Sample records for demand-free phosphate buffer

  1. Dominant oceanic bacteria secure phosphate using a large extracellular buffer

    PubMed Central

    Zubkov, Mikhail V.; Martin, Adrian P.; Hartmann, Manuela; Grob, Carolina; Scanlan, David J.

    2015-01-01

    The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting 33P-phosphate-pulsed 32P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5–40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate. PMID:26198420

  2. Toward an In Vivo Dissolution Methodology: A Comparison of Phosphate and Bicarbonate Buffers

    PubMed Central

    Sheng, Jennifer J.; McNamara, Daniel P.; Amidon, Gordon L.

    2011-01-01

    Purpose To evaluate the difference between the pharmaceutical phosphate buffers and the gastrointestinal bicarbonates in dissolution of ketoprofen and indomethacin, to illustrate the dependence of buffer differential on biopharmaceutical properties of BCS II weak acids, and to recommend phosphate buffers equivalent to bicarbonates. Methods The intrinsic dissolution rates of, ketoprofen and indomethacin, were experimentally measured using rotating disk method at 37°C in USP SIF/FaSSIF and various concentrations of bicarbonates. Theoretical models including an improved reaction plane model and a film model were applied to estimate the surrogate phosphate buffers equivalent to the bicarbonates. Results Experimental results show that the intrinsic dissolution rates of ketoprofen and indomethacin, in USP and FaSSIF phosphate buffers are 1.5–3.0 times of that in the 15 mM bicarbonates. Theoretical analysis demonstrates that the buffer differential is largely dependent on the drug pKa and secondly on solubility, and weakly dependent on the drug diffusivity. Further, in accordance with the drug pKa, solubility and diffusivity, simple phosphate surrogate was proposed to match an average bicarbonate value (15 mM) of the upper gastrointestinal region. Specifically, phosphate buffers of 13–15 mM and 3–4 mM were recommended for ketoprofen and indomethacin, respectively. For both ketoprofen and indomethacin, the intrinsic dissolution using the phosphate surrogate buffers closely approximated the 15 mM bicarbonate buffer. Conclusions This work demonstrates the substantial difference between pharmaceutical phosphates and physiological bicarbonates in determining the drug intrinsic dissolution rates of BCS II weak acids, such as ketoprofen and indomethacin. Surrogate phosphates were recommended in order to closely reflect the in vivo dissolution of ketoprofen and indomethacin in gastrointestinal bicarbonates, which has significant implications for defining buffer systems for

  3. Anolyte recycling enhanced bioelectricity generation of the buffer-free single-chamber air-cathode microbial fuel cell.

    PubMed

    Ren, Yueping; Chen, Jinli; Shi, Yugang; Li, Xiufen; Yang, Na; Wang, Xinhua

    2017-11-01

    Anolyte acidification is an inevitable restriction for the bioelectricity generation of buffer-free microbial fuel cells (MFCs). In this work, acidification of the buffer-free KCl anolyte has been thoroughly eliminated through anolyte recycling. The accumulated HCO 3 - concentration in the recycled KCl anolyte was above 50mM, which played as natural buffer and elevated the anolyte pH to above 8. The maximum power density (P max ) increased from 322.9mWm -2 to 527.2mWm -2 , which is comparable with the phosphate buffered MFC. Besides Geobacter genus, the gradually increased anolyte pH and conductivity induced the growing of electrochemically active Geoalkalibacter genus, in the anode biofilm. Anolyte recycling is a feasible strategy to strengthen the self-buffering capacity of buffer-free MFCs, thoroughly eliminate the anolyte acidification and prominently enhance the electric power. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Phosphate and HEPES buffers potently affect the fibrillation and oligomerization mechanism of Alzheimer's A{beta} peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, Megan; Tepper, Katharina; Haupt, Caroline

    Highlights: {yields} Sodium phosphate buffer accelerated A{beta}(1-40) nucleation relative to HEPES. {yields} A{beta}(1-40) fibrils formed in the two buffers show only minor structural differences. {yields} NMR revealed that A{beta}(1-40) histidine residues mediate buffer dependent changes. -- Abstract: The oligomerization of A{beta} peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Due to its biological relevance, phosphate is the most commonly used buffer system for studying the formation of A{beta} and other amyloid fibrils. Investigation into the characteristics and formation of amyloid fibrils frequently relies upon material formed in vitro, predominantly in phosphate buffers. Herein, we examine the effects onmore » the fibrillation and oligomerization mechanism of A{beta} peptide that occur due solely to the influence of phosphate buffer. We reveal that significant differences in amyloid fibrillation are observed due to fibrillation being initiated in phosphate or HEPES buffer (at physiological pH and temperature). Except for the differing buffer ions, all experimental parameters were kept constant. Fibril formation was assessed using fluorescently monitored kinetic studies, microscopy, X-ray fiber diffraction and infrared and nuclear magnetic resonance spectroscopies. Based on this set up, we herein reveal profound effects on the mechanism and speed of A{beta} fibrillation. The three histidine residues at positions 6, 13 and 14 of A{beta}(1-40) are instrumental in these mechanistic changes. We conclude that buffer plays a more significant role in fibril formation than has been generally acknowledged.« less

  5. Professional commitment: Does it buffer or intensify job demands?

    PubMed

    Nesje, Kjersti

    2017-04-01

    The purpose of this study is to investigate whether professional commitment can be seen as a moderator in the relationship between job demands and emotional exhaustion among Norwegian nurses. Inspired by the job demands-resources model, this study explores whether having a strong commitment to the nursing profession can be seen as a resource that buffers the effect of job demands on emotional exhaustion or, conversely, intensifies the impact of job demands. A survey that comprised Norwegian nurses who had graduated three years previously (N = 388) was conducted. Multiple regression was performed to test the hypothesis. The results provide support to a buffering effect; thus, individuals with a higher degree of professional commitment conveyed a weaker association between job demands and emotional exhaustion compared with nurses with a lower degree of commitment. Developing a better understanding of the potential buffering effect of professional commitment is of great interest. The present study is the first to utilize professional commitment as a resource within the job demands-resources framework. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  6. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    PubMed

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.

    PubMed

    Pikal-Cleland, Katherine A; Cleland, Jeffrey L; Anchordoquy, Thomas J; Carpenter, John F

    2002-09-01

    Previous studies have established that the selective precipitation of a less soluble buffer component during freezing can induce a significant pH shift in the freeze concentrate. During freezing of sodium phosphate solutions, crystallization of the disodium salt can produce a pH decrease as great as 3 pH units which can dramatically affect protein stability. The objective of our study was to determine how the presence of glycine (0-500 mM), a commonly used bulking agent in pharmaceutical protein formulations, affects the pH changes normally observed during freezing in sodium phosphate buffer solutions and to determine whether these pH changes contribute to instability of model proteins in glycine/phosphate formulations. During freezing in sodium phosphate buffers, the presence of glycine significantly influenced the pH. Glycine at the lower concentrations (< or = 50 mM) suppressed the pH decrease normally observed during freezing in 10 and 100 mM sodium phosphate buffer, possibly by reducing the nucleation rate of salt and thereby decreasing the extent of buffer salt crystallization. The presence of glycine at higher concentration (> 100 mM) in the sodium phosphate buffer resulted in a more complete crystallization of the disodium salt as indicated by the frozen pH values closer to the equilibrium value (pH 3.6). Although high concentrations of glycine can facilitate more buffer salt crystallization and these pH shifts may prove to be potentially damaging to the protein, glycine, in its amorphous state, can also act to stabilize a protein via the preferential exclusion mechanism. Copyright 2002 Wiley-Liss Inc.

  8. Time-related Changes in pH, Buffering Capacity and Phosphate and Urea Concentration of Stimulated Saliva.

    PubMed

    Vuletic, Lea; Peros, Kristina; Spalj, Stjepan; Rogic, Dunja; Alajbeg, Ivan

    2014-01-01

    To quantify changes in pH, buffering capacity and hydrogen carbonate, phosphate, protein and urea concentrations of stimulated saliva which occur during a 30-min measurement delay after saliva collection. The correlation between time-related chemical changes and changes of salivary pH and buffering capacity was assessed in order to explain the observed changes in salivary pH and buffering capacity. Stimulated saliva samples were collected from 30 volunteers after inducing salivation by chewing a piece of parafilm. Measurements of salivary variables were made immediately after saliva collection and again 30 min later, during which time the specimens were exposed to the atmosphere in collection cups at room temperature. Postponement of measurements resulted in a significant increase in pH and a significant decrease of buffering capacity, phosphate and urea concentration. The results suggest that the time-related pH increase could primarily be attributed to loss of dissolved carbon dioxide from saliva, and confirm the importance of hydrogen carbonate in the neutralisation of hydrogen ions, but they do not support the principle of catalysed phase-buffering for the hydrogen carbonate buffer system in saliva. A decrease in phosphate and urea concentration affects salivary buffering capacity. This study emphasises the importance of the standardisation of measurement time when measuring salivary pH, buffering capacity, phosphate and urea concentrations following the collection of saliva in order to obtain comparable results. It also provides a partial explanation of the mechanisms underlying the observed changes of pH and buffering capacity over time.

  9. Common buffers, media, and stock solutions.

    PubMed

    2001-05-01

    This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.

  10. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Factors buffering against the effects of job demands: how does age matter?

    PubMed

    Besen, Elyssa; Matz-Costa, Christina; James, Jacquelyn B; Pitt-Catsouphes, Marcie

    2015-02-01

    Given the increasing role that paid work is likely to play in older adulthood in the coming decades, the goal of this study was to understand the circumstances under which work is related to mental health for older adults and whether these circumstances differ by age. Using a multiworksite sample of 1,812 U.S. workers age 18 to 81, we use the life-span theory of control to hypothesize that older and younger workers may benefit differentially from job and personal control in the context of high job demands. Results suggest that for younger workers with high personal control, job control buffers the impact of job demands on mental health. For older workers, personal control alone buffers the impact of job demands on mental health. This study adds to previous research by addressing how the factors thought to buffer against the effects of job demands differ cross-sectionally by age. © The Author(s) 2012.

  12. The protective effect of supplemental calcium on colonic permeability depends on a calcium phosphate-induced increase in luminal buffering capacity.

    PubMed

    Schepens, Marloes A A; ten Bruggencate, Sandra J M; Schonewille, Arjan J; Brummer, Robert-Jan M; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J

    2012-04-01

    An increased intestinal permeability is associated with several diseases. Previously, we have shown that dietary Ca decreases colonic permeability in rats. This might be explained by a calcium-phosphate-induced increase in luminal buffering capacity, which protects against an acidic pH due to microbial fermentation. Therefore, we investigated whether dietary phosphate is a co-player in the effect of Ca on permeability. Rats were fed a humanised low-Ca diet, or a similar diet supplemented with Ca and containing either high, medium or low phosphate concentrations. Chromium-EDTA was added as an inert dietary intestinal permeability marker. After dietary adaptation, short-chain fructo-oligosaccharides (scFOS) were added to all diets to stimulate fermentation, acidify the colonic contents and induce an increase in permeability. Dietary Ca prevented the scFOS-induced increase in intestinal permeability in rats fed medium- and high-phosphate diets but not in those fed the low-phosphate diet. This was associated with higher faecal water cytotoxicity and higher caecal lactate levels in the latter group. Moreover, food intake and body weight during scFOS supplementation were adversely affected by the low-phosphate diet. Importantly, luminal buffering capacity was higher in rats fed the medium- and high-phosphate diets compared with those fed the low-phosphate diet. The protective effect of dietary Ca on intestinal permeability is impaired if dietary phosphate is low. This is associated with a calcium phosphate-induced increase in luminal buffering capacity. Dragging phosphate into the colon and thereby increasing the colonic phosphate concentration is at least part of the mechanism behind the protective effect of Ca on intestinal permeability.

  13. A reagent-free tubular biofilm reactor for on-line determination of biochemical oxygen demand.

    PubMed

    Liu, Changyu; Zhao, Huijun; Gao, Shan; Jia, Jianbo; Zhao, Limin; Yong, Daming; Dong, Shaojun

    2013-07-15

    We reported a reagent-free tubular biofilm reactor (BFR) based analytical system for rapid online biochemical oxygen demand (BOD) determination. The BFR was cultivated using microbial seeds from activated sludge. It only needs tap water to operate and does not require any chemical reagent. The analytical performance of this reagent-free BFR system was found to be equal to or better than the BFR system operated using phosphate buffer saline (PBS) and high purity deionized water. The system can readily achieve a limit of detection of 0.25 mg O2 L(-1), possessing superior reproducibility, and long-term operational and storage stability. More importantly, we confirmed for the first time that the BFR system is capable of tolerating common toxicants found in wastewaters, such as 3,5-dichlorophenol and Zn(II), Cr(VI), Cd(II), Cu(II), Pb(II), Mn(II) and Ni(II), enabling the method to be applied to a wide range of wastewaters. The sloughing and clogging are the important attributes affecting the operational stability, hence, the reliability of most online wastewater monitoring systems, which can be effectively avoided, benefiting from the tubular geometry of the reactor and high flow rate conditions. These advantages, coupled with simplicity in device, convenience in operation and minimal maintenance, make such a reagent-free BFR analytical system promising for practical BOD online determination. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    PubMed

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method.

    PubMed

    Cao, X M; Tian, Y; Wang, Z Y; Liu, Y W; Wang, C X

    2016-07-03

    Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method.

  16. Final report of the key comparison APMP.QM-K9: APMP comparison on pH measurement of phosphate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Ohata, Masaki; Cherdchu, Chainarong; Tangpaisarnkul, Nongluck

    2011-01-01

    The APMP.QM-K9 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phosphate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan, NMIJ, and the National Institute of Metrology of Thailand, NIMT, in August 2009. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K9, CCQM-K9.1 and CCQM-K9.2. The comparison material was a phosphate buffer of pH around 6.86 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the first APMP key comparison on pH measurement and the third APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004 and APMP.QM-P09 (a phthalate buffer) in 2006. The results can be used further by any participant to support its CMC claim for a phosphate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the temperature(s) used or the full temperature range between 15 °C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  17. Formation kinetics of a novel product from photolysis of cytosine in phosphate-buffered solutions

    NASA Astrophysics Data System (ADS)

    Wenqing, Wang; Feng, Lin; Jilan, Wu

    1999-01-01

    For studying the role of phosphate in the origin of life and the effect of far-ultraviolet light induced photochemical damage to RNA, DNA and its components, it was found that the photolysis of nucleobases, nucleosides and nucleotides was strongly enhanced by phosphate under the irradiation of medium pressure mercury lamp (MPML). Ultraviolet irradiation (190-220 nm) of cytosine in 0.05 mol dm -3 phosphate buffered solution at pH 8-9 leads to the production of a novel compound C 4H 6N 3O 5P in the presence of oxygen. The main photoproduct has been isolated, purified and characterized by use of 1H- and 31P-NMR spectroscopy, elemental analysis, ultraviolet and infrared spectroscopy and electron impact mass spectrometry. Phosphate effect can be inhibited by amino acids. The formation mechanism of the photoproduct and the kinetics was studied.

  18. Functional PEG-PAMAM-tetraphosphonate capped NaLnF₄ nanoparticles and their colloidal stability in phosphate buffer.

    PubMed

    Zhao, Guangyao; Tong, Lemuel; Cao, Pengpeng; Nitz, Mark; Winnik, Mitchell A

    2014-06-17

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (M(n) = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (M(n) = 2000) and biotin-terminated PEG (M(n) = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000-PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir 2012, 28, 12861-12870) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline.

  19. Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method

    PubMed Central

    Cao, X.M.; Tian, Y.; Wang, Z.Y.; Liu, Y.W.; Wang, C.X.

    2016-01-01

    ABSTRACT Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method. PMID:27459596

  20. Comparing human peritoneal fluid and phosphate-buffered saline for drug delivery: do we need bio-relevant media?

    PubMed

    Bhusal, Prabhat; Rahiri, Jamie Lee; Sua, Bruce; McDonald, Jessica E; Bansal, Mahima; Hanning, Sara; Sharma, Manisha; Chandramouli, Kaushik; Harrison, Jeff; Procter, Georgina; Andrews, Gavin; Jones, David S; Hill, Andrew G; Svirskis, Darren

    2018-06-01

    An understanding of biological fluids at the site of administration is important to predict the fate of drug delivery systems in vivo. Little is known about peritoneal fluid; therefore, we have investigated this biological fluid and compared it to phosphate-buffered saline, a synthetic media commonly used for in vitro evaluation of intraperitoneal drug delivery systems. Human peritoneal fluid samples were analysed for electrolyte, protein and lipid levels. In addition, physicochemical properties were measured alongside rheological parameters. Significant inter-patient variations were observed with regard to pH (p < 0.001), buffer capacity (p < 0.05), osmolality (p < 0.001) and surface tension (p < 0.05). All the investigated physicochemical properties of peritoneal fluid differed from phosphate-buffered saline (p < 0.001). Rheological examination of peritoneal fluid demonstrated non-Newtonian shear thinning behaviour and predominantly exhibited the characteristics of an entangled network. Inter-patient and inter-day variability in the viscosity of peritoneal fluid was observed. The solubility of the local anaesthetic lidocaine in peritoneal fluid was significantly higher (p < 0.05) when compared to phosphate-buffered saline. Interestingly, the dissolution rate of lidocaine was not significantly different between the synthetic and biological media. Importantly, and with relevance to intraperitoneal drug delivery systems, the sustained release of lidocaine from a thermosensitive gel formulation occurred at a significantly faster rate into peritoneal fluid. Collectively, these data demonstrate the variation between commonly used synthetic media and human peritoneal fluid. The differences in drug release rates observed illustrate the need for bio-relevant media, which ultimately would improve in vitro-in vivo correlation.

  1. Functional PEG–PAMAM-Tetraphosphonate Capped NaLnF4 Nanoparticles and their Colloidal Stability in Phosphate Buffer

    PubMed Central

    2015-01-01

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (Mn = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (Mn = 2000) and biotin-terminated PEG (Mn = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000–PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir2012, 28, 12861−1287022906305) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline. PMID:24898128

  2. An efficient buffer-mediated control between free radical substitution and proton-coupled electron transfer: dehalogenation of iodoethane by the α-hydroxyethyl radical in aqueous solution.

    PubMed

    Ljubić, Ivan; Matasović, Brunislav; Bonifačić, Marija

    2013-11-07

    A remarkable buffer-mediated control between free-radical substitution (FRS) and proton-coupled electron transfer (PCET) is demonstrated for the reaction between iodoethane and the α-hydroxyethyl radical in neutral aqueous solution in the presence of bicarbonate or phosphate buffer. The reaction is initiated by the γ-radiolysis of the water solvent, and the products, either the iodine atom (FRS) or anion (PCET), are analysed using ion chromatographic and spectrophotometric techniques. A detailed insight into the mechanism is gained by employing density functional theory (M06-2X), Møller-Plesset perturbation treatment to the second order (MP2), and multireference methods (CASSCF/CASPT2). Addition of a basic buffer anion is indispensable for the reaction to occur and the competition between the two channels depends subtly on its proton accepting affinity, with FRS being the dominant channel in the phosphate and PCET in the bicarbonate containing solutions. Unlike the former, the latter channel sustains a chain-like process which significantly enhances the dehalogenation. The present systems furnish an example of the novel PCET/FRS dichotomy, as well as insights into possibilities of its efficient control.

  3. Thermal inactivation of ileal loop-reactive Clostridium perfringens type A strains in phosphate buffer and beef gravy.

    PubMed

    Bradshaw, J G; Peeler, J T; Twedt, R M

    1977-09-01

    The thermal resistance of spore crops produced from each of two ileal loop-reactive strains of Clostridium perfringens type A was determined in two suspending vehicles consisting of 0.067 M (pH 7.0) phosphate buffer and a commercial beef gravy. D115.6 values obtained in buffer and enumerated after pretreatment with sodium ethylenediaminetetraacetate and recovery in plating medium containing lysozyme were two- to threefold greater than those obtained without this treatment. D115.6 values obtained with beef gravy were less than those obtained in buffer with or without lysozyme; however, the D98.9 and D104.4 values were 1.3 to 2 times greater than those obtained in buffer with lysozyme. The z values were within the ranges reported by previous investigators.

  4. Thermal inactivation of ileal loop-reactive Clostridium perfringens type A strains in phosphate buffer and beef gravy.

    PubMed Central

    Bradshaw, J G; Peeler, J T; Twedt, R M

    1977-01-01

    The thermal resistance of spore crops produced from each of two ileal loop-reactive strains of Clostridium perfringens type A was determined in two suspending vehicles consisting of 0.067 M (pH 7.0) phosphate buffer and a commercial beef gravy. D115.6 values obtained in buffer and enumerated after pretreatment with sodium ethylenediaminetetraacetate and recovery in plating medium containing lysozyme were two- to threefold greater than those obtained without this treatment. D115.6 values obtained with beef gravy were less than those obtained in buffer with or without lysozyme; however, the D98.9 and D104.4 values were 1.3 to 2 times greater than those obtained in buffer with lysozyme. The z values were within the ranges reported by previous investigators. PMID:199113

  5. Common stock solutions, buffers, and media.

    PubMed

    2001-05-01

    This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.

  6. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.

    PubMed

    Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven

    2015-11-01

    We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer

  7. Optimization of a model of red blood cells for the study of anti-oxidant drugs, in terms of concentration of oxidant and phosphate buffer.

    PubMed

    Bureau, A; Lahet, J-J; Lenfant, F; Bouyer, F; Petitjean, M; Chaillot, B; Freysz, M

    2005-08-01

    The aggression of erythrocytes by an oxidative stress induces hemolysis. This paper aims to valid a model of erythrocytes in terms of composition of the phosphate buffer solution and of concentration of a well-known oxidant, AAPH. Three compositions of phosphate buffer solution are mixed with three concentrations of oxidant. The influence of these two parameters on hemolysis is independently studied by a variance analysis and a Kruskal-Wallis test when ANOVA is not available. The hemolysis rate increases with time at fixed oxidant concentration, but is not influenced by the composition of the buffer solution. The highest hemolysis rate, 90%, was only measured within 2 h with the highest oxidant concentration. If we retain this concentration of oxidant, the lower concentration of the buffer can by eliminated by a significant less hemolysis and the highest concentration of the buffer can by chosen in regard of the better precision for a similar hemolysis compared to the mean buffer. We hope to study the effect of anti-oxidant agent with such a model of erythrocytes.

  8. Psychosocial safety climate buffers effects of job demands on depression and positive organizational behaviors.

    PubMed

    Hall, Garry B; Dollard, Maureen F; Winefield, Anthony H; Dormann, Christian; Bakker, Arnold B

    2013-01-01

    In a general population sample of 2343 Australian workers from a wide ranging employment demographic, we extended research testing the buffering role of psychosocial safety climate (PSC) as a macro-level resource within the health impairment process of the Job Demands-Resources (JD-R) model. Moderated structural equation modeling was used to test PSC as a moderator between emotional and psychological job demands and worker depression compared with control and social support as alternative moderators. We also tested PSC as a moderator between depression and positive organizational behaviors (POB; engagement and job satisfaction) compared with control and social support as moderators. As expected we found PSC moderated the effects of job demands on depression and further moderated the effects of depression on POB with fit to the data that was as good as control and social support as moderators. This study has shown that PSC is a macro-level resource and safety signal for workers acting to reduce demand-induced depression. We conclude that organizations need to focus on the development of a robust PSC that will operate to buffer the effects of workplace psychosocial hazards and to build environments conducive to worker psychological health and positive organizational behaviors.

  9. Effects of Inulin and Sodium Carbonate in Phosphate-Free Restructured Poultry Steaks

    NASA Astrophysics Data System (ADS)

    Öztürk, B.; Serdaroğlu, M.

    2017-09-01

    Recently inorganic phosphates used in meat product formulations have caused negative impact on consumers due to their potential health risks. Therefore, utilization of natural ingredients as phosphate replacers has come into prominence as a novel research topic to meet consumer demands for clean-label trends. In this study, we objected to investigate the effects of inulin utilization either in the powder or gelled form, alone or in combination with sodium carbonate on quality of phosphate-free restructured chicken steaks. Total moisture, protein, lipid and ash values of the trial groups were in the range of 71.54-75.46%, 22.60-24.31%, 0.94-1.70% and 1.45-2.13%, respectively. pH of the samples was between 6.18-6.39, significant increments were recorded in samples containing inulin with sodium carbonate. L*, a* and b* values were recorded as 78.92-81.05, 1.76-3.05 and 10.80-11.94, respectively, where use of gelled inulin resulted in changes of L* and a* values. Utilization of inulin in combination with sodium carbonate decreased cook loss and enhanced product yield. Sensory scores in control group with phosphate showed a similar pattern to sensory scores in groups with inulin and sodium carbonate. During storage, purge loss and lipid oxidation rate were similar in control and inulin + sodium carbonate samples. The results showed that use of inulin in combination with sodium carbonate provided equivalent physical, chemical and sensory quality to phosphates in restructured chicken steaks.

  10. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?

    PubMed

    Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik

    2017-09-15

    The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. There is no capacity limited buffer in the Murdock (1962) free recall data

    PubMed Central

    2010-01-01

    Theories of short term memory often include a limited capacity “buffer”. Such a buffer contains items which do not decay at all but are overwritten by new data. I show that one of the experiments that fueled the buffer concept, the free recall experiments by Murdock (J Exp Psychol 64(5):482–488, 1962), does not contain such a buffer. PMID:22132047

  12. ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems

    NASA Astrophysics Data System (ADS)

    de Wit, Rutger; Stal, Lucas J.; Lomstein, Bente Aa.; Herbert, Rodney A.; van Gemerden, Hans; Viaroli, Pierluigi; Cecherelli, Victor-Ugo; Rodríguez-Valera, Francisco; Bartoli, Marco; Giordani, Gianmarco; Azzoni, Roberta; Schaub, Bart; Welsh, David T.; Donnelly, Andrew; Cifuentes, Ana; Antón, Josefa; Finster, Kai; Nielsen, Lise B.; Pedersen, Anne-Grethe Underlien; Neubauer, Anne Turi; Colangelo, Marina A.; Heijs, Sander K.

    2001-12-01

    "Buffer capacities" has been defined in ecology as a holistic concept (e.g., Integration of Ecosystem Theories: A Pattern, second ed. Kluwer, Dordrecht, 1997, 388pp), but we show that it can also be worked out in mechanistic studies. Our mechanistic approach highlights that "buffering capacities" can be depleted progressively, and, therefore, we make a distinction between current and potential "buffering capacities". We have applied this concept to understand the limited "local stability" in seagrass ecosystems and their vulnerability towards structural changes into macro-algal dominated communities. We explored the following processes and studied how they confer buffering capacities to the seagrass ecosystem: (i) net autotrophy is persistent in Zostera noltii meadows where plant assimilation acts as a sink for nutrients, this contrasted with the Ulva system that shifted back and forth between net autotrophy and net heterotrophy; (ii) the Z. noltii ecosystem possesses a certain albeit rather limited capacity to modify the balance between nitrogen fixation and denitrification, i.e., it was found that in situ nitrogen fixation always exceeded denitrification; (iii) the nitrogen demand of organoheterotrophic bacteria in the sediment results in nitrogen retention of N in the sediment and hence a buffer against release of nitrogen compounds from sediments, (iv) habitat diversification in seagrass meadows provides shelter for meiofauna and hence buffering against adverse conditions, (v) sedimentary iron provides a buffer against noxious sulfide (note: bacterial sulfide production is enhanced in anoxic sediment niches by increased organic matter loading). On the other hand, in the coastal system we studied, sedimentary iron appears less important as a redox-coupled buffer system against phosphate loading. This is because most inorganic phosphate is bound to calcium rather than to iron. In addition, our studies have highlighted the importance of plant-microbe interactions

  13. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    PubMed

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.

  14. Proton transport by phosphate diffusion--a mechanism of facilitated CO2 transfer

    PubMed Central

    1976-01-01

    We have measured CO2 fluxes across phosphate solutions at different carbonic anhydrase concentrations, bicarbonate concentration gradients, phosphate concentrations, and mobilities. Temperature was 22-25 degrees C, the pH of the phosphate solutions was 7.0-7.3. We found that under physiological conditions of pH and pCO2 a facilitated diffusion of CO2 occurs in addition to free diffusion when (a) sufficient carbonic anhydrase is present, and (b) a concentration gradient of HCO3- is established along with a pCO2 gradient, and (c) the phosphate buffer has a mobility comparable to that of bicarbonate. When the phosphate was immobilized by attaching 0.25-mm-long cellulose particles, no facilitation of CO2 diffusion was detectable. A mechanism of facilitated CO2 diffusion in phosphate solutions analogous to that in albumin solutions was proposed on the basis of these findings: bicarbonate diffusion together with a facilitated proton transport by phosphate diffusion. A mathematical model of this mechanism was formulated. The CO2 fluxed predicted by the model agree quantitatively with the experimentally determined fluxes. It is concluded that a highly effective proton transport mechanism acts in solutions of mobile phosphate buffers. By this mechanism; CO2 transfer may be increased up to fivefold and proton transfer may be increased to 10,000-fold. PMID:6619

  15. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  16. Comparative analyses of universal extraction buffers for assay of stress related biochemical and physiological parameters.

    PubMed

    Han, Chunyu; Chan, Zhulong; Yang, Fan

    2015-01-01

    Comparative efficiency of three extraction solutions, including the universal sodium phosphate buffer (USPB), the Tris-HCl buffer (UTHB), and the specific buffers, were compared for assays of soluble protein, free proline, superoxide radical (O2∙-), hydrogen peroxide (H2O2), and the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR) in Populus deltoide. Significant differences for protein extraction were detected via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Between the two universal extraction buffers, the USPB showed higher efficiency for extraction of soluble protein, CAT, GR, O2∙-, GPX, SOD, and free proline, while the UTHB had higher efficiency for extraction of APX, POD, and H2O2. When compared with the specific buffers, the USPB showed higher extraction efficiency for measurement of soluble protein, CAT, GR, and O2∙-, parallel extraction efficiency for GPX, SOD, free proline, and H2O2, and lower extraction efficiency for APX and POD, whereas the UTHB had higher extraction efficiency for measurement of POD and H2O2. Further comparisons proved that 100 mM USPB buffer showed the highest extraction efficiencies. These results indicated that USPB would be suitable and efficient for extraction of soluble protein, CAT, GR, GPX, SOD, H2O2, O2∙-, and free proline.

  17. Buffer Modulation of Menadione-Induced Oxidative Stress in Saccharomyces cerevisiae

    PubMed Central

    Lushchak, Oleh V.; Bayliak, Maria M.; Korobova, Olha V.; Levine, Rodney L.; Lushchak, Volodymyr I.

    2012-01-01

    The objective of this study was to compare in vivo the effects of bicarbonate and phosphate buffers on surviving and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. If at 25 mM concentration of buffers menadione only slightly reduced yeast surviving, at 50 mM concentration cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed. PMID:19843376

  18. Buffer modulation of menadione-induced oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Lushchak, Oleh V; Bayliak, Maria M; Korobova, Olha V; Levine, Rodney L; Lushchak, Volodymyr I

    2009-01-01

    The objective of this study was to compare, in vivo, the effects of bicarbonate and phosphate buffers on survival and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. At 25 mM concentration of buffers, menadione only slightly reduced yeast surviving; at 50 mM concentration, cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed.

  19. The contribution of phosphate–phosphate repulsions to the free energy of DNA bending

    PubMed Central

    Range, Kevin; Mayaan, Evelyn; Maher, L. J.; York, Darrin M.

    2005-01-01

    DNA bending is important for the packaging of genetic material, regulation of gene expression and interaction of nucleic acids with proteins. Consequently, it is of considerable interest to quantify the energetic factors that must be overcome to induce bending of DNA, such as base stacking and phosphate–phosphate repulsions. In the present work, the electrostatic contribution of phosphate–phosphate repulsions to the free energy of bending DNA is examined for 71 bp linear and bent-form model structures. The bent DNA model was based on the crystallographic structure of a full turn of DNA in a nucleosome core particle. A Green's function approach based on a linear-scaling smooth conductor-like screening model was applied to ascertain the contribution of individual phosphate–phosphate repulsions and overall electrostatic stabilization in aqueous solution. The effect of charge neutralization by site-bound ions was considered using Monte Carlo simulation to characterize the distribution of ion occupations and contribution of phosphate repulsions to the free energy of bending as a function of counterion load. The calculations predict that the phosphate–phosphate repulsions account for ∼30% of the total free energy required to bend DNA from canonical linear B-form into the conformation found in the nucleosome core particle. PMID:15741179

  20. Comparison of adhesive properties of water- and phosphate-buffer-washed cottonseed meals with cottonseed protein isolate on maple and poplar veneers

    USDA-ARS?s Scientific Manuscript database

    Water- and phosphate buffer (35 mM Na2HPO4/NaH2PO4, pH 7.5)-washed cottonseed meals (abbreviated as WCM and BCM, respectively) could be low-cost and environmentally friendly protein-based adhesives as their preparation does not involve corrosive alkali and acid solutions that are needed for cottonse...

  1. Use of bicarbonate buffer systems for dissolution characterization of enteric-coated proton pump inhibitor tablets.

    PubMed

    Shibata, Hiroko; Yoshida, Hiroyuki; Izutsu, Ken-Ichi; Goda, Yukihiro

    2016-04-01

    The aim of this study was to assess the effects of buffer systems (bicarbonate or phosphate at different concentrations) on the in vitro dissolution profiles of commercially available enteric-coated tablets. In vitro dissolution tests were conducted using an USP apparatus II on 12 enteric-coated omeprazole and rabeprazole tablets, including innovator and generic formulations in phosphate buffers, bicarbonate buffers and a media modified Hanks (mHanks) buffer. Both omeprazole and rabeprazole tablets showed similar dissolution profiles among products in the compendial phosphate buffer system. However, there were large differences between products in dissolution lag time in mHanks buffer and bicarbonate buffers. All formulations showed longer dissolution lag times at lower concentrations of bicarbonate or phosphate buffers. The dissolution rank order of each formulation differed between mHanks buffer and bicarbonate buffers. A rabeprazole formulation coated with a methacrylic acid copolymer showed the shortest lag time in the high concentration bicarbonate buffer, suggesting varied responses depending on the coating layer and buffer components. Use of multiple dissolution media during in vitro testing, including high concentration bicarbonate buffer, would contribute to the efficient design of enteric-coated drug formulations. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  2. Buffer Effects in the Solubility, Nucleation and Growth of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Gibson, Ursula J.

    1999-01-01

    The growth of protein crystals is important for determination of their three-dimensional structure, which relates to their biochemical functions and to the practical goal of designing pharmaceuticals to modify that function. While many proteins have been successfully crystallized by a variety of methods, there is still limited understanding of the process of nucleation and growth of even the simplest proteins. Chicken egg-white lysozyme (CEWL) is readily crystallized under a variety of conditions, and studies underway at MSFC are designed to elucidate the mechanisms by which the crystals nucleate and grow. We have investigated the effect of buffer choice on the solubility, nucleation and growth of CEWL. CEWL was purified by dialysis against a .05M phosphate buffer and chromatographic separation from contaminants in a sepharose column. Solubility studies were made as a function of buffer concentration for phosphate and formate buffers, and the nucleation and growth of crystals at 10 C was studied as a function of pH for oxalate, succinate, formate, butyrate, carbonate, phosphate and acetate buffer solutions. The solubility data support the conclusion that there is a solubility minimum as a function of buffer concentration for amphiphilic molecules, while no minimum is observed for a phosphate buffer. Nucleation is suppressed at pH greater than pKa for all buffers except phosphate. The aspect ratio of the (110) faces is shown to be a function of crystal size, rather than pH.

  3. Inactivation of avirulent Yersinia pestis in Butterfield's phosphate buffer and frankfurters by UVC (254 nm) and gamma radiation.

    PubMed

    Sommers, Christopher H; Cooke, Peter H

    2009-04-01

    Yersinia pestis is the causative agent of plague. Although rare, pharyngeal plague in humans has been associated with consumption or handling of meat prepared from infected animals. The risks of contracting plague from consumption of deliberately contaminated food are currently unknown. Gamma radiation is a penetrating form of electromagnetic radiation, and UVC radiation is used for decontamination of liquids or food surfaces. Gamma radiation D10-values (the radiation dose needed to inactivate 1 log unit pathogen) were 0.23 (+/-0.01) and 0.31 (+/-0.03) kGy for avirulent Y. pestis inoculated into Butterfield's phosphate buffer and onto frankfurter surfaces, respectively, at 0 degree C. A UVC radiation dose of 0.25 J/cm2 inactivated avirulent Y. pestis suspended in Butterfield's phosphate buffer. UVC radiation doses of 0.5 to 4.0 J/cm2 inactivated 0.97 to 1.20 log units of the Y. pestis surface inoculated onto frankfurters. A low gamma radiation dose of 1.6 kGy could provide a 5-log reduction and a UVC radiation dose of 1 to 4 J/cm2 would provide a 1-log reduction of Y. pestis surface inoculated onto frankfurters. Y. pestis was capable of growth on frankfurters during refrigerated storage (10 degrees C). Gamma radiation of frankfurters inhibited the growth of Y. pestis during refrigerated storage, and UVC radiation delayed the growth of Y. pestis.

  4. pH Sensing Properties of Flexible, Bias-Free Graphene Microelectrodes in Complex Fluids: From Phosphate Buffer Solution to Human Serum.

    PubMed

    Ping, Jinglei; Blum, Jacquelyn E; Vishnubhotla, Ramya; Vrudhula, Amey; Naylor, Carl H; Gao, Zhaoli; Saven, Jeffery G; Johnson, Alan T Charlie

    2017-08-01

    Advances in techniques for monitoring pH in complex fluids can have a significant impact on analytical and biomedical applications. This study develops flexible graphene microelectrodes (GEs) for rapid (<5 s), very-low-power (femtowatt) detection of the pH of complex biofluids by measuring real-time Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current is varied monotonically and systematically with the pH, with a resolution of ≈0.2 pH unit. The current-pH dependence is well described by a hybrid analytical-computational model, where the electric double layer derives from an intrinsic, pH-independent (positive) charge associated with the graphene-water interface and ionizable (negative) charged groups. For ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, shows a strong signal associated with ferritin disassembly and the release of ferric ions at pH ≈2.0. For samples of human serum, the Faradaic current shows a reproducible rapid (<20 s) response to pH. By combining the Faradaic current and real-time current variation, the methodology is potentially suitable for use to detect tumor-induced changes in extracellular pH. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Aluminum elution and precipitation in glass vials: effect of pH and buffer species.

    PubMed

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2015-02-01

    Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.

  6. Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, M.; Whelan, M. J.; Wang, G.; White, S. M.

    2012-12-01

    The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg l-1 to 0.061 mg l-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.

  7. Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, M.; Whelan, M. J.; Wang, G. Q.; White, S. M.

    2013-05-01

    The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus (P) behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg L-1 to 0.061 mg L-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.

  8. Dynamics Behaviors of Scale-Free Networks with Elastic Demand

    NASA Astrophysics Data System (ADS)

    Li, Yan-Lai; Sun, Hui-Jun; Wu, Jian-Jun

    Many real-world networks, such as transportation networks and Internet, have the scale-free properties. It is important to study the bearing capacity of such networks. Considering the elastic demand condition, we analyze load distributions and bearing capacities with different parameters through artificially created scale-free networks. The simulation results show that the load distribution follows a power-law form, which means some ordered pairs, playing the dominant role in the transportation network, have higher demand than other pairs. We found that, with the decrease of perceptual error, the total and average ordered pair demand will decrease and then stay in a steady state. However, with the increase of the network size, the average demand of each ordered pair will decrease, which is particularly interesting for the network design problem.

  9. A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-12-01

    In this study, a phosphorus-free anolyte is prepared by using bicarbonate to replace phosphate buffer for application in two chamber microbial fuel cells (MFCs). Optical density test and Bradford protein assay shows that this phosphorus-free anolyte effectively inhibits the growth and reproduction of microorganisms suspended in the solution and greatly reduces the suspended cell mass. As a result, it considerably enhances the coulombic efficiency (CE) of MFCs. When the acetate concentration is 11 mM, the CE of the MFC using the pH 7 phosphate-containing anolyte is 9.7% and the CE with the pH 8.3 phosphate-containing anolyte is 9.1%, while the CE of the MFC using the phosphorus-free anolyte (pH 8.3) achieves 26.6%. This study demonstrates that this phosphorus-free anolyte holds the potential to enhance the feasibility for practical applications of MFCs.

  10. Proteins contribute insignificantly to the intrinsic buffering capacity of yeast cytoplasm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poznanski, Jaroslaw; Szczesny, Pawel; Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw

    Highlights: Black-Right-Pointing-Pointer We predicted buffering capacity of yeast proteome from protein abundance data. Black-Right-Pointing-Pointer We measured total buffering capacity of yeast cytoplasm. Black-Right-Pointing-Pointer We showed that proteins contribute insignificantly to buffering capacity. -- Abstract: Intracellular pH is maintained by a combination of the passive buffering of cytoplasmic dissociable compounds and several active systems. Over the years, a large portion of and possibly most of the cell's intrinsic (i.e., passive non-bicarbonate) buffering effect was attributed to proteins, both in higher organisms and in yeast. This attribution was not surprising, given that the concentration of proteins with multiple protonable/deprotonable groups in themore » cell exceeds the concentration of free protons by a few orders of magnitude. Using data from both high-throughput experiments and in vitro laboratory experiments, we tested this concept. We assessed the buffering capacity of the yeast proteome using protein abundance data and compared it to our own titration of yeast cytoplasm. We showed that the protein contribution is less than 1% of the total intracellular buffering capacity. As confirmed with NMR measurements, inorganic phosphates play a crucial role in the process. These findings also shed a new light on the role of proteomes in maintaining intracellular pH. The contribution of proteins to the intrinsic buffering capacity is negligible, and proteins might act only as a recipient of signals for changes in pH.« less

  11. Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions.

    PubMed

    Wang, Lu-Ning; Huang, Xian-Qiu; Shinbine, Alyssa; Luo, Jing-Li

    2013-02-01

    The corrosion behaviour of Zr in phosphate buffered saline (PBS) solutions with various concentrations (0-4 g L(-1)) of albumin was studied by electrochemical techniques and surface analysis. Addition of albumin to PBS solutions moved the open circuit potential (OCP) to less nobler direction. OCP, polarization resistance and impedance increased and the corrosion current decreased over immersion duration. At early stages of immersion, the resistance was increased with the concentration of albumin because of the high adsorption kinetics of albumin on metal. After the long term immersion, the resistance in PBS without albumin was higher than PBS with albumin owing to the anodic dissolution effect of albumin on metal. According to the analysis of effective capacitances, a normal distribution of time-constants was proposed to estimate the surface film on Zr. A corrosion mechanism of Zr in PBS with different albumin was proposed based on electrochemical analysis.

  12. Effect of Phosphate-Buffered Solution Corrosion on the Ratcheting Fatigue Behavior of a Duplex Mg-Li-Al Alloy

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Yu, Dunji; Gao, Li-Lan; Gao, Hong

    2016-05-01

    This work reports the uniaxial ratcheting and fatigue behavior of a duplex Mg-Li-Al alloy under the influence of phosphate-buffered solution corrosion. Microstructural observations reveal pitting and filament corrosion defects, which impair the load-bearing capacity of the alloy and cause stress concentration, thus leading to an accelerated accumulation of ratcheting strain and shortened fatigue life under the same nominal loading conditions. Comparing Smith model, Smith-Watson-Topper model, and Paul-Sivaprasad-Dhar model, a ratcheting fatigue life prediction model based on the Broberg damage rule and the Paul-Sivaprasad-Dhar model was proposed, and the model yielded a superior prediction for the studied magnesium alloy.

  13. New insights into the role of phosphate-free lipids in anaerobic environments

    NASA Astrophysics Data System (ADS)

    Schubotz, F.; De Santiago Torio, A.; Kuehl, J.; Grant, C.; Rahn-Lee, L.; Arkin, A. P.; Deutschbauer, A. M.; Summons, R. E.; Bosak, T.

    2016-02-01

    Recent investigations have revealed an abundance of phosphate-free glycolipids and aminolipids, classically assigned to oxygenic phototrophs, in anoxic environments where anaerobic microorganisms prevail. Phosphorus-free lipids in oxic environments are thought to indicate an adaptation to phosphorus limitation, but their significance in anoxic environments is unclear, because these environments are not typically thought of as phosphorus-limited. We hypothesize that glycolipids and aminolipids play an overlooked and potentially integral role in anaerobic bacteria from marine and terrestrial environments and test this hypothesis in environmentally relevant model anaerobic deltaproteobacteria. None of the investigated strains of the sulfate-reducing genus Desulfovibrio synthesize glycolipids under normal growth conditions or during nitrogen limitation. However, when growing in phosphate-limited conditions, all investigated organisms undergo a nearly complete replacement of phospholipids by glycolipids. Some phosphate-starved organisms, such as D. fructosivorans, are also able to synthesize betaine lipids. Analyses of mutants of Desulfovibrio alaskensis G20 identify genes responsible for the biosynthesis of aminolipids (Dde_3661) and glycolipids (Dde_3613). Fitness experiments using tagged transposon mutant libraries of G20 identify these two genes and 90 other genes important for fitness of this organism during phosphate limitation. These experiments identify for the first time betaine lipids and glycolipids in sulfate-reducing bacteria and demonstrate the importance of these non-phosphorus lipids as substitute lipids in obligate anaerobes. These findings suggest that phosphorus availability limits microbial growth and activity in a more widespread range of environments than previously thought.

  14. Physical and chemical properties of pyropheophorbide-a methyl ester in ethanol, phosphate buffer and aqueous dispersion of small unilamellar dimyristoyl-L-alpha-phosphatidylcholine vesicles.

    PubMed

    Delanaye, Lisiane; Bahri, Mohamed Ali; Tfibel, Francis; Fontaine-Aupart, Marie-Pierre; Mouithys-Mickalad, Ange; Heine, Bélinda; Piette, Jacques; Hoebeke, Maryse

    2006-03-01

    The aggregation process of pyropheophorbide-a methyl ester (PPME), a second-generation photosensitizer, was investigated in various solvents. Absorption and fluorescence spectra showed that the photosensitizer was under a monomeric form in ethanol as well as in dimyristoyl-L-alpha-phosphatidylcholine liposomes while it was strongly aggregated in phosphate buffer. A quantitative determination of reactive oxygen species production by PPME in these solvents has been undertaken by electron spin resonance associated with spin trapping technique and absorption spectroscopy. In phosphate buffer, both electron spin resonance and absorption measurements led to the conclusion that singlet oxygen production was not detectable while hydroxyl radical production was very weak. In liposomes and ethanol, singlet oxygen and hydroxyl radical production increased highly; the singlet oxygen quantum yield was determined to be 0.2 in ethanol and 0.13 in liposomes. The hydroxyl radical production origin was also investigated. Singlet oxygen was formed from PPME triplet state deactivation in the presence of oxygen. Indeed, the triplet state formation quantum yield of PPME was found to be about 0.23 in ethanol, 0.15 in liposomes (too small to be measured in PBS).

  15. SAR11 lipid renovation in response to phosphate starvation

    PubMed Central

    Carini, Paul; Van Mooy, Benjamin A. S.; Thrash, J. Cameron; White, Angelicque; Zhao, Yanlin; Campbell, Emily O.; Fredricks, Helen F.; Giovannoni, Stephen J.

    2015-01-01

    Phytoplankton inhabiting oligotrophic ocean gyres actively reduce their phosphorus demand by replacing polar membrane phospholipids with those lacking phosphorus. Although the synthesis of nonphosphorus lipids is well documented in some heterotrophic bacterial lineages, phosphorus-free lipid synthesis in oligotrophic marine chemoheterotrophs has not been directly demonstrated, implying they are disadvantaged in phosphate-deplete ecosystems, relative to phytoplankton. Here, we show the SAR11 clade chemoheterotroph Pelagibacter sp. str. HTCC7211 renovates membrane lipids when phosphate starved by replacing a portion of its phospholipids with monoglucosyl- and glucuronosyl-diacylglycerols and by synthesizing new ornithine lipids. Lipid profiles of cells grown with excess phosphate consisted entirely of phospholipids. Conversely, up to 40% of the total lipids were converted to nonphosphorus lipids when cells were starved for phosphate, or when growing on methylphosphonate. Cells sequentially limited by phosphate and methylphosphonate transformed >75% of their lipids to phosphorus-free analogs. During phosphate starvation, a four-gene cluster was significantly up-regulated that likely encodes the enzymes responsible for lipid renovation. These genes were found in Pelagibacterales strains isolated from a phosphate-deficient ocean gyre, but not in other strains from coastal environments, suggesting alternate lipid synthesis is a specific adaptation to phosphate scarcity. Similar gene clusters are found in the genomes of other marine α-proteobacteria, implying lipid renovation is a common strategy used by heterotrophic cells to reduce their requirement for phosphorus in oligotrophic habitats. PMID:26056292

  16. Inactivation of Hepatitis A Virus (HAV) by Chlorine and Iodine in Water

    DTIC Science & Technology

    1986-11-01

    treatment practices utilizing chemical disinfection, primarily chlorination, are generally believed to * be effective in producing microbiologically safe...OCl) in 1 liter of HDFW. Stock solution was then diluted in tesi water (halogen demand-free, 0.01M phosphate buffer, pH 4.5, 7.0 or 9.5 in initial

  17. An over 18%-efficiency completely buffer-free Cu(In,Ga)Se2 solar cell

    NASA Astrophysics Data System (ADS)

    Ishizuka, Shogo; Nishinaga, Jiro; Koida, Takashi; Shibata, Hajime

    2018-07-01

    In this letter, an independently certified photovoltaic efficiency of 18.4% demonstrated from a completely buffer-layer-free Cu(In,Ga)Se2 (CIGS) solar cell is reported. A Si-doped CIGS thin film was used as the photoabsorber layer and a conductive B-doped ZnO (BZO) front electrode layer was directly deposited on the CIGS layer. Metastable acceptor activation by heat-light soaking treatment was performed to maximize the efficiency. The results presented here are expected to serve as a benchmark for simplified-structure CIGS devices as well as a reference for discussions on the role of buffer layers used in conventional CIGS solar cells.

  18. A dynamic routing strategy with limited buffer on scale-free network

    NASA Astrophysics Data System (ADS)

    Wang, Yufei; Liu, Feng

    2016-04-01

    In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.

  19. Influence of high-conductivity buffer composition on field-enhanced sample injection coupled to sweeping in CE.

    PubMed

    Anres, Philippe; Delaunay, Nathalie; Vial, Jérôme; Thormann, Wolfgang; Gareil, Pierre

    2013-02-01

    The aim of this work was to clarify the mechanism taking place in field-enhanced sample injection coupled to sweeping and micellar EKC (FESI-Sweep-MEKC), with the utilization of two acidic high-conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI-Sweep-MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Corrosion behavior of pristine and added MgB2 in Phosphate Buffered Saline Solution

    NASA Astrophysics Data System (ADS)

    Batalu, D.; Bojin, D.; Ghiban, B.; Aldica, G.; Badica, P.

    2012-09-01

    We have obtained by Spark Plasma Sintering (SPS), dense samples of MgB2 added with Ho2O3. Starting composition was (MgB2)0.975(HoO1.5)0.025 and we used addition powders with an average particle size below and above 100 nm. For Mg, pristine and added MgB2 samples we measured potentiodynamic polarization curves in Phosphate Buffered Saline (PBS) solution media at room temperature. MgB2 based composites show corrosion/ degradation effects. This behavior is in principle similar to Mg based alloys in the same media. Our work suggests that the different morphologies and phase compositions of the SPS-ed samples influence the interaction with corrosion medium; hence additions can play an important role in controlling the corrosion rate. Pristine MgB2 show a significant improvement of the corrosion resistance, if compared with Mg. The best corrosion resistance is obtained for pristine MgB2, followed by MgB2 with nano-Ho2O3 and μ-Ho2O3 additions.

  1. Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper

    NASA Astrophysics Data System (ADS)

    Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.

    2016-02-01

    In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.

  2. Direct, rapid, and label-free detection of enzyme-substrate interactions in physiological buffers using CMOS-compatible nanoribbon sensors.

    PubMed

    Mu, Luye; Droujinine, Ilia A; Rajan, Nitin K; Sawtelle, Sonya D; Reed, Mark A

    2014-09-10

    We demonstrate the versatility of Al2O3-passivated Si nanowire devices ("nanoribbons") in the analysis of enzyme-substrate interactions via the monitoring of pH change. Our approach is shown to be effective through the detection of urea in phosphate buffered saline (PBS), and penicillinase in PBS and urine, at limits of detection of <200 μM and 0.02 units/mL, respectively. The ability to extract accurate enzyme kinetics and the Michaelis-Menten constant (Km) from the acetylcholine-acetylcholinesterase reaction is also demonstrated.

  3. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The formation of stable pH gradients with weak monovalent buffers for isoelectric focusing in free solution

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Thormann, Wolfgang; Graham, Aly; Bier, Milan

    1985-01-01

    Two methods which utilize simple buffers for the generation of stable pH gradients (useful for preparative isoelectric focusing) are compared and contrasted. The first employs preformed gradients comprised of two simple buffers in density-stabilized free solution. The second method utilizes neutral membranes to isolate electrolyte reservoirs of constant composition from the separation column. It is shown by computer simulation that steady-state gradients can be formed at any pH range with any number of components in such a system.

  5. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    NASA Astrophysics Data System (ADS)

    Baldisserri, Carlo; Costa, Anna Luisa

    2016-04-01

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  6. Chitosan adsorption on nanofibrillated cellulose with different aldehyde content and interaction with phosphate buffered saline.

    PubMed

    Ondaral, Sedat; Çelik, Elif; Kurtuluş, Orçun Çağlar; Aşıkuzun, Elif; Yakın, İsmail

    2018-04-15

    The chitosan adsorption on films prepared using nanofibrillated cellulose (NFC) with different content of aldehyde group was studied by means of Quartz Crystal Microbalance with Dissipation (QCM-D). Results showed that frequency change (Δf) was higher when the chitosan adsorbed on NFC film consisting more aldehyde group indicating the higher adsorption. The (Δf) and dissipation (ΔD) factors completely changed during adsorption of chitosan pre-treated with acetic acid: Δf increased and ΔD decreased, oppositely to un-treated chitosan adsorption. After acid treatment, molecular weight and crystallinity index of chitosan decreased addition to change in chemical structure. It was found that more phosphate buffered saline (PBS), as a model liquid for wound exudate, adsorbed to acid treated chitosan-NFC film, especially to film having more aldehyde groups. Comparing with bare NFC film, chitosan-NFC films adsorbed less PBS because chitosan crosslinked the NFC network and blocked the functional groups of NFC and thus, preventing swelling film. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. In vitro dissolution of proton-pump inhibitor products intended for paediatric and geriatric use in physiological bicarbonate buffer.

    PubMed

    Liu, Fang; Shokrollahi, Honaz

    2015-05-15

    Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Signature-based store checking buffer

    DOEpatents

    Sridharan, Vilas; Gurumurthi, Sudhanva

    2015-06-02

    A system and method for optimizing redundant output verification, are provided. A hardware-based store fingerprint buffer receives multiple instances of output from multiple instances of computation. The store fingerprint buffer generates a signature from the content included in the multiple instances of output. When a barrier is reached, the store fingerprint buffer uses the signature to verify the content is error-free.

  9. Implications for Ophthalmic Formulations: Ocular Buffers Show Varied Cytotoxic Impact on Human Corneal-Limbal and Human Conjunctival Epithelial Cells.

    PubMed

    Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline; Barisani-Asenbauer, Talin

    2017-06-01

    To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal-limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT-based assay. The morphology of cells was also investigated. HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface.

  10. Implications for Ophthalmic Formulations: Ocular Buffers Show Varied Cytotoxic Impact on Human Corneal–Limbal and Human Conjunctival Epithelial Cells

    PubMed Central

    Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline

    2017-01-01

    Purpose: To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal–limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. Methods: HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT–based assay. The morphology of cells was also investigated. Results: HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. Conclusions: We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface. PMID:28399036

  11. Cyanotoxins: a poison that frees phosphate.

    PubMed

    Raven, John A

    2010-10-12

    Autotrophic organisms obtain phosphorus from the environment by secreting alkaline phosphatases that act on esters, resulting in inorganic phosphate that is then taken up. New work shows that the cyanobacterium Aphanizomenon ovalisporum obtains inorganic phosphate by secreting the cyanotoxin cylindrospermopsin, which induces alkaline phosphatase in other phytoplankton species. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. The quantitation of buffering action I. A formal & general approach.

    PubMed

    Schmitt, Bernhard M

    2005-03-15

    Although "buffering" as a homeostatic mechanism is a universal phenomenon, the quantitation of buffering action remains controversial and problematic. Major shortcomings are: lack of a buffering strength unit for some buffering phenomena, multiple and mutually incommensurable units for others, and lack of a genuine ratio scale for buffering strength. Here, I present a concept of buffering that overcomes these shortcomings. Briefly, when, for instance, some "free" H+ ions are added to a solution (e.g. in the form of strong acid), buffering is said to be present when not all H+ ions remain "free" (i.e., bound to H2O), but some become "bound" (i.e., bound to molecules other than H2O). The greater the number of H+ ions that become "bound" in this process, the greater the buffering action. This number can be expressed in two ways: 1) With respect to the number of total free ions added as "buffering coefficient b", defined in differential form as b = d(bound)/d(total). This measure expresses buffering action from nil to complete by a dimensionless number between 0 and 1, analogous to probabilites. 2) With respect to the complementary number of added ions that remain free as "buffering ratio B", defined as the differential B = d(bound)/d(free). The buffering ratio B provides an absolute ratio scale, where buffering action from nil to perfect corresponds to dimensionless numbers between 0 and infinity, and where equal differences of buffering action result in equal intervals on the scale. Formulated in purely mathematical, axiomatic form, the concept reveals striking overlap with the mathematical concept of probability. However, the concept also allows one to devise simple physical models capable of visualizing buffered systems and their behavior in an exact yet intuitive way. These two measures of buffering action can be generalized easily to any arbitrary quantity that partitions into two compartments or states, and are thus suited to serve as standard units for

  13. INACTIVATION OF HEPATITIS A VIRUS AND MODEL VIRUSES IN WATER BY FREE CHLORINE AND MONOCHLORAMINE

    EPA Science Inventory

    The kinetics and extent of inactivation of hepatitis A virus (HAV) as well as three other viruses, coxsackievirus B5 (CB5) and coliphages MS2 and X174, by 0.5 mg/l free chlorine, pH 6-10, and 10 mg/1 monochloramine, pH8, in 0.01 M phosphate buffer were determined. These results i...

