation intermediates, which resulted in 1.05-fold increases in maximum power density (67.5 vs. 32.9 mW/m(2)). An analysis of the microbial diversity in the biofilm revealed that the biofilm was dominated by facultative bacteria with functional roles in contaminant degradation and electricity generation.
Khalil, E; Sallam, A
1999-04-01
The copolymer of ammoniomethacrylate Eudragit RL (ERL) interacted with diclofenac acid salts (sodium and diethylamine salts) in aqueous solutions, forming a complex. Sorption experiments were done in aqueous solutions of either sodium lauryl sulfate (SLS), Tween 20, or Tween 80. The SLS competed strongly with the drug, even at low concentrations, and reduced significantly the amount of drug sorbed by ERL. Tweens at high concentrations exhibited two phase profiles: the sorption phase, which was short and during which drug concentration dropped sharply, and the release phase, during which the drug was released slowly over 24 hr and which was accompanied by dispersion of ERL particles into the colloidal dispersion. The interaction was dependent on temperature, ionic strength, and nature of the additives. The extent of interaction in water and phosphate buffer solutions was in the following order: water > pH 6 > pH 7-8. In-vitro dissolution studies of the dried complex were done over 24 hr. In water, the drug remained bound to the polymer. In aqueous surfactant solutions (SLS, Tween 20, and Tween 80) and phosphate buffer at pH 6.8, a linear relationship between drug concentration and the square root of time was obtained, indicating a matrix diffusion-controlled mechanism. However, 100% release was not reached, and resorption was observed in the phosphate buffer solution.
Pan, Zhongqin; Liu, Xiaojun; Xie, Jing; Bao, Ning; He, Hong; Li, Xiaodong; Zeng, Jiang; Gu, Haiying
2015-05-01
Although pH-switchable behaviors have been reported based on multilayer films modified electrodes, their pH-switchable biosensing is still difficult due to the existence of the electroactive mediator. In this study, we report the pH-dependable determination of hydrogen peroxide (H2O2) based on a four-bilayer film fabricated through layer by layer assembly between hemoglobin (Hb) and multiwall carbon nanotubes (MWCNTs). We observed that response of electroactive probe Fe(CN)6(3-) at the multilayer films was very sensitive and reversible to pH values of phosphate buffer solutions phosphate buffer solution with cyclic voltammetry. The reduction peak height of Fe(CN)6(3-) at the multilayer film could reach ∼221μA at pH 3.0 while 0μA at pH 9.0. The linear range for the detection of H2O2 at pH 3.0 was from 12.5μM to 10.4mM, which was much wider than that at pH 9.0. Our results demonstrated that the detection of H2O2 with the proposed modified electrode is dependent on pH values of phosphate buffer solution. Moreover, the component of multilayer films has impacts on the performance of biosensors with pH-switchable behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.
Zyuzin, Mikhail V; Honold, Tobias; Carregal-Romero, Susana; Kantner, Karsten; Karg, Matthias; Parak, Wolfgang J
2016-04-06
The temperature-dependence of the hydrodynamic diameter and colloidal stability of gold-polymer core-shell particles with temperature-sensitive (poly(N-isopropylacrylamide)) and temperature-insensitive shells (polyallylaminine hydrochloride/polystyrensulfonate, poly(isobutylene-alt-maleic anhydride)-graft-dodecyl) are investigated in various aqueous media. The data demonstrate that for all nanoparticle agglomeration, i.e., increase in effective nanoparticle size, the presence of salts or proteins in the dispersion media has to be taken into account. Poly(N-isopropylacrylamide) coated nanoparticles show a reversible temperature-dependent increase in size above the volume phase transition of the polymer shell when they are dispersed in phosphate buffered saline or in media containing protein. In contrast, the nanoparticles coated with temperature-insensitive polymers show a time-dependent increase in size in phosphate buffered saline or in medium containing protein. This is due to time-dependent agglomeration, which is particularly strong in phosphate buffered saline, and induces a time-dependent, irreversible increase in the hydrodynamic diameter of the nanoparticles. This demonstrates that one has to distinguish between temperature- and time-induced agglomerations. Since the size of nanoparticles regulates their uptake by cells, temperature-dependent uptake of thermosensitive and non-thermosensitive nanoparticles by cells lines is compared. No temperature-specific difference between both types of nanoparticles could be observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mode changes associated with oil droplet movement in solutions of gemini cationic surfactants.
Banno, Taisuke; Miura, Shingo; Kuroha, Rie; Toyota, Taro
2013-06-25
Micrometer-sized self-propelled oil droplets in nonequilibrium systems have attracted much attention, since they form stable emulsions composed of oil, water, and surfactant which represent a primitive type of inanimate chemical machinery. In this work, we examined means of controlling the movement of oil droplets by studying the dynamics of n-heptyloxybenzaldehyde droplets in phosphate buffers containing alkanediyl-α,ω-bis(N-dodecyl-N,N-dimethylammonium bromide) (nG12) with either tetramethylene (4G12), octaethylene (8G12), or dodecamethylene (12G12) chains in the linker moiety. Significant differences in droplet dynamics were observed to be induced by changes in the linker structure of these gemini cationic surfactants. In a phosphate buffer containing 30 mM 4G12, self-propelled motion of droplets concurrent with the formation of molecular aggregates on their surfaces was observed, whereas the fusion of oil droplets was evident in both 8G12 and 12G12 solutions. We also determined that the surface activities and the extent of molecular self-assembly of the surfactants in phosphate buffer were strongly influenced by the alkyl chain length in the linker moiety. We therefore conclude that the surface activities of the gemini cationic surfactant have important effects on the oil-water interfacial tension of oil droplets and the formation of molecular aggregates and that both of these factors induce the unique movement of the droplets.
Rate of Glycolate Formation During Photosynthesis at High pH 1
Orth, Gertrude M.; Tolbert, N. E.; Jimenez, Eduardo
1966-01-01
The products of C14O2 fixation by Chlamydomonas and Chlorella were studied under conditions most favorable for glycolate synthesis. The highest percentage of the C14 was incorporated into glycolate in the pH range of 8 to 9. After 1 to 2 minutes as much as 40% of the C14 was found in glycolate products and only a trace of C14 was present as phosphoglycerate. Below pH 8 the rate of photosynthesis was much faster, but only a small percent of the C14 was incorporated into glycolate in 1 or 2 minutes, while a high percent of the C14 accumulated in phosphoglycerate. C14 labeling of glycolate even at pH 8 or above did not occur at times shorter than 10 seconds. During the first seconds of photosynthesis, nearly all of the C14 was found in phosphoglycerate and sugar phosphates. Thus glycolate appears to be formed after the phosphate esters of the photosynthetic carbon cycle. Washing Chlamydomonas with water 2 or 3 times resulted in the loss of most of their free phosphate. When a small aliquot of NaHC14O3 was added to washed algae in the absence of this buffering capacity, the pH of the algal medium became 8 or above and much of the fixed C14 accumulated in glycolate. PMID:16656223
Oligoglyceric acid synthesis by autocondensation of glyceroyl thioester
NASA Technical Reports Server (NTRS)
Weber, A. L.
1986-01-01
The autocondensation of the glyceroyl thioester, S-glyceroyl-ethane-thiol, yielded olioglyceric acid. The rates of autocondensation and hydrolysis of the thioester increased from pH 6.5 to pH 7.5 in 2,6-lutidine and imidazole buffers. Autocondensation and hydrolysis were much more rapid in imidazole buffers as compared to 2,6-lutidine and phosphate buffers. The efficiency of ester bond synthesis was about 20% for 40 mM S-glyceroyl-ethane-thiol in 2,6-lutidine and imidazole buffers near neutral pH. The size and yield of the olioglyceric acid products increased when the concentration of the thioester was increased. The relationship of these results to prebiotic polymer synthesis is discussed.
Patane, Michael A; Schubert, William; Sanford, Thomas; Gee, Raymond; Burgos, Melissa; Isom, William P; Ruiz-Perez, Begona
2013-10-01
To evaluate the toxicokinetics and tolerability (local ocular and general toxicity) of the anti-inflammatory agent, dexamethasone phosphate (a prodrug of dexamethasone) delivered to the eye in rabbits by transscleral iontophoresis. Female rabbits (n=6/group) received dexamethasone phosphate (40 mg/mL ophthalmic solution, EGP-437) transsclerally to the right eye (OD) using the Eyegate(®) II ocular iontophoresis delivery system once biweekly for 24 consecutive weeks at current doses of 10, 14, and 20 mA-min and current levels up to, and including -4 mA for 3.5-5 min. The study included 2 control groups (n=6/group): (1) a noniontophoresis control [an ocular applicator-loaded citrate buffer (placebo) without current] and (2) an iontophoresis control (a citrate buffer plus cathode iontophoresis at 20 mA-min, -4 mA for 5 min). Recoverability was evaluated 4 weeks following the last dose in 2 animals per group. The left eye (OS) was untreated and served as an internal control for each animal. Ocular and general safety of dexamethasone phosphate and dexamethasone were assessed. Other evaluations included toxicokinetics, ophthalmic examinations, intraocular pressure (IOP) measurements, electroretinographs, clinical observations, body weight, hematology and serum chemistry, gross necropsy, organ weight, and microscopic histopathology. The biweekly transscleral iontophoresis with either the citrate buffer or dexamethasone phosphate at cathodic doses up to, and including 20 mA-min and currents up to, and including -4 mA for 24 weeks was well-tolerated. Transient signs of conjunctival hyperemia and chemosis, mild corneal opacity, and fluorescein staining of the cornea were noted and attributed to expected ocular reactions to the temporary placement of the ocular applicator and application of iontophoresis. There were no dexamethasone phosphate-, dexamethasone-, or iontophoresis-related effects on IOP, electroretinography, or histopathology. Reductions in body weight gain, anemia, decreased leukocyte and lymphocyte counts, compromised liver function, enlarged liver, and reduced spleen weight were consistent with systemic corticosteroid-mediated pharmacology, repeated use of anesthesia, stress, and sedentariness, and unlikely to be related to iontophoresis application. The results of this investigation suggest that repeated transscleral iontophoresis with dexamethasone phosphate may be safe for use as a treatment for inflammatory ocular disorders that require prolonged and/or repeated corticosteroid therapy.
Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review.
Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir
2017-01-01
An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.
Sifuna, Fred W; Orata, Francis; Okello, Veronica; Jemutai-Kimosop, Selly
2016-09-18
In this study, the electro-oxidation capacities of Na2SO4 and potassium phosphate buffer supporting electrolytes were tested and compared for destruction of the sulfamethoxazole (SMX) and diclofenac (DCF) on platinum (Pt) electrode and graphite carbon electrode in aqueous medium. The suitability of pharmaceutical active compounds (PhACs) for electrochemical oxidation was tested by cyclic voltammetry (CV) technique performed in the potential range -1.5 to +1.5 V versus Ag/AgCl, which confirmed the electro-activity of the selected PhACs. The degradation and mineralization were monitored by ultraviolet (UV)-Vis spectrophotometry and HPLC. 0.1 M Na2SO4 supporting electrolyte was found to be more effective for mineralization of SMX and DCF, with efficiency of 15-30% more than the 0.1 M phosphate buffer supporting electrolyte on the platinum (Pt) and carbon electrodes. The Pt electrode showed better performance in the degradation of the two PhACs while under the same conditions than the carbon electrode for both 0.1 M Na2SO4 and 0.1 M potassium phosphate buffer supporting electrolytes. The SMX and DCF degradation kinetics best fitted the second-order reaction, with rate constants ranging between 0.000389 and 0.006 mol(2) L(-2) min(-1) and correlation coefficient (R(2)) above 0.987. The second-order degradation kinetics indicated that the rate-determining step in the degradation could be a chemical process, thus suggesting the active involvement of electrolyte radical species in the degradation of SMX and DCF. Results obtained from a real field sample showed a more than 98% removal of the PhACs from the wastewater by electrochemical degradation.
Analytical Measurement of Discrete Hydrogen Sulfide Pools in Biological Specimens
Shen, Xinggui; Peter, Elvis A.; Bir, Shyamal; Wang, Rui; Kevil, Christopher G.
2015-01-01
Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that plays a vital role in numerous cellular functions and has become the focus of many research endeavors including pharmaco-therapeutic manipulation. Amongst the challenges facing the field is the accurate measurement of biologically active H2S. We have recently reported that the typically used methylene blue method and its associated results are invalid and do not measure bonafide H2S. The complexity of analytical H2S measurement reflects the fact that hydrogen sulfide is a volatile gas and exists in the body in different forms, including a free form, an acid labile pool and as bound sulfane sulfur. Here we describe a new protocol to discretely measure specific H2S pools using the monobromobimane method coupled with RP-HPLC. This new protocol involves selective liberation, trapping and derivatization of H2S. Acid-labile H2S is released by incubating the sample in an acidic solution (pH 2.6) of 100 mM phosphate buffer with 0.1 mM DTPA, in an enclosed system to contain volatilized H2S. Volatilized H2S is then trapped in 100 mM Tris-HCl (pH 9.5, 0.1 mM DTPA) and then reacted with excess monobromobimane. In a separate aliquot, the contribution of bound sulfane sulfur pool was measured by incubating the sample with 1 mM TCEP (Tris(2-carboxyethyl)phosphine hydrochloride), a reducing agent to reduce disulfide bonds, in 100 mM phosphate buffer (pH 2.6, 0.1 mM DTPA), and H2S measurement performed in an analogous manner to the one described above. The acid labile pool was determined by subtracting the free hydrogen sulfide value from the value obtained by the acid liberation protocol. The bound sulfane sulfur pool was determined by subtracting the H2S measurement from the acid liberation protocol alone compared to that of TCEP plus acidic conditions. In summary, our new method protocol allows very sensitive and accurate measurement of the three primary biological pools of H2S including free, acid labile, and bound sulfane sulfur in various biological specimens. PMID:22561703
The effect of reaction conditions on formation of wet precipitated calcium phosphates
NASA Astrophysics Data System (ADS)
Huang, Chen; Cao, Peng
2015-03-01
The precipitation process discussed in the present study involves the addition of alkaline solutions to an acidic calcium phosphate suspension. Several parameters (pH, pH buffer reagent, ageing and stirring) were investigated. The synthesized powders were calcined at 1000°C for 1 h in air, in order to study the thermal stability and crystalline phase compositions. X-ray diffraction (XRD) and ESEM analysis were used for sample characterization. It is found that all these processing parameters affect the crystalline phases evolved and resultant microstructures. Phase evolution occurred at an elevated pH level. The pH buffer reagent would affect both the phase composition and microstructure. Ageing was essential for the phase maturation. Stirring accelerated the reaction process by providing a homogeneous medium for precipitation.
Structural characterization and dissolution profile of mycophenolic acid cocrystals.
Zeng, Qing-Zhu; Ouyang, Jian; Zhang, Shuo; Zhang, Lei
2017-05-01
Three novel cocrystals of mycophenolic acid (MPA) with isonicotinamide (MPA-ISO), minoxidil (MPA-MIN) and 2,2'-dipyridylamine (MPA-DPA) as coformers have been prepared successfully by both slow evaporation and liquid-assisted grinding. The structures of these cocrystals show that all the three coformers form hydrogen bonds with the carboxylic acid group of MPA. The cocrystal MPA-ISO possesses remarkably improved solubility and dissolution rate, while two other cocrystals exhibit the opposite characteristics. The solids in the slurry with pH6.8 phosphate buffer and cocrystals remain as the incipient cocrystal after 24h. However, evidence of slight polymerization was shown in the slurry of pH6.8 phosphate buffer with MPA and MPA-ISO cocrystal. Copyright © 2017 Elsevier B.V. All rights reserved.
Guo, C; Gynn, M; Chang, T M S
2015-06-01
We report a novel method to simultaneously extract superoxide dismutase (SOD), catalase (CAT), and carbonic anhydrase (CA) from the same sample of red blood cells (RBCs). This avoids the need to use expensive commercial enzymes, thus enabling a cost-effective process for large-scale production of a nanobiotechnological polyHb-SOD-CAT-CA complex, with enhancement of all three red blood cell functions. An optimal concentration of phosphate buffer for ethanol-chloroform treatment results in good recovery of CAT, SOD, and CA after extraction. Different concentrations of the enzymes can be used to enhance the activity of polyHb-SOD-CAT-CA to 2, 4, or 6 times that of RBC.
NASA Astrophysics Data System (ADS)
Pal, Sarika; Verma, Alka; Raikwar, S.; Prajapati, Y. K.; Saini, J. P.
2018-05-01
In this paper, graphene-coated black phosphorus at the metal surface for the detection of DNA hybridization event is numerically demonstrated. The strategy consists of placing the sensing medium on top of black phosphorus-graphene-coated SPR which interfaces with phosphate-buffered saline solution carrying single-stranded DNA. Upon hybridization with its complementary DNA, desorption of the nanostructures takes place and thus enables the sensitive detection of the DNA hybridization event. The proposed sensor exhibits a sensitivity (125 ο/RIU), detection accuracy (0.95) and quality factor (13.62 RIU-1) for complementary DNA. In comparison with other reported papers, our suggested sensor provides much better performance. Thus, this label-free DNA detection platform should spur off new interest towards the use of black phosphorus-graphene-coated SPR interfaces.
Preparation and evaluation of sustained release loxoprofen loaded microspheres.
Venkatesan, P; Manavalan, R; Valliappan, K
2011-06-01
The aim of present study was to formulate and evaluate the loxoprofen loaded Sustained release microspheres by emulsion solvent evaporation technique. Ethylcellulose, a biocompatible polymer is used as the retardant material. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their particle size and drug loading and drug release. The in-vitro release studies were carried out in phosphate buffer at pH 7.4. The prepared microspheres were white, free flowing and spherical in shape. The drug-loaded microspheres showed 71.2% of entrapment and the in-vitro release studies showed that Loxoprofen microspheres of 1:3 ratios showed better sustained effect over a period of 8 hours.
Preparation and evaluation of sustained release loxoprofen loaded microspheres
Venkatesan, P.; Manavalan, R.; Valliappan, K.
2011-01-01
The aim of present study was to formulate and evaluate the loxoprofen loaded Sustained release microspheres by emulsion solvent evaporation technique. Ethylcellulose, a biocompatible polymer is used as the retardant material. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their particle size and drug loading and drug release. The in-vitro release studies were carried out in phosphate buffer at pH 7.4. The prepared microspheres were white, free flowing and spherical in shape. The drug-loaded microspheres showed 71.2% of entrapment and the in-vitro release studies showed that Loxoprofen microspheres of 1:3 ratios showed better sustained effect over a period of 8 hours PMID:24826017
Program on Resorbable Radio Devices
2014-05-05
radio circuit - + PDMS Copper Mg PBS Buffer 1© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com Transient, Biocompatible...way, ZnO provides an alternative to silicon [ 16 ] or organic semi- conductors [ 17–20 ] for physically transient forms of electronics and sensors...immersion in several different types of solutions, such as phosphate buffer saline (PBS, pH 4.0, Sigma- Figure 1 . Materials and designs for
Rustom, Laurence E; Boudou, Thomas; Lou, Siyu; Pignot-Paintrand, Isabelle; Nemke, Brett W; Lu, Yan; Markel, Mark D; Picart, Catherine; Wagoner Johnson, Amy J
2016-10-15
The increasing demand for bone repair solutions calls for the development of efficacious bone scaffolds. Biphasic calcium phosphate (BCP) scaffolds with both macropores and micropores (MP) have improved healing compared to those with macropores and no micropores (NMP), but the role of micropores is unclear. Here, we evaluate capillarity induced by micropores as a mechanism that can affect bone growth in vivo. Three groups of cylindrical scaffolds were implanted in pig mandibles for three weeks: MP were implanted either dry (MP-Dry), or after submersion in phosphate buffered saline, which fills pores with fluid and therefore suppresses micropore-induced capillarity (MP-Wet); NMP were implanted dry. The amount and distribution of bone in the scaffolds were quantified using micro-computed tomography. MP-Dry had a more homogeneous bone distribution than MP-Wet, although the average bone volume fraction, BVF‾, was not significantly different for these two groups (0.45±0.03 and 0.37±0.03, respectively). There was no significant difference in the radial bone distribution of NMP and MP-Wet, but the BVF‾, of NMP was significantly lower among the three groups (0.25±0.02). These results suggest that micropore-induced capillarity enhances bone regeneration by improving the homogeneity of bone distribution in BCP scaffolds. The explicit design and use of capillarity in bone scaffolds may lead to more effective treatments of large and complex bone defects. The increasing demand for bone repair calls for more efficacious bone scaffolds and calcium phosphate-based materials are considered suitable for this application. Macropores (>100μm) are necessary for bone ingrowth and vascularization. However, studies have shown that microporosity (<20μm) also enhances growth, but there is no consensus on the controlling mechanisms. In previous in vitro work, we suggested that micropore-induced capillarity had the potential to enhance bone growth in vivo. This work illustrates the positive effects of capillarity on bone regeneration in vivo; it demonstrates that micropore-induced capillarity significantly enhances the bone distribution in the scaffold. The results will impact the design of scaffolds to better exploit capillarity and improve treatments for large and load-bearing bone defects. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Karkossa, Frank; Klein, Sandra
2017-10-01
The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.
Sarciaux, J M; Mansour, S; Hageman, M J; Nail, S L
1999-12-01
The objective of this study was to identify critical formulation and processing variables affecting aggregation of bovine IgG during freeze-drying when no lyoprotective solute is used. Parameters examined were phosphate buffer concentration and counterion (Na versus K phosphate), added salts, cooling rate, IgG concentration, residual moisture level, and presence of a surfactant. No soluble aggregates were detected in any formulation after either freezing/thawing or freeze-drying. No insoluble aggregates were detected in any formulation after freezing, but insoluble aggregate levels were always detectable after freeze-drying. The data are consistent with a mechanism of aggregate formation involving denaturation of IgG at the ice/freeze-concentrate interface which is reversible upon freeze-thawing, but becomes irreversible after freeze-drying and reconstitution. Rapid cooling (by quenching in liquid nitrogen) results in more and larger aggregates than slow cooling on the shelf of the freeze-dryer. This observation is consistent with surface area measurements and environmental electron microscopic data showing a higher surface area of freeze-dried solids after fast cooling. Annealing of rapidly cooled solutions results in significantly less aggregation in reconstituted freeze-dried solids than in nonannealed controls, with a corresponding decrease in specific surface area of the freeze-dried, annealed system. Increasing the concentration of IgG significantly improves the stability of IgG against freeze-drying-induced aggregation, which may be explained by a smaller percentage of the protein residing at the ice/freeze-concentrate interface as IgG concentration is increased. A sodium phosphate buffer system consistently results in more turbid reconstituted solids than a potassium phosphate buffer system at the same concentration, but this effect is not attributable to a pH shift during freezing. Added salts such as NaCl or KCl contribute markedly to insoluble aggregate formation. Both sodium and potassium chloride contribute more to turbidity of the reconstituted solid than either sodium or potassium phosphate buffers at similar ionic strength, with sodium chloride resulting in a substantially higher level of aggregates than potassium chloride. At a given cooling rate, the specific surface area of dried solids is approximately a factor of 2 higher for the formulation containing sodium chloride than the formulation containing potassium chloride. Turbidity is also influenced by the extent of secondary drying, which underscores the importance of minimizing secondary drying of this system. Including a surfactant such as polysorbate 80, either in the formulation or in the water used for reconstitution, decreased, but did not eliminate, insoluble aggregates. There was no correlation between pharmaceutically acceptability of the freeze-dried cake and insoluble aggregate levels in the reconstituted product.
Shared filtering processes link attentional and visual short-term memory capacity limits.
Bettencourt, Katherine C; Michalka, Samantha W; Somers, David C
2011-09-30
Both visual attention and visual short-term memory (VSTM) have been shown to have capacity limits of 4 ± 1 objects, driving the hypothesis that they share a visual processing buffer. However, these capacity limitations also show strong individual differences, making the degree to which these capacities are related unclear. Moreover, other research has suggested a distinction between attention and VSTM buffers. To explore the degree to which capacity limitations reflect the use of a shared visual processing buffer, we compared individual subject's capacities on attentional and VSTM tasks completed in the same testing session. We used a multiple object tracking (MOT) and a VSTM change detection task, with varying levels of distractors, to measure capacity. Significant correlations in capacity were not observed between the MOT and VSTM tasks when distractor filtering demands differed between the tasks. Instead, significant correlations were seen when the tasks shared spatial filtering demands. Moreover, these filtering demands impacted capacity similarly in both attention and VSTM tasks. These observations fail to support the view that visual attention and VSTM capacity limits result from a shared buffer but instead highlight the role of the resource demands of underlying processes in limiting capacity.
Byrd, Jeffrey J.; Cheville, Ann M.; Bose, Jeffrey L.; Kaspar, Charles W.
1999-01-01
A by-product of glucose produced during sterilization (121°C, 15 lb/in2, 15 min) at neutral pH and in the presence of phosphate (i.e., phosphate-buffered saline) was bactericidal to Escherichia coli O157:H7 (ATCC 43895). Other six-carbon (fructose and galactose) and five-carbon (arabinose, ribose, and xylose) reducing sugars also produced a toxic by-product under the same conditions. Fructose and the five-carbon sugars yielded the most bactericidal activity. Glucose concentrations of 1% (wt/vol) resulted in a 99.9% decline in the CFU of stationary-phase cells per milliliter in 2 days at 25°C. An rpoS mutant (pRR10::rpoS) of strain 43895 (FRIK 816-3) was significantly (P < 0.001) more sensitive to the glucose-phosphate by-product than the parent strain, as glucose concentrations from 0.05 to 0.25% resulted in a 2- to 3-log10 reduction in CFU per milliliter in 2 days at 25°C. Likewise, log-phase cells of the wild-type strain, 43895, were significantly more sensitive (P < 0.001) to the glucose-phosphate by-product than were stationary-phase cells, which is consistent with the stability of rpoS and the regulation of rpoS-regulated genes. The bactericidal effect of the glucose-phosphate by-product was reduced when strains ATCC 43895 and FRIK 816-3 were incubated at a low temperature (4°C). Also, growth in glucose-free medium (i.e., nutrient broth) did not alleviate the sensitivity to the glucose-phosphate by-product and excludes the possibility of substrate-accelerated death as the cause of the bactericidal effect observed. The glucose-phosphate by-product was also bactericidal to Salmonella typhimurium, Shigella dysenteriae, and a Klebsiella sp. Attempts to identify the glucose-phosphate by-product were unsuccessful. These studies demonstrate the production of a glucose-phosphate by-product bactericidal to E. coli O157:H7 and the protective effects afforded by rpoS-regulated gene products. Additionally, the detection of sublethally injured bacteria may be compromised by the presence of this by-product in recovery media. PMID:10347019
Fundamental and Applied Studies of Polymer Membranes
NASA Astrophysics Data System (ADS)
Imbrogno, Joseph
Four major areas have been studied in this research: 1) synthesizing novel monomers, e.g. chiral monomers, to produce new types of functionalized membranes for the biotechnology and pharmaceutical industries, 2) hydrophobic brush membranes for desalinating brackish water, sea water, and separating organics, 3) fundamental studies of water interactions at surfaces using sum frequency generation (SFG), and 4) discovering new surface chemistries that will control the growth and differentiation of stem cells. We have developed a novel synthesis method in order to increase the breadth of our high throughput screening library. This library was generated using maleimide chemistry to react a common methacrylate linker with a variety of different functions groups (R groups) in order to form new monomers that were grafted from the surface of PES ultrafiltration membranes. From this work, we discovered that the chirality of a membrane can affect performance when separating chiral feed streams. This effect was observed when filtering bovine serum albumin (BSA) and ovalbumin in a high salt phosphate buffered saline (PBS, 150 mM salt). The Phe grafted membranes showed a large difference in performance when filtering BSA with selectivity of 1.13 and 1.00 for (S) and (R) Phe, respectively. However, when filtering ovalbumin, the (S) and (R) modified surfaces showed selectivity of 2.06 and 2.31, respectively. The higher selectivity enantiomer switched for the two different proteins. Permeability when filtering BSA was 3.06 LMH kPa-1 and 4.31 LMH kPa -1 for (S)- and (R)- Phe, respectively, and 2.65 LMH kPa -1 and 2.10 LMH kPa-1 when filtering ovalbumin for (S)- and (R)- Phe, respectively. Additionally, these effects were no longer present when using a low salt phosphate buffer (PB, 10 mM salt). Since, to our knowledge, membrane chirality is not considered in current industrial systems, this discovery could have a large impact on the pharmaceutical and biotechnology industries. We have developed hydrophobic brush membranes that were able to selectively separate valuable organics (isobutanol) from water, while rejecting other undesirable species, such as enzymes, using pervaporation (PV). These membranes (grafted from nanofiltration (NF) support membranes) had a selectivity ˜1.5x higher than the current industrial standard, polydimethylsiloxane (PDMS), with alpha = 10.1 +/- 0.9 for our brush membranes and alpha = 6.7 +/- 0.1 for PDMS membranes. Since the mechanism of pervaporation is based on the solution diffusion (SD) model, these membranes may be used to desalinate water or fractionate gases since they are also based on the SD mechanism. We have discovered that hydrophobic brush membranes are able to reject monovalent salt ions. This type of membrane is analogous to carbon nanotubes (CNTs), which are believed to have extremely high water fluxes through them due to near frictionless flow caused by a lack of hydrogen bonding. Using these brush membranes we were able to achieve 42% monovalent (NaCl) salt rejection of simulated seawater (32,000 ppm salt). These membranes are easier to scale-up than current composite membranes produced using interfacial polymerization. We have been using SFG to study interfacial water on membrane surfaces. We believe that water interactions with the membrane surface and with the feed species, e.g. proteins, play a critical role during the fouling process. Relevant buffers, such as phosphate buffered saline (PBS) and phosphate buffer, contain ions that are known to restructure water at interfaces. Sum frequency generation spectroscopy (SFG) was used to characterize interfacial water structure at poly(ether sulfone) (PES) thin films in the presence of 0.01 M phosphate buffer (low salt) and 0.01 M phosphate buffered saline (high salt). Three model surfaces were studied: unmodified PES, hydrophobic alkane (C18) modified PES, and poly(ethylene glycol) (PEG) modified PES. In the presence of the low salt phosphate buffer (10 mM salt), phosphate anions were excluded from the PEG-modified PES film. This led to a charge separation between the phosphate anions and sodium cations, creating a surface potential which strongly ordered water molecules into the bulk. When using high salt PBS (138 mM salt) the sodium chloride ions screened this charge and reduced water ordering. Interestingly, this effect was the greatest for the PEG modified surface, with minor or no effects observed for the C18 modified PES and unmodified PES, respectively. Using our high throughput screening platform, we were able to determine that (N-[3-(dimethylamino)propyl] methacrylamide), DMAPMA, supported strong attachment and long-term self-renewal of mouse embryonic stem (ES) cells while preventing differentiation (maintaining pluripotency). After developing this platform, it was used to screen for a surface that could instead induce differentiation of bovine and human retinal pigment epithelium (RPE) cells while promoting cell growth. Several PEG based surfaces were able to induce cobblestone morphology of the RPE cells, which is indicative of differentiation. (Abstract shortened by UMI.).
Phosphate glasses for radioactive, hazardous and mixed waste immobilization
Cao, H.; Adams, J.W.; Kalb, P.D.
1998-11-24
Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.
Miao, Yu; Wang, Cheng-long; Yin, Hui-jun; Shi, Da-zhuo; Chen, Ke-ji
2005-04-18
To establish method for the quantitative determination of adenosine phosphates in rat myocardium by optimized high performance liquid chromatogram (HPLC). ODS HYPERSIL C(18) column and a mobile phase of 50 mmol/L tribasic potassium phosphate buffer solution (pH 6.5), with UV detector at 254 nm were used. The average recovery rates of myocardial adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) were 99%-107%, 96%-104% and 95%-119%, respectively; relative standard deviations (RSDs) of within-day and between-days were less than 1.5% and 5.1%, respectively. The method is simple, rapid and accurate, and can be used to analyse the adenosine phosphates in myocardium.
NASA Astrophysics Data System (ADS)
Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Ketrin, Rosi; Nuryatini; Thanh, Ngo Huy; Truong Chinh, Nguyen; Vospelova, Alena; Bastkowski, Frank; Sander, Beatrice; Matzke, Jessica; Prokunin, Sergey; Frolov, Dmitry; Aprelev, Alexey; Dobrovolskiy, Vladimir; Uysal, Emrah; Liv, Lokman; Velina Lara-Manzano, Judith; Montero-Ruiz, Jazmin; Ortiz-Aparicio, JosÉ Luis; Ticona Canaza, Galia; Anuar Mohd Amin, Khirul; Abd Kadir, Haslina; Bakovets, Nickolay; Wong, Siu-Kay; Lam, Wai-Hing
2017-01-01
The APMP.QM-K91 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phthalate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan at the APMP-TCQM meeting held September 22-23, 2014. After approval by TCQM, the comparison has been conducted by NMIJ. The comparison is a key comparison following CCQM-K91. The comparison material was a phthalate buffer of pH around 4.0 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the third APMP key comparison on pH measurement and the fifth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006, APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011 and APMP.QM-K19/APMP.QM-P25 (a borate buffer) in 2013-2014. The results can be used further by any participant to support its CMC claim at least for a phthalate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Host plasma proteins on the surface of pathogenic Trichomonas vaginalis.
Peterson, K M; Alderete, J F
1982-08-01
Sodium dodecyl sulfate-gel electrophoresis and fluorography and fluorography technology revealed that pathogenic Trichomonas vaginalis was able to acquire numerous loosely associated plasma proteins during incubation in normal human plasma. These proteins were readily removed by repeated washing of the parasite in phosphate-buffered saline. Plasma proteins avidly bound to the surface of T. vaginalis were also detected using a highly sensitive and specific agglutination assay with protein A-bearing Staphylococcus aureus pretreated with monospecific antiserum directed against individual human serum proteins. These avidly associated plasma proteins could not be removed by repeated washing in phosphate-buffered saline or by treatment of washed, live organisms with surface-modifying reagents such as trypsin and periodate. A combined radioimmunoprecipitation-gel electrophoresis-fluorography methodology indicated that parasite biosynthesis of hostlike macromolecules was not responsible for the observed agglutination and reinforced the idea of trichosomal acquisition of plasma components. Finally, incubation of trichomonads with plasma in various buffers at different pH values did not alter the agglutination patterns. These and other data suggest that specific membrane sites trichomonal binding of host proteins. The biological significance of our results is discussed.
Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces
NASA Technical Reports Server (NTRS)
Pyle, B. H.; McFeters, G. A.
1990-01-01
Pseudomonads were adapted to grow in phosphate-buffered water and on stainless steel surfaces to study the iodine sensitivity of attached and planktonic cells. Cultures adapted to low nutrient growth were incubated at room temperature in a circulating reactor system with stainless steel coupons to allow biofilm formation on the metal surfaces. In some experiments, the reactor was partially emptied and refilled with buffer at each sampling time to simulate a "fill-and-draw" water system. Biofilms of attached bacteria, resuspended biofilm bacteria, and reactor suspension, were exposed to 1 mg l-1 iodine for 2 min. Attached bacterial populations which established on coupons within 3 to 5 days displayed a significant increase in resistance to iodine. Increased resistance was also observed for resuspended cells from the biofilm and planktonic bacteria in the system suspension. Generally, intact biofilms and resuspended biofilm cells were most resistant, followed by planktonic bacteria and phosphate buffer cultures. Thus, biofilm formation on stainless steel surfaces within water systems can result in significantly increased disinfection resistance of commonly-occurring water-borne bacteria that may enhance their ability to colonise water treatment and distribution systems.
Kamei, S; Ohkubo, A; Yamanaka, M
1979-08-15
Aspartate aminotransferase in the sera of normal subjects and of patients with hepatic diseases has been immunologically separated into two isoenzymes, cytosolic aspartate aminotransferase and mitochondrial aspartate aminotransferase. The activity of the isoenzymes was measured in three different buffer solutions with or without pyridoxal 5'-phosphate. To attain maximal activation, the apoenzyme of mitochondrial fraction must be preincubated with pyridoxal 5'-phosphate longer than that of the cytosolic fraction in either of the three reaction mixtures. In most sera the activity of both isoenzymes increased substantially in the presence of pyridoxal 5'-phosphate regardless of the type of buffer solutions. Both the apoenzymatic activity and the ratio of apo- to holo-enzymatic activity of each of the isoenzymes varied among samples from the patients with hepatic diseases. However, significantly high ratios of apo- to holo-enzymatic activity of both isoenzymes were observed in the patients with hepatoma in contrast with those with other hepatic diseases. These findings suggest that the simultaneous measurement of both apo- and holo-enzyme activities of aspartate aminotransferase isoenzymes may be useful in the clinical assessment of hepatic diseases.
The bioactivity of dietary anthocyanins is likely to be mediated by their degradation products.
Kay, Colin D; Kroon, Paul A; Cassidy, Aedin
2009-05-01
To date the in vitro mechanistic bioactivity of anthocyanins has been exclusively explored using aglycones and glycoside conjugates, despite a lack of evidence establishing these as the biologically available forms. We conducted intestinal epithelial cell (Caco-2 cells) culture experiments, which indicated that after a 4 h incubation of anthocyanins in cell-free culture media (DMEM), 57% of the initial cyanidin-3-glucoside (C3G) and 96% of cyanidin had degraded. The level of degradation was not statistically different from that of cultured cell incubations, suggesting that degradation was spontaneous. Degradation products were identified as protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), and were confirmed in two other buffer matrices (phosphate and Hank's buffers). In cultured cell media the degradation products PCA and PGA were metabolised to glucuronide and sulphate conjugates, as indicated by both enzyme hydrolysis (sulphatase and glucuronidase treatments) and MS (PCA and PGA m/z = 155; sulphate = 235; glucuronide = 331). These data suggest a significant proportion of intestinal metabolites of anthocyanins are likely to be conjugates of their degradation products. Future efforts to establish the biological activities of anthocyanins should therefore include the investigation of phenolic acid and aldehyde products of degradation, along with their respective metabolites.
Mori, H-M; Iwahashi, H
2013-08-01
Here, we determined the electron spin resonance (ESR) spectra of standard reaction mixtures (I) containing 25 μM flavin mononucleotide (FMN), 0.018% tea tree (Melaleuca alternifolia) oil, 1.9 M acetonitrile, 20 mM phosphate buffer (pH 7.4), 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN), and 1.0 mM FeSO₄(NH₄)₂SO₄ irradiated with 436 nm visible light (7.8 J/cm²). Prominent ESR signals (αN = 1.58 mT and αHβ = 0.26 mT) were detected, suggesting that free radicals form in the standard reaction. In order to know whether singlet oxygen (¹O₂) is involved in the radical formation or not, ESR measurement was performed for the standard D₂O reaction mixture (I) which contained 25 μM FMN, 0.0036% tea tree oil, 1.9 M acetonitrile-d3, 20 mM phosphate buffer (pH 7.4), 0.1 M 4-POBN and 1.0 mM FeSO₄ in D₂O. The ESR peak height of the standard D₂O reaction increased to 169 ± 24% of the control. Thus, ¹O₂ seems to be involved in the formation of the radicals because D₂O increases the lifetime of singlet oxygen. High-performance liquid chromatography-ESR-mass spectrometry analyses detected 1-methylethyl and methyl radicals in the standard reaction. The radicals appear to form through the reaction of ferrous ion with α-terpinene endoperoxide (ascaridole), which generated from the reaction of α-terpinene with ¹O₂. The 1-methylethyl and methyl radicals may exert a pro-oxidant effect under these conditions.