  14. Quantifying the mechanism of phosphate monoester hydrolysis in aqueous solution by evaluating the relevant ab initio QM/MM free-energy surfaces.

    PubMed

    Plotnikov, Nikolay V; Prasad, B Ram; Chakrabarty, Suman; Chu, Zhen T; Warshel, Arieh

    2013-10-24

    Understanding the nature of the free-energy surfaces for phosphate hydrolysis is a prerequisite for understanding the corresponding key chemical reactions in biology. Here, the challenge has been to move to careful ab initio QM/MM (QM(ai)/MM) free-energy calculations, where obtaining converging results is very demanding and computationally expensive. This work describes such calculations, focusing on the free-energy surface for the hydrolysis of phosphate monoesters, paying special attention to the comparison between the one water (1W) and two water (2W) paths for the proton-transfer (PT) step. This issue has been explored before by energy minimization with implicit solvent models and by nonsystematic QM/MM energy minimization, as well as by nonsystematic free-energy mapping. However, no study has provided the needed reliable 2D (3D) surfaces that are necessary for reaching concrete conclusions. Here we report a systematic evaluation of the 2D (3D) free-energy maps for several relevant systems, comparing the results of QM(ai)/MM and QM(ai)/implicit solvent surfaces, and provide an advanced description of the relevant energetics. It is found that the 1W path for the hydrolysis of the methyl diphosphate (MDP) trianion is 6-9 kcal/mol higher than that the 2W path. This difference becomes slightly larger in the presence of the Mg(2+) ion because this ion reduces the pKa of the conjugated acid form of the phosphate oxygen that accepts the proton. Interestingly, the BLYP approach (which has been used extensively in some studies) gives a much smaller difference between the 1W and 2W activation barriers. At any rate, it is worth pointing out that the 2W transition state for the PT is not much higher that the common plateau that serves as the starting point of both the 1W and 2W PT paths. Thus, the calculated catalytic effects of proteins based on the 2W PT mechanistic model are not expected to be different from the catalytic effects predicted using the 1W PT mechanistic

  15. Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott-Schottky Techniques

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Asgari, Hamed

    2018-05-01

    In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.

  16. Bacterial Phosphating of Mild (Unalloyed) Steel

    PubMed Central

    Volkland, Hans-Peter; Harms, Hauke; Müller, Beat; Repphun, Gernot; Wanner, Oskar; Zehnder, Alexander J. B.

    2000-01-01

    Mild (unalloyed) steel electrodes were incubated in phosphate-buffered cultures of aerobic, biofilm-forming Rhodococcus sp. strain C125 and Pseudomonas putida mt2. A resulting surface reaction leading to the formation of a corrosion-inhibiting vivianite layer was accompanied by a characteristic electrochemical potential (E) curve. First, E increased slightly due to the interaction of phosphate with the iron oxides covering the steel surface. Subsequently, E decreased rapidly and after 1 day reached −510 mV, the potential of free iron, indicating the removal of the iron oxides. At this point, only scattered patches of bacteria covered the surface. A surface reaction, in which iron was released and vivianite precipitated, started. E remained at −510 mV for about 2 days, during which the vivianite layer grew steadily. Thereafter, E increased markedly to the initial value, and the release of iron stopped. Changes in E and formation of vivianite were results of bacterial activity, with oxygen consumption by the biofilm being the driving force. These findings indicate that biofilms may protect steel surfaces and might be used as an alternative method to combat corrosion. PMID:11010888

  17. SnS2 films deposited from molecular ink as Cd-free alternative buffer layer for solar cells

    NASA Astrophysics Data System (ADS)

    Jariwala, Akshay; Chaudhuri, Tapas K.; Toshniwal, Aditi; Patel, Sanjay; Kheraj, Vipul; Ray, Abhijit

    2018-05-01

    This work investigates the potential of SnS2 as a Cd-free alternative buffer layer for CIGS solar cells. The suitability of SnS2 film as a buffer layer has been evaluated by numerical analysis using SCAPS software. A new simple method for preparation of SnS2 films by dip-coating from molecular ink is reported. The formation of SnS2 is confirmed by Raman spectroscopy. The films are smooth and shiny with roughness of 2-3 nm. The films are n-type with band gap of 2.6 eV and electrical conductivity of 10-3 S/cm.

  18. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells.

    PubMed

    Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E

    2010-01-15

    Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Electron beam-induced radiation damage: the bubbling response in amorphous dried sodium phosphate buffer.

    PubMed

    Massover, William H

    2010-06-01

    Irradiation of an amorphous layer of dried sodium phosphate buffer (pH = 7.0) by transmission electron microscopy (100-120 kV) causes rapid formation of numerous small spherical bubbles [10-100 A (= 1-10 nm)] containing an unknown gas. Bubbling is detected even with the first low-dose exposure. In a thin layer (ca. 100-150 A), bubbling typically goes through nucleation, growth, possible fusion, and end-state, after which further changes are not apparent; co-irradiated adjacent areas having a slightly smaller thickness never develop bubbles. In moderately thicker regions (ca. over 200 A), there is no end-state. Instead, a complex sequence of microstructural changes is elicited during continued intermittent high-dose irradiation: nucleation, growth, early simple fusions, a second round of extensive multiple fusions, general reduction of matrix thickness (producing flattening and expansion of larger bubbles, occasional bubble fission, and formation of very large irregularly-shaped bubbles by a third round of compound fusion events), and slow shrinkage of all bubbles. The ongoing lighter appearance of bubble lumens, maintenance of their rounded shape, and extensive changes in size and form indicate that gas content continues throughout their surprisingly long lifetime; the thin dense boundary layer surrounding all bubbles is proposed to be the main mechanism for their long lifetime.

  20. Synthesis of Gold Nanoparticles with Buffer-Dependent Variations of Size and Morphology in Biological Buffers.

    PubMed

    Ahmed, Syed Rahin; Oh, Sangjin; Baba, Rina; Zhou, Hongjian; Hwang, Sungu; Lee, Jaebeom; Park, Enoch Y

    2016-12-01

    The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications.

  1. Experimental ammonia-free phosphate-bonded investments using Mg(H2PO4)2.

    PubMed

    Zhang, Z; Tamaki, Y; Miyazaki, T

    2001-12-01

    In previous study, we found that Mg(H2PO4)2 instead of NH4H2PO4 was available as a binder material for phosphate-bonded investments and possibly could be used to develop the phosphate-bonded investment without ammonia gas release. The purpose of the present study was to develop the experimental ammonia-free phosphate-bonded investments by investigating suitable refractories. Mg(H2PO4)2.nH2O and MgO were prepared as a binder. Cristobalite and quartz were selected as refractories. The power ratio of MgO/Mg(H2PO4)2.nH2O was set constant at 1.2 according to our previous findings. Fundamental properties of dental investment such as strength, manipulation and expansion were evaluated. Using cristobalite as the refractory material, further investigations were performed. The refractory/binder ratio was definitely effective. The increase of this ratio led to low mold strength and large mold expansion. The present findings suggested that C5 was desirable for dental investment.

  2. The Influence of Ca2+ Buffers on Free [Ca2+] Fluctuations and the Effective Volume of Ca2+ Microdomains

    PubMed Central

    Weinberg, Seth H.; Smith, Gregory D.

    2014-01-01

    Intracellular calcium (Ca2+) plays a significant role in many cell signaling pathways, some of which are localized to spatially restricted microdomains. Ca2+ binding proteins (Ca2+ buffers) play an important role in regulating Ca2+ concentration ([Ca2+]). Buffers typically slow [Ca2+] temporal dynamics and increase the effective volume of Ca2+ domains. Because fluctuations in [Ca2+] decrease in proportion to the square-root of a domain’s physical volume, one might conjecture that buffers decrease [Ca2+] fluctuations and, consequently, mitigate the significance of small domain volume concerning Ca2+ signaling. We test this hypothesis through mathematical and computational analysis of idealized buffer-containing domains and their stochastic dynamics during free Ca2+ influx with passive exchange of both Ca2+ and buffer with bulk concentrations. We derive Langevin equations for the fluctuating dynamics of Ca2+ and buffer and use these stochastic differential equations to determine the magnitude of [Ca2+] fluctuations for different buffer parameters (e.g., dissociation constant and concentration). In marked contrast to expectations based on a naive application of the principle of effective volume as employed in deterministic models of Ca2+ signaling, we find that mobile and rapid buffers typically increase the magnitude of domain [Ca2+] fluctuations during periods of Ca2+ influx, whereas stationary (immobile) Ca2+ buffers do not. Also contrary to expectations, we find that in the absence of Ca2+ influx, buffers influence the temporal characteristics, but not the magnitude, of [Ca2+] fluctuations. We derive an analytical formula describing the influence of rapid Ca2+ buffers on [Ca2+] fluctuations and, importantly, identify the stochastic analog of (deterministic) effective domain volume. Our results demonstrate that Ca2+ buffers alter the dynamics of [Ca2+] fluctuations in a nonintuitive manner. The finding that Ca2+ buffers do not suppress intrinsic domain [Ca2

  3. Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: pH buffering properties of cheese.

    PubMed

    Upreti, P; Bühlmann, P; Metzger, L E

    2006-03-01

    The pH buffering capacity of cheese is an important determinant of cheese pH. However, the effects of different constituents of cheese on its pH buffering capacity have not been fully clarified. The objective of this study was to characterize the chemical species and chemical equilibria that are responsible for the pH buffering properties of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), residual lactose (2.4 vs. 0.78%), and salt-to-moisture ratio (6.4 vs. 4.8%) were manufactured. The pH-titration curves for these cheeses were obtained by titrating cheese:water (1:39 wt/wt) dispersions with 1 N HCl, and backtitrating with 1 N NaOH. To understand the role of different chemical equilibria and the respective chemical species in controlling the pH of cheese, pH buffering was modeled mathematically. The 36 chemical species that were found to be relevant for modeling can be classified as cations (Na+, Ca2+, Mg2+), anions (phosphate, citrate, lactate), protein-bound amino acids with a side-chain pKa in the range of 3 to 9 (glutamate, histidine, serine phosphate, aspartate), metal ion complexes (phosphate, citrate, and lactate complexes of Na+, Ca2+, and Mg2+), and calcium phosphate precipitates. A set of 36 corresponding equations was solved to give the concentrations of all chemical species as a function of pH, allowing the prediction of buffering curves. Changes in the calculated species concentrations allowed the identification of the chemical species and chemical equilibria that dominate the pH buffering properties of cheese in different pH ranges. The model indicates that pH buffering in the pH range from 4.5 to 5.5 is predominantly due to a precipitate of Ca and phosphate, and the protonation equilibrium involving the side chains of protein-bound glutamate. In the literature, the precipitate is often referred to as amorphous colloidal calcium phosphate. A comparison of experimental data and model predictions shows

  4. Effect of short-term alkaline intervention on the performance of buffer-free single-chamber microbial fuel cell.

    PubMed

    Yang, Na; Ren, Yueping; Li, Xiufen; Wang, Xinhua

    2017-06-01

    Anolyte acidification is a drawback restricting the electricity generation performance of the buffer-free microbial fuel cells (MFC). In this paper, a small amount of alkali-treated anion exchange resin (AER) was placed in front of the anode in the KCl mediated single-chamber MFC to slowly release hydroxyl ions (OH - ) and neutralize the H + ions that are generated by the anodic reaction in two running cycles. This short-term alkaline intervention to the KCl anolyte has promoted the proliferation of electroactive Geobacter sp. and enhanced the self-buffering capacity of the KCl-AER-MFC. The pH of the KCl anolyte in the KCl-AER-MFC increased and became more stable in each running cycle compared with that of the KCl-MFC after the short-term alkaline intervention. The maximum power density (P max ) of the KCl-AER-MFC increased from 307.5mW·m -2 to 542.8mW·m -2 , slightly lower than that of the PBS-MFC (640.7mW·m -2 ). The coulombic efficiency (CE) of the KCl-AER-MFC increased from 54.1% to 61.2% which is already very close to that of the PBS-MFC (61.9%). The results in this paper indicate that short-term alkaline intervention to the anolyte is an effective strategy to further promote the performance of buffer-free MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.

    PubMed

    He, Guangli; Hu, Weihua; Li, Chang Ming

    2015-11-01

    We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Network-level fossil of a phosphate-free biosphere

    NASA Astrophysics Data System (ADS)

    Goldford, J.; Hartman, H.; Smith, T. F.; Segre, D.

    2017-12-01

    The emergence of a metabolism capable of sustaining cellular life on early Earth is a major unresolved enigma. Such a transition from prebiotic chemistry to an organized biochemical network seemingly required the concurrent availability of multiple molecular components. One of these components, phosphate, carries several essential functions in present-day metabolism, most notably energy transduction through ATP. However, the ubiquity of phosphate in living systems today stands in sharp contrast with its poor geochemical availability, prompting previous efforts to search for plausible prebiotic sources. The alternative, intriguing possibility is that primitive life did not require phosphate. Here we explore this possibility by determining the feasibility and functional potential of a phosphate-independent metabolism amongst the set of all known biochemical reactions in the biosphere. Surprisingly, we identified a cryptic phosphate-independent core metabolism that can be generated from simple sets of compounds thought to be available on early Earth. This network can support the biosynthesis of a broad category of key biomolecules. The enzymes contained in this network display a striking enrichment for dependence on iron-sulfur and transition metal coenzymes, a fundamental cornerstone of early biochemistry. We furthermore show that phosphate-independent precursors of present-day cofactors could have helped overcome thermodynamic energy barriers, enabling the production of a rich set of biomolecules, including 15 out of the 20 amino acids, vitamins, pentoses and nucleobases. Altogether, our results suggest that present-day biochemical networks may contain vestiges of a very ancient past, and that a complex thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system.

  7. Fluorophotometric measurement of the buffering action of human tears in vivo.

    PubMed

    Yamada, M; Kawai, M; Mochizuki, H; Hata, Y; Mashima, Y

    1998-10-01

    The buffering action of human tears is thought to be important to keep its pH constant. We measured the change in pH in the precorneal tear film in vivo when the acidic solution is challenged, using a fluorophotometric technique. Twelve eyes from 6 healthy subjects were entered in this study. Each subject was pretreated with either one drop of 0.4% oxybuprocaine for once (light anesthesia), three times (deep anesthesia), or none (controls). The measurement was initiated by instilling 20 microl of 0.067 M phosphate buffer at pH 5.5 containing 2 mM bis-carboxyethyl-carboxyfluorescein free acid, a pH sensitive dye, into the subject's eye. The pH was determined by the ratio of fluorescent intensities at two excitation wavelengths (490 and 430 nm). pH recovery time (PHRT) as defined by the time required for pH to reach 95% of pH at equilibrium was used for the marker of tear buffering action. Tear turnover rate was also determined using the fluorescent decay curve at 430 nm, which was independent of pH, but dependent on dye concentration. Immediately after the instillation, the pH value in the tear film was around 6.0-6.5 in all cases. The tear film rapidly became more alkaline, reaching its normal value in 2.3 +/- 0.5 min in untreated eyes. The pretreatment with 0.4% oxybuprocaine retarded the neutralization process. A single regression analysis revealed that the PHRT had a significant negative correlation with the tear turnover rate (r = -0.78). Our results suggest that the neutralization process of tears largely depends on the tear turnover rate. The buffering action of tears in vivo consists of the tear turnover as well as its chemical buffering capacity.

  8. Buffering Effect of Job Resources in the Relationship between Job Demands and Work-to-Private-Life Interference: A Study among Health-Care Workers.

    PubMed

    Viotti, Sara; Converso, Daniela

    2016-12-01

    The present study aims at investigating whether and how (1) job demands and job resources are associated with work-to-private-life interference (WLI) and (2) job resources moderate the relationship between job demands and WLI. Data were collected by a self-report questionnaire from three hospitals in Italy. The sample consisted of 889 health-care workers. All job demands (i.e., quantitative demands, disproportionate patient expectations, and verbal aggression) and job resources (i.e., job autonomy, support from superiors and colleagues, fairness, and organizational support), with the exception of skill discretion, were related to WLI. The effects of quantitative demands on WLI were moderated by support from superiors; fairness and organizational support moderate the effects of all job demands considered. Support from colleagues moderated only verbal aggression. Job autonomy did not buffer any job demands. The present study suggests that the work context has a central importance in relation to the experience of WLI among health-care workers. The results indicated that intervention in the work context may help to contain WLI. Such interventions would especially be aimed at improving the social climate within the unit and quality of the organizational process.

  9. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase.

    PubMed

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes' ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion.

  10. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase

    PubMed Central

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    Background It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. Materials and methods We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes’ ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. Results The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. Conclusion These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion. PMID:24333060

  11. Growth of crack-free GaN films on Si(111) substrate by using Al-rich AlN buffer layer

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Cong, Guangwei; Liu, Xianglin; Lu, Da-Cheng; Zhu, Qinsheng; Wang, Xiaohui; Wu, Jiejun; Wang, Zhanguo

    2004-11-01

    GaN epilayers were grown on Si(111) substrate by metalorganic chemical vapor deposition. By using the Al-rich AlN buffer which contains Al beyond stoichiometry, crack-free GaN epilayers with 1 μm thickness were obtained. Through x-ray diffraction (XRD) and secondary ion mass spectroscopy analyses, it was found that a lot of Al atoms have diffused into the under part of the GaN epilayer from the Al-rich AlN buffer, which results in the formation of an AlxGa1-xN layer at least with 300 nm thickness in the 1 μm thick GaN epilayer. The Al fraction x was estimated by XRD to be about 2.5%. X-ray photoelectron spectroscopy depth analysis was also applied to investigate the stoichiometry in the Al-rich buffer before GaN growth. It is suggested that the underlayer AlxGa1-xN originated from Al diffusion probably provides a compressive stress to the upper part of the GaN epilayer, which counterbalances a part of tensile stress in the GaN epilayer during cooling down and consequently reduces the cracks of the film effectively. The method using the Al diffusion effect to form a thick AlGaN layer is really feasible to achieve the crack-free GaN films and obtain a high crystal quality simultaneously.

  12. Labview virtual instruments for calcium buffer calculations.

    PubMed

    Reitz, Frederick B; Pollack, Gerald H

    2003-01-01

    Labview VIs based upon the calculator programs of Fabiato and Fabiato (J. Physiol. Paris 75 (1979) 463) are presented. The VIs comprise the necessary computations for the accurate preparation of multiple-metal buffers, for the back-calculation of buffer composition given known free metal concentrations and stability constants used, for the determination of free concentrations from a given buffer composition, and for the determination of apparent stability constants from absolute constants. As implemented, the VIs can concurrently account for up to three divalent metals, two monovalent metals and four ligands thereof, and the modular design of the VIs facilitates further extension of their capacity. As Labview VIs are inherently graphical, these VIs may serve as useful templates for those wishing to adapt this software to other platforms.

  13. Visualization of Buffer Capacity with 3-D "Topo" Surfaces: Buffer Ridges, Equivalence Point Canyons and Dilution Ramps

    ERIC Educational Resources Information Center

    Smith, Garon C.; Hossain, Md Mainul

    2016-01-01

    BufCap TOPOS is free software that generates 3-D topographical surfaces ("topos") for acid-base equilibrium studies. It portrays pH and buffer capacity behavior during titration and dilution procedures. Topo surfaces are created by plotting computed pH and buffer capacity values above a composition grid with volume of NaOH as the x axis…

  14. Buffer Therapy for Cancer

    PubMed Central

    Ribeiro, Maria de Lourdes C; Silva, Ariosto S.; Bailey, Kate M.; Kumar, Nagi B.; Sellers, Thomas A.; Gatenby, Robert A.; Ibrahim-Hashim, Arig; Gillies, Robert J.

    2013-01-01

    Oral administration of pH buffers can reduce the development of spontaneous and experimental metastases in mice, and has been proposed in clinical trials. Effectiveness of buffer therapy is likely to be affected by diet, which could contribute or interfere with the therapeutic alkalinizing effect. Little data on food pH buffering capacity was available. This study evaluated the pH and buffering capacity of different foods to guide prospective trials and test the effect of the same buffer (lysine) at two different ionization states. Food groups were derived from the Harvard Food Frequency Questionnaire. Foods were blended and pH titrated with acid from initial pH values until 4.0 to determine “buffering score”, in mmol H+/pH unit. A “buffering score” was derived as the mEq H+ consumed per serving size to lower from initial to a pH 4.0, the postprandial pH of the distal duodenum. To differentiate buffering effect from any metabolic byproduct effects, we compared the effects of oral lysine buffers prepared at either pH 10.0 or 8.4, which contain 2 and 1 free base amines, respectively. The effect of these on experimental metastases formation in mice following tail vein injection of PC-3M prostate cancer cells were monitored with in vivo bioluminescence. Carbohydrates and dairy products’ buffering score varied between 0.5 and 19. Fruits and vegetables showed a low to zero buffering score. The score of meats varied between 6 and 22. Wine and juices had negative scores. Among supplements, sodium bicarbonate and Tums® had the highest buffering capacities, with scores of 11 and 20 per serving size, respectively. The “de-buffered” lysine had a less pronounced effect of prevention of metastases compared to lysine at pH 10. This study has demonstrated the anti-cancer effects of buffer therapy and suggests foods that can contribute to or compete with this approach to manage cancer. PMID:24371544

  15. Optimizing buffering chemistry to maintain near neutral pH of broiler feed during pre-enrichment for Salmonella.

    PubMed

    Berrang, M E; Cosby, D E; Cox, N A; Cason, J A; Richardson, K E

    2015-12-01

    Salmonella is a human pathogen that can accompany live broilers to the slaughter plant, contaminating fully processed carcasses. Feed is one potential source of Salmonella to growing broilers. Monitoring feed for the presence of Salmonella is part of good agricultural practice. The first step in culturing feed for Salmonella (which may be at low numbers and sub-lethally stressed) is to add it to a pre-enrichment broth which is incubated for 24 h. During the course of pre-enrichment, extraneous bacteria metabolize carbohydrates in some feed and excrete acidic byproducts, causing the pH to drop dramatically. An acidic pre-enrichment pH can injure or kill Salmonella resulting in a failure to detect, even if it is present and available to infect chickens. The objective of this study was to test an array of buffering chemistries to prevent formation of an injurious acidic environment during pre-enrichment of feed in peptone water. Five grams of feed were added to 45 mL of peptone water buffered with carbonate, Tris pH 8, and phosphate buffering ingredients individually and in combination. Feed was subjected to a pre-enrichment at 35°C for 24 h; pH was measured at 0, 18, and 24 h. Standard phosphate buffering ingredients at concentrations up to 4 times the normal formulation were unable to fully prevent acidic conditions. Likewise, carbonate and Tris pH 8 were not fully effective. The combination of phosphate, carbonate, and Tris pH 8 was the most effective buffer tested. It is recommended that a highly buffered pre-enrichment broth be used to examine feed for the presence of Salmonella. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Cd-free buffer layer materials on Cu2ZnSn(SxSe1-x)4: Band alignments with ZnO, ZnS, and In2S3

    NASA Astrophysics Data System (ADS)

    Barkhouse, D. Aaron R.; Haight, Richard; Sakai, Noriyuki; Hiroi, Homare; Sugimoto, Hiroki; Mitzi, David B.

    2012-05-01

    The heterojunctions formed between Cu2ZnSn(SxSe1-x)4 (CZTSSe) and three Cd-free n-type buffers, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission and photovoltage spectroscopy. The electronic properties including the Fermi level location at the interface, band bending in the CZTSSe substrate, and valence and conduction band offsets were determined and correlated with device properties. We also describe a method for determining the band bending in the buffer layer and demonstrate this for the In2S3/CZTSSe system. The chemical bath deposited In2S3 buffer is found to have near optimal conduction band offset (0.15 eV), enabling the demonstration of Cd-free In2S3/CZTSSe solar cells with 7.6% power conversion efficiency.

  17. Role of histidine-related compounds to intracellular buffering in fish skeletal muscle.

    PubMed

    Abe, H; Dobson, G P; Hoeger, U; Parkhouse, W S

    1985-10-01

    Histidine-related compounds (HRC) were analyzed in fish skeletal muscle as a means of identifying their precise role in intracellular buffering. Fish muscle was used because it contains two functionally and spatially distinct fiber types, red and white. Two fish species, rainbow trout (Salmo gairdneri) and the Pacific blue marlin (Makaira nigricans), were studied because these species demonstrate widely different activity patterns. Marlin red and white muscle buffer capacity was two times higher than trout with white muscle, buffering being two times greater than red in both species. Buffer capacity was highest in the 6.5-7.5 pH range for all tissues, which corresponded to their high anserine levels. The titrated HRC buffering was greater than the observed HRC buffering, which suggested that not all HRC were available to absorb protons. The HRC contribution to total cellular buffering varied from a high of 62% for marlin white to a low of 7% for trout red. The other principal buffers were found to be phosphate and protein with taurine contributing within red muscle in the 7.0-8.0 pH range. HRC were found to be dominant in skeletal muscle buffering by principally accounting for the buffering capacity differences found between the species and fiber types.

  18. Comparative evaluation of the effects of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gum on salivary flow rate, pH and buffering capacity in children: An in vivo study.

    PubMed

    Hegde, Rahul J; Thakkar, Janhavi B

    2017-01-01

    This study aimed to compare and evaluate the changes in the salivary flow rate, pH, and buffering capacity before and after chewing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gums in children. Sixty children aged between 8 and 12 years were selected for the study. They were randomly divided into Group 1 (CPP-ACP chewing gum) and Group 2 (xylitol-containing chewing gum) comprising thirty children each. Unstimulated and stimulated saliva samples at 15 and 30 min interval were collected from all children. All the saliva samples were estimated for salivary flow rate, pH, and buffering capacity. Significant increase in salivary flow rate, pH, and buffering capacity from baseline to immediately after spitting the chewing gum was found in both the study groups. No significant difference was found between the two study groups with respect to salivary flow rate and pH. Intergroup comparison indicated a significant increase in salivary buffer capacity in Group 1 when compared to Group 2. Chewing gums containing CPP-ACP and xylitol can significantly increase the physiochemical properties of saliva. These physiochemical properties of saliva have a definite relation with caries activity in children.

  19. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  20. 31P-Nuclear Magnetic Resonance Determination of Phosphate Compartmentation in Leaves of Reproductive Soybeans (Glycine max L.) as Affected by Phosphate Nutrition 1

    PubMed Central

    Lauer, Michael J.; Blevins, Dale G.; Sierzputowska-Gracz, Hanna

    1989-01-01

    Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth. Images Figure 4 PMID:16666705

  1. ssDNA degradation along capillary electrophoresis process using a Tris buffer.

    PubMed

    Ric, Audrey; Ong-Meang, Varravaddheay; Poinsot, Verena; Martins-Froment, Nathalie; Chauvet, Fabien; Boutonnet, Audrey; Ginot, Frédéric; Ecochard, Vincent; Paquereau, Laurent; Couderc, François

    2017-06-01

    Tris-Acetate buffer is currently used in the selection and the characterization of ssDNA by capillary electrophoresis (CE). By applying high voltage, the migration of ionic species into the capillary generates a current that induces water electrolysis. This phenomenon is followed by the modification of the pH and the production of Tris derivatives. By injecting ten times by capillary electrophoresis ssDNA (50 nM), the whole oligonucleotide was degraded. In this paper, we will show that the Tris buffer in the running vials is modified along the electrophoretic process by electrochemical reactions. We also observed that the composition of the metal ions changes in the running buffer vials. This phenomenon, never described in CE, is important for fluorescent ssDNA analysis using Tris buffer. The oligonucleotides are degraded by electrochemically synthesized species (present in the running Tris vials) until it disappears, even if the separation buffer in the capillary is clean. To address these issues, we propose to use a sodium phosphate buffer that we demonstrate to be electrochemically inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spacecraft optical disk recorder memory buffer control

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1993-01-01

    This paper discusses the research completed under the NASA-ASEE summer faculty fellowship program. The project involves development of an Application Specific Integrated Circuit (ASIC) to be used as a Memory Buffer Controller (MBC) in the Spacecraft Optical Disk System (SODR). The SODR system has demanding capacity and data rate specifications requiring specialized electronics to meet processing demands. The system is being designed to support Gigabit transfer rates with Terabit storage capability. The complete SODR system is designed to exceed the capability of all existing mass storage systems today. The ASIC development for SODR consist of developing a 144 pin CMOS device to perform format conversion and data buffering. The final simulations of the MBC were completed during this summer's NASA-ASEE fellowship along with design preparations for fabrication to be performed by an ASIC manufacturer.

  3. Buffering the buffer

    Treesearch

    Leslie M. Reid; Sue Hilton

    1998-01-01

    Riparian buffer strips are a widely accepted tool for helping to sustain aquatic ecosystems and to protect downstream resources and values in forested areas, but controversy persists over how wide a buffer strip is necessary. The physical integrity of stream channels is expected to be sustained if the characteristics and rates of tree fall along buffered reaches are...

  4. On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers.

    PubMed

    Kielar, Charlotte; Xin, Yang; Shen, Boxuan; Kostiainen, Mauri A; Grundmeier, Guido; Linko, Veikko; Keller, Adrian

    2018-05-25

    DNA origami have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Here, we investigate DNA origami stability in low-Mg2+ buffers. DNA origami stability is found to crucially depend on the availability of residual Mg2+ ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg2+ ions from the DNA backbone and reducing the strength of the Mg2+-DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure-dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg2+ concentrations in the low-μM range. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Where should buffers go? modeling riparian habitat connectivity in northeast Kansas

    Treesearch

    Gary Bentrup; Todd Kellerman

    2004-01-01

    Through many funding programs, riparian buffers are being created on agricultural lands to address significant water quality problems. Society and landowners are demanding many other environmental and social services (e.g., wildlife habitat and income diversification) from this practice. Resource planners therefore need to design riparian buffer systems in the right...

  6. Increasing synthetic serum substitute (SSS) concentrations in P1 glucose/phosphate-free medium improves implantation rate: a comparative study.

    PubMed

    Ben-Yosef, D; Yovel, I; Schwartz, T; Azem, F; Lessing, J B; Amit, A

    2001-11-01

    To assess the comparative efficacy of IVF medium (MediCult, with 5.2 mM glucose) and a glucose/phosphate-free medium, P1 (Irvine Scientific), and to investigate the influence of increasing the serum supplementation (synthetic serum substitute; SSS; Irvine Scientific) to P1 on embryo development and implantation. Patients were randomly assigned to IVF medium (Group 1, cycles n = 172) or P1 supplemented with 10% SSS (Group 2, cycles n = 229) according to the medium scheduled for use on the day of oocyte retrieval. Another 555 IVF consequent cycles (Group 3) were performed using increased SSS concentrations (20%) in P1 medium. In this large series of IVF cycles, we herein demonstrate that significantly higher pregnancy and implantation rates were found when embryos were cultured in glucose/phosphate-free medium P1 supplemented with 20% SSS compared to supplementation with the lower SSS concentration and with IVF medium.

  7. Test Results for Caustic Demand Measurements on Tank 241-AX-101 and Tank 241-AX-103 Archive Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Stephanie R.; Bolling, Stacie D.

    Caustic demand testing is used to determine the necessary amount of caustic required to neutralize species present in the Hanford tank waste and obtain a target molarity of free hydroxide for tank corrosion control. The presence and quantity of hydroxide-consuming analytes are just as important in determining the caustic demand as is the amount of free hydroxide present. No single data point can accurately predict whether a satisfactory hydroxide level is being met, as it is dependent on multiple factors (e.g., free hydroxide, buffers, amphoteric metal hydroxides, bicarbonate, etc.). This enclosure contains the caustic demand, scanning electron microscopy (SEM), polarizedmore » light microscopy (PLM), and X-ray diffraction (XRD) analysis for the tank 241-AX-101 (AX-101) and 241-AX-103 (AX-103) samples. The work was completed to fulfill a customer request outlined in the test plan, WRPS-1505529, “Test Plan and Procedure for Caustic Demand Testing on Tank 241-AX-101 and Tank 241-AX-103 Archive Samples.” The work results will provide a baseline to support planned retrieval of AX-101 and AX-103.« less

  8. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications.

    PubMed

    el-Briak, Hasna; Durand, Denis; Nurit, Josiane; Munier, Sylvie; Pauvert, Bernard; Boudeville, Phillipe

    2002-01-01

    By mixing CaHPO(4) x 2H(2)O (DCPD) and CaO with water or sodium phosphate buffers as liquid phase, a calcium phosphate cement was obtained. Its physical and mechanical properties, such as compressive strength, initial and final setting times, cohesion time, dough time, swelling time, dimensional and thermal behavior, and injectability were investigated by varying different parameters such as liquid to powder (L/P) ratio (0.35-0.7 ml g(-1)), molar calcium to phosphate (Ca/P) ratio (1.67-2.5) and the pH (4, 7, and 9) and the concentration (0-1 M) of the sodium phosphate buffer. The best results were obtained with the pH 7 sodium phosphate buffer at the concentration of 0.75 M. With this liquid phase, physical and mechanical properties depended on the Ca/P and L/P ratios, varying from 3 to 11 MPa (compressive strength), 6 to 10 min (initial setting time), 11 to 15 min (final setting time), 15 to 30 min (swelling time), 7 to 20 min (time of 100% injectability). The dough or working time was over 16 min. This cement expanded during its setting (1.2-5 % according to Ca/P and L/P ratios); this would allow a tight filling. Given the mechanical and rheological properties of this new DCPD/CaO-based cement, its use as root canal sealing material can be considered as classical calcium hydroxide or ZnO/eugenol-based pastes, without or with a gutta-percha point. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 447-453, 2002

  9. The role of SiGe buffer in growth and relaxation of Ge on free-standing Si(001) nano-pillars.

    PubMed

    Zaumseil, P; Kozlowski, G; Schubert, M A; Yamamoto, Y; Bauer, J; Schülli, T U; Tillack, B; Schroeder, T

    2012-09-07

    We study the growth and relaxation processes of Ge nano-clusters selectively grown by chemical vapor deposition on free-standing 90 nm wide Si(001) nano-pillars with a thin Si(0.23)Ge(0.77) buffer layer. We found that the dome-shaped SiGe layer with a height of about 28 nm as well as the Ge dot deposited on top of it partially relaxes, mainly by elastic lattice bending. The Si nano-pillar shows a clear compliance behavior-an elastic response of the substrate on the growing film-with the tensile strained top part of the pillar. Additional annealing at 800 °C leads to the generation of misfit dislocation and reduces the compliance effect significantly. This example demonstrates that despite the compressive strain generated due to the surrounding SiO(2) growth mask it is possible to realize an overall tensile strain in the Si nano-pillar and following a compliant substrate effect by using a SiGe buffer layer. We further show that the SiGe buffer is able to improve the structural quality of the Ge nano-dot.

  10. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  11. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  12. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  13. Pyrroloquinoline quinone (PQQ) is reduced to pyrroloquinoline quinol (PQQH2) by vitamin C, and PQQH2 produced is recycled to PQQ by air oxidation in buffer solution at pH 7.4.

    PubMed

    Mukai, Kazuo; Ouchi, Aya; Nagaoka, Shin-ichi; Nakano, Masahiko; Ikemoto, Kazuto

    2016-01-01

    Measurements of the reaction of sodium salt of pyrroloquinoline quinone (PQQNa2) with vitamin C (Vit C) were performed in phosphate-buffered solution (pH 7.4) at 25 °C under nitrogen atmosphere, using UV-vis spectrophotometry. The absorption spectrum of PQQNa2 decreased in intensity due to the reaction with Vit C and was changed to that of pyrroloquinoline quinol (PQQH2, a reduced form of PQQ). One molecule of PQQ was reduced by two molecules of Vit C producing a molecule of PQQH2 in the buffer solution. PQQH2, thus produced, was recycled to PQQ due to air oxidation. PQQ and Vit C coexist in many biological systems, such as vegetables, fruits, as well as in human tissues. The results obtained suggest that PQQ is reduced by Vit C and functions as an antioxidant in biological systems, because it has been reported that PQQH2 shows very high free-radical scavenging and singlet-oxygen quenching activities in buffer solutions.

  14. Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions?

    PubMed

    Khachatryan, Lavrent; Dellinger, Barry

    2011-11-01

    A chemical spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was employed to measure the production of hydroxyl radical (·OH) in aqueous suspensions of 5% Cu(II)O/silica (3.9% Cu) particles containing environmentally persistent free radicals (EPFRs) of 2-monochlorophenol (2-MCP). The results indicate: (1) a significant differences in accumulated DMPO-OH adducts between EPFR containing particles and non-EPFR control samples, (2) a strong correlation between the concentration of DMPO-OH adducts and EPFRs per gram of particles, and (3) a slow, constant growth of DMPO-OH concentration over a period of days in solution containing 50 μg/mL EPFRs particles + DMPO (150 mM) + reagent balanced by 200 μL phosphate buffered (pH = 7.4) saline. However, failure to form secondary radicals using standard scavengers, such as ethanol, dimethylsulfoxide, sodium formate, and sodium azide, suggests free hydroxyl radicals may not have been generated in solution. This suggests surface-bound, rather than free, hydroxyl radicals were generated by a surface catalyzed-redox cycle involving both the EPFRs and Cu(II)O. Toxicological studies clearly indicate these bound free radicals promote various types of cardiovascular and pulmonary disease normally attributed to unbound free radicals; however, the exact chemical mechanism deserves further study in light of the implication of formation of bound, rather than free, hydroxyl radicals.

  15. Microfluidic and Label-Free Multi-Immunosensors Based on Carbon Nanotube Microelectrodes

    NASA Astrophysics Data System (ADS)

    Tsujita, Yuichi; Maehashi, Kenzo; Matsumoto, Kazuhiko; Chikae, Miyuki; Takamura, Yuzuru; Tamiya, Eiichi

    2009-06-01

    We fabricated microfluidic and label-free multi-immunosensors by the integration of carbon nanotube (CNT)-arrayed electrodes and microchannels with pneumatic micropumps made of poly(dimethylsiloxane). In the microfluidic systems, four kinds of sample solutions were transported from each liquid inlet to microchannels using six pneumatic micropumps. As a result, two kinds of antibodies were immobilized onto different CNT electrodes using the microfluidic systems. Next, two kinds of cancer markers, prostate specific antigen and human chorionic gonadotropin in phosphate buffer solution, were simultaneously detected by differential pulse voltammetry. Therefore, microfludic multi-immunosensors based on CNT electrodes and pneumatic micropumps are useful for the development of multiplex hand-held biosensors.

  16. Knot Security of 5 Metric (USP 2) Sutures: Influence of Knotting Technique, Suture Material, and Incubation Time for 14 and 28 Days in Phosphate Buffered Saline and Inflamed Equine Peritoneal Fluid.

    PubMed

    Sanders, Ruth E; Kearney, Clodagh M; Buckley, Conor T; Jenner, Florien; Brama, Pieter A

    2015-08-01

    To evaluate knot security for 3 knot types created in 3 commonly used 5 metric suture materials incubated in physiological and pathological fluids. In vitro mechanical study. Knotted suture loops (n = 5/group). Loops of 3 different suture materials (glycolide/lactide copolymer; polyglactin 910; polydioxanone) were created around a 20 mm rod using 3 knot types (square [SQ], surgeon's [SK], and triple knot [TK]) and were tested to failure in distraction (6 mm/min) after tying (day 0) and after being incubated for 14 and 28 days in phosphate buffered saline (PBS) or inflamed peritoneal fluid. Failure load (N) and mode were recorded and compared. For polydioxanone, significant differences in force to knot failure were found between SQ and SK/TK but not between SK and TK. The force required to break all constructs increased after incubation in phosphate buffered saline (PBS). With glycolide/lactide copolymer no differences in force to knot failure were observed. With polyglactin 910, a significant difference between SQ and TK was observed, which was not seen between the other knot types. Incubation in inflamed peritoneal fluid caused a larger and more rapid decrease in force required to cause knot failure than incubation in PBS. Mechanical properties of suture materials have significant effects on knot security. For polydioxanone, SQ is insufficient to create a secure knot. Additional wraps above a SK confer extra stability in some materials, but this increase may not be clinically relevant or justifiable. Glycolide/lactide copolymer had excellent knot security. © Copyright 2015 by The American College of Veterinary Surgeons.

  17. The influence of Ca²⁺ buffers on free [Ca²⁺] fluctuations and the effective volume of Ca²⁺ microdomains.

    PubMed

    Weinberg, Seth H; Smith, Gregory D

    2014-06-17

    Intracellular calcium (Ca(2+)) plays a significant role in many cell signaling pathways, some of which are localized to spatially restricted microdomains. Ca(2+) binding proteins (Ca(2+) buffers) play an important role in regulating Ca(2+) concentration ([Ca(2+)]). Buffers typically slow [Ca(2+)] temporal dynamics and increase the effective volume of Ca(2+) domains. Because fluctuations in [Ca(2+)] decrease in proportion to the square-root of a domain's physical volume, one might conjecture that buffers decrease [Ca(2+)] fluctuations and, consequently, mitigate the significance of small domain volume concerning Ca(2+) signaling. We test this hypothesis through mathematical and computational analysis of idealized buffer-containing domains and their stochastic dynamics during free Ca(2+) influx with passive exchange of both Ca(2+) and buffer with bulk concentrations. We derive Langevin equations for the fluctuating dynamics of Ca(2+) and buffer and use these stochastic differential equations to determine the magnitude of [Ca(2+)] fluctuations for different buffer parameters (e.g., dissociation constant and concentration). In marked contrast to expectations based on a naive application of the principle of effective volume as employed in deterministic models of Ca(2+) signaling, we find that mobile and rapid buffers typically increase the magnitude of domain [Ca(2+)] fluctuations during periods of Ca(2+) influx, whereas stationary (immobile) Ca(2+) buffers do not. Also contrary to expectations, we find that in the absence of Ca(2+) influx, buffers influence the temporal characteristics, but not the magnitude, of [Ca(2+)] fluctuations. We derive an analytical formula describing the influence of rapid Ca(2+) buffers on [Ca(2+)] fluctuations and, importantly, identify the stochastic analog of (deterministic) effective domain volume. Our results demonstrate that Ca(2+) buffers alter the dynamics of [Ca(2+)] fluctuations in a nonintuitive manner. The finding that Ca(2

  18. The electrochemical Evaluation of a Zr-Based Bulk Metallic Glass in a Phosphate-Buffered Saline Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, M. L.; Buchanan, R. A.; Leon, R. V.

    2005-01-01

    Bulk metallic glasses (BMGs) represent an emerging class of materials with an amorphous structure and a unique combination of properties. The objectives of this investigation were to define the electrochemical behavior of a specific Zr-based BMG alloy in a physiologically relevant environment and to compare these properties to standard, crystalline biomaterials as well as other Zr-based BMG compositions. Cyclic-anodic-polarization studies were conducted with a Zr{sub 52.5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10.0}Ti{sub 5.0} (at %) BMG in a phosphate-buffered saline electrolyte with a physiologically relevant oxygen content at 37 C. The results were compared to three common, crystalline biomaterials: CoCrMo, 316L stainless steel,more » and Ti-6Al-4V. The BMG alloy was found to have a lower corrosion penetration rate (CPR), as compared to the 316L stainless steel, and an equivalent CPR, as compared to the CoCrMo and Ti-6Al-4V alloys. Furthermore, the BMG alloy demonstrated better localized corrosion resistance than the 316L stainless steel. However, the localized corrosion resistance of the BMG alloy was not as high as those of the CoCrMo and Ti-6Al-4V alloys in the tested environment. The excellent electrochemical properties demonstrated by the BMG alloy are combined with a low modulus and unparalleled strength. This unique combination of properties dramatically demonstrates the potential for amorphous alloys as a new generation of biomaterials.« less

  19. Accumulative job demands and support for strength use: Fine-tuning the job demands-resources model using conservation of resources theory.

    PubMed

    van Woerkom, Marianne; Bakker, Arnold B; Nishii, Lisa H

    2016-01-01

    Absenteeism associated with accumulated job demands is a ubiquitous problem. We build on prior research on the benefits of counteracting job demands with resources by focusing on a still untapped resource for buffering job demands-that of strengths use. We test the idea that employees who are actively encouraged to utilize their personal strengths on the job are better positioned to cope with job demands. Based on conservation of resources (COR) theory, we hypothesized that job demands can accumulate and together have an exacerbating effect on company registered absenteeism. In addition, using job demands-resources theory, we hypothesized that perceived organizational support for strengths use can buffer the impact of separate and combined job demands (workload and emotional demands) on absenteeism. Our sample consisted of 832 employees from 96 departments (response rate = 40.3%) of a Dutch mental health care organization. Results of multilevel analyses indicated that high levels of workload strengthen the positive relationship between emotional demands and absenteeism and that support for strength use interacted with workload and emotional job demands in the predicted way. Moreover, workload, emotional job demands, and strengths use interacted to predict absenteeism. Strengths use support reduced the level of absenteeism of employees who experienced both high workload and high emotional demands. We conclude that providing strengths use support to employees offers organizations a tool to reduce absenteeism, even when it is difficult to redesign job demands. (c) 2016 APA, all rights reserved).

  20. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 2. Optimization of buffer and ionic strength using a full factorial experimental design.

    PubMed

    L'Hocine, Lamia; Pitre, Mélanie

    2016-03-01

    A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  1. Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle

    PubMed Central

    Royer, Leandro; Ríos, Eduardo

    2009-01-01

    Since its discovery in 1971, calsequestrin has been recognized as the main Ca2+ binding protein inside the sarcoplasmic reticulum (SR), the organelle that stores and upon demand mobilizes Ca2+ for contractile activation of muscle. This article reviews the potential roles of calsequestrin in excitation–contraction coupling of skeletal muscle. It first considers the quantitative demands for a structure that binds Ca2+ inside the SR in view of the amounts of the ion that must be mobilized to elicit muscle contraction. It briefly discusses existing evidence, largely gathered in cardiac muscle, of two roles for calsequestrin: as Ca2+ reservoir and as modulator of the activity of Ca2+ release channels, and then considers the results of an incipient body of work that manipulates the cellular endowment of calsequestrin. The observations include evidence that both the Ca2+ buffering capacity of calsequestrin in solution and that of the SR in intact cells decay as the free Ca2+ concentration is lowered. Together with puzzling observations of increase of Ca2+ inside the SR, in cells or vesicular fractions, upon activation of Ca2+ release, this is interpreted as evidence that the Ca2+ buffering in the SR is non-linear, and is optimized for support of Ca2+ release at the physiological levels of SR Ca2+ concentration. Such non-linearity of buffering is qualitatively explained by a speculation that puts together ideas first proposed by others. The speculation pictures calsequestrin polymers as ‘wires’ that both bind Ca2+ and efficiently deliver it near the release channels. In spite of the kinetic changes, the functional studies reveal that cells devoid of calsequestrin are still capable of releasing large amounts of Ca2+ into the myoplasm, consistent with the long term viability and apparent good health of mice engineered for calsequestrin ablation. The experiments therefore suggest that other molecules are capable of providing sites for reversible binding of large amounts

  2. Synthesis of High-Load, Hybrid Silica-Immobilized Heterocyclic Benzyl Phosphate (Si–OHBP) and Triazolyl Phosphate (Si–OHTP) Alkylating Reagents

    PubMed Central

    2016-01-01

    The development of new ROMP-derived silica-immobilized heterocyclic phosphate reagents and their application in purification-free protocols is reported. Grafting of norbornenyl norbornenyl-functionalized (Nb-tagged) silica particles with functionalized Nb-tagged heterocyclic phosphate monomers efficiently yield high-load, hybrid silica-immobilized oligomeric heterobenzyl phosphates (Si–OHBP) and heterotriazolyl phosphates (Si–OHTP) as efficient alkylation agents. Applications of these reagents for the diversification of N-, O-, and S-nucleophilic species, for efficient heterobenzylation and hetero(triazolyl)methylation have been validated. PMID:27300761

  3. LPE growth of crack-free PbSe layers on Si(100) using MBE-Grown PbSe/BaF2CaF2 buffer layers

    NASA Astrophysics Data System (ADS)

    Strecker, B. N.; McCann, P. J.; Fang, X. M.; Hauenstein, R. J.; O'Steen, M.; Johnson, M. B.

    1997-05-01

    Crack-free PbSe on (100)-oriented Si has been obtained by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. MBE is employed first to grow a PbSe/BaF2/CaF2 buffer structure on the (100)-oriented Si. A 2.5 μm thick PbSe layer is then grown by LPE. The LPE-grown PbSe displays excellent surface morphology and is continuous over the entire 8×8 mm2 area of growth. This result is surprising because of the large mismatch in thermal expansion coefficients between PbSe and Si. Previous attempts to grow crack-free PbSe by MBE alone using similar buffer structures on (100)-oriented Si have been unsuccessful. It is speculated that the large concentration of Se vacancies in the LPE-grown PbSe layer may allow dislocation climb along higher order slip planes, providing strain relaxation.

  4. Innovative Microsystems: Novel Nanostructures to Capture Circulating Breast Cancer Cells

    DTIC Science & Technology

    2009-05-01

    temperature to promote a Schiff-base reaction. Recombinant protein G from E . coli (Zymed Lab Inc.) 50 μg/ml in Ca- and Mg-free phosphate-buffered...recombinant protein G from E . coli (Zymed Lab Inc.), at a concentration of 50 mg ml1 in 1 PBS, is incubated on the activated surface overnight at 4 C...reaction. Recombinant protein G from E . coli (Zymed Lab Inc.) 50 μg/ml in Ca- and Mg-free phosphate-buffered saline (CMF-PBS), is incubated on the

  5. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    PubMed

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  6. Metal sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with the substrate ribulose 5-phosphate.

    PubMed

    Steinbacher, Stefan; Schiffmann, Susanne; Bacher, Adelbert; Fischer, Markus

    2004-07-01

    The crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with the substrate ribulose 5-phosphate at a dimetal centre has recently been determined at 1.7 A resolution. The enzyme converts ribulose 5-phosphate into 3,4-dihydroxy-2-butanone 4-phosphate, while its C4 atom is released as formate. The resulting four-carbon body supplies all eight C atoms for the xylene moiety of riboflavin. Three of the four hydroxyl groups of ribulose 5-phosphate were coordinated by the metal ions. Based on crystallographic refinement, the metals were assigned as zinc and calcium, which were present in the crystallization buffer. Neither metal supports the enzymatic reaction. In the present study, the correctness of this assignment is assessed using anomalous diffraction data collected at the high-energy side of the zinc absorption edge (lambda = 1.2823 A). Only the three tentative zinc ions give strong peaks in an anomalous difference Fourier map (>20sigma), whereas the four tentative calcium ions do not show anomalous signals above the noise level. These results confirm the initial assignment. In addition, the resolution was improved to 1.55 A.

  7. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review.

    PubMed

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.

  8. Secular decline of seawater calcium increases seawater buffering and pH

    NASA Astrophysics Data System (ADS)

    Hain, M.; Sigman, D. M.; Higgins, J. A.; Haug, G. H.

    2015-12-01

    Reconstructed changes in seawater calcium and magnesium concentration ([Ca2+], [Mg2+]) predictably affect the ocean's acid/base and carbon chemistry. Yet inaccurate formulations of chemical equilibrium "constants" are currently in use to account for these changes. Here we develop an efficient implementation of the MIAMI Ionic Interaction Model (Millero and Pierrot, 1998) to predict all chemical equilibrium constants required for carbon chemistry calculations under variable [Ca2+] and [Mg2+] (Hain et al., 2015). We investigate the impact of [Ca2+] and [Mg2+] on the relationships among the ocean's pH, CO2, dissolved inorganic carbon (DIC), saturation state of CaCO3 (Ω), and buffer capacity. Increasing [Ca2+] and/or [Mg2+] enhances "ion pairing," which increases seawater buffering by increasing the concentration ratio of total to "free" (uncomplexed) carbonate ion. An increase in [Ca2+], however, also causes a decline in carbonate ion to maintain a given Ω, thereby overwhelming the ion pairing effect and decreasing seawater buffering. Given the reconstructions of Eocene [Ca2+] and [Mg2+] ([Ca2+]~20mM; [Mg2+]~30 mM), Eocene seawater would have required essentially the same DIC as today to simultaneously explain a similar-to-modern Ω and the estimated Eocene atmospheric CO2 of ~1000 ppm. During the Cretaceous, at ~4 times modern [Ca2+], ocean buffering would have been at a minimum. Overall, during times of high seawater [Ca2+], CaCO3 saturation, pH, and atmospheric CO2 were more susceptible to perturbations of the global carbon cycle. For example, given both Eocene and Cretaceous seawater [Ca2+] and [Mg2+], a doubling of atmospheric CO2 would require less carbon addition to the ocean/atmosphere system than under modern seawater composition. Moreover, increase in seawater buffering since the Cretaceous may have been a driver of evolution by raising energetic demands of biologically controlled calcification and CO2 concentration mechanisms that aid photosynthesis.

  9. Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions

    NASA Astrophysics Data System (ADS)

    Tao, Yinglei; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.

  10. [High performance liquid chromatogram (HPLC) determination of adenosine phosphates in rat myocardium].

    PubMed

    Miao, Yu; Wang, Cheng-long; Yin, Hui-jun; Shi, Da-zhuo; Chen, Ke-ji

    2005-04-18

    To establish method for the quantitative determination of adenosine phosphates in rat myocardium by optimized high performance liquid chromatogram (HPLC). ODS HYPERSIL C(18) column and a mobile phase of 50 mmol/L tribasic potassium phosphate buffer solution (pH 6.5), with UV detector at 254 nm were used. The average recovery rates of myocardial adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) were 99%-107%, 96%-104% and 95%-119%, respectively; relative standard deviations (RSDs) of within-day and between-days were less than 1.5% and 5.1%, respectively. The method is simple, rapid and accurate, and can be used to analyse the adenosine phosphates in myocardium.

  11. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.

    PubMed

    Sarciaux, J M; Mansour, S; Hageman, M J; Nail, S L

    1999-12-01

    The objective of this study was to identify critical formulation and processing variables affecting aggregation of bovine IgG during freeze-drying when no lyoprotective solute is used. Parameters examined were phosphate buffer concentration and counterion (Na versus K phosphate), added salts, cooling rate, IgG concentration, residual moisture level, and presence of a surfactant. No soluble aggregates were detected in any formulation after either freezing/thawing or freeze-drying. No insoluble aggregates were detected in any formulation after freezing, but insoluble aggregate levels were always detectable after freeze-drying. The data are consistent with a mechanism of aggregate formation involving denaturation of IgG at the ice/freeze-concentrate interface which is reversible upon freeze-thawing, but becomes irreversible after freeze-drying and reconstitution. Rapid cooling (by quenching in liquid nitrogen) results in more and larger aggregates than slow cooling on the shelf of the freeze-dryer. This observation is consistent with surface area measurements and environmental electron microscopic data showing a higher surface area of freeze-dried solids after fast cooling. Annealing of rapidly cooled solutions results in significantly less aggregation in reconstituted freeze-dried solids than in nonannealed controls, with a corresponding decrease in specific surface area of the freeze-dried, annealed system. Increasing the concentration of IgG significantly improves the stability of IgG against freeze-drying-induced aggregation, which may be explained by a smaller percentage of the protein residing at the ice/freeze-concentrate interface as IgG concentration is increased. A sodium phosphate buffer system consistently results in more turbid reconstituted solids than a potassium phosphate buffer system at the same concentration, but this effect is not attributable to a pH shift during freezing. Added salts such as NaCl or KCl contribute markedly to insoluble aggregate

  12. Salt Stability - The Effect of pHmax on Salt to Free Base Conversion.

    PubMed

    Hsieh, Yi-Ling; Merritt, Jeremy M; Yu, Weili; Taylor, Lynne S

    2015-09-01

    The aim of this study was to investigate how the disproportionation process can be impacted by the properties of the salt, specifically pHmax. Five miconazole salts and four sertraline salts were selected for this study. The extent of conversion was quantified using Raman spectroscopy. A mathematical model was utilized to estimate the theoretical amount of conversion. A trend was observed that for a given series of salts of a particular basic compound (both sertraline and miconazole are bases), the extent of disproportionation increases as pHmax decreases. Miconazole phosphate monohydrate and sertraline mesylate, although exhibiting significantly different pHmax values (more than 2 units apart), underwent a similar extent of disproportionation, which may be attributed to the lower buffering capacity of sertraline salts. This work shows that the disproportionation tendency can be influenced by pHmax and buffering capacity and thus highlights the importance of selecting the appropriate salt form during the screening process in order to avoid salt-to-free form conversion.

  13. Feasibility of a novel low-volume and sodium phosphate-free bowel preparation regimen for colon capsule endoscopy.

    PubMed

    Zhou, Jieqiong; Tang, Xiaowei; Wang, Jing; Chen, Zhenyu; Wang, Xinying; Jiang, Bo

    2017-08-01

    Bowel preparation regimens for colon capsule endoscopy are not yet standardized since they are not well optimized. The aim of the present study was to evaluate the feasibility of a novel low-volume and sodium phosphate-free bowel preparation regimen for colon capsule endoscopy. A total of 31 patients were prospectively enrolled. In the novel regimen, on the day prior to examination, a low-fiber diet was permitted, 5 mg mosapride citrate was administered twice (1 h prior to lunch and supper) and 1 l polyethylene glycol was administered in the evening. On the day of the examination, an additional 1 l polyethylene glycol, 5 mg mosapride citrate and 200 mg simethicone were administered before capsule ingestion. Polyethylene glycol booster (0.5 l) was administered twice, at 1 and 4 h following capsule ingestion. Colon cleansing levels, ileocecal valve transit time and completion rate were evaluated. A total of 29 patients were included in the final analysis, 90% of whom achieved adequate preparation of the overall colon. Ileocecal valve transit time was 2.35±0.82 h and completion rate was 79.3%. The results revealed that the novel low-volume and sodium phosphate-free bowel preparation regimen for colon capsule endoscopy was feasible, with adequate colon cleansing and completion rates, and has the potential to be used as an alternative regimen.

  14. High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Daquan; State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138

    We experimentally demonstrate a label-free sensor based on nanoslotted parallel quadrabeam photonic crystal cavity (NPQC). The NPQC possesses both high sensitivity and high Q-factor. We achieved sensitivity (S) of 451 nm/refractive index unit and Q-factor >7000 in water at telecom wavelength range, featuring a sensor figure of merit >2000, an order of magnitude improvement over the previous photonic crystal sensors. In addition, we measured the streptavidin-biotin binding affinity and detected 10 ag/mL concentrated streptavidin in the phosphate buffered saline solution.

  15. Final report of the key comparison APMP.QM-K91: APMP comparison on pH measurement of phthalate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Ketrin, Rosi; Nuryatini; Thanh, Ngo Huy; Truong Chinh, Nguyen; Vospelova, Alena; Bastkowski, Frank; Sander, Beatrice; Matzke, Jessica; Prokunin, Sergey; Frolov, Dmitry; Aprelev, Alexey; Dobrovolskiy, Vladimir; Uysal, Emrah; Liv, Lokman; Velina Lara-Manzano, Judith; Montero-Ruiz, Jazmin; Ortiz-Aparicio, JosÉ Luis; Ticona Canaza, Galia; Anuar Mohd Amin, Khirul; Abd Kadir, Haslina; Bakovets, Nickolay; Wong, Siu-Kay; Lam, Wai-Hing

    2017-01-01

    The APMP.QM-K91 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phthalate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan at the APMP-TCQM meeting held September 22-23, 2014. After approval by TCQM, the comparison has been conducted by NMIJ. The comparison is a key comparison following CCQM-K91. The comparison material was a phthalate buffer of pH around 4.0 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the third APMP key comparison on pH measurement and the fifth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006, APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011 and APMP.QM-K19/APMP.QM-P25 (a borate buffer) in 2013-2014. The results can be used further by any participant to support its CMC claim at least for a phthalate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  16. Exposure to buffer solution alters tendon hydration and mechanics.

    PubMed

    Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M

    2017-08-16

    A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The Effects of pH on the Growth and Aspect Ratio of Chicken Egg White Lysozyme Crystals Prepared in Different Buffers

    NASA Technical Reports Server (NTRS)

    Gibson, U. J.; Horrell, E. E.; Kou, Y.; Pusey, Marc

    2000-01-01

    We have measured the nucleation and aspect ratio of CEWL crystals grown by vapor diffusion in acetate, butyrate, carbonate, succinate, and phosphate buffers in a range of pH spanning the pK(sub a) of these buffers. The nucleation numbers drop off significantly in the vicinity of pK(sub a) for each of the buffers except the phosphate system, in which we used only the pH range around the second titration point(pK2). There is a concomitant increase in the sizes of the crystals. Some typical nucleation number results are shown. These data support and extend other observations. In addition, we have examined changes in aspect ratio which accompany the suppression of nucleation within each buffer system. The length of the face in the [001] direction was measured, and compared to the width of the (110) face in the [110] type directions. We find that while the aspect ratio of the crystals is affected by pH, it is dominated by a correlation with the size of the crystals. Small crystals are longer in the [0011 direction than crystals that are larger (higher pH within a buffer system). This relationship is found to hold independent of the choice of buffer. These results are consistent with those of Judge et al, who used a batch process which resulted in uniform sizing of crystals at each pH. In these experiments, we specifically avoid agitating the protein/salt buffer mixture when combining the two. This permits the formation of a range of sizes at a given pH. The results for a .05 M acetate 5% NaCl buffer are also shown. We will discuss these results in light of a growth model.

  18. High Job Demands, Still Engaged and Not Burned Out? The Role of Job Crafting.

    PubMed

    Hakanen, Jari J; Seppälä, Piia; Peeters, Maria C W

    2017-08-01

    Traditionally, employee well-being has been considered as resulting from decent working conditions arranged by the organization. Much less is known about whether employees themselves can make self-initiated changes to their work, i.e., craft their jobs, in order to stay well, even in highly demanding work situations. The aim of this study was to use the job demands-resources (JD-R model) to investigate whether job crafting buffers the negative impacts of four types of job demands (workload, emotional dissonance, work contents, and physical demands) on burnout and work engagement. A questionnaire study was designed to examine the buffering role of job crafting among 470 Finnish dentists. All in all, 11 out of 16 possible interaction effects of job demands and job crafting on employee well-being were significant. Job crafting particularly buffered the negative effects of job demands on burnout (7/8 significant interactions) and to a somewhat lesser extent also on work engagement (4/8 significant interactions). Applying job crafting techniques appeared to be particularly effective in mitigating the negative effects of quantitative workload (4/4 significant interactions). By demonstrating that job crafting can also buffer the negative impacts of high job demands on employee well-being, this study contributed to the JD-R model as it suggests that job crafting may even be possible under high work demands, and not only in resourceful jobs, as most previous studies have indicated. In addition to the top-down initiatives for improving employee well-being, bottom-up approaches such as job crafting may also be efficient in preventing burnout and enhancing work engagement.

  19. Report of the key comparison APMP.QM-K19. APMP comparison on pH measurement of borate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Obromsook, Krairerk; Tangpaisarnkul, Nongluck; Rodruangthum, Patumporn; Wong, Siu-Kay; Lam, Wai-Hing; Zakaria, Osman; Anuar Mohd. Amin, Khirul; Thanh, Ngo Huy; Máriássy, Michal; Vyskocil, Leos; Hankova, Zuzana; Fisicaro, Paola; Stoica, Daniela; Singh, Nahar; Soni, Daya; Ticona Canaza, Galia; Kutovoy, Viatcheslav; Barbieri Gonzaga, Fabiano; Dias, Júlio Cesar; Vospelova, Alena; Bakovets, Nickolay; Zhanasbayeva, Bibinur

    2015-01-01

    The APMP.QM-K19 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a borate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan (NMIJ) and the National Institute of Metrology (Thailand) (NIMT) at the APMP-TCQM meeting held 26-27 November 2012. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K19 and CCQM-K19.1. The comparison material was a borate buffer of pH around 9.2 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the second APMP key comparison on pH measurement and the fourth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006 and APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011. The results can be used further by any participant to support its CMC claim at least for a borate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Biodegradable neural cell culture sheet made of poly(lactic-co-glycolic acid) thin film with micropatterns of Dulbecco’s phosphate-buffered saline (-) containing laminin layers

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuki; Horiuchi, Shunpu; Nishioka, Yasushiro

    2018-02-01

    In the regenerative medicine field of nervous systems, techniques used to fabricate microstructures of neurons on flexible and biodegradable substrates have attracted attention. In this research, biodegradable and flexible neuron culture thin films that enable the selective axonal outgrowth of neurons were fabricated using poly(lactic-co-glycolic acid) (PLGA) thin films with micropatterns of Dulbecco’s phosphate-buffered saline (D-PBS) (-) containing laminin layers. The 100-µm-thick PLGA thin films were fabricated by diluting PLGA in acetone (5% w/w) and the solution was distributed onto a poly(dimethylsiloxane) (PDMS) mold. D-PBS (-) micropatterns containing laminin layers with widths of 10-150 µm were fabricated by micromolding in capillaries (MIMIC) and the microstencil method. Rat neurons were selectively cultured for 3 d on the laminin micropatterns; using the MIMIC method, the cells properly adhered to a pattern wider than 30 µm, while with the microstencil method, the necessary pattern width for proper adhesion was more than 50 µm.

  1. Effect of dissolution of magnesium alloy AZ31 on the rheological properties of Phosphate Buffer Saline.

    PubMed

    Riaz, Usman; Rakesh, Leela; Shabib, Ishraq; Haider, Waseem

    2018-06-05

    The issue of long-term incompatible interactions associated with the permanent implants can be eliminated by using various biodegradable metal implants. The recent research is focusing on the use of degradable stents to restore most of the hindrances of capillaries, and coronary arteries by supplying instant blood flow with constant mechanical and structural support. However, internal endothelialization and infection due to the corrosion of implanted stents are not easy to diagnose in the long run. In the recent past, magnesium (Mg) has been widely investigated for the cardiovascular stent applications. Here we made an attempt to understand the biodegradation process of Mg alloy stent by studying the degradation of Mg alloy AZ31 (3 wt% Aluminum, 1 wt% Zn) powder at various time-intervals in simulated blood fluid using the Rheological methods. The degradability of the Mg stent in the arteries affects the stress-strain properties of blood plasma and the subsequent flow conditions. Blood and plasma viscosities alter due to the degradation of Mg resulting from the stress-strain experienced in the blood vessels, in which the stent is inserted. Here our objective was to explore the influence of Mg degradation on the blood plasma viscosity by studying the viscoelastic properties. In this work, the effect of dissolution of Mg alloy AZ31 on the rheological properties of Phosphate Buffer Saline (PBS) at various time intervals have been investigated. The viscosity of the PBS-AZ31 solution increased with the dissolution of both slurries and percolated clear solution. The only exception was day-7 of the percolated clear solution, where viscosity was decreased showing a reduction in viscosity at initial stages of dissolution. The frequency sweep showed the tendency of the PBS-AZ31 gelation up to 100 rad/s frequency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The effect of EDTA, cations, and various buffers on the morphology of erythrocyte membranes: an electron-microscopic study.

    PubMed

    Pinteric, L; Manery, J F; Chaudry, I H; Madapallimattam, G

    1975-05-01

    Membranes of human erythrocytes were prepared by stepwise osmotic hemolysis in Ca2+-free solutions. Examination with the electron microscope after negative staining showed some short, conelike protuberances on the surface of about 20 percent of the ghosts, while 80 percent were round, intact spheres. After Ca2+ treatment, all membranes were round and intact. After exposure to ethylenediaminetetraacetic acid (EDTA) (1.0 mM, pH 7.4), the entire ghost surface was covered with long, thin extrusions called stromalytic forms (about 460 per cell). Their sizes, shapes, and fine structure are described. Exposure to ionic calcium (1.4 times 10-minus 4M) abolished the EDTA-induced stromalytic forms. A second exposure to EDTA reversed this Ca2+ effect. ATP, like EDTA, produced stromalytic forms. EDTA-induced stromalytic forms were also abolished by Zn2+, La3+, and Nd3+ at concentrations of 1-5 times 10-minus 4 M. Mg2+ at 10-minus 2 M was ineffective. Ghosts were prepared by graded lysis in various buffers. Those prepared in phosphate were the most stable and provided consistent EDTA effects and Ca2+ reversal. Ghosts in Tris-HCl showed breakdown unless salt was added. Moderately satisfactory ghosts were also obtained in Hepes-NaOH buffer and salt.

  3. Remnants of an Ancient Metabolism without Phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldford, Joshua E.; Hartman, Hyman; Smith, Temple F.

    Phosphate is essential for all living systems, serving as a building block of genetic and metabolic machinery. However, it is unclear how phosphate could have assumed these central roles on primordial Earth, given its poor geochemical accessibility. We used systems biology approaches to explore the alternative hypothesis that a protometabolism could have emerged prior to the incorporation of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism producible from simple prebiotic compounds. This network is predicted to support the biosynthesis of a broad category of key biomolecules. Its enrichment for enzymes utilizing iron-sulfur clusters, and the fact that thermodynamic bottlenecksmore » are more readily overcome by thioester rather than phosphate couplings, suggest that this network may constitute a ‘‘metabolic fossil’’ of an early phosphate-free nonenzymatic biochemistry. Thus, our results corroborate and expand previous proposals that a putative thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system.« less

  4. Remnants of an Ancient Metabolism without Phosphate

    DOE PAGES

    Goldford, Joshua E.; Hartman, Hyman; Smith, Temple F.; ...

    2017-03-09

    Phosphate is essential for all living systems, serving as a building block of genetic and metabolic machinery. However, it is unclear how phosphate could have assumed these central roles on primordial Earth, given its poor geochemical accessibility. We used systems biology approaches to explore the alternative hypothesis that a protometabolism could have emerged prior to the incorporation of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism producible from simple prebiotic compounds. This network is predicted to support the biosynthesis of a broad category of key biomolecules. Its enrichment for enzymes utilizing iron-sulfur clusters, and the fact that thermodynamic bottlenecksmore » are more readily overcome by thioester rather than phosphate couplings, suggest that this network may constitute a ‘‘metabolic fossil’’ of an early phosphate-free nonenzymatic biochemistry. Thus, our results corroborate and expand previous proposals that a putative thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system.« less

  5. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    DOEpatents

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  6. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs

    PubMed Central

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-01-01

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This “compliant” buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 105 cm−2. In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6” wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors. PMID:26329829

  7. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs.

    PubMed

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-09-02

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.

  8. Effect of synovial fluid, phosphate-buffered saline solution, and water on the dissolution and corrosion properties of CoCrMo alloys as used in orthopedic implants.

    PubMed

    Lewis, A C; Kilburn, M R; Papageorgiou, I; Allen, G C; Case, C P

    2005-06-15

    The corrosion and dissolution of high- and low-carbon CoCrMo alloys, as used in orthopedic joint replacements, were studied by immersing samples in phosphate-buffered saline (PBS), water, and synovial fluid at 37 degrees C for up to 35 days. Bulk properties were analyzed with a fine ion beam microscope. Surface analyses by X-ray photoelectron spectroscopy and Auger electron spectroscopy showed surprisingly that synovial fluid produced a thin oxide/hydroxide layer. Release of ions into solution from the alloy also followed an unexpected pattern where synovial fluid, of all the samples, had the highest Cr concentration but the lowest Co concentration. The presence of carbide inclusions in the alloy did not affect the corrosion or the dissolution mechanisms, although the carbides were a significant feature on the metal surface. Only one mechanism was recognized as controlling the thickness of the oxide/hydroxide interface. The analysis of the dissolved metal showed two mechanisms at work: (1) a protein film caused ligand-induced dissolution, increasing the Cr concentration in synovial fluid, and was explained by the equilibrium constants; (2) corrosion at the interface increased the Co in PBS. The effect of prepassivating the samples (ASTM F-86-01) did not always have the desired effect of reducing dissolution. The release of Cr into PBS increased after prepassivation. The metal-synovial fluid interface did not contain calcium phosphate as a deposit, typically found where samples are exposed to calcium rich bodily fluids. (c) 2005 Wiley Periodicals, Inc.

  9. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    DOEpatents

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  10. Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds.

    PubMed

    Rustom, Laurence E; Boudou, Thomas; Lou, Siyu; Pignot-Paintrand, Isabelle; Nemke, Brett W; Lu, Yan; Markel, Mark D; Picart, Catherine; Wagoner Johnson, Amy J

    2016-10-15

    The increasing demand for bone repair solutions calls for the development of efficacious bone scaffolds. Biphasic calcium phosphate (BCP) scaffolds with both macropores and micropores (MP) have improved healing compared to those with macropores and no micropores (NMP), but the role of micropores is unclear. Here, we evaluate capillarity induced by micropores as a mechanism that can affect bone growth in vivo. Three groups of cylindrical scaffolds were implanted in pig mandibles for three weeks: MP were implanted either dry (MP-Dry), or after submersion in phosphate buffered saline, which fills pores with fluid and therefore suppresses micropore-induced capillarity (MP-Wet); NMP were implanted dry. The amount and distribution of bone in the scaffolds were quantified using micro-computed tomography. MP-Dry had a more homogeneous bone distribution than MP-Wet, although the average bone volume fraction, BVF‾, was not significantly different for these two groups (0.45±0.03 and 0.37±0.03, respectively). There was no significant difference in the radial bone distribution of NMP and MP-Wet, but the BVF‾, of NMP was significantly lower among the three groups (0.25±0.02). These results suggest that micropore-induced capillarity enhances bone regeneration by improving the homogeneity of bone distribution in BCP scaffolds. The explicit design and use of capillarity in bone scaffolds may lead to more effective treatments of large and complex bone defects. The increasing demand for bone repair calls for more efficacious bone scaffolds and calcium phosphate-based materials are considered suitable for this application. Macropores (>100μm) are necessary for bone ingrowth and vascularization. However, studies have shown that microporosity (<20μm) also enhances growth, but there is no consensus on the controlling mechanisms. In previous in vitro work, we suggested that micropore-induced capillarity had the potential to enhance bone growth in vivo. This work illustrates the

  11. Intermediate-range order in simple metal-phosphate glasses: The effect of metal cations on the phosphate anion distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, B.C.; Boatner, L.A.; Ramey, J.O.

    1997-06-01

    The technique of high-performance liquid chromatography (HPLC) has been used to probe the phosphate anion distribution in a variety of metal phosphate glasses including glasses made with trivalent metal cations (Al, In, Ga, La). The composition of each glass was chosen so that the average phosphate chain length was between 2 and 4 PO{sub 4} tetrahedra. The widths of the resulting phosphate anion distributions were determined directly from an analysis of the HPLC chromatograms. Literature values for the free energy of formation of the crystalline metal-orthophosphate compounds with respect to P{sub 2}O{sub 5} and the metal oxide, were compared tomore » the chromatogram widths. It was found that the smaller the energy of formation, the wider the distribution of phosphate chains, and the greater the ease of glass formation.« less

  12. The impact of free trial acceptance on demand for alternative nicotine products: evidence from experimental auctions.

    PubMed

    Rousu, Matthew C; O'Connor, Richard J; Bansal-Travers, Maansi; Pitcavage, James M; Thrasher, James F

    2015-06-11

    This study explored the relationship between product trials and consumer demand for alternative nicotine products (ANP). An experimental auction was conducted with 258 adult smokers, wherein participants were randomly assigned to one of four experimental conditions. The participants received the opportunity to try, but did not have to accept, one of three relatively novel ST products (i.e., snus, dissolvable tobacco, or medicinal nicotine), or they were placed into a control group (i.e., no trial). All the participants then bid on all three of these products, as well as on cigarettes. We assessed interest in using ANP based on both trial of the product and bids placed for the products in the experimental auction. Fewer smokers were willing to try snus (44%) than dissolvable tobacco (64%) or medicine nicotine (68%). For snus, we find modest evidence suggesting that willingness to try is associated with greater demand for the product. For dissolvable tobacco or medicinal nicotine, we find no evidence that those who accept the product trial have higher demand for the product. Free trials of a novel ANP were not strongly associated with product demand, as assessed by willingness to pay. Given the debate over the potential for ANP to reduce the harm from smoking, these results are important in understanding the impact of free trial offers on adoption of ST product as a strategy to reduce harm from tobacco use.

  13. Experimental ammonia-free phosphate-bonded investments using Mg(H2PO4)2 solution.

    PubMed

    Takashiba, Shigeyuki; Zhang, Zutai; Tamaki, Yukimichi

    2002-12-01

    In our previous study, we investigated ammonia-free phosphate-bonded investments using Mg (H2PO4)2 powder. The purpose of the present study was to attempt usage of 50 wt% Mg (H2PO4)2 solution instead of powder. Magnesium oxide (MgO) was prepared as a binder and cristobalite was selected as a refractory. After arranging six kinds of experimental investments (A-F) with different cristobalite/MgO ratios, the fundamental properties of the dental investments were examined. The properties of the molds were influenced by the amount of MgO. Decreases in MgO showed lower mold strengths, longer setting time and larger setting expansion. According to XRD analysis, the peaks of MgH(PO4)3 x 3H2O newly formed, cristobalite and MgO were detected in the A set, but MgO peaks in F set were reduced. On the other hand, the surface of F was entirely covered by phosphorus. From these results, it was found that the usage of Mg(H2PO4)2 solution was possible for ammonia-free investments.

  14. TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity.

    PubMed

    Rohanová, Dana; Boccaccini, Aldo Roberto; Yunos, Darmawati Mohamad; Horkavcová, Diana; Březovská, Iva; Helebrant, Aleš

    2011-06-01

    The paper deals with the characterisation of the bioactive phenomena of glass-ceramic scaffold derived from Bioglass® (containing 77 wt.% of crystalline phases Na(2)O·2CaO·3SiO(2) and CaO·SiO(2) and 23 wt.% of residual glass phase) using simulated body fluid (SBF) buffered with tris-(hydroxymethyl) aminomethane (TRIS). A significant effect of the TRIS buffer on glass-ceramic scaffold dissolution in SBF was detected. To better understand the influence of the buffer, the glass-ceramic scaffold was exposed to a series of in vitro tests using different media as follows: (i) a fresh liquid flow of SBF containing tris (hydroxymethyl) aminomethane; (ii) SBF solution without TRIS buffer; (iii) TRIS buffer alone; and (iv) demineralised water. The in vitro tests were provided under static and dynamic arrangements. SBF buffered with TRIS dissolved both the crystalline and residual glass phases of the scaffold and a crystalline form of hydroxyapatite (HAp) developed on the scaffold surface. In contrast, when TRIS buffer was not present in the solutions only the residual glassy phase dissolved and an amorphous calcium phosphate (Ca-P) phase formed on the scaffold surface. It was confirmed that the TRIS buffer primarily dissolved the crystalline phase of the glass-ceramic, doubled the dissolving rate of the scaffold and moreover supported the formation of crystalline HAp. This significant effect of the buffer TRIS on bioactive glass-ceramic scaffold degradation in SBF has not been demonstrated previously and should be considered when analysing the results of SBF immersion bioactivity tests of such systems. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Development of cadmium-free quantum dot for intracellular labelling through electroporation or lipid-calcium-phosphate

    NASA Astrophysics Data System (ADS)

    Liu, Ying-Feng; Hung, Wei-Ling; Hou, Tzh-Yin; Huang, Hsiu-Ying; Lin, Cheng-An J.

    2016-04-01

    Traditional fluorescent labelling techniques has severe photo-bleaching problem such as organic dyes and fluorescent protein. Quantum dots made up of traditional semiconductor (CdSe/ZnS) material has sort of biological toxicity. This research has developed novel Cd-free quantum dots divided into semiconductor (Indium phosphide, InP) and noble metal (Gold). Former has lower toxicity compared to traditional quantum dots. Latter consisting of gold (III) chloride (AuCl3) and toluene utilizes sonochemical preparation and different stimulus to regulate fluorescent wavelength. Amphoteric macromolecule surface technology and ligand Exchange in self-Assembled are involved to develop hydrophilic nanomaterials which can regulate the number of grafts per molecule of surface functional groups. Calcium phosphate (CaP) nanoparticle (NP) with an asymmetric lipid bilayer coating technology developed for intracellular delivery and labelling has synthesized Cd-free quantum dots possessing high brightness and multi-fluorescence successfully. Then, polymer coating and ligand exchange transfer to water-soluble materials to produce liposome nanomaterials as fluorescent probes and enhancing medical applications of nanotechnology.

  16. Micropore-induced Capillarity Enhances Bone Distribution in vivo in Biphasic Calcium Phosphate Scaffolds

    PubMed Central

    Rustom, Laurence E.; Boudou, Thomas; Lou, Siyu; Pignot-Paintrand, Isabelle; Nemke, Brett W.; Lu, Yan; Markel, Mark D.; Picart, Catherine; Wagoner Johnson, Amy J.

    2016-01-01

    The increasing demand for bone repair solutions calls for the development of efficacious bone scaffolds. Biphasic calcium phosphate (BCP) scaffolds with both macropores and micropores (MP) have improved healing compared to those with macropores and no micropores (NMP), but the role of micropores is unclear. Here, we evaluate capillarity induced by micropores as a mechanism that can affect bone growth in vivo. Three groups of cylindrical scaffolds were implanted in pig mandibles for three weeks: MP were implanted either dry (MP-Dry), or after submersion in phosphate buffered saline, which fills pores with fluid and therefore suppresses micropore-induced capillarity (MP-Wet); NMP were implanted dry. The amount and distribution of bone in the scaffolds were quantified using micro-computed tomography. MP-Dry had a more homogeneous bone distribution than MP-Wet, although the average bone volume fraction, BVF¯, was not significantly different for these two groups (0.45±0.03 and 0.37±0.03, respectively). There was no significant difference in the radial bone distribution of NMP and MP-Wet, but the BVF¯ of NMP was significantly lower among the three groups (0.25±0.02). These results suggest that micropore-induced capillarity enhances bone regeneration by improving the homogeneity of bone distribution in BCP scaffolds. The explicit design and use of capillarity in bone scaffolds may lead to more effective treatments of large and complex bone defects. PMID:27544807

  17. Osmotic agents and buffers in peritoneal dialysis solution: monocyte cytokine release and in vitro cytotoxicity.

    PubMed

    Plum, J; Schoenicke, G; Grabensee, B

    1997-09-01

    Peritonitis remains a major problem in peritoneal dialysis. The incidence of peritonitis may be reduced by the use of more "biocompatible" peritoneal dialysis solutions that do not impair local host defense mechanisms, such as occurs with conventional lactate-buffered glucose solutions. In the present study, we investigated the use of bicarbonate and lactate as buffer systems and glucose, amino acids, and glucose polymer as osmotic agents on specific cellular functions of isolated fresh blood monocytes in vitro. The bicarbonate-buffered solutions had a physiologic pH (7.0 to 7.6). Lactate-buffered solutions were tested with a pH between 5.5 and 7.3. RPMI 1640 (Roswell Park Memorial Institute, supplied by Biochrom, Berlin, Germany) and phosphate-buffered saline were used as control mediums. The test solutions were incubated with 200,000 monocytes/mL for 45 minutes followed by a 1:1 mix with RPMI 1640 (with supplements) during a 24- or 4-hour tetrazolium bromide test (MTT test) recovery period. Constitutive and lipopolysaccharide (LPS)-stimulated release of interleukin-1beta (IL-1beta) and IL-6 in the supernatants as parameters of cellular host defense and lactate dehydrogenase concentrations and MTT-formazan production as parameters for cell cytotoxicity were measured. Significantly higher IL-6 and IL-1beta release was found in the bicarbonate-buffered solutions, both under basal conditions and after LPS stimulation, compared with the lactate-buffered solutions (LPS stimulation: 1% amino acids/34 mmol/L bicarbonate, IL-1beta: 1,166 +/- 192 pg/mL; 1.5% glucose/34 mmol/L bicarbonate, IL-1beta: 752 +/- 107 pg/mL; 1.5% glucose/35 mmol/L lactate/pH 5.5, IL-1beta: 174 +/- 51 pg/mL). Some of these differences could even be detected in spent dialysate after a 6-hour dwell in continuous ambulatory peritoneal dialysis patients (n = 10). A lower degree of cellular cytotoxicity (lactate dehydrogenase activity) and better-preserved metabolic activity (MTT test) also were found

  18. Wet Pretreatment-Induced Modification of Cu(In,Ga)Se2/Cd-Free ZnTiO Buffer Interface.

    PubMed

    Hwang, Suhwan; Larina, Liudmila; Lee, Hojin; Kim, Suncheul; Choi, Kyoung Soon; Jeon, Cheolho; Ahn, Byung Tae; Shin, Byungha

    2018-06-20

    We report a novel Cd-free ZnTiO buffer layer deposited by atomic layer deposition for Cu(In,Ga)Se 2 (CIGS) solar cells. Wet pretreatments of the CIGS absorbers with NH 4 OH, H 2 O, and/or aqueous solution of Cd 2+ ions were explored to improve the quality of the CIGS/ZnTiO interface, and their effects on the chemical state of the absorber and the final performance of Cd-free CIGS devices were investigated. X-ray photoelectron spectroscopy (XPS) analysis revealed that the aqueous solution etched away sodium compounds accumulated on the CIGS surface, which was found to be detrimental for solar cell operation. Wet treatment with NH 4 OH solution led to a reduced photocurrent, which was attributed to the thinning (or removal) of an ordered vacancy compound (OVC) layer on the CIGS surface as evidenced by an increased Cu XPS peak intensity after the NH 4 OH treatment. However, the addition of Cd 2+ ions to the NH 4 OH aqueous solution suppressed the etching of the OVC by NH 4 OH, explaining why such a negative effect of NH 4 OH is not present in the conventional chemical bath deposition of CdS. The band alignment at the CIGS/ZnTiO interface was quantified using XPS depth profile measurements. A small cliff-like conduction band offset of -0.11 eV was identified at the interface, which indicates room for further improvement of efficiency of the CIGS/ZnTiO solar cells once the band alignment is altered to a slight spike by inserting a passivation layer with a higher conduction band edge than ZnTiO. Combination of the small cliff conduction band offset at the interface, removal of the Na compound via water, and surface doping by Cd ions allowed the application of ZnTiO buffer to CIGS treated with Cd solutions, exhibiting an efficiency of 80% compared to that of a reference CIGS solar cell treated with the CdS.

  19. Catalysis of hydrolysis and nucleophilic substitution at the P-N bond of phosphoimidazolide-activated nucleotides in phosphate buffers

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Rosenbach, M. T.

    1991-01-01

    Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles).

  20. Inactivation kinetics of Vibrio vulnificus in phosphate-buffered saline at different freezing and storage temperatures and times.

    PubMed

    Seminario, Diana M; Balaban, Murat O; Rodrick, Gary

    2011-03-01

    Vibrio vulnificus (Vv) is a pathogen that can be found in raw oysters. Freezing can reduce Vv and increase the shelf life of oysters. The objective of this study was to develop predictive inactivation kinetic models for pure cultures of Vv at different frozen storage temperatures and times. Vv was diluted in phosphate-buffered saline (PBS) to obtain about 10(7) CFU/mL. Samples were frozen at -10, -35, and -80 °C (different freezing rates), and stored at different temperatures. Survival of Vv was followed after freezing and storage at -10 °C (0, 3, 6, and 9 d) and at -35 and -80 °C (every week for 6 wk). For every treatment, time-temperature data was obtained using thermocouples in blank vials. Predictive models were developed using first-order, Weibull and Peleg inactivation kinetics. Different freezing temperatures did not significantly (α = 0.05) affect survival of Vv immediately after freezing. The combined effect of freezing and 1 wk frozen storage resulted in 1.5, 2.6, and 4.9 log10 reductions for samples stored at -80, -35, and -10 °C, respectively. Storage temperature was the critical parameter in survival of Vv. A modified Weibull model successfully predicted Vv survival during frozen storage: log10 Nt = log 10No - 1.22 - ([t/10{-1.163-0.0466T}][0.00025T(2) + 0.049325]). N(o) and N(t) are initial and time t (d) survival counts, T is frozen storage temperature, Celsius degree. Vibrio vulnificus can be inactivated by freezing. Models to predict survival of V. vulnificus at different freezing temperatures and times were developed. This is the first step towards the prediction of V. vulnificus related safety of frozen oysters.

  1. The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.

    PubMed

    Metrick, Michael A; Temple, Joshua E; MacDonald, Gina

    2013-12-31

    The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions. © 2013. Published by Elsevier B.V. All rights reserved.

  2. Tobacco-free economy: A SAM-based multiplier model to quantify the impact of changes in tobacco demand in Bangladesh.

    PubMed

    Husain, Muhammad Jami; Khondker, Bazlul Haque

    2016-01-01

    In Bangladesh, where tobacco use is pervasive, reducing tobacco use is economically beneficial. This paper uses the latest Bangladesh social accounting matrix (SAM) multiplier model to quantify the economy-wide impact of demand-driven changes in tobacco cultivation, bidi industries, and cigarette industries. First, we compute various income multiplier values (i.e. backward linkages) for all production activities in the economy to quantify the impact of changes in demand for the corresponding products on gross output for 86 activities, demand for 86 commodities, returns to four factors of production, and income for eight household groups. Next, we rank tobacco production activities by income multiplier values relative to other sectors. Finally, we present three hypothetical 'tobacco-free economy' scenarios by diverting demand from tobacco products into other sectors of the economy and quantifying the economy-wide impact. The simulation exercises with three different tobacco-free scenarios show that, compared to the baseline values, total sectoral output increases by 0.92%, 1.3%, and 0.75%. The corresponding increases in the total factor returns (i.e. GDP) are 1.57%, 1.75%, and 1.75%. Similarly, total household income increases by 1.40%, 1.58%, and 1.55%.

  3. Tobacco-free economy: A SAM-based multiplier model to quantify the impact of changes in tobacco demand in Bangladesh

    PubMed Central

    Husain, Muhammad Jami; Khondker, Bazlul Haque

    2017-01-01

    In Bangladesh, where tobacco use is pervasive, reducing tobacco use is economically beneficial. This paper uses the latest Bangladesh social accounting matrix (SAM) multiplier model to quantify the economy-wide impact of demand-driven changes in tobacco cultivation, bidi industries, and cigarette industries. First, we compute various income multiplier values (i.e. backward linkages) for all production activities in the economy to quantify the impact of changes in demand for the corresponding products on gross output for 86 activities, demand for 86 commodities, returns to four factors of production, and income for eight household groups. Next, we rank tobacco production activities by income multiplier values relative to other sectors. Finally, we present three hypothetical ‘tobacco-free economy’ scenarios by diverting demand from tobacco products into other sectors of the economy and quantifying the economy-wide impact. The simulation exercises with three different tobacco-free scenarios show that, compared to the baseline values, total sectoral output increases by 0.92%, 1.3%, and 0.75%. The corresponding increases in the total factor returns (i.e. GDP) are 1.57%, 1.75%, and 1.75%. Similarly, total household income increases by 1.40%, 1.58%, and 1.55%. PMID:28845091

  4. Buffer substitution in malaria rapid diagnostic tests causes false-positive results

    PubMed Central

    2010-01-01

    Background Malaria rapid diagnostic tests (RDTs) are kits that generally include 20 to 25 test strips or cassettes, but only a single buffer vial. In field settings, laboratory staff occasionally uses saline, distilled water (liquids for parenteral drugs dilution) or tap water as substitutes for the RDT kit's buffer to compensate for the loss of a diluent bottle. The present study assessed the effect of buffer substitution on the RDT results. Methods Twenty-seven RDT brands were run with EDTA-blood samples of five malaria-free subjects, who were negative for rheumatoid factor and antinuclear antibodies. Saline, distilled water and tap water were used as substitute liquids. RDTs were also run with distilled water, without adding blood. Results were compared to those obtained with the RDT kit's buffer and Plasmodium positive samples. Results Only eight cassettes (in four RDT brands) showed no control line and were considered invalid. Visible test lines occurred for at least one malaria-free sample and one of the substitutes in 20/27 (74%) RDT brands (saline: n = 16; distilled water: n = 17; and tap water: n = 20), and in 15 RDTs which were run with distilled water only. They occurred for all Plasmodium antigens and RDT formats (two-, three- and four-band RDTs). Clearance of the background of the strip was excellent except for saline. The aspects (colour, intensity and crispness) of the control and the false-positive test lines were similar to those obtained with the RDT kits' buffer and Plasmodium positive samples. Conclusion Replacement of the RDT kit's dedicated buffer by saline, distilled water and tap water can cause false-positive test results. PMID:20650003

  5. Interactions of TRIS [tris(hydroxymethyl)aminomethane] and related buffers with peptide backbone: thermodynamic characterization.

    PubMed

    Taha, Mohamed; Lee, Ming-Jer

    2010-10-21

    In a situation which is far from ideal, many buffers have been found to be quite reactive, besides maintaining their stable pH values. On the basis of apparent transfer free energies (ΔG(tr)'), through solubility measurements the interactions of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), and tetraglycine (Gly(4)), with several common neutral pH, amine-based buffers have been studied. The biological buffers studied in this work, including TRIS, TES, TAPS, TAPSO, and TABS are structurally related and all contain TRIS groups. These buffers have pK(a) values ranging from 7.5-9.0, which allow them to be used in biological, biochemical or environmental studies. We observed negative values of ΔG(tr)' for Gly(3) and Gly(4) from water to buffer, indicating that the interactions are favorable. However, the ΔG(tr)' values are positive for Gly and Gly(2), revealing unfavorable interactions, which except for the latter in TRIS buffer are negative. The surprising result in our data is the unexpected extraordinarily high favorable interactions between TRIS buffer and peptides (in comparison with the effect of the most common denaturants, urea and guanidine hydrochloride). The transfer free energies (ΔG(tr)') of the peptide backbone unit (-CH(2)C=O-NH-) contributions have been estimated from ΔG(tr)' values. We have also investigated the interactions of TRIS buffer with Bovine Serum Albumin (BSA), as a globular protein, using dynamic light scattering (DLS), zeta potential, UV-Visible absorption, fluorescence and Raman spectroscopy measurements. The results indicated that TRIS buffer stabilized the BSA molecules.

  6. Evaluation of ocular and general safety following repeated dosing of dexamethasone phosphate delivered by transscleral iontophoresis in rabbits.

    PubMed

    Patane, Michael A; Schubert, William; Sanford, Thomas; Gee, Raymond; Burgos, Melissa; Isom, William P; Ruiz-Perez, Begona

    2013-10-01

    To evaluate the toxicokinetics and tolerability (local ocular and general toxicity) of the anti-inflammatory agent, dexamethasone phosphate (a prodrug of dexamethasone) delivered to the eye in rabbits by transscleral iontophoresis. Female rabbits (n=6/group) received dexamethasone phosphate (40 mg/mL ophthalmic solution, EGP-437) transsclerally to the right eye (OD) using the Eyegate(®) II ocular iontophoresis delivery system once biweekly for 24 consecutive weeks at current doses of 10, 14, and 20 mA-min and current levels up to, and including -4 mA for 3.5-5 min. The study included 2 control groups (n=6/group): (1) a noniontophoresis control [an ocular applicator-loaded citrate buffer (placebo) without current] and (2) an iontophoresis control (a citrate buffer plus cathode iontophoresis at 20 mA-min, -4 mA for 5 min). Recoverability was evaluated 4 weeks following the last dose in 2 animals per group. The left eye (OS) was untreated and served as an internal control for each animal. Ocular and general safety of dexamethasone phosphate and dexamethasone were assessed. Other evaluations included toxicokinetics, ophthalmic examinations, intraocular pressure (IOP) measurements, electroretinographs, clinical observations, body weight, hematology and serum chemistry, gross necropsy, organ weight, and microscopic histopathology. The biweekly transscleral iontophoresis with either the citrate buffer or dexamethasone phosphate at cathodic doses up to, and including 20 mA-min and currents up to, and including -4 mA for 24 weeks was well-tolerated. Transient signs of conjunctival hyperemia and chemosis, mild corneal opacity, and fluorescein staining of the cornea were noted and attributed to expected ocular reactions to the temporary placement of the ocular applicator and application of iontophoresis. There were no dexamethasone phosphate-, dexamethasone-, or iontophoresis-related effects on IOP, electroretinography, or histopathology. Reductions in body weight gain

  7. Succinimide Formation from an NGR-Containing Cyclic Peptide: Computational Evidence for Catalytic Roles of Phosphate Buffer and the Arginine Side Chain.

    PubMed

    Kirikoshi, Ryota; Manabe, Noriyoshi; Takahashi, Ohgi

    2017-02-16

    The Asn-Gly-Arg (NGR) motif and its deamidation product iso Asp-Gly-Arg ( iso DGR) have recently attracted considerable attention as tumor-targeting ligands. Because an NGR-containing peptide and the corresponding iso DGR-containing peptide target different receptors, the spontaneous NGR deamidation can be used in dual targeting strategies. It is well known that the Asn deamidation proceeds via a succinimide derivative. In the present study, we computationally investigated the mechanism of succinimide formation from a cyclic peptide, c[CH₂CO-NGRC]-NH₂, which has recently been shown to undergo rapid deamidation in a phosphate buffer. An H₂PO₄ - ion was explicitly included in the calculations. We employed the density functional theory using the B3LYP functional. While geometry optimizations were performed in the gas phase, hydration Gibbs energies were calculated by the SM8 (solvation model 8) continuum model. We have found a pathway leading to the five-membered ring tetrahedral intermediate in which both the H₂PO₄ - ion and the Arg side chain act as catalyst. This intermediate, once protonated at the NH₂ group on the five-membered ring, was shown to easily undergo NH₃ elimination leading to the succinimide formation. This study is the first to propose a possible catalytic role for the Arg side chain in the NGR deamidation.

  8. Development of Pinhole-Free Amorphous Aluminum Oxide Protective Layers for Biomedical Device Applications

    PubMed Central

    Litvinov, Julia; Wang, Yi-Ju; George, Jinnie; Chinwangso, Pawilai; Brankovic, Stanko; Willson, Richard C.; Litvinov, Dmitri

    2013-01-01

    This paper describes synthesis of ultrathin pinhole-free insulating aluminum oxide layers for electronic device protection in corrosive liquid environments, such as phosphate buffered saline (PBS) or clinical fluids, to enable emerging biomedical applications such as biomolecular sensors. A pinhole-free 25-nm thick amorphous aluminum oxide layer has been achieved using ultra-high vacuum DC magnetron reactive sputtering of aluminum in oxygen/argon plasma followed by oxygen plasma post-processing. Deposition parameters were optimized to achieve the best corrosion protection of lithographically defined device structures. Electrochemical deposition of copper through the aluminum oxide layers was used to detect the presence (or absence) of pinholes. FTIR, XPS, and spectroscopic ellipsometry were used to characterize the material properties of the protective layers. Electrical resistance of the copper device structures protected by the aluminum oxide layers and exposed to a PBS solution was used as a metric to evaluate the long-term stability of these device structures. PMID:23682201

  9. Hafnium nitride buffer layers for growth of GaN on silicon

    DOEpatents

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  10. Continuous analysis of phosphate in a Greenland shallow ice core

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Svensson, Anders; Bigler, Matthias; Vallelonga, Paul; Kettner, Ernesto; Dahl-Jensen, Dorthe

    2010-05-01

    Phosphate is an important and sometimes limiting nutrient for primary production in the oceans. Because of deforestation and the use of phosphate as a fertilizer changes in the phosphate cycle have occurred over the last centuries. On longer time scales, sea level changes are thought to have also caused changes in the phosphate cycle. Analyzing phosphate concentrations in ice cores may help to gain important knowledge about those processes. In the present study, we attach a phosphate detection line to an existing continuous flow analysis (CFA) setup for ice core analysis at the University of Copenhagen. The CFA system is optimized for high-resolution measurements of insoluble dust particles, electrolytic melt water conductivity, and the concentrations of ammonium and sodium. For the phosphate analysis we apply a continuous and highly sensitive absorption method that has been successfully applied to determine phosphate concentrations of sea water (Zhang and Chi, 2002). A line of melt water from the CFA melt head (1.01 ml per minute) is combined with a molybdate blue reagent and an ascorbic acid buffer. An uncompleted reaction takes place in five meters of heated mixing coils before the absorption measurement at a wavelength of 710 nanometer takes place in a 2 m long liquid waveguide cell (LWCC) with an inner volume of 0.5 ml. The method has a detection limit of around 0.1 ppb and we are currently investigating a possible interference from molybdate reacting with silicates that are present in low amounts in the ice. Preliminary analysis of early Holocene samples from the NGRIP ice core show phosphate concentration values of a few ppb. In this study, we will attempt to determine past levels of phosphate in a shallow Northern Greenland firn core with an annual layer thickness of about 20 cm ice equivalent. With a melt speed of 2.5 cm ice per minute our method should allow the resolution of any seasonal variability in phosphate concentrations.

  11. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging

    PubMed Central

    Ohnishi, Mutsuko; Razzaque, M. Shawkat

    2010-01-01

    Identifying factors that accelerate the aging process can provide important therapeutic targets for slowing down this process. Misregulation of phosphate homeostasis has been noted in various skeletal, cardiac, and renal diseases, but the exact role of phosphate toxicity in mammalian aging is not clearly defined. Phosphate is widely distributed in the body and is involved in cell signaling, energy metabolism, nucleic acid synthesis, and the maintenance of acid-base balance by urinary buffering. In this study, we used an in vivo genetic approach to determine the role of phosphate toxicity in mammalian aging. Klotho-knockout mice (klotho−/−) have a short life span and show numerous physical, biochemical, and morphological features consistent with premature aging, including kyphosis, uncoordinated movement, hypogonadism, infertility, severe skeletal muscle wasting, emphysema, and osteopenia, as well as generalized atrophy of the skin, intestine, thymus, and spleen. Molecular and biochemical analyses suggest that increased renal activity of sodium-phosphate cotransporters (NaPi2a) leads to severe hyperphosphatemia in klotho−/− mice. Genetically reducing serum phosphate levels in klotho−/− mice by generating a NaPi2a and klotho double-knockout (NaPi2a−/−/klotho−/−) strain resulted in amelioration of premature aging-like features. The NaPi2a−/−/klotho−/− double-knockout mice regained reproductive ability, recovered their body weight, reduced their organ atrophy, and suppressed ectopic calcifications, with the resulting effect being prolonged survival. More important, when hyperphosphatemia was induced in NaPi2a−/−/klotho−/− mice by feeding with a high-phosphate diet, premature aging-like features reappeared, clearly suggesting that phosphate toxicity is the main cause of premature aging in klotho−/− mice. The results of our dietary and genetic manipulation studies provide in vivo evidence for phosphate toxicity accelerating the

  12. Effect of Pressure-Induced Changes in the Ionization Equilibria of Buffers on Inactivation of Escherichia coli and Staphylococcus aureus by High Hydrostatic Pressure

    PubMed Central

    Gayán, Elisa; Condón, Santiago; Álvarez, Ignacio; Nabakabaya, Maria

    2013-01-01

    Survival rates of Escherichia coli and Staphylococcus aureus after high-pressure treatment in buffers that had large or small reaction volumes (ΔV°), and which therefore underwent large or small changes in pH under pressure, were compared. At a low buffer concentration of 0.005 M, survival was, as expected, better in MOPS (morpholinepropanesulfonic acid), HEPES, and Tris, whose ΔV° values are approximately 5.0 to 7.0 cm3 mol−1, than in phosphate or dimethyl glutarate (DMG), whose ΔV° values are about −25 cm3 mol−1. However, at a concentration of 0.1 M, survival was unexpectedly better in phosphate and DMG than in MOPS, HEPES, or Tris. This was because the baroprotective effect of phosphate and DMG increased much more rapidly with increasing concentration than it did with MOPS, HEPES, or Tris. Further comparisons of survival in solutions of salts expected to cause large electrostriction effects (Na2SO4 and CaCl2) and those causing lower electrostriction (NaCl and KCl) were made. The salts with divalent ions were protective at much lower concentrations than salts with monovalent ions. Buffers and salts both protected against transient membrane disruption in E. coli, but the molar concentrations necessary for membrane protection were much lower for phosphate and Na2SO4 than for HEPES and NaCl. Possible protective mechanisms discussed include effects of electrolytes on water compressibility and kosmotropic and specific ion effects. The results of this systematic study will be of considerable practical significance in studies of pressure inactivation of microbes under defined conditions but also raise important fundamental questions regarding the mechanisms of baroprotection by ionic solutes. PMID:23624471

  13. Striking Effects of Storage Buffers on Apparent Half-Lives of the Activity of Pseudomonas aeruginosa Arylsulfatase.

    PubMed

    Li, Yuwei; Yang, Xiaolan; Wang, Deqiang; Hu, Xiaolei; Yuan, Mei; Pu, Jun; Zhan, Chang-Guo; Yang, Zhaoyong; Liao, Fei

    2016-08-01

    To obtain the label enzyme for enzyme-linked-immunoabsorbent-assay of two components each time in one well with conventional microplate readers, molecular engineering of Pseudomonas aeruginosa arylsulfatase (PAAS) is needed. To compare thermostability of PAAS/mutants of limited purity, effects of buffers on the half-activity time (t 0.5) at 37 °C were tested. At pH 7.4, PAAS showed non-exponential decreases of activity, with the apparent t 0.5 of ~6.0 days in 50 mM HEPES, but ~42 days in 10 mM sodium borate with >85 % activity after 15 days; protein concentrations in both buffers decreased at slower rates after there were significant decreases of activities. Additionally, the apparent t 0.5 of PAAS was ~14 days in 50 mM Tris-HCl, and ~21 days in 10 mM sodium phosphate. By sodium dodecyl-polyacrylamide gel electrophoresis, the purified PAAS gave single polypeptide; after storage for 14 days at 37 °C, there were many soluble and insoluble fragmented polypeptides in the HEPES buffer, but just one principal insoluble while negligible soluble fragmented polypeptides in the borate buffer. Of tested mutants in the neutral borate buffer, rates for activity decreases and polypeptide degradation were slower than in the HEPES buffer. Hence, dilute neutral borate buffers were favorable for examining thermostability of PAAS/mutants.

  14. Staying well and engaged when demands are high: the role of psychological detachment.

    PubMed

    Sonnentag, Sabine; Binnewies, Carmen; Mojza, Eva J

    2010-09-01

    The authors of this study examined the relation between job demands and psychological detachment from work during off-job time (i.e., mentally switching off) with psychological well-being and work engagement. They hypothesized that high job demands and low levels of psychological detachment predict poor well-being and low work engagement. They proposed that psychological detachment buffers the negative impact of high job demands on well-being and work engagement. A longitudinal study (12-month time lag) with 309 human service employees showed that high job demands predicted emotional exhaustion, psychosomatic complaints, and low work engagement over time. Psychological detachment from work during off-job time predicted emotional exhaustion and buffered the relation between job demands and an increase in psychosomatic complaints and between job demands and a decrease in work engagement. The findings of this study suggest that psychological detachment from work during off-job time is an important factor that helps to protect employee well-being and work engagement. Copyright 2010 APA, all rights reserved

  15. Serum phosphate predicts temporary hypocalcaemia following thyroidectomy.

    PubMed

    Sam, Amir H; Dhillo, W S; Donaldson, M; Moolla, A; Meeran, K; Tolley, N S; Palazzo, F F

    2011-03-01

    Temporary hypocalcaemia occurs in up to 40% of patients following a total thyroidectomy. Serum calcium and parathyroid hormone (PTH) measurements are currently used to predict post-thyroidectomy hypocalcaemia. However, immediate access to PTH measurement is expensive and not widely available. Serum phosphate responds rapidly to changes in circulating PTH levels, and its measurement is readily available in all hospitals. We evaluated the use of serum phosphate to predict temporary hypocalcaemia post-thyroidectomy. We retrospectively assessed 111 consecutive patients who had total or completion thyroidectomy. Patients had serum calcium and phosphate measured preoperatively, on the evening of surgery (day 0), on the morning of day 1 and over the following week as clinically indicated. Serum PTH was measured on the morning of day 1. Vitamin D levels were measured preoperatively. Seventy-six patients did not develop treatment-demanding hypocalcaemia. In these patients, the mean serum phosphate concentration was lower on the morning of day 1 compared to that on the evening of surgery. Seventeen patients with a vitamin D>25 nmol/l developed hypocalcaemia requiring treatment from day 1 onwards. All had an overnight rise in serum phosphate to >1.44 mmol/l (100% sensitivity and specificity for predicting hypocalcaemia). Twelve patients who had a vitamin D<25 nmol/l also developed hypocalcaemia but had an attenuated rise in serum phosphate. Serum phosphate is a reliable biochemical predictor of post-thyroidectomy hypocalcaemia in patients without vitamin D deficiency. The use of serum phosphate may facilitate safe day 1 discharge of patients undergoing thyroidectomy. © 2011 Blackwell Publishing Ltd.

  16. The pentose phosphate pathway and cancer

    PubMed Central

    Patra, Krushna C.; Hay, Nissim

    2015-01-01

    The pentose phosphate pathway (PPP), which branches from glycolysis at the first committed step of glucose metabolism, is required for the synthesis of ribonucleotides and is a major source of NADPH. NADPH is required for and consumed during fatty acid synthesis and the scavenging of reactive oxygen species. Therefore, the PPP plays a pivotal role in helping glycolytic cancer cells to meet their anabolic demands and combat oxidative stress. Recently, several neoplastic lesions were shown to have evolved to facilitate the flux of glucose into the pentose phosphate pathway. This review summarizes the fundamental functions of the PPP, its regulation in cancer cells, and its importance in cancer cell metabolism and survival. PMID:25037503

  17. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupina, L.; Zoellner, M. H.; Dietrich, B.

    2015-11-16

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer system a very promising template for the growth of high quality GaN layers on silicon.

  18. 12 CFR 324.11 - Capital conservation buffer and countercyclical capital buffer amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Capital conservation buffer and countercyclical capital buffer amount. 324.11 Section 324.11 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION... Requirements and Buffers § 324.11 Capital conservation buffer and countercyclical capital buffer amount. (a...

  19. Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in North San Francisco Bay, California

    USGS Publications Warehouse

    McLaughlin, K.; Kendall, C.; Silva, S.R.; Young, M.; Paytan, A.

    2006-01-01

    A seasonal analysis assesing variations in the oxygen isotopic composition of dissolved inorganic phosphate (DIP) was conducted in the San Francisco Bay estuarine system, California. Isotopic fractionation of oxygen in DIP (exchange of oxygen between phosphate and environmental water) at surface water temperatures occurs only as a result of enzyme-mediated, biological reactions. Accordingly, if phospate demand is low relative to input and phosphate is not heavily cycled in the ecosystem, the oxygen isotopic composition of DIP (?? 18Op) will reflect the isotopic composition of the source of phosphate to the system. Such is the case for the North San Francisco Bay, an anthropogenically impacted estuary with high surface water phosphate concentrations. Variability in the ?? 18Op in the bay is primarily controlled by mixing of water masses with different ??18Op signatures. The ??18Op values range from 11.4??? at the Sacramento River to 20.1??? at the Golden Gate. Deviations from the two-component mixing model for the North Bay reflect additional, local sources of phosphate to the estuary that vary seasonally. Most notably, deviations from the mixing model occur at the confluence of a major river into the bay during periods of high river discharge and near wastewater treatment outlets. These data suggest that ??18Op can be an effective tool for identifying P point sources and understanding phosphate dynamics in estuarine systems. Copyright 2006 by the American Geophysical Union.

  20. Evaluation of a boron-nitrogen, phosphate-free fire-retardant treatment. Part I, Testing of Douglas-fir plywood per ASTM Standard D 5516-96

    Treesearch

    Jerrold E. Winandy; Michael J. Richards

    2003-01-01

    The objective of this work was to evaluate (a) the effects of a new boron– nitrogen, phosphate-free fire-retardant (FR) formulation on the initial strength of Douglas-fir AB-grade plywood and (b) the potential of this FR treatment to experience subsequent thermal degradation In-service when exposed to elevated temperatures. Test Method ASTM D 5516 was generally...

  1. 12 CFR 217.11 - Capital conservation buffer and countercyclical capital buffer amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Capital conservation buffer and countercyclical capital buffer amount. 217.11 Section 217.11 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS... Requirements and Buffers § 217.11 Capital conservation buffer and countercyclical capital buffer amount. (a...

  2. Dual Mechanism of Ion Permeation through VDAC Revealed with Inorganic Phosphate Ions and Phosphate Metabolites

    PubMed Central

    Krammer, Eva-Maria; Vu, Giang Thi; Homblé, Fabrice; Prévost, Martine

    2015-01-01

    In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a “charged brush” which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms. PMID:25860993

  3. Phosphate-Catalyzed Hydrogen Peroxide Formation from Agar, Gellan, and κ-Carrageenan and Recovery of Microbial Cultivability via Catalase and Pyruvate.

    PubMed

    Kawasaki, Kosei; Kamagata, Yoichi

    2017-11-01

    Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H 2 O 2 ) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659-7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H 2 O 2 formation in agar. The H 2 O 2 formation was pH dependent: H 2 O 2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H 2 O 2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H 2 O 2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H 2 O 2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H 2 O 2 from PT medium, these observations indicate that although H 2 O 2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H 2 O

  4. Phosphate-Catalyzed Hydrogen Peroxide Formation from Agar, Gellan, and κ-Carrageenan and Recovery of Microbial Cultivability via Catalase and Pyruvate

    PubMed Central

    Kamagata, Yoichi

    2017-01-01

    ABSTRACT Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H2O2) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659–7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H2O2 formation in agar. The H2O2 formation was pH dependent: H2O2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H2O2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H2O2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H2O2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H2O2 from PT medium, these observations indicate that although H2O2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H2O2 levels in media

  5. Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey L.; Hoag, Katherine J.; Rao, Xin; Pandis, Spyros N.

    Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight ( C1- C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3-0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S

  6. Phosphate-Mediated Remediation of Metals and Radionuclides

    DOE PAGES

    Martinez, Robert J.; Beazley, Melanie J.; Sobecky, Patricia A.

    2014-01-01

    Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are oftenmore » too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. The in situ sequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.« less

  7. Changing Demands from Riparian Evapotranspiration and Free-Water Evaporation in the Lower Colorado River Basin Under Different Climate Scenarios

    NASA Astrophysics Data System (ADS)

    Bunk, D. A.; Piechota, T. C.