Mura, F; Silva, T; Castro, C; Borges, F; Zuñiga, M C; Morales, J; Olea-Azar, C
2014-12-01
A series hydroxycinnamic and gallic acids and their derivatives were studied with the aim of evaluating their in vitro antioxidant properties both in homogeneous and in cellular systems. It was concluded from the oxygen radical absorbance capacity-fluorescein (ORAC-FL), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and cyclic voltammetry data that some compounds exhibit remarkable antioxidant properties. In general, in homogeneous media (DPPH assay), galloyl-based cinnamic and benzoic systems (compounds 7-11) were the most active, exhibiting the lowest oxidation potentials in both dimethyl sulfoxide (DMSO) and phosphate buffer. Yet, p-coumaric acid and its derivatives (compounds 1-3) disclosed the highest scavenging activity toward peroxyl radicals (ORAC-FL assay). Interesting structure-property- activity relationships between ORAC-FL, or DPPH radical, and redox potentials have been attained, showing that the latter parameter can be a valuable antioxidant measure. It was evidenced that redox potentials are related to the structural features of cinnamic and benzoic systems and that their activities are also dependent on the radical generated in the assay. Electron spin resonance data of the phenoxyl radicals generated both in DMSO and phosphate buffer support the assumption that radical stability is related to the type of phenolic system. Galloyl-based cinnamic and benzoic ester-type systems (compounds 9 and 11) were the most active and effective compounds in cell-based assays (51.13 ± 1.27% and 54.90 ± 3.65%, respectively). In cellular systems, hydroxycinnamic and hydroxybenzoic systems operate based on their intrinsic antioxidant outline and lipophilic properties, so the balance between these two properties is considered of the utmost importance to ensure their performance in the prevention or minimization of the effects due to free radical overproduction.
There is no capacity limited buffer in the Murdock (1962) free recall data
2010-01-01
Theories of short term memory often include a limited capacity “buffer”. Such a buffer contains items which do not decay at all but are overwritten by new data. I show that one of the experiments that fueled the buffer concept, the free recall experiments by Murdock (J Exp Psychol 64(5):482–488, 1962), does not contain such a buffer. PMID:22132047
Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan
2015-01-01
A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.
Phosphorus Amendment Efficacy for In Situ Remediation of ...
A validated method is needed to measure reductions of in vitro bioaccessible (IVBA) Pb in urban soil remediated with amendments. This study evaluated the effect of in vitro extraction solution pH and glycine buffer on bioaccesible Pb in P-treated soils. Two Pb-contaminated soils (790-1300 mg Pb kg-1), one from a garden and one from a city lot in Cleveland, OH, were incubated in a bench scale experiment for 1 yr. Six phosphate amendments, including bone meal, fish bone, poultry litter, monoammonium phosphate, diammonium phosphate, and triple superphosphate, were added to containers at two application rates. Lead IVBA was assessed using USEPA Method 1340 and three modified versions of this method. Modifications included using solutions with pH 1.5 and 2.5 as well as using solutions with and without 0.4 mol L-1 glycine. Soil amendments were effective in reducing IVBA Pb in these soils as measured by pH 1.5 with glycine buffer. The greatest reductions in IVBA Pb, from 5 to 26%, were found using pH 2.5 extractions. Lead mineral results showed several soil amendments promoted Pb phosphate formation, an indicator of remediation success. A significant negative linear relationship between reduction in IVBA Pb and Pb-phosphate formation was found only for pH 2.5 without glycine extraction solution. A modified USEPA Method 1340 without glycine and using pH 2.5 has the potential to predict P soil treatment efficacy and reductions in bioavailable Pb. Developing mana
Increased degradation rate of nitrososureas in media containing carbonate.
Seidegård, Janeric; Grönquist, Lena; Tuvesson, Helen; Gunnarsson, Per-Olov
2009-01-01
The stability of two nitrosoureas, tauromustine and lomustine, has been investigated in different media and buffers. All media tested, except Leibovitz's L-15 medium, significantly increased the degradation rate of the investigated nitrosoureas at pH 7.4. Sodium bicarbonate seems to be the cause of the observed increase of the degradation rate, since it provides the main buffering capacity of all the media except for Leibovitz's L-15 medium, which is based on phosphate buffer. Other ingredients in the media, such as amino acids, vitamins, and inorganic salts, or the ionic strength of a buffer, did not have any major effect on the degradation rate of the nitrosoureas. These results suggest that media containing carbonated buffer should be avoided when the anti-tumor effect of nitrosoureas is to be investigated in different cell cultures.
Passive transport and binding of lead by human red blood cells.
Simons, T J
1986-01-01
The uptake of Pb into human red blood cells has been studied using Pb buffers. Passive Pb movements can be studied conveniently when the cells are depleted of adenosine 5'-triphosphate (ATP), to eliminate active transport, and of inorganic phosphate, to prevent precipitation of lead phosphate. Pb can cross the membrane passively in either direction. Influx and efflux show similar properties. Passive Pb transport is strongly stimulated by HCO3-, and is reduced by replacing Cl- with ClO4-. It is inhibited by low concentrations of 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS) and 4,4'-diisothiocyanostilbene-2.2'-disulphonic acid (DIDS), characteristic inhibitors of anion transport. Pb uptake is unaffected by varying the external concentrations of Na+, K+ and Ca2+. When Pb enters the cell, it binds mainly to haemoglobin. The ratio of bound Pb:free Pb2+ in the cytosol is estimated to be 6000:1. Pb binding to haemoglobin is unaffected by oxygenation. Binding to albumin is quantitatively similar to binding to haemoglobin. The implications of these results for the transport and binding of Pb in the blood are discussed. PMID:3795106
Functional Analysis of Human NF1 in Drosophila
2007-01-01
adjusted to 1 mg/ml. Fifty microlitres of 2 assay buffer (50 mM Tris– acetate buffer at pH 7.5, 20 mM MgCl2, 2 mM dithiothreitol, 10 mM creatine phosphate...200 units/ml creatinine kinase, 0.1 mM cAMP at pH 7.5, 0.2 mg/ml bovine serum albumin, 0.02 mg/ml aprotinin, 0.02 mg/ml pepstatin and fresh 0.2 mg
Ganini, Douglas; Canistro, Donatella; Jang, JinJie; Stadler, Krisztian; Mason, Ronald P.; Kadiiska, Maria B.
2012-01-01
Ceruloplasmin (ferroxidase) is a copper-binding protein known to promote Fe2+ oxidation in plasma of mammals. Besides its classical ferroxidase activity, ceruloplasmin is known to catalyze the oxidation of various substrates, such as amines and catechols. Assays based on cyclic hydroxylamine oxidation are used to quantify and detect free radicals in biological samples ex vivo and in vitro. We show here that human ceruloplasmin promotes the oxidation of the cyclic hydroxylamine 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) and related probes in Chelex-treated phosphate buffer and rat serum. The reaction is suppressed by the metal chelators DTPA, EDTA and Desferal, while heparin and bathocuproine have no effect. Catalase or SOD additions do not interfere with the CPH-oxidation yield, demonstrating that free radicals are not involved in the CPH oxidation mediated by ceruloplasmin. Plasma samples immunodepleted of ceruloplasmin have lower levels of CPH oxidation, which confirms the role of ceruloplasmin (ferroxidase) as a biological oxidizing agent of cyclic hydroxylamines. In conclusion, we show that the ferroxidase activity of ceruloplasmin is a possible biological source of artifacts in the cyclic hydroxylamine-oxidation assay used for ROS detection and quantification. PMID:22824865
A self-powered kinesin-microtubule system for smart cargo delivery
NASA Astrophysics Data System (ADS)
Jia, Yi; Dong, Weiguang; Feng, Xiyun; Li, Jieling; Li, Junbai
2014-11-01
A smart self-powered cargo delivery system that is composed of creatine phosphate kinase (CPK) microspheres, kinesins and microtubules is demonstrated. The CPK microsphere not only acts as an ATP generation and buffering system, but also as a carrier for cargo transport, thus realizing the easy loading and self-powered delivery of cargos at the same time.A smart self-powered cargo delivery system that is composed of creatine phosphate kinase (CPK) microspheres, kinesins and microtubules is demonstrated. The CPK microsphere not only acts as an ATP generation and buffering system, but also as a carrier for cargo transport, thus realizing the easy loading and self-powered delivery of cargos at the same time. Electronic supplementary information (ESI) available: Experimental details, Fig. S1-S4, and Mov. S1-S6. See DOI: 10.1039/c4nr04454a
NASA Astrophysics Data System (ADS)
Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.
2016-02-01
In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.
Sommers, Christopher H; Cooke, Peter H
2009-04-01
Yersinia pestis is the causative agent of plague. Although rare, pharyngeal plague in humans has been associated with consumption or handling of meat prepared from infected animals. The risks of contracting plague from consumption of deliberately contaminated food are currently unknown. Gamma radiation is a penetrating form of electromagnetic radiation, and UVC radiation is used for decontamination of liquids or food surfaces. Gamma radiation D10-values (the radiation dose needed to inactivate 1 log unit pathogen) were 0.23 (+/-0.01) and 0.31 (+/-0.03) kGy for avirulent Y. pestis inoculated into Butterfield's phosphate buffer and onto frankfurter surfaces, respectively, at 0 degree C. A UVC radiation dose of 0.25 J/cm2 inactivated avirulent Y. pestis suspended in Butterfield's phosphate buffer. UVC radiation doses of 0.5 to 4.0 J/cm2 inactivated 0.97 to 1.20 log units of the Y. pestis surface inoculated onto frankfurters. A low gamma radiation dose of 1.6 kGy could provide a 5-log reduction and a UVC radiation dose of 1 to 4 J/cm2 would provide a 1-log reduction of Y. pestis surface inoculated onto frankfurters. Y. pestis was capable of growth on frankfurters during refrigerated storage (10 degrees C). Gamma radiation of frankfurters inhibited the growth of Y. pestis during refrigerated storage, and UVC radiation delayed the growth of Y. pestis.
Fracture toughness and fractography of dental cements, lining, build-up, and filling materials.
Mueller, H J
1990-06-01
The plane strain fracture toughness (K1c) at 23 degrees C and the fractography of zinc phosphate and zinc polycarboxylate cements, buffered glass ionomer liner, amalgam alloy admixed glass ionomer build-up material, and glass ionomer, microfilled and conventionally filled bis-GMA resin composite filling materials were analyzed by elastic-plastic short-rod and scanning electron microscopy methodologies. Results indicated that significant differences occurred in their K1c's from the lowest to the highest in the following groups of materials, (i) buffered glass ionomer, (ii) zinc phosphate, glass ionomer, zinc polycarboxylate, and alloy mixed glass ionomer, (iii) microfilled resin, and (iv) conventionally filled resin. All materials except the microfilled resin, which fractured via crack jumping, fractured via smooth crack advance. Filler debonding without any crack inhibiting process was related to materials with low K1c values. The incorporation of either buffering compounds or alloy particles into glass ionomer had no beneficial effect upon fracture toughness. This was in contrast to microfilled and conventionally filled resins where either crack blunting or crack pinning processes, respectively, were likely involved with their increased K1c's. For microfilled resin, distinct radial zones positioned around the chevron apex and characterized by plastically deformed deposited material were related to distinct crack jumps that occurred in the load versus displacement behavior. Finally, for the two remaining materials of zinc phosphate and polycarboxylate, particle cleavage and matrix debonding for the former and shear yielding for the latter occurred.
Pereira, A V; Cass, Q B
2005-11-05
A bidimensional HPLC method for the simultaneous determination of sulfamethoxazole (SMX) and trimethoprim (TMP) in bovine milk has been developed and validated. After centrifugation, aliquots (150 microl) of milk samples were directly injected to a column-switching HPLC system. At the first step a RAM octyl-BSA column was employed to automatically remove proteins that otherwise would interfere with milk analysis. The mobile phase 0.01 M phosphate buffer pH 6.0:acetonitrile (95:5, v/v) was used in the first 5 min for the elution of milk proteins and then 0.01 M phosphate buffer pH 6.0:acetonitrile (83:17, v/v) for transfer SMX and TMP to the analytical column. The separation of SMX and TMP from one another and from other remaining milk components was performed on an octyl column using the mobile phase 0.01 M phosphate buffer pH 5.0:acetonitrile (82:18, v/v), which were detected by UV at 265 nm. The calibration graphs were linear in the concentration ranges of 25-800 ng/ml and 50-400 ng/ml for SMX and TMP, respectively. The intra- and inter-assay coefficients of variation were less than 15% for both drugs. The validated method was applied to the analysis of milk samples of twelve (two groups of six) cows after administration (intramuscular or subcutaneous) of a single recommended therapeutic dose of the SMX-TMP combination.
Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle
Royer, Leandro; Ríos, Eduardo
2009-01-01
Since its discovery in 1971, calsequestrin has been recognized as the main Ca2+ binding protein inside the sarcoplasmic reticulum (SR), the organelle that stores and upon demand mobilizes Ca2+ for contractile activation of muscle. This article reviews the potential roles of calsequestrin in excitation–contraction coupling of skeletal muscle. It first considers the quantitative demands for a structure that binds Ca2+ inside the SR in view of the amounts of the ion that must be mobilized to elicit muscle contraction. It briefly discusses existing evidence, largely gathered in cardiac muscle, of two roles for calsequestrin: as Ca2+ reservoir and as modulator of the activity of Ca2+ release channels, and then considers the results of an incipient body of work that manipulates the cellular endowment of calsequestrin. The observations include evidence that both the Ca2+ buffering capacity of calsequestrin in solution and that of the SR in intact cells decay as the free Ca2+ concentration is lowered. Together with puzzling observations of increase of Ca2+ inside the SR, in cells or vesicular fractions, upon activation of Ca2+ release, this is interpreted as evidence that the Ca2+ buffering in the SR is non-linear, and is optimized for support of Ca2+ release at the physiological levels of SR Ca2+ concentration. Such non-linearity of buffering is qualitatively explained by a speculation that puts together ideas first proposed by others. The speculation pictures calsequestrin polymers as ‘wires’ that both bind Ca2+ and efficiently deliver it near the release channels. In spite of the kinetic changes, the functional studies reveal that cells devoid of calsequestrin are still capable of releasing large amounts of Ca2+ into the myoplasm, consistent with the long term viability and apparent good health of mice engineered for calsequestrin ablation. The experiments therefore suggest that other molecules are capable of providing sites for reversible binding of large amounts of Ca2+ inside the sarcoplasmic reticulum. PMID:19403601
Volz, H P; Rzanny, R; Rössger, G; Hübner, G; Kreitschmann-Andermahr, I; Kaiser, W A; Sauer, H
1997-12-30
In the present investigation on 31P-magneto-resonance spectroscopic parameters in the frontal lobe, we found phosphocreatine levels and the ratio phosphocreatine/adenosine triphosphate to be increased (12.62 +/- 1.98% resp. 0.31 +/- 0.06) in 50 neuroleptic-treated schizophrenics, whereas no differences were detected in 10 neuroleptic-free patients (11.66 +/- 2.57% resp. 0.29 +/- 0.08) compared to 36 controls (11.37 +/- 1.45 resp. 0.29 +/- 0.04). This result points to a major role of neuroleptics in the metabolism of high-energy phosphates.
INACTIVATION OF HEPATITIS A VIRUS AND MS2 BY OZONE AND OZONE-HYDROGEN PEROXIDE IN BUFFERED WATER
The comparative inactivation of highly purified hepatitis A virus (HAV) and MS2 by 1 mg H202/L, 2.0 and 0.4 mg 03/L, and 2.0 mg 03/L plus 0.6, 1.0, or 1.6 mg H202/L, at 3-10 degrees C, in 0.01 M phosphate buffer (pH 6-10) was determined. Both HAV and MS2 were completely inactivat...
Semenistaya, Ekaterina; Zvereva, Irina; Krotov, Grigory; Rodchenkov, Grigory
2016-09-01
Currently liquid chromatography - mass spectrometry (LC-MS) analysis after solid-phase extraction (SPE) on weak cation-exchange cartridges is a method of choice for anti-doping analysis of small bioactive peptides such as growth hormone releasing peptides (GHRPs), desmoporessin, LHRH, and TB-500 short fragment. Dilution of urine samples with phosphate buffer for pH adjustment and SPE on weak cation exchange microelution plates was tested as a means to increase throughput of this analysis. Dilution using 200 mM phosphate buffer provides good buffering capacity without affecting the peptides recoveries. SPE on microelution plates was performed on Waters Positive Pressure-96 Processor with subsequent evaporation of eluates in nitrogen flow. Though the use of smaller sample volume decreases the pre-concentration factor and increases the limits of detection of 5 out of 17 detected peptides, the recovery, linearity, and reproducibility of the microelution extraction were comparable with cartridge SPE. The effectiveness of protocols was confirmed by analysis of urine samples containing ipamorelin, and GHRP-6 and its metabolites. SPE after urine sample dilution with buffer can be used for faster sample preparation. The use of microelution plates decreases consumption of solvents and allows processing of up to 96 samples simultaneously. Cartridge SPE with manual рН adjustment remains the best option for confirmation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie
2014-01-01
A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351
Report of the key comparison APMP.QM-K19. APMP comparison on pH measurement of borate buffer
NASA Astrophysics Data System (ADS)
Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Obromsook, Krairerk; Tangpaisarnkul, Nongluck; Rodruangthum, Patumporn; Wong, Siu-Kay; Lam, Wai-Hing; Zakaria, Osman; Anuar Mohd. Amin, Khirul; Thanh, Ngo Huy; Máriássy, Michal; Vyskocil, Leos; Hankova, Zuzana; Fisicaro, Paola; Stoica, Daniela; Singh, Nahar; Soni, Daya; Ticona Canaza, Galia; Kutovoy, Viatcheslav; Barbieri Gonzaga, Fabiano; Dias, Júlio Cesar; Vospelova, Alena; Bakovets, Nickolay; Zhanasbayeva, Bibinur
2015-01-01
The APMP.QM-K19 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a borate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan (NMIJ) and the National Institute of Metrology (Thailand) (NIMT) at the APMP-TCQM meeting held 26-27 November 2012. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K19 and CCQM-K19.1. The comparison material was a borate buffer of pH around 9.2 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the second APMP key comparison on pH measurement and the fourth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006 and APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011. The results can be used further by any participant to support its CMC claim at least for a borate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Where should buffers go? modeling riparian habitat connectivity in northeast Kansas
Gary Bentrup; Todd Kellerman
2004-01-01
Through many funding programs, riparian buffers are being created on agricultural lands to address significant water quality problems. Society and landowners are demanding many other environmental and social services (e.g., wildlife habitat and income diversification) from this practice. Resource planners therefore need to design riparian buffer systems in the right...
Role of histidine-related compounds to intracellular buffering in fish skeletal muscle.
Abe, H; Dobson, G P; Hoeger, U; Parkhouse, W S
1985-10-01
Histidine-related compounds (HRC) were analyzed in fish skeletal muscle as a means of identifying their precise role in intracellular buffering. Fish muscle was used because it contains two functionally and spatially distinct fiber types, red and white. Two fish species, rainbow trout (Salmo gairdneri) and the Pacific blue marlin (Makaira nigricans), were studied because these species demonstrate widely different activity patterns. Marlin red and white muscle buffer capacity was two times higher than trout with white muscle, buffering being two times greater than red in both species. Buffer capacity was highest in the 6.5-7.5 pH range for all tissues, which corresponded to their high anserine levels. The titrated HRC buffering was greater than the observed HRC buffering, which suggested that not all HRC were available to absorb protons. The HRC contribution to total cellular buffering varied from a high of 62% for marlin white to a low of 7% for trout red. The other principal buffers were found to be phosphate and protein with taurine contributing within red muscle in the 7.0-8.0 pH range. HRC were found to be dominant in skeletal muscle buffering by principally accounting for the buffering capacity differences found between the species and fiber types.
Determination of monosaccharides derivatized with 2-aminobenzoic Acid by capillary electrophoresis.
Abo, Mitsuru; He, Li-Ping; Sato, Kae; Okubo, Akira
2013-01-01
Reducing monosaccharides were derivatized with 2-aminobenzoic acid (2-AA) through reductive amination using sodium cyanoborohydride as a reductant, and the derivatives were separated by capillary zone electrophoresis with UV detection using 50 mM sodium phosphate (pH 5.5) or 150 mM sodium borate-50 mM sodium phosphate (pH 7.0) running buffer. The derivatives of monosaccharides, which are major components of various carbohydrate materials, were completely separated within 25 min.
Hall, Garry B; Dollard, Maureen F; Winefield, Anthony H; Dormann, Christian; Bakker, Arnold B
2013-01-01
In a general population sample of 2343 Australian workers from a wide ranging employment demographic, we extended research testing the buffering role of psychosocial safety climate (PSC) as a macro-level resource within the health impairment process of the Job Demands-Resources (JD-R) model. Moderated structural equation modeling was used to test PSC as a moderator between emotional and psychological job demands and worker depression compared with control and social support as alternative moderators. We also tested PSC as a moderator between depression and positive organizational behaviors (POB; engagement and job satisfaction) compared with control and social support as moderators. As expected we found PSC moderated the effects of job demands on depression and further moderated the effects of depression on POB with fit to the data that was as good as control and social support as moderators. This study has shown that PSC is a macro-level resource and safety signal for workers acting to reduce demand-induced depression. We conclude that organizations need to focus on the development of a robust PSC that will operate to buffer the effects of workplace psychosocial hazards and to build environments conducive to worker psychological health and positive organizational behaviors.
2011-10-01
blocking buffer, 5% fat -free milk in 0.1% Tris-buffered solution/Tween-20, for 1 hour at room temperature and then probed overnight at 5°C with...and blotting onto Immun-Blot PVDF membrane (Bio-Rad, Hercules, CA). Membranes were blocked with blocking buffer, 5% fat -free milk in 1x PBS buffer...distribution unlimited 13. SUPPLEMENTARY NOTES The aim of this study is to uncover novel transient receptor potential protein vanilloid-1 (TRPV1
NASA Technical Reports Server (NTRS)
1984-01-01
In order to define ribonuclease contamination, an assay for ribonuclease having picogram level sensitivity was established. In this assay, polycytidylic acid is digested by ribonuclease leading to smaller fragments of poly C that remain soluble after treatment of the sample with perchloric acid and lanthanum acetate. An absorbance measurement at 260 nm of the supernatant from the centrifuged sample measures the ribonuclease. A standard curve is shown. Using this assay procedure, ribonuclease contamination was found to be significant in routine laboratory proteins, in particular, bovine serum albumin, lysozyme, catalase, and cytochrome C. This was confirmed by demonstrating a considerable reduction in this activity in the presence of phosphate buffer since phosphate inhibits ribonuclease. Ribonuclease contamination was not significantly encountered in routine laboratory glassware, plasticware, column surfaces, chromatographic particles, and buffer reagents, including airborne contamination. Some contamination could be introduced by fingerprints, however.
Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions.
Wang, Lu-Ning; Huang, Xian-Qiu; Shinbine, Alyssa; Luo, Jing-Li
2013-02-01
The corrosion behaviour of Zr in phosphate buffered saline (PBS) solutions with various concentrations (0-4 g L(-1)) of albumin was studied by electrochemical techniques and surface analysis. Addition of albumin to PBS solutions moved the open circuit potential (OCP) to less nobler direction. OCP, polarization resistance and impedance increased and the corrosion current decreased over immersion duration. At early stages of immersion, the resistance was increased with the concentration of albumin because of the high adsorption kinetics of albumin on metal. After the long term immersion, the resistance in PBS without albumin was higher than PBS with albumin owing to the anodic dissolution effect of albumin on metal. According to the analysis of effective capacitances, a normal distribution of time-constants was proposed to estimate the surface film on Zr. A corrosion mechanism of Zr in PBS with different albumin was proposed based on electrochemical analysis.
Bhatt, Vijay Deep; Joshi, Saumya; Becherer, Markus; Lugli, Paolo
2017-01-01
A flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a sensor for the neurotransmitter acetylcholine, with a sensitivity of 5.7 μA/decade, and demonstrated excellent specificity when tested against interfering analytes present in the body. As the flexible sensor is supposed to suffer mechanical deformations, the endurance of the sensor was measured by putting it under extensive mechanical stress. The enzymatic activity was inhibited by more than 70% when the phosphate-buffered saline (PBS) buffer was spiked with 5 mg/mL malathion (an organophosphate) solution. The biosensor was successfully challenged with tap water and strawberry juice, demonstrating its usefulness as an analytical tool for organophosphate detection. PMID:28524071
Microwave fixation versus formalin fixation of surgical and autopsy tissue.
Login, G R
1978-05-01
Microwave irradiation of surgical and autopsy tissue penetrates, fixes, and hardens the tissue almost immediately (the fluid media used in the microwave consisted of saline, ten percent phosphate buffered formalin, and distilled water). Tissue sections from a representative sample of organs were tested. Comparable sections were simultaneously fixed in a phosphate buffered ten percent formalin bath in a vaccum oven as a control. Hematoxylin and eosin were used to stain the sections. Results equal to and superior to the control method were obtained. Saline microwave fixation was superior to formalin microwave fixation. Tissues placed in Zenker's solution and fixed in standard microwave oven (for approximately one minute) yielded results at least equal to conventional Zenker fixation (approximately two hours). No tissue hardening resulted from Zenker microwave fixation. A unique time versus temperature graph (microwave heating curve) reduces individual variation with this technique.
Raindlová, Veronika; Pohl, Radek; Hocek, Michal
2012-03-26
5-(5-Formylthienyl)-, 5-(4-formylphenyl)- and 5-(2-fluoro-5-formylphenyl)cytosine 2'-deoxyribonucleoside mono- (dC(R)MP) and triphosphates (dC(R)TP) were prepared by aqueous Suzuki-Miyaura cross-coupling of 5-iodocytosine nucleotides with the corresponding formylarylboronic acids. The dC(R)TPs were excellent substrates for DNA polymerases and were incorporated into DNA by primer extension or PCR. Reductive aminations of the model dC(R)MPs with lysine or lysine-containing tripeptide were studied and optimized. In aqueous phosphate buffer (pH 6.7) the yields of the reductive aminations with tripeptide III were up to 25 %. Bioconjugation of an aldehyde-containing DNA with a lysine-containing tripeptide was achieved through reductive amination in yields of up to 90 % in aqueous phosphate buffer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nagura, Kota; Takemoto, Yusa; Moronaga, Satori; Uchida, Yoshiaki; Shimono, Satoshi; Shiino, Akihiko; Tanigaki, Kenji; Amano, Tsukuru; Yoshino, Fumi; Noda, Yohei; Koizumi, Satoshi; Komatsu, Naoki; Kato, Tatsuhisa; Yamauchi, Jun; Tamura, Rui
2017-11-07
With a view to developing a theranostic nanomedicine for targeted drug delivery systems visible by magnetic resonance (MR) imaging, robust metal-free magnetic nanoemulsions (mean particle size less than 20 nm) consisting of a biocompatible surfactant and hydrophobic, low molecular weight 2,2,5-trimethyl-5-(4-alkoxy)phenylpyrrolidine-N-oxyl radicals were prepared in pH 7.4 phosphate-buffered saline (PBS). The structure of the nanoemulsions was characterized by electron paramagnetic resonance spectroscopy, and dynamic light scattering and small-angle neutron-scattering measurements. The nanoemulsions showed high colloidal stability, low cytotoxicity, enough reduction resistance to excess ascorbic acid, and sufficient contrast enhancement in the proton longitudinal relaxation time (T 1 ) weighted MR images in PBS in vitro (and preliminarily in vivo). Furthermore, the hydrophobic anticancer drug paclitaxel could be encapsulated inside the nanoparticles, and the resulting paclitaxel-loaded nanoemulsions were efficiently incorporated into HeLa cells to suppress cell growth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bruck, R; Melnik, E; Muellner, P; Hainberger, R; Lämmerhofer, M
2011-05-15
We report the development of a Mach-Zehnder interferometer biosensor based on a high index contrast polymer material system and the demonstration of label-free online measurement of biotin-streptavidin binding on the sensor surface. The surface of the polyimide waveguide core layer was functionalized with 3-mercaptopropyl trimethoxy silane and malemide tagged biotin. Several concentrations of Chromeon 642-streptavidin dissolved in phosphate buffered saline solution were rinsed over the functionalized sensor surface by means of a fluidic system and the biotin-streptavidin binding process was observed in the output signal of the interferometer at a wavelength of 1310 nm. Despite the large wavelength and the comparatively low surface sensitivity of the sensor system due to the low index contrast in polymer material systems compared to inorganic material systems, we were able to resolve streptavidin concentrations of down to 0.1 μg/ml. The polymer-based optical sensor design is fully compatible with cost-efficient mass production technologies such as injection molding and spin coating, which makes it an attractive alternative to inorganic optical sensors. Copyright © 2011 Elsevier B.V. All rights reserved.
Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid.
Maruyama, Norio; Hiromoto, Sachiko; Akiyama, Eiji; Nakamura, Morihiko
2013-04-01
Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS) with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-)). For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR)) with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR) although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR) both in air and in PBS(-). A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR) in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR). The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.
Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid
NASA Astrophysics Data System (ADS)
Maruyama, Norio; Hiromoto, Sachiko; Akiyama, Eiji; Nakamura, Morihiko
2013-04-01
Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS) with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-)). For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR)) with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR) although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR) both in air and in PBS(-). A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR) in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR). The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.
Formation of Fluorohydroxyapatite with Silver Diamine Fluoride
Mei, M.L.; Nudelman, F.; Marzec, B.; Walker, J.M.; Lo, E.C.M.; Walls, A.W.; Chu, C.H.
2017-01-01
Silver diamine fluoride (SDF) is found to promote remineralization and harden the carious lesion. Hydroxyapatite crystallization is a crucial process in remineralization; however, the role of SDF in crystal formation is unknown. We designed an in vitro experiment with calcium phosphate with different SDF concentrations (0.38, 1.52, 2.66, 3.80 mg/mL) to investigate the effect of this additive on the nucleation and growth of apatite crystals. Two control groups were also prepared—calcium phosphate (CaCl2·2H2O + K2HPO4 in buffer solution) and SDF (Ag[NH3]2F in buffer solution). After incubation at 37 oC for 24 h, the shape and organization of the crystals were examined by bright-field transmission electron microscopy and electron diffraction. Unit cell parameters of the obtained crystals were determined with powder X-ray diffraction. The vibrational and rotational modes of phosphate groups were analyzed with Raman microscopy. The transmission electron microscopy and selected-area electron diffraction confirmed that all solids precipitated within the SDF groups were crystalline and that there was a positive correlation between the increased percentage of crystal size and the concentration of SDF. The powder X-ray diffraction patterns indicated that fluorohydroxyapatite and silver chloride were formed in all the SDF groups. Compared with calcium phosphate control, a contraction of the unit cell in the a-direction but not the c-direction in SDF groups was revealed, which suggested that small localized fluoride anions substituted the hydroxyl anions in hydroxyapatite crystals. This was further evidenced by the Raman spectra, which displayed up-field shift of the phosphate band in all the SDF groups and confirmed that the chemical environment of the phosphate functionalities indeed changed. The results suggested that SDF reacted with calcium and phosphate ions and produced fluorohydroxyapatite. This preferential precipitation of fluorohydroxyapatite with reduced solubility could be one of the main factors for arrest of caries lesions treated with SDF. PMID:28521107
Johansson, M; Lenngren, S
1988-11-18
Extraction of the hydrophobic tertiary amine bromhexine from plasma using cyclohexane-heptafluorobutanol (99.5:0.5, v/v) was studied at different pH values. The extraction yield from buffer solutions was quantitative at pH greater than 4.1, but from plasma the extraction yield decreased with increasing pH. Furthermore, at pH 8.4 the extraction yield varied greatly (56-99%) in different human plasma. The addition of lipoproteins to phosphate buffer, at pH 8.1, decreased the extraction yields considerably. Quantitative extraction from plasma was obtained by using a very long extraction time at pH 8.4 or by decreasing the pH to 5.4. The chromatographic system consisted of a reversed-phase column (Nucleosil C18, 5 microns) with an acidic mobile phase (methanol-phosphate buffer, pH 2) containing an aliphatic tertiary amine. UV detection at 308 or 254 nm was used. The limit of quantitation was 5 ng/ml using 3.00 ml of plasma and detection at 254 nm. The intra-assay precision for bromhexine was better than 3.6% at 5 ng/ml.
Phosphate glasses for radioactive, hazardous and mixed waste immobilization
Cao, H.; Adams, J.W.; Kalb, P.D.
1999-03-09
Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.
Phosphate glasses for radioactive, hazardous and mixed waste immobilization
Cao, Hui; Adams, Jay W.; Kalb, Paul D.
1998-11-24
Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.
Phosphate glasses for radioactive, hazardous and mixed waste immobilization
Cao, Hui; Adams, Jay W.; Kalb, Paul D.
1999-03-09
Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.
ssDNA degradation along capillary electrophoresis process using a Tris buffer.
Ric, Audrey; Ong-Meang, Varravaddheay; Poinsot, Verena; Martins-Froment, Nathalie; Chauvet, Fabien; Boutonnet, Audrey; Ginot, Frédéric; Ecochard, Vincent; Paquereau, Laurent; Couderc, François
2017-06-01
Tris-Acetate buffer is currently used in the selection and the characterization of ssDNA by capillary electrophoresis (CE). By applying high voltage, the migration of ionic species into the capillary generates a current that induces water electrolysis. This phenomenon is followed by the modification of the pH and the production of Tris derivatives. By injecting ten times by capillary electrophoresis ssDNA (50 nM), the whole oligonucleotide was degraded. In this paper, we will show that the Tris buffer in the running vials is modified along the electrophoretic process by electrochemical reactions. We also observed that the composition of the metal ions changes in the running buffer vials. This phenomenon, never described in CE, is important for fluorescent ssDNA analysis using Tris buffer. The oligonucleotides are degraded by electrochemically synthesized species (present in the running Tris vials) until it disappears, even if the separation buffer in the capillary is clean. To address these issues, we propose to use a sodium phosphate buffer that we demonstrate to be electrochemically inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Abhra; Ali, Maroof; Baker, Gary A
2009-01-01
In this work, an array of molecular-level solvent featuressincluding solute-solvent/solvent-solvent interactions, dipolarity, heterogeneity, dynamics, probe accessibility, and diffusionswere investigated across the entire composition of ambient mixtures containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and pH 7.0 phosphate buffer, based on results assembled for nine different molecular probes utilized in a range of spectroscopic modes. These studies uncovered interesting and unusual solvatochromic probe behavior within this benchmark mixture. Solvatochromic absorbance probessa watersoluble betaine dye (betaine dye 33), N,N-diethyl-4-nitroaniline, and 4-nitroanilineswere employed to determine ET (a blend of dipolarity/polarizability and hydrogen bond donor contributions) and the Kamlet-Taft indices * (dipolarity/polarizability), R (hydrogenmore » bond donor acidity), and (hydrogen bond acceptor basicity) characterizing the [bmim][BF4] + phosphate buffer system. These parameters each showed a marked deviation from ideality, suggesting selective solvation of the individual probe solutes by [bmim][BF4]. Similar conclusions were derived from the responses of the fluorescent polarity-sensitive probes pyrene and pyrene-1-carboxaldehyde. Importantly, the fluorescent microfluidity probe 1,3-bis(1-pyrenyl)propane senses a microviscosity within the mixture that significantly exceeds expectations derived from simple interpolation of the behavior in the neat solvents. On the basis of results from this probe, a correlation between microviscosity and bulk viscosity was established; pronounced solvent-solvent hydrogen-bonding interactions were implicit in this behavior. The greatest deviation from ideal additive behavior for the probes studied herein was consistently observed to occur in the buffer-rich regime. Nitromethane-based fluorescence quenching of pyrene within the [bmim][BF4] + phosphate buffer system showed unusual compliance with a sphere-of-action quenching model, a further manifestation of the microheterogeneity of the system. Fluorescence correlation spectroscopic results for both small (BODIPY FL) and macromolecular (Texas Red-10 kDa dextran conjugate) diffusional probes provide additional evidence in support of microphase segregation inherent to aqueous [bmim][BF4].« less
NASA Astrophysics Data System (ADS)
Ishii, Marina; Kunimura, Juliana Sayuri; Jeng, Hélio Tallon; Vessoni Penna, Thereza Christina; Cholewa, Olivia
The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95°C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84 ±0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94±0.60) was half that observed in phosphate buffer (pH 6.08±0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80°C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65±0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80°C. GFP pH-and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.
Simultaneous carbon and nitrogen removal using a litre-scale upflow microbial fuel cell.
Zhao, Ling-ling; Song, Tian-shun
2014-01-01
A 10 L upflow microbial fuel cell (UMFC) was constructed for simultaneous carbon and nitrogen removal. During the 6-month operation, the UMFC constantly removed carbon and nitrogen, and then generated electricity with synthetic wastewater as substrate. At 5.0 mg L(-1) dissolved oxygen, 100 Ω external resistance, and pH 6.5, the maximum power density (Pmax) and nitrification rate for the UMFC was 19.5 mW m(-2) and 17.9 mg·(L d)(-1), respectively. In addition, Pmax in the UMFC with chicken manure wastewater as substrate was 16 mW m(-2), and a high chemical oxygen demand (COD) removal efficiency of 94.1% in the UMFC was achieved at 50 mM phosphate-buffered saline. Almost all ammonia in the cathode effluent was effectively degraded after biological denitrification in the UMFC cathode. The results can help to further develop pilot-scale microbial fuel cells for simultaneous carbon and nitrogen removal.
Rathinam, Navanietha Krishnaraj; Tripathi, Abhilash K; Smirnova, Alevtina; Beyenal, Haluk; Sani, Rajesh K
2018-04-24
The present study is focused on enhancing the rheological properties of the electrolyte and eliminating sedimentation of microorganisms/flocs without affecting the electron transfer kinetics for improved bioelectricity generation. Agar derived from polysaccharide agarose (0.05-0.2%, w/v) was chosen as a rheology modifying agent. Electroanalytical investigations showed that electrolytes modified with 0.15% agar display a nine-fold increase in current density (1.2 mA/cm 2 ) by a thermophilic strain (Geobacillus sp. 44C, 60 °C) when compared with the control. Sodium phosphate buffer (0.1 M, pH 7) electrolyte with riboflavin (0.1 mM) was used as the control. Electrolytes modified with 0.15% agar significantly improved chemical oxygen demand removal rates. This developed electrolyte will aid in improving bioelectricity generation in Bioelectrochemical Systems (BES). The developed strategy avoids the use of peristaltic pumps and magnetic stirrers, thereby improving the energy efficiency of the process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review
Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir
2017-01-01
An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented. PMID:28794848
Hormone-Dependence of Sarin Lethality in Rats: Sex Differences and Stage of the Estrous Cycle
2015-06-12
that causes numerous physiological events including miosis, salivation , respiratory failure, tremors, seizures, and death. Treatment regimens that...into 96-well plates. The reactions were initiated by the addition of 290 μL of 50 mM sodium phosphate buffer ( pH 8.0) containing one of the following...buffer containing 50mMHEPES pH 7.4 in a total volume of 280 μL. Treat- ed samples were loaded into a 96-microtiter plate well, and the reaction was
A Core Facility for the Study of Neurotoxins of Biological Origin
1990-06-15
toxicity of 5 x 10-8 MLD/mg protein. Sodium 125 Iodine and the Bolton-Hunter Reagent - 1251odine were purchased from Amersham. Chloramine- T , glycine...tyrosine and all salts and buffers were from Sigma Chemical Co. and Fisher. Iodination procedures. The chloramine- T method was used essentially as...previously described. Tetanus toxin (100 ig) in sodium phosphate buffer (100 mM, pH 7.4) was mixed with chloramine- T (0.5 mM) and Na 1251 (1 mCi) for 30
Wu, H; Hao, B; Tang, G; Lin, Y
1997-03-01
From the seeds of Pachyrrhizus errosus, three protein constituents, namel PE1, PE2 and PE3, have been isolated and purified by extraction with 5mmol/L phosphate saline (0.9% NaCl) buffer (PB) at pH 7.2, and S-Sepharose Fast Flow Column (2.6cm x 15cm) chromatography which eluted with 5mmol/L phosphate buffer (pH 7.0) containing 1mmol/L NaCl. Three proteins were burther separated on two connected Protein-Pak 60+Protein-Pak 125 [7.5mm x 39cm, 10microm] columns with mobile phase of 0.2mol/L phosphate buffer (pH 6.5). The flow rate was kept constant at 0.8mL/min by YSB-2 type high press pump. The effluent was monitored at a wavelength of 280nm on photodiode array detector. These three proteins are proved to be homogeneous by SDS-PAGE, IEF and HPGFC experiments, and all present the typical absorption spectra in ultraviolet region. The moleculer weights of the three proteins are approxiamtely 33000D, 14500D and 14000D respectively by SDS-PAGE. But as using HPGFC analysis, the MW value of PE2 is 28000D. This indicates PE2 may be composed of two chains joined by disulfide bond, which is further proved from the latter amino acid composition analysis. The isoelectric points of three proteins are 4.5, 6.5 and 7.5 respectively by using IEF. The amion acids compositions of the three proteins were determined with OPA post-column derivatization/fluorescence detection.
Miwa, S; Ono, J; Nakashima, K; Abe, S; Kageoka, T
1976-01-01
Two new variants of glucose 6-phosphate dehydrogenase (G6PD) deficiency associated with chronic nonspherocytic hemolytic anemia were discovered in Japan. Gd(-) Tokushima was found in a 17-years-old male whose erythrocytes contained 4.4% of normal enzyme activity. Partially purified enzyme revealed a main band of normal electrophoretic mobility with additional two minor bands of different mobility; normal Km G6P, and Km NADP five-to sixfold higher than normal; normal utilization of 2-deoxy-G6P, galactose-6P, and deamino-NADP; marked thermal instability; a normal pH curve; and normal Ki NADPH. The hemolytic anemia was moderate to severe. Gd(-) Tokyo was characterized from a 15-year-old male who had chronic nonspherocytic hemolytic anemia of mild degree. The erythrocytes contained 3% of normal enzyme activity, and partially purified enzyme revealed slow electrophoretic mobility (90% of normal for both a tris-hydrochloride buffer system and a tris-EDTA-borate buffer system, and 70% of normal for a phosphate buffer system); normal Km G6P and Km NADP; normal utilization of 2-deoxy-G6P, galactose-6P, and deamino-NADP; greatly increased thermal instability; a normal pH curve; and normal Ki NADPH. These two variants are clearly different from hitherto described G6PD variants, including the Japanese variants Gd(-) Heian and Gd(-) Kyoto. The mothers of both Gd(-) Tokushima and Gd(-) Tokoyo were found to be heterozygote by an ascorbate-cyanide test.
Kinetic behaviour of calf intestinal alkaline phosphatase with pNPP.
Chaudhuri, Gouri; Chatterjee, Saswata; Venu-Babu, P; Ramasamy, K; Thilagaraj, W Richard
2013-02-01
The hydrolysis of p-nitrophenyl phosphate (pNPP) by calf intestinal alkaline phosphatase (CIAP) was investigated with respect to kinetic parameters such as V(max), K(m) and K(cat) under varying pH, buffers, substrate concentration, temperature and period of incubation. Highest activity was obtained with Tris-HCl at pH 11, while in the case of glycine-NaOH buffer the peak activity was recorded at pH 9.5. The enzyme showed the following kinetic characteristics with pNPP in 50 mM Tris-HCl at pH 11 and 100 mM glycine-NaOH at pH 9.5 at an incubation temperature of 37 degrees C: V(max), 3.12 and 1.6 micromoles min(-1) unit(-1); K(m), 7.6 x 10(-4) M and 4 x 10(-4) M; and K(cat), 82.98 s(-1) and 42.55 s(-1), respectively. CIAP displayed a high temperature optimum of 45 degrees C at pH 11. The kinetic behaviour of the enzyme under different parameters suggested that the enzyme might undergo subtle conformational changes in response to the buffers displaying unique characteristics. Bioprecipitation of Cu2+ from 50 ppm of CuCl2 solution was studied where 64.3% of precipitation was obtained. P(i) generated from CIAP-mediated hydrolysis of pNPP was found to bind with copper and precipitated as copper-phosphate. Thus, CIAP could be used as a test candidate in bioremediation of heavy metals from industrial wastes through generation of metal-phosphate complexes.
Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M
2016-11-01
A new simple, sensitive, rapid and accurate gradient reversed-phase high-performance liquid chromatography with photodiode array detector (RP-HPLC-DAD) was developed and validated for simultaneous analysis of Metronidazole (MNZ), Spiramycin (SPY), Diloxanidefuroate (DIX) and Cliquinol (CLQ) using statistical experimental design. Initially, a resolution V fractional factorial design was used in order to screen five independent factors: the column temperature (°C), pH, phosphate buffer concentration (mM), flow rate (ml/min) and the initial fraction of mobile phase B (%). pH, flow rate and initial fraction of mobile phase B were identified as significant, using analysis of variance. The optimum conditions of separation determined with the aid of central composite design were: (1) initial mobile phase concentration: phosphate buffer/methanol (50/50, v/v), (2) phosphate buffer concentration (50 mM), (3) pH (4.72), (4) column temperature 30°C and (5) mobile phase flow rate (0.8 ml min -1 ). Excellent linearity was observed for all of the standard calibration curves, and the correlation coefficients were above 0.9999. Limits of detection for all of the analyzed compounds ranged between 0.02 and 0.11 μg ml -1 ; limits of quantitation ranged between 0.06 and 0.33 μg ml -1 The proposed method showed good prediction ability. The optimized method was validated according to ICH guidelines. Three commercially available tablets were analyzed showing good % recovery and %RSD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Roles of calcium and pH in activation of eggs of the medaka fish, Oryzias latipes
1983-01-01
Unfertilized eggs of the medaka fish (Oryzias latipes) were injected with pH-buffered calcium buffers. Medaka egg activation is accompanied by a transient increase in cytoplasmic free calcium (Gilkey, J. C., L. F. Jaffe, E. B. Ridgway, and G. T. Reynolds, 1978, J. Cell Biol., 76:448-466). The calcium buffer injections demonstrated that (a) the threshold free calcium required to elicit the calcium transient and activate the egg is between 1.7 and 5.1 microM at pH 7.0, well below the 30 microM reached during the transient, and (b) buffers which hold free calcium below threshold prevent activation of the buffered region in subsequently fertilized eggs. Therefore an increase in free calcium is necessary and sufficient to elicit the calcium transient, and the calcium transient is necessary to activate the egg. Further, these results are additional proof that the calcium transient is initiated and propagated through the cytoplasm by a mechanism of calcium- stimulated calcium release. Finally, a normal calcium transient must propagate through the entire cytoplasm to ensure normal development. Unfertilized eggs were injected with pH buffers to produce short-term, localized changes in cytoplasmic pH. The eggs were then fertilized at various times after injection. In other experiments, unfertilized and fertilized eggs were exposed to media containing either NH4Cl or CO2 to produce longer term, global changes in cytoplasmic pH. These treatments neither activated the eggs nor interfered with the normal development of fertilized eggs, suggesting that even if a natural change in cytoplasmic pH is induced by activation, it has no role in medaka egg development. The injected pH buffers altered the rate of propagation of the calcium transient through the cytoplasm, suggesting that the threshold free calcium required to trigger calcium-stimulated calcium release might be pH dependent. The results of injection of pH-buffered calcium buffers support this conjecture: for a tenfold increase in hydrogen ion concentration, free calcium must also be raised tenfold to elicit the calcium transient. PMID:6411737
Staying well and engaged when demands are high: the role of psychological detachment.
Sonnentag, Sabine; Binnewies, Carmen; Mojza, Eva J
2010-09-01
The authors of this study examined the relation between job demands and psychological detachment from work during off-job time (i.e., mentally switching off) with psychological well-being and work engagement. They hypothesized that high job demands and low levels of psychological detachment predict poor well-being and low work engagement. They proposed that psychological detachment buffers the negative impact of high job demands on well-being and work engagement. A longitudinal study (12-month time lag) with 309 human service employees showed that high job demands predicted emotional exhaustion, psychosomatic complaints, and low work engagement over time. Psychological detachment from work during off-job time predicted emotional exhaustion and buffered the relation between job demands and an increase in psychosomatic complaints and between job demands and a decrease in work engagement. The findings of this study suggest that psychological detachment from work during off-job time is an important factor that helps to protect employee well-being and work engagement. Copyright 2010 APA, all rights reserved
NASA Astrophysics Data System (ADS)
Tao, Yinglei; Kumar Wickramasinghe, H.
2017-02-01
We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.
Lauer, Michael J.; Blevins, Dale G.; Sierzputowska-Gracz, Hanna
1989-01-01
Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth. Images Figure 4 PMID:16666705
Falco, Alessandra; Dal Corso, Laura; Girardi, Damiano; De Carlo, Alessandro; Comar, Manola
2018-02-01
In this study we examined the association between job demands (JD), job resources (JR), and serum levels of a possible biomarker of stress, the pro-inflammatory cytokine interleukin-6 (IL-6). According to the buffer hypothesis of the Job Demands-Resources (JD-R) model, we expected that job resources-defined as job autonomy and social support from supervisor-might buffer the relationship between job demands, defined as emotional demands and interpersonal conflict with colleagues, and IL-6. Data from 119 employees in an Italian public healthcare organization (acute care hospital) were analyzed using multiple regression. In predicting IL-6, the interactions between emotional demands and JR and between interpersonal conflict with colleagues and job autonomy (but not social support) were significant, after controlling for the effect of age and gender. The association between JD and IL-6 was stronger for individuals with low levels of JR, so that levels of IL-6 were highest when JD were high and JR were low. Overall, these results are consistent with the buffer hypothesis of the JD-R model and also extend previous research, showing that the exposure to stressful situations at work, measured as high JD and low JR, is associated with higher levels of IL-6 in hospital employees. © 2017 Wiley Periodicals, Inc.
Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations.
Owczarzy, Richard; Moreira, Bernardo G; You, Yong; Behlke, Mark A; Walder, Joseph A
2008-05-13
Accurate predictions of DNA stability in physiological and enzyme buffers are important for the design of many biological and biochemical assays. We therefore investigated the effects of magnesium, potassium, sodium, Tris ions, and deoxynucleoside triphosphates on melting profiles of duplex DNA oligomers and collected large melting data sets. An empirical correction function was developed that predicts melting temperatures, transition enthalpies, entropies, and free energies in buffers containing magnesium and monovalent cations. The new correction function significantly improves the accuracy of predictions and accounts for ion concentration, G-C base pair content, and length of the oligonucleotides. The competitive effects of potassium and magnesium ions were characterized. If the concentration ratio of [Mg (2+)] (0.5)/[Mon (+)] is less than 0.22 M (-1/2), monovalent ions (K (+), Na (+)) are dominant. Effects of magnesium ions dominate and determine duplex stability at higher ratios. Typical reaction conditions for PCR and DNA sequencing (1.5-5 mM magnesium and 20-100 mM monovalent cations) fall within this range. Conditions were identified where monovalent and divalent cations compete and their stability effects are more complex. When duplexes denature, some of the Mg (2+) ions associated with the DNA are released. The number of released magnesium ions per phosphate charge is sequence dependent and decreases surprisingly with increasing oligonucleotide length.
Tanti, N.C.; Jones, L.; Sheardown, H.
2010-01-01
Purpose Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. Methods An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Results Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of β1 and α3 integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Conclusions Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells. PMID:20169012
Gorbet, M B; Tanti, N C; Jones, L; Sheardown, H
2010-02-19
Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of beta(1) and alpha(3) integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells.
Phosphate-Mediated Remediation of Metals and Radionuclides
Martinez, Robert J.; Beazley, Melanie J.; Sobecky, Patricia A.
2014-01-01
Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are oftenmore » too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. The in situ sequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.« less
Riddell, Michaela A.; Byrnes, Graham B.; Leydon, Jennie A.; Kelly, Heath A.
2003-01-01
OBJECTIVES: To determine whether samples of dried venous blood (DVB) were an acceptable alternative to serum for detecting measles-specific IgG in a commercial enzyme immunoassay. METHODS: Paired samples of serum and DVB were collected from 98 suspected cases of measles and 1153 schoolchildren in Victoria, Australia. All samples were tested using the Dade Behring Enzygnost Anti-Measles-Virus/IgG immunoassay. DVB samples were eluted using either the sample buffer provided with the kit or 5% dry milk powder in phosphate-buffered saline-Tween 20. FINDINGS: DVB samples eluted by sample buffer showed significantly better linear correlation to the serum samples than did DVB samples eluted in 5% dry milk in phosphate-buffered saline-Tween 20. To improve the comparability of serum and DVB samples an adjustment factor of 1.28 was applied to the optical density (OD) values of DVB. This adjustment also enabled quantification of the titre of measles IgG in mIU/ml directly from the OD value using the alpha calculation as specified by the kit protocol. For DVB samples stored for less than six months at 4 degrees C, the assay showed an overall sensitivity of 98.4% and a specificity of 97.2% compared with the results of serum testing. CONCLUSION: These results illustrate the potential for DVB samples to be widely used with the Dade Behring enzyme immunoassay system for determining the immunity of the individual and the population to the measles virus. PMID:14758429
Bicarbonate availability for vocal fold epithelial defense to acidic challenge.
Durkes, Abigail; Sivasankar, M Preeti
2014-01-01
Bicarbonate is critical for acid-base tissue homeostasis. In this study we investigated the role of bicarbonate ion transport in vocal fold epithelial defense to acid challenges. Acidic insults to the larynx are common in gastric reflux, carcinogenesis and metastasis, and acute inflammation. Ion transport was measured in viable porcine vocal fold epithelium. First, 18 vocal folds were exposed to either the carbonic anhydrase antagonist acetazolamide or to vehicle. Second, 32 vocal folds were exposed to either a control buffer or a bicarbonate-free buffer on their luminal or basolateral surface or both. Third, 32 vocal folds were challenged with acid in the presence of bicarbonate-free or control buffer. The vocal fold transepithelial resistance was greater than 300 Ω*cm(2), suggesting robust barrier integrity. Ion transport did not change after exposure to acetazolamide (p > 0.05). Exposure to bicarbonate-free buffer did not compromise vocal fold ion transport (p > 0.05). Ion transport increased after acid challenge. This increase approached statistical significance and was the greatest for the control buffer and for the bicarbonate-free buffer applied to the basolateral surface. Bicarbonate secretion may contribute to vocal fold defense against acid challenge. Our data offer a potential novel role for bicarbonate as a therapeutic agent to reduce pH abnormalities in the larynx and prevent associated pathological changes.
Adsorption of amphipathic dendrons on polystyrene nanoparticles.
Sakthivel, T; Florence, A T
2003-03-18
Adsorption of dendrons onto nanoparticles may provide new model structures which may be useful in drug and gene delivery. Tritiated amphipathic dendrons having three lipidic (C(14)) chains coupled to branched (dendritic) lysine head groups with 8, 16 or 32 free terminal amino groups have been synthesised by solid phase peptide techniques. The interaction between these tritiated dendrons and 200 nm polystyrene latex nanoparticles was investigated in phosphate buffered saline. The amount of dendron adsorbed increased with increasing concentration of dendrons and then decreased. Maximum adsorption of dendrons per gram of nanoparticles was found to be between 8.2 and 84 x 10(-6)M, the amounts adsorbed being inversely proportional to the number of amino groups present in the molecule. The number of dendron molecules adsorbed per nanoparticle was found to be between 430 and 4421. The degree of adsorption was found to be slightly altered by the temperature. Copyright 2002 Elsevier Science B.V.
Ren, Xiang; Wang, Weiyi; Ge, Ruixiang; Hao, Shuai; Qu, Fengli; Du, Gu; Asiri, Abdullah M; Wei, Qin; Chen, Liang; Sun, Xuping
2017-08-08
It is highly attractive to develop efficient hydrogen-evolving electrocatalysts under neutral conditions. In this communication, we report an amorphous FeMoS 4 nanorod array on carbon cloth (FeMoS 4 NRA/CC) prepared by hydrothermal treatment of an FeOOH nanorod array on carbon cloth (FeOOH NRA/CC) in (NH 4 ) 2 MoS 4 solution. As a 3D electrode for hydrogen evolution electrocatalysis, this FeMoS 4 NRA/CC demonstrates superior catalytic activity and strong long-term electrochemical durability in 1.0 M phosphate buffered saline (pH: 7). It needs an overpotential of 204 mV to drive a geometrical current density of 10 mA cm -2 , which is 450 mV less than that for FeOOH NRA/CC. Density functional theory calculations suggest that FeMoS 4 has a more favourable hydrogen adsorption free energy than FeOOH.
Efficient Enzyme-Free Biomimetic Sensors for Natural Phenol Detection.
Ferreira Garcia, Luane; Ribeiro Souza, Aparecido; Sanz Lobón, Germán; Dos Santos, Wallans Torres Pio; Alecrim, Morgana Fernandes; Fontes Santiago, Mariângela; de Sotomayor, Rafael Luque Álvarez; de Souza Gil, Eric
2016-08-13
The development of sensors and biosensors based on copper enzymes and/or copper oxides for phenol sensing is disclosed in this work. The electrochemical properties were studied by cyclic and differential pulse voltammetry using standard solutions of potassium ferrocyanide, phosphate/acetate buffers and representative natural phenols in a wide pH range (3.0 to 9.0). Among the natural phenols herein investigated, the highest sensitivity was observed for rutin, a powerful antioxidant widespread in functional foods and ubiquitous in the plant kingdom. The calibration curve for rutin performed at optimum pH (7.0) was linear in a broad concentration range, 1 to 120 µM (r = 0.99), showing detection limits of 0.4 µM. The optimized biomimetic sensor was also applied in total phenol determination in natural samples, exhibiting higher stability and sensitivity as well as distinct selectivity for antioxidant compounds.
A Thermodynamic Description of the Adsorption of Simple Water-Soluble Peptoids to Silica.
Calkins, Anna L; Yin, Jennifer; Rangel, Jacenda L; Landry, Madeleine R; Fuller, Amelia A; Stokes, Grace Y
2016-11-08
The first report of a water-soluble peptoid adsorbed to silica monitored by second harmonic generation (SHG) at the liquid/solid interface is presented here. The molecular insights gained from these studies will inform the design and preparation of novel peptoid coatings. Simple 6- and 15-residue peptoids were dissolved in phosphate buffered saline and adsorbed to bare silica surfaces. Equilibrium binding constants and relative surface concentrations of adsorbed peptoids were determined from fits to the Langmuir model. Complementary fluorescence spectroscopy studies were used to quantify the maximum surface excess. Binding constants, determined here by SHG, were comparable to those previously reported for cationic proteins and small molecules. Enthalpies and free energies of adsorption were determined to elucidate thermodynamic driving forces. Circular dichroism spectra confirm that minimal conformational changes occur when peptoids are adsorbed to silica while pH studies indicate that electrostatic interactions impact adsorption.
Coassembly of Lysozyme and Amphiphilic Biomolecules Driven by Unimer-Aggregate Equilibrium.
Tao, Yuanyuan; Ma, Xiaoteng; Cai, Yaqian; Liu, Li; Zhao, Hanying
2018-04-12
Synthesis and self-assembly of bioconjugates composed of proteins and synthetic molecules have been widely studied because of the potential applications in medicine, biotechnology, and nanotechnology. One of the challenging research studies in this area is to develop organic solvent-free approaches to the synthesis and self-assembly of amphiphilic bioconjugates. In this research, dialysis-assisted approach, a method based on unimer-aggregate equilibrium, was applied in the coassembly of lysozyme and conjugate of cholesterol and glutathione (Ch-GSH). In phosphate buffer solution, amphiphilic Ch-GSH conjugate self-assembles into vesicles, and the vesicle solution is dialyzed against lysozyme solution. Negatively charged Ch-GSH unimers produced in the unimer-vesicle exchange equilibrium, diffuse across the dialysis membrane and have electrostatic interaction with positively charged lysozyme, resulting in the formation of Ch-GSH-lysozyme bioconjugate. Above a critical concentration, the three-component bioconjugate molecules self-assemble into bioactive vesicles.
Sanne, Bjarte; Mykletun, Arnstein; Dahl, Alv A; Moen, Bente E; Tell, Grethe S
2005-09-01
To test the strain/iso-strain, interaction and buffer hypotheses of the Job Demand-Control-Support model in relation to anxiety and depression. Five thousand five hundred and sixty-two workers with valid Demand-Control-Support Questionnaire (DCSQ) scores were examined with the sub-scales of the Hospital Anxiety and Depression Scale as outcomes. Multiple statistical methods were applied. The strain and iso-strain hypotheses were confirmed. Generally, additive and non-interaction effects were found between psychological demands, control and social support. The buffer hypotheses were refuted. Results from analyses testing different interaction operationalizations were complementary. High demands, low control and low support individually, but particularly combined, are risk factors for anxiety and depression. Support is the DCSQ index most strongly associated with anxiety and depression in women. Assessment of psychosocial work environment may identify workers at risk, and serve as a basis for job-redesign.
Duarte, Laís T; Bolfarini, Claudemiro; Biaggio, Sonia R; Rocha-Filho, Romeu C; Nascente, Pedro A P
2014-08-01
The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element. Copyright © 2014 Elsevier B.V. All rights reserved.
Ganini, Douglas; Canistro, Donatella; Jiang, JinJie; Jang, JinJie; Stadler, Krisztian; Mason, Ronald P; Kadiiska, Maria B
2012-10-01
Ceruloplasmin (ferroxidase) is a copper-binding protein known to promote Fe(2+) oxidation in plasma of mammals. In addition to its classical ferroxidase activity, ceruloplasmin is known to catalyze the oxidation of various substrates, such as amines and catechols. Assays based on cyclic hydroxylamine oxidation are used to quantify and detect free radicals in biological samples ex vivo and in vitro. We show here that human ceruloplasmin promotes the oxidation of the cyclic hydroxylamine 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) and related probes in Chelex-treated phosphate buffer and rat serum. The reaction is suppressed by the metal chelators DTPA, EDTA, and desferal, whereas heparin and bathocuproine have no effect. Catalase or superoxide dismutase additions do not interfere with the CPH-oxidation yield, demonstrating that oxygen-derived free radicals are not involved in the CPH oxidation mediated by ceruloplasmin. Plasma samples immunodepleted of ceruloplasmin have lower levels of CPH oxidation, which confirms the role of ceruloplasmin (ferroxidase) as a biological oxidizing agent of cyclic hydroxylamines. In conclusion, we show that the ferroxidase activity of ceruloplasmin is a possible biological source of artifacts in the cyclic hydroxylamine-oxidation assay used for reactive oxygen species detection and quantification. Published by Elsevier Inc.
Desfougères, Yann; Gerasimaitė, R̄uta; Jessen, Henning Jacob
2016-01-01
SPX domains control phosphate homeostasis in eukaryotes. Ten genes in yeast encode SPX-containing proteins, among which YDR089W is the only one of unknown function. Here, we show that YDR089W encodes a novel subunit of the vacuole transporter chaperone (VTC) complex that produces inorganic polyphosphate (polyP). The polyP synthesis transfers inorganic phosphate (Pi) from the cytosol into the acidocalcisome- and lysosome-related vacuoles of yeast, where it can be released again. It was therefore proposed for buffer changes in cytosolic Pi concentration (Thomas, M. R., and O'Shea, E. K. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 9565–9570). Vtc5 physically interacts with the VTC complex and accelerates the accumulation of polyP synthesized by it. Deletion of VTC5 reduces polyP accumulation in vivo and in vitro. Its overexpression hyperactivates polyP production and triggers the phosphate starvation response via the PHO pathway. Because this Vtc5-induced starvation response can be reverted by shutting down polyP synthesis genetically or pharmacologically, we propose that polyP synthesis rather than Vtc5 itself is a regulator of the PHO pathway. Our observations suggest that polyP synthesis not only serves to establish a buffer for transient drops in cytosolic Pi levels but that it can actively decrease or increase the steady state of cytosolic Pi. PMID:27587415
Obrycki, John F; Basta, Nicholas T; Scheckel, Kirk; Stevens, Brooke N; Minca, Kristen K
2016-01-01
A validated method is needed to measure reductions of in vitro bioaccessible (IVBA) Pb in urban soil remediated with amendments. This study evaluated the effect of in vitro extraction solution pH and glycine buffer on bioaccessible Pb in P-treated soils. Two Pb-contaminated soils (790-1300 mg Pb kg), one from a garden and one from a city lot in Cleveland, OH, were incubated in a bench scale experiment for 1 yr. Six phosphate amendments, including bone meal, fish bone, poultry litter, monoammonium phosphate, diammonium phosphate, and triple superphosphate, were added to containers at two application rates. Lead IVBA was assessed using USEPA Method 1340 and three modified versions of this method. Modifications included using solutions with pH 1.5 and 2.5 as well as using solutions with and without 0.4 mol L glycine. Soil amendments were ineffective in reducing IVBA Pb in these soils as measured by pH 1.5 with glycine buffer. The greatest reductions in IVBA Pb, from 5 to 26%, were found using pH 2.5 extractions. Lead mineral results showed several soil amendments promoted Pb phosphate formation, an indicator of remediation success. A significant negative linear relationship between reduction in IVBA Pb and Pb-phosphate formation was found only for pH 2.5 without glycine extraction solution. A modified USEPA Method 1340 without glycine and using pH 2.5 has the potential to predict P soil treatment efficacy and reductions in bioavailable Pb. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Ito, Atsuo; Sogo, Yu; Yamazaki, Atsushi; Aizawa, Mamoru; Osaka, Akiyoshi; Hayakawa, Satoshi; Kikuchi, Masanori; Yamashita, Kimihiro; Tanaka, Yumi; Tadokoro, Mika; de Sena, Lídia Ágata; Buchanan, Fraser; Ohgushi, Hajime; Bohner, Marc
2015-10-01
A potential standard method for measuring the relative dissolution rate to estimate the resorbability of calcium-phosphate-based ceramics is proposed. Tricalcium phosphate (TCP), magnesium-substituted TCP (MgTCP) and zinc-substituted TCP (ZnTCP) were dissolved in a buffer solution free of calcium and phosphate ions at pH 4.0, 5.5 or 7.3 at nine research centers. Relative values of the initial dissolution rate (relative dissolution rates) were in good agreement among the centers. The relative dissolution rate coincided with the relative volume of resorption pits of ZnTCP in vitro. The relative dissolution rate coincided with the relative resorbed volume in vivo in the case of comparison between microporous MgTCPs with different Mg contents and similar porosity. However, the relative dissolution rate was in poor agreement with the relative resorbed volume in vivo in the case of comparison between microporous TCP and MgTCP due to the superimposition of the Mg-mediated decrease in TCP solubility on the Mg-mediated increase in the amount of resorption. An unambiguous conclusion could not be made as to whether the relative dissolution rate is predictive of the relative resorbed volume in vivo in the case of comparison between TCPs with different porosity. The relative dissolution rate may be useful for predicting the relative amount of resorption for calcium-phosphate-based ceramics having different solubility under the condition that the differences in the materials compared have little impact on the resorption process such as the number and activity of resorbing cells. The evaluation and subsequent optimization of the resorbability of calcium phosphate are crucial in the use of resorbable calcium phosphates. Although the resorbability of calcium phosphates has usually been evaluated in vivo, establishment of a standard in vitro method that can predict in vivo resorption is beneficial for accelerating development and commercialization of new resorbable calcium phosphate materials as well as reducing use of animals. However, there are only a few studies to propose such an in vitro method within which direct comparison was carried out between in vitro and in vivo resorption. We propose here an in vitro method based on measuring dissolution rate. The efficacy and limitations of the method were evaluated by international round-robin tests as well as comparison with in vivo resorption studies for future standardization. This study was carried out as one of Versailles Projects on Advanced Materials and Standards (VAMAS). Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers.
Kielar, Charlotte; Xin, Yang; Shen, Boxuan; Kostiainen, Mauri A; Grundmeier, Guido; Linko, Veikko; Keller, Adrian
2018-05-25
DNA origami have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Here, we investigate DNA origami stability in low-Mg2+ buffers. DNA origami stability is found to crucially depend on the availability of residual Mg2+ ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg2+ ions from the DNA backbone and reducing the strength of the Mg2+-DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure-dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg2+ concentrations in the low-μM range. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical Modification of the Olfactory Receptor Epithelium of Vertebrate Species
1990-06-28
Pre-column Derivatization Procedure: 1.0 mL of the Jeffamine solution was mixed with 1.0 mL of NaCN, 5.0 mL of phosphate buffer pH 9.5 followed by 1.0...running buffer. All the unprotonated components elute at the same time because their rate of elution is controlled only by the rate of electroosmotic ...elecarosomotic mobility under our experimental conditions. Using an average elution time of 22.2 min the measured electroosmotic mobility is 1.3 x 10-4 cm2
Initial-phase optimization for bioremediation of munition compound-contaminated soils.
Funk, S B; Roberts, D J; Crawford, D L; Crawford, R L
1993-01-01
We examined the bioremediation of soils contaminated with the munition compounds 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine by a procedure that produced anaerobic conditions in the soils and promoted the biodegradation of nitroaromatic contaminants. This procedure consisted of flooding the soils with 50 mM phosphate buffer, adding starch as a supplemental carbon substrate, and incubating under static conditions. Aerobic heterotrophs, present naturally in the soil or added as an inoculum, quickly removed the oxygen from the static cultures, creating anaerobic conditions. Removal of parent TNT molecules from the soil cultures by the strictly anaerobic microflora occurred within 4 days. The reduced intermediates formed from TNT and hexahydro-1,3,5-trinitro-1,3,5-triazine were removed from the cultures within 24 days, completing the first stage of remediation. The procedure was effective over a range of incubation temperatures, 20 to 37 degrees C, and was improved when 25 mM ammonium was added to cultures buffered with 50 mM potassium phosphate. Ammonium phosphate buffer (50 mM), however, completely inhibited TNT reduction. The optimal pH for the first stage of remediation was between 6.5 and 7.0. When soils were incubated under aerobic conditions or under anaerobic conditions at alkaline pHs, the TNT biodegradation intermediates polymerized. Polymerization was not observed at neutral to slightly acidic pHs under anaerobic conditions. Completion of the first stage of remediation of munition compound-contaminated soils resulted in aqueous supernatants that contained no munition residues or aminoaromatic compounds. PMID:8357251
Sanders, Ruth E; Kearney, Clodagh M; Buckley, Conor T; Jenner, Florien; Brama, Pieter A
2015-08-01
To evaluate knot security for 3 knot types created in 3 commonly used 5 metric suture materials incubated in physiological and pathological fluids. In vitro mechanical study. Knotted suture loops (n = 5/group). Loops of 3 different suture materials (glycolide/lactide copolymer; polyglactin 910; polydioxanone) were created around a 20 mm rod using 3 knot types (square [SQ], surgeon's [SK], and triple knot [TK]) and were tested to failure in distraction (6 mm/min) after tying (day 0) and after being incubated for 14 and 28 days in phosphate buffered saline (PBS) or inflamed peritoneal fluid. Failure load (N) and mode were recorded and compared. For polydioxanone, significant differences in force to knot failure were found between SQ and SK/TK but not between SK and TK. The force required to break all constructs increased after incubation in phosphate buffered saline (PBS). With glycolide/lactide copolymer no differences in force to knot failure were observed. With polyglactin 910, a significant difference between SQ and TK was observed, which was not seen between the other knot types. Incubation in inflamed peritoneal fluid caused a larger and more rapid decrease in force required to cause knot failure than incubation in PBS. Mechanical properties of suture materials have significant effects on knot security. For polydioxanone, SQ is insufficient to create a secure knot. Additional wraps above a SK confer extra stability in some materials, but this increase may not be clinically relevant or justifiable. Glycolide/lactide copolymer had excellent knot security. © Copyright 2015 by The American College of Veterinary Surgeons.
Aslam, Ambreen; Thomas-Hall, Skye R; Manzoor, Maleeha; Jabeen, Faiza; Iqbal, Munawar; Uz Zaman, Qamar; Schenk, Peer M; Asif Tahir, M
2018-02-01
Biodiesel is produced by transesterification of fatty acid methyl esters (FAME) from oleaginous microalgae feedstock. Biodiesel fuel properties were studied and compared with biodiesel standards. Qualitative analysis of FAME was done while cultivating mixed microalgae consortia under three concentrations of coal fired flue gas (1%, 3.0% and 5.5% CO 2 ). Under 1% CO 2 concentration (flue gas), the FAME content was 280.3 μg/mL, whereas the lipid content was 14.03 μg/mL/D (day). Both FAMEs and lipid contents were low at other CO 2 concentrations (3.0 and 5.5%). However, mixed consortia in the presence of phosphate buffer and flue gas (PB + FG) showed higher saturated fatty acids (SFA) (36.28%) and unsaturated fatty acids (UFA) (63.72%) versus 5.5% CO 2 concentration, which might be responsible for oxidative stability of biodiesel. Subsequently, higher cetane number (52) and low iodine value (136.3 gI 2 /100 g) biodiesel produced from mixed consortia (PB + FG) under 5.5% CO 2 along with 50 mM phosphate buffer were found in accordance with European (EN 14214) standard. Results revealed that phosphate buffer significantly enhanced the biodiesel quality, but reduced the FAME yield. This study intended to develop an integrated approach for significant improvement in biodiesel quality under surplus phosphorus by utilizing waste flue gas (as CO 2 source) using microalgae. The CO 2 sequestration from industrial flue gas not only reduced greenhouse gases, but may also ensure the sustainable and eco-benign production of biodiesel. Copyright © 2018. Published by Elsevier B.V.
Improvement of Starch Digestion Using α-Amylase Entrapped in Pectin-Polyvinyl Alcohol Blend
Cruz, Maurício; Fernandes, Kátia; Cysneiros, Cristine; Nassar, Reginaldo; Caramori, Samantha
2015-01-01
Polyvinyl alcohol (PVA) and pectin blends were used to entrap α-amylase (Termamyl) using glutaraldehyde as a cross-linker. The effect of glutaraldehyde concentration (0.25, 0.5, 0.75, 1.0, and 1.25%) on the activity of the immobilized enzyme and rate of enzyme released was tested during a 24 h period. Characteristics of the material, such as scanning electron microscopy (SEM), tensile strength (TS), elongation, and rate of dissolution in water (pH 5.7), ruminal buffering solution (pH 7.0), and reactor containing 0.1 mol L−1 sodium phosphate buffer (pH 6.5), were also analyzed. SEM results showed that the surfaces of the pectin/PVA/amylase films were highly irregular and rough. TS values increased as a function of glutaraldehyde concentration, whereas percentage of elongation (%E) decreased. Pectin/PVA/amylase films presented similar values of solubility in the tested solvents. The material obtained with 0.25% glutaraldehyde performed best with repeated use (active for 24 h), in a phosphate buffer reactor. By contrast, the material obtained with 1.25% glutaraldehyde presented higher performance during in vitro testing using an artificial rumen. The results suggest that pectin/PVA/amylase is a highly promising material for biotechnological applications. PMID:25949991
Brgles, Marija; Jurasin, Darija; Sikirić, Maja Dutour; Frkanec, Ruza; Tomasić, Jelka
2008-01-01
Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential--the factors that are of great importance for the use of liposomes as drug carriers.
The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer
Kramer, Henry
1956-01-01
A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.
Buffer capacity of biologics--from buffer salts to buffering by antibodies.
Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick
2013-01-01
Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.
Muchandi, Sneha; Walimbe, Hrishikesh; Bijle, Mohammed Nadeem Ahmed; Nankar, Meenakshi; Chaturvedi, Srishti; Karekar, Priyanka
2015-03-01
Dental caries is a major problem in preschool children. The contribution of saliva in providing defense during caries process is of primary importance. pH buffer capacity through bicarbonate, phosphate and protein buffer systems have universal acceptance as a caries defense mechanism. Antioxidant capacity of saliva can constitute a first line of defense against chronic degenerative diseases including dental caries. Till date, no study is presented with salivary antioxidant capacity of younger children affected with severe early childhood caries with its salivary pH correlation. Hence, this study was carried out to compare, evaluate and correlate the salivary total antioxidant capacity (TAC) and salivary pH of children with caries-free and severe early childhood caries. Fifty children from ages 3 to 5 years divided into two study groups had undergone screening. Group I (n = 25) with severe early childhood caries (S-ECC) and group II (n = 25) who were caries free. Unstimulated whole saliva of subjects were in the collection during the study by draining method. Salivary pH determination of saliva samples was done using pH indicator paper strips. The TAC was done using an antioxidant assay with the help of a spectrophotometer at wavelength 532 nm. The means of salivary pH and TAC were subjected to analysis using unpaired student 't' test and correlation was determined using Pearsons correlation coefficient analysis. Mean salivary pH was higher in group II (7.46 ± 0.37). Mean TAC was greater in group I (1.82 ± 0.19). A statistically significant negative correlation as seen between TAC and salivary pH in S-ECC patients. The study concludes that salivary TAC increases in patients with S-ECC are by that showing a high indirect relationship with salivary pH.
Soil phosphorus - new insights into a critical cycle across many soil functions
NASA Astrophysics Data System (ADS)
Leinweber, Peter; Zimmer, Dana
2017-04-01
The fate of phosphorus (P-) compounds in the soil - plant - water - system is linked with most soil functions such as productivity for agricultural crops, reactor for nutrient cycling, filter and buffer for water, and biodiversity. The P-compounds, mostly phosphates in a multitude of chemical bonds, may have contradicting influences on soil functions. For instance, P-concentrations may be suboptimal for crop yields but at the same time exceeding the soil filter/buffer capacity for water resources. Modern agriculture has increased this misbalance. Therefore, a better soil P management that balances all soil functions requires a deeper understanding of the P-cycling in the environment. The collaborative project "InnoSoilPhos" in the frame of the BonaRes-program of the German Federal Ministry of Education and Research (BMBF) aims at disclosing the chemical composition, biogeochemical transformations and microbiological fundamentals of P-cycling and P-transport processes across all relevant scales from atomic to catchment and landscapes. The contribution will give an overview on the project and some examples for the latest findings on P-reactions at mineral surfaces (experimental and theoretical), microorganism diversity involved in soil P-transformations, crop yield responses to P-fertilizer regimes (including new P-recycling products) and, finally, hot spots and hot moments of P-release from soils into adjoining freshwater systems. These findings allow some preliminary demands and frame conditions for an improved soil P management to better balance the soil functions and safe the global mineable P resources.