    2012-12-01

    Observed and projected trends in riparian evapotranspiration (ET) and free-water evaporation are examined to improve water demand forecasting for use in modeling of lower Colorado River system reservoir operations. While most previous research has focused on the impacts of climate change and climate variability on water supply, the impacts on water demand under changing climate conditions have not been adequately addressed (NRC, 2007 and Reclamation, 2009). Increases in temperatures and changes in precipitation and wind patterns are expected to increase evaporative demands (Bates and others, 2008), potentially increasing free-water evaporation and ET from riparian vegetation; increasing infiltration rates; altering cropping patterns; and changing the temporal and spatial distribution of water deliveries. This study uses observations and projections under changing climate scenarios of hydroclimatic variables, such as temperature, wind, and precipitation, to analyze their impacts on riparian ET and free-water evaporation in the lower Colorado River mainstream downstream of Lake Mead and Hoover Dam. The projected changes in evaporative demands were assessed to determine their impacts on water supply and reservoir operations in the Colorado River basin under changing climate conditions. Based on analysis of observed and projected hydroclimatic data from the Variable Infiltration Capacity (VIC) hydrologic model, mean annual daily temperature in the lower Colorado River mainstream reach has increased by 0.8° Celsius (C) from the 30-year period ending in 1980 to period ending in 2010 and is projected to increase by an additional 1.7° C by 30-year period ending in 2060. Analysis of riparian ET derived from the ASCE Penman-Monteith method (Allen et al., 2005, from Monteith, 1965 and 1981) and Westenburg et al. (2006) and free-water evaporation derived from the Penman combination model in Dingman (2008) indicates that combined evaporative demand in the lower Colorado River

  8. Facilitation through Buffer Saturation: Constraints on Endogenous Buffering Properties

    PubMed Central

    Matveev, Victor; Zucker, Robert S.; Sherman, Arthur

    2004-01-01

    Synaptic facilitation (SF) is a ubiquitous form of short-term plasticity, regulating synaptic dynamics on fast timescales. Although SF is known to depend on the presynaptic accumulation of Ca2+, its precise mechanism is still under debate. Recently it has been shown that at certain central synapses SF results at least in part from the progressive saturation of an endogenous Ca2+ buffer (Blatow et al., 2003), as proposed by Klingauf and Neher (1997). Using computer simulations, we study the magnitude of SF that can be achieved by a buffer saturation mechanism (BSM), and explore its dependence on the endogenous buffering properties. We find that a high SF magnitude can be obtained either by a global saturation of a highly mobile buffer in the entire presynaptic terminal, or a local saturation of a completely immobilized buffer. A characteristic feature of BSM in both cases is that SF magnitude depends nonmonotonically on the buffer concentration. In agreement with results of Blatow et al. (2003), we find that SF grows with increasing distance from the Ca2+ channel cluster, and increases with increasing external Ca2+, [Ca2+]ext, for small levels of [Ca2+]ext. We compare our modeling results with the experimental properties of SF at the crayfish neuromuscular junction, and find that the saturation of an endogenous mobile buffer can explain the observed SF magnitude and its supralinear accumulation time course. However, we show that the BSM predicts slowing of the SF decay rate in the presence of exogenous Ca2+ buffers, contrary to experimental observations at the crayfish neuromuscular junction. Further modeling and data are required to resolve this aspect of the BSM. PMID:15111389

  9. The effect of reaction conditions on formation of wet precipitated calcium phosphates

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Cao, Peng

    2015-03-01

    The precipitation process discussed in the present study involves the addition of alkaline solutions to an acidic calcium phosphate suspension. Several parameters (pH, pH buffer reagent, ageing and stirring) were investigated. The synthesized powders were calcined at 1000°C for 1 h in air, in order to study the thermal stability and crystalline phase compositions. X-ray diffraction (XRD) and ESEM analysis were used for sample characterization. It is found that all these processing parameters affect the crystalline phases evolved and resultant microstructures. Phase evolution occurred at an elevated pH level. The pH buffer reagent would affect both the phase composition and microstructure. Ageing was essential for the phase maturation. Stirring accelerated the reaction process by providing a homogeneous medium for precipitation.

  10. The moderating role of decision authority and coworker- and supervisor support on the impact of job demands in nursing homes: a cross-sectional study.

    PubMed

    Willemse, Bernadette M; de Jonge, Jan; Smit, Dieneke; Depla, Marja F I A; Pot, Anne Margriet

    2012-07-01

    Healthcare workers in nursing homes are faced with high job demands that can have a detrimental impact on job-related outcomes, such as job satisfaction. Job resources may have a buffering role on this relationship. The Demand-Control-Support (DCS) Model offers a theoretical framework to study how specific job resources can buffer the adverse effects of high demands, and can even activate positive consequences of high demands. The present study tests the moderating (i.e. buffering and activating) effects of decision authority and coworker- and supervisor support that are assumed by the hypotheses of the DCS Model. A national cross-sectional survey was conducted with an anonymous questionnaire. One hundred and thirty six living arrangements that provide nursing home care for people with dementia in the Netherlands. Fifteen healthcare workers per living arrangement. In total, 1147 people filled out the questionnaires (59% response rate). Hierarchical multilevel regression analyses were conducted to test the assumption that the effect of job demands on the dependent variables is buffered or activated the most when both decision authority and social support are high. This moderation is statistically represented by three-way interactions (i.e. demands×authority×support), while lower-order effects are taken into account (i.e. two-way interactions). The hypotheses are supported when three-way interaction effects are found in the expected direction. The dependent variables studied are job satisfaction, emotional exhaustion, and personal accomplishment. The proposed buffering and activation hypotheses of the DCS Model were not supported in our study. Three-way interaction effects were found for emotional exhaustion and personal accomplishment, though not in the expected direction. In addition, two-way interaction effects were found for job satisfaction and emotional exhaustion. Decision authority was found to buffer the adverse effect of job demands and to activate

  11. Inorganic phosphate-triggered release of anti-cancer arsenic trioxide from a self-delivery system: an in vitro and in vivo study

    NASA Astrophysics Data System (ADS)

    Chen, Fei-Yan; Yi, Jing-Wei; Gu, Zhe-Jia; Tang, Bin-Bing; Li, Jian-Qi; Li, Li; Kulkarni, Padmakar; Liu, Li; Mason, Ralph P.; Tang, Qun

    2016-03-01

    On-demand drug delivery is becoming feasible via the design of either exogenous or endogenous stimulus-responsive drug delivery systems. Herein we report the development of gadolinium arsenite nanoparticles as a self-delivery platform to store, deliver and release arsenic trioxide (ATO, Trisenox), a clinical anti-cancer drug. Specifically, unloading of the small molecule drug is triggered by an endogenous stimulus: inorganic phosphate (Pi) in the blood, fluid, and soft or hard tissue. Kinetics in vitro demonstrated that ATO is released with high ON/OFF specificity and no leakage was observed in the silent state. The nanoparticles induced tumor cell apoptosis, and reduced cancer cell migration and invasion. Plasma pharmacokinetics verified extended retention time, but no obvious disturbance of phosphate balance. Therapeutic efficacy on a liver cancer xenograft mouse model was dramatically potentiated with reduced toxicity compared to the free drug. These results suggest a new drug delivery strategy which might be applied for ATO therapy on solid tumors.On-demand drug delivery is becoming feasible via the design of either exogenous or endogenous stimulus-responsive drug delivery systems. Herein we report the development of gadolinium arsenite nanoparticles as a self-delivery platform to store, deliver and release arsenic trioxide (ATO, Trisenox), a clinical anti-cancer drug. Specifically, unloading of the small molecule drug is triggered by an endogenous stimulus: inorganic phosphate (Pi) in the blood, fluid, and soft or hard tissue. Kinetics in vitro demonstrated that ATO is released with high ON/OFF specificity and no leakage was observed in the silent state. The nanoparticles induced tumor cell apoptosis, and reduced cancer cell migration and invasion. Plasma pharmacokinetics verified extended retention time, but no obvious disturbance of phosphate balance. Therapeutic efficacy on a liver cancer xenograft mouse model was dramatically potentiated with reduced

  12. Effects of intracellular injection of calcium buffers on light adaptation in Limulus ventral photoreceptors

    PubMed Central

    1975-01-01

    The calcium sequestering agent, EGTA, was injected into Limulus ventral photoreceptors. Before injection, the inward membrane current induced by a long stimulus had a large initial transient which declined to a smaller plateau. Iontophoretic injection of EGTA tended to prevent the decline from transient to plateau. Before injection the plateau response was a nonlinear function of light intensity. After EGTA injection the response-intensity curves tended to become linear. Before injection, bright lights lowered the sensitivity as determined with subsequent test flashes. EGTA injection decreased the light-induced changes in sensitivity. Ca-EGTA buffers having different levels of free calcium were pressure-injected into ventral photoreceptors; the higher the level of free calcium, the lower the sensitivity measured after injection. The effects of inotophoretic injection of EGTA were not mimicked by injection or similar amounts of sulfate and the effects of pressure injection of EGTA buffer solutions were not mimicked by injection of similar volumes of pH buffer or mannitol. The data are consistent with the hypothesis that light adaptation is mediated by a rise of the intracellular free calcium concentration. PMID:810540

  13. Design of suitable carrier buffer for free-flow zone electrophoresis by charge-to-mass ratio and band broadening analysis.

    PubMed

    Kong, Fan-Zhi; Yang, Ying; He, Yu-Chen; Zhang, Qiang; Li, Guo-Qing; Fan, Liu-Yin; Xiao, Hua; Li, Shan; Cao, Cheng-Xi

    2016-09-01

    In this work, charge-to-mass ratio (C/M) and band broadening analyses were combined to provide better guidance for the design of free-flow zone electrophoresis carrier buffer (CB). First, the C/M analyses of hemoglobin and C-phycocyanin (C-PC) under different pH were performed by CLC Protein Workbench software. Second, band dispersion due to the initial bandwidth, diffusion, and hydrodynamic broadening were discussed, respectively. Based on the analyses of the C/M and band broadening, a better guidance for preparation of free-flow zone electrophoresis CB was obtained. Series of experiments were performed to validate the proposed method. The experimental data showed high accordance with our prediction allowing the CB to be prepared easily with our proposed method. To further evaluate this method, C-PC was purified from crude extracts of Spirulina platensis with the selected separation condition. Results showed that C-PC was well separated from other phycobiliproteins that have similar physicochemical properties, and analytical grade product with purity up to 4.5 (A620/A280) was obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Imaging the Drosophila retina: zwitterionic buffers PIPES and HEPES induce morphological artifacts in tissue fixation.

    PubMed

    Nie, Jing; Mahato, Simpla; Zelhof, Andrew C

    2015-02-03

    Tissue fixation is crucial for preserving the morphology of biological structures and cytological details to prevent postmortem degradation and autolysis. Improper fixation conditions could lead to artifacts and thus incorrect conclusions in immunofluorescence or histology experiments. To resolve reported structural anomalies with respect to Drosophila photoreceptor cell organization we developed and utilized a combination of live imaging and fixed samples to investigate the exact biogenesis and to identify the underlying source for the reported discrepancies in structure. We found that piperazine-N,N'-bis(ethanesulfonic acid) (PIPES) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), two zwitterionic buffers commonly used in tissue fixation, can cause severe lumen and cell morphological defects in Drosophila pupal and adult retina; the inter-rhabdomeral lumen becomes dilated and the photoreceptor cells are significantly reduced in size. Correspondingly, the localization pattern of Eyes shut (EYS), a luminal protein, is severely altered. In contrast, tissues fixed in the phosphate buffered saline (PBS) buffer results in lumen and cell morphologies that are consistent with live imaging. We suggest that PIPES and HEPES buffers should be utilized with caution for fixation when examining the interplay between cells and their extracellular environment, especially in Drosophila pupal and adult retina research.

  15. GaAs buffer layer technique for vertical nanowire growth on Si substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaoqing, E-mail: steelxu@stanford.edu; Parizi, Kokab B.; Huo, Yijie

    2014-02-24

    Gold catalyzed vapor-liquid-solid method is widely applied to III–V nanowire (NW) growth on Si substrate. However, the easy oxidation of Si, possible Si contamination in the NWs, high defect density in the NWs, and high sensitivity of the NW morphology to growth conditions largely limit its controllability. In this work, we developed a buffer layer technique by introducing a GaAs thin film with predefined polarity as a template. It is found that samples grown on these buffer layers all have high vertical NW yields in general, due to the single-orientation of the buffer layers. Low temperature buffer with smoother surfacemore » leads to highest yield of vertical NWs, while high temperature (HT) buffer with better crystallinity results in perfect NW quality. The defect-free property we observed here is very promising for optoelectronic device applications based on GaAs NW. Moreover, the buffer layers can eliminate Si contamination by preventing Si-Au alloy formation and by increasing the thickness of the Si diffusion barrier, thus providing more flexibility to vertical NW growth. The buffer layer technique we demonstrated here could be easily extended to other III-V on Si system for electronic and photonic applications.« less

  16. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    PubMed

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  17. INACTIVATION OF HEPATITIS A VIRUS AND MS2 BY OZONE AND OZONE-HYDROGEN PEROXIDE IN BUFFERED WATER

    EPA Science Inventory

    The comparative inactivation of highly purified hepatitis A virus (HAV) and MS2 by 1 mg H202/L, 2.0 and 0.4 mg 03/L, and 2.0 mg 03/L plus 0.6, 1.0, or 1.6 mg H202/L, at 3-10 degrees C, in 0.01 M phosphate buffer (pH 6-10) was determined. Both HAV and MS2 were completely inactivat...

  18. Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media.

    PubMed

    Heikkinen, A T; DeClerck, L; Löbmann, K; Grohganz, H; Rades, T; Laitinen, R

    2015-07-01

    Co-amorphous formulations, particularly binary drug-amino acid mixtures, have been shown to provide enhanced dissolution for poorly-soluble drugs and improved physical stability of the amorphous state. However, to date the dissolution properties (mainly intrinsic dissolution rate) of the co-amorphous formulations have been tested only in buffers and their supersaturation ability remain unexplored. Consequently, dissolution studies in simulated intestinal fluids need to be conducted in order to better evaluate the potential of these systems in increasing the oral bioavailability of biopharmaceutics classification system class II drugs. In this study, solubility and dissolution properties of the co-amorphous simvastatin-lysine, gibenclamide-serine, glibenclamide-threonine and glibenclamide-serine-threonine were studied in phosphate buffer pH 7.2 and biorelevant media (fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, respectively)). The co-amorphous formulations were found to provide a long-lasting supersaturation and improve the dissolution of the drugs compared to the crystalline and amorphous drugs alone in buffer. Similar improvement, but in lesser extent, was observed in biorelevant media suggesting that a dissolution advantage observed in aqueous buffers may overestimate the advantage in vivo. However, the results show that, in addition to stability advantage shown earlier, co-amorphous drug-amino acid formulations provide dissolution advantage over crystalline drugs in both aqueous and biorelevant conditions.

  19. Reduction of shunt current in buffer-free IrMn based spin-valve structures

    NASA Astrophysics Data System (ADS)

    Kocaman, B.; Akdoğan, N.

    2018-06-01

    The presence of thick buffer layers in magnetic sensor devices decreases sensor sensitivity due to shunt currents. With this motivation, we produced IrMn-based spin-valve multilayers without using buffer layer. We also studied the effects of post-annealing and IrMn thickness on exchange bias field (HEB) and blocking temperature (TB) of the system. Magnetization measurements indicate that both HEB and TB values are significantly enhanced with post-annealing of IrMn layer. In addition, we report that IrMn thickness of the system strongly influences the magnetization and transport characteristics of the spin-valve structures. We found that the minimum thickness of IrMn layer is 6 nm in order to achieve the lowest shunt current and high blocking temperature (>300 K). We also investigated the training of exchange bias to check the long-term durability of IrMn-based spin-valve structures for device applications.

  20. Influence of sample preparation and identification of subcelluar structures in quantitative holographic phase contrast microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Schmidt, Lisa; Przibilla, Sabine; Rommel, Christina; Vollmer, Angelika; Ketelhut, Steffi; Schnekenburger, Jürgen; von Bally, Gert

    2010-04-01

    Digital holographic microscopy (DHM) provides label-free quantitative phase contrast with low demands on sample preparation. Nevertheless, for DHM measurements on fixed cells the mounting medium has to be considered while the phase contrast of living cells may be influenced by the used buffer solution. To quantify these effects, the maximum cell caused phase contrast and the visibility of the nucleoli were analyzed. A second aim of the study was to identify subcellular components in DHM phase contrast images. Therefore, comparative investigations using bright field imaging, DHM and fluorescence microscopy with 4',6- Diamidino-2-phenylindol (DAPI) staining were performed. DAPI-staining visualizes cell components containing DNA. The obtained results demonstrate exemplarily for two tumor cell lines that from DHM phase contrast images of fixed cells in phosphate buffer saline (PBS) cell thickness values are obtained which are comparable to living cells. Furthermore, it is shown that in many cases nucleus components can be identified only by DHM phase contrast.

  1. VIRTUAL FRAME BUFFER INTERFACE

    NASA Technical Reports Server (NTRS)

    Wolfe, T. L.

    1994-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied user interfaces. This variety of architectures and interfaces creates software development, maintenance, and portability problems for application programs. The Virtual Frame Buffer Interface program makes all frame buffers appear as a generic frame buffer with a specified set of characteristics, allowing programmers to write code which will run unmodified on all supported hardware. The Virtual Frame Buffer Interface converts generic commands to actual device commands. The virtual frame buffer consists of a definition of capabilities and FORTRAN subroutines that are called by application programs. The virtual frame buffer routines may be treated as subroutines, logical functions, or integer functions by the application program. Routines are included that allocate and manage hardware resources such as frame buffers, monitors, video switches, trackballs, tablets and joysticks; access image memory planes; and perform alphanumeric font or text generation. The subroutines for the various "real" frame buffers are in separate VAX/VMS shared libraries allowing modification, correction or enhancement of the virtual interface without affecting application programs. The Virtual Frame Buffer Interface program was developed in FORTRAN 77 for a DEC VAX 11/780 or a DEC VAX 11/750 under VMS 4.X. It supports ADAGE IK3000, DEANZA IP8500, Low Resolution RAMTEK 9460, and High Resolution RAMTEK 9460 Frame Buffers. It has a central memory requirement of approximately 150K. This program was developed in 1985.

  2. Bus operators' responses to job strain: An experimental test of the job demand-control model.

    PubMed

    Cendales-Ayala, Boris; Useche, Sergio Alejandro; Gómez-Ortiz, Viviola; Bocarejo, Juan Pablo

    2017-10-01

    The research aim was to test the Job Demand-Control (JDC) Model demands × Control interaction (or buffering) hypothesis in a simulated bus driving experiment. The buffering hypothesis was tested using a 2 (low and high demands) × 2 (low and high decision latitude) design with repeated measures on the second factor. A sample of 80 bus operators were randomly assigned to the low (n = 40) and high demands (n = 40) conditions. Demands were manipulated by increasing or reducing the number of stops to pick up passengers, and decision latitude by imposing or removing restrictions on the Rapid Transit Bus (BRT) operators' pace of work. Outcome variables include physiological markers (heart rate [HR], heart rate variability [HRV], breathing rate [BR], electromyography [EMG], and skin conductance [SC]), objective driving performance and self-report measurements of psychological wellbeing (psychological distress, interest/enjoyment [I/E], perceived competence, effort/importance [E/I], and pressure/tension [P/T]). It was found that job decision latitude moderates the effect of job demands on both physiological arousal (BR: F(1, 74) = 4.680, p = .034, SC: F(1, 75) = 6.769, p = .011, and EMG: F(1, 75) = 6.550, p = .013) and psychological well-being (P/T: F(1, 75) = 4.289, p = .042 and I/E: F(1, 74) = 4.548, p = .036). Consistently with the JDC model buffering hypothesis, the experimental findings suggest that increasing job decision latitude can moderate the negative effect of job demands on different psychophysiological outcomes. This finding is useful for designing organizational and clinical interventions in an occupational group at high risk of work stress-related disease. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. An unexpected phosphate binding site in Glyceraldehyde 3-Phosphate Dehydrogenase: Crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, William J; Senkovich, Olga; Chattopadhyay, Debasish

    2009-06-08

    The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate) and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips tomore » the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate) proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD) state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2{angstrom} resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate occupies an unexpected site not seen before and the phosphate binding loop remains in the substrate-free

  4. The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer

    USGS Publications Warehouse

    Kramer, Henry

    1956-01-01

    A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.

  5. Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein

    NASA Astrophysics Data System (ADS)

    Arai, Hirofumi; Berlett, Barbara S.; Chock, P. Boon; Stadtman, Earl R.

    2005-07-01

    Oxidation of low-density lipoprotein (LDL) may play an important role in atherosclerosis. We studied the effects of bicarbonate/CO2 and phosphate buffer systems on metal ion-catalyzed oxidation of LDL to malondialdehyde (MDA) and to protein carbonyl and MetO derivatives. Our results revealed that LDL oxidation in mixtures containing free iron or heme derivatives was much greater in bicarbonate/CO2 compared with phosphate buffer. However, when copper was substituted for iron in these mixtures, the rate of LDL oxidation in both buffers was similar. Iron-catalyzed oxidation of LDL was highly sensitive to inhibition by phosphate. Presence of 0.3-0.5 mM phosphate, characteristic of human serum, led to 30-40% inhibition of LDL oxidation in bicarbonate/CO2 buffer. Iron-catalyzed oxidation of LDL to MDA in phosphate buffer was inhibited by increasing concentrations of albumin (10-200 μM), whereas MDA formation in bicarbonate/CO2 buffer was stimulated by 10-50 μM albumin but inhibited by higher concentrations. However, albumin stimulated the oxidation of LDL proteins to carbonyl derivatives at all concentrations examined in both buffers. Conversion of LDL to MDA in bicarbonate/CO2 buffer was greatly stimulated by ADP, ATP, and EDTA but only when EDTA was added at a concentration equal to that of iron. At higher than stoichiometric concentrations, EDTA prevented oxidation of LDL. Results of these studies suggest that interactions between bicarbonate and iron or heme derivatives leads to complexes with redox potentials that favor the generation of reactive oxygen species and/or to the generation of highly reactive CO2 anion or bicarbonate radical that facilitates LDL oxidation. Freely available online through the PNAS open access option.Abbreviations: LDL, low-density lipoprotein; MDA, malondialdehyde; MetO, methionine sulfoxide.

  6. Interlaboratory studies on in vitro test methods for estimating in vivo resorption of calcium phosphate ceramics.

    PubMed

    Ito, Atsuo; Sogo, Yu; Yamazaki, Atsushi; Aizawa, Mamoru; Osaka, Akiyoshi; Hayakawa, Satoshi; Kikuchi, Masanori; Yamashita, Kimihiro; Tanaka, Yumi; Tadokoro, Mika; de Sena, Lídia Ágata; Buchanan, Fraser; Ohgushi, Hajime; Bohner, Marc

    2015-10-01

    A potential standard method for measuring the relative dissolution rate to estimate the resorbability of calcium-phosphate-based ceramics is proposed. Tricalcium phosphate (TCP), magnesium-substituted TCP (MgTCP) and zinc-substituted TCP (ZnTCP) were dissolved in a buffer solution free of calcium and phosphate ions at pH 4.0, 5.5 or 7.3 at nine research centers. Relative values of the initial dissolution rate (relative dissolution rates) were in good agreement among the centers. The relative dissolution rate coincided with the relative volume of resorption pits of ZnTCP in vitro. The relative dissolution rate coincided with the relative resorbed volume in vivo in the case of comparison between microporous MgTCPs with different Mg contents and similar porosity. However, the relative dissolution rate was in poor agreement with the relative resorbed volume in vivo in the case of comparison between microporous TCP and MgTCP due to the superimposition of the Mg-mediated decrease in TCP solubility on the Mg-mediated increase in the amount of resorption. An unambiguous conclusion could not be made as to whether the relative dissolution rate is predictive of the relative resorbed volume in vivo in the case of comparison between TCPs with different porosity. The relative dissolution rate may be useful for predicting the relative amount of resorption for calcium-phosphate-based ceramics having different solubility under the condition that the differences in the materials compared have little impact on the resorption process such as the number and activity of resorbing cells. The evaluation and subsequent optimization of the resorbability of calcium phosphate are crucial in the use of resorbable calcium phosphates. Although the resorbability of calcium phosphates has usually been evaluated in vivo, establishment of a standard in vitro method that can predict in vivo resorption is beneficial for accelerating development and commercialization of new resorbable calcium phosphate

  7. KEY COMPARISON: Final report on CCQM-K9.2: Subsequent key comparison on pH determination of phosphate buffer by Harned cell measurements

    NASA Astrophysics Data System (ADS)

    Spitzer, Petra; Giera, Janine; Fraga, Isabel C.; Tønnes Jakobsen, Pia; Jensen, Hans D.; Hyllested, Peter; Karpov, Oleg; Kutovoy, Viatcheslav; Nakamura, Susumu; Vospelova, Alena; Zvezdina, Valentina

    2008-01-01

    CCQM-K9.2 was performed supplementary to the key comparison CCQM-K9 on the pH determination of a phosphate buffer with nominal pH ~ 6.9 (at 25 °C). The sample composition was very similar in both comparisons. Only the source of the starting material used for sample preparation was different. The comparison was restricted to the use of the primary method for pH (Harned cell measurement) as defined in the IUPAC Recommendations [2]. The measurement temperatures were 15 °C, 25 °C, 37 °C. CCQM-K9.2, CCQM-K.9 and the first supplementary comparison CCQM-K9.1 [5] are activities of the Electrochemical Working Group (EAWG) of the CCQM. All three comparisons were coordinated by the PTB, Germany. The Danish Primary Laboratory (DPL) successfully took part in the CCQM-K9. Meanwhile the primary set-up for pH in Denmark moved from DPL affiliated to Radiometer Medical to DFM, Denmark. The subsequent comparison allows assessing the degree of equivalence for the measurement of pH at DFM after the move. Due to the interest of other laboratories in demonstrating their progress in pH measurements on the primary level the CCQM-K9.2 supplementary comparison was extended to other participants than DFM, namely NMIJ, VNIIFTRI, INMETRO and CMI. The reported quantity for CCQM-K9.2 was not the pH of the sample but the acidity function at zero chloride molality (see chapter 12). To calculate the pH value from the acidity function it is necessary to know the ionic strength of the sample buffer solution, which was undisclosed by the coordinator. With the exception of the Czech Metrology Institute, CMI, good agreement in the determined acidity function is found between the participants. The results reported by DFM and by PTB agree within their measurement uncertainty at all measurement temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report

  8. Modeling of the Modulation by Buffers of Ca2+ Release through Clusters of IP3 Receptors

    PubMed Central

    Zeller, S.; Rüdiger, S.; Engel, H.; Sneyd, J.; Warnecke, G.; Parker, I.; Falcke, M.

    2009-01-01

    Abstract Intracellular Ca2+ release is a versatile second messenger system. It is modeled here by reaction-diffusion equations for the free Ca2+ and Ca2+ buffers, with spatially discrete clusters of stochastic IP3 receptor channels (IP3Rs) controlling the release of Ca2+ from the endoplasmic reticulum. IP3Rs are activated by a small rise of the cytosolic Ca2+ concentration and inhibited by large concentrations. Buffering of cytosolic Ca2+ shapes global Ca2+ transients. Here we use a model to investigate the effect of buffers with slow and fast reaction rates on single release spikes. We find that, depending on their diffusion coefficient, fast buffers can either decouple clusters or delay inhibition. Slow buffers have little effect on Ca2+ release, but affect the time course of the signals from the fluorescent Ca2+ indicator mainly by competing for Ca2+. At low [IP3], fast buffers suppress fluorescence signals, slow buffers increase the contrast between bulk signals and signals at open clusters, and large concentrations of buffers, either fast or slow, decouple clusters. PMID:19686646

  9. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    PubMed

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction. Copyright © 2012. Published by Elsevier B.V.

  10. Ceruloplasmin (ferroxidase) oxidizes hydroxylamine probes: deceptive implications for free radical detection

    PubMed Central

    Ganini, Douglas; Canistro, Donatella; Jang, JinJie; Stadler, Krisztian; Mason, Ronald P.; Kadiiska, Maria B.

    2012-01-01

    Ceruloplasmin (ferroxidase) is a copper-binding protein known to promote Fe2+ oxidation in plasma of mammals. Besides its classical ferroxidase activity, ceruloplasmin is known to catalyze the oxidation of various substrates, such as amines and catechols. Assays based on cyclic hydroxylamine oxidation are used to quantify and detect free radicals in biological samples ex vivo and in vitro. We show here that human ceruloplasmin promotes the oxidation of the cyclic hydroxylamine 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) and related probes in Chelex-treated phosphate buffer and rat serum. The reaction is suppressed by the metal chelators DTPA, EDTA and Desferal, while heparin and bathocuproine have no effect. Catalase or SOD additions do not interfere with the CPH-oxidation yield, demonstrating that free radicals are not involved in the CPH oxidation mediated by ceruloplasmin. Plasma samples immunodepleted of ceruloplasmin have lower levels of CPH oxidation, which confirms the role of ceruloplasmin (ferroxidase) as a biological oxidizing agent of cyclic hydroxylamines. In conclusion, we show that the ferroxidase activity of ceruloplasmin is a possible biological source of artifacts in the cyclic hydroxylamine-oxidation assay used for ROS detection and quantification. PMID:22824865

  11. Phosphate rock resources of the United States

    USGS Publications Warehouse

    Cathcart, James Bachelder; Sheldon, Richard Porter; Gulbrandsen, Robert A.

    1984-01-01

    Coastal Plain phosphate province, principally in Florida and North Carolina and offshore in the shallow Atlantic Ocean from North Carolina to southern Florida. This resource is considered to be hypothetical because it is based on geologic inference combined with sparse drilling data. Total resources of phosphate rock in the United States are sufficient to supply domestic demands for the foreseeable future, provided that drilling is done to confirm hypothetical resources and the chemistry of the deposits is determined. Mining and beneficiation techniques will have to be modified or improved, and new techniques will have to be developed so that these deposits can be profitably exploited.

  12. Enhanced bioelectricity generation of air-cathode buffer-free microbial fuel cells through short-term anolyte pH adjustment.

    PubMed

    Ren, Yueping; Chen, Jinli; Li, Xiufen; Yang, Na; Wang, Xinhua

    2018-04-01

    Short-term initial anolyte pH adjustment can relieve the performance deterioration of the single-chamber air-cathode buffer-free microbial fuel cell (BFMFC) caused by anolyte acidification. Adjusting the initial anolyte pH to 9 in 5 running cycles is the optimum strategy. The relative abundance of the electrochemically active Geobacter in the KCl-pH9-MFC anode biofilm increased from 59.01% to 75.13% after the short-term adjustment. The maximum power density (P max ) of the KCl-pH9-MFC was elevated from 316.4mW·m -2 to 511.6mW·m -2 , which was comparable with that of the PBS-MFC. And, after the short-term adjusting, new equilibrium between the anolyte pH and the anode biofilm electrochemical activity has been established in the BFMFC, which ensured the sustainability of the improved bioelectricity generation performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?

    USGS Publications Warehouse

    Emsbo, Poul; McLaughlin, Patrick I.; Breit, George N.; du Bray, Edward A.; Koenig, Alan E.

    2015-01-01

    The critical role of rare earth elements (REEs), particularly heavy REEs (HREEs), in high-tech industries has created a surge in demand that is quickly outstripping known global supply and has triggered a worldwide scramble to discover new sources. The chemical analysis of 23 sedimentary phosphate deposits (phosphorites) in the United States demonstrates that they are significantly enriched in REEs. Leaching experiments using dilute H2SO4 and HCl, extracted nearly 100% of their total REE content and show that the extraction of REEs from phosphorites is not subject to the many technological and environmental challenges that vex the exploitation of many identified REE deposits. Our data suggest that phosphate rock currently mined in the United States has the potential to produce a significant proportion of the world's REE demand as a byproduct. Importantly, the size and concentration of HREEs in some unmined phosphorites dwarf the world's richest REE deposits. Secular variation in phosphate REE contents identifies geologic time periods favorable for the formation of currently unrecognized high-REE phosphates. The extraordinary endowment, combined with the ease of REE extraction, indicates that such phosphorites might be considered as a primary source of REEs with the potential to resolve the global REE (particularly for HREE) supply shortage.

  14. A buffer model of memory encoding and temporal correlations in retrieval.

    PubMed

    Lehman, Melissa; Malmberg, Kenneth J

    2013-01-01

    Atkinson and Shiffrin's (1968) dual-store model of memory includes structural aspects of memory along with control processes. The rehearsal buffer is a process by which items are kept in mind and long-term episodic traces are formed. The model has been both influential and controversial. Here, we describe a novel variant of Atkinson and Shiffrin's buffer model within the framework of the retrieving effectively from memory theory (REM; Shiffrin & Steyvers, 1997) that accounts for findings previously thought to be difficult for such models to explain. This model assumes a limited-capacity buffer where information is stored about items, along with information about associations between items and between items and the context in which they are studied. The strength of association between items and context is limited by the number of items simultaneously occupying the buffer (Lehman & Malmberg, 2009). The contents of the buffer are managed by complementary processes of rehearsal and compartmentalization (Lehman & Malmberg, 2011). New findings that directly test a priori predictions of the model are reported, including serial position effects and conditional and first recall probabilities in immediate and delayed free recall, in a continuous distractor paradigm, and in experiments using list-length manipulations of single-item and paired-item study lists.

  15. Cresyl saligenin phosphate makes multiple adducts on free histidine, but does not form an adduct on histidine 438 of human butyrylcholinesterase.

    PubMed

    Liyasova, Mariya S; Schopfer, Lawrence M; Lockridge, Oksana

    2013-03-25

    Cresyl saligenin phosphate (CBDP) is a suspected causative agent of "aerotoxic syndrome", affecting pilots, crew members and passengers. CBDP is produced in vivo from ortho-containing isomers of tricresyl phosphate (TCP), a component of jet engine lubricants and hydraulic fluids. CBDP irreversibly inhibits butyrylcholinesterase (BChE) in human plasma by forming adducts on the active site serine (Ser-198). Inhibited BChE undergoes aging to release saligenin and o-cresol. The active site histidine (His-438) was hypothesized to abstract o-hydroxybenzyl moiety from the initial adduct on Ser-198. Our goal was to test this hypothesis. Mass spectral analysis of CBDP-inhibited BChE digested with Glu-C showed an o-hydroxybenzyl adduct (+106 amu) on lysine 499, a residue far from the active site, but not on His-438. Nevertheless, the nitrogen of the imidazole ring of free L-histidine formed a variety of adducts upon reaction with CBDP, including the o-hydroxybenzyl adduct, suggesting that histidine-CBDP adducts may form on other proteins. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Cresyl saligenin phosphate makes multiple adducts on free histidine, but does not form an adduct on histidine 438 of human butyrylcholinesterase

    PubMed Central

    Liyasova, Mariya S.; Schopfer, Lawrence M.; Lockridge, Oksana

    2012-01-01

    Cresyl saligenin phosphate (CBDP) is a suspected causative agent of “aerotoxic syndrome”, affecting pilots, crew members and passengers. CBDP is produced in vivo from ortho-containing isomers of tricresyl phosphate (TCP), a component of jet engine lubricants and hydraulic fluids. CBDP irreversibly inhibits butyrylcholinesterase (BChE) in human plasma by forming adducts on the active site serine (Ser-198). Inhibited BChE undergoes aging to release saligenin and o-cresol. The active site histidine (His-438) was hypothesized to abstract o-hydroxybenzyl moiety from the initial adduct on Ser-198. Our goal was to test this hypothesis. Mass spectral analysis of CBDP-inhibited BChE digested with Glu-C showed an o-hydroxybenzyl adduct (+106 amu) on lysine 499, a residue far from the active site, but not on His-438. Nevertheless, the nitrogen of the imidazole ring of free L-histidine formed a variety of adducts upon reaction with CBDP, including the o-hydroxybenzyl adduct, suggesting that histidine-CBDP adducts may form on other proteins. PMID:22898212

  17. Thermolabile triose phosphate isomerase in a psychrophilic Clostridium.

    NASA Technical Reports Server (NTRS)

    Shing, Y. W.; Akagi, J. M.; Himes, R. H.

    1972-01-01

    It was found that a psychrophilic Clostridium contains a triose phosphate isomerase which is very labile at moderate temperatures. An investigation showed that the optimal growth temperature of the psychrophile was between 15 and 20 deg C. No growth occurred at 25 deg C. The thermostability of the glycolytic enzymes in the cell-free extracts of Clostridium sp. strain 69 was studied. The data obtained show that the triose phosphate isomerase is quite labile at moderate temperatures. The instability of the enzyme is sufficient to explain the low maximum growth temperature of the psychrophile.

  18. Fibril growth kinetics link buffer conditions and topology of 3D collagen I networks.

    PubMed

    Kalbitzer, Liv; Pompe, Tilo

    2018-02-01

    Three-dimensional fibrillar networks reconstituted from collagen I are widely used as biomimetic scaffolds for in vitro and in vivo cell studies. Various physicochemical parameters of buffer conditions for in vitro fibril formation are well known, including pH-value, ion concentrations and temperature. However, there is a lack of a detailed understanding of reconstituting well-defined 3D network topologies, which is required to mimic specific properties of the native extracellular matrix. We screened a wide range of relevant physicochemical buffer conditions and characterized the topology of the reconstituted 3D networks in terms of mean pore size and fibril diameter. A congruent analysis of fibril formation kinetics by turbidimetry revealed the adjustment of the lateral growth phase of fibrils by buffer conditions to be key in the determination of pore size and fibril diameter of the networks. Although the kinetics of nucleation and linear growth phase were affected by buffer conditions as well, network topology was independent of those two growth phases. Overall, the results of our study provide necessary insights into how to engineer 3D collagen matrices with an independent control over topology parameters, in order to mimic in vivo tissues in in vitro experiments and tissue engineering applications. The study reports a comprehensive analysis of physicochemical conditions of buffer solutions to reconstitute defined 3D collagen I matrices. By a combined analysis of network topology, i.e., pore size and fibril diameter, and the kinetics of fibril formation we can reveal the dependence of 3D network topology on buffer conditions, such as pH-value, phosphate concentration and sodium chloride content. With those results we are now able to provide engineering strategies to independently tune the topology parameters of widely used 3D collagen scaffolds based on the buffer conditions. By that, we enable the straightforward mimicking of extracellular matrices of in vivo

  19. A time-based potential step analysis of electrochemical impedance incorporating a constant phase element: a study of commercially pure titanium in phosphate buffered saline.

    PubMed

    Ehrensberger, Mark T; Gilbert, Jeremy L

    2010-05-01

    The measurement of electrochemical impedance is a valuable tool to assess the electrochemical environment that exists at the surface of metallic biomaterials. This article describes the development and validation of a new technique, potential step impedance analysis (PSIA), to assess the electrochemical impedance of materials whose interface with solution can be modeled as a simplified Randles circuit that is modified with a constant phase element. PSIA is based upon applying a step change in voltage to a working electrode and analyzing the subsequent current transient response in a combined time and frequency domain technique. The solution resistance, polarization resistance, and interfacial capacitance are found directly in the time domain. The experimental current transient is numerically transformed to the frequency domain to determine the constant phase exponent, alpha. This combined time and frequency approach was tested using current transients generated from computer simulations, from resistor-capacitor breadboard circuits, and from commercially pure titanium samples immersed in phosphate buffered saline and polarized at -800 mV or +1000 mV versus Ag/AgCl. It was shown that PSIA calculates equivalent admittance and impedance behavior over this range of potentials when compared to standard electrochemical impedance spectroscopy. This current transient approach characterizes the frequency response of the system without the need for expensive frequency response analyzers or software. Copyright 2009 Wiley Periodicals, Inc.

  20. Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation.

    PubMed

    Chen, Xi; Liang, Peng; Wei, Zhimou; Zhang, Xiaoyuan; Huang, Xia

    2012-09-01

    A separator coupled circulation stacked microbial desalination cell (c-SMDC-S) was constructed to stabilize the pH imbalances in MDCs without buffer solution and achieved the stable desalination. The long-term operation of c-SMDC-S, regular stacked MDC (SMDC) and no separator coupled circulation SMDC (c-SMDC) were tested. The SMDC and c-SMDC could only stably operate for 1 week and 1 month owing to dramatic anolyte pH decrease and serious biofilm growth on the air cathode, respectively. The c-SMDC-S gained in anolyte alkalinity and operated stably for about 60 days without the thick biofilm growth on cathode. Besides, the chemical oxygen demand removal and coulombic efficiency were 64 ± 6% and 30 ± 2%, higher than that of SMDC and c-SMDC, respectively. It was concluded that the circulation of alkalinity could remove pH imbalance while the separator could expand the operation period and promote the conversion of organic matter to electricity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Effect of buffer and antioxidant on stability of a mercaptopurine suspension.

    PubMed

    Aliabadi, Hamidreza Montazeri; Romanick, Marcel; Desai, Sunil; Lavasanifar, Afsaneh

    2008-03-01

    The stability of standard and modified mercaptopurine suspensions when stored at room temperature and under refrigerated conditions to test the feasibility of increasing shelf life was studied. A 50-mg/mL mercaptopurine suspension was compounded by adding simple syrup, cherry syrup, and sterile water for irrigation to triturated mercaptopurine tablets for the initial reference formulation. Three additional formulations were prepared by adding an antioxidant (ascorbic acid 10 mg), a buffer (sodium phosphate monobasic monohydrate 500 mg), and a combination of antioxidant and buffer to the reference formulation. Each compounded batch was divided into two parts and stored in amber bottles at room temperature (19-23 degrees C) or under refrigerated conditions (4-8 degrees C). Analysis through high-performance liquid chromatography determined mercaptopurine levels after three and seven days and weekly thereafter for at least two weeks after shelf life was reached under specified storage conditions. Solutions with at least 93% of the original mercaptopurine concentration and with no observable sign of aggregation or cake formation were considered stable. The reference suspension of mercaptopurine showed an acceptable physical and chemical stability of up to 5 weeks when stored at room temperature. The addition of ascorbic acid extended the shelf life of the compounded suspension to 11 weeks. However, the addition of sodium phosphate monobasic did not improve the stability of mercaptopurine in the suspension. The results showed a higher stability for all formulations after storage at room temperature compared with those stored in a refrigerator. A standard oral suspension of mercaptopurine contained an acceptable drug concentration for up to 5 weeks when stored at room temperature. The addition of ascorbic acid at a concentration of 0.1% w/v to the standard formulation increased the suspension's shelf life at room temperature to 11 weeks.

  2. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes.

    PubMed Central

    Berlin, J R; Bassani, J W; Bers, D M

    1994-01-01

    Intracellular passive Ca2+, buffering was measured in voltage-clamped rat ventricular myocytes. Cells were loaded with indo-1 (K+ salt) to an estimated cytosolic concentration of 44 +/- 5 microM (Mean +/- SEM, n = 5), and accessible cell volume was estimated to be 24.5 +/- 3.6 pl. Ca2+ transport by the sarcoplasmic reticulum (SR) Ca-ATPase and sarcolemmal Na-Ca exchange was inhibited by treatment with thapsigargin and Na-free solutions, respectively. Extracellular [Ca2+] was maintained at 10 mM and, in some experiments, the mitochondrial uncoupler "1799" was used to assess the degree of mitochondrial Ca2+ uptake. To perform single cell titrations, intracellular Ca2+ ([Ca2+]i) was increased progressively by a train of depolarizing voltage clamp pulses from -40 to +10 mV. The total Ca2+ gain with each pulse was calculated by integration of the Ca current and then analyzed as a function of the rapid change in [Ca2+]i during the pulse. In the range of [Ca2+]i from 0.1 to 2 microM, overall cell buffering was well described as a single lumped Michaelis-Menten type species with an apparent dissociation constant, KD, of of 0.63 +/- 0.07 microM (n = 5) and a binding capacity, Bmax, of 162 +/- 15 mumol/l cell H2O. Correction for buffering attributable to cytosolic indo-1 gives intrinsic cytosolic Ca2+ buffering parameters of KD = 0.96 +/- 0.18 microM and Bmax = 123 +/- 18 mumol/l cell H2O. The fast Ca2+ buffering measured in this manner agrees reasonably with the characteristics of known rapid Ca buffers (e.g., troponin C, calmodulin, and SR Ca-ATPase), but is only about half of the total Ca2+ buffering measured at equilibrium. Inclusion of slow Ca buffers such as the Ca/Mg sites on troponin C and myosin can account for the differences between fast Ca2+ buffering in phase with the Ca current measured in the present experiments and equilibrium Ca2+ buffering. The present data indicate that a rapid rise of [Ca2+]i from 0.1 to 1 microM during a contraction requires

  3. Driving forces and the influence of the buffer composition on the complexation reaction between ibuprofen and HPCD.

    PubMed

    Perlovich, German L; Skar, Merete; Bauer-Brandl, Annette

    2003-10-01

    Cyclodextrins are often used in order to increase the aqueous solubility of drug substances by complexation. In order to investigate the complexation reaction of ibuprofen and hydroxypropyl-beta-cyclodextrin, titration calorimetry was used as a direct method. The thermodynamic parameters of the complexation process (stability constant, K(11); complexation enthalpy, deltaH(c) degrees ) were obtained in two different buffer systems (citric acid/sodium-phosphate and phosphoric acid) at various pH values. Based on these data the relative contributions of the enthalpic and entropic terms of the Gibbs energy to the complexation process have been analyzed. In both buffers the enthalpic and entropic terms are of different sign and this case corresponds to a 'nonclassical' model of hydrophobic interaction. In citric buffer, the main driving force of complexation is the entropy, which increases from 60 to 67% while the pH of the solution increases from 3.2 to 8.0. However, for the phosphoric buffer the entropic term decreases from 60 to 45%, while the pH-value of the solution increases from 5.0 to 8.2, and the driving force of the complexation process changes from entropy to enthalpy. The experimental data of the present study are compared to results of other authors and discrepancies discussed in detail.

  4. 12 CFR 3.11 - Capital conservation buffer and countercyclical capital buffer amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Capital conservation buffer and countercyclical capital buffer amount. 3.11 Section 3.11 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY CAPITAL ADEQUACY STANDARDS Capital Ratio Requirements and Buffers § 3.11 Capital conservation...

  5. Evaluation of a boron-nitrogen, phosphate-free fire-retardant treatment. Part II, Testing of small clear specimens per ASTM Standard D 5664-95, Methods A and B

    Treesearch

    Jerrold E. Winandy; Douglas Herdman

    2003-01-01

    The objective of this work was to evaluate the effects of a new boron-nitrogen, phosphate-free fire-retardant (FR) formulation on several mechanical properties of FR-treated wood and to assess the potential of this treatment for in-service thermal-induced strength loss resulting from exposure to high temperature. Fire-retardant-treated and untreated small clear...

  6. Green marketing, renewables, and free riders: increasing customer demand for a public good

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, R.; Pickle, S.

    1997-09-01

    Retail electricity competition will allow customers to select their own power suppliers and some customers will make purchase decisions based, in part, on their concern for the environment. Green power marketing targets these customers under the assumption that they will pay a premium for ``green`` energy products such as renewable power generation. But renewable energy is not a traditional product because it supplies public goods; for example, a customer supporting renewable energy is unable to capture the environmental benefits that their investment provides to non-participating customers. As with all public goods, there is a risk that few customers will purchasemore » ``green`` power and that many will instead ``free ride`` on others` participation. By free riding, an individual is able to enjoy the benefits of the public good while avoiding payment. This report reviews current green power marketing activities in the electric industry, introduces the extensive academic literature on public goods, free riders, and collective action problems, and explores in detail the implications of this literature for the green marketing of renewable energy. Specifically, the authors highlight the implications of the public goods literature for green power product design and marketing communications strategies. They emphasize four mechanisms that marketers can use to increase customer demand for renewable energy. Though the public goods literature can also contribute insights into the potential rationale for renewable energy policies, they leave most of these implications for future work (see Appendix A for a possible research agenda).« less

  7. A comparison of the biocompatibility of phosphate-buffered saline and dianeal 3.86% in the rat model of peritoneal dialysis.

    PubMed

    Wieczorowska-Tobis, K; Polubinska, A; Breborowicz, A; Oreopoulos, D G

    2001-01-01

    Phosphate-buffered saline (PBS), an isotonic solution with a physiologic pH can be considered an example of a biocompatible dialysis fluid. This study compared the biocompatibility of PBS with that of Dianeal 3.86% (Baxter Healthcare Corporation, Deerfield, IL, U.S.A.), using a model of peritoneal dialysis in the rat. In an acute experiment, after catheter implantation, rats were infused on day 1 with PBS, on day 5 with standard dialysis solution (Dianeal 3.86%), and on day 7 again with PBS. When rats were injected with Dianeal 3.86%, the inflammatory reaction was suppressed as compared with PBS. The cell count was lower with Dianeal (-85%, p < 0.001), the neutrophil:macrophage ratio in dialysate was 80% lower (p < 0.01), total protein concentration in the Dianeal dialysate was 73% lower (p < 0.01), and the dialysate nitrite level was 45% lower (p < 0.01). In a chronic experiment, after catheter implantation, rats were dialyzed for four weeks with PBS or with Dianeal 3.86%. At the end of the study, a 1-hour peritoneal equilibration test (PET) was performed. As evaluated on a semiquantitative scale, macroscopic changes in the peritoneum were more severe in rats exposed to PBS than in those exposed to Dianeal 3.86% (8.6 +/- 3.2 vs 5.2 +/- 2.6, p < 0.05). The thickness of the visceral peritoneum was comparable in both groups; but, in PBS-treated rats, the peritoneal interstitium contained more inflammatory cells and more new vessels. During the 1-hour PET, peritoneal permeability to water and solutes was comparable in the two groups. Despite a more physiologic composition, PBS is a less biocompatible peritoneal dialysis solutions than is standard, acidic, hypertonic dialysis solution.

  8. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications.

    PubMed

    Rondelli, G; Torricelli, P; Fini, M; Giardino, R

    2005-03-01

    The electrochemical impedance spectroscopy (EIS) technique was used for the study of the electrochemical behaviour of Ni-free austenitic stainless steel for orthopaedic applications. Experiments were carried out using four different test solutions: (i) phosphate-buffered saline (PBS), (ii) minimum essential medium (MEM), (iii) MEM + 10% fetal calf serum (FCS), (iv) MEM + 10% fetal calf serum + L929 fibroblast cell line (Cell). Bode-phase spectra showed the presence of two maxima and were fitted with an equivalent circuit characterized by two parallel combinations (Resistance, Constant Phase Element). The (R(1), CPE(1)) branch was assigned to the inner compact passive film and the (R(2), CPE(2)) branch to the external porous film. The resistance of the inner film R(1), here directly related to the material's uniform corrosion resistance, raised with the immersion time and increased in the following order: PBSfree austenitic stainless steel is, as expected, lower than that of titanium.

  9. Testing the Job Demand-Control-Support model with anxiety and depression as outcomes: the Hordaland Health Study.

    PubMed

    Sanne, Bjarte; Mykletun, Arnstein; Dahl, Alv A; Moen, Bente E; Tell, Grethe S

    2005-09-01

    To test the strain/iso-strain, interaction and buffer hypotheses of the Job Demand-Control-Support model in relation to anxiety and depression. Five thousand five hundred and sixty-two workers with valid Demand-Control-Support Questionnaire (DCSQ) scores were examined with the sub-scales of the Hospital Anxiety and Depression Scale as outcomes. Multiple statistical methods were applied. The strain and iso-strain hypotheses were confirmed. Generally, additive and non-interaction effects were found between psychological demands, control and social support. The buffer hypotheses were refuted. Results from analyses testing different interaction operationalizations were complementary. High demands, low control and low support individually, but particularly combined, are risk factors for anxiety and depression. Support is the DCSQ index most strongly associated with anxiety and depression in women. Assessment of psychosocial work environment may identify workers at risk, and serve as a basis for job-redesign.

  10. Lethality of a Heat- and Phosphate-Catalyzed Glucose By-Product to Escherichia coli O157:H7 and Partial Protection Conferred by the rpoS Regulon

    PubMed Central

    Byrd, Jeffrey J.; Cheville, Ann M.; Bose, Jeffrey L.; Kaspar, Charles W.

    1999-01-01

    A by-product of glucose produced during sterilization (121°C, 15 lb/in2, 15 min) at neutral pH and in the presence of phosphate (i.e., phosphate-buffered saline) was bactericidal to Escherichia coli O157:H7 (ATCC 43895). Other six-carbon (fructose and galactose) and five-carbon (arabinose, ribose, and xylose) reducing sugars also produced a toxic by-product under the same conditions. Fructose and the five-carbon sugars yielded the most bactericidal activity. Glucose concentrations of 1% (wt/vol) resulted in a 99.9% decline in the CFU of stationary-phase cells per milliliter in 2 days at 25°C. An rpoS mutant (pRR10::rpoS) of strain 43895 (FRIK 816-3) was significantly (P < 0.001) more sensitive to the glucose-phosphate by-product than the parent strain, as glucose concentrations from 0.05 to 0.25% resulted in a 2- to 3-log10 reduction in CFU per milliliter in 2 days at 25°C. Likewise, log-phase cells of the wild-type strain, 43895, were significantly more sensitive (P < 0.001) to the glucose-phosphate by-product than were stationary-phase cells, which is consistent with the stability of rpoS and the regulation of rpoS-regulated genes. The bactericidal effect of the glucose-phosphate by-product was reduced when strains ATCC 43895 and FRIK 816-3 were incubated at a low temperature (4°C). Also, growth in glucose-free medium (i.e., nutrient broth) did not alleviate the sensitivity to the glucose-phosphate by-product and excludes the possibility of substrate-accelerated death as the cause of the bactericidal effect observed. The glucose-phosphate by-product was also bactericidal to Salmonella typhimurium, Shigella dysenteriae, and a Klebsiella sp. Attempts to identify the glucose-phosphate by-product were unsuccessful. These studies demonstrate the production of a glucose-phosphate by-product bactericidal to E. coli O157:H7 and the protective effects afforded by rpoS-regulated gene products. Additionally, the detection of sublethally injured bacteria may be

  11. Engineering Potato Starch with a Higher Phosphate Content

    PubMed Central

    Xu, Xuan; Huang, Xing-Feng; Visser, Richard G. F.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (de)phosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal). Interestingly, expression of an (engineered) laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf). Modified starches exhibited altered granule morphology and size compared to the control. About 20–30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself. PMID:28056069

  12. Vtc5, a Novel Subunit of the Vacuolar Transporter Chaperone Complex, Regulates Polyphosphate Synthesis and Phosphate Homeostasis in Yeast*

    PubMed Central

    Desfougères, Yann; Gerasimaitė, R̄uta; Jessen, Henning Jacob

    2016-01-01

    SPX domains control phosphate homeostasis in eukaryotes. Ten genes in yeast encode SPX-containing proteins, among which YDR089W is the only one of unknown function. Here, we show that YDR089W encodes a novel subunit of the vacuole transporter chaperone (VTC) complex that produces inorganic polyphosphate (polyP). The polyP synthesis transfers inorganic phosphate (Pi) from the cytosol into the acidocalcisome- and lysosome-related vacuoles of yeast, where it can be released again. It was therefore proposed for buffer changes in cytosolic Pi concentration (Thomas, M. R., and O'Shea, E. K. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 9565–9570). Vtc5 physically interacts with the VTC complex and accelerates the accumulation of polyP synthesized by it. Deletion of VTC5 reduces polyP accumulation in vivo and in vitro. Its overexpression hyperactivates polyP production and triggers the phosphate starvation response via the PHO pathway. Because this Vtc5-induced starvation response can be reverted by shutting down polyP synthesis genetically or pharmacologically, we propose that polyP synthesis rather than Vtc5 itself is a regulator of the PHO pathway. Our observations suggest that polyP synthesis not only serves to establish a buffer for transient drops in cytosolic Pi levels but that it can actively decrease or increase the steady state of cytosolic Pi. PMID:27587415

  13. The moderating role of job resources in the relationship between job demands and interleukin-6 in an Italian healthcare organization.

    PubMed

    Falco, Alessandra; Dal Corso, Laura; Girardi, Damiano; De Carlo, Alessandro; Comar, Manola

    2018-02-01

    In this study we examined the association between job demands (JD), job resources (JR), and serum levels of a possible biomarker of stress, the pro-inflammatory cytokine interleukin-6 (IL-6). According to the buffer hypothesis of the Job Demands-Resources (JD-R) model, we expected that job resources-defined as job autonomy and social support from supervisor-might buffer the relationship between job demands, defined as emotional demands and interpersonal conflict with colleagues, and IL-6. Data from 119 employees in an Italian public healthcare organization (acute care hospital) were analyzed using multiple regression. In predicting IL-6, the interactions between emotional demands and JR and between interpersonal conflict with colleagues and job autonomy (but not social support) were significant, after controlling for the effect of age and gender. The association between JD and IL-6 was stronger for individuals with low levels of JR, so that levels of IL-6 were highest when JD were high and JR were low. Overall, these results are consistent with the buffer hypothesis of the JD-R model and also extend previous research, showing that the exposure to stressful situations at work, measured as high JD and low JR, is associated with higher levels of IL-6 in hospital employees. © 2017 Wiley Periodicals, Inc.

  14. A multi-ring optical packet and circuit integrated network with optical buffering.

    PubMed

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  15. Dephosphorylation of 2-deoxyglucose 6-phosphate and 2-deoxyglucose export from cultured astrocytes.