Bicarbonate Availability for Vocal Fold Epithelial Defense to Acidic Challenge
Durkes, Abigail; Sivasankar, M. Preeti
2014-01-01
Objectives Bicarbonate is critical for acid-base tissue homeostasis. In this study we investigated the role of bicarbonate ion transport in vocal fold epithelial defense to acid challenges. Acidic insults to the larynx are common in gastric reflux, carcinogenesis and metastasis, and acute inflammation. Methods Ion transport was measured in viable, porcine vocal fold epithelium. First, 18 vocal folds were exposed to either the carbonic anhydrase antagonist acetazolamide or to vehicle. Second, 32 vocal folds were exposed to either a control buffer or a bicarbonate-free buffer on their luminal or basolateral surface or both. Third, vocal folds were challenged with acid in the presence of bicarbonate-free or control buffer. Results The vocal fold transepithelial resistance was greater than 300 Ω*cm2, suggesting robust barrier integrity. Ion transport did not change after exposure to acetazolamide (p > 0.05). Exposure to bicarbonate-free buffer did not compromise vocal fold ion transport (p > 0.05). Ion transport increased after acid challenge. This increase approached statistical significance and was the greatest for the control buffer and for the bicarbonate-free buffer applied to the basolateral surface. Conclusions Bicarbonate secretion may contribute to vocal fold defense against acid challenge. Our data offer a potential novel role for bicarbonate as a therapeutic agent to reduce pH abnormalities in the larynx and prevent associated pathological changes. PMID:24574427
Amperometric Determination of Glucose at Parts per Million Levels with Immobilized Glucose Oxidase.
ERIC Educational Resources Information Center
Sittampalam, G.; Wilson, G. S.
1982-01-01
An experiment on the operation and utility of an amperometric immobilized enzyme electrode (or probe) is described, including advantages of the experiment, equipment, reagents, preparation of phosphate buffer, enzyme immobilization techniques, laboratory procedures, precautions, and discussion of experimental results. (SK)
Bus operators' responses to job strain: An experimental test of the job demand-control model.
Cendales-Ayala, Boris; Useche, Sergio Alejandro; Gómez-Ortiz, Viviola; Bocarejo, Juan Pablo
2017-10-01
The research aim was to test the Job Demand-Control (JDC) Model demands × Control interaction (or buffering) hypothesis in a simulated bus driving experiment. The buffering hypothesis was tested using a 2 (low and high demands) × 2 (low and high decision latitude) design with repeated measures on the second factor. A sample of 80 bus operators were randomly assigned to the low (n = 40) and high demands (n = 40) conditions. Demands were manipulated by increasing or reducing the number of stops to pick up passengers, and decision latitude by imposing or removing restrictions on the Rapid Transit Bus (BRT) operators' pace of work. Outcome variables include physiological markers (heart rate [HR], heart rate variability [HRV], breathing rate [BR], electromyography [EMG], and skin conductance [SC]), objective driving performance and self-report measurements of psychological wellbeing (psychological distress, interest/enjoyment [I/E], perceived competence, effort/importance [E/I], and pressure/tension [P/T]). It was found that job decision latitude moderates the effect of job demands on both physiological arousal (BR: F(1, 74) = 4.680, p = .034, SC: F(1, 75) = 6.769, p = .011, and EMG: F(1, 75) = 6.550, p = .013) and psychological well-being (P/T: F(1, 75) = 4.289, p = .042 and I/E: F(1, 74) = 4.548, p = .036). Consistently with the JDC model buffering hypothesis, the experimental findings suggest that increasing job decision latitude can moderate the negative effect of job demands on different psychophysiological outcomes. This finding is useful for designing organizational and clinical interventions in an occupational group at high risk of work stress-related disease. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Edwards, Kristine T; Goddard, Jerome; Varela-Stokes, Andrea
2011-05-01
Salivary glands, midgut, Malpighian tubules, and ovaries were dissected from infected, colony-derived Amblyomma maculatum (Gulf Coast ticks) injected as nymphs with either Rickettsia parkeri (a spotted fever group rickettsia [SFGR]; treatment) or phosphate-buffered saline (negative control). For comparison, similar tissues were dissected from hemolymph-positive, field-collected ticks. Tissues were analyzed by indirect fluorescent antibody (IFA) tests. All phosphate-buffered saline-injected ticks were IFA negative, whereas SFGR were detected by IFA in 100% of the salivary glands and ovaries and 78 and 75% of midgut and Malpighian tubule samples, respectively, of R. parkeri-injected ticks. Nearly 22% (10/46) of the field-collected ticks were hemolymph positive. Of those, SFGR were detected by IFA in 80% of the salivary glands, 67% of the ovaries, and 60% in the midgut and Malpighian tubules. This is the first study to assess the distribution of SFGR in select tissues of A. maculatum ticks.
Ondaral, Sedat; Çelik, Elif; Kurtuluş, Orçun Çağlar; Aşıkuzun, Elif; Yakın, İsmail
2018-04-15
The chitosan adsorption on films prepared using nanofibrillated cellulose (NFC) with different content of aldehyde group was studied by means of Quartz Crystal Microbalance with Dissipation (QCM-D). Results showed that frequency change (Δf) was higher when the chitosan adsorbed on NFC film consisting more aldehyde group indicating the higher adsorption. The (Δf) and dissipation (ΔD) factors completely changed during adsorption of chitosan pre-treated with acetic acid: Δf increased and ΔD decreased, oppositely to un-treated chitosan adsorption. After acid treatment, molecular weight and crystallinity index of chitosan decreased addition to change in chemical structure. It was found that more phosphate buffered saline (PBS), as a model liquid for wound exudate, adsorbed to acid treated chitosan-NFC film, especially to film having more aldehyde groups. Comparing with bare NFC film, chitosan-NFC films adsorbed less PBS because chitosan crosslinked the NFC network and blocked the functional groups of NFC and thus, preventing swelling film. Copyright © 2017 Elsevier Ltd. All rights reserved.
Eastwood, Heather; Xia, Fang; Lo, Mei-Chu; Zhou, Jing; Jordan, John B; McCarter, John; Barnhart, Wesley W; Gahm, Kyung-Hyun
2015-11-10
Analysis of nucleotide sugars, nucleoside di- and triphosphates and sugar-phosphates is an essential step in the process of understanding enzymatic pathways. A facile and rapid separation method was developed to analyze these compounds present in an enzymatic reaction mixture utilized to produce nucleotide sugars. The Primesep SB column explored in this study utilizes hydrophobic interactions as well as electrostatic interactions with the phosphoric portion of the nucleotide sugars. Ammonium formate buffer was selected due to its compatibility with mass spectrometry. Negative ion mode mass spectrometry was adopted for detection of the sugar phosphate (fucose-1-phophate), as the compound is not amenable to UV detection. Various mobile phase conditions such as pH, buffer concentration and organic modifier were explored. The semi-preparative separation method was developed to prepare 30mg of the nucleotide sugar. (19)F NMR was utilized to determine purity of the purified fluorinated nucleotide sugar. The collected nucleotide sugar was found to be 99% pure. Published by Elsevier B.V.
Moghimipour, Eskandar; Rezaei, Mohsen; Kouchak, Maryam; Fatahiasl, Jafar; Angali, Kambiz Ahmadi; Ramezani, Zahra; Amini, Mohsen; Dorkoosh, Farid Abedin; Handali, Somayeh
2018-05-01
The aim of the present research was to evaluate the impact of coating layers on release profile from enteric coated dosage forms. Capsules were coated with Eudragit FS 30D using dipping method. The drug profile was evaluated in both phosphate buffer and Hank's solutions. Utilization X-ray imaging, gastrointestinal transmission of enteric coated capsules was traced in rats. According to the results, no release of the drug was found at pH 1.2, and the extent of release drug in pH 6.8 medium was decreased by adding the coating layers. The results indicated single-layer coated capsules in phosphate buffer were significantly higher than that in Hank's solution. However, no significant difference was observed from capsules with three coating layers in two different dissolution media. X-ray imaging showed that enteric coated capsules were intact in the stomach and in the small intestine, while disintegrated in the colon.
Kodama, Shuji; Yamamoto, Atsushi; Matsunaga, Akinobu; Yanai, Hiroko
2004-08-01
Cyclodextrin-modified micellar electrokinetic chromatography was applied to the enantioseparation of catechin and epicatechin using 6-O-alpha-D-glucosyl-beta-cyclodextrin together with sodium dodecyl sulfate and borate-phosphate buffer. Factors affecting chiral resolution and migration time of catechin and epicatechin were studied. The optimum running conditions were found to be 200 mM borate-20 mM phosphate buffer (pH 6.4) containing 25 mM 6-O-alpha-D-glucosyl-beta-cyclodextrin and 240 mM sodium dodecyl sulfate with an effective voltage of +25 kV at 20 degrees C using direct detection at 210 nm. Under these conditions, the resolution (Rs) of racemic catechin and epicatechin were 4.15 and 1.92, respectively. With this system, catechin and epicatechin enantiomers along with other four catechins ((-)-catechin gallate, (-)-epicatechin gallate, (-)-epigallocatechin, (-)-epigallocatechin gallate) and caffeine in tea samples were analyzed successfully. The difference of migration time between catechin and epicatechin is discussed.
Tailoring the strain in Si nano-structures for defect-free epitaxial Ge over growth.
Zaumseil, P; Yamamoto, Y; Schubert, M A; Capellini, G; Skibitzki, O; Zoellner, M H; Schroeder, T
2015-09-04
We investigate the structural properties and strain state of Ge nano-structures selectively grown on Si pillars of about 60 nm diameter with different SiGe buffer layers. A matrix of TEOS SiO2 surrounding the Si nano-pillars causes a tensile strain in the top part at the growth temperature of the buffer that reduces the misfit and supports defect-free initial growth. Elastic relaxation plays the dominant role in the further increase of the buffer thickness and subsequent Ge deposition. This method leads to Ge nanostructures on Si that are free from misfit dislocations and other structural defects, which is not the case for direct Ge deposition on these pillar structures. The Ge content of the SiGe buffer is thereby not a critical parameter; it may vary over a relatively wide range.
Effects of three oxidizing biocides on Legionella pneumophila serogroup 1.
Domingue, E L; Tyndall, R L; Mayberry, W R; Pancorbo, O C
1988-01-01
A study was conducted to determine the bactericidal effects of ozone and hydrogen peroxide relative to that of free chlorine on Legionella pneumophila serogroup 1. In laboratory batch-type experiments, organisms seeded at various densities were exposed to different concentrations of these biocides in demand-free buffers. Bactericidal effects were measured by determining the ability of L. pneumophila to grow on buffered charcoal-yeast extract agar supplemented with alpha-ketoglutarate. Ozone was the most potent of the three biocides, with a greater than 99% kill of L. pneumophila occurring during a 5-min exposure to 0.10 to 0.30 micrograms of O3 per ml. The bactericidal action of O3 was not markedly affected by changes in pH or temperature. Concentrations of 0.30 and 0.40 micrograms of free chlorine per ml killed 99% of the L. pneumophila after 30- and 5-min exposures, respectively. A 30-min exposure to 1,000 micrograms of H2O2 per ml was required to effect a 99% reduction of the viable L. pneumophila population. However, no viable L. pneumophila could be detected after a 24-h exposure to 100 or 300 micrograms of H2O2 per ml. Attempts were made to correlate the biocidal effects of O3 and H2O2 with the oxidation of L. pneumophila fatty acids. These tests indicated that certain biocidal concentrations of O3 and H2O2 resulted in a loss or severe reduction of L. pneumophila unsaturated fatty acids. PMID:3377492
Mani, Ganesh Kumar; Miyakoda, Kousei; Saito, Asuka; Yasoda, Yutaka; Kajiwara, Kagemasa; Kimura, Minoru; Tsuchiya, Kazuyoshi
2017-07-05
Acid-base homeostasis (body pH) inside the body is precisely controlled by the kidneys and lungs and buffer systems, such that even a minor pH change could severely affect many organs. Blood and urine pH tests are common in day-to-day clinical trials and require little effort for diagnosis. There is always a great demand for in vivo testing to understand more about body metabolism and to provide effective diagnosis and therapy. In this article, we report the simple fabrication of microneedle-based direct, label-free, and real-time pH sensors. The reference and working electrodes were Ag/AgCl thick films and ZnO thin films on tungsten (W) microneedles, respectively. The morphological and structural characteristics of microneedles were carefully investigated through various analytical methods. The developed sensor exhibited a Nernstian response of -46 mV/pH. Different conditions were used to test the sensor to confirm their accuracy and stability, such as various buffer solutions, with respect to time, and we compared the reading with commercial pH electrodes. Besides that, the fabricated microneedle sensor ability is proven by in vivo testing in mouse cerebrospinal fluid (CSF) and bladders. The pH sensor procedure reported here is totally reversible, and results were reproducible after several rounds of testing.
An Integrated Command and Control Architecture Concept for Unmanned Systems in the Year 2030
2010-06-01
98 3.6.4.3. Lithium Iron Phosphate LiFePO4 ......................................99 3.6.4.4. Future Battery Developments...Iron Phosphate LiFePO4 Lithium Iron Phosphate is a variation in the chemistry of lithium ion batteries. General electric Battery company research...LCS Littoral Combat Ship LD/HD Low Density/High Demand LiFePO4 Lithium Iron Phosphate LOC Lines of Communication LOE Limited Objective Experiment
Spacecraft optical disk recorder memory buffer control
NASA Technical Reports Server (NTRS)
Hodson, Robert F.
1993-01-01
This paper discusses the research completed under the NASA-ASEE summer faculty fellowship program. The project involves development of an Application Specific Integrated Circuit (ASIC) to be used as a Memory Buffer Controller (MBC) in the Spacecraft Optical Disk System (SODR). The SODR system has demanding capacity and data rate specifications requiring specialized electronics to meet processing demands. The system is being designed to support Gigabit transfer rates with Terabit storage capability. The complete SODR system is designed to exceed the capability of all existing mass storage systems today. The ASIC development for SODR consist of developing a 144 pin CMOS device to perform format conversion and data buffering. The final simulations of the MBC were completed during this summer's NASA-ASEE fellowship along with design preparations for fabrication to be performed by an ASIC manufacturer.
Sapp, Amy L.; Kawachi, Ichiro; Sorensen, Glorian; LaMontagne, Anthony D.; Subramanian, S.V.
2010-01-01
Objective To investigate whether workplace social capital buffers the association between job stress and smoking status. Methods As part of the Harvard Cancer Prevention Project’s Healthy Directions-Small Business Study, interviewer-administered questionnaires were completed by 1740 workers and 288 managers in 26 manufacturing firms (84% and 85% response). Social capital was assessed by multiple items measured at the individual-level among workers, and contextual-level among managers. Job stress was operationalized by the demand-control model. Multilevel logistic regression was used to estimate associations between job stressors and smoking, and test for effect modification by social capital measures. Results Workplace social capital (both summary measures) buffered associations between high job demands and smoking. One compositional item—worker trust in managers—buffered associations between job strain and smoking. Conclusion Workplace social capital may modify the effects of psychosocial working conditions on health behaviors. PMID:20595910
Steinbacher, Stefan; Schiffmann, Susanne; Bacher, Adelbert; Fischer, Markus
2004-07-01
The crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with the substrate ribulose 5-phosphate at a dimetal centre has recently been determined at 1.7 A resolution. The enzyme converts ribulose 5-phosphate into 3,4-dihydroxy-2-butanone 4-phosphate, while its C4 atom is released as formate. The resulting four-carbon body supplies all eight C atoms for the xylene moiety of riboflavin. Three of the four hydroxyl groups of ribulose 5-phosphate were coordinated by the metal ions. Based on crystallographic refinement, the metals were assigned as zinc and calcium, which were present in the crystallization buffer. Neither metal supports the enzymatic reaction. In the present study, the correctness of this assignment is assessed using anomalous diffraction data collected at the high-energy side of the zinc absorption edge (lambda = 1.2823 A). Only the three tentative zinc ions give strong peaks in an anomalous difference Fourier map (>20sigma), whereas the four tentative calcium ions do not show anomalous signals above the noise level. These results confirm the initial assignment. In addition, the resolution was improved to 1.55 A.
Imaging label-free biosensor with microfluidic system
NASA Astrophysics Data System (ADS)
Jahns, S.; Glorius, P.; Hansen, M.; Nazirizadeh, Y.; Gerken, M.
2015-06-01
We present a microfluidic system suitable for parallel label-free detection of several biomarkers utilizing a compact imaging measurement system. The microfluidic system contains a filter unit to separate the plasma from human blood and a functionalized, photonic crystal slab sensor chip. The nanostructure of the photonic crystal slab sensor chip is fabricated by nanoimprint lithography of a period grating surface into a photoresist and subsequent deposition of a TiO2 layer. Photonic crystal slabs are slab waveguides supporting quasi-guided modes coupling to far-field radiation, which are sensitive to refractive index changes due to biomarker binding on the functionalized surface. In our imaging read-out system the resulting resonance shift of the quasi-guided mode in the transmission spectrum is converted into an intensity change detectable with a simple camera. By continuously taking photographs of the sensor surface local intensity changes are observed revealing the binding kinetics of the biomarker to its specific target. Data from two distinct measurement fields are used for evaluation. For testing the sensor chip, 1 μM biotin as well as 1 μM recombinant human CD40 ligand were immobilized in spotsvia amin coupling to the sensor surface. Each binding experiment was performed with 250 nM streptavidin and 90 nM CD40 ligand antibody dissolved in phosphate buffered saline. In the next test series, a functionalized sensor chip was bonded onto a 15 mm x 15 mm opening of the 75 mm x 25 mm x 2 mm microfluidic system. We demonstrate the functionality of the microfluidic system for filtering human blood such that only blood plasma was transported to the sensor chip. The results of first binding experiments in buffer with this test chip will be presented.
Design and synthesis of a novel cationic thiolated polymer.
Rahmat, Deni; Sakloetsakun, Duangkamon; Shahnaz, Gul; Perera, Glen; Kaindl, Reinhard; Bernkop-Schnürch, Andreas
2011-06-15
The purpose of this study was to design and characterize a novel cationic thiolated polymer. In this regard a hydroxyethylcellulose-cysteamine conjugate (HEC-cysteamine) was synthesized. Oxidative ring opening with periodate and reductive amination with cysteamine were performed in order to immobilize free thiol groups to HEC. The resulting HEC-cysteamine displayed 2035 ± 162 μmol immobilized free thiol groups and 185 ± 64 μmol disulfide bonds per gram of polymer being soluble in both acidic and basic conditions. Unlike the unmodified HEC, in case of HEC-cysteamine, a three-fold increase in the viscosity was observed when equal volumes of the polymer were mixed with mucin solution. Tablets based on HEC-cysteamine remained attached on freshly excised porcine mucosa for 8 0h and displayed increased disintegration time of 2h. Swelling behavior of HEC-cysteamine tablets in 0.1M phosphate buffer pH 6.8 indicated swelling ratio of 19 within 8h. In contrast, tablets comprising unmodified HEC detached from the mucosa within few seconds and immediately disintegrated. In addition, they did not exhibit swelling behavior. The transport of rhodamine 123 across freshly excised rat intestine enhanced by a value of approximately 1.6-fold (p-value = 0.0024) in the presence of 0.5% (m/v) HEC-cysteamine as compared to buffer control. Result from cytotoxicity test of HEC-cysteamine applied to Caco-2 cells in concentration of 0.5% (m/v) revealed 82.4 ± 4.60% cell viability. According to these results, HEC-cysteamine seems to be a promising polymer for various pharmaceutical applications especially for intestinal drug delivery. Copyright © 2011. Published by Elsevier B.V.
Autophagy Signaling in Prostate Cancer: Identification of a Novel Phosphatase
2011-08-01
the transmembrane and cytosolic residues). We measured PTPRS activity using a phospho-tyrosine (pTyr) peptide with malachite green free phosphate...vitro using a 100 uM phosphotyrosine peptide substrate and malachite green detection of released free phosphates. Activity is expressed as picomoles...Upstate) at 37°C for 15 minutes. Released phosphates were detected with malachite green (Upstate) and absorbance measured at 650 nm. Background levels
The contribution of phosphate–phosphate repulsions to the free energy of DNA bending
Range, Kevin; Mayaan, Evelyn; Maher, L. J.; York, Darrin M.
2005-01-01
DNA bending is important for the packaging of genetic material, regulation of gene expression and interaction of nucleic acids with proteins. Consequently, it is of considerable interest to quantify the energetic factors that must be overcome to induce bending of DNA, such as base stacking and phosphate–phosphate repulsions. In the present work, the electrostatic contribution of phosphate–phosphate repulsions to the free energy of bending DNA is examined for 71 bp linear and bent-form model structures. The bent DNA model was based on the crystallographic structure of a full turn of DNA in a nucleosome core particle. A Green's function approach based on a linear-scaling smooth conductor-like screening model was applied to ascertain the contribution of individual phosphate–phosphate repulsions and overall electrostatic stabilization in aqueous solution. The effect of charge neutralization by site-bound ions was considered using Monte Carlo simulation to characterize the distribution of ion occupations and contribution of phosphate repulsions to the free energy of bending as a function of counterion load. The calculations predict that the phosphate–phosphate repulsions account for ∼30% of the total free energy required to bend DNA from canonical linear B-form into the conformation found in the nucleosome core particle. PMID:15741179
Secular decline of seawater calcium increases seawater buffering and pH
NASA Astrophysics Data System (ADS)
Hain, M.; Sigman, D. M.; Higgins, J. A.; Haug, G. H.
2015-12-01
Reconstructed changes in seawater calcium and magnesium concentration ([Ca2+], [Mg2+]) predictably affect the ocean's acid/base and carbon chemistry. Yet inaccurate formulations of chemical equilibrium "constants" are currently in use to account for these changes. Here we develop an efficient implementation of the MIAMI Ionic Interaction Model (Millero and Pierrot, 1998) to predict all chemical equilibrium constants required for carbon chemistry calculations under variable [Ca2+] and [Mg2+] (Hain et al., 2015). We investigate the impact of [Ca2+] and [Mg2+] on the relationships among the ocean's pH, CO2, dissolved inorganic carbon (DIC), saturation state of CaCO3 (Ω), and buffer capacity. Increasing [Ca2+] and/or [Mg2+] enhances "ion pairing," which increases seawater buffering by increasing the concentration ratio of total to "free" (uncomplexed) carbonate ion. An increase in [Ca2+], however, also causes a decline in carbonate ion to maintain a given Ω, thereby overwhelming the ion pairing effect and decreasing seawater buffering. Given the reconstructions of Eocene [Ca2+] and [Mg2+] ([Ca2+]~20mM; [Mg2+]~30 mM), Eocene seawater would have required essentially the same DIC as today to simultaneously explain a similar-to-modern Ω and the estimated Eocene atmospheric CO2 of ~1000 ppm. During the Cretaceous, at ~4 times modern [Ca2+], ocean buffering would have been at a minimum. Overall, during times of high seawater [Ca2+], CaCO3 saturation, pH, and atmospheric CO2 were more susceptible to perturbations of the global carbon cycle. For example, given both Eocene and Cretaceous seawater [Ca2+] and [Mg2+], a doubling of atmospheric CO2 would require less carbon addition to the ocean/atmosphere system than under modern seawater composition. Moreover, increase in seawater buffering since the Cretaceous may have been a driver of evolution by raising energetic demands of biologically controlled calcification and CO2 concentration mechanisms that aid photosynthesis.
Chen, Xi; Liang, Peng; Wei, Zhimou; Zhang, Xiaoyuan; Huang, Xia
2012-09-01
A separator coupled circulation stacked microbial desalination cell (c-SMDC-S) was constructed to stabilize the pH imbalances in MDCs without buffer solution and achieved the stable desalination. The long-term operation of c-SMDC-S, regular stacked MDC (SMDC) and no separator coupled circulation SMDC (c-SMDC) were tested. The SMDC and c-SMDC could only stably operate for 1 week and 1 month owing to dramatic anolyte pH decrease and serious biofilm growth on the air cathode, respectively. The c-SMDC-S gained in anolyte alkalinity and operated stably for about 60 days without the thick biofilm growth on cathode. Besides, the chemical oxygen demand removal and coulombic efficiency were 64 ± 6% and 30 ± 2%, higher than that of SMDC and c-SMDC, respectively. It was concluded that the circulation of alkalinity could remove pH imbalance while the separator could expand the operation period and promote the conversion of organic matter to electricity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Biological Degradation of Tetrachloroethylene in Methanogenic Conditions
1994-06-01
stock of neat PCE was not purged with N2-C0 2. Alcohol oxidase (from Pichia pasrori, phosphate-buffered 60 percent sucrose solution), peroxidase (Type...dechlorination of tetrachlorocthene in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols ," Appl. Environ. Microbiol. (58
Basallote, Manuel G; Martínez, Manuel; Vázquez, Marta
2014-07-28
In view of the relevance of the reactivity of inert tetraamine Co(III) complexes having two substitutionally active cis positions capable of interact with biologically relevant ligands, the study of the reaction of cis-[Co(cyclen)(H2O)2](3+) and [Co(tren)(H2O)2](3+) with chlorides, inorganic phosphate and 5'-CMP (5'-cytidinemonophosphate) has been pursued at physiological pH. The results indicate that, in addition to the actuation of the expected labilising conjugate-base mechanism, the formation of mono and inert bis hydroxo-bridged species is relevant for understanding their speciation and reactivity. The reactivity pattern observed also indicates the key role played by the "innocent" buffers frequently used in most in vitro studies, which can make the results unreliable in many cases. The differences between the reactivity of inorganic and biologically relevant phosphates has also been found to be remarkable, with outer-sphere hydrogen bonding interactions being a dominant factor for the process. While for the inorganic phosphate substitution process the formation of μ-η(2)-OPO2O represents the termination of the reactivity monitored, for 5'-CMP only the formation of η(1)-OPO3 species is observed, which evolve with time to the final dead-end bis hydroxo-bridged complexes. The promoted hydrolysis of the 5'-CMP phosphate has not been observed in any of the processes studied.
Cd-free buffer layer materials on Cu2ZnSn(SxSe1-x)4: Band alignments with ZnO, ZnS, and In2S3
NASA Astrophysics Data System (ADS)
Barkhouse, D. Aaron R.; Haight, Richard; Sakai, Noriyuki; Hiroi, Homare; Sugimoto, Hiroki; Mitzi, David B.
2012-05-01
The heterojunctions formed between Cu2ZnSn(SxSe1-x)4 (CZTSSe) and three Cd-free n-type buffers, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission and photovoltage spectroscopy. The electronic properties including the Fermi level location at the interface, band bending in the CZTSSe substrate, and valence and conduction band offsets were determined and correlated with device properties. We also describe a method for determining the band bending in the buffer layer and demonstrate this for the In2S3/CZTSSe system. The chemical bath deposited In2S3 buffer is found to have near optimal conduction band offset (0.15 eV), enabling the demonstration of Cd-free In2S3/CZTSSe solar cells with 7.6% power conversion efficiency.
Joling, Catelijne I; Blatter, Birgitte M; Ybema, Jan Fekke; Bongers, Paulien M
2008-10-01
This study investigated whether work dedication and job resources are longitudinally related to work-related musculoskeletal disorders and whether job resources buffer the impact of job demands on these disorders? Data were used from a longitudinal three-phase study (2004, 2005, 2006) on health at work among a sample of Dutch workers. The first survey was sent in 2004 by e-mail to 3100 members of an existing panel. For the analyses, 1522 participants were included with full longitudinal data. The analyses were performed using an autoregressive model with generalized estimating equations. The job-resource quality of communication was found to predict the risk of work-related musculoskeletal disorders over time. This effect was not mediated by work dedication. A high quality of communication was also found to buffer the negative effects of a high physical workload on the risk of work-related musculoskeletal disorders. Furthermore, a low level of social support by colleagues was found to buffer the negative effect of a medium physical workload on work-related musculoskeletal disorders. This study shows that job resources are not only important for promoting work dedication, but may also moderate the negative impact of high job demands on the risk of work-related musculoskeletal disorders. With respect to social support, the question is raised of whether this can also work negatively. The results of this study imply that, besides avoiding or reducing risks to health in the workplace and lowering job demands, strengthening job resources may additionally buffer harmful effects of job demands on musculoskeletal health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Story, Sandra; Brigmon, Robin L.
Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soilmore » resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5 mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. Finally, these results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.« less
Story, Sandra; Brigmon, Robin L.
2016-12-19
Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soilmore » resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5 mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. Finally, these results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.« less
Story, Sandra; Brigmon, Robin L
2017-03-01
Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications. Copyright © 2016. Published by Elsevier Inc.
van Woerkom, Marianne; Bakker, Arnold B; Nishii, Lisa H
2016-01-01
Absenteeism associated with accumulated job demands is a ubiquitous problem. We build on prior research on the benefits of counteracting job demands with resources by focusing on a still untapped resource for buffering job demands-that of strengths use. We test the idea that employees who are actively encouraged to utilize their personal strengths on the job are better positioned to cope with job demands. Based on conservation of resources (COR) theory, we hypothesized that job demands can accumulate and together have an exacerbating effect on company registered absenteeism. In addition, using job demands-resources theory, we hypothesized that perceived organizational support for strengths use can buffer the impact of separate and combined job demands (workload and emotional demands) on absenteeism. Our sample consisted of 832 employees from 96 departments (response rate = 40.3%) of a Dutch mental health care organization. Results of multilevel analyses indicated that high levels of workload strengthen the positive relationship between emotional demands and absenteeism and that support for strength use interacted with workload and emotional job demands in the predicted way. Moreover, workload, emotional job demands, and strengths use interacted to predict absenteeism. Strengths use support reduced the level of absenteeism of employees who experienced both high workload and high emotional demands. We conclude that providing strengths use support to employees offers organizations a tool to reduce absenteeism, even when it is difficult to redesign job demands. (c) 2016 APA, all rights reserved).
Mechanism by which ammonium bicarbonate and ammonium sulfate inhibit mycotoxigenic fungi.
DePasquale, D A; Montville, T J
1990-01-01
In this study we examined the mechanism by which ammonium bicarbonate inhibits mycotoxigenic fungi. Elevated extracellular pH, alone, was not responsible for the antifungal activity. Although conidia of Penicillium griseofulvum and Fusarium graminearum had internal pH (pHi) values as high as 8.0 in buffer at an external pH (pHo) of 9.5, their viability was not markedly affected. The pHi values from conidia equilibrated in glycine-NaOH-buffered treatments without ammonium bicarbonate or ammonium sulfate were similar to values obtained from buffered treatments containing the ammonium salts. Thus, inhibition did not appear to be directly related to increased pHi. Ammonium sulfate in buffered media at pH greater than or equal to 8.7 was as inhibitory as ammonium bicarbonate, but was completely ineffective at pH less than or equal to 7.8. The hypothesis that free ammonia caused the fungal inhibition was tested by using ammonium sulfate as a model for ammonium bicarbonate. Viability, expressed as log CFU/ml, and percent germination of P. griseofulvum and F. graminearum decreased dramatically as the free ammonia concentration increased. Germination rate ratios (the germination rate in buffered ammonium sulfate divided by the germination rate in buffer alone) decreased linearly as the free ammonia concentration increased, further establishing NH3 as the toxic agent. Ammonium bicarbonate inhibits fungi because the bicarbonate anion supplies the alkalinity necessary to establish an antifungal concentration of free ammonia. PMID:2082821
The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.
Metrick, Michael A; Temple, Joshua E; MacDonald, Gina
2013-12-31
The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions. © 2013. Published by Elsevier B.V. All rights reserved.
DEVELOPMENT OF BIOMARKER OF EXPOSURE TO VIRAL PATHOGENS
Interferon gamma (IFN-γ) was selected as a biomarker for a viral exposure study. Twelve-week-old BALB/c mice were intraperitoneally injected with 0.2ml of 104 PFU/ml of coxsackievirus B3 or B4 diluted in phosphate-buffered saline (PBS). Control mice were injected with PBS on...
Interferon Gamma as a Biomarker of Exposure to Enteric Viruses
Interferon gamma (IFN-γ) was selected as a biomarker for viral exposure. Twelve-week-old BALB/c mice were intraperitoneally injected with Coxsackievirus B3 or B4 diluted in phosphate-buffered saline (PBS). Control mice were injected with PBS only. Four months after viral infectio...
RELATIVE RATE CONSTANTS OF CONTAMINANT CANDIDATE LIST PESTICIDES WITH HYDROXYL RADICALS
The objective of this study was to establish the rate constants for the reactions of selected pesticides listed on the US EPA Contaminant Candidate List, with UV and hydroxyl radicals (·OH). Batch experiments were conducted in phosphate buffered solution at pH 7. All pestici...
ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS
The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...
Apoptosis and Tumor Progressionin Prostate Cancer
2005-02-01
control. Proc Natl Acad Sci USA 94: 10057- 10062 . 5. Colombel M, Symmans F, et al. (1993): Detection of the apoptosis-suppressing oncoprotein bcl-2 in...hours prior to treatment. After treatment, cells were washed with phosphate buffered saline ( PBS ) and fixed in 500 [tL 0.2% glutaraldehyde in water for
Taltavull, C; Shi, Z; Torres, B; Rams, J; Atrens, A
2014-02-01
This research studied the influence of the chloride ion concentration on the corrosion behaviour of high-purity magnesium (Mg) and two Mg alloys in Hank's solution, using hydrogen evolution and weight loss. A buffer based on CO2 and NaHCO3 was used to maintain the pH constant. The corrosion behaviour was governed by a partially protective surface film, and film breakdown by the chloride ions. The carbonated calcium phosphate layer that formed in Hank's solution was important in determining the protective properties of the surface film.
NASA Technical Reports Server (NTRS)
Vanoss, C. J.
1978-01-01
Pancreatic islets were obtained from guinea pig pancreas by the collagenase method and kept alive in tissue culture prior to further studies. Pancreas cell morphology was studied by standard histochemical techniques using light microscopy. Preparative vertical electrophoresis-levitation of dispersed fetal guinea pig pancreas cells was conducted in phosphate buffer containing a heavy water (D20) gradient which does not cause clumping of cells or alter the osmolarity of the buffers. The faster migrating fractions tended to be enriched in beta-cell content. Alpha and delta cells were found to some degree in most fractions. A histogram showing the cell count distribution is included.
Itzhaki, Ruth F.
1971-01-01
The binding of deoxyribonucleoprotein to Toluidine Blue, to cetylpyridinium chloride and to polylysine of various molecular weights was studied to determine the percentage of free DNA phosphate groups in deoxyribonucleoprotein. Binding was measured by addition of these reagents to deoxyribonucleoprotein at a range of concentrations such that complete precipitation of the deoxyribonucleoprotein occurred. With Toluidine Blue the binding corresponded to about 48% of the DNA phosphates in deoxyribonucleoprotein. The dye did not cause appreciable displacement of protein from the DNA. With cetylpyridinium chloride the binding corresponded to about 41% of the DNA phosphates. With polylysine preparations of molecular weight 1250 and 7790 the binding values for deoxyribonucleoprotein were 46 and 38% respectively. The results suggest that the free phosphates lie in stretches sufficiently long to accommodate most of each polylysine molecule. With polylysine of molecular weight 62000 cross-linking of free stretches of DNA on different deoxyribonucleoprotein molecules probably occurs. It is concluded that although most of the free phosphates are probably `hidden' beneath covering histone, corresponding perhaps to runs of non-basic residues in the latter, they are surprisingly accessible to very large molecules. The relevance of this finding to the problem of gene repression is discussed. PMID:5166331
Rivkin, Wladislaw; Diestel, Stefan; Schmidt, Klaus-Helmut
2018-01-01
Previous research has provided strong evidence for affective commitment as a direct predictor of employees' psychological well-being and as a resource that buffers the adverse effects of self-control demands as a stressor. However, the mechanisms that underlie the beneficial effects of affective commitment have not been examined yet. Drawing on the self-determination theory, we propose day-specific flow experiences as the mechanism that underlies the beneficial effects of affective commitment, because flow experiences as peaks of intrinsic motivation constitute manifestations of autonomous regulation. In a diary study covering 10 working days with N = 90 employees, we examine day-specific flow experiences as a mediator of the beneficial effects of interindividual affective commitment and a buffering moderator of the adverse day-specific effects of self-control demands on indicators of well-being (ego depletion, need for recovery, work engagement, and subjective vitality). Our results provide strong support for our predictions that day-specific flow experiences a) mediate the beneficial effects of affective commitment on employees' day-specific well-being and b) moderate (buffer) the adverse day-specific effects of self-control demands on well-being. That is, on days with high levels of flow experiences, employees were better able to cope with self-control demands whereas self-control demands translated into impaired well-being when employees experienced lower levels of day-specific flow experiences. We then discuss our findings and suggest practical implications. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Li, Lanlan; Pan, Lijia; Ma, Zhong; Yan, Ke; Cheng, Wen; Shi, Yi; Yu, Guihua
2018-06-13
Multiplexing, one of the main trends in biosensors, aims to detect several analytes simultaneously by integrating miniature sensors on a chip. However, precisely depositing electrode materials and selective enzymes on distinct microelectrode arrays remains an obstacle to massively produced multiplexed sensors. Here, we report on a "drop-on-demand" inkjet printing process to fabricate multiplexed biosensors based on nanostructured conductive hydrogels in which the electrode material and several kinds of enzymes were printed on the electrode arrays one by one by employing a multinozzle inkjet system. The whole inkjet printing process can be finished within three rounds of printing and only one round of alignment. For a page of sensor arrays containing 96 working electrodes, the printing process took merely ∼5 min. The multiplexed assays can detect glucose, lactate, and triglycerides in real time with good selectivity and high sensitivity, and the results in phosphate buffer solutions and calibration serum samples are comparable. The inkjet printing process exhibited advantages of high efficiency and accuracy, which opens substantial possibilities for massive fabrication of integrated multiplexed biosensors for human health monitoring.
Oota, Shinichi; Hatae, Yuta; Amada, Kei; Koya, Hidekazu; Kawakami, Mitsuyasu
2010-09-15
Although microbial biochemical oxygen demand (BOD) sensors utilizing redox mediators have attracted much attention as a rapid BOD measurement method, little attempts have been made to apply the mediated BOD biosensors to the flow injection analysis system. In this work, a mediated BOD sensor system of flow injection mode, constructed by combining an immobilized microbial reactor with an electrochemical flow cell of three electrodes configuration, has been developed to estimate BOD of shochu distillery wastewater (SDW). It was demonstrated consequently that the mediated sensing was realized by employing phosphate buffer containing potassium hexacyanoferrate as the carrier. The output current was found to yield a peak with a sample injection, and to result from reoxidation of reduced mediator at the electrode. By employing the peak area as the sensor response, the effects of flow rate and pH of the carrier on the sensitivity were investigated. The sensor system using a microorganism of high SDW-assimilation capacity showed good performance and proved to be available for estimation of BOD of SDW. Copyright 2010 Elsevier B.V. All rights reserved.
Ghosh, Sudipa; Fang, Tan Hui; Uddin, M S; Hidajat, K
2013-05-01
Chiral resolution aromatic amino acids, DL-tryptophan (DL-Trp), DL-phenylalanine (DL-Phe), DL-tyrosine (DL-Tyr) from phosphate buffer solution was achieved in present study employing the concept of selective adsorption by surface functionalized magnetic nanoparticles (MNPs). Surfaces of magnetic nanoparticles were functionalized with silica and carboxymethyl-β-cyclodextrin (CMCD) to investigate their adsorption resolution characteristics. Resolution of enantiomers from racemic mixture was quantified in terms of enantiomeric excess using chromatographic method. The MNPs selectively adsorbed L-enantiomers of DL-Trp, DL-Phe, and DL-Tyr from racemic mixture and enantiomeric excesses (e.e.) were determined as 94%, 73% and 58%, respectively. FTIR studies demonstrated that hydrophobic portion of enantiomer penetrated into hydrophobic cavity of cyclodextrin molecules to form inclusion complex. Furthermore, adsorption site was explored using XPS and it was revealed that amino group at chiral center of the amino acid molecule formed hydrogen bond with secondary hydroxyl group of CMCD molecule and favorability of hydrogen bond formation resulted in selective adsorption of L-enantiomer. Finally, stability constant (K) and Gibbs free energy change (-ΔG°) for inclusion complexation of CMCD with L-/D-enantiomers of amino acids were determined using spectroflurometry in aqueous buffer solution. Higher binding constants were obtained for inclusion complexation of CMCD with L-enantiomers compared to D-enantiomers which stimulated enantioselective properties of CMCD functionalized magnetite silica nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.
Hafnium nitride buffer layers for growth of GaN on silicon
Armitage, Robert D.; Weber, Eicke R.
2005-08-16
Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.
Fernández, Purificación; Fernández, Ana M; Bermejo, Ana M; Lorenzo, Rosa A; Carro, Antonia M
2013-04-01
The performance of microwave-assisted extraction and HPLC with photodiode array detection method for determination of six analgesic and anti-inflammatory drugs from plasma and urine, is described, optimized, and validated. Several parameters affecting the extraction technique were optimized using experimental designs. A four-factor (temperature, phosphate buffer pH 4.0 volume, extraction solvent volume, and time) hybrid experimental design was used for extraction optimization in plasma, and three-factor (temperature, extraction solvent volume, and time) Doehlert design was chosen to extraction optimization in urine. The use of desirability functions revealed the optimal extraction conditions as follows: 67°C, 4 mL phosphate buffer pH 4.0, 12 mL of ethyl acetate and 9 min, for plasma and the same volume of buffer and ethyl acetate, 115°C and 4 min for urine. Limits of detection ranged from 4 to 45 ng/mL in plasma and from 8 to 85 ng/mL in urine. The reproducibility evaluated at two concentration levels was less than 6.5% for both specimens. The recoveries were from 89 to 99% for plasma and from 83 to 99% for urine. The proposed method was successfully applied in plasma and urine samples obtained from analgesic users. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peak phosphorus - peak food? The need to close the phosphorus cycle.
Rhodes, Christopher J
2013-01-01
The peak in the world production of phosphorus has been predicted to occur in 2033, based on world reserves of rock phosphate (URR) reckoned at around 24,000 million tonnes (Mt), with around 18,000 Mt remaining. This figure was reckoned-up to 71,000 Mt, by the USGS, in 2012, but a production maximum during the present century is still highly probable. There are complex issues over what the demand will be for phosphorus in the future, as measured against a rising population (from 7 billion to over 9 billion in 2050), and a greater per capita demand for fertiliser to grow more grain, in part to feed animals and meet a rising demand for meat by a human species that is not merely more populous but more affluent. As a counterweight to this, we may expect that greater efficiencies in the use of phosphorus - including recycling from farms and of human and animal waste - will reduce the per capita demand for phosphate rock. The unseen game changer is peak oil, since phosphate is mined and recovered using machinery powered by liquid fuels refined from crude oil. Hence, peak oil and peak phosphorus might appear as conjoined twins. There is no unequivocal case that we can afford to ignore the likelihood of a supply-demand gap for phosphorus occurring sometime this century, and it would be perilous to do so.
Monitoring and evaluation of the water quality of Budeasa Reservoir-Arges River, Romania.
Ion, Antoanela; Vladescu, Luminita; Badea, Irinel Adriana; Comanescu, Laura
2016-09-01
The purpose of this study was to monitor and record the specific characteristics and properties of the Arges River water in the Budeasa Reservoir (the principal water resources of municipal tap water of the big Romanian city Pitesti and surrounding area) for a period of 5 years (2005-2009). The monitored physical and chemical parameters were turbidity, pH, electrical conductivity, chemical oxygen demand, 5 days biochemical oxygen demand, free dissolved oxygen, nitrite, nitrate, ammonia nitrogen, chloride, total dissolved iron ions, sulfate, manganese, phosphate, total alkalinity, and total hardness. The results were discussed in correlation with the precipitation values during the study. Monthly and annual values of each parameter determined in the period January 2005-December 2009 were used as a basis for the classification of Budeasa Reservoir water, according to the European legislation, as well as for assessing its quality as a drinking water supply. Principal component analysis and Pearson correlation coefficients were used as statistical procedures in order to evaluate the data obtained during this study.
NASA Technical Reports Server (NTRS)
Mosher, Richard A.; Thormann, Wolfgang; Graham, Aly; Bier, Milan
1985-01-01
Two methods which utilize simple buffers for the generation of stable pH gradients (useful for preparative isoelectric focusing) are compared and contrasted. The first employs preformed gradients comprised of two simple buffers in density-stabilized free solution. The second method utilizes neutral membranes to isolate electrolyte reservoirs of constant composition from the separation column. It is shown by computer simulation that steady-state gradients can be formed at any pH range with any number of components in such a system.
Chakraborty, Subhashis; Shukla, Dali; Jain, Achint; Mishra, Brahmeshwar; Singh, Sanjay
2009-07-15
The effect of surfactants on the solubility of a new phosphate salt of carvedilol was investigated at different biorelevent pH to evaluate their solubilization capacity. Solutions of different classes of surfactants viz., anionic-sodium dodecyl sulfate (SDS) and sodium taurocholate (STC), cationic-cetyltrimethylammonium bromide (CTAB) and non-ionic-Tween 80 (T80) were prepared in the concentration range of 5-35 mmol dm(-3) in buffer solutions of pH 1.2, 3.0, 4.5, 5.8, 6.8 and 7.2. The solubility data were used to calculate the solubilization characteristics viz. molar solubilization capacity, water micelle partition coefficient, free energy of solubilization and binding constant. Solubility enhancement in basic pH was in following order: CTAB>T80>SDS>STC. CTAB and T80 showed remarkable solubility enhancement in acidic pH as well. Among the anionic surfactants, solubility in acidic medium was retarded except at pH 1.2 in case of SDS. Cationic and non-ionic surfactants were found to be suitable for enhancing the solubility of CP which can be employed for maintaining the in vitro sink condition in the basic dissolution medium. While anionic surfactants showed solubility retardant behavior which may be exploited in increasing the drug entrapment efficiency of a colloidal drug delivery system formulated by emulsification technique.
Shretta, Rima; Yadav, Prashant
2012-12-02
The global demand for artemisinin-based combination therapy (ACT) has grown sharply since its recommendation by the World Health Organization in 2002. However, a combination of financing and programmatic uncertainties, limited suppliers of finished products, information opacity across the different tiers in the supply chain, and widespread fluctuations in raw material prices have together contributed to a market fraught with demand and supply uncertainties and price volatility. Various short-term solutions have been deployed to alleviate supply shortages caused by these challenges; however, new mechanisms are required to build resilience into the supply chain. This review concludes that a mix of strategies is required to stabilize the artemisinin and ACT market. First, better and more effective pooling of demand and supply risks and better contracting to allow risk sharing among the stakeholders are needed. Physical and financial buffer stocks will enable better matching of demand and supply in the short and medium term. Secondly, physical buffers will allow stable supplies when there are procurement and supply management challenges while financial buffer funds will address issues around funding disruptions. Finally, in the medium to long term, significant investments in country level system strengthening will be required to minimize national level demand uncertainties. In addition a voluntary standard for extractors to ensure appropriate purchasing and sales practices as well as minimum quality and ethical standards could help stabilize the artemisinin market in the long term.
2012-01-01
The global demand for artemisinin-based combination therapy (ACT) has grown sharply since its recommendation by the World Health Organization in 2002. However, a combination of financing and programmatic uncertainties, limited suppliers of finished products, information opacity across the different tiers in the supply chain, and widespread fluctuations in raw material prices have together contributed to a market fraught with demand and supply uncertainties and price volatility. Various short-term solutions have been deployed to alleviate supply shortages caused by these challenges; however, new mechanisms are required to build resilience into the supply chain. This review concludes that a mix of strategies is required to stabilize the artemisinin and ACT market. First, better and more effective pooling of demand and supply risks and better contracting to allow risk sharing among the stakeholders are needed. Physical and financial buffer stocks will enable better matching of demand and supply in the short and medium term. Secondly, physical buffers will allow stable supplies when there are procurement and supply management challenges while financial buffer funds will address issues around funding disruptions. Finally, in the medium to long term, significant investments in country level system strengthening will be required to minimize national level demand uncertainties. In addition a voluntary standard for extractors to ensure appropriate purchasing and sales practices as well as minimum quality and ethical standards could help stabilize the artemisinin market in the long term. PMID:23198961
Murphy, M R; Whetstone, H D; Davis, C L
1983-12-01
We examined effects of source and particle size of supplemental defluorinated rock phosphate, to meet phosphorus requirements, on rumen function of 195-kg Holstein steers fed high concentrate. Two sources and two particle sizes of each source were evaluated in a 5 X 5 Latin square with 14-day periods. There was no effect of source on ruminal mH [- log (mean (H+)]; however, ruminal mH was higher in animals fed supplements of larger particle size. This effect was also evident when rumen pH versus time curves were integrated below pH 6. Animals fed supplements of larger particle size had less area below pH 6 than those fed supplements of smaller size. Ruminal buffering capacity at pH 7 was affected by diet; however, orthogonal comparisons between treatment means were not significant. Neither source nor particle size of the supplement affected ruminal fluid osmolality, total volatile fatty acid concentration, or fecal starch. Water intake and ruminal dry matter on HyCal supplemented diets; however, there was also a trend toward increasing rumen fluid volume. The net effect was little change of dilution rate of ruminal fluid. This may explain why rumen fermentation was not affected greatly. Conventional phosphate supplements may have potential as rumen buffering agents, but higher levels of feeding should be studied.
Bernal-Mondragón, C; Arriaga-Avila, V; Martínez-Abundis, E; Barrera-Mera, B; Mercado-Gómez, O; Guevara-Guzmán, R
2017-02-01
We investigated the short- and long-term effects of extremely low-frequency electromagnetic fields (EMF) on social recognition behavior and expression of α- and β-estrogen receptors (ER). Rats were exposed to 60-Hz electromagnetic fields for 9 or 30 days and tested for social recognition behavior. Immunohistochemistry and western blot assays were performed to evaluate α- and β-ER expression in the olfactory bulb of intact, ovariectomized (OVX), and ovariectomized+estradiol (E2) replacement (OVX+E2). Ovariectomization showed impairment of social recognition after 9 days of EMF exposure and a complete recovery after E2 replacement and so did those after 30 days. Short EMF exposure increased expression of β-ER in intact, but not in the others. Longer exposure produced a decrease in intact but an increase in OVX and OVX+E2. Our findings suggest a significant role for β-estrogen receptors and a lack of effect for α-estrogen receptors on a social recognition task. EMF: extremely low frequency electromagnetic fields; ERs: estrogen receptors; OB: olfactory bulb; OVX: ovariectomized; OVX + E 2 : ovariectomized + estradiol replacement; IEI: interexposure interval; β-ER: beta estrogen receptor; E 2 : replacement of estradiol; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; WB: Western blot; PBS: phosphate-buffer saline; PB: phosphate-buffer.
NASA Technical Reports Server (NTRS)
Smith, J. J.; McFeters, G. A.
1996-01-01
The effects of substrates of primary aerobic dehydrogenases, and inorganic phosphate on aerobic INT and CTC reduction in Escherichia coli were examined. In general, INT produced less formazan than CTC, but INT (+) cell counts remained near values of CTC (+) cells. INT and CTC (+) cell numbers were higher than plate counts on R2A medium using succinate, formate, lactate, casamino acids, glucose, glycerol (INT only) and no substrate. Formate resulted in the greatest amount of INT and CTC formazan. Reduction of both INT and CTC was inhibited above 10 mmol l-1 phosphate, and this appeared to be related to decreased rates of O2 consumption. Formation of fluorescent CTC (+), but not INT (+) cells was also inhibited in a concentration dependent manner by phosphate above 10 mmol l-1. From light microscopic observations it appeared CTC formed increasing amounts of poorly or non-fluorescent formazan with increasing phosphate. Therefore, use of phosphate buffer in excess of 10 mmol l-1 may not be appropriate in CTC and INT reduction assays.
Signature-based store checking buffer
Sridharan, Vilas; Gurumurthi, Sudhanva
2015-06-02
A system and method for optimizing redundant output verification, are provided. A hardware-based store fingerprint buffer receives multiple instances of output from multiple instances of computation. The store fingerprint buffer generates a signature from the content included in the multiple instances of output. When a barrier is reached, the store fingerprint buffer uses the signature to verify the content is error-free.
Effect of altered sink:source ratio on photosynthetic metabolism of source leaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plaut, Z.; Mayoral, M.L.; Reinhold, L.
When seven crop species were grown under identical environmental conditions, decreased sink:source ratio led to a decreased photosynthetic rate within 1 to 3 days in Cucumis sativus L., Gossypium hirsutum L., and Raphanus sativus L., but not in Capsicum annuum L., Solanum melongena L., Phaseolus vulgaris L., or Ricinus communis L. The decrease was not associated with stomatal closure. In cotton and cucumbers, sink removal led to an increase in starch and sugar content, in glucose 6-phosphate and fructose 6-phosphate pools, and in the proportion of /sup 14/C detected in sugar phosphates and UDPglucose following /sup 14/CO/sub 2/ supply. Whenmore » mannose was supplied to leaf discs to sequester cytoplasmic inorganic phosphate, promotion of starch synthesis, and inhibition of CO/sub 2/ fixation, were observed in control discs, but not in discs from treated plants. Phosphate buffer reduced starch synthesis in the latter, but not the former discs. The findings suggest that sink removal led to a decreased ratio inorganic phosphate:phosphorylated compounds. In beans /sup 14/C in sugar phosphates increased following sink removal, but without sucrose accumulation, suggesting tighter feedback control of sugar level. Starch accumulated to higher levels than in the other plants, but CO/sub 2/ fixation rate was constant for several days.« less
NASA Astrophysics Data System (ADS)
Gatea, Florentina; Teodor, Eugenia Dumitra; Seciu, Ana-Maria; Covaci, Ovidiu Ilie; Mănoiu, Sorin; Lazăr, Veronica; Radu, Gabriel Lucian
2015-07-01
The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.
Viotti, Sara; Converso, Daniela
2016-12-01
The present study aims at investigating whether and how (1) job demands and job resources are associated with work-to-private-life interference (WLI) and (2) job resources moderate the relationship between job demands and WLI. Data were collected by a self-report questionnaire from three hospitals in Italy. The sample consisted of 889 health-care workers. All job demands (i.e., quantitative demands, disproportionate patient expectations, and verbal aggression) and job resources (i.e., job autonomy, support from superiors and colleagues, fairness, and organizational support), with the exception of skill discretion, were related to WLI. The effects of quantitative demands on WLI were moderated by support from superiors; fairness and organizational support moderate the effects of all job demands considered. Support from colleagues moderated only verbal aggression. Job autonomy did not buffer any job demands. The present study suggests that the work context has a central importance in relation to the experience of WLI among health-care workers. The results indicated that intervention in the work context may help to contain WLI. Such interventions would especially be aimed at improving the social climate within the unit and quality of the organizational process.
Lapenna, Domenico; Ciofani, Giuliano; Obletter, Gabriele
2017-05-01
Iron-induced human LDL oxidation, which is relevant to atherosclerosis, has not yet been properly investigated. We addressed such issue using iron(II) and (III) basically in the presence of phosphates, which are present in vivo and influence iron oxidative properties, at pH 4.5 and 7.4, representative, respectively, of the lysosomal and plasma environment. In 10mM phosphate buffered saline (PBS), iron(II) induces substantial LDL oxidation at pH 4.5 at low micromolar concentrations, while at pH 7.4 has low oxidative effects; iron(III) promotes small LDL oxidation only at pH 4.5. In 10mM sodium acetate/NaCl buffer, pH 4.5, iron-induced LDL oxidation is far higher than in PBS, highlighting the relevance of phosphates in the inhibitory modulation of iron-induced LDL oxidation. LDL oxidation is related to iron binding to the protein and lipid moiety of LDL, and requires the presence of iron(II) bound to LDL together with iron(III). Chemical modification of LDL carboxyl groups, which could bind iron especially at pH 4.5, decreases significantly iron binding to LDL and iron-induced LDL oxidation. Hydroxyl radical scavengers are ineffective on iron-induced LDL oxidation, which is inhibited by metal chelation, scavengers of alkoxyl/peroxyl radicals, or removal of LDL lipid hydroperoxides (LOOH). Overall, substantial human LDL oxidation is induced LOOH-dependently by iron(II) at pH 4.5 even in the presence of phosphates, suggesting the occurrence of iron(II)-induced LDL oxidation in vivo within lysosomes, where pH is about 4.5, iron(II) and phosphates coexist, plasma with its antioxidants is absent, and glutathione peroxidase is poorly expressed resulting in LOOH accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.
Kaplan, Allen P; Joseph, Kusumam
2016-10-01
Plasma of patients with types I and II hereditary angioedema is unstable if incubated in a plastic (i.e., inert) vessel at 37 °C manifested by progressively increasing formation of bradykinin. There is also a persistent low level of C4 in 95 % of patients even when they are symptomatic. These phenomena are due to the properties of the C1r subcomponent of C1, factor XII, and the bimolecular complex of prekallikrein with high molecular weight kininogen (HK). Purified C1r auto-activates in physiologic buffers, activates C1s, which in turn depletes C4. This occurs when C1 inhibitor is deficient. The complex of prekallikrein-HK acquires an inducible active site not present in prekallikrein which in Tris-type buffers cleaves HK stoichiometrically to release bradykinin, or in phosphate buffer auto-activates to generate kallikrein and bradykinin. Thus immunologic depletion of C1 inhibitor from factor XII-deficient plasma (phosphate is the natural buffer) auto-activates on incubation to release bradykinin. Normal C1 inhibitor prevents this from occurring. During attacks of angioedema, if factor XII auto-activates on surfaces, the initial factor XIIa formed converts prekallikrein to kallikrein, and kallikrein cleaves HK to release bradykinin. Kallikrein also rapidly activates most remaining factor XII to factor XIIa. Additional cleavages convert factor XIIa to factor XIIf and factor XIIf activates C1r enzymatically so that C4 levels approach zero, and C2 is depleted. There is also a possibility that kallikrein is generated first as a result of activation of the prekallikrein-HK complex by heat shock protein 90 released from endothelial cells, followed by kallikrein activation of factor XII.
Labview virtual instruments for calcium buffer calculations.
Reitz, Frederick B; Pollack, Gerald H
2003-01-01
Labview VIs based upon the calculator programs of Fabiato and Fabiato (J. Physiol. Paris 75 (1979) 463) are presented. The VIs comprise the necessary computations for the accurate preparation of multiple-metal buffers, for the back-calculation of buffer composition given known free metal concentrations and stability constants used, for the determination of free concentrations from a given buffer composition, and for the determination of apparent stability constants from absolute constants. As implemented, the VIs can concurrently account for up to three divalent metals, two monovalent metals and four ligands thereof, and the modular design of the VIs facilitates further extension of their capacity. As Labview VIs are inherently graphical, these VIs may serve as useful templates for those wishing to adapt this software to other platforms.
USDA-ARS?s Scientific Manuscript database
We investigated the combined antimicrobial effects of plant essential oils and olive extract. Organic baby spinach, mature spinach, romaine lettuce, and iceberg lettuce were inoculated with the pathogen and then dip-treated in phosphate buffered saline (PBS) control, 3.0% hydrogen peroxide, a 0.1% ...
USDA-ARS?s Scientific Manuscript database
The morphology of the female reproductive system in Megamelus scutellaris Berg (Hemiptera:Delphacidae), a biocontrol agent of Eichhornia crassipes (Mart.) Solms, was examined using standard light microscopy techniques. Ovaries extracted from individuals dissected in phosphate buffered saline were ex...
EFFECTS OF PH ON DECHLORINATION OF TRICHLOROETHYLENE BY ZERO-VALENT IRON
The reduction rates of trichloroethylene (TCE) using zero-valent iron (ZVI) and the rates of iron hydrolysis were characterized at pH values of 5 to 10. The reduction of TCE by ZVI was carried out in batch reactors filled with pH-buffered (phosphate based) solutions under anaerob...
USDA-ARS?s Scientific Manuscript database
A method is described for enumerating hydroxyl groups on analytes in aqueous media is described, and applied to some common polyalcohols (erythritol, mannitol, and xylitol) and selected carbohydrates. The analytes were derivatized in water with vinyl acetate in presence of sodium phosphate buffer. ...
9 CFR 113.43 - Detection of chlamydial agents.
Code of Federal Regulations, 2014 CFR
2014-01-01
... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...
9 CFR 113.43 - Detection of chlamydial agents.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...
9 CFR 113.43 - Detection of chlamydial agents.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...
9 CFR 113.43 - Detection of chlamydial agents.
Code of Federal Regulations, 2012 CFR
2012-01-01
... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...
USDA-ARS?s Scientific Manuscript database
Excitation-Emission luminescence spectra of basic (pH 12.5) phosphate buffer solution extracts were used to distinguish among botanical components of trash within seed cotton. All components were separated from whole plants removed from a field in southern New Mexico. Unfolded Principal Component An...
Fission Yeast Model Study for Dissection of TSC Pathway
2010-04-01
prepared as follows. A total of 1010 cells were incubated at 37! for 1 hr in spheroplasts buffer [50 mm citrate–phosphate (pH 5.6) and 1.2 m sorbitol ...potassium acetate, and 0.1 m sorbitol ] containing 0.4 mm phenylmethyl- sulfonyl fluoride and 13 protease inhibitor cocktail (Nacalai Tesque) and downed
2011-07-01
for 18-20 h, bacteria were harvested in sterile saline, and the sus- pension was diluted in phosphate-buffered saline to the ap- propriate...Levine MM, Merson MM. Serologic differentiation between antitoxin responses to infection with Vibrio cholerae and enterotoxin-producing Escherichia coli
NASA Astrophysics Data System (ADS)
Nakamura, Yuki; Horiuchi, Shunpu; Nishioka, Yasushiro
2018-02-01
In the regenerative medicine field of nervous systems, techniques used to fabricate microstructures of neurons on flexible and biodegradable substrates have attracted attention. In this research, biodegradable and flexible neuron culture thin films that enable the selective axonal outgrowth of neurons were fabricated using poly(lactic-co-glycolic acid) (PLGA) thin films with micropatterns of Dulbecco’s phosphate-buffered saline (D-PBS) (-) containing laminin layers. The 100-µm-thick PLGA thin films were fabricated by diluting PLGA in acetone (5% w/w) and the solution was distributed onto a poly(dimethylsiloxane) (PDMS) mold. D-PBS (-) micropatterns containing laminin layers with widths of 10-150 µm were fabricated by micromolding in capillaries (MIMIC) and the microstencil method. Rat neurons were selectively cultured for 3 d on the laminin micropatterns; using the MIMIC method, the cells properly adhered to a pattern wider than 30 µm, while with the microstencil method, the necessary pattern width for proper adhesion was more than 50 µm.
Hoffman, G.L.
1980-01-01
N-sodium-N-chloro-rho-toluenesulfonamide (chloramine-T) effectively controls bacterial gill disease (BGD) in cultured fishes, BGD, a common disease of hatchery-reared salmonids, causes more fish losses than any other disease among these species, This study describes a liquid chromatographic (LC) method that is capable of direct, simultaneous analysis of chloramine-T and its primary degradation product, rho-toluenesulfonamide (rho-TSA), in water. The procedure involves reversed-phase (C-18) LC analysis with ion suppression, using 0.01 M phosphate buffer at pH 3. The mobile phase is phosphate buffer-acetonitrile (60 + 40) at 1 mL/min. Both chemicals can be detected with a UV spectrophotometer at 229 nm; the method is linear up to 40 mg, chloramine-T or rho-TSA/L. Mean recoveries were 96.4 +/- 6.1% for water samples fortified with 0.03 mg chloramine-T/L and 95.3 +/- 4.6% for water samples fortified with 0.005 mg rho-TSA/L. Limits of detection without sample enrichment for chloramine-T and rho-TSA are 0.01 mg/L and 0.001 mg/L, respectively.
Dawson, Verdel K.; Davis, Ruth A.
1997-01-01
N-sodium-N-chloro-rho-toluenesulfonamide (chloramine-T) effectively controls bacterial gill disease (BGD) in cultured fishes, BGD, a common disease of hatchery-reared salmonids, causes more fish losses than any other disease among these species. This study describes a liquid chromatographic (LC) method that is capable of direct, simultaneous analysis of chloramine-T and its primary degradation product, rho-toluenesulfonamide (rho-TSA), in water. The procedure involves reversed-phase (C-18) LC analysis with ion suppression, using 0.01 M phosphate buffer at pH 3. The mobile phase is phosphate buffer-acetonitrile (60 + 40) at 1 mL/min. Both chemicals can be detected with a UV spectrophotometer at 229 nm; the method is linear up to 40 mg, chloramine-T or rho-TSA/L. Mean recoveries were 96.4 +/- 6.1% for water samples fortified with 0.03 mg chloramine-T/L and 95.3 +/- 4.6% for water samples fortified with 0.005 mg rho-TSA/L. Limits of detection without sample enrichment for chloramine-T and rho-TSA are 0.01 mg/L and 0.001 mg/L, respectively.
Dawson, V.K.; Davis, R.A.
1997-01-01
N-sodium-N-chloro-rho-toluenesulfonamide (chloramine-T) effectively controls bacterial gill disease (BGD) in cultured fishes, BGD, a common disease of hatchery-reared salmonids, causes more fish losses than any other disease among these species, This study describes a liquid chromatographic (LC) method that is capable of direct, simultaneous analysis of chloramine-T and its primary degradation product, rho-toluenesulfonamide (rho-TSA), in water. The procedure involves reversed-phase (C-18) LC analysis with ion suppression, using 0.01 M phosphate buffer at pH 3. The mobile phase is phosphate buffer-acetonitrile (60 + 40) at 1 mL/min. Both chemicals can be detected with a UV spectrophotometer at 229 nm; the method is linear up to 40 mg, chloramine-T or rho-TSA/L. Mean recoveries were 96.4 +/- 6.1% for water samples fortified with 0.03 mg chloramine-T/L and 95.3 +/- 4.6% for water samples fortified with 0.005 mg rho-TSA/L. Limits of detection without sample enrichment for chloramine-T and rho-TSA are 0.01 mg/L and 0.001 mg/L, respectively.
Immunological relatedness among Candida albicans and other pathogenic Candida species.
Hector, R F; Lyon, F L; Domer, J E
1981-01-01
Membrane-mitochondrial (butanol-hot phosphate-buffered saline) and cytosol (soluble cytoplasmic substances) extracts from seven pathogenic species of Candida were used in in vivo and in vitro immunological assays to study antigenic similarities among the strains with respect to C. albicans. Mice were sensitized with C. albicans serotype A for footpad testing or to provide cells for lymphocyte stimulation assays, and guinea pigs were immunized with whole cells or butanol-hot phosphate-buffered saline extracts of C. albicans to obtain antisera for immunodiffusion assays. When extracts from each of the seven species were used in the assays, they consistently segregated, as determined by statistical or subjective analyses, into three groups. Extracts of C. albicans serotype A or B and C. stellatoidea were the most immunologically reactive in all assays, indicating close similarities between those two species, whereas extracts of C. tropicalis and C. parapsilosis elicited only moderate responses. Extracts from C. krusei, C. guilliermondii, and C. pseudotropicalis were hypo- or nonreactive in the assays, indicating a low level of antigenic relatedness to C. albicans. Images PMID:7037643
Lamoudi, Lynda; Chaumeil, Jean Claude; Daoud, Kamel
2012-05-01
The aim of this study was to evaluate physical properties and release from matrix tablets containing different ratios of HPMC 15 M and Acryl-EZE. A further aim is to assess their suitability for pH dependent controlled release. Matrix tablets containing HPMC 15 M and Acryl-EZE were manufactured using a fluidized bed. The release from this matrix using Sodium Diclofenac (SD) as model drug is studied in two dissolution media (0.1 N HCl or pH = 6.8 phosphate buffer solution); the release rate, mechanism, and pH dependence were characterized by fitting four kinetic models and by using a similarity factor analysis. The obtained results revealed that the presence of Acryl-EZE in the matrix tablets is effective in protecting the dosage forms from release in acid environments such as gastric fluid. In pH = 6.8 phosphate buffer, the drug release rate and mechanism of release from all matrices is mainly controlled by HPMC 15 M. The model of Korsmeyer-Peppas was found to fit experimental dissolution results.
Clarification of the recovery mechanism of Escherichia coli after hydrostatic pressure treatment
NASA Astrophysics Data System (ADS)
Ohshima, Shuto; Nomura, Kazuki; Iwahashi, Hitoshi
2013-06-01
High hydrostatic pressure (HP) technology has gained more attention as a non-thermal food pasteurization technology. Recently, a limitation of the HP technology was reported by Koseki and Yamamoto [Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. Int. J. Food Microbiol. 2006;110:108-111], who completely recovered Escherichia coli species after HP treatment. We investigated the recovery mechanism of E. coli after HP treatment. The cells were treated with 200-300 MPa at 0-25°C for 24 h. The HP-treated E. coli was recovered in phosphate-buffered saline (PBS) during 120 h of incubation at 25°C, confirming the results reported by them. However, E. coli did not grow in PBS but grew with inactivated cells in PBS. In addition, the results of our "population size experiments" demonstrated that the recovery of E. coli cells depended on both the degree of pressure and the population size. These results suggest that some portion of cells recovered from the damage and then grew by using inactivated cells.
Corrosion behavior of pristine and added MgB2 in Phosphate Buffered Saline Solution
NASA Astrophysics Data System (ADS)
Batalu, D.; Bojin, D.; Ghiban, B.; Aldica, G.; Badica, P.
2012-09-01
We have obtained by Spark Plasma Sintering (SPS), dense samples of MgB2 added with Ho2O3. Starting composition was (MgB2)0.975(HoO1.5)0.025 and we used addition powders with an average particle size below and above 100 nm. For Mg, pristine and added MgB2 samples we measured potentiodynamic polarization curves in Phosphate Buffered Saline (PBS) solution media at room temperature. MgB2 based composites show corrosion/ degradation effects. This behavior is in principle similar to Mg based alloys in the same media. Our work suggests that the different morphologies and phase compositions of the SPS-ed samples influence the interaction with corrosion medium; hence additions can play an important role in controlling the corrosion rate. Pristine MgB2 show a significant improvement of the corrosion resistance, if compared with Mg. The best corrosion resistance is obtained for pristine MgB2, followed by MgB2 with nano-Ho2O3 and μ-Ho2O3 additions.
Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells.
Vargas-Barbosa, Nella M; Geise, Geoffrey M; Hickner, Michael A; Mallouk, Thomas E
2014-11-01
Membranes are important in water-splitting solar cells because they prevent crossover of hydrogen and oxygen. Here, bipolar membranes (BPMs) were tested as separators in water electrolysis cells. Steady-state membrane and solution resistances, electrode overpotentials, and pH gradients were measured at current densities relevant to solar photoelectrolysis. Under forward bias conditions, electrodialysis of phosphate buffer ions creates a pH gradient across a BPM. Under reverse bias, the BPM can maintain a constant buffer pH on both sides of the cell, but a large membrane potential develops. Thus, the BPM does not present a viable solution for electrolysis in buffered electrolytes. However, the membrane potential is minimized when the anode and cathode compartments of the cell contain strongly basic and acidic electrolytes, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immunogold Staining of Ultrathin Thawed Cryosections for Transmission Electron Microscopy (TEM).
Skepper, Jeremy N; Powell, Janet M
2008-06-01
INTRODUCTIONA pre-embedding method of immunochemical staining is used if antigens are damaged by resin embedding, or if the best preservation of membranes is required. Applying immunogold reagents to sections of lightly fixed tissue, free of embedding medium, can be a very sensitive method of immunochemical staining. Cells or tissues are fixed as strongly as possible and then treated with a cryoprotectant, which is usually a mixture of sucrose and polyvinylpyrrolidone (PVP). They are frozen onto pins in liquid nitrogen and sectioned at approximately -100°C. The frozen sections are thaw-mounted on to Formvar/nickel film grids and the cryoprotectant is removed by floating the grids on drops of phosphate-buffered saline (PBS). The immunogold staining is performed on the unembedded sections, which are subsequently contrast counterstained and infiltrated with a mixture of methylcellulose and uranyl acetate. In this protocol, samples are sectioned at low temperature, thaw-mounted onto film grids, immunochemically stained, contrast counterstained, and embedded/encapsulated in situ on the grid before viewing by transmission electron microscopy (TEM).
Wang, Huailing; Guo, Xinbo; Hu, Xiaodan; Li, Tong; Fu, Xiong; Liu, Rui Hai
2017-02-15
Numerous reports have demonstrated that the consumption of fruits and vegetables is beneficial for the human health. Blueberries, in particular, are rich in phytochemicals including free and bound forming. Phytochemical profiles of 14 varieties of blueberry were compared in this study. 12 compounds were analyzed and had significant changes in blueberry fruits. Total antioxidant activities in different blueberry varieties varied about 2.6times by oxygen radical absorbance capacity (ORAC) assay, and 2times by peroxyl radical scavenging capacity (PSC) assay. The cellular antioxidant activities (CAA) in different varieties varied about 3.9times without phosphate buffer saline (PBS) wash, and 4.7times with PBS wash by CAA assay. Blueberry extracts had potent antiproliferative activities against HepG2 human liver cancer cells, indicating the potential protective benefits associated with their use as functional foods. The anti-proliferative activity was observed to be dose-dependent in blueberry extracts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nakajima, Masato; Mizutani, Yusuke; Iwata, Futoshi; Ushiki, Tatsuo
2018-01-01
Scanning ion conductance microscopy (SICM), which belongs to the family of scanning probe microscopy, regulates the tip-sample distance by monitoring the ion current through the use of an electrolyte-filled nanopipette as the probing tip. Thus, SICM enables "contact-free" imaging of cell surface topography in liquid conditions. In this paper, we applied hopping mode SICM for obtaining topographical images of convoluted tissue samples such as trachea and kidney in phosphate buffered saline. Some of the SICM images were compared with the images obtained by scanning electron microscopy (SEM) after drying the same samples. We showed that the imaging quality of hopping mode SICM was excellent enough for investigating the three-dimensional surface structure of the soft tissue samples. Thus, SICM is expected to be used for imaging a wide variety of cells and tissues - either fixed or alive- at high resolution under physiologically relevant liquid conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nuclear Medicine Program progress report for quarter ending March 31, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.
1990-07-01
The evaluation of the effects of albumin and albumin plus sodium palmitate in the phosphate buffer perfusate on the relative incorporation of 15-(p-(I-125)iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) into endogenous lipids of isolated rat hearts has been studied. The effects of eluant salt character and concentration on the elution of (Re-188)perrhenate from the alumina-based tungsten-188/rhenium-188 generator system have also been investigated. During this period several agents were supplied to Medical Cooperative investigators, including (I-123)-labeled and (I-131)-labeled fatty acid analogues for studies at the Brookhaven National Laboratory and the Cardiology Department at the Free University of Amsterdam. Tungsten-188/rhenium-188 generators were supplied to the Universitymore » of Massachusetts and the Center for Molecular Medicine and Immunology, in Newark, New Jersey. Osmium-191 was supplied for fabrication of generators for patient studies in Finland. 1 ref., 2 figs., 2 tabs.« less
An iridium oxide microelectrode for monitoring acute local pH changes of endothelial cells.
Ng, Shu Rui; O'Hare, Danny
2015-06-21
pH sensors were fabricated by anodically electrodepositing iridium oxide films (AEIROFs) onto microelectrodes on chips and coated with poly(ethyleneimine) (PEI) for mechanical stability. These demonstrate super-Nernstian response to pH from pH 4.0 to 7.7 in chloride-free phosphate buffer. The surface of the chip was coated with fibronectin for the attachment of porcine aortic endothelial cells (PAECs). The working capability of the pH sensor for monitoring acute local pH changes was investigated by stimulating the PAECs with thrombin. Our results show that thrombin induced acute extracellular acidification of PAECs and dissolution of fibronectin, causing the local pH to decrease. The use of PD98059, a mitogen-activated protein kinase (MAPK) inhibitor, reduced extracellular acidification and an increase in local pH was observed. This study shows that our pH sensors can facilitate the investigation of acute cellular responses to stimulation by monitoring the real-time, local pH changes of cells attached to the sensors.
RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin.