    PubMed

    Forsyth, R J; Bartlett, K; Eyre, J

    1996-03-01

    Neurotransmitter-stimulated mobilization of astrocyte glycogen has been proposed as a basis for local energy homeostasis in brain. However, uncertainty remains over the fate of astrocyte glycogen. Upon transfer of cultured astrocytes pre-loaded with [2-3H]2-deoxyglucose 6-phosphate at non-tracer concentrations to a glucose-free, 2-deoxyglucose-free medium, rapid dephosphorylation of a proportion of the intracellular 2-deoxyglucose 6-phosphate pool and export of 2-deoxyglucose to the extracellular fluid occurs. Astrocytes show very low, basal rates of gluconeogenesis from pyruvate (approx. 1 nmol mg protein-1 h-1). Astrocytes in vivo may be capable of physiologically significant glucose export from glucose-6-phosphate. The low gluconeogenic activity in astrocytes suggests that the most likely source of glucose-6-phosphate may be glycogen. These findings support the hypothesis that export, as glucose, to adjacent neurons may be one of the possible fate(s) of astrocytic glycogen. Such export of glycogen as glucose occurring in response to increases in neuronal activity could contribute to energy homeostasis on a paracrine scale within brain.

  16. Tris-sucrose buffer system: a new specially designed medium for extracellular invertase production by immobilized cells of isolated yeast Cryptococcus laurentii MT-61.

    PubMed

    Aydogan, Mehmet Nuri; Taskin, Mesut; Canli, Ozden; Arslan, Nazli Pinar; Ortucu, Serkan

    2014-01-01

    The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris-sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated.

  17. A novel, environmentally friendly sodium lauryl ether sulfate-, cocamidopropyl betaine-, cocamide monoethanolamine-containing buffer for MEKC on microfluidic devices.

    PubMed

    Hoeman, Kurt W; Culbertson, Christopher T

    2008-12-01

    A new buffer has been developed for fast, high-efficiency separations of amino acids by MEKC. This buffer was more environmentally friendly than the most commonly used surfactant-containing buffers for MEKC separations. It used a commercially available dishwashing soap by Seventh Generation (Burlington, VT, USA), which contained three micelle-forming agents. The mixed micelles were composed of sodium lauryl ether sulfate (anionic), cocamidopropyl betaine (zwitterionic), and cocamide monoethanolamine (non-ionic). The optimized buffer contained 5.0% w/w Seventh Generation Free & Clear dishwashing soap, 10 mM sodium borate, and was completely void of organics. The lack of organics and the biodegradability of the surfactant molecules made this buffer more environmentally friendly than typical SDS-containing buffers. This new buffer also had a different selectivity and provided faster separations with higher separation efficiencies than SDS-based buffers. Fast separations of BODIPY FL labeled amino acids yielded peaks with separation efficiencies greater than 100,000 in less than 20 s.

  18. Length scales involved in decoherence of trapped bosons by buffer-gas scattering

    NASA Astrophysics Data System (ADS)

    Gilz, Lukas; Rico-Pérez, Luis; Anglin, James R.

    2014-05-01

    We ask and answer a basic question about the length scales involved in quantum decoherence: how far apart in space do two parts of a quantum system have to be before a common quantum environment decoheres them as if they were entirely separate? We frame this question specifically in a cold atom context. How far apart do two populations of bosons have to be before an environment of thermal atoms of a different species ("buffer gas") responds to their two particle numbers separately? An initial guess for this length scale is the thermal coherence length of the buffer gas; we show that a standard Born-Markov treatment partially supports this guess, but predicts only inverse-square saturation of decoherence rates with distance, and not the much more abrupt Gaussian behavior of the buffer gas's first-order coherence. We confirm this Born-Markov result with a more rigorous theory, based on an exact solution of a two-scatterer scattering problem, which also extends the result beyond weak scattering. Finally, however, we show that when interactions within the buffer-gas reservoir are taken into account, an abrupt saturation of the decoherence rate does occur, exponentially on the length scale of the buffer gas's mean free path.

  19. Dried plum products as a substitute for phosphate in chicken marinade.

    PubMed

    Jarvis, Nathan; Clement, Ashley R; O'Bryan, Corliss A; Babu, Dinesh; Crandall, Philip G; Owens, Casey M; Meullenet, Jean-Francois; Ricke, Steven C

    2012-06-01

    In order to address the growing demand for more natural poultry products, alkaline phosphates commonly used in chicken breast meat marinades were replaced with plum ingredients and evaluated. For initial sensory evaluation, 200 consumers of chicken were served a small portion of the chicken breast on a plate and were asked to evaluate the product for overall impression, flavor, and texture on a 9-point hedonic scale with 1 = "dislike extremely" and 9 = "like extremely." Also, a 5-point just-about-right (JAR) scale was used on questions about tenderness, juiciness, overall flavor, and saltiness. Both hedonic and JAR demonstrated that the marinades of plum concentrate and the blend of plum fiber and powder were not distinguishable from the control (P > 0.05). Using two different percentages of fiber/powder blend, two different percentages of concentrate, sodium tripolyphosphate (STPP), and no marinade, measurements were made for marinade per cent pickup, thaw loss, and cook loss. Plum concentrate at 1.1% was most similar to STPP in marinade per cent pickup, thaw loss, drip loss, and cook loss. These results show that plum ingredients can potentially be used as a substitute in standard phosphate marinades. Consumers are increasingly demanding more natural foods with less artificial additives. This research presents the results of experiments using dried plum ingredients as a substitute for phosphates commonly used in marinades for chicken. Results indicate that dried plum ingredients may be a suitable substitute for phosphates in marinades. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.

  20. Buffer$--An Economic Analysis Tool

    Treesearch

    Gary Bentrup

    2007-01-01

    Buffer$ is an economic spreadsheet tool for analyzing the cost-benefits of conservation buffers by resource professionals. Conservation buffers are linear strips of vegetation managed for multiple landowner and societal objectives. The Microsoft Excel based spreadsheet can calculate potential income derived from a buffer, including income from cost-share/incentive...

  1. Ion sensitivity of large-area epitaxial graphene film on SiC substrate

    NASA Astrophysics Data System (ADS)

    Mitsuno, Takanori; Taniguchi, Yoshiaki; Ohno, Yasuhide; Nagase, Masao

    2017-11-01

    We investigated the intrinsic ion sensitivity of graphene field-effect transistors (FETs) fabricated by a resist-free stencil mask lithography process from a large-scale graphene film epitaxially grown on a SiC substrate. A pH-adjusted phosphate-buffered solution was used for the measurement to eliminate the interference of other ions on the graphene FET's ion sensitivity. The charge neutrality point shifted negligibly with changing pH for the pH-adjusted phosphate-buffered solution, whereas for the mixed buffer solution, it shifted toward the negative gate voltage owing to the decrease in the concentration of phthalate ions. This phenomenon is contrary to that observed in previous reports. Overall, our results indicate that the graphene film is intrinsically insensitive to ions except for those with functional groups that interact with the graphene surface.

  2. Role of calbindin-D9k in buffering cytosolic free Ca2+ ions in pig duodenal enterocytes.

    PubMed

    Schröder, B; Schlumbohm, C; Kaune, R; Breves, G

    1996-05-01

    1. The aim of the present study was to test whether the vitamin D-dependent Ca(2+)-binding protein calbindin-D9k could function as an important cytosolic Ca2+ buffer in duodenal enterocytes while facilitating transepithelial active transport of Ca2+ ions. For the investigations we used dual-wavelength, fluorescence ratio imaging, with fura-2 as the Ca(2+)-sensitive dye, to measure changes in cytosolic concentrations of free Ca2+ ions ([Ca2+]i) in isolated pig duodenal enterocytes affected by different cytosolic calbindin-D9k concentrations. 2. Epithelial cells were obtained from weaned piglets with normal calbindin-D9k concentrations (con-piglets), from piglets with low calbindin-D9k levels due to inherited calcitriol deficiency caused by defective renal 25-hydroxycholecalciferol D3-1 alpha-hydroxylase activity (def-piglets), and from piglets with reconstituted calbindin-D9k concentrations, i.e. def-animals treated with high doses of vitamin D3 which elevated plasma calcitriol levels by extrarenal production (def-D3-piglets). Basal levels of [Ca2+]i ranged between 170 and 205 nM and did not differ significantly between the groups. 3. After addition of 5 mM theophylline, the [Ca2+]i in enterocytes from con-piglets doubled during the 10 min incubation. This effect, however, was three times higher in enterocytes from def-piglets compared with those from con-piglets. Similar results were obtained after 4 min incubation of enterocytes from con- and def-piglets in the presence of 1 microM ionomycin. In preparations from def-D3-piglets, ionomycin-induced increases in [Ca2+]i were significantly lower compared with enterocytes from def-piglets and were not different from the control values. 4. From the results, substantial support is given for the hypothesis that one of the major functions of mucosal calbindin-D9k is the effective buffering of Ca2+ ions.

  3. Role of calbindin-D9k in buffering cytosolic free Ca2+ ions in pig duodenal enterocytes.

    PubMed Central

    Schröder, B; Schlumbohm, C; Kaune, R; Breves, G

    1996-01-01

    1. The aim of the present study was to test whether the vitamin D-dependent Ca(2+)-binding protein calbindin-D9k could function as an important cytosolic Ca2+ buffer in duodenal enterocytes while facilitating transepithelial active transport of Ca2+ ions. For the investigations we used dual-wavelength, fluorescence ratio imaging, with fura-2 as the Ca(2+)-sensitive dye, to measure changes in cytosolic concentrations of free Ca2+ ions ([Ca2+]i) in isolated pig duodenal enterocytes affected by different cytosolic calbindin-D9k concentrations. 2. Epithelial cells were obtained from weaned piglets with normal calbindin-D9k concentrations (con-piglets), from piglets with low calbindin-D9k levels due to inherited calcitriol deficiency caused by defective renal 25-hydroxycholecalciferol D3-1 alpha-hydroxylase activity (def-piglets), and from piglets with reconstituted calbindin-D9k concentrations, i.e. def-animals treated with high doses of vitamin D3 which elevated plasma calcitriol levels by extrarenal production (def-D3-piglets). Basal levels of [Ca2+]i ranged between 170 and 205 nM and did not differ significantly between the groups. 3. After addition of 5 mM theophylline, the [Ca2+]i in enterocytes from con-piglets doubled during the 10 min incubation. This effect, however, was three times higher in enterocytes from def-piglets compared with those from con-piglets. Similar results were obtained after 4 min incubation of enterocytes from con- and def-piglets in the presence of 1 microM ionomycin. In preparations from def-D3-piglets, ionomycin-induced increases in [Ca2+]i were significantly lower compared with enterocytes from def-piglets and were not different from the control values. 4. From the results, substantial support is given for the hypothesis that one of the major functions of mucosal calbindin-D9k is the effective buffering of Ca2+ ions. PMID:8734984

  4. Further increased production of free fatty acids by overexpressing a predicted transketolase gene of the pentose phosphate pathway in Aspergillus oryzae faaA disruptant.

    PubMed

    Tamano, Koichi; Miura, Ai

    2016-09-01

    Free fatty acids are useful as source materials for the production of biodiesel fuel and various chemicals such as pharmaceuticals and dietary supplements. Previously, we attained a 9.2-fold increase in free fatty acid productivity by disrupting a predicted acyl-CoA synthetase gene (faaA, AO090011000642) in Aspergillus oryzae. In this study, we achieved further increase in the productivity by overexpressing a predicted transketolase gene of the pentose phosphate pathway in the faaA disruptant. The A. oryzae genome is predicted to have three transketolase genes and overexpression of AO090023000345, one of the three genes, resulted in phenotypic change and further increase (corresponding to an increased production of 0.38 mmol/g dry cell weight) in free fatty acids at 1.4-fold compared to the faaA disruptant. Additionally, the biomass of hyphae increased at 1.2-fold by the overexpression. As a result, free fatty acid production yield per liter of liquid culture increased at 1.7-fold by the overexpression.

  5. Cell buffer with built-in test

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A cell buffer with built-in testing mechanism is provided. The cell buffer provides the ability to measure voltage provided by a power cell. The testing mechanism provides the ability to test whether the cell buffer is functioning properly and thus providing an accurate voltage measurement. The testing mechanism includes a test signal-provider to provide a test signal to the cell buffer. During normal operation, the test signal is disabled and the cell buffer operates normally. During testing, the test signal is enabled and changes the output of the cell buffer in a defined way. The change in the cell buffer output can then be monitored to determine if the cell buffer is functioning correctly. Specifically, if the voltage output of the cell buffer changes in a way that corresponds to the provided test signal, then the functioning of the cell buffer is confirmed. If the voltage output of the cell buffer does not change correctly, then the cell buffer is known not to be operating correctly. Thus, the built in testing mechanism provides the ability to quickly and accurately determine if the cell buffer is operating correctly. Furthermore, the testing mechanism provides this functionality without requiring excessive device size and complexity.

  6. Protocol for buffer space negotiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nessett, D.

    There are at least two ways to manage the buffer memory of a communications node. On etechnique veiws the buffer as a single resource that is to be reserved and released as a unit for a particular communication transaction. A more common approach treats the node's buffer space as a collection of resources (e.g., bytes, words, packet slots) capable of being allocated among multiple concurrent conversations. To achieve buffer space multiplexing, some sort of negotiation for buffer space must take place between source and sink nodes before a transaction can commence. Results are presented which indicate that, for an applicationmore » involving a CSMA broadcast network, buffer space multiplexing offers better performance than buffer reservation. To achieve this improvement, a simple protocol is presented that features flow-control information traveling both from source to sink as well as from sink to source. It is argued that this bidirectionality allows the sink to allocate buffer space among its active communication paths more effectively. 13 figures.« less

  7. Does workplace social capital buffer the effects of job stress? A cross-sectional, multilevel analysis of cigarette smoking among U.S. manufacturing workers

    PubMed Central

    Sapp, Amy L.; Kawachi, Ichiro; Sorensen, Glorian; LaMontagne, Anthony D.; Subramanian, S.V.

    2010-01-01

    Objective To investigate whether workplace social capital buffers the association between job stress and smoking status. Methods As part of the Harvard Cancer Prevention Project’s Healthy Directions-Small Business Study, interviewer-administered questionnaires were completed by 1740 workers and 288 managers in 26 manufacturing firms (84% and 85% response). Social capital was assessed by multiple items measured at the individual-level among workers, and contextual-level among managers. Job stress was operationalized by the demand-control model. Multilevel logistic regression was used to estimate associations between job stressors and smoking, and test for effect modification by social capital measures. Results Workplace social capital (both summary measures) buffered associations between high job demands and smoking. One compositional item—worker trust in managers—buffered associations between job strain and smoking. Conclusion Workplace social capital may modify the effects of psychosocial working conditions on health behaviors. PMID:20595910

  8. Effects of polyamines and calcium and sodium ions on smooth muscle cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase.

    PubMed

    Chen, H; Baron, C B; Griffiths, T; Greeley, P; Coburn, R F

    1998-10-01

    In many different cell types, including smooth muscle cells (Baron et al., 1989, Am. J. Physiol., 256: C375-383; Baron et al., J. Pharmacol. Exp. Ther. 266: 8-15), phosphatidylinositol (4)-phosphate 5-kinase plays a critical role in the regulation of membrane concentrations of phosphatidylinositol (4,5)-bisphosphate and formation of inositol (1,4,5)-trisphosphate. In unstimulated porcine trachealis smooth muscle, 70% of total cellular phosphatidylinositol (4)-phosphate 5-kinase activity was associated with cytoskeletal proteins and only trace activity was detectable in isolated sarcolemma. Using two different preparations, we studied cytoskeleton-associated phosphatidyl inositol (4)-phosphate 5-kinase under conditions that attempted to mimic the ionic and thermal cytoplasmic environment of living cells. The cytoskeleton-associated enzyme, studied using phosphatidylinositol (4)-phosphate substrate concentrations that produced phosphatidylinositol 4,5-bisphosphate at about 10% of the maximal rate, was sensitive to free [Mg2+], had an absolute requirement for phosphatidylserine, phosphatidic acid, or phosphatidylinositol, and included type I isoforms. At 0.5 mM free [Mg2+], physiological spermine concentrations, 0.2-0.4 mM, increased phosphatidylinositol (4)-phosphate 5-kinase activity two to four times compared to controls run without spermine. The EC50 for spermine-evoked increases in activity was 0.17 +/- 0.02 mM. Spermine-evoked enzyme activity was a function of both free [Mg2+] and substrate concentration. Cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase was inhibited by free [Ca2+] over a physiological range for cytoplasm--10(-8) to 10(-5) M, an effect independent of the presence of calmodulin. Na+ over the range 20 to 50 mM also inhibited this enzyme activated by 5 mM Mg2+ but had no effect on spermine-activated enzyme. Na+, Ca2+, and spermine appear to be physiological modulators of smooth muscle cytoskeleton-bound phosphatidylinositol (4

  9. Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland.

    PubMed

    Badhe, Neha; Saha, Shaswati; Biswas, Rima; Nandy, Tapas

    2014-10-01

    The role of algal biofilm in a pilot-scale, free-surface, up-flow constructed wetland (CW), was studied for its effect on chemical oxygen demand (COD), ammonia and phosphate removal during three seasons-autumn, winter and early spring. Effect of hydraulic retention time (HRT) was also investigated in presence and absence of algal biofilm. Principal Component Analysis was used to identify the independent factors governing the performance of CW. The study showed algal biofilm significantly improved nutrient removal, especially phosphate. Ammonia removal varied with HRT, biofilm and ambient temperature. Increase in biofilm thickness affected ammonia removal efficiency adversely. Algal biofilm-assisted COD removal compensated for reduced macrophyte density during winter. Two-way ANOVA test and the coefficients of dependent factors derived through multiple linear regression model confirmed role of algal biofilm in improving nutrient removal in CW. The study suggests that algal biofilm can be a green solution for bio-augmenting COD and nutrient removal in CW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Story, Sandra; Brigmon, Robin L.

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soilmore » resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5 mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. Finally, these results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.« less

  11. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase

    DOE PAGES

    Story, Sandra; Brigmon, Robin L.

    2016-12-19

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soilmore » resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5 mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. Finally, these results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.« less

  12. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase.

    PubMed

    Story, Sandra; Brigmon, Robin L

    2017-03-01

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications. Copyright © 2016. Published by Elsevier Inc.

  13. Job Demands & Pesticide Exposure among Immigrant Latino Farmworkers

    PubMed Central

    Grzywacz, Joseph G.; Quandt, Sara A.; Vallejos, Quirina M.; Whalley, Lara E.; Chen, Haiying; Isom, Scott; Barr, Dana B.; Arcury, Thomas A.

    2010-01-01

    The goal of this study was to understand the potential threat of job stressors to farmworker health. To accomplish this goal we studied pesticide exposure, an issue with immediate and long-term health consequences, and predictions from the demands-control model of occupational stress. Longitudinal, self-report data and urine samples were collected at monthly intervals from a cohort of Latino farmworkers (N=287) during the 2007 agricultural season. The primary hypothesis was that greater exposure to psychological demands, physical exertion, and hazardous work conditions are associated with greater odds of detecting DAP urinary pesticide metabolites, biomarkers indicating exposure to pesticides. Contrary to this hypothesis, results indicated that none of the elements of the Demands-Control model were independently associated with detection of DAP urinary pesticide metabolites. However, analyses produced several interaction effects, including evidence that high levels of control may buffer the effects of physical job demands on detection of DAP urinary pesticide metabolites. PMID:20604632

  14. Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA.

    PubMed

    Gupta, Bhupender S; Taha, Mohamed; Lee, Ming-Jer

    2015-01-14

    In this study, we have analyzed the influence of four biological buffers on the thermal stability of bovine serum albumin (BSA) using dynamic light scattering (DLS). The investigated buffers include 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 4-(2-hydroxyethyl)-1-piperazine-propanesulfonic acid (EPPS), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid sodium salt (HEPES-Na), and 4-morpholinepropanesulfonic acid sodium salt (MOPS-Na). These buffers behave as a potential stabilizer for the native structure of BSA against thermal denaturation. The stabilization tendency follows the order of MOPS-Na > HEPES-Na > HEPES ≫ EPPS. To obtain an insight into the role of hydration layers and peptide backbone in the stabilization of BSA by these buffers, we have also explored the phase transition of a thermoresponsive polymer, poly(N-isopropylacrylamide (PNIPAM)), a model compound for protein, in aqueous solutions of HEPES, EPPS, HEPES-Na, and MOPS-Na buffers at different concentrations. It was found that the lower critical solution temperatures (LCST) of PNIPAM in the aqueous buffer solutions substantially decrease with increase in buffer concentration. The mechanism of interactions between these buffers and protein BSA was probed by various techniques, including UV-visible, fluorescence, and FTIR. The results of this series of studies reveal that the interactions are mainly governed by the influence of the buffers on the hydration layers surrounding the protein. We have also explored the possible binding sites of BSA with these buffers using a molecular docking technique. Moreover, the activities of an industrially important enzyme α-chymotrypsin (α-CT) in 0.05 M, 0.5 M, and 1.0 M of HEPES, EPPS, HEPES-Na, and MOPS-Na buffer solutions were analyzed at pH = 8.0 and T = 25 °C. Interestingly, the activities of α-CT were found to be enhanced in the aqueous solutions of these investigated buffers. Based upon the Jones-Dole viscosity parameters, the

  15. Structural basis for glucose-6-phosphate activation of glycogen synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskaran, Sulochanadevi; Roach, Peter J.; DePaoli-Roach, Anna A.

    2010-11-22

    Regulation of the storage of glycogen, one of the major energy reserves, is of utmost metabolic importance. In eukaryotes, this regulation is accomplished through glucose-6-phosphate levels and protein phosphorylation. Glycogen synthase homologs in bacteria and archaea lack regulation, while the eukaryotic enzymes are inhibited by protein kinase mediated phosphorylation and activated by protein phosphatases and glucose-6-phosphate binding. We determined the crystal structures corresponding to the basal activity state and glucose-6-phosphate activated state of yeast glycogen synthase-2. The enzyme is assembled into an unusual tetramer by an insertion unique to the eukaryotic enzymes, and this subunit interface is rearranged by themore » binding of glucose-6-phosphate, which frees the active site cleft and facilitates catalysis. Using both mutagenesis and intein-mediated phospho-peptide ligation experiments, we demonstrate that the enzyme's response to glucose-6-phosphate is controlled by Arg583 and Arg587, while four additional arginine residues present within the same regulatory helix regulate the response to phosphorylation.« less

  16. Lithography-free nanofluidic concentrator based on droplets-on-demand system

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Zhou, Hongbo; Yao, Shuhuai

    2013-11-01

    Biomarkers are usually low-abundance proteins in biofluids and below detection limit of conventional biosensors. Nanofluidic concentration devices allow efficient biomolecules trapping by utilizing ion concentration polarization near nanochannels. However, once the electric field is turned off, the electrokinetic concentration plug cannot maintain its concentration status and starts to diffuse. In order to maintain the high concentration and extract the concentrated sample for further analysis, a good approach is to encapsulate these plugs into water-in-oil droplets. Here we developed a nanofluidic concentrator based on droplet-on-demand generator to encapsulate concentrated sample in nL droplets. The lithography-free nanochannels were patterned by thermal cracking on the surface of PS Petri-dish. The resulting nanochannel arrays were 30 nm in depth. In combination with microchannels on PDMS, the micro-nano hybrid chip was developed. We used FITC solution to demonstrate that the chip significantly increased the sample concentration for more than 100 folds within 5 minutes. By tuning the pulsed pressure imposed by the solenoid valve connected to the concentration channel, the system can generate a desired volume of droplet with a target sample concentration at a prescribed time. This work was supported by the Research Grants Council of Hong Kong under General Research Fund (Grant No. 621110).

  17. Ceruloplasmin (ferroxidase) oxidizes hydroxylamine probes: deceptive implications for free radical detection.

    PubMed

    Ganini, Douglas; Canistro, Donatella; Jiang, JinJie; Jang, JinJie; Stadler, Krisztian; Mason, Ronald P; Kadiiska, Maria B

    2012-10-01

    Ceruloplasmin (ferroxidase) is a copper-binding protein known to promote Fe(2+) oxidation in plasma of mammals. In addition to its classical ferroxidase activity, ceruloplasmin is known to catalyze the oxidation of various substrates, such as amines and catechols. Assays based on cyclic hydroxylamine oxidation are used to quantify and detect free radicals in biological samples ex vivo and in vitro. We show here that human ceruloplasmin promotes the oxidation of the cyclic hydroxylamine 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) and related probes in Chelex-treated phosphate buffer and rat serum. The reaction is suppressed by the metal chelators DTPA, EDTA, and desferal, whereas heparin and bathocuproine have no effect. Catalase or superoxide dismutase additions do not interfere with the CPH-oxidation yield, demonstrating that oxygen-derived free radicals are not involved in the CPH oxidation mediated by ceruloplasmin. Plasma samples immunodepleted of ceruloplasmin have lower levels of CPH oxidation, which confirms the role of ceruloplasmin (ferroxidase) as a biological oxidizing agent of cyclic hydroxylamines. In conclusion, we show that the ferroxidase activity of ceruloplasmin is a possible biological source of artifacts in the cyclic hydroxylamine-oxidation assay used for reactive oxygen species detection and quantification. Published by Elsevier Inc.

  18. An experimental study of the job demand-control model with measures of heart rate variability and salivary alpha-amylase: Evidence of increased stress responses to increased break autonomy.

    PubMed

    O'Donnell, Emma; Landolt, Kathleen; Hazi, Agnes; Dragano, Nico; Wright, Bradley J

    2015-01-01

    We assessed in an experimental design whether the stress response towards a work task was moderated by the autonomy to choose a break during the assigned time to complete the task. This setting is defined in accordance with the theoretical framework of the job-demand-control (JDC) model of work related stress. The findings from naturalistic investigations of a stress-buffering effect of autonomy (or 'buffer hypothesis') are equivocal and the experimental evidence is limited, especially with relation to physiological indices of stress. Our objective was to investigate if increased autonomy in a particular domain (break time control) was related with adaptive physiology using objective physiological markers of stress; heart rate variability (HRV) and salivary alpha amylase (sAA). We used a within-subject design and the 60 female participants were randomly assigned to an autonomy (free timing of break) and standard conditions (fixed timing of break) of a word processing task in a simulated office environment in a random order. Participants reported increased perceptions of autonomy, no difference in demand and performed worse in the task in the break-time autonomy versus the standard condition. The results revealed support for the manipulation of increased autonomy, but in the opposing direction. Increased autonomy was related with dysregulated physiological reactivity, synonymous with typical increased stress responses. Potentially, our findings may indicate that autonomy is not necessary a resource but could become an additional stressor when it adds additional complexity while the amount of work (demands) remains unchanged. Further, our findings underscore the need to collect objective physiological evidence of stress to supplement self-reported information. Self-report biases may partially explain the inconsistent findings with the buffer hypothesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Comparative studies in electrochemical degradation of sulfamethoxazole and diclofenac in water by using various electrodes and phosphate and sulfate supporting electrolytes.

    PubMed

    Sifuna, Fred W; Orata, Francis; Okello, Veronica; Jemutai-Kimosop, Selly

    2016-09-18

    In this study, the electro-oxidation capacities of Na2SO4 and potassium phosphate buffer supporting electrolytes were tested and compared for destruction of the sulfamethoxazole (SMX) and diclofenac (DCF) on platinum (Pt) electrode and graphite carbon electrode in aqueous medium. The suitability of pharmaceutical active compounds (PhACs) for electrochemical oxidation was tested by cyclic voltammetry (CV) technique performed in the potential range -1.5 to +1.5 V versus Ag/AgCl, which confirmed the electro-activity of the selected PhACs. The degradation and mineralization were monitored by ultraviolet (UV)-Vis spectrophotometry and HPLC. 0.1 M Na2SO4 supporting electrolyte was found to be more effective for mineralization of SMX and DCF, with efficiency of 15-30% more than the 0.1 M phosphate buffer supporting electrolyte on the platinum (Pt) and carbon electrodes. The Pt electrode showed better performance in the degradation of the two PhACs while under the same conditions than the carbon electrode for both 0.1 M Na2SO4 and 0.1 M potassium phosphate buffer supporting electrolytes. The SMX and DCF degradation kinetics best fitted the second-order reaction, with rate constants ranging between 0.000389 and 0.006 mol(2) L(-2) min(-1) and correlation coefficient (R(2)) above 0.987. The second-order degradation kinetics indicated that the rate-determining step in the degradation could be a chemical process, thus suggesting the active involvement of electrolyte radical species in the degradation of SMX and DCF. Results obtained from a real field sample showed a more than 98% removal of the PhACs from the wastewater by electrochemical degradation.

  20. Comparative analysis of strain fields in layers of step-graded metamorphic buffers of various designs

    NASA Astrophysics Data System (ADS)

    Aleshin, A. N.; Bugaev, A. S.; Ruban, O. A.; Tabachkova, N. Yu.; Shchetinin, I. V.

    2017-10-01

    Spatial distribution of residual elastic strain in the layers of two step-graded metamophic buffers of various designs, grown by molecular beam epitaxy from ternary InxAl1-xAs solutions on GaAs(001) substrates, is obtained using reciprocal space mapping by three-axis X-ray diffractometry and the linear theory of elasticity. The difference in the design of the buffers enabled the formation of a dislocation-free layer with different thickness in each of the heterostructures, which was the main basis of this study. It is shown that, in spite of the different design of graded metamorphic buffers, the nature of strain fields in them is the same, and the residual elastic strains in the final elements of both buffers adjusted for the effect of work hardening subject to the same phenomenological law, which describes the strain relief process in single-layer heterostructures.

  1. Dialysis buffer with different ionic strength affects the antigenicity of cultured nervous necrosis virus (NNV) suspensions.

    PubMed

    Gye, Hyun Jung; Nishizawa, Toyohiko

    2016-09-02

    Nervous necrosis virus (NNV) belongs to the genus Betanodavirus (Nodaviridae). It is highly pathogenic to various marine fishes. Here, we investigated the antigenicity changes of cultured NNV suspensions during 14days of dialyses using a dialysis tube at 1.4×10(4) molecular weight cut off (MWCO) in three different buffers (Dulbecco's phosphate buffered saline (D-PBS), 15mM Tris-HCl (pH 8.0), and deionized water (DIW)). Total NNV antigen titers of cultured NNV suspension varied depending on different dialysis buffers. For example, total NNV antigen titer during D-PBS dialysis was increased once but then decreased. During Tris-HCl dialysis, it was relatively stable. During dialysis in DIW, total NNV antigen titer was increased gradually. These antigenicity changes in NNV suspension might be due to changes in the aggregation state of NNV particles and/or coat proteins (CPs). ELISA values of NNV suspension changed due to changing aggregates state of NNV antigens. NNV particles in suspension were aggregated at a certain level. These aggregates were progressive after D-PBS dialysis, but regressive after Tris-HCl dialysis. The purified NNV particles self-aggregated after dialysis in D-PBS or in Tris-HCl containing 600mM NaCl, but not after dialysis in Tris-HCl or DIW. Quantitative analysis is merited to determine NNV antigens in the highly purified NNV particles suspended in buffer at low salt condition. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation1

    PubMed Central

    Wang, Junru; Zhao, Fang-Jie; Meharg, Andrew A.; Raab, Andrea; Feldmann, Joerg; McGrath, Steve P.

    2002-01-01

    The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg−1 dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III). PMID:12428020

  3. k(+)-buffer: An Efficient, Memory-Friendly and Dynamic k-buffer Framework.

    PubMed

    Vasilakis, Andreas-Alexandros; Papaioannou, Georgios; Fudos, Ioannis

    2015-06-01

    Depth-sorted fragment determination is fundamental for a host of image-based techniques which simulates complex rendering effects. It is also a challenging task in terms of time and space required when rasterizing scenes with high depth complexity. When low graphics memory requirements are of utmost importance, k-buffer can objectively be considered as the most preferred framework which advantageously ensures the correct depth order on a subset of all generated fragments. Although various alternatives have been introduced to partially or completely alleviate the noticeable quality artifacts produced by the initial k-buffer algorithm in the expense of memory increase or performance downgrade, appropriate tools to automatically and dynamically compute the most suitable value of k are still missing. To this end, we introduce k(+)-buffer, a fast framework that accurately simulates the behavior of k-buffer in a single rendering pass. Two memory-bounded data structures: (i) the max-array and (ii) the max-heap are developed on the GPU to concurrently maintain the k-foremost fragments per pixel by exploring pixel synchronization and fragment culling. Memory-friendly strategies are further introduced to dynamically (a) lessen the wasteful memory allocation of individual pixels with low depth complexity frequencies, (b) minimize the allocated size of k-buffer according to different application goals and hardware limitations via a straightforward depth histogram analysis and (c) manage local GPU cache with a fixed-memory depth-sorting mechanism. Finally, an extensive experimental evaluation is provided demonstrating the advantages of our work over all prior k-buffer variants in terms of memory usage, performance cost and image quality.

  4. Magnesium phosphate pentahydrate nanosheets: Microwave-hydrothermal rapid synthesis using creatine phosphate as an organic phosphorus source and application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Wu, Cheng-Tie; Sun, Tuan-Wei; Chen, Feng; Wu, Jin

    2016-01-15

    Magnesium phosphate materials have aroused interest of researchers in recent years and are promising for biomedical applications due to their good biocompatibility and biodegradability. In this work, we report the microwave-hydrothermal rapid synthesis of magnesium phosphate pentahydrate nanosheets (MPHSs) using biocompatible creatine phosphate as an organic phosphorus source. This method is facile, rapid, surfactant-free and environmentally friendly. The as-prepared MPHSs have an obvious pH-dependent dissolution performance which can be used as an ideal pH-responsive nanocarrier for drug and gene delivery. Moreover, the MPHSs have a good cytocompatibility and a high ability to promote osteoblast MC-3T3 adhesion and spreading, as well as a relatively high protein adsorption ability using hemoglobin (Hb) as a model protein. Thus, the MPHSs are promising for the applications in biomedical fields such as protein adsorption and bone regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity

    PubMed Central

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone–kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357

  6. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine equivalent...

  7. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine equivalent...

  8. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine equivalent...

  9. Analysis of two production inventory systems with buffer, retrials and different production rates

    NASA Astrophysics Data System (ADS)

    Jose, K. P.; Nair, Salini S.

    2017-09-01

    This paper considers the comparison of two ( {s,S} ) production inventory systems with retrials of unsatisfied customers. The time for producing and adding each item to the inventory is exponentially distributed with rate β. However, a production rate α β higher than β is used at the beginning of the production. The higher production rate will reduce customers' loss when inventory level approaches zero. The demand from customers is according to a Poisson process. Service times are exponentially distributed. Upon arrival, the customers enter into a buffer of finite capacity. An arriving customer, who finds the buffer full, moves to an orbit. They can retry from there and inter-retrial times are exponentially distributed. The two models differ in the capacity of the buffer. The aim is to find the minimum value of total cost by varying different parameters and compare the efficiency of the models. The optimum value of α corresponding to minimum total cost is an important evaluation. Matrix analytic method is used to find an algorithmic solution to the problem. We also provide several numerical or graphical illustrations.

  10. Mechanisms of buffer therapy resistance

    PubMed Central

    Bailey, Kate M.; Wojtkowiak, Jonathan W.; Cornnell, Heather H.; Ribeiro, Maria C.; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J.

    2014-01-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. PMID:24862761

  11. Railing for safety: job demands, job control, and safety citizenship role definition.

    PubMed

    Turner, Nick; Chmiel, Nik; Walls, Melanie

    2005-10-01

    This study investigated job demands and job control as predictors of safety citizenship role definition, that is, employees' role orientation toward improving workplace safety. Data from a survey of 334 trackside workers were framed in the context of R. A. Karasek's (1979) job demands-control model. High job demands were negatively related to safety citizenship role definition, whereas high job control was positively related to this construct. Safety citizenship role definition of employees with high job control was buffered from the influence of high job demands, unlike that of employees with low job control, for whom high job demands were related to lower levels of the construct. Employees facing both high job demands and low job control were less likely than other employees to view improving safety as part of their role orientation. Copyright (c) 2005 APA, all rights reserved.

  12. Free-space quantum key distribution with a high generation rate potassium titanyl phosphate waveguide photon-pair source

    NASA Astrophysics Data System (ADS)

    Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip R.; Floyd, Bertram; Lind, Alexander J.; Cavin, John D.; Helmick, Spencer R.

    2016-09-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nm pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nm photons are up-converted to a single 532-nm photon in the first stage. In the second stage, the 532-nm photon is down-converted to an entangled photon-pair at 800 nm and 1600 nm which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free space QKD experiment with the B92 protocol are also presented.

  13. Free-Space Quantum Key Distribution with a High Generation Rate Potassium Titanyl Phosphate Waveguide Photon-Pair Source

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip; Floyd, Bertram M.; Lind, Alexander J.; hide

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nanometer pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nanometer photons are up-converted to a single 532-nanometer photon in the first stage. In the second stage, the 532-nanometer photon is down-converted to an entangled photon-pair at 800 nanometer and 1600 nanometer which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  14. Selective growth of Pb islands on graphene/SiC buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X. T.; Miao, Y. P.; Ma, D. Y.

    2015-02-14

    Graphene is fabricated by thermal decomposition of silicon carbide (SiC) and Pb islands are deposited by Pb flux in molecular beam epitaxy chamber. It is found that graphene domains and SiC buffer layer coexist. Selective growth of Pb islands on SiC buffer layer rather than on graphene domains is observed. It can be ascribed to the higher adsorption energy of Pb atoms on the 6√(3) reconstruction of SiC. However, once Pb islands nucleate on graphene domains, they will grow very large owing to the lower diffusion barrier of Pb atoms on graphene. The results are consistent with first-principle calculations. Sincemore » Pb atoms on graphene are nearly free-standing, Pb islands grow in even-number mode.« less

  15. Evaluation of a boron-nitrogen, phosphate-free fire-retardant treatment. Part III, Evaluation of full-size 2 by 4 lumber per ASTM Standard D 5664-95 Method C

    Treesearch

    Jerrold E. Winandy; Douglas Herdman

    2003-01-01

    The purpose of this work was to evaluate the effects of a new boron-nitrogen, phosphate-free fire-rerardant (FR) formulation on the initial strength of No. 1 southern pine 2 by 4 lumber and its potential for in-service thermal degradation. The lumber was evaluated according to Method C of the D 5664 standard test method. The results indicated that for lumber exposed at...

  16. Improving Water Quality With Conservation Buffers

    NASA Astrophysics Data System (ADS)

    Lowrance, R.; Dabney, S.; Schultz, R.

    2003-12-01

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve their function and longevity by dispersing runoff and encouraging sediment deposition upslope of the buffer. It's important to understand how buffers can be managed to help reduce nutrient transport potential for high loading of nutrients from manure land application sites, A restored riparian wetland buffer retained or removed at least 59 percent of the nitrogen and 66 percent of the phosphorus that entered from an adjacent manure land application site. The Bear Creek National Restoration Demonstration Watershed project in Iowa has been the site of riparian forest buffers and filter strips creation; constructed wetlands to capture tile flow; stream-bank bioengineering; in-stream structures; and controlling livestock grazing. We need field studies that test various widths of buffers of different plant community compositions for their efficacy in trapping surface runoff, reducing nonpoint source pollutants in subsurface waters, and enhancing the aquatic ecosystem. Research is needed to evaluate the impact of different riparian grazing strategies on channel morphology, water quality, and the fate of livestock-associated pathogens and antibiotics. Integrating riparian buffers and other conservation buffers into these models is a key objective in future model development.

  17. Controlled release of acidic drugs in compendial and physiological hydrogen carbonate buffer from polymer blend-coated oral solid dosage forms.

    PubMed

    Wulff, R; Rappen, G-M; Koziolek, M; Garbacz, G; Leopold, C S

    2015-09-18

    The objective of this study was to investigate the suitability of "Eudragit® RL/Eudragit® L55" (RL/L55) blend coatings for a pH-independent release of acidic drugs. A coating for ketoprofen and naproxen mini tablets was developed showing constant drug release rate under pharmacopeial two-stage test conditions for at least 300 min. To simulate drug release from the mini tablets coated with RL/L55 blends in the gastrointestinal (GI) tract, drug release profiles in Hanks buffer pH 6.8 were recorded and compared with drug release profiles in compendial media. RL/L55 blend coatings showed increased drug permeability in Hanks buffer pH 6.8 compared to phosphate buffer pH 6.8 due to its higher ion concentration. However, drug release rates of acidic drugs were lower in Hanks buffer pH 6.8 because of the lower buffer capacity resulting in reduced drug solubility. Further dissolution tests were performed in Hanks buffer using pH sequences simulating the physiological pH conditions in the GI tract. Drug release from mini tablets coated with an RL/L55 blend (8:1) was insensitive to pH changes of the medium within the pH range of 5.8-7.5. It was concluded that coatings of RL/L55 blends show a high potential for application in coated oral drug delivery systems with a special focus on pH-independent release of acidic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems.

    PubMed

    Whitacre, James M; Bender, Axel

    2010-06-15

    A generic mechanism--networked buffering--is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems.

  19. Emission reduction by multipurpose buffer strips on arable fields.

    PubMed

    Sloots, K; van der Vlies, A W

    2007-01-01

    In the area managed by Hollandse Delta, agriculture is under great pressure and the social awareness of the agricultural sector is increasing steadily. In recent years, a stand-still has been observed in water quality, in terms of agrochemicals, and concentrations even exceed the standard. To improve the waterquality a multi-purpose Field Margin Regulation was drafted for the Hoeksche Waard island in 2005. The regulation prescribes a crop-free strip, 3.5 m wide, alongside wet drainage ditches. The strip must be sown with mixtures of grasses, flowers or herbs. No crop protection chemicals or fertilizer may be used on the strips. A total length of approximately 200 km of buffer strip has now been laid. Besides reducing emissions, the buffer strips also stimulate natural pest control methods and encourage local tourism. Finally, the strips should lead to an improvement in the farmers' image. The regulation has proved to be successful. The buffer strips boosted both local tourism and the image of the agricultural sector. Above all, the strips provided a natural shield for emission to surface water, which will lead to an improvement of the water quality and raise the farmers' awareness of water quality and the environment.

  20. Can an Opportunity to Learn at Work Reduce Stress?: A Revisitation of the Job Demand-Control Model

    ERIC Educational Resources Information Center

    Panari, Chiara; Guglielmi, Dina; Simbula, Silvia; Depolo, Marco

    2010-01-01

    Purpose: This paper aims to extend the stress-buffering hypothesis of the demand-control model. In addition to the control variable, it seeks to analyse the role of an opportunity for learning and development (L&D) in the workplace as a moderator variable between increased demands and need for recovery. Design/methodology/approach: A…

  1. Mechanisms of buffer therapy resistance.

    PubMed

    Bailey, Kate M; Wojtkowiak, Jonathan W; Cornnell, Heather H; Ribeiro, Maria C; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J

    2014-04-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  2. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient.

    PubMed

    Fritze, Andreas; Hens, Felicitas; Kimpfler, Andrea; Schubert, Rolf; Peschka-Süss, Regine

    2006-10-01

    This study examines a new method for the remote loading of doxorubicin into liposomes. It was shown that doxorubicin can be loaded to a level of up to 98% into large unilamellar vesicles composed of egg phosphatidylcholine/cholesterol (7/3 mol/mol) with a transmembrane phosphate gradient. The different encapsulation efficiencies which were achieved with ammonium salts (citrate 100%, phosphate 98%, sulfate 95%, acetate 77%) were significantly higher as compared to the loading via sodium salts (citrate 54%, phosphate 52%, sulfate 44%, acetate 16%). Various factors, including pH-value, buffer capacity, solubility of doxorubicin in different salt solutions and base counter-flow, which likely has an influence on drug accumulation in the intraliposomal interior are taken into account. In contrast to other methods, the newly developed remote loading method exhibits a pH-dependent drug release property which may be effective in tumor tissues. At physiological pH-value doxorubicin is retained in the liposomes, whereas drug release is achieved by lowering the pH to 5.5 (approximately 25% release at 25 degrees C or 30% at 37 degrees C within two h). The DXR release of liposomes which were loaded via a sulfate gradient showed a maximum of 3% at pH 5.5.

  3. Training demands on clerk burnout: determining whether achievement goal motivation orientations matter.

    PubMed

    Lin, Chia-Der; Lin, Blossom Yen-Ju

    2016-08-22

    In the education field, learning experiences are considered learners' properties and are viewed as a key determinant in explaining learners' learning processes, especially for training novices such as clerks with varying levels of commitment to the medical profession. This study explored whether clerks' achievement goal motivation orientations might buffer the negative well-being to a certain extent, considering their training demands during clinical training. Ninety-four clerks at a tertiary medical center were longitudinally traced during their 2-year clerkship spanning from September 2013 to April 2015. Web-based, validated, structured, self-administered questionnaires were used to evaluate the clerks' properties of achievement goal motivation orientation and personal background at the beginning of the clerkship. Regular surveys were conducted to evaluate their perceptions of training demands and burnout at each specialty rotation. Overall, 2230 responses were analyzed, and linear mixed-effects models were used to examine the repeated measures of the clerks. The results revealed that higher perceived psychological and physical demands of training were related to higher perceived burnout during the 2-year clerkship. Although both the clerks' task and ego orientations were related to reduced burnout (direct effects), only task orientation was indicated to exert a buffering effect on their perception of physical demands on burnout in the 1st year of the clerkship. Considering the negative effects of training demands (psychological and physical), we observed a limited effect of the task achievement motivation orientation of medical students; therefore, additional studies might focus on strategies to facilitate medical students in clerkships in addressing both the psychological and physical demands inherent in training workplaces to improve their learning experience and well-being.

  4. Psychosocial work environment in school and students' somatic health complaints: An analysis of buffering resources.

    PubMed

    Sonmark, Kristina; Modin, Bitte

    2017-02-01

    This study explores the association between the psychosocial work environment in school and students' somatic health complaints. With its point of departure from the Demand-Control-Support (DCS) model, the aim was to examine how aspects of decision control and social support can moderate stress-related health implications of high psychological demands. Data come from two cross-sectional waves of the Swedish version of Health Behaviour in School-aged Children (HBSC 2005/2006 and 2009/2010), which consists of a total of 9427 11-, 13- and 15-year-old students. A two-level random intercept model was applied, with school class as the level 2 unit. Findings showed significant associations between school demands and somatic health complaints for all studied age groups, with a slight increase in strength with age. Decision control as well as social support from teachers, parents and peers consistently predicted a favorable association with health. An age pattern emerged in the analyses of stress-moderating resources. For 11 year olds parental support was the only resource that displayed a significant interaction with demands in relation to somatic health complaints, whereas for 13 year olds, decision control and support from teachers and parents all demonstrated moderating effects on student health. For 15 year olds, however, it was peer support that acted as a buffering resource in the studied relationship. The psychosocial work environment is an important predictor of students' health complaints. Overall, social support was a better stress-moderating resource than decision control, but some "buffers" were more important at certain ages than others.

  5. Job Pressure and SES-contingent Buffering: Resource Reinforcement, Substitution, or the Stress of Higher Status?

    PubMed

    Koltai, Jonathan; Schieman, Scott

    2015-06-01

    Analyses of the 2008 National Study of the Changing Workforce demonstrate that job pressure is associated with greater anxiety and job dissatisfaction. In this paper we ask, What conditions protect workers? The conventional buffering hypothesis in the Job-Demands Resource (JD-R) model predicts that job resources should attenuate the relationship. We test whether the conventional buffering hypothesis depends on socioeconomic status (SES). Support for conventional buffering is evident only for job dissatisfaction--and that generalizes across SES. When anxiety is assessed, however, we observe an SES contingency: Job resources attenuate the positive association between job pressure and anxiety among workers with lower SES, but exacerbate it among those with higher SES. We discuss the implications of this SES-contingent pattern for theoretical scenarios about "resource reinforcement," "resource substitution," and the "stress of higher status." Future research should consider SES indicators as potential contingencies in the relationship between job conditions and mental health. © American Sociological Association 2015.

  6. Role of Buffers in Protein Formulations.

    PubMed

    Zbacnik, Teddy J; Holcomb, Ryan E; Katayama, Derrick S; Murphy, Brian M; Payne, Robert W; Coccaro, Richard C; Evans, Gabriel J; Matsuura, James E; Henry, Charles S; Manning, Mark Cornell

    2017-03-01

    Buffers comprise an integral component of protein formulations. Not only do they function to regulate shifts in pH, they also can stabilize proteins by a variety of mechanisms. The ability of buffers to stabilize therapeutic proteins whether in liquid formulations, frozen solutions, or the solid state is highlighted in this review. Addition of buffers can result in increased conformational stability of proteins, whether by ligand binding or by an excluded solute mechanism. In addition, they can alter the colloidal stability of proteins and modulate interfacial damage. Buffers can also lead to destabilization of proteins, and the stability of buffers themselves is presented. Furthermore, the potential safety and toxicity issues of buffers are discussed, with a special emphasis on the influence of buffers on the perceived pain upon injection. Finally, the interaction of buffers with other excipients is examined. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Ability of a beta-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters.

    PubMed Central

    Holt, C; Wahlgren, N M; Drakenberg, T

    1996-01-01

    The ability of casein in the form of colloidal-sized casein micelles to modulate the phase separation of calcium phosphate during milk secretion is adapted to produce nanometre-sized particles of calcium phosphate stabilized by a casein phosphopeptide (nanoclusters). The nanoclusters were prepared from an undersaturated solution of salts and the peptide by raising the pH homogeneously from about 5.5 to 6.7 with urea plus urease. Chemical analysis and IR spectroscopy showed that they comprise an amorphous dicalcium phosophate bound to the phosphopeptide. Multinuclear NMR spectroscopy of the cluster solutions showed that the small ions and free peptide in the solution were in a state of dynamic exchange with the nanoclusters. The peptide is linked to the calcium phosphate through its sequence of phosphorylated residues, but, in a proportion of adsorbed conformational states, the termini retain the conformational freedom of the unbound peptide. The ability of casein to form nanoclusters in milk suggests a more general mechanism for avoiding pathological calcification and regulating calcium flow in tissues and biological fluids exposed to or containing high concentrations of calcium. PMID:8615755

  8. Cytosolic Ca2+ Buffers

    PubMed Central

    Schwaller, Beat

    2010-01-01

    “Ca2+ buffers,” a class of cytosolic Ca2+-binding proteins, act as modulators of short-lived intracellular Ca2+ signals; they affect both the temporal and spatial aspects of these transient increases in [Ca2+]i. Examples of Ca2+ buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Besides their proven Ca2+ buffer function, some might additionally have Ca2+ sensor functions. Ca2+ buffers have to be viewed as one of the components implicated in the precise regulation of Ca2+ signaling and Ca2+ homeostasis. Each cell is equipped with proteins, including Ca2+ channels, transporters, and pumps that, together with the Ca2+ buffers, shape the intracellular Ca2+ signals. All of these molecules are not only functionally coupled, but their expression is likely to be regulated in a Ca2+-dependent manner to maintain normal Ca2+ signaling, even in the absence or malfunctioning of one of the components. PMID:20943758

  9. Common data buffer

    NASA Technical Reports Server (NTRS)

    Byrne, F.

    1981-01-01

    Time-shared interface speeds data processing in distributed computer network. Two-level high-speed scanning approach routes information to buffer, portion of which is reserved for series of "first-in, first-out" memory stacks. Buffer address structure and memory are protected from noise or failed components by error correcting code. System is applicable to any computer or processing language.

  10. Buffer Zone Fact Sheets

    EPA Pesticide Factsheets

    New requirements for buffer zones and sign posting contribute to soil fumigant mitigation and protection for workers and bystanders. The buffer provides distance between the pesticide application site and bystanders, reducing exposure risk.

  11. Is the Binding of Visual Features in Working Memory Resource-Demanding?

    ERIC Educational Resources Information Center

    Allen, Richard J.; Baddeley, Alan D.; Hitch, Graham J.

    2006-01-01

    The episodic buffer component of working memory is assumed to play a role in the binding of features into chunks. A series of experiments compared memory for arrays of colors or shapes with memory for bound combinations of these features. Demanding concurrent verbal tasks were used to investigate the role of general attentional processes,…

  12. Relative effects of demand and control on task-related cardiovascular reactivity, task perceptions, performance accuracy, and mood.

    PubMed

    Flynn, Niamh; James, Jack E

    2009-05-01

    The hypothesis that work control has beneficial effects on well-being is the basis of the widely applied, yet inconsistently supported, Job Demand Control (JDC) Model [Karasek, R.A., 1979. Job demands, job decision latitude and mental strain: Implications for job redesign. Adm. Sci. Q. 24, 285-308.; Karasek, R., Theorell, T., 1990. Healthy Work: Stress, Productivity, and the Reconstruction of Working Life. Basic Books, Oxford]. The model was tested in an experiment (N=60) using a cognitive stressor paradigm that sought to prevent confounding between demand and control. High-demand was found to be associated with deleterious effects on physiological, subjective, and performance outcomes. In contrast, few main effects were found for control. Evidence for the buffer interpretation of the JDC Model was limited to a significant demand-control interaction for performance accuracy, whereas substantial support was found for the strain interpretation of the model [van der Doef, M., Maes, S., 1998. The job demand-control(-support) model and physical health outcomes: A review of the strain and buffer hypotheses. Psychol. Health 13, 909-936., van der Doef, M., Maes, S., 1999. The Job Demand-Control(-Support) model and psychological well-being: A review of 20 years of empirical research. Work Stress 13, 87-114]. Manipulation checks revealed that objective control altered perceptions of control but not perceptions of demand. It is suggested that beneficial effects of work-related control are unlikely to occur in the absence of reductions in perceived demand. Thus, contrary to the propositions of Karasek and colleagues, demand and control do not appear to be independent factors.

  13. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus.

    PubMed

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-08-30

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution.

  14. Two new glucose 6-phosphate dehydrogenase variants associated with congenital nonspherocytic hemolytic anemia found in Japan: GD(-) Tokushima and GD(-) Tokyo.

    PubMed

    Miwa, S; Ono, J; Nakashima, K; Abe, S; Kageoka, T

    1976-01-01

    Two new variants of glucose 6-phosphate dehydrogenase (G6PD) deficiency associated with chronic nonspherocytic hemolytic anemia were discovered in Japan. Gd(-) Tokushima was found in a 17-years-old male whose erythrocytes contained 4.4% of normal enzyme activity. Partially purified enzyme revealed a main band of normal electrophoretic mobility with additional two minor bands of different mobility; normal Km G6P, and Km NADP five-to sixfold higher than normal; normal utilization of 2-deoxy-G6P, galactose-6P, and deamino-NADP; marked thermal instability; a normal pH curve; and normal Ki NADPH. The hemolytic anemia was moderate to severe. Gd(-) Tokyo was characterized from a 15-year-old male who had chronic nonspherocytic hemolytic anemia of mild degree. The erythrocytes contained 3% of normal enzyme activity, and partially purified enzyme revealed slow electrophoretic mobility (90% of normal for both a tris-hydrochloride buffer system and a tris-EDTA-borate buffer system, and 70% of normal for a phosphate buffer system); normal Km G6P and Km NADP; normal utilization of 2-deoxy-G6P, galactose-6P, and deamino-NADP; greatly increased thermal instability; a normal pH curve; and normal Ki NADPH. These two variants are clearly different from hitherto described G6PD variants, including the Japanese variants Gd(-) Heian and Gd(-) Kyoto. The mothers of both Gd(-) Tokushima and Gd(-) Tokoyo were found to be heterozygote by an ascorbate-cyanide test.

  15. Expanding the range of free calcium regulation in biological solutions.

    PubMed

    Dweck, David; Reyes-Alfonso, Avelino; Potter, James D

    2005-12-15

    Many biological systems use ethylene glycol bis (beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) to regulate the free calcium concentration ([Ca(2+)](free)) in the presence of physiological levels of free Mg(2+) ([Mg(2+)](free)). Frequently, it is necessary to work at [Ca(2+)](free) beyond EGTA's buffering capabilities. Therefore, we have developed methods to extend the buffering range by adding nitrilotriacetic acid (NTA) to solutions containing EGTA. This extension results from NTA having a lower K'(dCa) than EGTA. Such equilibria are solved by pCa Calculator, a computer program designed to aid in the study of Ca(2+)-dependent physiological processes while accounting for the effects of pH, temperature, and ionic strength. With multiple chelators and pH buffers from which to choose, pCa Calculator calculates the total concentration of each species required to achieve specified free concentrations of Ca(2+), ATP, and Mg(2+). The program is intuitive, user-friendly, and flexible enough to fix or vary the [Mg-ATP(2-)] and ionic strength. Moreover, it can account for increases in experimental volume from calcium addition. A comparative analysis is reported for testing solutions in the presence and absence of NTA by measuring the calcium binding affinity of fluorescent cardiac troponin C. These findings demonstrate that EGTA, when used in conjunction with NTA, improves and expands the regulation of free calcium in solution.

  16. Phosphate Solubilization and Gene Expression of Phosphate-Solubilizing Bacterium Burkholderia multivorans WS-FJ9 under Different Levels of Soluble Phosphate.

    PubMed

    Zeng, Qingwei; Wu, Xiaoqin; Wang, Jiangchuan; Ding, Xiaolei

    2017-04-28

    Phosphate-solubilizing bacteria (PSB) have the ability to dissolve insoluble phosphate and enhance soil fertility. However, the growth and mineral phosphate solubilization of PSB could be affected by exogenous soluble phosphate and the mechanism has not been fully understood. In the present study, the growth and mineral phosphate-solubilizing characteristics of PSB strain Burkholderia multivorans WS-FJ9 were investigated at six levels of exogenous soluble phosphate (0, 0.5, 1, 5, 10, and 20 mM). The WS-FJ9 strain showed better growth at high levels of soluble phosphate. The phosphate-solubilizing activity of WS-FJ9 was reduced as the soluble phosphate concentration increased, as well as the production of pyruvic acid. Transcriptome profiling of WS-FJ9 at three levels of exogenous soluble phosphate (0, 5, and 20 mM) identified 446 differentially expressed genes, among which 44 genes were continuously up-regulated when soluble phosphate concentration was increased and 81 genes were continuously down-regulated. Some genes related to cell growth were continuously up-regulated, which would account for the better growth of WS-FJ9 at high levels of soluble phosphate. Genes involved in glucose metabolism, including glycerate kinase, 2-oxoglutarate dehydrogenase, and sugar ABC-type transporter, were continuously down-regulated, which indicates that metabolic channeling of glucose towards the phosphorylative pathway was negatively regulated by soluble phosphate. These findings represent an important first step in understanding the molecular mechanisms of soluble phosphate effects on the growth and mineral phosphate solubilization of PSB.

  17. Establishing conservation buffers using precision information

    Treesearch

    Mike G. Dosskey; Dean E. Eisenhauer; Matthew J. Helmers

    2005-01-01

    Conservation buffers, such as filter strips and riparian forest buffers, are widely prescribed to improve and protect water quality in agricultural landscapes. These buffers intercept field runoff and retain some of its pollutant load before it reaches a waterway. A buffer typically is designed to have uniform width along a field margin and to intercept runoff that...

  18. Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite

    PubMed Central

    Jost, Ricarda; Pharmawati, Made; Lapis-Gaza, Hazel R.; Rossig, Claudia; Berkowitz, Oliver; Lambers, Hans; Finnegan, Patrick M.

    2015-01-01

    Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates. Phosphite could therefore interfere with phosphorus signalling networks. Typical physiological and transcriptional responses to low phosphate availability were investigated and the short-term kinetics of their reversion by phosphite, compared with phosphate, were determined in both roots and shoots of Arabidopsis thaliana. Phosphite treatment resulted in a strong growth arrest. It mimicked phosphate in causing a reduction in leaf anthocyanins and in the expression of a subset of the phosphate-starvation-responsive genes. However, the kinetics of the response were slower than for phosphate, which may be due to discrimination against phosphite by phosphate transporters PHT1;8 and PHT1;9 causing delayed shoot accumulation of phosphite. Transcripts encoding PHT1;7, lipid-remodelling enzymes such as SQD2, and phosphocholine-producing NMT3 were highly responsive to phosphite, suggesting their regulation by a direct phosphate-sensing network. Genes encoding components associated with the ‘PHO regulon’ in plants, such as At4, IPS1, and PHO1;H1, generally responded more slowly to phosphite than to phosphate, except for SPX1 in roots and MIR399d in shoots. Two uncharacterized phosphate-responsive E3 ligase genes, PUB35 and C3HC4, were also highly phosphite responsive. These results show that phosphite is a valuable tool to identify network components directly responsive to phosphate. PMID:25697796

  19. The roles of buffer layer thickness on the properties of the ZnO epitaxial films

    NASA Astrophysics Data System (ADS)

    Tang, Kun; Huang, Shimin; Gu, Shulin; Zhu, Shunming; Ye, Jiandong; Xu, Zhonghua; Zheng, Youdou

    2016-12-01

    In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.

  20. Estimation of the Contribution of CYP2C8 and CYP3A4 in Repaglinide Metabolism by Human Liver Microsomes Under Various Buffer Conditions.

    PubMed

    Kudo, Toshiyuki; Goda, Hitomi; Yokosuka, Yuki; Tanaka, Ryo; Komatsu, Seina; Ito, Kiyomi

    2017-09-01

    We have previously reported that the microsomal activities of CYP2C8 and CYP3A4 largely depend on the buffer condition used in in vitro metabolic studies, with different patterns observed between the 2 isozymes. In the present study, therefore, the possibility of buffer condition dependence of the fraction metabolized by CYP2C8 (fm2C8) for repaglinide, a dual substrate of CYP2C8 and CYP3A4, was estimated using human liver microsomes under various buffer conditions. Montelukast and ketoconazole showed a potent and concentration-dependent inhibition of CYP2C8-mediated paclitaxel 6α-hydroxylation and CYP3A4-mediated triazolam α-hydroxylation, respectively, without dependence on the buffer condition. Repaglinide depletion was inhibited by both inhibitors, but the degree of inhibition depended on buffer conditions. Based on these results, the contribution of CYP2C8 in repaglinide metabolism was estimated to be larger than that of CYP3A4 under each buffer condition, and the fm2C8 value of 0.760, estimated in 50 mM phosphate buffer, was the closest to the value (0.801) estimated in our previous modeling analysis based on its concentration increase in a clinical drug interaction study. Researchers should be aware of the possibility of buffer condition affecting the estimated contribution of enzyme(s) in drug metabolism processes involving multiple enzymes. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Evaluation of empirical process design relationships for ozone disinfection of water and wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, G.R.; Smith, D.W.

    A research program was undertaken to examine the dose-response of Escherichia coli ATCC 11775 in ozone demand-free phosphate buffer solution and in a high quality secondary wastewater effluent with a total organic carbon content of 8 mg/L and a chemical oxygen demand of 26 mg/L. The studies were conducted in bench-scale batch reactors for both water types. In addition, studies using secondary effluent also were conducted in a pilot-scale, semi-batch reactor to evaluate scale-up effects. It was found that the ozone dose was the most important design parameter in both types of water. Contact time was of some importance inmore » the ozone demand-free water and had no detectable effect in the secondary effluent. Pilot-scale data confirmed the results obtained at bench-scale for the secondary effluent. Regression analysis of the logarithm of the E. coli response on the logarithm of the utilized ozone dose revealed that there was lack-of-fit using the model form which has been used frequently for the design of wastewater disinfection systems. This occurred as a result of a marked tailing effect of the log-log plot as the ozone dose increased and the kill increased. It was postulated that this was caused by some unknown physiological differences within the E. coli population due to age or another factor.« less

  2. Basal buffer systems for a newly glycosylated recombinant human interferon-β with biophysical stability and DoE approaches.

    PubMed

    Kim, Nam Ah; Song, Kyoung; Lim, Dae Gon; Hada, Shavron; Shin, Young Kee; Shin, Sangmun; Jeong, Seong Hoon

    2015-10-12

    The purpose of this study was to develop a basal buffer system for a biobetter version of recombinant human interferon-β 1a (rhIFN-β 1a), termed R27T, to optimize its biophysical stability. The protein was pre-screened in solution as a function of pH (2-11) using differential scanning calorimetry (DSC) and dynamic light scattering (DLS). According to the result, its experimental pI and optimal pH range were 5.8 and 3.6-4.4, respectively. Design of experiment (DoE) approach was developed as a practical tool to aid formulation studies as a function of pH (2.9-5.7), buffer (phosphate, acetate, citrate, and histidine), and buffer concentration (20 mM and 50 mM). This method employed a weight-based procedure to interpret complex data sets and to investigate critical key factors representing protein stability. The factors used were Tm, enthalpy, and relative helix contents which were obtained by DSC and Fourier Transform Infrared spectroscopy (FT-IR). Although the weights changed by three responses, objective functions from a set of experimental designs based on four buffers were highest in 20 mM acetate buffer at pH 3.6 among all 19 scenarios tested. Size exclusion chromatography (SEC) was adopted to investigate accelerated storage stability in order to optimize the pH value with susceptible stability since the low pH was not patient-compliant. Interestingly, relative helix contents and storage stability (monomer remaining) increased with pH and was the highest at pH 4.0. On the other hand, relative helix contents and thermodynamic stability decreased at pH 4.2 and 4.4, suggesting protein aggregation issues. Therefore, the optimized basal buffer system for the novel biobetter was proposed to be 20 mM acetate buffer at pH 3.8±0.2. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Low-Cd CIGS solar cells made with a hybrid CdS/Zn(O,S) buffer layer

    DOE PAGES

    Garris, Rebekah L.; Mansfield, Lorelle M.; Egaas, Brian; ...

    2016-10-27

    In Cu(In,Ga)Se2 (CIGS) solar cells, CdS and Zn(O,S) buffer layers were compared with a hybrid buffer layer consisting of thin CdS followed Zn(O,S). We explore the physics of this hybrid layer that combines the standard (Cd) approach with the alternative (Zn) approach in the pursuit to unlock further potential for CIGS technology. CdS buffer development has shown optimal interface properties, whereas Zn(O,S) buffer development has shown increased photocurrent. Although a totally Cd-free solar module is more marketable, the retention of a small amount of Cd can be beneficial to achieve optimum junction properties. As long as the amount of Cdmore » is reduced to less than 0.01% by weight, the presence of Cd does not violate the hazardous substance restrictions of the European Union (EU). We estimate the amount of Cd allowed in the EU for CIGS on both glass and stainless steel substrates, and we show that reducing Cd becomes increasingly important as substrate weights decrease. As a result, this hybrid buffer layer had reduced Cd content and a wider space charge region, while achieving equal or better solar cell performance than buffer layers of either CdS or Zn(O,S) alone.« less

  4. Undergraduate Chemistry Students' Perceptions of and Misconceptions about Buffers and Buffer Problems

    ERIC Educational Resources Information Center

    Orgill, MaryKay; Sutherland, Aynsley

    2008-01-01

    Both upper- and lower-level chemistry students struggle with understanding the concept of buffers and with solving corresponding buffer problems. While it might be reasonable to expect general chemistry students to struggle with this abstract concept, it is surprising that upper-level students in analytical chemistry and biochemistry continue to…

  5. Imaging label-free biosensor with microfluidic system

    NASA Astrophysics Data System (ADS)

    Jahns, S.; Glorius, P.; Hansen, M.; Nazirizadeh, Y.; Gerken, M.

    2015-06-01

    We present a microfluidic system suitable for parallel label-free detection of several biomarkers utilizing a compact imaging measurement system. The microfluidic system contains a filter unit to separate the plasma from human blood and a functionalized, photonic crystal slab sensor chip. The nanostructure of the photonic crystal slab sensor chip is fabricated by nanoimprint lithography of a period grating surface into a photoresist and subsequent deposition of a TiO2 layer. Photonic crystal slabs are slab waveguides supporting quasi-guided modes coupling to far-field radiation, which are sensitive to refractive index changes due to biomarker binding on the functionalized surface. In our imaging read-out system the resulting resonance shift of the quasi-guided mode in the transmission spectrum is converted into an intensity change detectable with a simple camera. By continuously taking photographs of the sensor surface local intensity changes are observed revealing the binding kinetics of the biomarker to its specific target. Data from two distinct measurement fields are used for evaluation. For testing the sensor chip, 1 μM biotin as well as 1 μM recombinant human CD40 ligand were immobilized in spotsvia amin coupling to the sensor surface. Each binding experiment was performed with 250 nM streptavidin and 90 nM CD40 ligand antibody dissolved in phosphate buffered saline. In the next test series, a functionalized sensor chip was bonded onto a 15 mm x 15 mm opening of the 75 mm x 25 mm x 2 mm microfluidic system. We demonstrate the functionality of the microfluidic system for filtering human blood such that only blood plasma was transported to the sensor chip. The results of first binding experiments in buffer with this test chip will be presented.

  6. Monitoring of interstitial buffer systems using micro-dialysis and infrared spectrometry

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Cocchieri, L.; Vahlsing, T.; Ihrig, D.; Elm, J.

    2017-02-01

    Nowadays, continuous sensing systems are important point-of-care devices for the hospital and personalized patient technology. FTIR-spectrometers have been successfully employed for the development of bed-side systems. In-vivo applications for critically ill patients can be envisaged for analytes and parameters, which are of interest for intensive care such as lactate, urea, pCO2 and pH. The human body maintains the blood pH around 7.4, but for severe pH level changes acidosis or alkalosis can lead to serious health problems. Three different buffer systems exist based on bicarbonate, phosphate and proteins; for the most important bicarbonate and phosphate systems infrared transmission spectra were recorded. By using the CO2 and HCO3 - bands of the bicarbonate spectra, the pH of the harvested biofluid can be predicted using the Henderson-Hasselbalch equation. Furthermore, we studied the solubility of CO2 in aqueous solutions using gas mixtures of N2 and CO2 with known composition within partial pressures of CO2 as relevant for invivo conditions. Thus, values of pCO2 up to 150 mm Hg (200 hPa) with distilled water and a Ringer solution, which is an isotonic electrolyte solution used for medical infusion, were measured at 25 °C and 37 °C (normal body temperature).

  7. ACS Science Data Buffer Check/Self-Tests for CS Buffer RAM and MIE RAM

    NASA Astrophysics Data System (ADS)

    Balzano, V.

    2001-07-01

    The ACS Science Buffer RAM is checked for bit flips during SAA passages. This is followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for MIE RAM. The MIE must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.

  8. ACS Science Data Buffer Check/Self-Tests for CS Buffer RAM and MIE RAM

    NASA Astrophysics Data System (ADS)

    Welty, Alan

    2005-07-01

    The ACS Science Buffer RAM is checked for bit flips during SAA passages. Thisis followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for MIE RAM. The MIE must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.

  9. Simultaneous HPLC analysis of pseudophedrine hydrochloride, codeine phosphate, and triprolidine hydrochloride in liquid dosage forms.

    PubMed

    Manassra, Adnan; Khamis, Mustafa; El-Dakiky, Magdy; Abdel-Qader, Zuhair; Al-Rimawi, Fuad

    2010-03-11

    An HPLC method using UV detection is proposed for the simultaneous determination of pseudophedrine hydrochloride, codeine phosphate, and triprolidine hydrochloride in liquid formulation. C18 column (250mmx4.0mm) is used as the stationary phase with a mixture of methanol:acetate buffer:acetonitrile (85:5:10, v/v) as the mobile phase. The factors affecting column separation of the analytes were studied. The calibration graphs exhibited a linear concentration range of 0.06-1.0mg/ml for pseudophedrine hydrochloride, 0.02-1.0mg/ml for codeine phosphate, and 0.0025-1.0mg/ml for triprolidine hydrochloride for a sample size of 5microl with correlation coefficients of better than 0.999 for all active ingredients studied. The results demonstrate that this method is reliable, reproducible and suitable for routine use with analysis time of less than 4min. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Salivary pH and Buffering Capacity as Risk Markers for Early Childhood Caries: A Clinical Study.

    PubMed

    Jayaraj, D; Ganesan, S

    2015-01-01

    The diagnostic utility of saliva is currently being explored in various branches of dentistry, remarkably in the field of caries research. This study was aimed to determine if assessment of salivary pH and buffering capacity would serve as reliable tools in risk prediction of early childhood caries (ECC). Paraffin-stimulated salivary samples were collected from 50 children with ECC (group I) and 50 caries free children (group II). Salivary pH and buffering capacity (by titration with 0.1 N hydrochloric acid) were assessed using a handheld digital pH meter in both groups. The data obtained were subjected to statistical analysis. Statistically, no significant difference was observed between both the groups for all salivary parameters assessed, except for the buffering capacity level at 150 μl titration of 0.1 N hydrochloric acid (p = 0.73; significant at 1% level). Salivary pH and buffering capacity may not serve as reliable markers for risk prediction of ECC. How to cite this article: Jayaraj D, Ganesan S. Salivary pH and Buffering Capacity as Risk Markers for Early Childhood Caries: A Clinical Study. Int J Clin Pediatr Dent 2015;8(3):167-171.

  11. Bioavailable dietary phosphate, a mediator of cardiovascular disease, may be decreased with plant-based diets, phosphate binders, niacin, and avoidance of phosphate additives.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2014-01-01

    Increased fasting serum phosphate within the normal physiological range has been linked to increased cardiovascular risk in prospective epidemiology; increased production of fibroblast growth factor 23, and direct vascular effects of phosphate, may mediate this risk. Although dietary phosphate intake does not clearly influence fasting serum phosphate in individuals with normal renal function, increased phosphate intake can provoke a rise in fibroblast growth factor 23, and in diurnal phosphate levels, and hence may adversely influence vascular health. Dietary phosphate absorption can be moderated by emphasizing plant-based dietary choices (which provide phosphate in less bioavailable forms); avoidance of processed foods containing inorganic phosphate food additives; and by ingestion of phosphate-binder drugs, magnesium supplements, or niacin, which precipitate phosphate or suppress its gastrointestinal absorption. The propensity of dietary phosphate to promote vascular calcification may be opposed by optimal intakes of magnesium, vitamin K, and vitamin D; the latter should also counter the tendency of phosphate to elevate parathyroid hormone. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Mapping variable width riparian buffers

    Treesearch

    Sinan Abood

    2016-01-01

    Riparian buffers are dynamic, transitional ecosystems between aquatic and terrestrial ecosystems with well-defined vegetation and soil characteristics. Previous approaches to riparian buffer delineation have...

  13. BIOKID: Randomized controlled trial comparing bicarbonate and lactate buffer in biocompatible peritoneal dialysis solutions in children [ISRCTN81137991

    PubMed Central

    Nau, Barbara; Schmitt, Claus P; Almeida, Margarida; Arbeiter, Klaus; Ardissino, Gianluigi; Bonzel, Klaus E; Edefonti, Alberto; Fischbach, Michel; Haluany, Karin; Misselwitz, Joachim; Kemper, Markus J; Rönnholm, Kai; Wygoda, Simone; Schaefer, Franz

    2004-01-01

    Background Peritoneal dialysis (PD) is the preferred dialysis modality in children. Its major drawback is the limited technique survival due to infections and progressive ultrafiltration failure. Conventional PD solutions exert marked acute and chronic toxicity to local tissues. Prolonged exposure is associated with severe histopathological alterations including vasculopathy, neoangiogenesis, submesothelial fibrosis and a gradual loss of the mesothelial cell layer. Recently, more biocompatible PD solutions containing reduced amounts of toxic glucose degradation products (GDPs) and buffered at neutral pH have been introduced into clinical practice. These solutions contain lactate, bicarbonate or a combination of both as buffer substance. Increasing evidence from clinical trials in adults and children suggests that the new PD fluids may allow for better long-term preservation of peritoneal morphology and function. However, the relative importance of the buffer in neutral-pH, low-GDP fluids is still unclear. In vitro, lactate is cytotoxic and vasoactive at the concentrations used in PD fluids. The BIOKID trial is designed to clarify the clinical significance of the buffer choice in biocompatible PD fluids. Methods/design The objective of the study is to test the hypothesis that bicarbonate based PD solutions may allow for a better preservation of peritoneal transport characteristics in children than solutions containing lactate buffer. Secondary objectives are to assess any impact of the buffer system on acid-base status, peritoneal tissue integrity and the incidence and severity of peritonitis. After a run-in period of 2 months during which a targeted cohort of 60 patients is treated with a conventional, lactate buffered, acidic, GDP containing PD fluid, patients will be stratified according to residual renal function and type of phosphate binding medication and randomized to receive either the lactate-containing Balance solution or the bicarbonate-buffered Bicavera

  14. Virtual Frame Buffer Interface Program

    NASA Technical Reports Server (NTRS)

    Wolfe, Thomas L.

    1990-01-01

    Virtual Frame Buffer Interface program makes all frame buffers appear as generic frame buffer with specified set of characteristics, allowing programmers to write codes that run unmodified on all supported hardware. Converts generic commands to actual device commands. Consists of definition of capabilities and FORTRAN subroutines called by application programs. Developed in FORTRAN 77 for DEC VAX 11/780 or DEC VAX 11/750 computer under VMS 4.X.

  15. COS Science Data Buffer Check/Self-Tests for CS Buffer RAM and DIB RAM

    NASA Astrophysics Data System (ADS)

    Welty, Alan

    2009-07-01

    The COS Science Buffer RAM is checked for bit flips during SAA passages. This is followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for DIB RAM. The DIB must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.Supports Activity COS-03

  16. Consumption of peptide-included and free tryptophan induced by peroxyl radicals: A kinetic study.

    PubMed

    Fuentes, E; López-Alarcón, C

    2014-10-01

    It is well-known that tryptophan residues are efficiently oxidized by peroxyl radicals, generating kynurenine, and N-formyl kynurenine as well as hydroperoxide derivatives as products. In the present work we studied the kinetic of such reaction employing free and peptide-included tryptophan. Two azocompounds were used to produce peroxyl radicals: AAPH (2,2'-Azobis(2-methylpropionamidine) dihydrochloride) and ABCVA (4,4'-Azobis(4-cyanovaleric acid)), which generate cationic and anionic peroxyl radicals, respectively. Tryptophan consumption was assessed by fluorescence spectroscopy and the reactions were carried out in phosphate buffer (75mM, pH 7.4) at 45°C. Only a slight effect of the peroxyl radical charge was evidenced on the consumption of free tryptophan and the dipeptide Gly-Trp. Employing AAPH as peroxyl radical source, at low free tryptophan concentrations (1-10µM) near 0.3 mol of tryptophan were consumed per each mol of peroxyl radicals introduced into the system. However, at high free tryptophan concentrations (100µM-1mM) such stoichiometry increased in a tryptophan concentration-way. At 1mM three moles of tryptophan were consumed per mol of AAPH-derived peroxyl radicals, evidencing the presence of chain reactions. A similar behavior was observed when di and tri-peptides (Gly-Trp, Trp-Gly, Gly-Trp-Gly, Trp-Ala, Ala-Trp-Ala) were studied. Nonetheless, at low initial concentration (5µM), the initial consumption rate of tryptophan included in the peptides was two times higher than free tryptophan. In contrast, at high concentration (1mM) free and peptide-included tryptophan showed similar initial consumption rates. These results could be explained considering a disproportionation process of tryptophanyl radicals at low free tryptophan concentrations, a process that would be inhibited when tryptophan is included in peptides. Copyright © 2014. Published by Elsevier Inc.

  17. RESEARCH NEEDS IN RIPARIAN BUFFER RESTORATION

    EPA Science Inventory

    Riparian buffer restorations are used as management tools to produce favorable water quality impacts; moreover, the basis for riparian buffers as an instrument of water quality restoration rests on a relatively firm foundation. However, the extent to which buffers can restore rip...

  18. Behavior of soluble and immobilized acid phosphatase in hydro-organic media.

    PubMed

    Wan, H; Horvath, C

    1975-11-20

    The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.

  19. Preclinical studies of VS‐505: a non‐absorbable highly effective phosphate binder

    PubMed Central

    Chen, Yung‐wu; Wong, Jonathan T; Wessale, Jerry L

    2016-01-01

    Abstract Background and Purpose Phosphate imbalance is often present in chronic kidney disease (CKD), and it contributes to a higher cardiovascular mortality rate. A phosphate binder is typically part of a treatment strategy for controlling phosphate imbalance. However, safety concerns and low compliance are two well‐recognized disadvantages of on‐market phosphate binders. This report describes the preclinical studies of VS‐505, a non‐absorbable, calcium‐ and aluminum‐free, plant‐derived polymer currently being evaluated in haemodialysis patients in Australia. Experimental Approach Normal Sprague Dawley (SD) rats or uraemic SD rats induced by 5/6 nephrectomy fed a high‐phosphate diet were treated with VS‐505 or sevelamer (0.05–10% in food) for 5 and 28 days respectively. Key Results Urinary and serum phosphate levels were significantly elevated in untreated rats, and were decreased by VS‐505 and sevelamer. VS‐505 increased faecal phosphate levels in a dose‐dependent manner. High‐phosphate diet also caused an increase in serum FGF‐23 and parathyroid hormone in nephrectomized (NX) rats, effects prevented by VS‐505 or sevelamer. Significant aortic calcification was observed in NX rats treated with 5% sevelamer, whereas VS‐505 at all doses tested did not show effects. VS‐505 had no effects on small intestine histomorphology and intestinal sodium‐dependent phosphate cotransporter gene expression. In vitro characterizations showed that VS‐505 has a relatively high density and low expansion volume when exposed to simulated gastric fluid. Conclusions and Implications VS‐505 is a safe and effective phosphate binder and may offer the advantage of having a reduced pill burden and minimal GI side effects for CKD patients. PMID:27156057

  20. Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths

    NASA Astrophysics Data System (ADS)

    Tiwari, T.; Lundström, J.; Kuglerová, L.; Laudon, H.; Öhman, K.; Ågren, A. M.

    2016-02-01

    Traditional approaches aiming at protecting surface waters from the negative impacts of forestry often focus on retaining fixed width buffer zones around waterways. While this method is relatively simple to design and implement, it has been criticized for ignoring the spatial heterogeneity of biogeochemical processes and biodiversity in the riparian zone. Alternatively, a variable width buffer zone adapted to site-specific hydrological conditions has been suggested to improve the protection of biogeochemical and ecological functions of the riparian zone. However, little is known about the monetary value of maintaining hydrologically adapted buffer zones compared to the traditionally used fixed width ones. In this study, we created a hydrologically adapted buffer zone by identifying wet areas and groundwater discharge hotspots in the riparian zone. The opportunity cost of the hydrologically adapted riparian buffer zones was then compared to that of the fixed width zones in a meso-scale boreal catchment to determine the most economical option of designing riparian buffers. The results show that hydrologically adapted buffer zones were cheaper per hectare than the fixed width ones when comparing the total cost. This was because the hydrologically adapted buffers included more wetlands and low productive forest areas than the fixed widths. As such, the hydrologically adapted buffer zones allows more effective protection of the parts of the riparian zones that are ecologically and biogeochemically important and more sensitive to disturbances without forest landowners incurring any additional cost than fixed width buffers.

  1. Buffer-regulated biocorrosion of pure magnesium.

    PubMed

    Kirkland, Nicholas T; Waterman, Jay; Birbilis, Nick; Dias, George; Woodfield, Tim B F; Hartshorn, Richard M; Staiger, Mark P

    2012-02-01

    Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO(2) atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.

  2. Explaining worker strain and learning: how important are emotional job demands?

    PubMed

    Taris, Toon W; Schreurs, Paul J G

    2009-05-01

    This study examined the added value of emotional job demands in explaining worker well-being, relative to the effects of task characteristics, such as quantitative job demands, job control, and coworker support. Emotional job demands were expected to account for an additional proportion of the variance in well-being. Cross-sectional data were obtained from 11,361 female Dutch home care employees. Hierarchical stepwise regression analysis demonstrated that low control, low support and high quantitative demands were generally associated with lower well-being (as measured in terms of emotional exhaustion, dedication, professional accomplishment and learning). Moreover, high emotional demands were in three out of four cases significantly associated with adverse well-being, in these cases accounting for an additional 1-6% of the variance in the outcome variables. In three out of eight cases the main effects of emotional demands on well-being were qualified by support and control, such that high control and high support either buffered the adverse effects of high emotional demands on well-being or increased the positive effects thereof. All in all, high emotional demands are as important a risk factor for worker well-being as well-established concepts like low job control and high quantitative job demands.

  3. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway

    PubMed Central

    Stincone, Anna; Prigione, Alessandro; Cramer, Thorsten; Wamelink, Mirjam M. C.; Campbell, Kate; Cheung, Eric; Olin-Sandoval, Viridiana; Grüning, Nana-Maria; Krüger, Antje; Alam, Mohammad Tauqeer; Keller, Markus A.; Breitenbach, Michael; Brindle, Kevin M.; Rabinowitz, Joshua D.; Ralser, Markus

    2015-01-01

    The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and

  4. Kinetics of Ozone Inactivation of Infectious Prion Protein

    PubMed Central

    Ding, Ning; Price, Luke M.; Braithwaite, Shannon L.; Balachandran, Aru; Mitchell, Gordon; Belosevic, Miodrag

    2013-01-01

    The kinetics of ozone inactivation of infectious prion protein (PrPSc, scrapie 263K) was investigated in ozone-demand-free phosphate-buffered saline (PBS). Diluted infectious brain homogenates (IBH) (0.01%) were exposed to a predetermined ozone dose (10.8 ± 2.0 mg/liter) at three pHs (pH 4.4, 6.0, and 8.0) and two temperatures (4°C and 20°C). The inactivation of PrPSc was quantified by determining the in vitro destruction of PrPSc templating properties using the protein misfolding cyclic amplification (PMCA) assay and bioassay, which were shown to correlate well. The inactivation kinetics were characterized by both Chick-Watson (CW) and efficiency factor Hom (EFH) models. It was found that the EFH model fit the experimental data more appropriately. The efficacy of ozone inactivation of PrPSc was both pH and temperature dependent. Based on the EFH model, CT (disinfectant concentration multiplied by contact time) values were determined for 2-log10, 3-log10, and 4-log10 inactivation at the conditions under which they were achieved. Our results indicated that ozone is effective for prion inactivation in ozone-demand-free water and may be applied for the inactivation of infectious prion in prion-contaminated water and wastewater. PMID:23416994

  5. Direct and indirect effects of RNA interference against pyridoxal kinase and pyridoxine 5'-phosphate oxidase genes in Bombyx mori.

    PubMed

    Huang, ShuoHao; Yao, LiLi; Zhang, JianYun; Huang, LongQuan

    2016-08-01

    Vitamin B6 comprises six interconvertible pyridine compounds (vitamers), among which pyridoxal 5'-phosphate is a coenzyme involved in a high diversity of biochemical reactions. Humans and animals obtain B6 vitamers from diet, and synthesize pyridoxal 5'-phosphate by pyridoxal kinase and pyridoxine 5'-phosphate oxidase. Currently, little is known on how pyridoxal 5'-phosphate biosynthesis is regulated, and pyridoxal 5'-phosphate is supplied to meet their requirement in terms of cofactor. Bombyx mori is a large silk-secreting insect, in which protein metabolism is most active, and the vitamin B6 demand is high. In this study, we successfully down-regulated the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase by body cavity injection of synthesized double-stranded small interfering RNA to 5th instar larvae of Bombyx mori, and analyzed the gene transcription levels of pyridoxal 5'-phosphate dependent enzymes, phosphoserine aminotransferase and glutamic-oxaloacetic transaminase. Results show that the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase has a greater impact on the gene transcription of enzymes using pyridoxal 5'-phosphate as a cofactor in Bombyx mori. Our study suggests that pyridoxal 5'-phosphate biosynthesis and dynamic balance may be regulated by genetic networks. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    PubMed Central

    Dong, Peng; Georget, Erika S.; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation. PMID:26236296

  7. Tailoring the strain in Si nano-structures for defect-free epitaxial Ge over growth.

    PubMed

    Zaumseil, P; Yamamoto, Y; Schubert, M A; Capellini, G; Skibitzki, O; Zoellner, M H; Schroeder, T

    2015-09-04

    We investigate the structural properties and strain state of Ge nano-structures selectively grown on Si pillars of about 60 nm diameter with different SiGe buffer layers. A matrix of TEOS SiO2 surrounding the Si nano-pillars causes a tensile strain in the top part at the growth temperature of the buffer that reduces the misfit and supports defect-free initial growth. Elastic relaxation plays the dominant role in the further increase of the buffer thickness and subsequent Ge deposition. This method leads to Ge nanostructures on Si that are free from misfit dislocations and other structural defects, which is not the case for direct Ge deposition on these pillar structures. The Ge content of the SiGe buffer is thereby not a critical parameter; it may vary over a relatively wide range.

  8. Simply enhancing throughput of free-flow electrophoresis via organic-aqueous environment for purification of weak polarity solute of phenazine-1-carboxylic acid in fermentation of Pseudomonas sp. M18.

    PubMed

    Yang, Jing-Hua; Shao, Jing; Wang, Hou-Yu; Dong, Jing-Yu; Fan, Liu-Yin; Cao, Cheng-Xi; Xu, Yu-Quan

    2012-09-01

    Herein, a simple novel free-flow electrophoresis (FFE) method was developed via introduction of organic solvent into the electrolyte system, increasing the solute solubility and throughput of the sample. As a proof of concept, phenazine-1-carboxylic acid (PCA) from Pseudomonas sp. M18 was selected as a model solute for the demonstration on feasibility of novel FFE method on account of its faint solubility in aqueous circumstance. In the developed method, the organic solvent was added into not only the sample buffer to improve the solubility of the solute, but also the background buffer to construct a uniform aqueous-organic circumstance. These factors of organic solvent percentage and types as well as pH value of background buffer were investigated for the purification of PCA in the FFE device via CE. The experiments revealed that the percentage and the types of organic solvent exerted major influence on the purification of PCA. Under the optimized conditions (30 mM phosphate buffer in 60:40 (v/v) water-methanol at an apparent pH 7.0, 3.26 mL/min background flux, 10-min residence time of injected sample, and 400 V), PCA could be continuously purified from its impurities. The flux of sample injection was 10.05 μL/min, and the recovery was up to 93.7%. An 11.9-fold improvement of throughput was found with a carrier buffer containing 40% (v/v) methanol, compared with the pure aqueous phase. The developed procedure is of evident significance for the purification of weak polarity solute via FFE. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of On-Demand vs Routine Nebulization of Acetylcysteine With Salbutamol on Ventilator-Free Days in Intensive Care Unit Patients Receiving Invasive Ventilation: A Randomized Clinical Trial.

    PubMed

    van Meenen, David M P; van der Hoeven, Sophia M; Binnekade, Jan M; de Borgie, Corianne A J M; Merkus, Maruschka P; Bosch, Frank H; Endeman, Henrik; Haringman, Jasper J; van der Meer, Nardo J M; Moeniralam, Hazra S; Slabbekoorn, Mathilde; Muller, Marcella C A; Stilma, Willemke; van Silfhout, Bart; Neto, Ary Serpa; Ter Haar, Hans F M; Van Vliet, Jan; Wijnhoven, Jan Willem; Horn, Janneke; Juffermans, Nicole P; Pelosi, Paolo; Gama de Abreu, Marcelo; Schultz, Marcus J; Paulus, Frederique

    2018-03-13

    It remains uncertain whether nebulization of mucolytics with bronchodilators should be applied for clinical indication or preventively in intensive care unit (ICU) patients receiving invasive ventilation. To determine if a strategy that uses nebulization for clinical indication (on-demand) is noninferior to one that uses preventive (routine) nebulization. Randomized clinical trial enrolling adult patients expected to need invasive ventilation for more than 24 hours at 7 ICUs in the Netherlands. On-demand nebulization of acetylcysteine or salbutamol (based on strict clinical indications, n = 471) or routine nebulization of acetylcysteine with salbutamol (every 6 hours until end of invasive ventilation, n = 473). The primary outcome was the number of ventilator-free days at day 28, with a noninferiority margin for a difference between groups of -0.5 days. Secondary outcomes included length of stay, mortality rates, occurrence of pulmonary complications, and adverse events. Nine hundred twenty-two patients (34% women; median age, 66 (interquartile range [IQR], 54-75 years) were enrolled and completed follow-up. At 28 days, patients in the on-demand group had a median 21 (IQR, 0-26) ventilator-free days, and patients in the routine group had a median 20 (IQR, 0-26) ventilator-free days (1-sided 95% CI, -0.00003 to ∞). There was no significant difference in length of stay or mortality, or in the proportion of patients developing pulmonary complications, between the 2 groups. Adverse events (13.8% vs 29.3%; difference, -15.5% [95% CI, -20.7% to -10.3%]; P < .001) were more frequent with routine nebulization and mainly related to tachyarrhythmia (12.5% vs 25.9%; difference, -13.4% [95% CI, -18.4% to -8.4%]; P < .001) and agitation (0.2% vs 4.3%; difference, -4.1% [95% CI, -5.9% to -2.2%]; P < .001). Among ICU patients receiving invasive ventilation who were expected to not be extubated within 24 hours, on-demand compared with routine nebulization of

  10. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  11. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  12. Effect of source and particle size of supplemental phosphate on rumen function of steers fed high concentrate diets.

    PubMed

    Murphy, M R; Whetstone, H D; Davis, C L

    1983-12-01

    We examined effects of source and particle size of supplemental defluorinated rock phosphate, to meet phosphorus requirements, on rumen function of 195-kg Holstein steers fed high concentrate. Two sources and two particle sizes of each source were evaluated in a 5 X 5 Latin square with 14-day periods. There was no effect of source on ruminal mH [- log (mean (H+)]; however, ruminal mH was higher in animals fed supplements of larger particle size. This effect was also evident when rumen pH versus time curves were integrated below pH 6. Animals fed supplements of larger particle size had less area below pH 6 than those fed supplements of smaller size. Ruminal buffering capacity at pH 7 was affected by diet; however, orthogonal comparisons between treatment means were not significant. Neither source nor particle size of the supplement affected ruminal fluid osmolality, total volatile fatty acid concentration, or fecal starch. Water intake and ruminal dry matter on HyCal supplemented diets; however, there was also a trend toward increasing rumen fluid volume. The net effect was little change of dilution rate of ruminal fluid. This may explain why rumen fermentation was not affected greatly. Conventional phosphate supplements may have potential as rumen buffering agents, but higher levels of feeding should be studied.

  13. Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    NASA Technical Reports Server (NTRS)

    Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.

    1982-01-01

    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.

  14. Effect of the Dialysis Fluid Buffer on Peritoneal Membrane Function in Children

    PubMed Central

    Nau, Barbara; Gemulla, Gita; Bonzel, Klaus E.; Hölttä, Tuula; Testa, Sara; Fischbach, Michel; John, Ulrike; Kemper, Markus J.; Sander, Anja; Arbeiter, Klaus; Schaefer, Franz

    2013-01-01

    Summary Background and objectives Double-chamber peritoneal dialysis fluids exert less toxicity by their neutral pH and reduced glucose degradation product content. The role of the buffer compound (lactate and bicarbonate) has not been defined in humans. Design, setting, participants, & measurements A multicenter randomized controlled trial in 37 children on automated peritoneal dialysis was performed. After a 2-month run-in period with conventional peritoneal dialysis fluids, patients were randomized to neutral-pH, low-glucose degradation product peritoneal dialysis fluids with 35 mM lactate or 34 mM bicarbonate content. Clinical and biochemical monitoring was performed monthly, and peritoneal equilibration tests and 24-hour clearance studies were performed at 0, 3, 6, and 10 months. Results No statistically significant difference in capillary blood pH, serum bicarbonate, or oral buffer supplementation emerged during the study. At baseline, peritoneal solute equilibration and clearance rates were similar. During the study, 4-hour dialysis to plasma ratio of creatinine tended to increase, and 24-hour dialytic creatinine and phosphate clearance increased with lactate peritoneal dialysis fluid but not with bicarbonate peritoneal dialysis fluid. Daily net ultrafiltration, which was similar at baseline (lactate fluid=5.4±2.6 ml/g glucose exposure, bicarbonate fluid=4.9±1.9 ml/g glucose exposure), decreased to 4.6±1.0 ml/g glucose exposure in the lactate peritoneal dialysis fluid group, whereas it increased to 5.1±1.7 ml/g glucose exposure in the bicarbonate content peritoneal dialysis fluid group (P=0.006 for interaction). Conclusions When using biocompatible peritoneal dialysis fluids, equally good acidosis control is achieved with lactate and bicarbonate buffers. Improved long-term preservation of peritoneal membrane function may, however, be achieved with bicarbonate-based peritoneal dialysis fluids. PMID:23124784

  15. Bicarbonate buffered peritoneal dialysis fluid upregulates angiopoietin-1 and promotes vessel maturation.

    PubMed

    Eich, Gwendolyn; Bartosova, Maria; Tischer, Christian; Wlodkowski, Tanja Tamara; Schaefer, Betti; Pichl, Sebastian; Kraewer, Nicole; Ranchin, Bruno; Vondrak, Karel; Liebau, Max Christoph; Hackert, Thilo; Schmitt, Claus Peter

    2017-01-01

    Ultrafiltration decline is a progressive issue for patients on chronic peritoneal dialysis (PD) and can be caused by peritoneal angiogenesis induced by PD fluids. A recent pediatric trial suggests better preservation of ultrafiltration with bicarbonate versus lactate buffered fluid; underlying molecular mechanisms are unknown. Angiogenic cytokine profile, tube formation capacity and Receptor Tyrosine Kinase translocation were assessed in primary human umbilical vein endothelial cells following incubation with bicarbonate (BPDF) and lactate buffered (LPDF), pH neutral PD fluid with low glucose degradation product content and lactate buffered, acidic PD fluid with high glucose degradation product content (CPDF). Peritoneal biopsies from age-, PD-vintage- and dialytic glucose exposure matched, peritonitis-free children on chronic PD underwent automated histomorphometry and immunohistochemistry. In endothelial cells angiopoietin-1 mRNA and protein abundance increased 200% upon incubation with BPDF, but decreased by 70% with LPDF as compared to medium control; angiopoietin-2 remained unchanged. Angiopoietin-1/Angiopoietin-2 protein ratio was 15 and 3-fold increased with BPDF compared to LPDF and medium. Time-lapse microscopy with automated network analysis demonstrated less endothelial cell tube formation with BPDF compared to LPDF and CPDF incubation. Receptor Tyrosine Kinase translocated to the cell membrane in BPDF but not in LPDF or CPDF incubated endothelial cells. In children dialyzed with BPDF peritoneal vessels were larger and angiopoietin-1 abundance in CD31 positive endothelium higher compared to children treated with LPDF. Bicarbonate buffered PD fluid promotes vessel maturation via upregulation of angiopoietin-1 in vitro and in children on dialysis. Our findings suggest a molecular mechanism for the observed superior preservation of ultrafiltration capacity with bicarbonate buffered PD fluid with low glucose degradation product content.

  16. Buffer for a gamma-insensitive optical sensor with gas and a buffer assembly

    DOEpatents

    Kruger, Hans W.

    1994-01-01

    A buffer assembly for a gamma-insensitive gas avalanche focal plane array operating in the ultra-violet/visible/infrared energy wavelengths and using a photocathode and an avalanche gas located in a gap between an anode and the photocathode. The buffer assembly functions to eliminate chemical compatibility between the gas composition and the materials of the photocathode. The buffer assembly in the described embodiment is composed of two sections, a first section constructed of glass honeycomb under vacuum and a second section defining a thin barrier film or membrane constructed, for example, of Al and Be, which is attached to and supported by the honeycomb. The honeycomb section, in turn, is supported by and adjacent to the photocathode.

  17. Buffer strips in composites at elevated temperature

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1983-01-01

    The composite material 'buffer strip' concept is presently investigated at elevated temperatures for the case of graphite/polyimide buffer strip panels using a (45/0/45/90)2S layup, where the buffer strip material was 0-deg S-glass/polyimide. Each panel was loaded in tension until it failed, and radiographs and crack opening displacements were recorded during the tests to determine fracture onset, fracture arrest, and the extent of damage in the buffer strip after crack arrest. At 177 + or - 3 C, the buffer strips increased the panel strength by at least 40 percent in comparison with panels without buffer strips. Compared to similar panels tested at room temperature, those tested at elevated temperature had lower residual strengths, but higher failure strains.

  18. PHYSICO-CHEMICAL CHARACTERISATION OF DIFFERENT CLINDAMYCIN PHOSPHATE SAMPLES

    PubMed Central

    Vranić, Edina; Planinšek, Odon; Tivadar, Andrijana; Hadžović, Sabira; Srčič, Stanko

    2007-01-01

    For the majority of the pharmaceutical dosage forms, the substances that are used maintain solid state under the standard storage conditions, i.e. powders. The interactions of pharmaceutical powders (active ingredient(s) and excipients) with liquids and vapors (particularly aqueous solutions and their vapors) occur almost always during the production process. From the physical point of view, the interactions among individual components may differ from the expected because chemically identical substances obtained from different producers vary very much. These differences influence either the production process and/or the pharmaceutical form properties. In order to overcome these problems it is necessary to establish a control over the physico-chemical properties of the used materials. The aim of this work was to determine physico-chemical properties of three powder clindamycin phosphate samples (labeled as sample S1, S2 and S3) acquired through different suppliers. All the analysis were made for the purpose of establishing possible differences among the tested samples that showed variable physical stability in the solution: recrystallization of the S3 sample in the aqueous solution has been established during storage under standard conditions. On the basis of the obtained data it was possible to recognize the differences among the tested clindamycin phosphate samples and to explain the anomalous behavior of one sample. The surface free energy components for the investigated clindamycin phosphate samples were determined using Wu and Goodvan Oss method. The investigated clindamycin phosphate samples exhibit certain differences in surface free energy values as well as in surface morphology and thermal behavior. Comparison of γ+ and γ- values leads to the conclusion that all three clindamycin phosphate samples perform as monopolar, more electron acceptors, i.e. Lewis acids. However, an important difference exists between samples S1 and S2 on one and S3 on the other

  19. Physico-chemical characterisation of different clindamycin phosphate samples.

    PubMed

    Vranić, Edina; Planinsek, Odon; Tivadar, Andrijana; Hadzović, Sabira; Srcic, Stanko

    2007-05-01

    For the majority of the pharmaceutical dosage forms, the substances that are used maintain solid state under the standard storage conditions, i.e. powders. The interactions of pharmaceutical powders (active ingredient(s) and excipients) with liquids and vapors (particularly aqueous solutions and their vapors) occur almost always during the production process. From the physical point of view, the interactions among individual components may differ from the expected because chemically identical substances obtained from different producers vary very much. These differences influence either the production process and/or the pharmaceutical form properties. In order to overcome these problems it is necessary to establish a control over the physico-chemical properties of the used materials. The aim of this work was to determine physico-chemical properties of three powder clindamycin phosphate samples (labeled as sample S(1), S(2) and S(3)) acquired through different suppliers. All the analysis were made for the purpose of establishing possible differences among the tested samples that showed variable physical stability in the solution: recrystallization of the S(3) sample in the aqueous solution has been established during storage under standard conditions. On the basis of the obtained data it was possible to recognize the differences among the tested clindamycin phosphate samples and to explain the anomalous behavior of one sample. The surface free energy components for the investigated clindamycin phosphate samples were determined using Wu and Good- van Oss method. The investigated clindamycin phosphate samples exhibit certain differences in surface free energy values as well as in surface morphology and thermal behavior. Comparison of alpha + and alpha - values leads to the conclusion that all three clindamycin phosphate samples perform as monopolar, more electron acceptors, i.e. Lewis acids. However, an important difference exists between samples S(1) and S(2) on one

  20. Electrodialysis operation with buffer solution

    DOEpatents

    Hryn, John N [Naperville, IL; Daniels, Edward J [Orland Park, IL; Krumdick, Greg K [Crete, IL

    2009-12-15

    A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.

  1. An Advanced Helium Buffer Seal for the SSME, ATD Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur

    2006-01-01

    The present configuration of Helium Buffer Seal on the ATD oxygen pump consists of a pair of opposed carbon rings are forced axially against their containment housings. Leakage occurs through the clearance between the rings and the shaft. The total helium leakage through both sides is approximately 239 SCFM. A reduction in leakage to 50 SCFM will result in less helium storage and consequently permit a substantial increase in payload. Under Phase 1 NASA SBIR, a solid T-Ring seal was analyzed and designed that could satisfy the criteria of reducing leakage to 50 SCFM or less. The design makes maximum use of available length and employs a mid length row of hydrostatic orifaces that feed buffer helium directly into a 2 to 3 mil clearance region. The flow splits into opposite paths to buffer oxygen gas on one side and hydrogen gas on the turbine side. The seal employs opposed hydrostatic tapered land secondary seals that provide friction free support of the primary seal and allows the primary seal to follow rotor excursion and maintain concentric operating clearance . The predicted performance of the T-seal is excellent with operation at a safe film thickness of 2 to 2.5 mils and leakage less than 50 SCFM.

  2. Which daily experiences can foster well-being at work? A diary study on the interplay between flow experiences, affective commitment, and self-control demands.

    PubMed

    Rivkin, Wladislaw; Diestel, Stefan; Schmidt, Klaus-Helmut

    2018-01-01

    Previous research has provided strong evidence for affective commitment as a direct predictor of employees' psychological well-being and as a resource that buffers the adverse effects of self-control demands as a stressor. However, the mechanisms that underlie the beneficial effects of affective commitment have not been examined yet. Drawing on the self-determination theory, we propose day-specific flow experiences as the mechanism that underlies the beneficial effects of affective commitment, because flow experiences as peaks of intrinsic motivation constitute manifestations of autonomous regulation. In a diary study covering 10 working days with N = 90 employees, we examine day-specific flow experiences as a mediator of the beneficial effects of interindividual affective commitment and a buffering moderator of the adverse day-specific effects of self-control demands on indicators of well-being (ego depletion, need for recovery, work engagement, and subjective vitality). Our results provide strong support for our predictions that day-specific flow experiences a) mediate the beneficial effects of affective commitment on employees' day-specific well-being and b) moderate (buffer) the adverse day-specific effects of self-control demands on well-being. That is, on days with high levels of flow experiences, employees were better able to cope with self-control demands whereas self-control demands translated into impaired well-being when employees experienced lower levels of day-specific flow experiences. We then discuss our findings and suggest practical implications. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Buffer Gas Acquisition and Storage

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.; Lueck, Dale E.; Jennings, Paul A.; Callahan, Richard A.; Delgado, H. (Technical Monitor)

    2001-01-01

    The acquisition and storage of buffer gases (primarily argon and nitrogen) from the Mars atmosphere provides a valuable resource for blanketing and pressurizing fuel tanks and as a buffer gas for breathing air for manned missions. During the acquisition of carbon dioxide (CO2), whether by sorption bed or cryo-freezer, the accompanying buffer gases build up in the carbon dioxide acquisition system, reduce the flow of CO2 to the bed, and lower system efficiency. It is this build up of buffer gases that provide a convenient source, which must be removed, for efficient capture Of CO2 Removal of this buffer gas barrier greatly improves the charging rate of the CO2 acquisition bed and, thereby, maintains the fuel production rates required for a successful mission. Consequently, the acquisition, purification, and storage of these buffer gases are important goals of ISRU plans. Purity of the buffer gases is a concern e.g., if the CO, freezer operates at 140 K, the composition of the inert gas would be approximately 21 percent CO2, 50 percent nitrogen, and 29 percent argon. Although there are several approaches that could be used, this effort focused on a hollow-fiber membrane (HFM) separation method. This study measured the permeation rates of CO2, nitrogen (ND, and argon (Ar) through a multiple-membrane system and the individual membranes from room temperature to 193K and 10 kpa to 300 kPa. Concentrations were measured with a gas chromatograph that used a thermoconductivity (TCD) detector with helium (He) as the carrier gas. The general trend as the temperature was lowered was for the membranes to become more selective, In addition, the relative permeation rates between the three gases changed with temperature. The end result was to provide design parameters that could be used to separate CO2 from N2 and Ar.

  4. Visualising phase change in a brushite-based calcium phosphate ceramic

    PubMed Central

    Bannerman, A.; Williams, R. L.; Cox, S. C.; Grover, L. M.

    2016-01-01

    The resorption of brushite-based bone cements has been shown to be highly unpredictable, with strong dependence on a number of conditions. One of the major factors is phase transformation, with change to more stable phases such as hydroxyapatite affecting the rate of resorption. Despite its importance, the analysis of phase transformation has been largely undertaken using methods that only detect crystalline composition and give no information on the spatial distribution of the phases. In this study confocal Raman microscopy was used to map cross-sections of brushite cylinders aged in Phosphate Buffered Saline, Foetal Bovine Serum, Dulbecco’s – Minimum Essential Medium (with and without serum). Image maps showed the importance of ageing medium on the phase composition throughout the ceramic structure. When aged without serum, there was dissolution of the brushite phase concomitant to the deposition of octacalcium phosphate (OCP) around the periphery of the sample. The deposition of OCP was detectable within five days and reduced the rate of brushite dissolution from the material. The use of serum, even at a concentration of 10vol% prevented phase transformation. This paper demonstrates the value of confocal Raman microscopy in monitoring phase change in biocements; it also demonstrates the problems with assessing material degradation in non-serum containing media. PMID:27604149

  5. Visualising phase change in a brushite-based calcium phosphate ceramic

    NASA Astrophysics Data System (ADS)

    Bannerman, A.; Williams, R. L.; Cox, S. C.; Grover, L. M.

    2016-09-01

    The resorption of brushite-based bone cements has been shown to be highly unpredictable, with strong dependence on a number of conditions. One of the major factors is phase transformation, with change to more stable phases such as hydroxyapatite affecting the rate of resorption. Despite its importance, the analysis of phase transformation has been largely undertaken using methods that only detect crystalline composition and give no information on the spatial distribution of the phases. In this study confocal Raman microscopy was used to map cross-sections of brushite cylinders aged in Phosphate Buffered Saline, Foetal Bovine Serum, Dulbecco’s - Minimum Essential Medium (with and without serum). Image maps showed the importance of ageing medium on the phase composition throughout the ceramic structure. When aged without serum, there was dissolution of the brushite phase concomitant to the deposition of octacalcium phosphate (OCP) around the periphery of the sample. The deposition of OCP was detectable within five days and reduced the rate of brushite dissolution from the material. The use of serum, even at a concentration of 10vol% prevented phase transformation. This paper demonstrates the value of confocal Raman microscopy in monitoring phase change in biocements; it also demonstrates the problems with assessing material degradation in non-serum containing media.

  6. Kinetic and Mechanistic Study of the pH-Dependent Activation (Epoxidation) of Prodrug Treosulfan Including the Reaction Inhibition in a Borate Buffer.

    PubMed

    Romański, Michał; Ratajczak, Whitney; Główka, Franciszek

    2017-07-01

    A prodrug treosulfan (T) undergoes a pH-dependent activation to epoxide derivatives. The process seems to involve an intramolecular Williamson reaction (IWR) but clear kinetic evidence is lacking. Moreover, a cis-diol system present in the T structure is expected to promote complexation with boric acid. As a result, the prodrug epoxidation would be inhibited; however, this phenomenon has not been investigated. In this article, the effect of pH on the kinetics of T conversion to its monoepoxide was studied from a mechanistic point of view. Also, the influence of boric acid on the reaction kinetics was examined. The rate constants observed for the activation of T (k obs ) in acetate, phosphate, and carbonate buffers satisfied the equation logk obs  = -7.48 + 0.96 pH. The reaction was inhibited in the excess of boric acid over T, and the k obs decreased with increasing borate buffer concentration. The experimental results were consistent with the inhibition model that included the formation of a tetrahedral, anionic T-boric acid monoester. To conclude, in nonborate buffers, the T activation to (2S,3S)-1,2-epoxybutane-3,4-diol 4-methanesulfonate follows IWR mechanism. A borate buffer changes the reaction kinetics and complicates kinetic analysis. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin.

    PubMed

    Polanams, Jup; Ray, Alisha D; Watt, Richard K

    2005-05-02

    Nanoparticles of iron phosphate, iron arsenate, iron molybdate, and iron vanadate were synthesized within the 8 nm interior of ferritin. The synthesis involved reacting Fe(II) with ferritin in a buffered solution at pH 7.4 in the presence of phosphate, arsenate, vanadate, or molybdate. O2 was used as the oxidant to deposit the Fe(III) mineral inside ferritin. The rate of iron incorporation into ferritin was stimulated when oxo-anions were present. The simultaneous deposition of both iron and the oxo-anion was confirmed by elemental analysis and energy-dispersive X-ray analysis. The ferritin samples containing iron and one of the oxo-anions possessed different UV/vis spectra depending on the anion used during mineral formation. TEM analysis showed mineral cores with approximately 8 nm mineral particles consistent with the formation of mineral phases inside ferritin.

  8. Comparison of extraction buffers for the detection of fumonisin B(1) in corn by immunoassay and high-performance liquid chromatography.

    PubMed

    Kulisek, E S; Hazebroek, J P

    2000-01-01

    The Associatian of Official Analytical Chemists approved method for quantification of fumonisin B(1) (FB(1)) in corn meal or corn-based food products includes extraction into methanol (MeOH)/water (3:1, v/v). Disposal of the extraction medium can pose safety and environmental problems. To secure a rapid and inexpensive screen for FB(1) contamination, a sensitive competitive ELISA using a rabbit polyclonal antibody was developed. This assay was used in a comparative study measuring the extraction efficiency of FB(1) in aqueous or organic solvent buffers using 16 field corn samples. An aqueous phosphate buffer was found to be suitable for extracting FB(1), thus eliminating the need for organic solvents. HPLC and ELISA determinations compared well in fortified samples at known concentrations between 1 and 50 microg/mL of extract. Overestimation at levels >50 microg/mL were common. The characteristics and application of the ELISA for screening purposes are discussed.

  9. The role of workaholism in the job demands-resources model.

    PubMed

    Molino, Monica; Bakker, Arnold B; Ghislieri, Chiara

    2016-07-01

    The present study tries to gain more insight in workaholism by investigating its antecedents and consequences using the job demands-resources model. We hypothesized that job demands would be positively related to workaholism, particularly when job resources are low. In addition, we hypothesized that workaholism would be positively related to negative outcomes in three important life domains: health, family, and work. The research involved 617 Italian workers (employees and self-employed). To test the hypotheses we applied structural equation modeling (SEM) and moderated structural equation modeling (MSEM) using Mplus 6. The results of SEM showed a good model where workload, cognitive demands, emotional demands, and customer-related social stressors were positively related to workaholism and work-family conflict (WFC) (partial mediation). Additionally, workaholism was indirectly related to exhaustion and intentions to change jobs through WFC. Moreover, MSEM analyses confirmed that job resources (job security and opportunities for development) buffered the relationship between job demands and workaholism. Particularly, the interaction effects were statistically significant in five out of eight combinations. These findings suggest that workaholism is a function of a suboptimal work environment and predicts unfavorable employee outcomes. We discuss the theoretical and practical implications of these findings.