Janardhanan, Pavithra; Mello, Charlene M; Singh, Bal Ram; Lou, Jianlong; Marks, James D; Cai, Shuowei
2013-12-15
A surface plasmon resonance based RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin is reported. Using detoxified recombinant type A botulinum neurotoxin as the surrogate, the aptasensor detects active toxin within 90 min. The detection limit of the aptasensor in phosphate buffered saline, carrot juice, and fat free milk is 5.8 ng/ml, 20.3 ng/ml and 23.4 ng/ml, respectively, while that in 5-fold diluted human serum is 22.5 ng/ml. Recovery of toxin from disparate sample matrices are within 91-116%. Most significant is the ability of this aptasensor to effectively differentiate the natively folded toxin from denatured, inactive toxin, which is important for homeland security surveillance and threat assessment. The aptasensor is stable for more than 30 days and over 400 injections/regeneration cycles. Such an aptasensor holds great promise for rapid detection of active botulinum neurotoxin for field surveillance due to its robustness, stability and reusability. © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Smith, Garon C.; Hossain, Md Mainul
2016-01-01
BufCap TOPOS is free software that generates 3-D topographical surfaces ("topos") for acid-base equilibrium studies. It portrays pH and buffer capacity behavior during titration and dilution procedures. Topo surfaces are created by plotting computed pH and buffer capacity values above a composition grid with volume of NaOH as the x axis…
Börner, Tim; Grey, Carl; Adlercreutz, Patrick
2016-08-01
Methods for rapid and direct quantification of enzyme kinetics independent of the substrate stand in high demand for both fundamental research and bioprocess development. This study addresses the need for a generic method by developing an automated, standardizable HPLC platform monitoring reaction progress in near real-time. The method was applied to amine transaminase (ATA) catalyzed reactions intensifying process development for chiral amine synthesis. Autosampler-assisted pipetting facilitates integrated mixing and sampling under controlled temperature. Crude enzyme formulations in high and low substrate concentrations can be employed. Sequential, small (1 µL) sample injections and immediate detection after separation permits fast reaction monitoring with excellent sensitivity, accuracy and reproducibility. Due to its modular design, different chromatographic techniques, e.g. reverse phase and size exclusion chromatography (SEC) can be employed. A novel assay for pyridoxal 5'-phosphate-dependent enzymes is presented using SEC for direct monitoring of enzyme-bound and free reaction intermediates. Time-resolved changes of the different cofactor states, e.g. pyridoxal 5'-phosphate, pyridoxamine 5'-phosphate and the internal aldimine were traced in both half reactions. The combination of the automated HPLC platform with SEC offers a method for substrate-independent screening, which renders a missing piece in the assay and screening toolbox for ATAs and other PLP-dependent enzymes. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plum, J; Schoenicke, G; Grabensee, B
1997-09-01
Peritonitis remains a major problem in peritoneal dialysis. The incidence of peritonitis may be reduced by the use of more "biocompatible" peritoneal dialysis solutions that do not impair local host defense mechanisms, such as occurs with conventional lactate-buffered glucose solutions. In the present study, we investigated the use of bicarbonate and lactate as buffer systems and glucose, amino acids, and glucose polymer as osmotic agents on specific cellular functions of isolated fresh blood monocytes in vitro. The bicarbonate-buffered solutions had a physiologic pH (7.0 to 7.6). Lactate-buffered solutions were tested with a pH between 5.5 and 7.3. RPMI 1640 (Roswell Park Memorial Institute, supplied by Biochrom, Berlin, Germany) and phosphate-buffered saline were used as control mediums. The test solutions were incubated with 200,000 monocytes/mL for 45 minutes followed by a 1:1 mix with RPMI 1640 (with supplements) during a 24- or 4-hour tetrazolium bromide test (MTT test) recovery period. Constitutive and lipopolysaccharide (LPS)-stimulated release of interleukin-1beta (IL-1beta) and IL-6 in the supernatants as parameters of cellular host defense and lactate dehydrogenase concentrations and MTT-formazan production as parameters for cell cytotoxicity were measured. Significantly higher IL-6 and IL-1beta release was found in the bicarbonate-buffered solutions, both under basal conditions and after LPS stimulation, compared with the lactate-buffered solutions (LPS stimulation: 1% amino acids/34 mmol/L bicarbonate, IL-1beta: 1,166 +/- 192 pg/mL; 1.5% glucose/34 mmol/L bicarbonate, IL-1beta: 752 +/- 107 pg/mL; 1.5% glucose/35 mmol/L lactate/pH 5.5, IL-1beta: 174 +/- 51 pg/mL). Some of these differences could even be detected in spent dialysate after a 6-hour dwell in continuous ambulatory peritoneal dialysis patients (n = 10). A lower degree of cellular cytotoxicity (lactate dehydrogenase activity) and better-preserved metabolic activity (MTT test) also were found for the bicarbonate-buffered solutions. Amino acids (1%) proved to be comparable to glucose (1.5%) as an osmotic agent at a neutral pH with regard to LPS-stimulated cytokine release and cytotoxicity. The incubation with a glucose polymer solution (7.5% glucose polymer in phosphate-buffered saline, pH 7.3) resulted in a significantly lowered cytokine release (LPS stimulation: IL-1beta, 69 +/- 19 pg/mL) compared with the other solutions with neutral pH (P < 0.01). These results suggest that bicarbonate as a buffer provided better biocompatibility with regard to mononuclear cytokine release and viability compared with lactate. Amino acids and glucose were equivalent to these parameters at a physiologic pH. The glucose polymer solution, however, was associated with a marked depression of cytokine release.
Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong
2013-04-01
Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction. Copyright © 2012. Published by Elsevier B.V.
Konze, Anne-Kathrin; Rivkin, Wladislaw; Schmidt, Klaus-Helmut
2017-12-20
Previous meta-analytic findings have provided ambiguous evidence on job control as a buffering moderator of the adverse impact of job demands on psychological well-being. To disentangle these mixed findings, we examine the moderating effect of job control on the adverse effects of quantitative workload and emotional dissonance as distinct work-related demands on emotional exhaustion over time. Drawing on the job demands-control model, the limited strength model of self-control, and the matching principle we propose that job control can facilitate coping with work-related demands but at the same time may also require employees' self-control. Consequently, we argue that job control buffers the adverse effects of quantitative workload while it reinforces the adverse effects of emotional dissonance, which also necessitates self-control. We examine the proposed relations among employees from an energy supplying company ( N = 139) in a cross-lagged panel study with a six-month time lag. Our results demonstrate a mix of causal and reciprocal effects of job characteristics on emotional exhaustion over time. Furthermore, as suggested, our data provides evidence for contrasting moderating effects of job control. That is, job control buffers the adverse effects of quantitative workload while it reinforces the adverse effects of emotional dissonance on emotional exhaustion.
Rivkin, Wladislaw; Schmidt, Klaus-Helmut
2017-01-01
Previous meta-analytic findings have provided ambiguous evidence on job control as a buffering moderator of the adverse impact of job demands on psychological well-being. To disentangle these mixed findings, we examine the moderating effect of job control on the adverse effects of quantitative workload and emotional dissonance as distinct work-related demands on emotional exhaustion over time. Drawing on the job demands-control model, the limited strength model of self-control, and the matching principle we propose that job control can facilitate coping with work-related demands but at the same time may also require employees’ self-control. Consequently, we argue that job control buffers the adverse effects of quantitative workload while it reinforces the adverse effects of emotional dissonance, which also necessitates self-control. We examine the proposed relations among employees from an energy supplying company (N = 139) in a cross-lagged panel study with a six-month time lag. Our results demonstrate a mix of causal and reciprocal effects of job characteristics on emotional exhaustion over time. Furthermore, as suggested, our data provides evidence for contrasting moderating effects of job control. That is, job control buffers the adverse effects of quantitative workload while it reinforces the adverse effects of emotional dissonance on emotional exhaustion. PMID:29261116
Can an Opportunity to Learn at Work Reduce Stress?: A Revisitation of the Job Demand-Control Model
ERIC Educational Resources Information Center
Panari, Chiara; Guglielmi, Dina; Simbula, Silvia; Depolo, Marco
2010-01-01
Purpose: This paper aims to extend the stress-buffering hypothesis of the demand-control model. In addition to the control variable, it seeks to analyse the role of an opportunity for learning and development (L&D) in the workplace as a moderator variable between increased demands and need for recovery. Design/methodology/approach: A…
Hienerwadel, Rainer; Gourion-Arsiquaud, Samuel; Ballottari, Matteo; Bassi, Roberto; Diner, Bruce A; Berthomieu, Catherine
2005-06-01
Formate and phosphate affect substantially the rate of tyrosine D (TyrD) oxidation and the stability of the radical TyrD* in Photosystem II [Hienerwadel R, Boussac A, Breton J and Berthomieu C (1996) Biochemistry 35: 15447-15460]. This observation prompted us to analyze the influence of formate and phosphate on the environment of TyrD using FTIR spectroscopy. The nu (CO) IR mode of TyrD* at 1503 cm-1 remains unchanged whatever the buffer used at pH 6 and whether formate is present or not in the sample. Similarly, the main IR mode of reduced TyrD remains at approximately 1250 cm-1 in all tested conditions. We thus conclude that formate does not modify the hydrogen-bonded interactions of TyrD and TyrD* with neighbouring D2His189 and D2Gln164. In the TyrD-state, an IR mode of formate significantly different from that observed in solution, is detected using 13C-formate, showing that formate forms a strong electrostatic interaction within PS II. The presence of formate affects also IR bands that may be assigned to an arginine side chain. Upon TyrD* formation, formate does not protonate but its binding interaction weakens. A proton uptake by Mes or phosphate buffer is detected, which is not observed when BisTris is used as a buffer. In these latter conditions, IR bands characteristic of the protonation of a carboxylate group of the protein are detected instead. The present IR data and the recent structural model of the TyrD environment proposed by Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S [(2004) Science 303: 1831-1838], suggest that the proton released upon TyrD* formation is shared within a hydrogen bonding network including D2Arg294, and CP47Glu364 and that perturbation of this network by formate - possibly binding near D2Arg294 - substantially affects the properties of TyrD.
NASA Astrophysics Data System (ADS)
Kaur, Jasmeet; Schoonen, Martin A.
2017-06-01
The formation of hydroxyl radicals was studied in mixed pyrite-chalcopyrite dispersions in water using the conversion rate of adenine as a proxy for hydroxyl radical formation rate. Experiments were conducted as a function of pH, presence of phosphate buffer, surface loading, and pyrite-to-chalcopyrite ratio. The results indicate that hydroxyl radical formation rate in mixed systems is non-linear with respect to the rates in the pure endmember dispersions. The only exception is a set of experiments in which phosphate buffer is used. In the presence of phosphate buffer, the hydroxyl radical formation is suppressed in mixtures and the rate is close to that predicted based on the reaction kinetics of the pure endmembers. The non-linear hydroxyl radical formation in dispersions containing mixtures of pyrite and chalcopyrite is likely the result of two complementary processes. One is the fact that pyrite and chalcopyrite form a galvanic couple. In this arrangement, chalcopyrite oxidation is accelerated, while pyrite passes electrons withdrawn from chalcopyrite to molecular oxygen, the oxidant. The incomplete reduction of molecular oxygen leads to the formation of hydrogen peroxide and hydroxyl radical. The galvanic coupling appears to be augmented by the fact that chalcopyrite generates a significant amount of hydrogen peroxide upon dispersal in water. This hydrogen peroxide is then available for conversion to hydroxyl radical, which appears to be facilitated by pyrite as chalcopyrite itself produces only minor amounts of hydroxyl radical. In essence, pyrite is a ;co-factor; that facilitates the conversion of hydrogen peroxide to hydroxyl radical. This conversion reaction is a surface-mediated reaction. Given that hydroxyl radical is one of the most reactive species in nature, the formation of hydroxyl radicals in aqueous systems containing chalcopyrite and pyrite has implications for the stability of organic molecules, biomolecules, the viability of microbes, and exposure to dust containing the two metal sulfides may present a health burden.
Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun
2014-09-01
The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.
Aydogan, Mehmet Nuri; Taskin, Mesut; Canli, Ozden; Arslan, Nazli Pinar; Ortucu, Serkan
2014-01-01
The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris-sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated.
ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS
Kennedy, J.
1959-04-14
An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.
Ahmed, Syed Rahin; Oh, Sangjin; Baba, Rina; Zhou, Hongjian; Hwang, Sungu; Lee, Jaebeom; Park, Enoch Y
2016-12-01
The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications.
Zail, S S; Hoek, V D
1975-04-16
Human erythrocyte membranes were prepared in three ways: washing in hypotonic Tris buffer, pH 7.6, by lysis in isotonic Tris buffer pH 7.6 after incubation at 37 degrees C for 2 hours and by ultrasonication in an isotonic medium, pH 7.6. Analysis of the major polypeptides of the erythrocyte membranes by sodium dodecylsulphate polyacrylamide gel electrophoresis revealed a selective depletion of a major polypeptide representing glyceraldehyde-3-phosphate dehydrogenase in the membranes prepared by high osmolarity lysis. The pattern of seperation of the remaining polypeptides was identical in the 3 different membrane preparations.
Li, Yuwei; Yang, Xiaolan; Wang, Deqiang; Hu, Xiaolei; Yuan, Mei; Pu, Jun; Zhan, Chang-Guo; Yang, Zhaoyong; Liao, Fei
2016-08-01
To obtain the label enzyme for enzyme-linked-immunoabsorbent-assay of two components each time in one well with conventional microplate readers, molecular engineering of Pseudomonas aeruginosa arylsulfatase (PAAS) is needed. To compare thermostability of PAAS/mutants of limited purity, effects of buffers on the half-activity time (t 0.5) at 37 °C were tested. At pH 7.4, PAAS showed non-exponential decreases of activity, with the apparent t 0.5 of ~6.0 days in 50 mM HEPES, but ~42 days in 10 mM sodium borate with >85 % activity after 15 days; protein concentrations in both buffers decreased at slower rates after there were significant decreases of activities. Additionally, the apparent t 0.5 of PAAS was ~14 days in 50 mM Tris-HCl, and ~21 days in 10 mM sodium phosphate. By sodium dodecyl-polyacrylamide gel electrophoresis, the purified PAAS gave single polypeptide; after storage for 14 days at 37 °C, there were many soluble and insoluble fragmented polypeptides in the HEPES buffer, but just one principal insoluble while negligible soluble fragmented polypeptides in the borate buffer. Of tested mutants in the neutral borate buffer, rates for activity decreases and polypeptide degradation were slower than in the HEPES buffer. Hence, dilute neutral borate buffers were favorable for examining thermostability of PAAS/mutants.
Situ formation of apatite for sequestering radionuclides and heavy metals
Moore, Robert C.
2003-07-15
Methods for in situ formation in soil of a permeable reactive barrier or zone comprising a phosphate precipitate, such as apatite or hydroxyapatite, which is capable of selectively trapping and removing radionuclides and heavy metal contaminants from the soil, while allowing water or other compounds to pass through. A preparation of a phosphate reagent and a chelated calcium reagent is mixed aboveground and injected into the soil. Subsequently, the chelated calcium reagent biodegrades and slowly releases free calcium. The free calcium reacts with the phosphate reagent to form a phosphate precipitate. Under the proper chemical conditions, apatite or hydroxyapatite can form. Radionuclide and heavy metal contaminants, including lead, strontium, lanthanides, and uranium are then selectively sequestered by sorbing them onto the phosphate precipitate. A reducing agent can be added for reduction and selective sequestration of technetium or selenium contaminants.
Kudo, Toshiyuki; Goda, Hitomi; Yokosuka, Yuki; Tanaka, Ryo; Komatsu, Seina; Ito, Kiyomi
2017-09-01
We have previously reported that the microsomal activities of CYP2C8 and CYP3A4 largely depend on the buffer condition used in in vitro metabolic studies, with different patterns observed between the 2 isozymes. In the present study, therefore, the possibility of buffer condition dependence of the fraction metabolized by CYP2C8 (fm2C8) for repaglinide, a dual substrate of CYP2C8 and CYP3A4, was estimated using human liver microsomes under various buffer conditions. Montelukast and ketoconazole showed a potent and concentration-dependent inhibition of CYP2C8-mediated paclitaxel 6α-hydroxylation and CYP3A4-mediated triazolam α-hydroxylation, respectively, without dependence on the buffer condition. Repaglinide depletion was inhibited by both inhibitors, but the degree of inhibition depended on buffer conditions. Based on these results, the contribution of CYP2C8 in repaglinide metabolism was estimated to be larger than that of CYP3A4 under each buffer condition, and the fm2C8 value of 0.760, estimated in 50 mM phosphate buffer, was the closest to the value (0.801) estimated in our previous modeling analysis based on its concentration increase in a clinical drug interaction study. Researchers should be aware of the possibility of buffer condition affecting the estimated contribution of enzyme(s) in drug metabolism processes involving multiple enzymes. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
L'Hocine, Lamia; Pitre, Mélanie
2016-03-01
A D-optimal design was constructed to optimize allergen extraction efficiency simultaneously from roasted, non-roasted, defatted, and non-defatted almond, hazelnut, peanut, and pistachio flours using three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various conditions of ionic strength, buffer-to-protein ratio, extraction temperature, and extraction duration. Statistical analysis showed that roasting and non-defatting significantly lowered protein recovery for all nuts. Increasing the temperature and the buffer-to-protein ratio during extraction significantly increased protein recovery, whereas increasing the extraction time had no significant impact. The impact of the three buffers on protein recovery varied significantly among the nuts. Depending on the extraction conditions, protein recovery varied from 19% to 95% for peanut, 31% to 73% for almond, 17% to 64% for pistachio, and 27% to 88% for hazelnut. A modulation by the buffer type and ionic strength of protein and immunoglobuline E binding profiles of extracts was evidenced, where high protein recovery levels did not always correlate with high immunoreactivity. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Fadda, Angela; Barberis, Antonio; Sanna, Daniele
2018-02-01
The Fenton reaction is used to produce hydroxyl radicals for the evaluation of the antioxidant activity of plant extracts. In this paper the parameters affecting the production of hydroxyl radicals and their spin trapping with DMPO were studied. The use of quinolinic acid (Quin) as an Fe(II) ligand was proposed for antioxidant activity determination of Green tea, orange juice and asparagus extracts. Quin, buffers and pH affect the DMPO-OH signal intensity of the EPR spectra. Quin/Fe(II) and low pH enhance the OH generation. Phosphate and Tris-HCl buffers decrease the signal intensity measured in Fe(II)-sulfate and Fe(II)-Quin systems. The extracts were analyzed with Fenton systems containing Fe(II)-sulfate and Fe(II)-Quin with and without buffer. The highest activity was shown with Fe(II)-Quin without buffer, this system being less influenced by pH and chelating agents present in the extracts. This paper will help researchers to better design spin trapping experiments for food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, H; Baron, C B; Griffiths, T; Greeley, P; Coburn, R F
1998-10-01
In many different cell types, including smooth muscle cells (Baron et al., 1989, Am. J. Physiol., 256: C375-383; Baron et al., J. Pharmacol. Exp. Ther. 266: 8-15), phosphatidylinositol (4)-phosphate 5-kinase plays a critical role in the regulation of membrane concentrations of phosphatidylinositol (4,5)-bisphosphate and formation of inositol (1,4,5)-trisphosphate. In unstimulated porcine trachealis smooth muscle, 70% of total cellular phosphatidylinositol (4)-phosphate 5-kinase activity was associated with cytoskeletal proteins and only trace activity was detectable in isolated sarcolemma. Using two different preparations, we studied cytoskeleton-associated phosphatidyl inositol (4)-phosphate 5-kinase under conditions that attempted to mimic the ionic and thermal cytoplasmic environment of living cells. The cytoskeleton-associated enzyme, studied using phosphatidylinositol (4)-phosphate substrate concentrations that produced phosphatidylinositol 4,5-bisphosphate at about 10% of the maximal rate, was sensitive to free [Mg2+], had an absolute requirement for phosphatidylserine, phosphatidic acid, or phosphatidylinositol, and included type I isoforms. At 0.5 mM free [Mg2+], physiological spermine concentrations, 0.2-0.4 mM, increased phosphatidylinositol (4)-phosphate 5-kinase activity two to four times compared to controls run without spermine. The EC50 for spermine-evoked increases in activity was 0.17 +/- 0.02 mM. Spermine-evoked enzyme activity was a function of both free [Mg2+] and substrate concentration. Cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase was inhibited by free [Ca2+] over a physiological range for cytoplasm--10(-8) to 10(-5) M, an effect independent of the presence of calmodulin. Na+ over the range 20 to 50 mM also inhibited this enzyme activated by 5 mM Mg2+ but had no effect on spermine-activated enzyme. Na+, Ca2+, and spermine appear to be physiological modulators of smooth muscle cytoskeleton-bound phosphatidylinositol (4)-phosphate 5-kinase.
Free flow cell electrophoresis using zwitterionic buffer
NASA Technical Reports Server (NTRS)
Rodkey, R. Scott
1990-01-01
Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.
Poly (Methyl Methacrylate) (PMMA) and Polyactic Acid Nanoparticles as Adjuvents for Peroral Vaccines
1999-06-01
pH 7.4) 10 2 PMMA DC GA adsorbed Miglyol 10 3 PMMA DC GA adsorbed Paraffine 10 4 PMMA DC GA adsorbed Olive oil 10 5 PMMA DC GA adsorbed...polyethylenglycole, paraffin, miglyol and phosphate buffered saline. - 17 - 6.2. Testing of the Optimized Vaccine Preparations The vaccine preparations
Separation and structural analysis of saponins in a bark extract from Quillaja saponaria Molina.
Nord, L I; Kenne, L
1999-07-20
Six major saponins were isolated from a bark extract from Quillaja saponaria Molina. Solid-phase extraction, followed by a two-step reversed-phase HPLC separation procedure with phosphate and ammonium acetate buffers of different pH values, was used. The compounds were characterised using NMR spectroscopy, mass spectrometry and chemical methods.
Srivastava, A K; Smith, R D
1980-02-01
Short incubation of heparinized human leukemic bone-marrow cells in phosphate buffered saline containing colcemid and overnight chilling of fixed cells yields metaphases with elongated and well-spread chromosomes. This technique enables us to do trypsin-Giemsa banding of chromosomes obtained from leukemic marrow cells otherwise difficult to band.
Fire-retardant-treated strandboard : properties and fire performance
Jerrold Winandy; Qingwen Wang; Robert H. White
2008-01-01
This study evaluated a series of single-layer, randomly oriented strandboard panels made with one resin type, a single resin loading level, and four fire-retardant-treatment levels. The fire retardant (FR) evaluated was a pH-buffered combination of boric acid and organic phosphate. Siberian larch strands were separated into five batches. One batch of strands served as...
An enzyme-linked immunosorbent assay (ELISA) method was developed to quantitatively measure 2,4-dichlorophenoyacetic acid (2,4-D) in human urine. Samples were diluted (1:5) with phosphate-buffered saline, 0.05% Tween 20, with 0.02% sodium azide, and analyzed by a 96-microwekk pl...
1996-07-01
tetrazolium, inner salt; MTS; Promega], 1.9 mg/ml, and an electron coupling reagent ( phenazine methosulfate; PMS; Sigma), 0.044 mg/ml, in Dulbecco’s...acids PBS, phosphate buffered saline PCR, polymerase chain reaction PMS, phenazine methosulfate poly A, polyadenylation s.e., standard error TAE, tris
TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity.
Rohanová, Dana; Boccaccini, Aldo Roberto; Yunos, Darmawati Mohamad; Horkavcová, Diana; Březovská, Iva; Helebrant, Aleš
2011-06-01
The paper deals with the characterisation of the bioactive phenomena of glass-ceramic scaffold derived from Bioglass® (containing 77 wt.% of crystalline phases Na(2)O·2CaO·3SiO(2) and CaO·SiO(2) and 23 wt.% of residual glass phase) using simulated body fluid (SBF) buffered with tris-(hydroxymethyl) aminomethane (TRIS). A significant effect of the TRIS buffer on glass-ceramic scaffold dissolution in SBF was detected. To better understand the influence of the buffer, the glass-ceramic scaffold was exposed to a series of in vitro tests using different media as follows: (i) a fresh liquid flow of SBF containing tris (hydroxymethyl) aminomethane; (ii) SBF solution without TRIS buffer; (iii) TRIS buffer alone; and (iv) demineralised water. The in vitro tests were provided under static and dynamic arrangements. SBF buffered with TRIS dissolved both the crystalline and residual glass phases of the scaffold and a crystalline form of hydroxyapatite (HAp) developed on the scaffold surface. In contrast, when TRIS buffer was not present in the solutions only the residual glassy phase dissolved and an amorphous calcium phosphate (Ca-P) phase formed on the scaffold surface. It was confirmed that the TRIS buffer primarily dissolved the crystalline phase of the glass-ceramic, doubled the dissolving rate of the scaffold and moreover supported the formation of crystalline HAp. This significant effect of the buffer TRIS on bioactive glass-ceramic scaffold degradation in SBF has not been demonstrated previously and should be considered when analysing the results of SBF immersion bioactivity tests of such systems. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
40 CFR 417.151 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... demand as determined by incubation at 20 degrees C for a period of 7 days using an acclimated seed... scrubbing, and without more than 6 turnarounds in a 30 consecutive day period, thus permitting essentially... period that are of such degree and type (e.g., high phosphate to no phosphate) as to require cleaning of...
USDA-ARS?s Scientific Manuscript database
Phosphate fertilizers used in the production of greenhouse crops can be problematic if released into the environment. Furthermore, the price of phosphate is increasing as demand increases and world supplies decrease. The objective of this research was to determine if gasified rice hull biochar (GR...
40 CFR 417.151 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... demand as determined by incubation at 20 degrees C for a period of 7 days using an acclimated seed... scrubbing, and without more than 6 turnarounds in a 30 consecutive day period, thus permitting essentially... period that are of such degree and type (e.g., high phosphate to no phosphate) as to require cleaning of...
40 CFR 417.151 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... demand as determined by incubation at 20 degrees C for a period of 7 days using an acclimated seed... scrubbing, and without more than 6 turnarounds in a 30 consecutive day period, thus permitting essentially... period that are of such degree and type (e.g., high phosphate to no phosphate) as to require cleaning of...
40 CFR 417.151 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... demand as determined by incubation at 20 degrees C for a period of 7 days using an acclimated seed... scrubbing, and without more than 6 turnarounds in a 30 consecutive day period, thus permitting essentially... period that are of such degree and type (e.g., high phosphate to no phosphate) as to require cleaning of...
40 CFR 417.151 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... demand as determined by incubation at 20 degrees C for a period of 7 days using an acclimated seed... scrubbing, and without more than 6 turnarounds in a 30 consecutive day period, thus permitting essentially... period that are of such degree and type (e.g., high phosphate to no phosphate) as to require cleaning of...
Electrocapillary Phenomena at Edible Oil/Saline Interfaces.
Nishimura, Satoshi; Ohzono, Takuya; Shoji, Kohei; Yagihara, Shin; Hayashi, Masafumi; Tanaka, Hisao
2017-03-01
Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil < OA-oil < SO-oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knepper, S.M.
1985-01-01
Norepinephrine-(NE) and calcium ionophore A23187-stimulated phosphoinositide (PIn) metabolism in rat brain slices was studied under varying calcium conditions. Tissue was labelled with /sup 3/H-myo-inositol and /sup 3/H-inositol phosphates (IPn), products of PIn metabolism were measured. In the absence of media calcium the response to NE was decreased while that to A23187 was little affected A23187 can release calcium from intracellular stores. Basal and stimulated accumulation of /sup 3/H-IPn was reversibly antagonized with EGTA by addition of calcium. Using calcium buffers, approximately 10/sup -7/ M free calcium was required to support hydrolysis. Free intracellular calcium is maintained at approximately this level.more » Thus calcium is required for PIn hydrolysis but appears to play a permissive role, basal levels being sufficient to support metabolism. Conformationally-defined (rigid) and -restricted (semi-rigid) analogs of the most stable conformations of amphetamine, antiperiplanar (exo) and gauche (endo), were utilized to probe the conformational requirements of vesicular NE transport. Analogs tested were 2-aminotetralin (2AT), 3-methyltetrahydroisoquinoline, anti- and syn-9-aminobenzobicyclo(2.2.1)heptene, and endo and exo conformers of 2-aminobenzobicyclo(2.2.1)heptene and 2-aminobenzobicyclo(2.2.2)octene.« less
Elliott, D.G.; Applegate, L.J.; Murray, A.L.; Purcell, M.K.; McKibben, C.L.
2013-01-01
No gold standard assay exhibiting error-free classification of results has been identified for detection of Renibacterium salmoninarum, the causative agent of salmonid bacterial kidney disease. Validation of diagnostic assays for R. salmoninarum has been hindered by its unique characteristics and biology, and difficulties in locating suitable populations of reference test animals. Infection status of fish in test populations is often unknown, and it is commonly assumed that the assay yielding the most positive results has the highest diagnostic accuracy, without consideration of misclassification of results. In this research, quantification of R. salmoninarum in samples by bacteriological culture provided a standardized measure of viable bacteria to evaluate analytical performance characteristics (sensitivity, specificity and repeatability) of non-culture assays in three matrices (phosphate-buffered saline, ovarian fluid and kidney tissue). Non-culture assays included polyclonal enzyme-linked immunosorbent assay (ELISA), direct smear fluorescent antibody technique (FAT), membrane-filtration FAT, nested polymerase chain reaction (nested PCR) and three real-time quantitative PCR assays. Injection challenge of specific pathogen-free Chinook salmon, Oncorhynchus tshawytscha (Walbaum), with R. salmoninarum was used to estimate diagnostic sensitivity and specificity. Results did not identify a single assay demonstrating the highest analytical and diagnostic performance characteristics, but revealed strengths and weaknesses of each test.
Saito, Takashi; Tabata, Yasuhiko
2014-08-01
The objective of this study is to design biodegradable hydrogels for the controlled release of deferoxiamine (DFO) and evaluate their biological activity. When the DFO was added to human umbilical vein endothelial cells cultured in 5.0% O2, the level of hypoxia-inducible factor-1α and vascular endothelial growth factor significantly increased compared with that without DFO. The expression of angiogenesis-related genes was accordingly increased by the DFO addition. An aqueous solution of mixed gelatin and DFO was freeze-dried, and dehydrothermally treated at 140°C for 24h to prepare a gelatin hydrogel incorporating DFO. In the release test with phosphate-buffered saline solution (PBS) at 37°C, an initial DFO release of 60% was observed, followed by no release. When placed in PBS containing collagenase, the hydrogel was enzymatically degraded with time, and consequently released DFO in a degradation-dependent manner. After the hydrogel incorporating DFO was injected intramuscularly into a mouse model of hind limb ischemia, the number of new blood vessels formed was significantly higher than that with free DFO and DFO-free hydrogel. It is concluded that the DFO-containing hydrogel shows promising for inducing angiogenesis locally. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film.
Safavi, Afsaneh; Farjami, Fatemeh
2010-07-01
The composite film based on Nafion and hydrophilic room temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium chloride ([bmim]Cl) was used as an immobilization matrix to entrap myoglobin (Mb). The study of ionic liquid (IL)-Mb interaction by ultraviolet-visible (UV-vis) spectroscopy showed that Mb retains its native conformation in the presence of IL. The immobilized Mb displayed a pair of well-defined cyclic voltammetric peaks with a formal potential (E(o)(')) of -0.35 V in a 0.1 M phosphate buffer solution (PBS) of pH 7.0. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide, based on which a mediator-free amperometric biosensor for hydrogen peroxide was designed. The linear range for the determination of hydrogen peroxide was from 1.0 to 180 microM with a detection limit of 0.14 microM at a signal/noise ratio of 3. The apparent Michaelis constant (K(m)(app)) for the electrocatalytic reaction was 22.6 microM. The stability, repeatability, and selectivity of the sensor were evaluated. The proposed biosensor has a lower detection limit than many other IL-heme protein-based biosensors and is free from common interference in hydrogen peroxide biosensors. 2010 Elsevier Inc. All rights reserved.
Azam, Hossain M; Finneran, Kevin T
2014-02-01
Phosphate is a water contaminant from fertilizers, soaps, and detergents that enters municipal and onsite wastewater from households, businesses, and other commercial operations. Phosphate is a limiting nutrient for algae, and is one of the molecules that promotes eutrophication of water bodies. Phosphate is especially problematic in onsite wastewater because there are few removal mechanisms under normal operating conditions; a system must be amended specifically with compounds to bond to or adsorb phosphate in the septic tank or within the leach field. Vivianite (Fe3(PO4)2⋅8H2O) is a stable mineral formed from ferrous iron and phosphate, often as the result of Fe(III) reducing microbial activity. What was unknown was the concentration of phosphate that could be removed by this process, and whether it was relevant to mixed microbial systems like septic tank wastewater. Data presented here demonstrate that significant concentrations of phosphate (12-14mM) were removed as vivianite in growing cultures of Geobacter metallireducens strain GS-15. Vivianite precipitates were identified on the cell surfaces and within multi cell clusters using TEM-EDX; the mineral phases were directly characterized using XRD. Phosphate was also removed in dilute and raw (undiluted) septic wastewater amended with different forms of Fe(III) including solid phase and soluble Fe(III). Vivianite precipitates were recovered and identified using XRD, along with siderite (ferrous carbonate), which was expected given that the systems were likely bicarbonate buffered. These data demonstrate that ferric iron amendments in septic wastewater increase phosphate removal as the mineral vivianite, and this may be a good strategy for phosphate attenuation in the septic tank portion of onsite wastewater systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tiwari, Karishma; Kumar, Sumit; Kumar, Vipan; Kaur, Jeevanjot; Arora, Saroj; Mahajan, Rakesh Kumar
2018-02-01
A simple and cost effective unsymmetrical azine based Schiff base, 5-diethylamino-2-[(2-hydroxy-benzylidene)hydrazonomethyl]-phenol (1) was synthesized which selectively detect Cu2 + ions in the presence of other competitive ions through ;naked eye; in physiological conditions (EtOH-buffer (1:1, v/v, HEPES 10 mM, pH = 7.4)). The presence of Cu2 + induce color change from light yellow green to yellow with the appearance of a new band at 450 nm in UV-Vis spectra of Schiff base 1. The fluorescence of Schiff base 1 (10 μM) was quenched completely in the presence of 2.7 equiv. of Cu2 + ions. Sub-micromolar limit of detection (LOD = 3.4 × 10- 7 M), efficient Stern-Volmer quenching constant (KSV = 1.8 × 105 L mol- 1) and strong binding constant (log Kb = 5.92) has been determined with the help of fluorescence titration profile. Further, 1 - Cu2 + complex was employed for the detection of phosphate ions (PO43 -, HPO42 - and H2PO4-) at micromolar concentrations in EtOH-buffer of pH 7.4 based on fluorescence recovery due to the binding of Cu2 + with phosphate ions. Solubility at low concentration in aqueous medium, longer excitation (406 nm) and emission wavelength (537 nm), and biocompatibility of Schiff base 1 formulates its use in live cell imaging.
Hau Fung Cheung, Rodney; Morrison, Paul D; Small, Darryl M; Marriott, Philip J
2008-12-05
A single enzyme treatment with alpha-amylase, prior to the quantification of added folic acid (FA) in fortified instant fried Asian noodles with analysis performed by capillary zone electrophoresis (CZE) and reversed-phase high performance liquid chromatography (RP-HPLC) with UV detection, is described. The method was validated and optimized for capillary electrophoresis (CE) with separation achieved using a 8 mM phosphate-12 mM borate run buffer with 5% MeOH at pH 9.5. FA was well separated from matrix components with nicotinic acid (NA) employed as an internal standard. In a comparative study, separation of FA was performed using HPLC with a mobile phase consisting of 27% MeOH (v/v) in aqueous potassium phosphate buffer (3.5 mM KH(2)PO(4) and 3.2 mM K(2)HPO(4)), pH 8.5, and containing 5 mM tetrabutylammonium dihydrogen phosphate as an ion-pairing agent. For both methods, excellent results were obtained for various analytical parameters including linearity, accuracy and precision. The limit of detection was calculated to be 2.2 mg/L for CE without sample stacking and 0.10 mg/L with high performance liquid chromatography (HPLC). Sample extraction involved homogenization and enzymatic extraction with alpha-amylase. Results indicated that FA was stable during four main stages of instant fried noodle manufacturing (dough crumbs, cut sheets, steaming and frying).
Díez-Guerrier, A; Roy, A; de la Cruz, M L; Sáez, J L; Sanz, C; Boschiroli, M L; Romero, B; de Juan, L; Domínguez, L; Bezos, J
2018-05-24
The objective of the study was to elucidate whether the use of the needle-free Dermojet syringe, which is based on a high pressure inoculation and is used to inject tuberculin in cattle in several countries, may, in itself, cause skin reactions that can be interpreted as positive reactions to the intradermal tests that are not, in fact, related to the real infection status of the animals. Forty-four cattle from an officially tuberculosis-free (OTF) herd were selected, and four single intradermal tuberculin (SIT) tests were performed on each animal, two on each side of the neck. Three different Dermojet (D1, D2 and D3) and one McLintock (M4) syringes were used to carry out sterile phosphate buffer saline (PBS) with 10% of glycerol and bovine PPD injections. No positive reactions to the SIT test were observed when using the D1-D3 syringes in the case of either bovine PPD or PBS. With regard to M4 (PBS), all the tests were negative when using a standard interpretation but three were positive in the case of the severe interpretation. Significant differences (p < 0.05) in the skin fold thickness measured were found only between certain Dermojet and McLintock syringes at certain inoculation sites. The results showed that the needle-free Dermojet syringe used for PPD intradermal testing in cattle did not cause significant reactions that could be misunderstood as positives. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, L; Qiu, C L; Chen, Q; Chan, K C; Zhang, S M
2008-07-01
Two Ni-free bulk metallic glasses (BMGs) of Zr(60)Nb(5)Cu(22.5)Pd(5)Al(7.5) and Zr(60)Nb(5)Cu(20)Fe(5)Al(10) were successfully prepared by arc-melting and copper mold casting. The thermal stability and crystallization were studied using differential scanning calorimetry. It demonstrates that the two BMGs exhibit very good glass forming ability with a wide supercooled liquid region. A multi-step process of crystallization with a preferential formation of quasicrystals occurred in both BMGs under continuous heating. The deformation behavior of the two BMGs was investigated using quasi-static compression testing. It reveals that the BMGs exhibit not only superior strength but also an extended plasticity. Corrosion behaviors of the BMGs were investigated in phosphate buffered solution by electrochemical polarization. The result shows that the two BMGs exhibit excellent corrosion resistance characterized by low corrosion current densities and wide passive regions. X-ray photoelectron spectroscopy analysis revealed that the passive film formed after anodic polarization was highly enriched in zirconium, niobium, and aluminum oxides. This is attributed to the excellent corrosion resistance. Additionally, the potential cytotoxicity of the two Ni-free BMGs was evaluated through cell culture for 1 week followed by 3-(4,5-Dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide assay and SEM observation. The results indicate that the two Ni-free BMGs exhibit as good biocompatibility as Ti-6Al-4V alloy, and thus show a promising potential for biomedical applications. (c) 2007 Wiley Periodicals, Inc.
Van Der Heyden, N; Docampo, R
2000-02-05
Regulation of intracellular pH (pHi) was investigated in Trypanosoma cruzi amastigotes and trypomastigotes using 2',7'-bis-(carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF). pHi was determined to be 7.33 +/- 0.08 and 7.35 +/- 0.07 in amastigotes and trypomastigotes, respectively, and there were no significant differences in the regulation of pH, between the two stages. Steady-state pHi, recovery of pHi from acidification, and H+-efflux were all decreased markedly by the H+-ATPase inhibitors N,N'-dicyclohexylcarbodi-imide (DCCD), diethylstilbestrol (DES) and N-ethylmaleimide (NEM) supporting a significant role for a plasma membrane H+-ATPase in the regulation of pHi. pHi was maintained at neutrality over a range of external pH (pHe) from 5-8 in parasites suspended in a buffer containing Na+ and K+ (standard buffer) but was acidified at low pHe in the absence of these cations (choline buffer). The pHi of trypomastigotes decreased significantly when they transformed into amastigotes. The rate of recovery of pHi by acidified parasites was similar in Na+-free buffer and standard buffer but was slower in the absence of K+ (K+-free or choline buffer) and parasites suspended in choline buffer were acidic by 0.25 pH units as compared with controls. Ba2+ and Cs+ decreased the pHi of parasites suspended in standard but not choline buffer suggesting the presence of an inward directed K+ channel. The pHi of amastigotes and trypomastigotes suspended in Cl(-)-free buffer was decreased by 0.13 and 0.2 pH units, respectively, supporting the presence of a chloride conductive channel. No evidence of pH regulation via a Na+/H+ or Cl-/HCO3- exchanger was found. These results are consistent with the presence of a plasma membrane H+-ATPase that regulates pHi and is supported by K+ and Cl- channels.