  10. Flexible, Low-Cost Sensor Based on Electrolyte Gated Carbon Nanotube Field Effect Transistor for Organo-Phosphate Detection

    PubMed Central

    Bhatt, Vijay Deep; Joshi, Saumya; Becherer, Markus; Lugli, Paolo

    2017-01-01

    A flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a sensor for the neurotransmitter acetylcholine, with a sensitivity of 5.7 μA/decade, and demonstrated excellent specificity when tested against interfering analytes present in the body. As the flexible sensor is supposed to suffer mechanical deformations, the endurance of the sensor was measured by putting it under extensive mechanical stress. The enzymatic activity was inhibited by more than 70% when the phosphate-buffered saline (PBS) buffer was spiked with 5 mg/mL malathion (an organophosphate) solution. The biosensor was successfully challenged with tap water and strawberry juice, demonstrating its usefulness as an analytical tool for organophosphate detection. PMID:28524071

  11. Biochemical characteristics of glucose-6-phosphate dehydrogenase variants among the Malays of Singapore with report of a new non-deficient (GdSingapore) and three deficient variants.

    PubMed

    Saha, N; Hong, S H; Wong, H A; Jeyaseelan, K; Tay, J S

    1991-12-01

    Biochemical characteristics of one non-deficient fast G6PD variant (GdSingapore) and six different deficient variants (three new, two Mahidol, one each of Indonesian and Mediterranean) were studied among the Malays of Singapore. The GdSingapore variant had normal enzyme activity (82%) and fast electrophoretic mobilities (140% in TEB buffer, 160% in phosphate and 140% in Tris-HCl buffer systems respectively). This variant is further characterized by normal Km for G6P; utilization of analogues (Gal6P, 2dG6P; dAmNADP), heat stability and pH optimum. The other six deficient G6PD variants had normal electrophoretic mobility in TEB buffer with enzyme activities ranging from 1 to 12% of GdB+. The biochemical characteristics identity them to be 2 Mahidol, 1 Indonesian and 1 Mediterranean variants and three new deficient variants.

  12. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems.

  13. Buffer for a gamma-insensitive optical sensor with gas and a buffer assembly

    DOEpatents

    Kruger, H.W.

    1994-05-10

    A buffer assembly is disclosed for a gamma-insensitive gas avalanche focal plane array operating in the ultra-violet/visible/infrared energy wavelengths and using a photocathode and an avalanche gas located in a gap between an anode and the photocathode. The buffer assembly functions to eliminate chemical compatibility between the gas composition and the materials of the photocathode. The buffer assembly in the described embodiment is composed of two sections, a first section constructed of glass honeycomb under vacuum and a second section defining a thin barrier film or membrane constructed, for example, of Al and Be, which is attached to and supported by the honeycomb. The honeycomb section, in turn, is supported by and adjacent to the photocathode. 7 figures.

  14. Mindfulness as a personal resource to reduce work stress in the job demands-resources model.

    PubMed

    Grover, Steven L; Teo, Stephen T T; Pick, David; Roche, Maree

    2017-10-01

    Based on the job demands-resources (JD-R) model, this study examines the different ways that the personal resource of mindfulness reduces stress. Structural equation modeling based on data from 415 Australian nurses shows that mindfulness relates directly and negatively to work stress and perceptions of emotional demands as well as buffering the relation of emotional demands on psychological stress. This study contributes to the literature by employing empirical analysis to the task of unravelling how personal resources function within the JD-R model. It also introduces mindfulness as a personal resource in the JD-R model. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Fe(III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2⋅8H2O) in septic system wastewater.

    PubMed

    Azam, Hossain M; Finneran, Kevin T

    2014-02-01

    Phosphate is a water contaminant from fertilizers, soaps, and detergents that enters municipal and onsite wastewater from households, businesses, and other commercial operations. Phosphate is a limiting nutrient for algae, and is one of the molecules that promotes eutrophication of water bodies. Phosphate is especially problematic in onsite wastewater because there are few removal mechanisms under normal operating conditions; a system must be amended specifically with compounds to bond to or adsorb phosphate in the septic tank or within the leach field. Vivianite (Fe3(PO4)2⋅8H2O) is a stable mineral formed from ferrous iron and phosphate, often as the result of Fe(III) reducing microbial activity. What was unknown was the concentration of phosphate that could be removed by this process, and whether it was relevant to mixed microbial systems like septic tank wastewater. Data presented here demonstrate that significant concentrations of phosphate (12-14mM) were removed as vivianite in growing cultures of Geobacter metallireducens strain GS-15. Vivianite precipitates were identified on the cell surfaces and within multi cell clusters using TEM-EDX; the mineral phases were directly characterized using XRD. Phosphate was also removed in dilute and raw (undiluted) septic wastewater amended with different forms of Fe(III) including solid phase and soluble Fe(III). Vivianite precipitates were recovered and identified using XRD, along with siderite (ferrous carbonate), which was expected given that the systems were likely bicarbonate buffered. These data demonstrate that ferric iron amendments in septic wastewater increase phosphate removal as the mineral vivianite, and this may be a good strategy for phosphate attenuation in the septic tank portion of onsite wastewater systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.

    PubMed Central

    Strambini, G B; Gabellieri, E; Gonnelli, M; Rahuel-Clermont, S; Branlant, G

    1998-01-01

    Tyrosine is known to quench the phosphorescence of free tryptophan derivatives in solution, but the interaction between tryptophan residues in proteins and neighboring tyrosine side chains has not yet been demonstrated. This report examines the potential role of Y283 in quenching the phosphorescence emission of W310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus by comparing the phosphorescence characteristics of the wild-type enzyme to that of appositely designed mutants in which either the second tryptophan residue, W84, is replaced with phenylalanine or Y283 is replaced by valine. Phosphorescence spectra and lifetimes in polyol/buffer low-temperature glasses demonstrate that W310, in both wild-type and W84F (Trp84-->Phe) mutant proteins, is already quenched in viscous low-temperature solutions, before the onset of major structural fluctuations in the macromolecule, an anomalous quenching that is abolished with the mutation Y283V (Tyr283-->Val). In buffer at ambient temperature, the effect of replacing Y283 with valine on the phosphorescence of W310 is to lengthen its lifetime from 50 micros to 2.5 ms, a 50-fold enhancement that again emphasizes how W310 emission is dominated by the local interaction with Y283. Tyr quenching of W310 exhibits a strong temperature dependence, with a rate constant kq = 0.1 s(-1) at 140 K and 2 x 10(4) s(-1) at 293 K. Comparison between thermal quenching profiles of the W84F mutant in solution and in the dry state, where protein flexibility is drastically reduced, shows that the activation energy of the quenching reaction is rather small, Ea < or = 0.17 kcal mol(-1), and that, on the contrary, structural fluctuations play an important role on the effectiveness of Tyr quenching. Various putative quenching mechanisms are examined, and the conclusion, based on the present results as well as on the phosphorescence characteristics of other protein systems, is that Tyr quenching occurs through the formation of

  17. Isolation of mitogenic substance from sclerotia of Sclerotinia sclerotiorum IFO 9395 extracted with phosphate buffer.

    PubMed

    Shinohara, H; Ohno, N; Yadomae, T

    1991-05-01

    The buffer extracts (3S) of sclerotia of Sclerotinia sclerotiorum IFO 9395 contained mitogenic substance(s) to murine splenocytes (Shinohara et al. Chem. Pharm. Bull., 38, 2219 (1990)). Although the native 3S was slightly mitogenic, heating of 3S induced significant mitogenic activity. To isolate the mitogen, we separated 3S by ion-exchange and gel filtration chromatographies. The isolated mitogen, named sclerogen, has a molecular mass of 32 kilodaltons (kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the isoelectric point (pI) of 5.9 by chromatofocusing. Sclerogen was significantly mitogenic in vitro against murine splenocytes after heat denaturation, and also showed the augmentation of the primary mixed lymphocyte reaction (MLR) in vitro. However, sclerogen did not show the activation of an alternative pathway of complement and hemagglutination activity. These results suggest that sclerogen is a unique mitogen which differs from lectins and shows mitogenicity after heat denaturation.

  18. Determination of phosphate concentration and pH in artificial tear drops.

    PubMed

    de Frutos-Lezaun, M; Martínez-Soroa, I; Ostra Beldarrain, M; Egia Zurutuza, A; Irastorza Larburu, M B; Fernandez Iriarte, A; Bachiller Cacho, M P

    2016-08-01

    To determine phosphate concentration and pH in artificial tear eye drops commercially available in Spain. A total of 71 examples of artificial tear preparations were identified in a search of Vademecum 2014 and the Spanish Medicines Agency website. In the 24 artificial tear products containing phosphates, quantification of these was performed by ultraviolet molecular absorption spectrophotometry, and the determination of pH was performed using scan image analysis algorithms of pH strips. Of the 71 artificial tears tested, 24 contained phosphate among their excipients in the data sheet, three of which had a concentration level below detection limit (<0.1mM). The mean phosphate concentration was 17.91±23.87mM. The artificial tear sample containing a higher concentration was Colircusi Humectante (87.1mM). Lubricants based on hypromellose showed the highest phosphate concentration (41.59±32.1mM), showing statistically significant differences compared to povidone (P=.0196) and hyaluronate (P=.0067). Statistically significant differences were found between products containing preservatives (32.39±20.91mM), and preservative free ones (8.49±11.98mM) (P=.0498). However, no difference was found between multidose (20.21±26.91mM) and unidose (9.31±14.39mM) samples, or between brand name (15.44±23.3mM) and generic eye drops (20.81mM). The mean pH was 6.93±0.26 (6.2-7.22). No statistical correlation was detected between phosphate concentration and pH (Spearman's Rho -0.1089 and P=.6125). A total of 24 (33.8%) of the 71 artificial tears contained phosphate. We believe identifying the phosphate concentration of artificial tears is useful information in order to avoid complications in high-risk patients. Copyright © 2016. Published by Elsevier España, S.L.U.

  19. Sarcoplasmic reticulum buffering of myoplasmic calcium in bovine coronary artery smooth muscle.

    PubMed Central

    Sturek, M; Kunda, K; Hu, Q

    1992-01-01

    1. We tested the hypothesis that the sarcoplasmic reticulum (SR) buffers (attenuates) the increase in averaged myoplasmic free [Ca2+] (Ca(im)) resulting from Ca2+ influx. 2. Fura-2 measurements of Ca(im) were obtained in single smooth muscle cells freshly dispersed from bovine coronary artery. 3. Caffeine (5 x 10(-3) M) elicited a transient increase in Ca(im) and depleted the SR Ca2+ store. In the continued presence of caffeine or 10(-5) M-ryanodine SR buffering of Ca(im) was inhibited. Subsequent exposure to high extracellular [K+] (greater than 30 mM, equimolar Na+ removal) elicited a 2-fold more rapid and 2-fold greater peak increase in Ca(im) than high K+ elicited when SR buffering of Ca(im) was normal. The augmented increase in Ca(im) was inhibited 35% by 10(-5) M-diltiazem, 65% by 2 x 10(-4) M-LaCl3, and 87% in Ca(2+)-free external solution. 4. When Ca(im) buffering capacity was increased by partially depleting the SR with a transient (1 min) exposure to caffeine, subsequent exposure to 80 nM-K+ solution increased Ca(im) almost 2-fold more slowly than 80 mM-K+ before depletion of Ca2+ from the SR. However, the influxing Ca2+ was sequestered by the SR and refilled it, as evident by the subsequent caffeine-induced Ca(im) transient being identical to the first. Increasing extracellular [K+] (thus, increasing depolarization and Na+ removal) caused proportional increases in Ca(im) and the subsequent caffeine-induced Ca(im) transients were proportionally larger, indicating a graded filling of the SR by Ca2+ influx. 5. Diltiazem (10(-5) M) inhibited the refilling of the SR achieved by 80 mM-K+, by 26%. Refilling was inhibited 76% by 80 mM-K+, Ca(2+)-free solution, indicating the fraction of refilling dependent on influx of Ca2+ through voltage-gated Ca2+ channels, leak channels, and other influx pathways. Mild depolarization with 35 mM-K+ (no Na+ removal) often caused no increase in Ca(im), but influx through voltage-gated Ca2+ channels occurred because the SR Ca2

  20. SODR Memory Control Buffer Control ASIC

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1994-01-01

    The Spacecraft Optical Disk Recorder (SODR) is a state of the art mass storage system for future NASA missions requiring high transmission rates and a large capacity storage system. This report covers the design and development of an SODR memory buffer control applications specific integrated circuit (ASIC). The memory buffer control ASIC has two primary functions: (1) buffering data to prevent loss of data during disk access times, (2) converting data formats from a high performance parallel interface format to a small computer systems interface format. Ten 144 p in, 50 MHz CMOS ASIC's were designed, fabricated and tested to implement the memory buffer control function.

  1. Wintering bird response to fall mowing of herbaceous buffers

    USGS Publications Warehouse

    Blank, P.J.; Parks, J.R.; Dively, G.P.

    2011-01-01

    Herbaceous buffers are strips of herbaceous vegetation planted between working agricultural land and streams or wetlands. Mowing is a common maintenance practice to control woody plants and noxious weeds in herbaceous buffers. Buffers enrolled in Maryland's Conservation Reserve Enhancement Program (CREP) cannot be mowed during the primary bird nesting season between 15 April and 15 August. Most mowing of buffers in Maryland occurs in late summer or fall, leaving the vegetation short until the following spring. We studied the response of wintering birds to fall mowing of buffers. We mowed one section to 10-15 cm in 13 buffers and kept another section unmowed. Ninety-two percent of birds detected in buffers were grassland or scrub-shrub species, and 98% of all birds detected were in unmowed buffers. Total bird abundance, species richness, and total avian conservation value were significantly greater in unmowed buffers, and Savannah Sparrows (Passerculus sandwichensis), Song Sparrows (Melospiza melodia), and White-throated Sparrows (Zonotrichia albicollis) were significantly more abundant in unmowed buffers. Wintering bird use of mowed buffers was less than in unmowed buffers. Leaving herbaceous buffers unmowed through winter will likely provide better habitat for wintering birds. ?? 2011 by the Wilson Ornithological Society.

  2. Optimization of the elution buffer and concentration method for detecting hepatitis E virus in swine liver using a nested reverse transcription-polymerase chain reaction and real-time reverse transcription-polymerase chain reaction.

    PubMed

    Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun

    2014-09-01

    The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Efficient extraction of vaccines formulated in aluminum hydroxide gel by including surfactants in the extraction buffer

    PubMed Central

    Zhu, Daming; Huang, Shuhui; McClellan, Holly; Dai, Weili; Syed, Najam R; Gebregeorgis, Elizabeth; Mullen, Gregory E. D.; Long, Carole; Martin, Laura B.; Narum, David; Duffy, Patrick; Miller, Louis H.; Saul, Allan

    2011-01-01

    Efficient antigen extraction from vaccines formulated on aluminum hydroxide gels is a critical step for the evaluation of the quality of vaccines following formulation. It has been shown in our laboratory that the efficiency of antigen extraction from vaccines formulated on Alhydrogel decreased significantly with increased storage time. To increase antigen extraction efficiency, the present study determined the effect of surfactants on antigen recovery from vaccine formulations. The Plasmodium falciparum apical membrane antigen 1 (AMA1) formulated on Alhydrogel and stored at 2-8 °C for three years was used as a model in this study. The AMA1 on Alhydrogel was extracted in the presence or absence of 30 mM sodium dodecyl sulfate (SDS) or 20 mM cetylpyridinium chloride in the extraction buffer (0.60 M citrate, 0.55 M phosphate, pH 8.5) using our standard antigen extraction protocols. Extracted AMA1 antigen was analyzed by 4-20% Tris-glycine SDS-PAGE followed by silver staining or western blotting. The results showed that inclusion of SDS or cetylpyridinium chloride in extraction buffer increased the antigen recovery dramatically and can be used for efficient characterization of Alhydrogel vaccines. PMID:22107848

  4. Enzyme-substrate and enzyme-inhibitor complexes of triose phosphate isomerase studied by 31P nuclear magnetic resonance.

    PubMed Central

    Campbell, I D; Jones, R B; Kiener, P A; Waley, S G

    1979-01-01

    The complex formed between the enzyme triose phosphate isomerase (EC 5.3.1.1.), from rabbit and chicken muscle, and its substrate dihydroxyacetone phosphate was studied by 31P n.m.r. Two other enzyme-ligant complexes examined were those formed by glycerol 3-phosphate (a substrate analogue) and by 2-phosphoglycollate (potential transition-state analogue). Separate resonances were observed in the 31P n.m.r. spectrum for free and bound 2-phosphoglycollate, and this sets an upper limit to the rate constant for dissociation of the enzyme-inhibitor complex; the linewidth of the resonance assigned to the bound inhibitor provided further kinetic information. The position of this resonance did not vary with pH but remained close to that of the fully ionized form of the free 2-phosphoglycollate. It is the fully ionized form of this ligand that binds to the enzyme. The proton uptake that accompanies binding shows protonation of a group on the enzyme. On the basis of chemical and crystallographic information [Hartman (1971) Biochemistry 10, 146--154; Miller & Waley (1971) Biochem. J. 123, 163--170; De la Mare, Coulson, Knowles, Priddle & Offord )1972) Biochem. J. 129, 321--331; Phillips, Rivers, Sternberg, Thornton & Wilson (1977) Biochem. Soc. Trans. 5, 642--647] this group is believed to be glutamate-165. On the other hand, the position of the resonance of D-glycerol 3 phosphate (sn-glycerol 1-phosphate) in the enzyme-ligand complex changes with pH, and both monoanion and dianon of the ligand bind, although dianion binds better. The substrate, dihydroxyacetone phosphate, behaves essentially like glycerol 3-phosphate. The experiments with dihydroxy-acetone phosphate and triose phosphate isomerase have to be carried out at 1 degree C because at 37 degrees C there is conversion into methyl glyoxal and orthophosphate. The mechanismof the enzymic reaction and the reasons for rate-enhancement are considered, and aspects of the pH-dependence are discussed in an Appendix. PMID:38777

  5. With a little help from my assistant: buffering the negative effects of emotional dissonance on dentist performance.

    PubMed

    Rodríguez-Sánchez, Alma M; Hakanen, Jari J; Perhoniemi, Riku; Salanova, Marisa

    2013-10-01

    In this study, we hypothesized that dentist' interpersonal resources (good cooperation with one's assistant) together with their personal resources (optimism) buffer the negative effects of emotional dissonance (a demand that occurs when there is a difference between felt and displayed emotions) on job performance (in-role and extra-role performance) over time. We carried out Hierarchical Regression Modeling on a sample of 1954 Finnish dentists who participated in a two-wave 4-year longitudinal study. Results showed that good cooperation with dental assistants buffered the negative effects of emotional dissonance on both in-role and extra-role performance among the dentists in the long term. However, unexpectedly, dentists' high optimism did not buffer their in-role nor extra-role performance over time under conditions of experiencing high emotional dissonance. We conclude that interpersonal job resources such as good cooperation with one's colleagues may buffer the negative effect of emotional dissonance on dentists' job performance even in the long term, whereas the role of personal resources (e.g., optimism) may be less important for maintaining high job performance under conditions of emotional dissonance. The study novelties include the test of the negative effects of emotional dissonance on long-term performance in dentistry and the identification of the job rather than personal resources as the buffers against the negative effects of emotional dissonance on long-term performance. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Free-Piston Stirling Machine for Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Wood, James Gary (Inventor)

    2013-01-01

    A free piston Stirling machine including a thermal buffer tube extending from the machine's expansion space and surrounded by its heat rejector and its regenerator, a displacer cylinder extending from the thermal buffer tube to the compression space and surrounded by the heat rejecting heat exchanger, and a displacer that reciprocates within an excursion limit that extends into the regenerator by no more than 20% of the length of the regenerator during normal operation and preferably within excursion limits that are substantially the length of the heat rejector.

  7. COS Side 2 Science Data Buffer Check/Self-Tests for CS Buffer RAM and DIB RAM

    NASA Astrophysics Data System (ADS)

    Bacinski, John

    2013-10-01

    The COS Science Buffer RAM is checked for bit flips during SAA passages. This is followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for DIB RAM. The DIB must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.

  8. The elution of colistimethate sodium from polymethylmethacrylate and calcium phosphate cement beads.

    PubMed

    Waterman, Paige; Barber, Melissa; Weintrob, Amy C; VanBrakle, Regina; Howard, Robin; Kozar, Michael P; Andersen, Romney; Wortmann, Glenn

    2012-06-01

    Gram-negative bacilli resistance to all antibiotics, except for colistimethate sodium (CMS), is an emerging healthcare concern. Incorporating CMS into orthopedic cement to treat bone and soft-tissue infections due to these bacteria is attractive, but the data regarding the elution of CMS from cement are conflicting. The in vitro analysis of the elution of CMS from polymethylmethacrylate (PMMA) and calcium phosphate (CP) cement beads is reported. PMMA and CP beads containing CMS were incubated in phosphate-buffered saline and the eluate sampled at sequential time points. The inhibition of the growth of a strain of Acinetobacter baumannii complex by the eluate was measured by disk diffusion and microbroth dilution assays, and the presence of CMS in the eluate was measured by mass spectroscopy. Bacterial growth was inhibited by the eluate from both PMMA and CP beads. Mass spectroscopy demonstrated greater elution of CMS from CP beads than PMMA beads. The dose of CMS in PMMA beads was limited by failure of bead integrity. CMS elutes from both CP and PMMA beads in amounts sufficient to inhibit bacterial growth in vitro. The clinical implications of these findings require further study.

  9. Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the determination of hydroxyl radical scavenging activity of plant extracts by Electron Paramagnetic Resonance (EPR).

    PubMed

    Fadda, Angela; Barberis, Antonio; Sanna, Daniele

    2018-02-01

    The Fenton reaction is used to produce hydroxyl radicals for the evaluation of the antioxidant activity of plant extracts. In this paper the parameters affecting the production of hydroxyl radicals and their spin trapping with DMPO were studied. The use of quinolinic acid (Quin) as an Fe(II) ligand was proposed for antioxidant activity determination of Green tea, orange juice and asparagus extracts. Quin, buffers and pH affect the DMPO-OH signal intensity of the EPR spectra. Quin/Fe(II) and low pH enhance the OH generation. Phosphate and Tris-HCl buffers decrease the signal intensity measured in Fe(II)-sulfate and Fe(II)-Quin systems. The extracts were analyzed with Fenton systems containing Fe(II)-sulfate and Fe(II)-Quin with and without buffer. The highest activity was shown with Fe(II)-Quin without buffer, this system being less influenced by pH and chelating agents present in the extracts. This paper will help researchers to better design spin trapping experiments for food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Buffers and Oscillations in Intracellular Ca2+ Dynamics

    PubMed Central

    Falcke, Martin

    2003-01-01

    I model the behavior of intracellular Ca2+ release with high buffer concentrations. The model uses a spatially discrete array of channel clusters. The channel subunit dynamics is a stochastic representation of the DeYoung-Keizer model. The calculations show that the concentration profile of fast buffer around an open channel is more localized than that of slow buffers. Slow buffers allow for release of larger amounts of Ca2+ from the endoplasmic reticulum and hence bind more Ca2+ than fast buffers with the same dissociation constant and concentration. I find oscillation-like behavior for high slow buffer concentration and low Ca2+ content of the endoplasmic reticulum. High concentration of slow buffer leads to oscillation-like behavior by repetitive wave nucleation for high Ca2+ content of the endoplasmic reticulum. Localization of Ca2+ release by slow buffer, as used in experiments, can be reproduced by the modeling approach. PMID:12524263

  11. Rapid frequency‐dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes

    PubMed Central

    Wüst, Rob C. I.; Helmes, Michiel; Martin, Jody L.; van der Wardt, Thomas J. T.; Musters, René J. P.; van der Velden, Jolanda

    2017-01-01

    Key points Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle.The magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiac myocytes are largely unknown.Rapid stimulation frequency‐dependent increases but relatively slow decreases in free mitochondrial calcium concentration were observed in rat cardiac myocytes. This asymmetry caused a rise in the mitochondrial calcium concentration with stimulation frequency.These results provide insight into the mechanisms of mitochondrial calcium uptake and release that are important in healthy and diseased myocardium. Abstract Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. Little is known about the magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiomyocytes. Using adenoviral infection, a ratiometric mitochondrially targeted Förster resonance energy transfer (FRET)‐based calcium indicator (4mtD3cpv, MitoCam) was expressed in cultured adult rat cardiomyocytes and the free mitochondrial calcium concentration ([Ca2+]m) was measured at different stimulation frequencies (0.1–4 Hz) and external calcium concentrations (1.8–3.6 mm) at 37°C. Cytosolic calcium concentrations were assessed under the same experimental conditions in separate experiments using Fura‐4AM. The increases in [Ca2+]m during electrical stimulation at 0.1 Hz were rapid (rise time = 49 ± 2 ms), while the decreases in [Ca2+]m occurred more slowly (decay half time = 1.17 ± 0.07 s). Model calculations confirmed that this asymmetry caused the rise in [Ca2+]m during diastole observed at elevated stimulation frequencies. Inhibition of the mitochondrial sodium–calcium exchanger (mNCE) resulted in a rise in [Ca2+]m at baseline and, paradoxically, in an

  12. Dissolution enhancement of atorvastatin calcium by co-grinding technique.

    PubMed

    Prabhu, Priyanka; Patravale, Vandana

    2016-08-01

    Atorvastatin calcium (AC) is a BCS class II drug which shows poor bioavailability due to inadequate dissolution. Solid dispersions present a promising option to enhance the solubility of poorly soluble drugs. Co-grinding with hydrophilic excipients is an easy and economical technique to improve the solubility of poorly soluble drugs and is free from usage of organic solvents. The aim of the present study was to explore novel carrier VBP-1 (organosulphur compound) for formulating a solid dispersion by using a simple, commercially viable co-grinding technique to enhance the dissolution of AC and to develop an oral formulation of the same. Composition of the solid dispersion was optimized based on the release profile in pH 1.2 buffer. The optimized solid dispersion was further characterized for flow properties, DSC, FTIR spectroscopy, XRD, contact angle, SEM studies and release profile in phosphate buffer pH 6.8. The developed solid dispersion gave similar release profile as the innovator formulation (Lipitor® tablets) in both pH 1.2 buffer and phosphate buffer pH 6.8. The developed solid dispersion was formulated into hard gelatin capsules (size 3). The developed capsules were found to give similar release as the innovator formulation in both pH 1.2 buffer and phosphate buffer pH 6.8. The developed capsules were found to be stable for a period of 6 months. Anti-hyperlipidemic efficacy studies in rats showed higher reduction in cholesterol and triglyceride levels by the developed capsules in comparison to pure AC. In conclusion, novel carrier VBP-1 was successfully employed to enhance the dissolution of AC using co-grinding technique.

  13. Electrophoretic mobilities of erythrocytes in various buffers

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    The calibration of space flight equipment depends on a source of standard test particles, this test particle of choice is the fixed erythrocyte. Erythrocytes from different species have different electrophoretic mobilities. Electrophoretic mobility depends upon zeta potential, which, in turn depends upon ionic strength. Zeta potential decreases with increasing ionic strength, so cells have high electrophoretic mobility in space electrophoresis buffers than in typical physiological buffers. The electrophoretic mobilities of fixed human, rat, and rabbit erythrocytes in 0.145 M salt and buffers of varying ionic strength, temperature, and composition, to assess the effects of some of the unique combinations used in space buffers were characterized. Several effects were assessed: glycerol or DMSO (dimethylsulfoxide) were considered for use as cryoprotectants. The effect of these substances on erythrocyte electrophoretic mobility was examined. The choice of buffer depended upon cell mobility. Primary experiments with kidney cells established the choice of buffer and cryoprotectant. A nonstandard temperature of EPM in the suitable buffer was determined. A loss of ionic strength control occurs in the course of preparing columns for flight, the effects of small increases in ionic strength over the expected low values need to be evaluated.

  14. Activation of a Ca-bentonite as buffer material

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Hsing; Chen, Wen-Chuan

    2016-04-01

    Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid

  15. Good’s buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research†

    PubMed Central

    Taha, Mohamed; e Silva, Francisca A.; Quental, Maria V.; Ventura, Sónia P. M.; Freire, Mara G.; Coutinho, João A. P.

    2014-01-01

    This work reports a promising approach to the development of novel self-buffering and biocompatible ionic liquids for biological research in which the anions are derived from biological buffers (Good’s buffers, GB). Five Good’s buffers (Tricine, TES, CHES, HEPES, and MES) were neutralized with four suitable hydroxide bases (1-ethyl-3-methylimidazolium, tetramethylammonium, tetraethylammonium, and tetrabutylammonium) producing 20 Good’s buffer ionic liquids (GB-ILs). The presence of the buffering action of the synthesized GB-ILs was ascertained by measuring their pH-profiles in water. Moreover, a series of mixed GB-ILs with wide buffering ranges were formulated as universal buffers. The impact of GB-ILs on bovine serum albumin (BSA), here used as a model protein, is discussed and compared with more conventional ILs using spectroscopic techniques, such as infrared and dynamic light scattering. They appear to display, in general, a greater stabilizing effect on the protein secondary structure than conventional ILs. A molecular docking study was also carried out to investigate on the binding sites of GB-IL ions to BSA. We further used the QSAR-human serum albumin binding model, log K(HSA), to calculate the binding affinity of some conventional ILs/GB-ILs to HSA. The toxicity of the GB and GB-ILs was additionally evaluated revealing that they are non-toxic against Vitro fischeri. Finally, the GB-ILs were also shown to be able to form aqueous biphasic systems when combined with aqueous solutions of inorganic or organic salts, and we tested their extraction capability for BSA. These systems were able to extract BSA with an outstanding extraction efficiency of 100% in a single step for the GB-IL-rich phase, and, as a result, the use of GB-IL-based ABS for the separation and extraction of other added-value biomolecules is highly encouraging and worthy of further investigation. PMID:25729325

  16. Phosphate removal and hemodialysis conditions.

    PubMed

    Pohlmeier, R; Vienken, J

    2001-02-01

    Hyperphosphatemia is frequently found in hemodialysis patients, and the association with an increased risk of mortality has been demonstrated. Other authors have linked hyperphosphatemia to increased cardiovascular mortality. The normalization of phosphate plasma levels is therefore an important goal in the treatment of end-stage renal disease patients. Absorption of phosphate from the food exceeds the elimination through a hemodialysis treatment, and this leads to a chronic phosphate load for the majority of hemodialysis patients. This imbalance should be improved by either a reduction of phosphate absorption or an increased removal of phosphate. A reduction of phosphate absorption can be achieved by reducing the amount of phosphate in the diet or by the administration of phosphate binders. Unfortunately, these measures imply practical difficulties, for example, a lack of patient compliance or other side effects. When considering modifications of the hemodialysis treatment, an essential understanding of the kinetics of dialytic phosphate removal is mandatory. Phosphate is unevenly distributed in different compartments of the body. Only a very small amount of phosphate is present in the easily accessible plasma compartment. The major part of phosphate removed during hemodialysis originates from the cytoplasm of cells. A transfer from intracellular space to the plasma and further from the plasma to the dialysate is necessary. However, if we consider improvement to phosphate removal by dialysis procedures, full dialyzer clearance is effective in only the initial phase of the dialysis treatment. After this initial phase, the transfer rate for phosphate from the intracellular space to the plasma becomes the rate-limiting step for phosphate transport. Attempts to improve this transfer rate have recently been investigated by acidosis correction, but turned out not to be consistently successful. Furthermore, modifications of the treatment schedule have been described in

  17. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid.

    PubMed

    Maruyama, Norio; Hiromoto, Sachiko; Akiyama, Eiji; Nakamura, Morihiko

    2013-04-01

    Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS) with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-)). For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR)) with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR) although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR) both in air and in PBS(-). A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR) in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR). The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  18. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid

    NASA Astrophysics Data System (ADS)

    Maruyama, Norio; Hiromoto, Sachiko; Akiyama, Eiji; Nakamura, Morihiko

    2013-04-01

    Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS) with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-)). For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR)) with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR) although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR) both in air and in PBS(-). A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR) in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR). The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  19. Programmable pH buffers

    DOEpatents

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  20. Phosphate-a poison for humans?

    PubMed

    Komaba, Hirotaka; Fukagawa, Masafumi

    2016-10-01

    Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank's solution.

    PubMed

    Taltavull, C; Shi, Z; Torres, B; Rams, J; Atrens, A

    2014-02-01

    This research studied the influence of the chloride ion concentration on the corrosion behaviour of high-purity magnesium (Mg) and two Mg alloys in Hank's solution, using hydrogen evolution and weight loss. A buffer based on CO2 and NaHCO3 was used to maintain the pH constant. The corrosion behaviour was governed by a partially protective surface film, and film breakdown by the chloride ions. The carbonated calcium phosphate layer that formed in Hank's solution was important in determining the protective properties of the surface film.

  2. Influence of C or In buffer layer on photoluminescence behaviour of ultrathin ZnO film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanan, K., E-mail: saravanan@igcar.gov.in; Jayalakshmi, G.; Krishnan, R.

    We study the effect of the indium or carbon buffer layer on the photoluminescence (PL) property of ZnO ultrathin films deposited on a Si(100) substrate. The surface morphology of the films obtained using scanning tunnelling microscopy shows spherical shaped ZnO nanoparticles of size ∼8 nm in ZnO/C/Si and ∼22 nm in ZnO/Si samples, while the ZnO/In/Si sample shows elliptical shaped ZnO particles. Further, the ZnO/C/Si sample shows densely packed ZnO nanoparticles in comparison with other samples. Strong band edge emission has been observed in the presence of In or C buffer layer, whereas the ZnO/Si sample exhibits poor PL emission. The influencemore » of C and In buffer layers on the PL behaviour of ZnO films is studied in detail using temperature dependent PL measurements in the range of 4 K–300 K. The ZnO/C/Si sample exhibits a multi-fold enhancement in the PL emission intensity with well-resolved free and bound exciton emission lines. Our experimental results imply that the ZnO films deposited on the C buffer layer showed higher particle density and better exciton emission desired for optoelectronic applications.« less

  3. Highly sensitive and selective detection of Al(III) ions in aqueous buffered solution with fluorescent peptide-based sensor.

    PubMed

    In, Byunggyu; Hwang, Gi Won; Lee, Keun-Hyeung

    2016-09-15

    A fluorescent sensor based on a tripeptide (SerGluGlu) with a dansyl fluorophore detected selectively Al(III) among 16 metal ions in aqueous buffered solutions without any organic cosolvent. The peptide-based sensor showed a highly sensitive turn on response to aluminium ion with high binding affinity (1.84×10(4)M(-1)) in aqueous buffered solutions. The detection limit (230nM, 5.98ppb) of the peptide-based sensor was much lower than the maximum allowable level (7.41μM) of aluminium ions in drinking water demanded by EPA. The binding mode of the peptide sensor with aluminium ions was characterized using ESI mass spectrometry, NMR titration, and pH titration experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Comparison of Giardia lamblia and Giardia muris cyst inactivation by ozone.

    PubMed

    Finch, G R; Black, E K; Labatiuk, C W; Gyürék, L; Belosevic, M

    1993-11-01

    Inactivation of Giardia lamblia and Giardia muris cysts was compared by using an ozone demand-free 0.05 M phosphate buffer in bench-scale batch reactors at 22 degrees C. Ozone was added to each trial from a concentrated stock solution for contact times of 2 and 5 min. The viability of the control and treated cysts was evaluated by using the C3H/HeN mouse and Mongolian gerbil models for G. muris and G. lamblia, respectively. The resistance of G. lamblia to ozone was not significantly different from that of G. muris under the study conditions, contrary to previously reported data that suggested G. lamblia was significantly more sensitive to ozone than G. muris was. The simple Ct value for 2 log unit inactivation of G. lamblia was 2.4 times higher than the Ct value recommended by the Surface Water Treatment Rule.

  5. Effects of substrates and phosphate on INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride) and CTC (5-cyano-2,3-ditolyl tetrazolium chloride) reduction in Escherichia coli

    NASA Technical Reports Server (NTRS)

    Smith, J. J.; McFeters, G. A.

    1996-01-01

    The effects of substrates of primary aerobic dehydrogenases, and inorganic phosphate on aerobic INT and CTC reduction in Escherichia coli were examined. In general, INT produced less formazan than CTC, but INT (+) cell counts remained near values of CTC (+) cells. INT and CTC (+) cell numbers were higher than plate counts on R2A medium using succinate, formate, lactate, casamino acids, glucose, glycerol (INT only) and no substrate. Formate resulted in the greatest amount of INT and CTC formazan. Reduction of both INT and CTC was inhibited above 10 mmol l-1 phosphate, and this appeared to be related to decreased rates of O2 consumption. Formation of fluorescent CTC (+), but not INT (+) cells was also inhibited in a concentration dependent manner by phosphate above 10 mmol l-1. From light microscopic observations it appeared CTC formed increasing amounts of poorly or non-fluorescent formazan with increasing phosphate. Therefore, use of phosphate buffer in excess of 10 mmol l-1 may not be appropriate in CTC and INT reduction assays.

  6. Green-ampt infiltration parameters in riparian buffers

    Treesearch

    L.M. Stahr; D.E. Eisenhauer; M.J. Helmers; Mike G. Dosskey; T.G. Franti

    2004-01-01

    Riparian buffers can improve surface water quality by filtering contaminants from runoff before they enter streams. Infiltration is an important process in riparian buffers. Computer models are often used to assess the performance of riparian buffers. Accurate prediction of infiltration by these models is dependent upon accurate estimates of infiltration parameters....

  7. Buffer Biology.

    ERIC Educational Resources Information Center

    Morgan, Kelly

    2000-01-01

    Presents a science experiment in which students test the buffering capacity of household products such as shampoo, hand lotion, fizzies candy, and cola. Lists the standards addressed in this experiment and gives an example of a student lab write-up. (YDS)

  8. Phosphate-Catalyzed Succinimide Formation from Asp Residues: A Computational Study of the Mechanism.

    PubMed

    Kirikoshi, Ryota; Manabe, Noriyoshi; Takahashi, Ohgi

    2018-02-24

    Aspartic acid (Asp) residues in proteins and peptides are prone to the non-enzymatic reactions that give biologically uncommon l-β-Asp, d-Asp, and d-β-Asp residues via the cyclic succinimide intermediate (aminosuccinyl residue, Suc). These abnormal Asp residues are known to have relevance to aging and pathologies. Despite being non-enzymatic, the Suc formation is thought to require a catalyst under physiological conditions. In this study, we computationally investigated the mechanism of the Suc formation from Asp residues that were catalyzed by the dihydrogen phosphate ion, H₂PO₄ - . We used Ac-l-Asp-NHMe (Ac = acetyl, NHMe = methylamino) as a model compound. The H₂PO₄ - ion (as a catalyst) and two explicit water molecules (as solvent molecules stabilizing the negative charge) were included in the calculations. All of the calculations were performed by density functional theory with the B3LYP functional. We revealed a phosphate-catalyzed two-step mechanism (cyclization-dehydration) of the Suc formation, where the first step is predicted to be rate-determining. In both steps, the reaction involved a proton relay mediated by the H₂PO₄ - ion. The calculated activation barrier for this mechanism (100.3 kJ mol -1 ) is in reasonable agreement with an experimental activation energy (107 kJ mol -1 ) for the Suc formation from an Asp-containing peptide in a phosphate buffer, supporting the catalytic mechanism of the H₂PO₄ - ion that is revealed in this study.

  9. Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass.

    PubMed

    Onodera, Yohei; Kohara, Shinji; Masai, Hirokazu; Koreeda, Akitoshi; Okamura, Shun; Ohkubo, Takahiro

    2017-05-31

    Understanding glass structure is still challenging due to the result of disorder, although novel materials design on the basis of atomistic structure has been strongly demanded. Here we report on the atomic structures of the zinc phosphate glass determined by reverse Monte Carlo modelling based on diffraction and spectroscopic data. The zinc-rich glass exhibits the network formed by ZnO x (averaged x<4) polyhedra. Although the elastic modulus, refractive index and glass transition temperature of the zinc phosphate glass monotonically increase with the amount of ZnO, we find for the first time that the thermal expansion coefficient is very sensitive to the substitution of the phosphate chain network by a network consisting of Zn-O units in zinc-rich glass. Our results imply that the control of the structure of intermediate groups may enable new functionalities in the design of oxide glass materials.

  10. Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass

    NASA Astrophysics Data System (ADS)

    Onodera, Yohei; Kohara, Shinji; Masai, Hirokazu; Koreeda, Akitoshi; Okamura, Shun; Ohkubo, Takahiro

    2017-05-01

    Understanding glass structure is still challenging due to the result of disorder, although novel materials design on the basis of atomistic structure has been strongly demanded. Here we report on the atomic structures of the zinc phosphate glass determined by reverse Monte Carlo modelling based on diffraction and spectroscopic data. The zinc-rich glass exhibits the network formed by ZnOx (averaged x<4) polyhedra. Although the elastic modulus, refractive index and glass transition temperature of the zinc phosphate glass monotonically increase with the amount of ZnO, we find for the first time that the thermal expansion coefficient is very sensitive to the substitution of the phosphate chain network by a network consisting of Zn-O units in zinc-rich glass. Our results imply that the control of the structure of intermediate groups may enable new functionalities in the design of oxide glass materials.

  11. Enhanced ecological succession following phosphate mining. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, G.R.; Wallace, P.M.; Dunn, W.J.

    This research addressed four components thought to be essential for enhancing establishment of native forested ecosystems on phosphate surface-mined lands. Those components were: multispecies mixture of seeds, mycorrhizal fungi symbionts, soil nutrients, and organic matter. Studies of plant community succession and mycorrhizal colonization revealed that within three years the majority of invading plants had levels of mycorrhizal infection higher than the level in mature ecosystems. Mycorrhizal inoculation greatly enhanced the growth of sweat gum (Liquidambor styraciflun), and a composite of mycorrhizal species from phosphate lands was more effective than Glomus macrocarpum, a common Florida nature mycorrhizal fungus. Soil seed banksmore » in reclaimed wetlands approached the density and diversity of seed banks in natural marshes in about five years, although the actual vegetation present was not always as diverse, dense, or well developed in the reclaimed marshes unless wetland soil had been applied. An effective method for mechanically planting several species of seeds plus mycorrhizal inoculum was the use of several row planters attached to a tractor mounted tool bar. During the initial growing season, mulch, topsoil and endomycorrhizal inoculum enhanced growth, density, and species richness of tree seedlings, while ectomycorrhizal inoculum had almost no effect, and gypsum application and phosphate-free fertilizer had negative effects.« less

  12. Doped LZO buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  13. Buffer regulation of calcium puff sequences.

    PubMed

    Fraiman, Daniel; Dawson, Silvina Ponce

    2014-02-01

    Puffs are localized Ca(2 +) signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca(2 +) from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca(2 +) provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca(2 +) signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca(2 +) channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca(2 +) buffer can increase the average number of channels that participate of a puff.

  14. Buffer regulation of calcium puff sequences

    NASA Astrophysics Data System (ADS)

    Fraiman, Daniel; Ponce Dawson, Silvina

    2014-02-01

    Puffs are localized Ca2 + signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca2 + from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca2 + provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca2 + signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca2 + channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca2 + buffer can increase the average number of channels that participate of a puff.

  15. Buffer-eliminated, charge-neutral epitaxial graphene on oxidized 4H-SiC (0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirikumara, Hansika I., E-mail: hansi.sirikumara@siu.edu; Jayasekera, Thushari, E-mail: thushari@siu.edu

    Buffer-eliminated, charge-neutral epitaxial graphene (EG) is important to enhance its potential in device applications. Using the first principles Density Functional Theory calculations, we investigated the effect of oxidation on the electronic and structural properties of EG on 4H-SiC (0001) surface. Our investigation reveals that the buffer layer decouples from the substrate in the presence of both silicate and silicon oxy-nitride at the interface, and the resultant monolayer EG is charge-neutral in both cases. The interface at 4H-SiC/silicate/EG is characterized by surface dangling electrons, which opens up another route for further engineering EG on 4H-SiC. Dangling electron-free 4H-SiC/silicon oxy-nitride/EG is idealmore » for achieving charge-neutral EG.« less

  16. The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts.

    PubMed

    Massera, J; Kokkari, A; Närhi, T; Hupa, L

    2015-06-01

    In this paper, we investigate the effect of substituting SrO for CaO in silicate and phosphate bioactive glasses on the human gingival fibroblast activity. In both materials the presence of SrO led to the formation of a CaP layer with partial Sr substitution for Ca. The layer at the surface of the silicate glass consisted of HAP whereas at the phosphate glasses it was close to the DCPD composition. In silicate glasses, SrO gave a faster initial dissolution and a thinner reaction layer probably allowing for a continuous ion release into the solution. In phosphate glasses, SrO decreased the dissolution process and gave a more strongly bonded reaction layer. Overall, the SrO-containing silicate glass led to a slight enhancement in the activity of the gingival fibroblasts cells when compared to the SrO-free reference glass, S53P4. The cell activity decreased up to 3 days of culturing for all phosphate glasses containing SrO. Whereas culturing together with the SrO-free phosphate glass led to complete cell death at 7 days. The glasses containing SrO showed rapid cell proliferation and growth between 7 and 14 days, reaching similar activity than glass S53P4. The addition of SrO in both silicate and phosphate glasses was assumed beneficial for proliferation and growth of human gingival fibroblasts due to Sr incorporation in the reaction layer at the glass surface and released in the cell culture medium.

  17. Optimization of protein buffer cocktails using Thermofluor.

    PubMed

    Reinhard, Linda; Mayerhofer, Hubert; Geerlof, Arie; Mueller-Dieckmann, Jochen; Weiss, Manfred S

    2013-02-01

    The stability and homogeneity of a protein sample is strongly influenced by the composition of the buffer that the protein is in. A quick and easy approach to identify a buffer composition which increases the stability and possibly the conformational homogeneity of a protein sample is the fluorescence-based thermal-shift assay (Thermofluor). Here, a novel 96-condition screen for Thermofluor experiments is presented which consists of buffer and additive parts. The buffer screen comprises 23 different buffers and the additive screen includes small-molecule additives such as salts and nucleotide analogues. The utilization of small-molecule components which increase the thermal stability of a protein sample frequently results in a protein preparation of higher quality and quantity and ultimately also increases the chances of the protein crystallizing.

  18. Using phosphate supplementation to reverse hypophosphatemia and phosphate depletion in neurological disease and disturbance.

    PubMed

    Håglin, Lena

    2016-06-01

    Hypophosphatemia (HP) with or without intracellular depletion of inorganic phosphate (Pi) and adenosine triphosphate has been associated with central and peripheral nervous system complications and can be observed in various diseases and conditions related to respiratory alkalosis, alcoholism (alcohol withdrawal), diabetic ketoacidosis, malnutrition, obesity, and parenteral and enteral nutrition. In addition, HP may explain serious muscular, neurological, and haematological disorders and may cause peripheral neuropathy with paresthesias and metabolic encephalopathy, resulting in confusion and seizures. The neuropathy may be improved quickly after proper phosphate replacement. Phosphate depletion has been corrected using potassium-phosphate infusion, a treatment that can restore consciousness. In severe ataxia and tetra paresis, complete recovery can occur after adequate replacement of phosphate. Patients with multiple risk factors, often with a chronic disease and severe HP that contribute to phosphate depletion, are at risk for neurologic alterations. To predict both risk and optimal phosphate replenishment requires assessing the nutritional status and risk for re-feeding hypophosphatemia. The strategy for correcting HP depends on the severity of the underlying disease and the goal for re-establishing a phosphate balance to limit the consequences of phosphate depletion.

  19. Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts

    PubMed Central

    Wu, Fan; Zhang, Eric Y; Zhang, Jianyi; Bache, Robert J; Beard, Daniel A

    2008-01-01

    To understand how cardiac ATP and CrP remain stable with changes in work rate – a phenomenon that has eluded mechanistic explanation for decades – data from 31phosphate-magnetic resonance spectroscopy (31P-MRS) are analysed to estimate cytoplasmic and mitochondrial phosphate metabolite concentrations in the normal state, during high cardiac workstates, during acute ischaemia and reactive hyperaemic recovery. Analysis is based on simulating distributed heterogeneous oxygen transport in the myocardium integrated with a detailed model of cardiac energy metabolism. The model predicts that baseline myocardial free inorganic phosphate (Pi) concentration in the canine myocyte cytoplasm – a variable not accessible to direct non-invasive measurement – is approximately 0.29 mm and increases to 2.3 mm near maximal cardiac oxygen consumption. During acute ischaemia (from ligation of the left anterior descending artery) Pi increases to approximately 3.1 mm and ATP consumption in the ischaemic tissue is reduced quickly to less than half its baseline value before the creatine phosphate (CrP) pool is 18% depleted. It is determined from these experiments that the maximal rate of oxygen consumption of the heart is an emergent property and is limited not simply by the maximal rate of ATP synthesis, but by the maximal rate at which ATP can be synthesized at a potential at which it can be utilized. The critical free energy of ATP hydrolysis for cardiac contraction that is consistent with these findings is approximately −63.5 kJ mol−1. Based on theoretical findings, we hypothesize that inorganic phosphate is both the primary feedback signal for stimulating oxidative phosphorylation in vivo and also the most significant product of ATP hydrolysis in limiting the capacity of the heart to hydrolyse ATP in vivo. Due to the lack of precise quantification of Piin vivo, these hypotheses and associated model predictions remain to be carefully tested experimentally. PMID:18617566

  20. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses.

    PubMed

    Liu, L; Qiu, C L; Chen, Q; Chan, K C; Zhang, S M

    2008-07-01

    Two Ni-free bulk metallic glasses (BMGs) of Zr(60)Nb(5)Cu(22.5)Pd(5)Al(7.5) and Zr(60)Nb(5)Cu(20)Fe(5)Al(10) were successfully prepared by arc-melting and copper mold casting. The thermal stability and crystallization were studied using differential scanning calorimetry. It demonstrates that the two BMGs exhibit very good glass forming ability with a wide supercooled liquid region. A multi-step process of crystallization with a preferential formation of quasicrystals occurred in both BMGs under continuous heating. The deformation behavior of the two BMGs was investigated using quasi-static compression testing. It reveals that the BMGs exhibit not only superior strength but also an extended plasticity. Corrosion behaviors of the BMGs were investigated in phosphate buffered solution by electrochemical polarization. The result shows that the two BMGs exhibit excellent corrosion resistance characterized by low corrosion current densities and wide passive regions. X-ray photoelectron spectroscopy analysis revealed that the passive film formed after anodic polarization was highly enriched in zirconium, niobium, and aluminum oxides. This is attributed to the excellent corrosion resistance. Additionally, the potential cytotoxicity of the two Ni-free BMGs was evaluated through cell culture for 1 week followed by 3-(4,5-Dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide assay and SEM observation. The results indicate that the two Ni-free BMGs exhibit as good biocompatibility as Ti-6Al-4V alloy, and thus show a promising potential for biomedical applications. (c) 2007 Wiley Periodicals, Inc.

  2. Social buffering: relief from stress and anxiety

    PubMed Central

    Kikusui, Takefumi; Winslow, James T; Mori, Yuji

    2006-01-01

    Communication is essential to members of a society not only for the expression of personal information, but also for the protection from environmental threats. Highly social mammals have a distinct characteristic: when conspecific animals are together, they show a better recovery from experiences of distress. This phenomenon, termed ‘social buffering’, has been found in rodents, birds, non-human primates and also in humans. This paper reviews classical findings on social buffering and focuses, in particular, on social buffering effects in relation to neuroendocrine stress responses. The social cues that transmit social buffering signals, the neural mechanisms of social buffering and a partner's efficacy with respect to social buffering are also detailed. Social contact appears to have a very positive influence on the psychological and the physiological aspects of social animals, including human beings. Research leading towards further understanding of the mechanisms of social buffering could provide alternative medical treatments based on the natural, individual characteristics of social animals, which could improve the quality of life. PMID:17118934

  3. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, A.H.; Rogers, R.D.

    1999-06-15

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.

  4. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, Alan H.; Rogers, Robert D.

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  5. Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of free-standing GaN wafer

    NASA Astrophysics Data System (ADS)

    Wu, Chenping; Soomro, Abdul Majid; Sun, Feipeng; Wang, Huachun; Huang, Youyang; Wu, Jiejun; Liu, Chuan; Yang, Xiaodong; Gao, Na; Chen, Xiaohong; Kang, Junyong; Cai, Duanjun

    2016-10-01

    Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method. By winding the Cu foil substrate into mainspring shape supported by a multi-prong quartz fork, the reactor size limit could be overcome by extending the substrate area to a continuous 2D curl of plane inward. An extremely large-size monolayer h-BN film has been achieved over 25 inches in a 1.2” tube. The optical band gap of h-BN monolayer was determined to be 6.0 eV. The h-BN film was uniformly transferred onto 2” GaN or 4” Si wafer surfaces as a release buffer layer. By HVPE method, overgrowth of thick GaN wafer over 200 μm has been achieved free of residual strain, which could provide high quality homo-epitaxial substrate.

  6. Role of Phosphate Transport System Component PstB1 in Phosphate Internalization by Nostoc punctiforme

    PubMed Central

    Hudek, L.; Premachandra, D.; Webster, W. A. J.

    2016-01-01

    ABSTRACT In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB−) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme. IMPORTANCE Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes

  7. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  8. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  9. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  10. Fluorescent Biosensor for Phosphate Determination Based on Immobilized Polyfluorene-Liposomal Nanoparticles Coupled with Alkaline Phosphatase.

    PubMed

    Kahveci, Zehra; Martínez-Tomé, Maria José; Mallavia, Ricardo; Mateo, C Reyes

    2017-01-11

    This work describes the development of a novel fluorescent biosensor based on the inhibition of alkaline phosphatase (ALP). The biosensor is composed of the enzyme ALP and the conjugated cationic polyfluorene HTMA-PFP. The working principle of the biosensor is based on the fluorescence quenching of this polyelectrolyte by p-nitrophenol (PNP), a product of the hydrolysis reaction of p-nitrophenyl phosphate (PNPP) catalyzed by ALP. Because HTMA-PFP forms unstable aggregates in buffer, with low fluorescence efficiency, previous stabilization of the polyelectrolyte was required before the development of the biosensor. HTMA-PFP was stabilized through its interaction with lipid vesicles to obtain stable blue-emitting nanoparticles (NPs). Fluorescent NPs were characterized, and the ability to be quenched by PNP was evaluated. These nanoparticles were coupled to ALP and entrapped in a sol-gel matrix to produce a biosensor that can serve as a screening platform to identify ALP inhibitors. The components of the biosensor were examined before and after sol-gel entrapment, and the biosensor was optimized to allow the determination of phosphate ion in aqueous medium.

  11. Polarizable Multipole-Based Force Field for Dimethyl and Trimethyl Phosphate

    PubMed Central

    2015-01-01

    Phosphate groups are commonly observed in biomolecules such as nucleic acids and lipids. Due to their highly charged and polarizable nature, modeling these compounds with classical force fields is challenging. Using quantum mechanical studies and liquid-phase simulations, the AMOEBA force field for dimethyl phosphate (DMP) ion and trimethyl phosphate (TMP) has been developed. On the basis of ab initio calculations, it was found that ion binding and the solution environment significantly impact both the molecular geometry and the energy differences between conformations. Atomic multipole moments are derived from MP2/cc-pVQZ calculations of methyl phosphates at several conformations with their chemical environments taken into account. Many-body polarization is handled via a Thole-style induction model using distributed atomic polarizabilities. van der Waals parameters of phosphate and oxygen atoms are determined by fitting to the quantum mechanical interaction energy curves for water with DMP or TMP. Additional stretch-torsion and angle-torsion coupling terms were introduced in order to capture asymmetry in P–O bond lengths and angles due to the generalized anomeric effect. The resulting force field for DMP and TMP is able to accurately describe both the molecular structure and conformational energy surface, including bond and angle variations with conformation, as well as interaction of both species with water and metal ions. The force field was further validated for TMP in the condensed phase by computing hydration free energy, liquid density, and heat of vaporization. The polarization behavior between liquid TMP and TMP in water is drastically different. PMID:26574325

  12. Damage tolerance of woven graphite-epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.

    1990-01-01

    Graphite-epoxy panels with S glass buffer strips were tested in tension and shear to measure their residual strengths with crack-like damage. The buffer strips were regularly spaced narrow strips of continuous S glass. Panels were made with a uniweave graphite cloth where the S glass buffer material was woven directly into the cloth. Panels were made with different width and thickness buffer strips. The panels were loaded to failure while remote strain, strain at the end of the slit, and crack opening displacement were monitoring. The notched region and nearby buffer strips were radiographed periodically to reveal crack growth and damage. Except for panels with short slits, the buffer strips arrested the propagating crack. The strength (or failing strain) of the panels was significantly higher than the strength of all-graphite panels with the same length slit. Panels with wide, thick buffer strips were stronger than panels with thin, narrow buffer strips. A shear-lag model predicted the failing strength of tension panels with wide buffer strips accurately, but over-estimated the strength of the shear panels and the tension panels with narrow buffer strips.

  13. PHO4 transcription factor regulates triacylglycerol metabolism under low-phosphate conditions in Saccharomyces cerevisiae.