Lewis, A C; Kilburn, M R; Heard, P J; Scott, T B; Hallam, K R; Allen, G C; Learmonth, I D
2006-08-01
Physical wear of orthopedic implants is inevitable. CoCr alloy samples, typically used in joint reconstruction, corrode rapidly after removal of the protective oxide layer. The behavior of CoCr pellets immersed in human serum, foetal bovine serum (FBS), synovial fluid, albumin in phosphate-buffered saline (PBS), EDTA in PBS, and water were studied using X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). The difference in the corrosive nature of human serum, water, albumin in PBS and synovial fluid after 5 days of immersion was highlighted by the oxide layer, which was respectively 15, 3.5, 1.5, and 1.5 nm thick. The thickness of an additional calcium phosphate deposit from human serum and synovial fluid was 40 and 2 nm, respectively. Co and Cr ions migrated from the bulk metal surface and were trapped in this deposit by the phosphate anion. This may account for the composition of wear debris from CoCr orthopedic implants, which is known to consist predominantly of hydroxy-phosphate compounds. Known components of synovial fluid including proteoglycans, pyrophosphates, phospholipids, lubricin, and superficial zone protein (SZP), have been identified as possible causes for the lack of significant calcium phosphate deposition in this environment. Circulation of these compounds around the whole implant may inhibit calcium phosphate deposition.
Isakhanian, V; Trchunian, A
2005-01-01
It has been shown that separate irradiation of distilled water and tris-phosphate buffer containing some inorganic ions, with Escherichia coli K12 grown in anaerobic conditions upon fermentation of sugar (glucose) with "noise" electromagnetic radiation of extremely high frequencies (53.5-68 gHz) or millimeter waves (wavelength of 3 to 8 mm) with low flux capacity (0.01 mW) for 10, 30 and 60 min caused opposite effects, changing the growth of these bacteria. The irradiation of water has a bactericide effect, whereas the irradiation of the buffer stimulates bacterial growth although the buffer itself inhibits the growth. These results point out the role of water in the bactericide action of "noise" electromagnetic radiation of extremely high frequencies, and confirm the significance of membranotropic effects. The bactericide action disappeared after repeated irradiation for 10 and 30 min with 2-h intervals. This indicates the operation of some compensatory mechanisms in bacteria.
Consumption of peptide-included and free tryptophan induced by peroxyl radicals: A kinetic study.
Fuentes, E; López-Alarcón, C
2014-10-01
It is well-known that tryptophan residues are efficiently oxidized by peroxyl radicals, generating kynurenine, and N-formyl kynurenine as well as hydroperoxide derivatives as products. In the present work we studied the kinetic of such reaction employing free and peptide-included tryptophan. Two azocompounds were used to produce peroxyl radicals: AAPH (2,2'-Azobis(2-methylpropionamidine) dihydrochloride) and ABCVA (4,4'-Azobis(4-cyanovaleric acid)), which generate cationic and anionic peroxyl radicals, respectively. Tryptophan consumption was assessed by fluorescence spectroscopy and the reactions were carried out in phosphate buffer (75mM, pH 7.4) at 45°C. Only a slight effect of the peroxyl radical charge was evidenced on the consumption of free tryptophan and the dipeptide Gly-Trp. Employing AAPH as peroxyl radical source, at low free tryptophan concentrations (1-10µM) near 0.3 mol of tryptophan were consumed per each mol of peroxyl radicals introduced into the system. However, at high free tryptophan concentrations (100µM-1mM) such stoichiometry increased in a tryptophan concentration-way. At 1mM three moles of tryptophan were consumed per mol of AAPH-derived peroxyl radicals, evidencing the presence of chain reactions. A similar behavior was observed when di and tri-peptides (Gly-Trp, Trp-Gly, Gly-Trp-Gly, Trp-Ala, Ala-Trp-Ala) were studied. Nonetheless, at low initial concentration (5µM), the initial consumption rate of tryptophan included in the peptides was two times higher than free tryptophan. In contrast, at high concentration (1mM) free and peptide-included tryptophan showed similar initial consumption rates. These results could be explained considering a disproportionation process of tryptophanyl radicals at low free tryptophan concentrations, a process that would be inhibited when tryptophan is included in peptides. Copyright © 2014. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin-Yu; Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn; Lu, Bing-Qiang
Graphical abstract: Hydroxyapatite nanorods are synthesized using biocompatible biomolecule pyridoxal-5′-phosphate as a new organic phosphorus source by the hydrothermal method. - Highlights: • Hydrothermal synthesis of hydroxyapatite nanorods is reported. • Biocompatible pyridoxal-5′-phosphate is used as an organic phosphorus source. • This method is simple, surfactant-free and environmentally friendly. - Abstract: Hydroxyapatite nanorods are synthesized by the hydrothermal method using biocompatible biomolecule pyridoxal-5′-phosphate (PLP) as a new organic phosphorus source. In this method, PLP biomolecules are hydrolyzed to produce phosphate ions under hydrothermal conditions, and these phosphate ions react with pre-existing calcium ions to form hydroxyapatite nanorods. The effects ofmore » experimental conditions including hydrothermal temperature and time on the morphology and crystal phase of the products are investigated. This method is simple, surfactant-free and environmentally friendly. The products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis.« less
Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?
Emsbo, Poul; McLaughlin, Patrick I.; Breit, George N.; du Bray, Edward A.; Koenig, Alan E.
2015-01-01
The critical role of rare earth elements (REEs), particularly heavy REEs (HREEs), in high-tech industries has created a surge in demand that is quickly outstripping known global supply and has triggered a worldwide scramble to discover new sources. The chemical analysis of 23 sedimentary phosphate deposits (phosphorites) in the United States demonstrates that they are significantly enriched in REEs. Leaching experiments using dilute H2SO4 and HCl, extracted nearly 100% of their total REE content and show that the extraction of REEs from phosphorites is not subject to the many technological and environmental challenges that vex the exploitation of many identified REE deposits. Our data suggest that phosphate rock currently mined in the United States has the potential to produce a significant proportion of the world's REE demand as a byproduct. Importantly, the size and concentration of HREEs in some unmined phosphorites dwarf the world's richest REE deposits. Secular variation in phosphate REE contents identifies geologic time periods favorable for the formation of currently unrecognized high-REE phosphates. The extraordinary endowment, combined with the ease of REE extraction, indicates that such phosphorites might be considered as a primary source of REEs with the potential to resolve the global REE (particularly for HREE) supply shortage.
Alterations of the oral ecosystem in children with celiac disease.
Mina, Silvia S; Azcurra, Ana I; Dorronsoro, Susana; Brunotto, Mabel N
2008-01-01
The aim of this work is to evaluate the alterations of the oral ecosystem in symptomatic children with celiac disease (CD), to establish a particular pattern of oral markers that can be used as presumptive diagnosis of CD. A sample of n=52 children with CD diagnosis according to the modified criteria of the European Society of Pediatric Gastroenterology and Nutrition (ESPGAN), 1990, was studied. A dental clinical evaluation of soft and hard tissues was performed. Saliva samples were obtained; in which buffer capacity, total proteins, calcium and phosphate were measured and SDS PAGE 12% electrophoretic profiles were performed. In addition, oral mucosa smears were collected by brushing. Low frequency of enamel structural alterations was found, particularly in the permanent teeth of children with CD. These alterations had characteristics of chronological coherence (31.7%), bilateralism (26.8%) and symmetry (29.23%). The celiac smears in the celiac group (20%) showed signifcant presence of polymorphic nuclei and free nuclei. The celiac group had significant differences in buffer capacity, IgA levels, minute volume, calcium and Ca/P ratio (p<0.05). The protein profiles of CD children showed the absence of bands of low, medium and high molecular weight. Our results enable us to develop an alteration pattern corresponding to the oral ecosystem of CD children. In the CD patients, the most relevant variables were tooth enamel alterations, oral mucosa morphology, and modifications of salivary parameters, which would enable the dentist to refer these patients to specialist physician.
Barlough, J E; Jacobson, R H; Downing, D R; Marcella, K L; Lynch, T J; Scott, F W
1983-01-01
A computer-assisted, kinetics-based enzyme-linked immunosorbent assay was adapted for the detection of coronavirus antibodies in feline serum. An alkaline antigen diluent (carbonate-bicarbonate buffer, pH 9.6) used in initial experiments produced diffuse, nonspecific color reactions in both viral and control antigen cuvettes which were correlated, paradoxically, with coronavirus antibody levels in test sera. These interfering reactions were minimized by use of lower-pH antigen diluents such as water and phosphate-buffered saline. Background kinetics-based enzyme-linked immunosorbent assay reactivity directed against a noncoronaviral component of antigen tissue culture fluids could then detected in numerous sera, particularly in samples with lower titers. Much of this reactivity was shown to be associated with bovine gamma globulins in cell culture fluid. It was not serum lot or species specific, since a variety of bovine serum lots as well as individual lots of serum from other mammalian and avian species reacted. Reactivity was markedly reduced when cells for antigen preparation were grown in gamma globulin-free bovine serum. Generation of corrected slope values from the kinetics-based enzyme-linked immunosorbent assay made it possible to correct for residual background reactivity in individual test sera and thus eliminate a potentially major source of false-positive reactions. Collectively, these studies indicated that the control of nonspecific reactivity in feline coronavirus serology is absolutely essential to obtain useful estimates of specific antibody responses. PMID:6300184
Barlough, J E; Jacobson, R H; Downing, D R; Marcella, K L; Lynch, T J; Scott, F W
1983-02-01
A computer-assisted, kinetics-based enzyme-linked immunosorbent assay was adapted for the detection of coronavirus antibodies in feline serum. An alkaline antigen diluent (carbonate-bicarbonate buffer, pH 9.6) used in initial experiments produced diffuse, nonspecific color reactions in both viral and control antigen cuvettes which were correlated, paradoxically, with coronavirus antibody levels in test sera. These interfering reactions were minimized by use of lower-pH antigen diluents such as water and phosphate-buffered saline. Background kinetics-based enzyme-linked immunosorbent assay reactivity directed against a noncoronaviral component of antigen tissue culture fluids could then detected in numerous sera, particularly in samples with lower titers. Much of this reactivity was shown to be associated with bovine gamma globulins in cell culture fluid. It was not serum lot or species specific, since a variety of bovine serum lots as well as individual lots of serum from other mammalian and avian species reacted. Reactivity was markedly reduced when cells for antigen preparation were grown in gamma globulin-free bovine serum. Generation of corrected slope values from the kinetics-based enzyme-linked immunosorbent assay made it possible to correct for residual background reactivity in individual test sera and thus eliminate a potentially major source of false-positive reactions. Collectively, these studies indicated that the control of nonspecific reactivity in feline coronavirus serology is absolutely essential to obtain useful estimates of specific antibody responses.
Degradation of bare and silanized silicon wafer surfaces by constituents of biological fluids.
Dekeyser, C M; Buron, C C; Derclaye, S R; Jonas, A M; Marchand-Brynaert, J; Rouxhet, P G
2012-07-15
The 24 h stability of bare silicon wafers as such or silanized with CH(3)O-(CH(2)-CH(2)-O)(n)-C(3)H(6)-trichlorosilane (n=6-9) was investigated in water, NaCl, phosphate and carbonate solutions, and in phosphate buffered saline (PBS) at 37 °C (close to biological conditions regarding temperature, high ionic strength, and pH). The resulting surfaces were analyzed using ellipsometry, X-ray Reflectometry (XRR), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM). Incubation of the silanized wafers in phosphate solution and PBS provokes a detachment of the silane layer. This is due to a hydrolysis of Si-O bonds which is favored by the action of phosphate, also responsible for a corrosion of non-silanized wafers. The surface alteration (detachment of silane layer and corrosion of the non-silanized wafer) is also important with carbonate solution, due to a higher pH (8.3). The protection of the silicon oxide layer brought by silane against the action of the salts is noticeable for phosphate but not for carbonate. Copyright © 2012 Elsevier Inc. All rights reserved.
Flynn, Niamh; James, Jack E
2009-05-01
The hypothesis that work control has beneficial effects on well-being is the basis of the widely applied, yet inconsistently supported, Job Demand Control (JDC) Model [Karasek, R.A., 1979. Job demands, job decision latitude and mental strain: Implications for job redesign. Adm. Sci. Q. 24, 285-308.; Karasek, R., Theorell, T., 1990. Healthy Work: Stress, Productivity, and the Reconstruction of Working Life. Basic Books, Oxford]. The model was tested in an experiment (N=60) using a cognitive stressor paradigm that sought to prevent confounding between demand and control. High-demand was found to be associated with deleterious effects on physiological, subjective, and performance outcomes. In contrast, few main effects were found for control. Evidence for the buffer interpretation of the JDC Model was limited to a significant demand-control interaction for performance accuracy, whereas substantial support was found for the strain interpretation of the model [van der Doef, M., Maes, S., 1998. The job demand-control(-support) model and physical health outcomes: A review of the strain and buffer hypotheses. Psychol. Health 13, 909-936., van der Doef, M., Maes, S., 1999. The Job Demand-Control(-Support) model and psychological well-being: A review of 20 years of empirical research. Work Stress 13, 87-114]. Manipulation checks revealed that objective control altered perceptions of control but not perceptions of demand. It is suggested that beneficial effects of work-related control are unlikely to occur in the absence of reductions in perceived demand. Thus, contrary to the propositions of Karasek and colleagues, demand and control do not appear to be independent factors.
1975-01-01
The calcium sequestering agent, EGTA, was injected into Limulus ventral photoreceptors. Before injection, the inward membrane current induced by a long stimulus had a large initial transient which declined to a smaller plateau. Iontophoretic injection of EGTA tended to prevent the decline from transient to plateau. Before injection the plateau response was a nonlinear function of light intensity. After EGTA injection the response-intensity curves tended to become linear. Before injection, bright lights lowered the sensitivity as determined with subsequent test flashes. EGTA injection decreased the light-induced changes in sensitivity. Ca-EGTA buffers having different levels of free calcium were pressure-injected into ventral photoreceptors; the higher the level of free calcium, the lower the sensitivity measured after injection. The effects of inotophoretic injection of EGTA were not mimicked by injection or similar amounts of sulfate and the effects of pressure injection of EGTA buffer solutions were not mimicked by injection of similar volumes of pH buffer or mannitol. The data are consistent with the hypothesis that light adaptation is mediated by a rise of the intracellular free calcium concentration. PMID:810540
Replace, reuse, recycle: improving the sustainable use of phosphorus by plants.
Baker, Alison; Ceasar, S Antony; Palmer, Antony J; Paterson, Jaimie B; Qi, Wanjun; Muench, Stephen P; Baldwin, Stephen A
2015-06-01
The 'phosphorus problem' has recently received strong interest with two distinct strands of importance. The first is that too much phosphorus (P) is entering into waste water, creating a significant economic and ecological problem. Secondly, while agricultural demand for phosphate fertilizer is increasing to maintain crop yields, rock phosphate reserves are rapidly declining. Unravelling the mechanisms by which plants sense, respond to, and acquire phosphate can address both problems, allowing the development of crop plants that are more efficient at acquiring and using limited amounts of phosphate while at the same time improving the potential of plants and other photosynthetic organisms for nutrient recapture and recycling from waste water. In this review, we attempt to synthesize these important but often disparate parts of the debate in a holistic fashion, since solutions to such a complex problem require integrated and multidisciplinary approaches that address both P supply and demand. Rapid progress has been made recently in our understanding of local and systemic signalling mechanisms for phosphate, and of expression and regulation of membrane proteins that take phosphate up from the environment and transport it within the plant. We discuss the current state of understanding of such mechanisms involved in sensing and responding to phosphate stress. We also discuss approaches to improve the P-use efficiency of crop plants and future direction for sustainable use of P, including use of photosynthetic organisms for recapture of P from waste waters. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
2016-01-01
The development of new ROMP-derived silica-immobilized heterocyclic phosphate reagents and their application in purification-free protocols is reported. Grafting of norbornenyl norbornenyl-functionalized (Nb-tagged) silica particles with functionalized Nb-tagged heterocyclic phosphate monomers efficiently yield high-load, hybrid silica-immobilized oligomeric heterobenzyl phosphates (Si–OHBP) and heterotriazolyl phosphates (Si–OHTP) as efficient alkylation agents. Applications of these reagents for the diversification of N-, O-, and S-nucleophilic species, for efficient heterobenzylation and hetero(triazolyl)methylation have been validated. PMID:27300761
Phosphorus Sorption Capacity of Gray Forest Soil as Dependent on Fertilization System
NASA Astrophysics Data System (ADS)
Rogova, O. B.; Kolobova, N. A.; Ivanov, A. L.
2018-05-01
In this paper, the results of the study of changes in the phosphorus sorption capacity of gray forest soils of Vladimir opolie under the impact of different fertilization systems are discussed. The quantitative parameters of the potential buffer capacity of soils for phosphorus (PBCP) and Langmuir sorption isotherms have been calculated. It is shown that the application of organic fertilizers results in a stronger decrease in PBCP than the application of mineral fertilizers. The portion of phosphorus of mineral compounds considerably increases, and the high content of available phosphates is maintained. In the variants with application of mineral phosphorus in combination with manure, the portions of organic and mineral phosphorus are at the level typical of unfertilized soils. The energy of phosphate bonds with the soil is minimal upon the application of a double rate of mineral phosphorus at the maximum capacity in relation to phosphate ions.
Drop Migration and Demixing of Biphasic Aqueous Systems in an Applied Electric Field
NASA Astrophysics Data System (ADS)
Todd, Paul; Raghavarao, Karumanchi S. M. S.
1999-11-01
Applying an electric field to a demixing emulsion of poly(ethylene glycol)(PEG) and dextran (or maltodextrin) in phosphate-buffered aqueous solution shortens the demixing time up to 6 fold. Phosphate ions partition into the dextran-rich phase imparting a small electrical potential between the phases. PEG-rich drops migrate cathodally, and their electrophoretic mobility is directly proportional to their radius and increases with increased ionization of phosphate. An electric field, either parallel or antiparallel to the gravity vector, can enhance demixing. A theory consistent with these observations states that drops move due to external and internal electroosmotic flow (tractor treading). Enhanced demixing in an electric field whose polarity opposes buoyancy is thought to be caused by initial increased drop growth during retardation by the electric field so that the drop becomes more buoyant. However, at infinite internal drop viscosity the theory does not extrapolate to the result for solid colloid particles.
Manassra, Adnan; Khamis, Mustafa; El-Dakiky, Magdy; Abdel-Qader, Zuhair; Al-Rimawi, Fuad
2010-03-11
An HPLC method using UV detection is proposed for the simultaneous determination of pseudophedrine hydrochloride, codeine phosphate, and triprolidine hydrochloride in liquid formulation. C18 column (250mmx4.0mm) is used as the stationary phase with a mixture of methanol:acetate buffer:acetonitrile (85:5:10, v/v) as the mobile phase. The factors affecting column separation of the analytes were studied. The calibration graphs exhibited a linear concentration range of 0.06-1.0mg/ml for pseudophedrine hydrochloride, 0.02-1.0mg/ml for codeine phosphate, and 0.0025-1.0mg/ml for triprolidine hydrochloride for a sample size of 5microl with correlation coefficients of better than 0.999 for all active ingredients studied. The results demonstrate that this method is reliable, reproducible and suitable for routine use with analysis time of less than 4min. Copyright 2009 Elsevier B.V. All rights reserved.
Polanams, Jup; Ray, Alisha D; Watt, Richard K
2005-05-02
Nanoparticles of iron phosphate, iron arsenate, iron molybdate, and iron vanadate were synthesized within the 8 nm interior of ferritin. The synthesis involved reacting Fe(II) with ferritin in a buffered solution at pH 7.4 in the presence of phosphate, arsenate, vanadate, or molybdate. O2 was used as the oxidant to deposit the Fe(III) mineral inside ferritin. The rate of iron incorporation into ferritin was stimulated when oxo-anions were present. The simultaneous deposition of both iron and the oxo-anion was confirmed by elemental analysis and energy-dispersive X-ray analysis. The ferritin samples containing iron and one of the oxo-anions possessed different UV/vis spectra depending on the anion used during mineral formation. TEM analysis showed mineral cores with approximately 8 nm mineral particles consistent with the formation of mineral phases inside ferritin.
Connolly, B A; Rider, P
1985-01-01
Oligonucleotides containing a free sulphydryl group at their 5'-termini have been synthesised and further derivatised with thiol specific probes. The nucleotide sequence required is prepared using standard solid phase phosphoramidite techniques and an extra round of synthesis is then performed using the S-triphenylmethyl O-methoxymorpholinophosphite derivatives of 2-mercaptoethanol, 3-mercaptopropan (1) ol or 6-mercaptohexan (1) ol. After cleavage from the resin and removal of the phosphate and base protecting groups, this yields an oligonucleotide containing an S-triphenylmethyl group attached to the 5'-phosphate group via a two, three or six carbon chain. The triphenylmethyl group can be readily removed with silver nitrate to give the free thiol. With the three and six carbon chain oligonucleotides, this thiol can be used, at pH 8, for the attachment of thiol specific probes as illustrated by the reaction with fluorescent conjugates of iodoacetates and maleiimides. However, oligonucleotides containing a thiol attached to the 5'-phosphate group via a two carbon chain are unstable at pH 8 decomposing to the free 5'-phosphate and so are unsuitable for further derivatisation. PMID:4011448
Modeling of shallot supply decisions: the case of Indonesia
NASA Astrophysics Data System (ADS)
Prabawati, N. F.; Pujawan, I. N.; Widodo, E.
2018-04-01
To optimize supply chain role, the players of supply chain need to integrate its function. One of the general problems in supply chain was the unbalanced quantity of sales and quantity of supply. This paper focused on modelling a simple method to manage the gap between the demand and the supply. The gap might cause an overstock or a loss. This paper propose a buffer quantity in order to handle the gap by using import decision. The case study was about shallot supply - demand in Indonesia. In this study we model the supply decisions of shallot in Indonesia. While the demand was quite stable over time, the supply was heavily affected by the yield from the farms. The shortage could result in the government importing shallot from other countries. Hence, the government also needed to have a proper buffering mechanism in order to ensure the supply was sufficient and the price was quite stable. The initial model of this research was built by stochastic parameters and the extended model to gain pricing mechanism was built by Shapley value principal with modification. The primary variables were supply quantity, demand quantity, buffer and purchased quantity (stock needed), actual consumption, and price for three players. The validation proved that the result of price at each player presented a significant difference. Therefore, the model could be applied to decide the stock quantity needed and to keep the price stable at each player especially at the end player which would influence the market price.
Coefficient of Friction of Human Corneal Tissue.
Wilson, Tawnya; Aeschlimann, Rudolf; Tosatti, Samuele; Toubouti, Youssef; Kakkassery, Joseph; Osborn Lorenz, Katherine
2015-09-01
A novel property evaluation methodology was used to determine the elusive value for the human corneal coefficient of friction (CoF). Using a microtribometer on 28 fresh human donor corneas with intact epithelia, the CoF was determined in 4 test solutions (≥5 corneas/solution): tear-mimicking solution (TMS) in borate-buffered saline (TMS-PS), TMS in phosphate-buffered saline (TMS-PBS), TMS with HEPES-buffered saline (TMS-HEPES), and tear-like fluid in PBS (TLF-PBS). Mean (SD) CoF values ranged from 0.006 to 0.015 and were 0.013 (0.010) in TMS-PS, 0.006 (0.003) in TMS-PBS, 0.014 (0.005) in TMS-HEPES, and 0.015 (0.009) in TLF-PBS. Statistically significant differences were shown for TMS-PBS versus TLF (P = 0.0424) and TMS-PBS versus TMS-HEPES (P = 0.0179), but not for TMS-PBS versus TMS-PS (P = 0.2389). Successful measurement of the fresh human corneal tissue CoF was demonstrated, with values differing in the evaluated buffer solutions, within this limited sample size.
Strambini, G B; Gabellieri, E; Gonnelli, M; Rahuel-Clermont, S; Branlant, G
1998-01-01
Tyrosine is known to quench the phosphorescence of free tryptophan derivatives in solution, but the interaction between tryptophan residues in proteins and neighboring tyrosine side chains has not yet been demonstrated. This report examines the potential role of Y283 in quenching the phosphorescence emission of W310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus by comparing the phosphorescence characteristics of the wild-type enzyme to that of appositely designed mutants in which either the second tryptophan residue, W84, is replaced with phenylalanine or Y283 is replaced by valine. Phosphorescence spectra and lifetimes in polyol/buffer low-temperature glasses demonstrate that W310, in both wild-type and W84F (Trp84-->Phe) mutant proteins, is already quenched in viscous low-temperature solutions, before the onset of major structural fluctuations in the macromolecule, an anomalous quenching that is abolished with the mutation Y283V (Tyr283-->Val). In buffer at ambient temperature, the effect of replacing Y283 with valine on the phosphorescence of W310 is to lengthen its lifetime from 50 micros to 2.5 ms, a 50-fold enhancement that again emphasizes how W310 emission is dominated by the local interaction with Y283. Tyr quenching of W310 exhibits a strong temperature dependence, with a rate constant kq = 0.1 s(-1) at 140 K and 2 x 10(4) s(-1) at 293 K. Comparison between thermal quenching profiles of the W84F mutant in solution and in the dry state, where protein flexibility is drastically reduced, shows that the activation energy of the quenching reaction is rather small, Ea < or = 0.17 kcal mol(-1), and that, on the contrary, structural fluctuations play an important role on the effectiveness of Tyr quenching. Various putative quenching mechanisms are examined, and the conclusion, based on the present results as well as on the phosphorescence characteristics of other protein systems, is that Tyr quenching occurs through the formation of an excited-state triplet exciplex. PMID:9635769
Ishiwata, Kiichi; Ebinuma, Ryoichi; Watanabe, Chuichi; Hayashi, Kunpei; Toyohara, Jun
2018-06-05
The aim of this study was to establish a reliable and routine method for the preparation of 4-[ 10 B]borono-2-[ 18 F]fluoro-L-phenylalanine (L-[ 18 F]FBPA) for boron neutron capture therapy-oriented diagnosis using positron emission tomography. To produce L-[ 18 F]FBPA by electrophilic fluorination of 4-[ 10 B]borono-L-phenylalanine (L-BPA) with [ 18 F]acetylhypofluorite ([ 18 F]AcOF) via [ 18 F]F 2 derived from the 20 Ne(d,α) 18 F nuclear reaction, several preparation parameters and characteristics of L-[ 18 F]FBPA were investigated, including: pre-irradiation for [ 18 F]F 2 production, the carrier F 2 content in the Ne target, L-BPA-to-F 2 ratios, separation with high-performance liquid chromatography (HPLC) using 10 different eluents, enantiomeric purity, and residual trifluoroacetic acid used as the reaction solvent by gas chromatography-mass spectrometry. The activity yields and molar activities of L-[ 18 F]FBPA (n = 38) were 1200 ± 160 MBq and 46-113 GBq/mmol, respectively, after deuteron-irradiation for 2 h. Two 5 min pre-irradiations prior to [ 18 F]F 2 production for 18 F-labeling were preferable. For L-[ 18 F]FBPA synthesis, 0.15-0.2% of carrier F 2 in Ne and L-BPA-to-F 2 ratios > 2 were preferable. HPLC separations with five of the 10 eluents provided injectable L-[ 18 F]FBPA without any further formulation processing, which resulted in a synthesis time of 32 min. Among the five eluents, 1 mM phosphate-buffered saline was the eluent of choice. The L-[ 18 F]FBPA injection was sterile and pyrogen-free, and contained very small amounts of D-enantiomer (< 0.1% of L-[ 18 F]FBPA), L-BPA (< 1% of L-FBPA), and trifluoroacetic acid (< 0.5 ppm). L-[ 18 F]FBPA injection was reliably prepared by the electrophilic fluorination of L-BPA with [ 18 F]AcOF followed by HPLC separation with 1 mM phosphate-buffered saline.
Ilechie, Alex; Abokyi, Samuel; Boateng, Gifty; Koffuor, George Asumeng
2016-01-01
Background: Preserved versus nonpreserved formulations for ophthalmic use have been well described in the literature although not specifically in the African population where beta blockers are frequently used as the first-line therapy due to economic and availability issues. This study sought to determine the effect of preserved and preservative-free Timolol eye drops on tear film stability in healthy black Africans. Materials and Methods: Sixty healthy nondry eye subjects aged 19–25 years were randomly assigned into four groups (n = 15) and differently treated with eye drops of phosphate buffered saline (PBS), preservative-free timolol (PFT), benzalkonium chloride (BAK) only, and BAK-preserved timolol (BPT). Noninvasive tear break-up time (NITBUT) was measured using the keratometer at baseline and 30, 60, and 90 min after drop application. Results: No significant decline in NITBUT was observed following treatment with PFT and PBS. However, BAK treatment showed a positive time-dependent significant decline in NITBUT (P < 0.001) while a significant decline in the BPT-treated group was only found at 90 min (−3.52 s; P < 0.001). In comparison to the PFT-treated group, treatment with BAK and BPT showed significantly lower NITBUT (P < 0.001). Conclusion: BPT is associated with a significant decline in tear film stability in black Africans. This finding has implications in the management of glaucoma in patients with high-risk of dry eyes in this population. PMID:27226684
Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing
NASA Astrophysics Data System (ADS)
Collett, Jeffrey L.; Hoag, Katherine J.; Rao, Xin; Pandis, Spyros N.
Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight ( C1- C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3-0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S(IV) in these high pH fogs.
Gaudreault, Pierre-Richard; Webb, John A.
1983-01-01
A fourth molecular from of α-galactosidase, designated LIV, an alkaline α-galactosidase, was isolated from leaves of Cucurbita pepo and purified 165-fold. It was active over a narrow pH range with optimal hydrolysis of p-nitrophenyl-α-d-galactoside and stachyose at pH 7.5. The rate of stachyose hydrolysis was 10 times that of raffinose. Km determinations in McIlvaine buffer (200 millimolar Na2-phosphate, 100 millimolar citric acid, pH 7.5) for p-nitrophenyl-α-d-galactoside, stachyose, and raffinose were 1.40, 4.5, and 36.4 millimolar, respectively. LIV was partially inhibited by Ca2+, Mg2+, and Mn2+, more so by Ni2+, Zn2+, and Co2+, and highly so by Cu2+, Ag2+, Hg2+ and by p-chloromercuribenzoate. It was not inhibited by high concentrations of the substrate p-nitrophenyl-α-d-galactoside or by myo-inositol, but α-d-galactose was a strong inhibitor. As observed for most other forms of α-galactosidase, LIV only catalyzed the hydrolysis of glycosides possessing the α-d-galactose configuration at C1, C2, and C4, and did not hydrolyze p-nitrophenyl-α-d-fucoside (α-d-galactose substituted at C6). The enzyme was highly sensitive to buffers and chelating agents. Maximum hydrolytic activity for p-nitrophenyl-α-d-galactoside was obtained in McIlvaine buffer (pH 7.5). In 10 millimolar triethanolaminehydrochloride-NaOH (pH 7.5) or 10 millimolar Hepes-NaOH (pH 7.5), hydrolytic activity was virtually eliminated, but the addition of low concentrations of either ethylenediaminetetraacetate or citrate to these buffers restored activity almost completely. Partial restoration of activity was also observed, but at higher concentrations, with pyruvate and malate. Similar effects were found for stachyose hydrolysis, but in addition some inhibition of LIV in McIlvaine buffer, possibly due to the high phosphate concentration, was observed with this substrate. It is questionable whether the organic acid anions possess any regulatory control of LIVin vivo. It was possible that the results reflected the ability of these anions, and ethylene-diaminetetraacetate, to restore LIV activity through coordination with some toxic cation introduced as a buffer contaminant. Images Fig. 1 PMID:16662884
Deduction of a calcium ion circuit affecting rooster sperm in vitro.
Froman, D P
2016-08-01
Four premises for rooster sperm preservation were outlined previously. Understanding mitochondrial Ca cycling in terms of whole-cell Ca flux was one premise. The present work tested the hypothesis that sperm mitochondria can be damaged by intracellular as well as extracellular Ca. Sperm were washed by centrifugation through 12% (wt/vol) Sperm were washed by centrifugation through 12%(at/vol) Accudenz to procure sperm at a physiological concentration within a chemically-defined suspension. Five solutions were tested. Each solution contained 30 m glucose, and had an osmolality of 320 mmol/kg and a pH of 7.4. Washed sperm were diluted to 2.0 × 10 sperm/mL. Each replicate sperm suspension was cooled to 10°C. Sperm mobility was measured after 1, 2, 4, 8, 12, and 24 h. Data were plotted as a function of time in each experiment. Function type was confirmed by lack of fit analysis. A parabola with a maximum at 3.7 h was observed when sperm were suspended in 205 m taurine buffered with 50 m-tris[hydroxyl-methyl]methyl-2-amino-ethanesulfonic acid (TES). This effect was attributed to a Ca flux from the nuclear envelope into mitochondria. An exponential decay was observed when TES-buffered taurine contained 2 m Ca. This effect was attributed to mitochondrial Ca overload induced by uptake of extracellular Ca. Exponential decay also was observed when TES-buffered taurine contained a Ca chelator. This effect was attributed to a Ca flux from the nuclear envelope through mitochondria and then into an extracellular Ca sink. This possibility was supported by the response of sperm to thapsigargin. Specifically, inhibition of sarcoendoplasmic reticulum Ca-ATPase compromised sperm mobility relative to a buffer control. Finally, a 60 m phosphate buffer containing 2 m citrate yielded a linear relationship in contrast to the TES-buffered solutions tested. Sperm mobility after 24 h of storage in the phosphate buffer was 92% of that observed for prewashed sperm. The linear response was attributed to weak chelators providing resistance within a Ca circuit and thereby preventing mitochondrial Ca overload. Fertility, however, was compromised when hens were inseminated with mobile sperm recovered after either 8 or 24 h of storage at 10°C. In conclusion, sperm cell Ca homeostasis was proven to be critical for maintaining sperm mobility in vitro, but mitochondrial Ca uptake is not the sole phenomenon that compromises sperm function during in vitro storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritti, Fabrice; Guiochon, Georges A
2008-01-01
The parameters that affect the shape of the band profiles of acido-basic compounds under moderately overloaded conditions (sample size less than 500 nmol for a conventional column) in RPLC are discussed. Only analytes that have a single pK{sub a} are considered. In the buffer mobile phase used for their elution, their dissociation may, under certain conditions, cause a significant pH perturbation during the passage of the band. Two consecutive injections (3.3 and 10 {micro}L) of each one of three sample solutions (0.5, 5, and 50 mM) of ten compounds were injected on five C{sub 18}-bonded packing materials, including the 5more » {micro}m Xterra-C{sub 18} (121 {angstrom}), 5 {micro}m Gemini-C{sub 18} (110 {angstrom}), 5 {micro}m Luna-C{sub 18}(2) (93 {angstrom}), 3.5 {micro}m Extend-C{sub 18} (80 {angstrom}), and 2.7 {micro}m Halo-C{sub 18} (90 {angstrom}). The mobile phase was an aqueous solution of methanol buffered at a constant {sub W}{sup W}pH of 6, with a phosphate buffer. The total concentration of the phosphate groups was constant at 50 mM. The methanol concentration was adjusted to keep all the retention factors between 1 and 10. The compounds injected were phenol, caffeine, 3-phenyl 1-propanol, 2-phenyl butyric acid, amphetamine, aniline, benzylamine, p-toluidine, procainamidium chloride, and propranololium chloride. Depending on the relative values of the analyte pK{sub a} and the buffer solution pH, these analytes elute as the neutral, the cationic, or the anionic species. The influence of structural parameters such as the charge, the size, and the hydrophobicity of the analytes on the shape of its overloaded band profile is discussed. Simple but general rules predict these shapes. An original adsorption model is proposed that accounts for the unusual peak shapes observed when the analyte is partially dissociated in the buffer solution during its elution.« less
Qiao, Hua; Wang, He-ling; Feng, Hua-jun; Yao, Jun; Shen, Dong-sheng; Tang, Zhi-jian
2010-07-15
To account for the fast disappearance of TNT in anaerobic fermentative liquid, we investigated TNT (TNT(0)=50 mg/L) reduction by Na(2)S at 30+/-1 degrees C in two types of buffer systems, a phosphate buffer (PB, system A) and a CH(3)COOH-NaHCO(3) buffer (system B). The effects of pH, sulfide concentration and buffer system on the conversion and reaction rate of TNT were investigated. The effect of different variables on the conversion of TNT decreased in the following order: Na(2)S concentration>pH>buffer system. A kinetics study showed that TNT reduction by Na(2)S occurred in two stages separated by a change point. The observed rate constants of the first stage K(obs-1) were 1 order of magnitude lower than those of the second stage. The TNT conversion rate increased and the time to reach the change point became shorter with increasing Na(2)S concentration and pH. A 5-fold increase in Na(2)S concentration above the theoretical stoichiometric concentration was optimum. Observed rate constants of the first stage K(obs-1) were proportional to the hydrosulfide ion concentration and the conversion rate of TNT was greater and faster in buffer system B than in system A. 2010 Elsevier B.V. All rights reserved.
Amponsah, Amma; Nayak, Balunkeswar
2018-04-01
Recent studies have shown the need to improve soy allergen extraction using different extraction conditions to ensure more accurate results in allergen detection. This study investigated some of these extraction conditions to confirm that these methods, especially ultrasound-assisted extraction (UAE) and the use of Laemmli buffer instead of the conventional extraction with phosphate-buffered saline (PBS), could be helpful in improving the extraction step in allergen detection. Higher total soluble protein was obtained in all samples extracted with Laemmli buffer alone and in combination with ultrasound. For immunochemical detection of soy proteins by enzyme-linked immunosorbent assay (ELISA), comparable detection was observed in extracts from all extraction conditions in all commercial samples with the exception of table cracker and veggie burger, where significantly higher detection was seen in extracts from Laemmli buffer only. For the dry mix and cookie samples, the degree of soy protein detection with ELISA varied among the different extraction conditions, but overall, extraction with only Laemmli buffer showed higher detection. Laemmli buffer with conventional extraction and UAE may be better alternatives or additional extraction methods in soy allergen detection. Different food matrices performed differently (whether it was for the recovery of total proteins or detection by ELISA) under different extraction conditions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Expanding the range of free calcium regulation in biological solutions.
Dweck, David; Reyes-Alfonso, Avelino; Potter, James D
2005-12-15
Many biological systems use ethylene glycol bis (beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) to regulate the free calcium concentration ([Ca(2+)](free)) in the presence of physiological levels of free Mg(2+) ([Mg(2+)](free)). Frequently, it is necessary to work at [Ca(2+)](free) beyond EGTA's buffering capabilities. Therefore, we have developed methods to extend the buffering range by adding nitrilotriacetic acid (NTA) to solutions containing EGTA. This extension results from NTA having a lower K'(dCa) than EGTA. Such equilibria are solved by pCa Calculator, a computer program designed to aid in the study of Ca(2+)-dependent physiological processes while accounting for the effects of pH, temperature, and ionic strength. With multiple chelators and pH buffers from which to choose, pCa Calculator calculates the total concentration of each species required to achieve specified free concentrations of Ca(2+), ATP, and Mg(2+). The program is intuitive, user-friendly, and flexible enough to fix or vary the [Mg-ATP(2-)] and ionic strength. Moreover, it can account for increases in experimental volume from calcium addition. A comparative analysis is reported for testing solutions in the presence and absence of NTA by measuring the calcium binding affinity of fluorescent cardiac troponin C. These findings demonstrate that EGTA, when used in conjunction with NTA, improves and expands the regulation of free calcium in solution.
Recovery of Monkeys After Myocardial Infarction with Ventricular Fibrillation. Effects of PGB
1980-01-01
stress5 ,0 a new bioregulatory factor was dis- ing to hypoxia and acidosis is associated with covered with the unique property of conserv- biochemical...with 5% glutaralde- bovine serum albumin to give a final mixture hyde in 0.1 M phosphate buffer, pH 7.4. At of 2.2 ml. AMP and ADP were added as 30
2013-10-01
antibodies were purified using protein A purification, desalted in 1× phosphate buffered saline using Sephadex G-25 columns, and then filtered with a 0.2 µm...Purification of clones 2 The following materials were used in this process: o Protein A XK 16/15 (30 mL) column o Desalting Sephadex G
A combined method for DNA analysis and radiocarbon dating from a single sample.
Korlević, Petra; Talamo, Sahra; Meyer, Matthias
2018-03-07
Current protocols for ancient DNA and radiocarbon analysis of ancient bones and teeth call for multiple destructive samplings of a given specimen, thereby increasing the extent of undesirable damage to precious archaeological material. Here we present a method that makes it possible to obtain both ancient DNA sequences and radiocarbon dates from the same sample material. This is achieved by releasing DNA from the bone matrix through incubation with either EDTA or phosphate buffer prior to complete demineralization and collagen extraction utilizing the acid-base-acid-gelatinization and ultrafiltration procedure established in most radiocarbon dating laboratories. Using a set of 12 bones of different ages and preservation conditions we demonstrate that on average 89% of the DNA can be released from sample powder with minimal, or 38% without any, detectable collagen loss. We also detect no skews in radiocarbon dates compared to untreated samples. Given the different material demands for radiocarbon dating (500 mg of bone/dentine) and DNA analysis (10-100 mg), combined DNA and collagen extraction not only streamlines the sampling process but also drastically increases the amount of DNA that can be recovered from limited sample material.
2015-01-01
The effects of different anions on the extent of electrothermal supercharging of proteins from aqueous ammonium and sodium salt solutions were investigated. Sulfate and hydrogen phosphate are the most effective anions at producing high charge state protein ions from buffered aqueous solution, whereas iodide and perchlorate are ineffective with electrothermal supercharging. The propensity for these anions to produce high charge state protein ions follows the following trend: sulfate > hydrogen phosphate > thiocyanate > bicarbonate > chloride > formate ≈ bromide > acetate > iodide > perchlorate. This trend correlates with the reverse Hofmeister series over a wide range of salt concentrations (1 mM to 2 M) and with several physical properties, including solvent surface tension, anion viscosity B-coefficient, and anion surface/bulk partitioning coefficient, all of which are related to the Hofmeister series. The effectiveness of electrothermal supercharging does not depend on bubble formation, either from thermal degradation of the buffer or from coalescence of dissolved gas. These results provide evidence that the effect of different ions in the formation of high charge state ions by electrothermal supercharging is largely a result of Hofmeister effects on protein stability leading to protein unfolding in the heated ESI droplet. PMID:24410546
Porter, Joanne L.; Carr, Paul D.; Collyer, Charles A.; Ollis, David L.
2014-01-01
Dienelactone hydrolase (DLH) is a monomeric protein with a simple α/β-hydrolase fold structure. It readily crystallizes in space group P212121 from either a phosphate or ammonium sulfate precipitation buffer. Here, the structure of DLH at 1.85 Å resolution crystallized in space group C2 with two molecules in the asymmetric unit is reported. When crystallized in space group P212121 DLH has either phosphates or sulfates bound to the protein in crucial locations, one of which is located in the active site, preventing substrate/inhibitor binding. Another is located on the surface of the enzyme coordinated by side chains from two different molecules. Crystallization in space group C2 from a sodium citrate buffer results in new crystallographic protein–protein interfaces. The protein backbone is highly similar, but new crystal contacts cause changes in side-chain orientations and in loop positioning. In regions not involved in crystal contacts, there is little change in backbone or side-chain configuration. The flexibility of surface loops and the adaptability of side chains are important factors enabling DLH to adapt and form different crystal lattices. PMID:25005082
Sexton, T J
1975-05-01
Three experiments were conducted to determine the relationship of the method of adding (fraction or bulk) and/or holding temperature (41 degrees, 25 degrees, 10 degrees) of glycerol, dimethylsulfoxide or ethylene glycol to the fertilizing capacity of chicken spermatozoa during cooling. No significant effect on fertility was observed when sperm were washed, suspended without dilution in phosphate buffer or milk and cooled to 15 degrees in 30 min. With phosphate buffer as the medium, fertility was comparable with that of the control only when glycol was maintained at 41 degrees or 25 degrees prior to addition in fractions (3 equal parts at 10 min. intervals). Similar effects were observed when 4% DMSO at 25 degrees was added in bulk after cooling. However, when DMSO was added to sperm suspended in milk, fertility was significantly reduced regardless of treatment. None of the methods were successful in eliminating the contraceptive action of glycerol. The results indicate that a number of in vitro techniques can be used to maintain the fertilizing capacity of chicken spermatozoa in the presence of 4% ethylene glycol or DMSO.
NASA Astrophysics Data System (ADS)
Babcock, Jeremiah; Valdez, Rolando; Brancaleon, Lorenzo
2009-10-01
The harmful growth of toxic oligomers in the formation of protein amyloid fibrils have been connected to degenerative diseases like Alzheimer's and Huntington's diseases. Understanding the fundamental mechanisms behind protein unfolding and subsequent fibrillogenesis may provide a way to stop the process from occurring. The purpose of this study was to identify favorable fibril growth conditions for a globular model protein β-lactoglobulin using the chaotropes urea and KSCN, along with titration of a pH 7.04 phosphate buffer solution at 40 ^oC over five days. Time-resolved and steady-state fluorescence was used to examine the shift in emission of the tryptophan amino acids over the applied denaturation ranges. BLG, a dimer in native form, monomerized and partially unfolded at 5 M Urea, 2 M KSCN and at pH 2 in phosphate buffer in vitro. Exposure of the solutions to continuous heat over time caused a increase in the lifetimes and red shift in the emission spectra, indicating the possible beginning of nucleation. The study has provided a base for continuation of the study of oligomerization and subsequent fibrillation of BLG, which may provide a fundamental mechanism of formation transferable to other proteins in vivo.
Aydin, H; Ercan, F; Cetinel, S; San, T
2001-08-01
This morphological study aims to investigate the effects of defibrotide, a deoxyribonucleic acid derivative drug with cytoprotective, immunosuppressive and vasorelaxant effects, on protamine sulfate induced bladder injury. Wistar albino female rats were catheterized and intravesically infused with phosphate buffered solution (control group) or, either protamine sulfate (bladder injury group) or protamine sulfate+defibrotide (bladder injury+defibrotide group) dissolved in phosphate buffered solution. The morphology of the urinary bladder was investigated using light and electron microscopy. The number of mast cells in the mucosa, mucosal alterations, intercellular junctions, surface topography and the glycosaminoglycan (GAG) layer as well as microvillus formation on the luminal surface were evaluated. In the bladder injury group, ulcerated areas, irregularity of the GAG layer, increased number of mast cells, vacuole formation, dilated perinuclear cistern, formation of pleomorphic and uniform microvilli and dilatations in the intercellular spaces in the urothelium were observed. In the bladder injury+defibrotide group a relatively normal urothelial topography, GAG layer and a few mast cells in the mucosa, some dilatations between the intercellular areas, less uniform microvilli, regular perinuclear cistern and tight junctions were observed. These results show that defibrotide can inhibit PS induced bladder damage.
Mitochondrial rhodanese: membrane-bound and complexed activity.
Ogata, K; Volini, M
1990-05-15
We have proposed that phosphorylated and dephosphorylated forms of the mitochondrial sulfurtransferase, rhodanese, function as converter enzymes that interact with membrane-bound iron-sulfur centers of the electron transport chain to modulate the rate of mitochondrial respiration (Ogata, K., Dai, X., and Volini, M. (1989) J. Biol. Chem. 204, 2718-2725). In the present studies, we have explored some structural aspects of the mitochondrial rhodanese system. By sequential extraction of lysed mitochondria with phosphate buffer and phosphate buffer containing 20 mM cholate, we have shown that 30% of the rhodanese activity of bovine liver is membrane-bound. Resolution of cholate extracts on Sephadex G-100 indicates that part of the bound rhodanese is complexed with other mitochondrial proteins. Tests with the complex show that it forms iron-sulfur centers when incubated with the rhodanese sulfur-donor substrate thiosulfate, iron ions, and a reducing agent. Experiments on the rhodanese activity of rat liver mitochondria give similar results. Taken together, the findings indicate that liver rhodanese is in part bound to the mitochondrial membrane as a component of a multiprotein complex that forms iron-sulfur centers. The findings are consistent with the role we propose for rhodanese in the modulation of mitochondrial respiratory activity.
Singh, C L; Singh, A; Kumar, S; Kumar, M; Sharma, P K; Majumdar, D K
2015-01-01
In the present study a simple, accurate, precise, economical and specific UV-spectrophotometric method for estimation of besifloxacin in bulk and in different pharmaceutical formulation has been developed. The drug shows maximum λmax289 nm in distilled water, simulated tears and phosphate buffer saline. The linearity range of developed methods were in the range of 3-30 μg/ml of drug with a correlation coefficient (r(2)) 0.9992, 0.9989 and 0.9984 with respect to distilled water, simulated tears and phosphate buffer saline, respectively. Reproducibility by repeating methods as %RSD were found to be less than 2%. The limit of detection in different media was found to be 0.62, 0.72 and 0.88 μg/ml, respectively. The limit of quantification was found to be 1.88, 2.10, 2.60 μg/ml, respectively. The proposed method was validated statically according to International Conference on Harmonization guidelines with respect to specificity, linearity, range, accuracy, precision and robustness. The proposed methods of validation were found to be accurate and highly specific for the estimation of besifloxacin in different pharmaceutical formulations.
Zhu, Qiang; Cheng, Hongbo; Huo, Yingnan; Mao, Shirui
2018-06-10
In the present work the feasibility of using inner layer-embedded contact lenses (CLs) to achieve sustained release of highly water soluble drug, betaxolol hydrochloride (BH) on the ocular surface was investigated. Blend film of cellulose acetate and Eudragit S100 was selected as the inner layer, while silicone hydrogel was used as outer layer to construct inner layer-embedded contact lenses. Influence of polymer ratio in the blend film on in vitro drug release behavior in phosphate buffered solution or simulated tear fluid was studied and drug-polymer interaction, erosion and swelling of the blend film were characterized to better understand drug-release mechanism. Storage stability of the inner layer-embedded contact lenses in phosphate buffer solution was also conducted, with ignorable drug loss and negligible change in drug release pattern within 30 days. In vivo pharmacokinetic study in rabbits showed sustained drug release for over 240 h in tear fluid, indicating prolonged drug precorneal residence time. In conclusion, cellulose acetate/Eudragit S100 inner layer-embedded contact lenses are quite promising as controlled-release carrier of highly water soluble drug for ophthalmic delivery. Copyright © 2018 Elsevier B.V. All rights reserved.
Precise method for the measurement of catalase activity in honey.
Huidobro, José F; Sánchez, M Pilar; Muniategui, Soledad; Sancho, M Teresa
2005-01-01
An improved method is reported for the determination of catalase activity in honey. We tested different dialysis membranes, dialysis fluid compositions and amounts, dialysis temperatures, sample amounts, and dialysis times. The best results were obtained by dialysis of 7.50 g sample in a cellulose dialysis sack, using two 3 L portions of 0.015 M sodium phosphate buffer (pH 7.0) as the dialysis fluid at 4 degrees C for 22 h. As in previous methods, catalase activity was determined on the basis of the rate of disappearance of the substrate, H202, with the H202 determined spectrophotometrically at 400 nm in an assay system containing o-dianisidine and peroxidase. Trials indicated that the best solvent for the o-dianisidine was 0.2 M sodium phosphate buffer, pH 6.1; the best starting H202 concentration was 3 mM; the best HCl concentration for stopping the reaction was 6 N; and the best sample volume for catalase measurement was 7.0 mL. Precision values (relative standard deviations for analyses of 10 subsamples of each of 3 samples) were high, ranging from 0.48% for samples with high catalase activity to 1.98% for samples with low catalase activity.
Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R
2014-10-01
Plasma immersion ion implantation (PIII) treatment of polymers creates a biointerface capable of direct covalent immobilization of biomolecules. The immobilization of protein molecules is achieved by covalent bonds formed between embedded radicals on the treated surface and amino acid side chains and cells can be immobilized through cell-wall proteins. The attachment density of negatively charged entities on a PIII treated surface is inhibited by its negative surface charge at neutral pH. To reduce the negative charge of PIII treated surfaces in phosphate buffer (pH 7.4, 11mM), we develop an effective approach of grafting allylamine monomers onto the treated surface. The results reveal reactions between allylamine and radicals on the PIII treated surface. One of these triggers polymerization, increasing the number of amine groups grafted. As a consequence, the PIII treated polystyrene surface after allylamine exposure becomes more hydrophobic and less negatively charged in phosphate buffer. Using yeast cells as an example, we have shown a significant improvement (6-15 times) of cell density immobilized on the PIII treated surface after exposure to allylamine. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Parker, Stacey L.; Jimmieson, Nerina L.; Amiot, Catherine E.
2010-01-01
Does job control act as a stress-buffer when employees' type and level of work self-determination is taken into account? It was anticipated that job control would only be stress-buffering for employees high in self-determined and low in non-self-determined work motivation. In contrast, job control would be stress-exacerbating for employees who…
Wüst, Rob C. I.; Helmes, Michiel; Martin, Jody L.; van der Wardt, Thomas J. T.; Musters, René J. P.; van der Velden, Jolanda
2017-01-01
Key points Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle.The magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiac myocytes are largely unknown.Rapid stimulation frequency‐dependent increases but relatively slow decreases in free mitochondrial calcium concentration were observed in rat cardiac myocytes. This asymmetry caused a rise in the mitochondrial calcium concentration with stimulation frequency.These results provide insight into the mechanisms of mitochondrial calcium uptake and release that are important in healthy and diseased myocardium. Abstract Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. Little is known about the magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiomyocytes. Using adenoviral infection, a ratiometric mitochondrially targeted Förster resonance energy transfer (FRET)‐based calcium indicator (4mtD3cpv, MitoCam) was expressed in cultured adult rat cardiomyocytes and the free mitochondrial calcium concentration ([Ca2+]m) was measured at different stimulation frequencies (0.1–4 Hz) and external calcium concentrations (1.8–3.6 mm) at 37°C. Cytosolic calcium concentrations were assessed under the same experimental conditions in separate experiments using Fura‐4AM. The increases in [Ca2+]m during electrical stimulation at 0.1 Hz were rapid (rise time = 49 ± 2 ms), while the decreases in [Ca2+]m occurred more slowly (decay half time = 1.17 ± 0.07 s). Model calculations confirmed that this asymmetry caused the rise in [Ca2+]m during diastole observed at elevated stimulation frequencies. Inhibition of the mitochondrial sodium–calcium exchanger (mNCE) resulted in a rise in [Ca2+]m at baseline and, paradoxically, in an acceleration of Ca2+ release. In conclusion: rapid increases in [Ca2+]m allow for fast adjustment of mitochondrial ATP production to increases in myocardial demand on a beat‐to‐beat basis and mitochondrial calcium release depends on mNCE activity and mitochondrial calcium buffering. PMID:28028811
Yoon, Younggun; Chung, Hay Jung; Wen Di, Doris Yoong; Dodd, Michael C; Hur, Hor-Gil; Lee, Yunho
2017-10-15
This study assessed the inactivation efficiency of plasmid-encoded antibiotic resistance genes (ARGs) both in extracellular form (e-ARG) and present within Escherichia coli (intracellular form, i-ARG) during water treatment with chlorine, UV (254 nm), and UV/H 2 O 2 . A quantitative real-time PCR (qPCR) method was used to quantify the ARG damage to amp R (850 bp) and kan R (806 bp) amplicons, both of which are located in the pUC4K plasmid. The plate count and flow cytometry methods were also used to determine the bacterial inactivation parameters, such as culturability and membrane damage, respectively. In the first part of the study, the kinetics of E. coli inactivation and ARG damage were determined in phosphate buffered solutions. The ARG damage occurred much more slowly than E. coli inactivation in all cases. To achieve 4-log reduction of ARG concentration at pH 7, the required chlorine exposure and UV fluence were 33-72 (mg × min)/L for chlorine and 50-130 mJ/cm 2 for UV and UV/H 2 O 2 . After increasing pH from 7 to 8, the rates of ARG damage decreased for chlorine, while they did not vary for UV and UV/H 2 O 2 . The i-ARGs mostly showed lower rates of damage compared to the e-ARGs due to the protective roles of cellular components against oxidants and UV. The contribution of OH radicals to i-ARG damage was negligible in UV/H 2 O 2 due to significant OH radical scavenging by cellular components. In all cases, the ARG damage rates were similar for amp R versus kan R , except for the chlorination of e-ARGs, in which the damage to amp R occurred faster than that to kan R . Chlorine and UV dose-dependent ARG inactivation levels determined in a wastewater effluent matrix could be reasonably explained by the kinetic data obtained from the phosphate buffered solutions and the expected oxidant (chlorine and OH radicals) demands by water matrix components. These results can be useful in optimizing chlorine and UV-based disinfection systems to achieve ARG inactivation. Copyright © 2017 Elsevier Ltd. All rights reserved.
SnS2 films deposited from molecular ink as Cd-free alternative buffer layer for solar cells
NASA Astrophysics Data System (ADS)
Jariwala, Akshay; Chaudhuri, Tapas K.; Toshniwal, Aditi; Patel, Sanjay; Kheraj, Vipul; Ray, Abhijit
2018-05-01
This work investigates the potential of SnS2 as a Cd-free alternative buffer layer for CIGS solar cells. The suitability of SnS2 film as a buffer layer has been evaluated by numerical analysis using SCAPS software. A new simple method for preparation of SnS2 films by dip-coating from molecular ink is reported. The formation of SnS2 is confirmed by Raman spectroscopy. The films are smooth and shiny with roughness of 2-3 nm. The films are n-type with band gap of 2.6 eV and electrical conductivity of 10-3 S/cm.
An over 18%-efficiency completely buffer-free Cu(In,Ga)Se2 solar cell
NASA Astrophysics Data System (ADS)
Ishizuka, Shogo; Nishinaga, Jiro; Koida, Takashi; Shibata, Hajime
2018-07-01
In this letter, an independently certified photovoltaic efficiency of 18.4% demonstrated from a completely buffer-layer-free Cu(In,Ga)Se2 (CIGS) solar cell is reported. A Si-doped CIGS thin film was used as the photoabsorber layer and a conductive B-doped ZnO (BZO) front electrode layer was directly deposited on the CIGS layer. Metastable acceptor activation by heat-light soaking treatment was performed to maximize the efficiency. The results presented here are expected to serve as a benchmark for simplified-structure CIGS devices as well as a reference for discussions on the role of buffer layers used in conventional CIGS solar cells.
7 CFR 319.28 - Notice of quarantine.
Code of Federal Regulations, 2010 CFR
2010-01-01
... officers of both the country of origin and the United States. The export areas must be surrounded by 400-meter-wide buffer zones. The buffer zones must be kept free of all citrus other than the following 10...
Bester, K; Lamani, X
2010-08-06
Biocides are used to protect buildings, boats, and other materials from microbial infestations. A huge variety of compounds are being used: isothiazolinones, e.g., to prevent bacterial growth in paints, triazines and phenylureas against algal growth on water exposed materials while carbamates are used against fungal investations. However these biocides can be leached from the respective materials. As these are very effective compounds it is important to know the concentrations of these biocides in the leachates as well as their leaching behaviour to assess their risk to the environment. In this study, a method for the determination of biocides from facade material run-off water by means of high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was developed. Due to the amphiphilic character and the expected varying pH-values in the samples, the extractions as well as the HPLC-method development proved to be demanding. The water samples (leachates) were buffered with a phosphate buffer to pH 7. As some of the biocides are very hydrophilic, different SPE cartridges were tested to identify the SPE material with the highest recovery rates for all compounds. For gaining a good separation, analyte trapping was performed on the HPLC column. Quantification was performed using a mass spectrometer in multi-reaction monitoring with two transitions per compound. The final recovery rates were conducted using a cartridge with a divenylbenzyl polymer sorbent. A combination of methanol and acetonitrile as eluents was used to reach recovery rates in the range of 70-100%. The limit of quantification for the compounds of interest ranged from 0.01 to 0.1 microg/L. Copyright 2010 Elsevier B.V. All rights reserved.
Cr-Free Metallic-Ceramic Coatings
2014-11-01
Comparable to Aluminum-Chromate/ Phosphate Humidity Resistance Galvanic Corrosion Resistance Nov. 2014 ASETSDefense 2014, Fort Myer, VA...Aluminum-Silicate Comparable to Aluminum-Chromate/ Phosphate Humidity, Galvanic Corrosion , Heat/Salt Resistance Adhesion & Compatibility...WP-TR-2007-4069, Sept. 2006 Sealed Aluminum-Silicate Not Comparable to Sealed Aluminum-Chromate/ Phosphate in PEWG Evaluation Corrosion
Cyanotoxins: a poison that frees phosphate.
Raven, John A
2010-10-12
Autotrophic organisms obtain phosphorus from the environment by secreting alkaline phosphatases that act on esters, resulting in inorganic phosphate that is then taken up. New work shows that the cyanobacterium Aphanizomenon ovalisporum obtains inorganic phosphate by secreting the cyanotoxin cylindrospermopsin, which induces alkaline phosphatase in other phytoplankton species. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nie, Jing; Mahato, Simpla; Zelhof, Andrew C
2015-02-03
Tissue fixation is crucial for preserving the morphology of biological structures and cytological details to prevent postmortem degradation and autolysis. Improper fixation conditions could lead to artifacts and thus incorrect conclusions in immunofluorescence or histology experiments. To resolve reported structural anomalies with respect to Drosophila photoreceptor cell organization we developed and utilized a combination of live imaging and fixed samples to investigate the exact biogenesis and to identify the underlying source for the reported discrepancies in structure. We found that piperazine-N,N'-bis(ethanesulfonic acid) (PIPES) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), two zwitterionic buffers commonly used in tissue fixation, can cause severe lumen and cell morphological defects in Drosophila pupal and adult retina; the inter-rhabdomeral lumen becomes dilated and the photoreceptor cells are significantly reduced in size. Correspondingly, the localization pattern of Eyes shut (EYS), a luminal protein, is severely altered. In contrast, tissues fixed in the phosphate buffered saline (PBS) buffer results in lumen and cell morphologies that are consistent with live imaging. We suggest that PIPES and HEPES buffers should be utilized with caution for fixation when examining the interplay between cells and their extracellular environment, especially in Drosophila pupal and adult retina research.
Perlovich, German L; Skar, Merete; Bauer-Brandl, Annette
2003-10-01
Cyclodextrins are often used in order to increase the aqueous solubility of drug substances by complexation. In order to investigate the complexation reaction of ibuprofen and hydroxypropyl-beta-cyclodextrin, titration calorimetry was used as a direct method. The thermodynamic parameters of the complexation process (stability constant, K(11); complexation enthalpy, deltaH(c) degrees ) were obtained in two different buffer systems (citric acid/sodium-phosphate and phosphoric acid) at various pH values. Based on these data the relative contributions of the enthalpic and entropic terms of the Gibbs energy to the complexation process have been analyzed. In both buffers the enthalpic and entropic terms are of different sign and this case corresponds to a 'nonclassical' model of hydrophobic interaction. In citric buffer, the main driving force of complexation is the entropy, which increases from 60 to 67% while the pH of the solution increases from 3.2 to 8.0. However, for the phosphoric buffer the entropic term decreases from 60 to 45%, while the pH-value of the solution increases from 5.0 to 8.2, and the driving force of the complexation process changes from entropy to enthalpy. The experimental data of the present study are compared to results of other authors and discrepancies discussed in detail.
Kim, Nam Ah; An, In Bok; Lee, Sang Yeol; Park, Eun-Seok; Jeong, Seong Hoon
2012-09-01
In this study, the structural stability of hen egg white lysozyme in solution at various pH levels and in different types of buffers, including acetate, phosphate, histidine, and Tris, was investigated by means of differential scanning calorimetry (DSC). Reasonable pH values were selected from the buffer ranges and were analyzed statistically through design of experiment (DoE). Four factors were used to characterize the thermograms: calorimetric enthalpy (ΔH), temperature at maximum heat flux (T( m )), van't Hoff enthalpy (ΔH( V )), and apparent activation energy of protein solution (E(app)). It was possible to calculate E(app) through mathematical elaboration from the Lumry-Eyring model by changing the scan rate. The transition temperature of protein solution, T( m ), increased when the scan rate was faster. When comparing the T( m ), ΔH( V ), ΔH, and E(app) of lysozyme in various pH ranges and buffers with different priorities, lysozyme in acetate buffer at pH 4.767 (scenario 9) to pH 4.969 (scenario 11) exhibited the highest thermodynamic stability. Through this experiment, we found a significant difference in the thermal stability of lysozyme in various pH ranges and buffers and also a new approach to investigate the physical stability of protein by DoE.
Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens.
Thaitrong, Numrin; Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Karoonuthaisiri, Nitsara
2013-01-01
Rapid and economical screening of plant pathogens is a high-priority need in the seed industry. Crop quality control and disease surveillance demand early and accurate detection in addition to robustness, scalability, and cost efficiency typically required for selective breeding and certification programs. Compared to conventional bench-top detection techniques routinely employed, a microfluidic-based approach offers unique benefits to address these needs simultaneously. To our knowledge, this work reports the first attempt to perform microfluidic sandwich ELISA for Acidovorax citrulli (Ac), watermelon silver mottle virus (WSMoV), and melon yellow spot virus (MYSV) screening. The immunoassay occurs on the surface of a reaction chamber represented by a microfluidic channel. The capillary force within the microchannel draws a reagent into the reaction chamber as well as facilitates assay incubation. Because the underlying pad automatically absorbs excess fluid, the only operation required is sequential loading of buffers/reagents. Buffer selection, antibody concentrations, and sample loading scheme were optimized for each pathogen. Assay optimization reveals that the 20-folds lower sample volume demanded by the microchannel structure outweighs the 2- to 4-folds higher antibody concentrations required, resulting in overall 5-10 folds of reagent savings. In addition to cutting the assay time by more than 50%, the new platform offers 65% cost savings from less reagent consumption and labor cost. Our study also shows 12.5-, 2-, and 4-fold improvement in assay sensitivity for Ac, WSMoV, and MYSV, respectively. Practical feasibility is demonstrated using 19 real plant samples. Given a standard 96-well plate format, the developed assay is compatible with commercial fluorescent plate readers and readily amendable to robotic liquid handling systems for completely hand-free assay automation.
Continuous analysis of phosphate in a Greenland shallow ice core
NASA Astrophysics Data System (ADS)
Kjær, Helle Astrid; Svensson, Anders; Bigler, Matthias; Vallelonga, Paul; Kettner, Ernesto; Dahl-Jensen, Dorthe
2010-05-01
Phosphate is an important and sometimes limiting nutrient for primary production in the oceans. Because of deforestation and the use of phosphate as a fertilizer changes in the phosphate cycle have occurred over the last centuries. On longer time scales, sea level changes are thought to have also caused changes in the phosphate cycle. Analyzing phosphate concentrations in ice cores may help to gain important knowledge about those processes. In the present study, we attach a phosphate detection line to an existing continuous flow analysis (CFA) setup for ice core analysis at the University of Copenhagen. The CFA system is optimized for high-resolution measurements of insoluble dust particles, electrolytic melt water conductivity, and the concentrations of ammonium and sodium. For the phosphate analysis we apply a continuous and highly sensitive absorption method that has been successfully applied to determine phosphate concentrations of sea water (Zhang and Chi, 2002). A line of melt water from the CFA melt head (1.01 ml per minute) is combined with a molybdate blue reagent and an ascorbic acid buffer. An uncompleted reaction takes place in five meters of heated mixing coils before the absorption measurement at a wavelength of 710 nanometer takes place in a 2 m long liquid waveguide cell (LWCC) with an inner volume of 0.5 ml. The method has a detection limit of around 0.1 ppb and we are currently investigating a possible interference from molybdate reacting with silicates that are present in low amounts in the ice. Preliminary analysis of early Holocene samples from the NGRIP ice core show phosphate concentration values of a few ppb. In this study, we will attempt to determine past levels of phosphate in a shallow Northern Greenland firn core with an annual layer thickness of about 20 cm ice equivalent. With a melt speed of 2.5 cm ice per minute our method should allow the resolution of any seasonal variability in phosphate concentrations.
Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging
Ohnishi, Mutsuko; Razzaque, M. Shawkat
2010-01-01
Identifying factors that accelerate the aging process can provide important therapeutic targets for slowing down this process. Misregulation of phosphate homeostasis has been noted in various skeletal, cardiac, and renal diseases, but the exact role of phosphate toxicity in mammalian aging is not clearly defined. Phosphate is widely distributed in the body and is involved in cell signaling, energy metabolism, nucleic acid synthesis, and the maintenance of acid-base balance by urinary buffering. In this study, we used an in vivo genetic approach to determine the role of phosphate toxicity in mammalian aging. Klotho-knockout mice (klotho−/−) have a short life span and show numerous physical, biochemical, and morphological features consistent with premature aging, including kyphosis, uncoordinated movement, hypogonadism, infertility, severe skeletal muscle wasting, emphysema, and osteopenia, as well as generalized atrophy of the skin, intestine, thymus, and spleen. Molecular and biochemical analyses suggest that increased renal activity of sodium-phosphate cotransporters (NaPi2a) leads to severe hyperphosphatemia in klotho−/− mice. Genetically reducing serum phosphate levels in klotho−/− mice by generating a NaPi2a and klotho double-knockout (NaPi2a−/−/klotho−/−) strain resulted in amelioration of premature aging-like features. The NaPi2a−/−/klotho−/− double-knockout mice regained reproductive ability, recovered their body weight, reduced their organ atrophy, and suppressed ectopic calcifications, with the resulting effect being prolonged survival. More important, when hyperphosphatemia was induced in NaPi2a−/−/klotho−/− mice by feeding with a high-phosphate diet, premature aging-like features reappeared, clearly suggesting that phosphate toxicity is the main cause of premature aging in klotho−/− mice. The results of our dietary and genetic manipulation studies provide in vivo evidence for phosphate toxicity accelerating the aging process and suggest a novel role for phosphate in mammalian aging.—Ohnishi, M., Razzaque, M. S. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. PMID:20418498
Leroy, P; Decolin, D; Nicolas, A; Archimbault, P
1994-12-01
A simple, selective and sensitive high-performance liquid chromatographic (HPLC) method has been developed for the measurement of josamycin residues in four porcine tissues (i.e., muscle, liver, kidney and fat). The sample preparation consisted of a homogenization step in an acetonitrile-10 mmol l-1 phosphate buffer mixture, pH 6.0 (35 + 65), centrifugation and a liquid-liquid extractive clean-up of the resulting supernatant with isooctane. Pre-column derivatization of josamycin was performed using cyclohexa-1,3-dione in ammonium acetate buffer, pH 5.0 (90 degrees C for 2 h). The derivative was chromatographed in an isocratic reversed-phase HPLC system. A LiChrospher RP 18 end-capped (5 microns) column was eluted with an acetonitrile-methanol-10 mmol l-1 phosphate buffer mixture, pH 6.0 (45 + 5 + 50). The capacity factor of the josamycin derivative was 17.5. Detection was achieved using spectrofluorimetry (lambda ex = 375 nm; lambda em = 450 nm). The structure of the derivative was assessed by using mass spectrometry. Full selectivity was obtained in the HPLC system versus other macrolide antibiotics (tylosin, spiramycin and erythromycin), aldehydes (formaldehyde, acetaldehyde and benzaldehyde) and endogenous compounds. Linearity and repeatability were tested. Correlation coefficients, for calibration curves in the range of 0.1-3.2 micrograms g-1, were greater than 0.999 for all tissues and the relative standard deviation (S(r)) was 4.9% (1.6 micrograms g-1; n = 6); recovery was higher than 88%.
Tiwari, Karishma; Kumar, Sumit; Kumar, Vipan; Kaur, Jeevanjot; Arora, Saroj; Mahajan, Rakesh Kumar
2018-02-15
A simple and cost effective unsymmetrical azine based Schiff base, 5-diethylamino-2-[(2-hydroxy-benzylidene)hydrazonomethyl]-phenol (1) was synthesized which selectively detect Cu 2+ ions in the presence of other competitive ions through "naked eye" in physiological conditions (EtOH-buffer (1:1, v/v, HEPES 10mM, pH=7.4)). The presence of Cu 2+ induce color change from light yellow green to yellow with the appearance of a new band at 450nm in UV-Vis spectra of Schiff base 1. The fluorescence of Schiff base 1 (10μM) was quenched completely in the presence of 2.7 equiv. of Cu 2+ ions. Sub-micromolar limit of detection (LOD=3.4×10 -7 M), efficient Stern-Volmer quenching constant (K SV =1.8×10 5 Lmol -1 ) and strong binding constant (log K b =5.92) has been determined with the help of fluorescence titration profile. Further, 1-Cu 2+ complex was employed for the detection of phosphate ions (PO 4 3- , HPO 4 2- and H 2 PO 4 - ) at micromolar concentrations in EtOH-buffer of pH7.4 based on fluorescence recovery due to the binding of Cu 2+ with phosphate ions. Solubility at low concentration in aqueous medium, longer excitation (406nm) and emission wavelength (537nm), and biocompatibility of Schiff base 1 formulates its use in live cell imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Lewis, A C; Kilburn, M R; Papageorgiou, I; Allen, G C; Case, C P
2005-06-15
The corrosion and dissolution of high- and low-carbon CoCrMo alloys, as used in orthopedic joint replacements, were studied by immersing samples in phosphate-buffered saline (PBS), water, and synovial fluid at 37 degrees C for up to 35 days. Bulk properties were analyzed with a fine ion beam microscope. Surface analyses by X-ray photoelectron spectroscopy and Auger electron spectroscopy showed surprisingly that synovial fluid produced a thin oxide/hydroxide layer. Release of ions into solution from the alloy also followed an unexpected pattern where synovial fluid, of all the samples, had the highest Cr concentration but the lowest Co concentration. The presence of carbide inclusions in the alloy did not affect the corrosion or the dissolution mechanisms, although the carbides were a significant feature on the metal surface. Only one mechanism was recognized as controlling the thickness of the oxide/hydroxide interface. The analysis of the dissolved metal showed two mechanisms at work: (1) a protein film caused ligand-induced dissolution, increasing the Cr concentration in synovial fluid, and was explained by the equilibrium constants; (2) corrosion at the interface increased the Co in PBS. The effect of prepassivating the samples (ASTM F-86-01) did not always have the desired effect of reducing dissolution. The release of Cr into PBS increased after prepassivation. The metal-synovial fluid interface did not contain calcium phosphate as a deposit, typically found where samples are exposed to calcium rich bodily fluids. (c) 2005 Wiley Periodicals, Inc.
Wang, Junru; Zhao, Fang-Jie; Meharg, Andrew A.; Raab, Andrea; Feldmann, Joerg; McGrath, Steve P.
2002-01-01
The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg−1 dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III). PMID:12428020
Taha, Mohamed; Lee, Ming-Jer
2010-10-21
In a situation which is far from ideal, many buffers have been found to be quite reactive, besides maintaining their stable pH values. On the basis of apparent transfer free energies (ΔG(tr)'), through solubility measurements the interactions of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), and tetraglycine (Gly(4)), with several common neutral pH, amine-based buffers have been studied. The biological buffers studied in this work, including TRIS, TES, TAPS, TAPSO, and TABS are structurally related and all contain TRIS groups. These buffers have pK(a) values ranging from 7.5-9.0, which allow them to be used in biological, biochemical or environmental studies. We observed negative values of ΔG(tr)' for Gly(3) and Gly(4) from water to buffer, indicating that the interactions are favorable. However, the ΔG(tr)' values are positive for Gly and Gly(2), revealing unfavorable interactions, which except for the latter in TRIS buffer are negative. The surprising result in our data is the unexpected extraordinarily high favorable interactions between TRIS buffer and peptides (in comparison with the effect of the most common denaturants, urea and guanidine hydrochloride). The transfer free energies (ΔG(tr)') of the peptide backbone unit (-CH(2)C=O-NH-) contributions have been estimated from ΔG(tr)' values. We have also investigated the interactions of TRIS buffer with Bovine Serum Albumin (BSA), as a globular protein, using dynamic light scattering (DLS), zeta potential, UV-Visible absorption, fluorescence and Raman spectroscopy measurements. The results indicated that TRIS buffer stabilized the BSA molecules.
Metson, Geneviève S.; Cordell, Dana; Ridoutt, Brad
2016-01-01
Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world’s main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus from farms and cities have caused widespread water pollution. As one of the major factors contributing to increased phosphorus demand, dietary choices can play a key role in changing our resource consumption pathway. Importantly, the effects of dietary choices on phosphorus management are twofold: First, dietary choices affect a person or region’s “phosphorus footprint” – the magnitude of mined phosphate required to meet food demand. Second, dietary choices affect the magnitude of phosphorus content in human excreta and hence the recycling- and pollution-potential of phosphorus in sanitation systems. When considering options and impacts of interventions at the city scale (e.g., potential for recycling), dietary changes may be undervalued as a solution toward phosphorus sustainability. For example, in an average Australian city, a vegetable-based diet could marginally increase phosphorus in human excreta (an 8% increase). However, such a shift could simultaneously dramatically decrease the mined phosphate required to meet the city resident’s annual food demand by 72%. Taking a multi-scalar perspective is therefore key to fully exploring dietary choices as one of the tools for sustainable phosphorus management. PMID:27617261
Electric and hybrid electric vehicle study utilizing a time-stepping simulation
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Shaltens, Richard K.; Beremand, Donald G.
1992-01-01
The applicability of NASA's advanced power technologies to electric and hybrid vehicles was assessed using a time-stepping computer simulation to model electric and hybrid vehicles operating over the Federal Urban Driving Schedule (FUDS). Both the energy and power demands of the FUDS were taken into account and vehicle economy, range, and performance were addressed simultaneously. Results indicate that a hybrid electric vehicle (HEV) configured with a flywheel buffer energy storage device and a free-piston Stirling convertor fulfills the emissions, fuel economy, range, and performance requirements that would make it acceptable to the consumer. It is noted that an assessment to determine which of the candidate technologies are suited for the HEV application has yet to be made. A proper assessment should take into account the fuel economy and range, along with the driveability and total emissions produced.