    PubMed

    Yadav, Kamlesh Kumar; Singh, Neelima; Rajasekharan, Ram

    2015-10-01

    In Saccharomyces cerevisiae, PHM8 encodes a phosphatase that catalyses the dephosphorylation of lysophosphatidic acids to monoacylglycerol and nucleotide monophosphate to nucleoside and releases free phosphate. In this report, we investigated the role of PHM8 in triacylglycerol metabolism and its transcriptional regulation by a phosphate responsive transcription factor Pho4p under low-phosphate conditions. We found that the wild-type (BY4741) cells accumulate triacylglycerol and the expression of PHM8 was high under low-phosphate conditions. Overexpression of PHM8 in the wild-type, phm8Δ and quadruple phosphatase mutant (pah1Δdpp1Δlpp1Δapp1Δ) caused an increase in the triacylglycerol levels. However, the introduction of the PHM8 deletion into the quadruple phosphatase mutant resulted in a reduction in triacylglycerol levels and LPA phosphatase activity. The transcriptional activator Pho4p binds to the PHM8 promoter under low-phosphate conditions, activating PHM8 expression, which leads to the formation of monoacylglycerol from LPA. The synthesized monoacylglycerol is acylated to diacylglycerol by Dga1p, which is further acylated to triacylglycerol by the same enzyme. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  14. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism.

    PubMed

    Ezawa, Tatsuhiro; Saito, Katsuharu

    2018-04-27

    Contents Summary I. Introduction II. Foraging for phosphate III. Fine-tuning of phosphate homeostasis IV. The frontiers: phosphate translocation and export V. Conclusions and outlook Acknowledgements References SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  15. Elucidating the role of recovery experiences in the job demands-resources model.

    PubMed

    Moreno-Jiménez, Bernardo; Rodríguez-Muñoz, Alfredo; Sanz-Vergel, Ana Isabel; Garrosa, Eva

    2012-07-01

    Based on the Job Demands-Resources (JD-R) model, the current study examined the moderating role of recovery experiences (i.e., psychological detachment from work, relaxation, mastery experiences, and control over leisure time) on the relationship between one job demand (i.e., role conflict) and work- and health-related outcomes. Results from our sample of 990 employees from Spain showed that psychological detachment from work and relaxation buffered the negative impact of role conflict on some of the proposed outcomes. Contrary to our expectations, we did not find significant results for mastery and control regarding moderating effects. Overall, findings suggest a differential pattern of the recovery experiences in the health impairment process proposed by the JD-R model.

  16. Exploring the Arabidopsis proteome: influence of protein solubilization buffers on proteome coverage.

    PubMed

    Marondedze, Claudius; Wong, Aloysius; Groen, Arnoud; Serrano, Natalia; Jankovic, Boris; Lilley, Kathryn; Gehring, Christoph; Thomas, Ludivine

    2014-12-31

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.

  17. Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage

    PubMed Central

    Marondedze, Claudius; Wong, Aloysius; Groen, Arnoud; Serrano, Natalia; Jankovic, Boris; Lilley, Kathryn; Gehring, Christoph; Thomas, Ludivine

    2014-01-01

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins. PMID:25561235

  18. Removal of nitrogen compounds from landfill leachate using reverse osmosis with leachate stabilization in a buffer tank.

    PubMed

    Talalaj, Izabela Anna

    2015-01-01

    In this paper, a removal of nitrogen compounds from a landfill leachate during reverse osmosis (RO) was evaluated. The treatment facility consists of a buffer tank and a RO system. The removal rate of N─NH4, [Formula: see text] and [Formula: see text] in the buffer tank reached 14%, 91% and 41%, respectively. The relatively low concentration of organic carbon limits N─NH4 oxidation in the buffer tank. The removal rate for the total organic nitrogen (TON) was 47%. The removal rate in RO was 99% for [Formula: see text], 84.1% for [Formula: see text] and 41% for [Formula: see text]. The accumulation of [Formula: see text] may be the result of a low pH, which before the RO process is reduced to a value of 6.0-6.5. Besides it, the cause for a low removal rate of the [Formula: see text] in the buffer tank and during RO may be free ammonia, which can inhibit the [Formula: see text] oxidation. The removal rates of total inorganic nitrogen and TON in the RO treatment facility were similar being 99% and 98.5%, respectively.

  19. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O...

  20. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O, CAS Reg. No. 7782-0975...

  1. Binding in visual working memory: the role of the episodic buffer.

    PubMed

    Baddeley, Alan D; Allen, Richard J; Hitch, Graham J

    2011-05-01

    The episodic buffer component of working memory is assumed to play a central role in the binding of features into objects, a process that was initially assumed to depend upon executive resources. Here, we review a program of work in which we specifically tested this assumption by studying the effects of a range of attentionally demanding concurrent tasks on the capacity to encode and retain both individual features and bound objects. We found no differential effect of concurrent load, even when the process of binding was made more demanding by separating the shape and color features spatially, temporally or across visual and auditory modalities. Bound features were however more readily disrupted by subsequent stimuli, a process we studied using a suffix paradigm. This suggested a need to assume a feature-based attentional filter followed by an object based storage process. Our results are interpreted within a modified version of the multicomponent working memory model. We also discuss work examining the role of the hippocampus in visual feature binding. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. An assessment of buffer strips for improving damage tolerance

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Kennedy, J. M.

    1981-01-01

    Graphite/epoxy panels with buffer strips were tested in tension to measure their residual strength with crack-like damage. Panels were made with 45/0/-45/90(2S) and 45/0/450(2S) layups. The buffer strips were parallel to the loading directions. They were made by replacing narrow strips of the 0 deg graphite plies with strips of either 0 deg S-Glass/epoxy or Kevlar-49/epoxy on either a one for one or a two for one basis. In a third case, O deg graphite/epoxy was used as the buffer material and thin, perforated Mylar strips were placed between the 0 deg piles and the cross-plies to weaken the interfaces and thus to isolate the 0 deg plies. Some panels were made with buffer strips of different widths and spacings. The buffer strips arrested the cracks and increased the residual strengths significantly over those plain laminates without buffer strips. A shear-lag type stress analysis correctly predicted the effects of layups, buffer material, buffer strip width and spacing, and the number of plies of buffer material.

  3. Role of Phosphate Transport System Component PstB1 in Phosphate Internalization by Nostoc punctiforme.

    PubMed

    Hudek, L; Premachandra, D; Webster, W A J; Bräu, L

    2016-11-01

    In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB - ) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme IMPORTANCE: Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the

  4. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg2+ in the m-SBF on its bioactivity

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Dai, Changsong; Wei, Jie; Wen, Zhaohui; Zhang, Shujuan; Lin, Lemin

    2013-09-01

    The purpose of this study was to investigate the effect of different concentration of Mg2+ in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg2+ for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg2+ concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg2+ concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg2+ increasing from 1× Mg to 10× Mg. Over all, with the Mg2+ concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  5. Analysis of a hybrid, unidirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after crack arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing-to-width ratio of about four to one is the most efficient.

  6. Analysis of a hybrid-undirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after the arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing to width ratio of about four to one is the most efficient.

  7. The entrapment of corrosion products from CoCr implant alloys in the deposits of calcium phosphate: a comparison of serum, synovial fluid, albumin, EDTA, and water.

    PubMed

    Lewis, A C; Kilburn, M R; Heard, P J; Scott, T B; Hallam, K R; Allen, G C; Learmonth, I D

    2006-08-01

    Physical wear of orthopedic implants is inevitable. CoCr alloy samples, typically used in joint reconstruction, corrode rapidly after removal of the protective oxide layer. The behavior of CoCr pellets immersed in human serum, foetal bovine serum (FBS), synovial fluid, albumin in phosphate-buffered saline (PBS), EDTA in PBS, and water were studied using X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). The difference in the corrosive nature of human serum, water, albumin in PBS and synovial fluid after 5 days of immersion was highlighted by the oxide layer, which was respectively 15, 3.5, 1.5, and 1.5 nm thick. The thickness of an additional calcium phosphate deposit from human serum and synovial fluid was 40 and 2 nm, respectively. Co and Cr ions migrated from the bulk metal surface and were trapped in this deposit by the phosphate anion. This may account for the composition of wear debris from CoCr orthopedic implants, which is known to consist predominantly of hydroxy-phosphate compounds. Known components of synovial fluid including proteoglycans, pyrophosphates, phospholipids, lubricin, and superficial zone protein (SZP), have been identified as possible causes for the lack of significant calcium phosphate deposition in this environment. Circulation of these compounds around the whole implant may inhibit calcium phosphate deposition.

  8. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  9. Assessment of solubilization characteristics of different surfactants for carvedilol phosphate as a function of pH.

    PubMed

    Chakraborty, Subhashis; Shukla, Dali; Jain, Achint; Mishra, Brahmeshwar; Singh, Sanjay

    2009-07-15

    The effect of surfactants on the solubility of a new phosphate salt of carvedilol was investigated at different biorelevent pH to evaluate their solubilization capacity. Solutions of different classes of surfactants viz., anionic-sodium dodecyl sulfate (SDS) and sodium taurocholate (STC), cationic-cetyltrimethylammonium bromide (CTAB) and non-ionic-Tween 80 (T80) were prepared in the concentration range of 5-35 mmol dm(-3) in buffer solutions of pH 1.2, 3.0, 4.5, 5.8, 6.8 and 7.2. The solubility data were used to calculate the solubilization characteristics viz. molar solubilization capacity, water micelle partition coefficient, free energy of solubilization and binding constant. Solubility enhancement in basic pH was in following order: CTAB>T80>SDS>STC. CTAB and T80 showed remarkable solubility enhancement in acidic pH as well. Among the anionic surfactants, solubility in acidic medium was retarded except at pH 1.2 in case of SDS. Cationic and non-ionic surfactants were found to be suitable for enhancing the solubility of CP which can be employed for maintaining the in vitro sink condition in the basic dissolution medium. While anionic surfactants showed solubility retardant behavior which may be exploited in increasing the drug entrapment efficiency of a colloidal drug delivery system formulated by emulsification technique.

  10. Effects of pH and Temperature on the Stability of Fumonisins in Maize Products.

    PubMed

    Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata

    2017-03-01

    This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100-250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B₁ fumonisin (HFB₁) and partially hydrolysed B₁ fumonisin (isomers a and b: PHFB 1a and PHFB 1b , respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB₁, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB₁ molecules disintegrate.

  11. Effects of pH and Temperature on the Stability of Fumonisins in Maize Products

    PubMed Central

    Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata

    2017-01-01

    This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100–250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B1 fumonisin (HFB1) and partially hydrolysed B1 fumonisin (isomers a and b: PHFB1a and PHFB1b, respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB1, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB1 molecules disintegrate. PMID:28257053

  12. The adaptive buffered force QM/MM method in the CP2K and AMBER software packages

    PubMed Central

    Mones, Letif; Jones, Andrew; Götz, Andreas W; Laino, Teodoro; Walker, Ross C; Leimkuhler, Ben; Csányi, Gábor; Bernstein, Noam

    2015-01-01

    The implementation and validation of the adaptive buffered force (AdBF) quantum-mechanics/molecular-mechanics (QM/MM) method in two popular packages, CP2K and AMBER are presented. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis using various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force-mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25649827

  13. The adaptive buffered force QM/MM method in the CP2K and AMBER software packages

    DOE PAGES

    Mones, Letif; Jones, Andrew; Götz, Andreas W.; ...

    2015-02-03

    We present the implementation and validation of the adaptive buffered force (AdBF) quantum-mechanics/molecular-mechanics (QM/MM) method in two popular packages, CP2K and AMBER. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis usingmore » various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force-mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies.« less

  14. The adaptive buffered force QM/MM method in the CP2K and AMBER software packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mones, Letif; Jones, Andrew; Götz, Andreas W.

    We present the implementation and validation of the adaptive buffered force (AdBF) quantum-mechanics/molecular-mechanics (QM/MM) method in two popular packages, CP2K and AMBER. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis usingmore » various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force-mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies.« less

  15. Which resources moderate the effects of demanding work schedules on nurses working in residential elder care? A longitudinal study.

    PubMed

    Peters, Velibor; Houkes, Inge; de Rijk, Angelique E; Bohle, Philip L; Engels, Josephine A; Nijhuis, Frans J N

    2016-06-01

    Shiftwork is a major job demand for nurses and has been related to various negative consequences. Research suggests that personal and job resources moderate the impact of work schedules on stress, health and well-being. This longitudinal study examined whether the interactions of personal and job resources with work schedule demands predicted work engagement and emotional exhaustion in nursing. This longitudinal study included two waves of data collection with a one year follow-up using self-report questionnaires among 247 nurses working shifts or irregular working hours in residential care for the elderly in the Netherlands. Moderated structural equation modelling was conducted to examine the interactions between personal and job resources and work schedule demands. Two work schedule demands were assessed: type of work schedule (demanding vs. less demanding) and average weekly working hours. Two personal resources, active coping and healthy lifestyle, and two job resources, work schedule control and the work schedule fit with nurses' private life, were assessed. Results showed that the work schedule fit with nurses' private life buffered the relationship between work schedule demands and emotional exhaustion one year later. Furthermore, the work schedule fit with nurses' private life increased work engagement one year later when work schedule demands were high. Work schedule control strengthened the positive relationship between work schedule demands and emotional exhaustion one year later. The personal resources, active coping and healthy lifestyle were no moderators in this model. Nurses suffer less from decreasing work engagement and emotional exhaustion due to work schedule demands when their work schedules fit with their private lives. Work schedule control did not buffer, but strengthened the positive relationship between weekly working hours and emotional exhaustion one year later. Job resources appeared to be more important for nurses' well-being than

  16. Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent-A Study Using Soybean Plants.

    PubMed

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; LeBihan, Yann; Buelna, Gerardo

    2016-03-01

    With CO2 free emission and a gravimetric energy density higher than gasoline, diesel, biodiesel, and bioethanol, biohydrogen is a promising green renewable energy carrier. During fermentative hydrogen production, 60-70 % of the feedstock is converted to different by-products, dominated by organic acids. In the present investigation, a simple approach for value addition of hydrogen production liquid waste (HPLW) containing these compounds has been demonstrated. In soil, organic acids produced by phosphate solubilizing bacteria chelate the cations of insoluble inorganic phosphates (e.g., Ca3 (PO4)2) and make the phosphorus available to the plants. Organic acid-rich HPLW, therefore, has been evaluated as soil phosphate solubilizer. Application of HPLW as soil phosphate solubilizer was found to improve the phosphorus uptake of soybean plants by 2.18- to 2.74-folds. Additionally, 33-100 % increase in seed germination rate was also observed. Therefore, HPLW has the potential to be an alternative for phosphate solubilizing biofertilizers available in the market. Moreover, the strategy can be useful for phytoremediation of phosphorus-rich soil.

  17. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  18. Photonic integrated circuit optical buffer for packet-switched networks.

    PubMed

    Burmeister, Emily F; Mack, John P; Poulsen, Henrik N; Masanović, Milan L; Stamenić, Biljana; Blumenthal, Daniel J; Bowers, John E

    2009-04-13

    A chip-scale optical buffer performs autonomous contention resolution for 40-byte packets with 99% packet recovery. The buffer consists of a fast, InP-based 2 x 2 optical switch and a silica-on-silicon low loss delay loop. The buffer is demonstrated in recirculating operation, but may be reconfigured in feed-forward operation for longer packet lengths. The recirculating buffer provides packet storage in integer multiples of the delay length of 12.86 ns up to 64.3 ns with 98% packet recovery. The buffer is used to resolve contention between two 40 Gb/s packet streams using multiple photonic chip optical buffers.

  19. Preparation of Robust Metal-Free Magnetic Nanoemulsions Encapsulating Low-Molecular-Weight Nitroxide Radicals and Hydrophobic Drugs Directed Toward MRI-Visible Targeted Delivery.

    PubMed

    Nagura, Kota; Takemoto, Yusa; Moronaga, Satori; Uchida, Yoshiaki; Shimono, Satoshi; Shiino, Akihiko; Tanigaki, Kenji; Amano, Tsukuru; Yoshino, Fumi; Noda, Yohei; Koizumi, Satoshi; Komatsu, Naoki; Kato, Tatsuhisa; Yamauchi, Jun; Tamura, Rui

    2017-11-07

    With a view to developing a theranostic nanomedicine for targeted drug delivery systems visible by magnetic resonance (MR) imaging, robust metal-free magnetic nanoemulsions (mean particle size less than 20 nm) consisting of a biocompatible surfactant and hydrophobic, low molecular weight 2,2,5-trimethyl-5-(4-alkoxy)phenylpyrrolidine-N-oxyl radicals were prepared in pH 7.4 phosphate-buffered saline (PBS). The structure of the nanoemulsions was characterized by electron paramagnetic resonance spectroscopy, and dynamic light scattering and small-angle neutron-scattering measurements. The nanoemulsions showed high colloidal stability, low cytotoxicity, enough reduction resistance to excess ascorbic acid, and sufficient contrast enhancement in the proton longitudinal relaxation time (T 1 ) weighted MR images in PBS in vitro (and preliminarily in vivo). Furthermore, the hydrophobic anticancer drug paclitaxel could be encapsulated inside the nanoparticles, and the resulting paclitaxel-loaded nanoemulsions were efficiently incorporated into HeLa cells to suppress cell growth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions.

    PubMed

    James, Antoni W; Nachiappan, Vasanthi

    2014-01-01

    In the current study, when phosphate transporters pho88 and pho86 were knocked out they resulted in significant accumulation (84% and 43%) of triacylglycerol (TAG) during phosphate starvation. However in the presence of phosphate, TAG accumulation was only around 45% in both pho88 and pho86 mutant cells. These observations were confirmed by radio-labeling, fluorescent microscope and RT-PCR studies. The TAG synthesizing genes encoding for acyltransferases namely LRO1 and DGA1 were up regulated. This is the first report for accumulation of TAG in pho88Δ and pho86Δ cells under phosphate starvation conditions. Copyright © 2013. Published by Elsevier Ltd.

  1. UNDERSTANDING, DERIVING, AND COMPUTING BUFFER CAPACITY

    EPA Science Inventory

    Derivation and systematic calculation of buffer capacity is a topic that seems often to be neglected in chemistry courses and given minimal treatment in most texts. However, buffer capacity is very important in the chemistry of natural waters and potable water. It affects corro...

  2. Energy demand and supply in human skeletal muscle.

    PubMed

    Barclay, C J

    2017-04-01

    The energy required for muscle contraction is provided by the breakdown of ATP but the amount of ATP in muscles cells is sufficient to power only a short duration of contraction. Buffering of ATP by phosphocreatine, a reaction catalysed by creatine kinase, extends the duration of activity possible but sustained activity depends on continual regeneration of PCr. This is achieved using ATP generated by oxidative processes and, during intense activity, by anaerobic glycolysis. The rate of ATP breakdown ranges from 70 to 140 mM min -1 during isometric contractions of various intensity to as much as 400 mM min -1 during intense, dynamic activity. The maximum rate of oxidative energy supply in untrained people is ~50 mM min -1 which, if the contraction duty cycle is 0.5 as is often the case in cyclic activity, is sufficient to match an ATP breakdown rate during contraction of 100 mM min -1 . During brief, intense activity the rate of ATP turnover can exceed the rates of PCr regeneration by combined oxidative and glycolytic energy supply, resulting in a net decrease in PCr concentration. Glycolysis has the capacity to produce between 30 and 50 mM of ATP so that, for example, anaerobic glycolysis could provide ATP at an average of 100 mM min -1 over 30 s of exhausting activity. The creatine kinase reaction plays an important role not only in buffering ATP but also in communicating energy demand from sites of ATP breakdown to the mitochondria. In that role, creatine kinases acts to slow and attenuate the response of mitochondria to changes in energy demand.

  3. Erosive and buffering capacities of yogurt.

    PubMed

    Kargul, Betul; Caglar, Esber; Lussi, Adrian

    2007-05-01

    The capability of drinks and foods to resist pH changes brought about by salivary buffering may play an important role in the erosion of dental enamel. The aim of the present study was to measure the initial pH of several types of yogurt and to test the degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite to determine the buffering capacity and related erosive potential of yogurt. Twenty-five milliliters of 7 types of freshly opened yogurt was titrated with 1 mol/L of sodium hydroxide, added in 0.5 mL increments, until the pH reached 10, to assess the total titratable acidity, a measure of the drink's own buffering capacity. The degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite were also calculated, using a computer program developed for this purpose. For statistical analysis, samples were compared using Kruskal-Wallis test. The buffering capacities can be ordered as follows: fruit yogurt >low-fat yogurt >bioyogurt >butter yogurt >natural yogurt >light fruit yogurt >light yogurt. The results suggest that, in vitro, fruit yogurt has the greatest buffering capacity. It can be stated that it is not possible to induce erosion on enamel with any type of yogurt.

  4. Provisioning of nestling Dickcissels in native warm-season grass field buffers

    USGS Publications Warehouse

    Mitchell, K.L.; Riffell, Samuel K.; Burger, L. Wes; Vilella, Francisco

    2012-01-01

    We used video cameras in 2008–2009 to record provisioning activities at Dickcissel (Spiza americana) nests in and around Conservation Reserve Program field buffers in north-central Mississippi, USA. We simultaneously observed foraging flight distances of parents. Provisioning rate (P  =  0.412), biomass (P  =  0.161), and foraging distance (P  =  0.159) did not increase with nestling age. Parents delivered larger items to meet demand associated with older nestlings (P  =  0.010–0.001). This suggests energetic costs of changes in prey selection were less than costs of increasing the number or distance of provisioning trips. Presence of male helpers increased provisioning rate (P < 0.001) but not biomass (P  =  0.992) because males brought smaller prey items (P  =  0.001–0.021). Presence of observers 30 m from the nest reduced provisioning rates (P  =  0.005) and biomass delivered (P  =  0.066). Lack of habitat effects for any aspect of provisioning suggests grass field buffers provided nestling food resources similar to surrounding habitats. Use of continuous video monitoring of nest activity allows well-concealed activities including provisioning and male helping to be directly observed and better quantified.

  5. Conformation of the Phosphate D-alanine Zwitterion in Bacterial Teichoic Acid from Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Garimella, Ravindranath; Halye, Jeffrey L.; Harrison, William; Klebba, Phillip E.; Rice, Charles V.

    2009-01-01

    The conformation of D-alanine (D-Ala) groups of bacterial teichoic acid is a central, yet untested, paradigm of microbiology. The D-Ala binds via the C-terminus, thereby allowing the amine to exist as a free cationic NH3+ group with the ability to form a contact-ion-pair with the nearby anionic phosphate group. This conformation hinders metal chelation by the phosphate because the zwitterion pair is charge neutral. To the contrary, the repulsion of cationic antimicrobial peptides (CAMPs) is attributed to the presence of the D-Ala cation; thus the ion-pair does not form in this model. Solid-state nuclear magnetic resonance (NMR) spectroscopy has been used to measure the distance between amine and phosphate groups within cell wall fragments of Bacillus subtilis. The bacteria were grown on media containing 15N D-Ala and β-chloroalanine racemase inhibitor. The rotational-echo double-resonance (REDOR) pulse sequence was used to measure the internuclear dipolar coupling and the results demonstrate: 1) the metal-free amine-to-phosphate distance is 4.4 Å and 2) the amine-to-phosphate distance increases to 5.4 Å in the presence of Mg2+ ions. As a result, the zwitterion exists in a nitrogen-oxygen ion-pair configuration providing teichoic acid with a positive charge to repel CAMPs. Additionally, the amine of D-Ala does not prevent magnesium chelation in contradiction to the prevailing view of teichoic acids in metal binding. Thus, the NMR-based description of teichoic acid structure resolves the contradictory models, advances the basic understanding of cell wall biochemistry, and provides possible insight into the creation of new antibiotic therapies. PMID:19746945

  6. A comparison of buffered lidocaine versus ELA-Max before peripheral intravenous catheter insertions in children.

    PubMed

    Luhmann, Janet; Hurt, Sarah; Shootman, Mario; Kennedy, Robert

    2004-03-01

    Peripheral intravenous catheter (PIV) insertion is a common, painful experience for many children in the pediatric emergency department. Although local anesthetics such as injected buffered lidocaine have been shown to be effective at reducing pain and anxiety associated with PIV insertion, they are not routinely used. ELA-Max, a topical local anesthetic, has the advantage of needle-free administration but has not been compared with buffered lidocaine for PIV insertion. To compare the reduction of pain and anxiety during PIV insertion provided by subcutaneous buffered 1% lidocaine or topical ELA-Max in children. A randomized trial in children 4 to 17 years old undergoing PIV insertion with 22-gauge catheters was conducted. Children received either buffered lidocaine or ELA-Max. Buffered lidocaine was administered by using 30-gauge needles to inject 0.1 to 0.2 mL subcutaneously just before PIV insertion. ELA-Max was applied to the skin and occluded with Tegaderm 30 minutes before PIV insertion. Self-reported Visual Analog Scale (VAS) questionnaires (rating on a scale of 1-10; 1 = no pain, anxiety) were completed by patients and their parents before PIV insertion to assess baseline perceptions about pain and anxiety associated with PIV insertion and immediately after PIV insertion to assess pain and anxiety associated with the experience. After PIV insertion, the nurse who inserted the PIV also completed a VAS questionnaire assessing technical difficulty and satisfaction with the local anesthesia. A blinded observer also completed a VAS questionnaire to assess pain and anxiety associated with the PIV insertion. Data were analyzed by using chi2 and t tests. Sixty-nine subjects were enrolled, and questionnaires were competed by all (mean age: 12.1 +/- 4.5 years; 61% female). There were no differences for buffered lidocaine and ELA-Max groups in age, gender, race, prior IV experience, or baseline pain and anxiety. There were no significant differences between buffered

  7. Buffer Management Simulation in ATM Networks

    NASA Technical Reports Server (NTRS)

    Yaprak, E.; Xiao, Y.; Chronopoulos, A.; Chow, E.; Anneberg, L.

    1998-01-01

    This paper presents a simulation of a new dynamic buffer allocation management scheme in ATM networks. To achieve this objective, an algorithm that detects congestion and updates the dynamic buffer allocation scheme was developed for the OPNET simulation package via the creation of a new ATM module.

  8. Chemical synthesis of oligonucleotides containing a free sulphydryl group and subsequent attachment of thiol specific probes.

    PubMed Central

    Connolly, B A; Rider, P

    1985-01-01

    Oligonucleotides containing a free sulphydryl group at their 5'-termini have been synthesised and further derivatised with thiol specific probes. The nucleotide sequence required is prepared using standard solid phase phosphoramidite techniques and an extra round of synthesis is then performed using the S-triphenylmethyl O-methoxymorpholinophosphite derivatives of 2-mercaptoethanol, 3-mercaptopropan (1) ol or 6-mercaptohexan (1) ol. After cleavage from the resin and removal of the phosphate and base protecting groups, this yields an oligonucleotide containing an S-triphenylmethyl group attached to the 5'-phosphate group via a two, three or six carbon chain. The triphenylmethyl group can be readily removed with silver nitrate to give the free thiol. With the three and six carbon chain oligonucleotides, this thiol can be used, at pH 8, for the attachment of thiol specific probes as illustrated by the reaction with fluorescent conjugates of iodoacetates and maleiimides. However, oligonucleotides containing a thiol attached to the 5'-phosphate group via a two carbon chain are unstable at pH 8 decomposing to the free 5'-phosphate and so are unsuitable for further derivatisation. PMID:4011448

  9. Social Buffering of Stress in Development: A Career Perspective

    PubMed Central

    Gunnar, Megan R.

    2016-01-01

    This review provides a broad overview of my research group's work on social buffering in human development in the context of the field. Much of the focus is on social buffering of the hypothalamic-pituitary-adrenocortical (HPA) system, one of the two major arms of the mammalian stress system. This focus reflects the centrality of the HPA system in research on social buffering in the fields of developmental psychobiology and developmental science. However, buffering of the cardiovascular and autonomic nervous system is also discussed. The central developmental question in this area derives from attachment theory which argues that the infant's experience of stress and arousal regulation in the context of her early attachment relationships is not an immature form of social buffering experienced in adulthood, but rather the foundation out of which individual differences in the capacity to gain stress relief from social partners emerge. The emergence of social buffering in infancy, changes in social buffering throughout childhood and adolescence, the influence of early experience on later individual differences in social buffering, and critical gaps in our knowledge are described. PMID:28544861

  10. Dynamically-allocated multi-queue buffers for VLSI communication switches

    NASA Technical Reports Server (NTRS)

    Tamir, Yuval; Frazier, Gregory L.

    1992-01-01

    Several buffer structures are discussed and compared in terms of implementation complexity, interswitch handshaking requirements, and their ability to deal with variations in traffic patterns and message lengths. A new design of buffers is presented that provide non-FIFO message handling and efficient storage allocation for variable size packets using linked lists managed by a simple on-chip controller. The new buffer design is evaluated by comparing it to several alternative designs in the context of a multistage interconnection network. The present modeling and simulations show that the new buffer outperforms alternative buffers and can thus be used to improve the performance of a wide variety of systems currently using less efficient buffers.

  11. Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions.

    PubMed

    Gandolfi, Maria Giovanna; Taddei, Paola; Tinti, Anna; De Stefano Dorigo, Elettra; Rossi, Piermaria Luigi; Prati, Carlo

    2010-12-01

    The bioactivity of calcium silicate mineral trioxide aggregate (MTA) cements has been attributed to their ability to produce apatite in presence of phosphate-containing fluids. This study evaluated surface morphology and chemical transformations of an experimental accelerated calcium-silicate cement as a function of soaking time in different phosphate-containing solutions. Cement discs were immersed in Dulbecco's phosphate-buffered saline (DPBS) or Hank's balanced salt solution (HBSS) for different times (1-180 days) and analysed by scanning electron microscopy connected with an energy dispersive X-ray analysis (SEM-EDX) and micro-Raman spectroscopy. SEM-EDX revealed Ca and P peaks after 14 days in DPBS. A thin Ca- and P-rich crystalline coating layer was detected after 60 days. A thicker multilayered coating was observed after 180 days. Micro-Raman disclosed the 965-cm(-1) phosphate band at 7 days only on samples stored in DPBS and later the 590- and 435-cm(-1) phosphate bands. After 60-180 days, a layer approximately 200-900 μm thick formed displaying the bands of carbonated apatite (at 1,077, 965, 590, 435 cm(-1)) and calcite (at 1,088, 713, 280 cm(-1)). On HBSS-soaked, only calcite bands were observed until 90 days, and just after 180 days, a thin apatite-calcite layer appeared. Micro-Raman and SEM-EDX demonstrated the mineralization induction capacity of calcium-silicate cements (MTAs and Portland cements) with the formation of apatite after 7 days in DPBS. Longer time is necessary to observe bioactivity when cements are immersed in HBSS.

  12. Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal

    PubMed Central

    Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana

    2014-01-01

    Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water. PMID:25554735

  13. Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding.

    PubMed

    Bruck, R; Melnik, E; Muellner, P; Hainberger, R; Lämmerhofer, M

    2011-05-15

    We report the development of a Mach-Zehnder interferometer biosensor based on a high index contrast polymer material system and the demonstration of label-free online measurement of biotin-streptavidin binding on the sensor surface. The surface of the polyimide waveguide core layer was functionalized with 3-mercaptopropyl trimethoxy silane and malemide tagged biotin. Several concentrations of Chromeon 642-streptavidin dissolved in phosphate buffered saline solution were rinsed over the functionalized sensor surface by means of a fluidic system and the biotin-streptavidin binding process was observed in the output signal of the interferometer at a wavelength of 1310 nm. Despite the large wavelength and the comparatively low surface sensitivity of the sensor system due to the low index contrast in polymer material systems compared to inorganic material systems, we were able to resolve streptavidin concentrations of down to 0.1 μg/ml. The polymer-based optical sensor design is fully compatible with cost-efficient mass production technologies such as injection molding and spin coating, which makes it an attractive alternative to inorganic optical sensors. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Field effect transistors improve buffer amplifier

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Unity gain buffer amplifier with a Field Effect Transistor /FET/ differential input stage responds much faster than bipolar transistors when operated at low current levels. The circuit uses a dual FET in a unity gain buffer amplifier having extremely high input impedance, low bias current requirements, and wide bandwidth.

  15. Agarose electrophoresis of DNA in discontinuous buffers, using a horizontal slab apparatus and a buffer system with improved properties.

    PubMed

    Zsolnai, A; Orbán, L; Chrambach, A

    1993-03-01

    Using a horizontal slab apparatus with a buffer in the reservoirs at the level of the gel ("sea-level electrophoresis"), the retrograde discontinuous buffer system reported by Wiltfang et al. for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins was applied to DNA electrophoresis. This application yielded the advantages of an increased displacement rate of the moving boundary front and a decrease in the concentration of the counterion base in the resolving phase, which yielded reduced relative mobility values at equivalent gel concentrations and practicable low buffer concentrations. The change of relative mobilities (Rf) with a variation of field strength is decreased compared to that of the migration rate in the continuous Tris-boric-acid-EDTA (TBE) buffer and thus the robustness of the system is improved, as well as the efficiency of separation. The system of Wiltfang et al. has in common with previously described discontinuous DNA system, that it is able to stack DNA from dilute samples and is insensitive to sample components with lower net mobilities than DNA, such as acetate. However, the variance of Rf at constant current density in the discontinuous buffer system is not improved over that of the migration rate at constant field strength in the continuous TBE buffer.

  16. Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Grant, David M; Palmer, Graham; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2015-10-01

    Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period. © 2014 Wiley Periodicals, Inc.

  17. Buffer Zone Requirements for Soil Fumigant Applications

    EPA Pesticide Factsheets

    Updated pesticide product labels require fumigant users to establish a buffer zone around treated fields to reduce risks to bystanders. Useful information includes tarp testing guidance and a buffer zone calculator.

  18. Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers

    PubMed Central

    Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita

    2016-01-01

    Background and Aims Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. Methods The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G0/G1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain–nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Key Results Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Conclusions Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members

  19. Gilliam County Riparian Buffers; 2003-2004 Annual Reports.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coiner, Josh

    Interest appears to be at an all-time high for riparian conservation programs in Gilliam County. With the recently added Herbaceous Buffer and the already established CREP program interest is booming. However, more and more people are turning towards the herbaceous buffer because of expense. The riparian forest buffer is becoming too expensive. Even with the excellent cost share and incentives landowners are having trouble with Farm Service Agency's payment limitation. Because of this payment limitation landowners are not receiving their full rental and incentive payments, usually in year one. This has cooled the installation of riparian forest buffers and peakedmore » interest in the CP-29 (Herbaceous Buffer for Wildlife). Either way, riparian lands are being enhanced and water quality is being improved. Year three should be very similar to the accomplishments of year 2. There has already been several projects proposed that may or may not be approved during year 3. I am currently working on three projects that are all over 2.5 miles long on each side and total anywhere from 60 to 250 acres in size. Along with these three projects there at least seven small projects being proposed. Four of those projects are riparian forest buffers and the remaining are herbaceous buffers.« less

  20. Cell-free protein synthesis energized by slowly-metabolized maltodextrin

    PubMed Central

    Wang, Yiran; Zhang, Y-H Percival

    2009-01-01

    Background Cell-free protein synthesis (CFPS) is a rapid and high throughput technology for obtaining proteins from their genes. The primary energy source ATP is regenerated from the secondary energy source through substrate phosphorylation in CFPS. Results Distinct from common secondary energy sources (e.g., phosphoenolpyruvate – PEP, glucose-6-phosphate), maltodextrin was used for energizing CFPS through substrate phosphorylation and the glycolytic pathway because (i) maltodextrin can be slowly catabolized by maltodextrin phosphorylase for continuous ATP regeneration, (ii) maltodextrin phosphorylation can recycle one phosphate per reaction for glucose-1-phosphate generation, and (iii) the maltodextrin chain-shortening reaction can produce one ATP per glucose equivalent more than glucose can. Three model proteins, esterase 2 from Alicyclobacillus acidocaldarius, green fluorescent protein, and xylose reductase from Neurospora crassa were synthesized for demonstration. Conclusion Slowly-metabolized maltodextrin as a low-cost secondary energy compound for CFPS produced higher levels of proteins than PEP, glucose, and glucose-6-phospahte. The enhancement of protein synthesis was largely attributed to better-controlled phosphate levels (recycling of inorganic phosphate) and a more homeostatic reaction environment. PMID:19558718

  1. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  2. A mediator-free glucose biosensor based on glucose oxidase/chitosan/α-zirconium phosphate ternary biocomposite.

    PubMed

    Liu, Li-Min; Wen, Jiwu; Liu, Lijun; He, Deyong; Kuang, Ren-yun; Shi, Taqing

    2014-01-15

    A novel glucose oxidase/chitosan/α-zirconium phosphate (GOD/chitosan/α-ZrP) ternary biocomposite was prepared by co-intercalating glucose oxidase (GOD) and chitosan into the interlayers of α-zirconium phosphate (α-ZrP) via a delamination-reassembly procedure. The results of X-ray diffraction, infrared spectroscopy, circular dichroism, and ultraviolet spectrum characterizations indicated not only the layered and hybrid structure of the GOD/chitosan/α-ZrP ternary biocomposite but also the recovered activity of the intercalated GOD improved by the co-intercalated chitosan. By depositing the GOD/chitosan/α-ZrP biocomposite film onto a glassy carbon electrode, the direct electrochemistry of the intercalated GOD was achieved with a fast electron transfer rate constant, k(s), of 7.48±3.52 s(-1). Moreover, this GOD/chitosan/α-ZrP biocomposite modified electrode exhibited a sensitive response to glucose in the linear range of 0.25-8.0 mM (R=0.9994, n=14), with a determination limit of 0.076 mM. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers.

    PubMed

    Fuller, Franklin D; Gul, Sheraz; Chatterjee, Ruchira; Burgie, E Sethe; Young, Iris D; Lebrette, Hugo; Srinivas, Vivek; Brewster, Aaron S; Michels-Clark, Tara; Clinger, Jonathan A; Andi, Babak; Ibrahim, Mohamed; Pastor, Ernest; de Lichtenberg, Casper; Hussein, Rana; Pollock, Christopher J; Zhang, Miao; Stan, Claudiu A; Kroll, Thomas; Fransson, Thomas; Weninger, Clemens; Kubin, Markus; Aller, Pierre; Lassalle, Louise; Bräuer, Philipp; Miller, Mitchell D; Amin, Muhamed; Koroidov, Sergey; Roessler, Christian G; Allaire, Marc; Sierra, Raymond G; Docker, Peter T; Glownia, James M; Nelson, Silke; Koglin, Jason E; Zhu, Diling; Chollet, Matthieu; Song, Sanghoon; Lemke, Henrik; Liang, Mengning; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Boal, Amie K; Bollinger, J Martin; Krebs, Carsten; Högbom, Martin; Phillips, George N; Vierstra, Richard D; Sauter, Nicholas K; Orville, Allen M; Kern, Jan; Yachandra, Vittal K; Yano, Junko

    2017-04-01

    X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.

  4. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Franklin D.; Gul, Sheraz; Chatterjee, Ruchira

    X-ray crystallography at X-ray free-electron laser (XFEL) sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy (XES), both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing new insights into the interplay between the protein structure/dynamics and chemistry at an active site. However, implementing such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly impacts the data quality. We present here a new, robust way of delivering controlled sample amountsmore » on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.« less

  5. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers

    DOE PAGES

    Fuller, Franklin D.; Gul, Sheraz; Chatterjee, Ruchira; ...

    2017-02-27

    X-ray crystallography at X-ray free-electron laser (XFEL) sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy (XES), both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing new insights into the interplay between the protein structure/dynamics and chemistry at an active site. However, implementing such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly impacts the data quality. We present here a new, robust way of delivering controlled sample amountsmore » on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.« less

  6. Comparison of animal infectivity, excystation, and fluorogenic dye as measures of Giardia muris cyst inactivation by ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labatiuk, C.W.; Finch, G.R.; Belosevic, M.

    1991-11-01

    Giardia muris cyst viability after ozonation was compared by using fluorescein diacetate-ethidium bromide staining, the C3H/HeN mouse-G. muris model, and in vitro excystation. Bench-scale batch experiments were conducted under laboratory conditions (pH 6.7, 22C) in ozone-demand-free phosphate buffer. There was a significant difference between fluorogenic staining and infectivity with fluorogenic staining overestimating viability compared with infectivity estimates of viability. This suggests that viable cysts as indicated by fluorogenic dyes may not be able to complete the life cycle and produce an infection. No significant differences between infectivity and excystation and between fluorogenic staining and excystation were detected for inactivations upmore » to 99.9%. Only animal infectivity had the sensitivity to detect inactivations greater than 99.9%. Therefore, the animal model is the best method currently available for detecting high levels of G. muris cyst inactivation.« less

  7. Fabrication of dicalcium phosphate dihydrate-coated β-TCP granules and evaluation of their osteoconductivity using experimental rats.

    PubMed

    Shariff, Khairul Anuar; Tsuru, Kanji; Ishikawa, Kunio

    2017-06-01

    β-Tricalcium phosphate (β-TCP) has attracted much attention as an artificial bone substitute owing to its biocompatibility and osteoconductivity. In this study, osteoconductivity of β-TCP bone substitute was enhanced without using growth factors or cells. Dicalcium phosphate dihydrate (DCPD), which is known to possess the highest solubility among calcium phosphates, was coated on β-TCP granules by exposing their surface with acidic calcium phosphate solution. The amount of coated DCPD was regulated by changing the reaction time between β-TCP granules and acidic calcium phosphate solution. Histomorphometry analysis obtained from histological results revealed that the approximately 10mol% DCPD-coated β-TCP granules showed the largest new bone formation compared to DCPD-free β-TCP granules, approximately 2.5mol% DCPD-coated β-TCP granules, or approximately 27mol% DCPD-coated β-TCP granules after 2 and 4weeks of implantation. Based on this finding, we demonstrate that the osteoconductivity of β-TCP granules could be improved by coating their surface with an appropriate amount of DCPD. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes voyage...

  9. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes voyage...

  10. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes voyage...

  11. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes voyage...

  12. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes voyage...

  13. 5-Aminosalicylic acid prevents oxidant mediated damage of glyceraldehyde-3-phosphate dehydrogenase in colon epithelial cells

    PubMed Central

    McKenzie, S; Doe, W; Buffinton, G

    1999-01-01

    Background—Reactive oxygen and nitrogen derived species produced by activated neutrophils have been implicated in the damage of mucosal proteins including the inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the active inflammatory lesion in patients with inflammatory bowel disease (IBD). This study investigated the efficacy of currently used IBD therapeutics to prevent injury mediated by reactive oxygen and nitrogen derived species. 
Methods—GAPDH activity of human colon epithelial cells was used as a sensitive indicator of injury produced by reactive oxygen and nitrogen derived species. HCT116 cells (106/ml phosphate buffered saline; 37°C) were incubated in the presence of 5-aminosalicylic acid (5-ASA), 6-mercaptopurine, methylprednisolone, or metronidazole before exposure to H2O2, HOCl, or NO in vitro. HCT116 cell GAPDH enzyme activity was determined by standard procedures. Cell free reactions between 5-ASA and HOCl were analysed by spectrophotometry and fluorimetry to characterise the mechanism of oxidant scavenging. 
Results—GAPDH activity of HCT116 cells was inhibited by the oxidants tested: the concentration that produced 50% inhibition (IC50) was 44.5 (2.1) µM for HOCl, 379.8 (21.3) µM for H2O2, and 685.8 (103.8) µM for NO (means (SEM)). 5-ASA was the only therapeutic compound tested to show efficacy (p<0.05) against HOCl mediated inhibition of enzyme activity; however, it was ineffective against H2O2 and NO mediated inhibition of GAPDH. Methylprednisolone, metronidazole, and the thiol-containing 6-mercaptopurine were ineffective against all oxidants. Studies at ratios of HOCl:5-ASA achievable in the mucosa showed direct scavenging to be the mechanism of protection of GAPDH activity. Mixing 5-ASA and HOCl before addition to the cells resulted in significantly greater protection of GAPDH activity than when HOCl was added to cells preincubated with 5-ASA. The addition of 5-ASA after HOCl exposure did not restore GAPDH activity

  14. Development of Cell Analysis Software for Cultivated Corneal Endothelial Cells.

    PubMed

    Okumura, Naoki; Ishida, Naoya; Kakutani, Kazuya; Hongo, Akane; Hiwa, Satoru; Hiroyasu, Tomoyuki; Koizumi, Noriko

    2017-11-01

    To develop analysis software for cultured human corneal endothelial cells (HCECs). Software was designed to recognize cell borders and to provide parameters such as cell density, coefficient of variation, and polygonality of cultured HCECs based on phase contrast images. Cultured HCECs with high or low cell density were incubated with Ca-free and Mg-free phosphate-buffered saline for 10 minutes to reveal the cell borders and were then analyzed with software (n = 50). Phase contrast images showed that cell borders were not distinctly outlined, but these borders became more distinctly outlined after phosphate-buffered saline treatment and were recognized by cell analysis software. The cell density value provided by software was similar to that obtained using manual cell counting by an experienced researcher. Morphometric parameters, such as the coefficient of variation and polygonality, were also produced by software, and these values were significantly correlated with cell density (Pearson correlation coefficients -0.62 and 0.63, respectively). The software described here provides morphometric information from phase contrast images, and it enables subjective and noninvasive quality assessment for tissue engineering therapy of the corneal endothelium.

  15. Urban Runoff: Model Ordinances for Aquatic Buffers

    EPA Pesticide Factsheets

    Aquatic Buffers serve as natural boundaries between local waterways and existing development. The model and example ordinaces below provide suggested language or technical guidance designed to create the most effective stream buffer zones possible.

  16. The Multimission Image Processing Laboratory's virtual frame buffer interface

    NASA Technical Reports Server (NTRS)

    Wolfe, T.

    1984-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied interfaces. This variety of architectures and interfaces creates software development, maintenance and portability problems for application programs. Several machine-dependent graphics standards such as ANSI Core and GKS are available, but none of them are adequate for image processing. Therefore, the Multimission Image Processing laboratory project has implemented a programmer level virtual frame buffer interface. This interface makes all frame buffers appear as a generic frame buffer with a specified set of characteristics. This document defines the virtual frame uffer interface and provides information such as FORTRAN subroutine definitions, frame buffer characteristics, sample programs, etc. It is intended to be used by application programmers and system programmers who are adding new frame buffers to a system.

  17. Inositol phosphates in the environment.

    PubMed Central

    Turner, Benjamin L; Papházy, Michael J; Haygarth, Philip M; McKelvie, Ian D

    2002-01-01

    The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment. PMID:12028785

  18. Heed the head: buffer benefits along headwater streams

    Treesearch

    Rhonda Mazza; Deanna (Dede) Olson

    2015-01-01

    Since the Northwest Forest Plan implemented riparian buffers along non-fish bearing streams in 1994, there have been questions about how wide those buffers need to be to protect aquatic and riparian resources from upland forest management activities. The Density Management and Riparian Buffer Study of western Oregon, also initiated in 1994, examines the effects of...

  19. Protein synthesis by perfused hearts from normal and insulin-deficient rats. Effect of insulin in the presence of glucose and after depletion of glucose, glucose 6-phosphate and glycogen

    PubMed Central

    Chain, Ernst B.; Sender, Peter M.

    1973-01-01

    In the absence of glucose, insulin stimulated the incorporation of 14C-labelled amino acids into protein by perfused rat hearts that had been previously substantially depleted of endogenous glucose, glucose 6-phosphate and glycogen by substrate-free perfusion. This stimulation was also demonstrated in hearts perfused with buffer containing 2-deoxy-d-glucose, an inhibitor of glucose utilization. It is concluded that insulin exerts an effect on protein synthesis independent of its action on glucose metabolism. Streptozotocin-induced diabetes was found to have no effect either on 14C-labelled amino acid incorporation by the perfused heart or on the polyribosome profile and amino acid-incorporating activity of polyribosomes prepared from the non-perfused hearts of these insulin-deficient rats, which show marked abnormalities in glucose metabolism. Protein synthesis was not diminished in the perfused hearts from rats treated with anti-insulin antiserum. The significance of these findings is discussed in relation to the reported effects of insulin deficiency on protein synthesis in skeletal muscle. PMID:4269308

  20. Chemical Bath Deposited Zinc Sulfide Buffer Layers for Copper Indium Gallium Sulfur-selenide Solar Cells and Device Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Sambhu N.; Olsen, Larry C.

    2005-01-03

    Cd free CIGSS thin film solar cell structures with a MgF2/TCO/CGD-ZnS/CIGSS/Mo/SLG structure have been fabricated using chemical bath deposited (CBD)-ZnS buffer layers and high quality CIGSS absorber layers supplied from Shell Solar Industries. The use of CBD-ZnS, which is a higher band gap materials than CdS, improved the quantum efficiency of fabricated cells at lower wavelengths, leading to an increase in short circuit current. The best cell to date yielded an active area (0.43 cm2) efficiency of 13.3%. This paper also presents a discussion of the issues relating to the use of the CBD-ZnS buffer materials for improving device performance.

  1. High-port low-latency optical switch architecture with optical feed-forward buffering for 256-node disaggregated data centers.

    PubMed

    Terzenidis, Nikos; Moralis-Pegios, Miltiadis; Mourgias-Alexandris, George; Vyrsokinos, Konstantinos; Pleros, Nikos

    2018-04-02

    Departing from traditional server-centric data center architectures towards disaggregated systems that can offer increased resource utilization at reduced cost and energy envelopes, the use of high-port switching with highly stringent latency and bandwidth requirements becomes a necessity. We present an optical switch architecture exploiting a hybrid broadcast-and-select/wavelength routing scheme with small-scale optical feedforward buffering. The architecture is experimentally demonstrated at 10Gb/s, reporting error-free performance with a power penalty of <2.5dB. Moreover, network simulations for a 256-node system, revealed low-latency values of only 605nsec, at throughput values reaching 80% when employing 2-packet-size optical buffers, while multi-rack network performance was also investigated.

  2. FIFO Buffer for Asynchronous Data Streams

    NASA Technical Reports Server (NTRS)

    Bascle, K. P.

    1985-01-01

    Variable-rate, asynchronous data signals from up to four measuring instruments or other sources combined in first-in/first-out (FIFO) buffer for transmission on single channel. Constructed in complementary metal-oxide-semiconductor (CMOS) logic, buffer consumes low power (only 125 mW at 5V) and conforms to aerospace standards of reliability and maintainability.

  3. Energizing Eukaryotic Cell-Free Protein Synthesis With Glucose Metabolism

    PubMed Central

    Hodgman, C. Eric; Jewett, Michael C.

    2015-01-01

    Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 μg mL−1 active luciferase in batch reactions with 16mM glucose and 25mM phosphate, resulting in a 16% increase in relative protein yield (μg protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms. PMID:26054976

  4. A Study for Tooth Bleaching via Carbamide Peroxide-Loaded Hollow Calcium Phosphate Spheres.

    PubMed

    Qin, Tao; Mellgren, Torbjörn; Jefferies, Steven; Xia, Wei; Engqvist, Håkan

    2016-12-26

    The objective of this study was to investigate if a prolonged bleaching effect of carbamide peroxide-loaded hollow calcium phosphate spheres (HCPS) can be achieved. HCPS was synthesized via a hydrothermal reaction method. Carbamide peroxide (CP) was-loaded into HCPS by mixing with distilled water as solvent. We developed two bleaching gels containing CP-loaded HCPS: one gel with low HP concentration as at-home bleaching gel, and one with high HP concentration as in-office gel. Their bleaching effects on stained human permanent posterior teeth were investigated by measuring the color difference before and after bleaching. The effect of gels on rhodamine B degradation was also studied. To investigate the potential effect of remineralization of using HCPS, bleached teeth were soaked in phosphate buffer solution (PBS) containing calcium and magnesium ions. Both bleaching gels had a prolonged whitening effect, and showed a strong ability to degrade rhodamine B. After soaking in PBS for 3 days, remineralization was observed at the sites where HCPS attached to the teeth surface. CP-loaded HCPS could prolong the HP release behavior and improve the bleaching effect. HCPS was effective in increasing the whitening effect of carbamide peroxide and improving remineralization after bleaching process.

  5. Influence of some mononucleotides and their corresponding nucleosides on the metabolism of carbohydrates in the isolated rat diaphragm muscle

    PubMed Central

    Beloff-Chain, Anne; Betto, P.; Bleszynski, W.; Catanzaro, Raffaella; Chain, E. B.; Dmitrovskii, A. A.; Longinotti, L.; Pocchiari, F.

    1965-01-01

    1. The influence of ATP on glucose metabolism was studied in the isolated rat diaphragm; it was shown that ATP increases the oxidation of glucose and the aerobic conversion of glucose into lactate, whereas it decreases glycogen synthesis. There was no influence of ATP on the anaerobic formation of lactate from glucose. 2. A maximum effect of ATP on the oxidation of glucose (about 160% increase) was obtained in the presence of 10mm-ATP; in the presence of 2mm-ATP the effect was about 65%, and was approximately constant from 10 to 90min. incubation period. 3. In a phosphate-free tris-buffered medium the oxidation of glucose was considerably decreased, but the percentage stimulation by ATP was about the same as in a phosphate-buffered medium. 4. ATP was shown to increase the oxidation of fructose, glucose 6-phosphate, glucose 1-phosphate, fructose 1,6-diphosphate and, to a much smaller extent, pyruvate. 5. ADP stimulated the oxidation of glucose to the same extent as ATP at a concentration of 2mm and the effect with AMP was only slightly less; IMP and adenosine had only a small stimulatory effect at this concentration, whereas inosine had no effect. PMID:16749165

  6. Approximate Analytical Time-Dependent Solutions to Describe Large-Amplitude Local Calcium Transients in the Presence of Buffers

    PubMed Central

    Mironova, Lidia A.; Mironov, Sergej L.

    2008-01-01

    Local Ca2+ signaling controls many neuronal functions, which is often achieved through spatial localization of Ca2+ signals. These nanodomains are formed due to combined effects of Ca2+ diffusion and binding to the cytoplasmic buffers. In this article we derived simple analytical expressions to describe Ca2+ diffusion in the presence of mobile and immobile buffers. A nonlinear character of the reaction-diffusion problem was circumvented by introducing a logarithmic approximation of the concentration term. The obtained formulas reproduce free Ca2+ levels up to 50 μM and their changes in the millisecond range. Derived equations can be useful to predict spatiotemporal profiles of large-amplitude [Ca2+] transients, which participate in various physiological processes. PMID:17872951

  7. Buffer Gas Experiments in Mercury (Hg+) Ion Clock

    NASA Technical Reports Server (NTRS)

    Chung, Sang K.; Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2004-01-01

    We describe the results of the frequency shifts measured from various buffer gases that might be used as a buffer gas to increase the loading efficiency and cooling of ions trapped in a small mercury ion clock. The small mass, volume and power requirement of space clock precludes the use of turbo pumps. Hence, a hermetically sealed vacuum system, incorporating a suitable getter material with a fixed amount of inert buffer gas may be a practical alternative to the groundbased system. The collision shifts of 40,507,347.996xx Hz clock transition for helium, neon and argon buffer gases were measured in the ambient earth magnetic field. In addition to the above non-getterable inert gases we also measured the frequency shifts due to getterable, molecular hydrogen and nitrogen gases which may be used as buffer gases when incorporated with a miniature ion pump. We also examined the frequency shift due to the low methane gas partial pressure in a fixed higher pressure neon buffer gas environment. Methane gas interacted with mercury ions in a peculiar way as to preserve the ion number but to relax the population difference in the two hyperfine clock states and thereby reducing the clock resonance signal. The same population relaxation was also observed for other molecular buffer gases (N H,) but at much reduced rate.

  8. The Interplay between Feedback and Buffering in Cellular Homeostasis.

    PubMed

    Hancock, Edward J; Ang, Jordan; Papachristodoulou, Antonis; Stan, Guy-Bart

    2017-11-22

    Buffering, the use of reservoirs of molecules to maintain concentrations of key molecular species, and negative feedback are the primary known mechanisms for robust homeostatic regulation. To our knowledge, however, the fundamental principles behind their combined effect have not been elucidated. Here, we study the interplay between buffering and negative feedback in the context of cellular homeostasis. We show that negative feedback counteracts slow-changing disturbances, whereas buffering counteracts fast-changing disturbances. Furthermore, feedback and buffering have limitations that create trade-offs for regulation: instability in the case of feedback and molecular noise in the case of buffering. However, because buffering stabilizes feedback and feedback attenuates noise from slower-acting buffering, their combined effect on homeostasis can be synergistic. These effects can be explained within a traditional control theory framework and are consistent with experimental observations of both ATP homeostasis and pH regulation in vivo. These principles are critical for studying robustness and homeostasis in biology and biotechnology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Methods for improved growth of group III nitride buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphologymore » of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).« less

  10. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation.

    PubMed

    Duarte, Laís T; Bolfarini, Claudemiro; Biaggio, Sonia R; Rocha-Filho, Romeu C; Nascente, Pedro A P

    2014-08-01

    The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Analysis of selected sugars and sugar phosphates in mouse heart tissue by reductive amination and liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Han, Jun; Tschernutter, Vera; Yang, Juncong; Eckle, Tobias; Borchers, Christoph H

    2013-06-18

    Sensitive and reliable analysis of sugars and sugar phosphates in tissues and cells is essential for many biological and cell engineering studies. However, the successful analysis of these endogenous compounds in biological samples by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) is often difficult because of their poor chromatographic retention properties in reversed-phase LC, the complex biological matrices, and the ionization suppression in ESI. This situation is further complicated by the existence of their multiple structural isomers in vivo. This work describes the combination of reductive amination using 3-amino-9-ethylcarbazole, with a new LC approach using a pentafluorophenyl core-shell ultrahigh performance (UP) LC column and methylphosphonic acid as an efficient tail-sweeping reagent for improved chromatographic separation. This new method was used for selected detection and accurate quantitation of the major free and phosphorylated reducing sugars in mouse heart tissue. Among the detected compounds, accurate quantitation of glyceraldehyde, ribose, glucose, glycerylaldehyde-3-phosphate, ribose-5-phosphate, glucose-6-phosphate, and mannose-6-phosphate was achieved by UPLC/multiple-reaction monitoring (MRM)-MS, with analytical accuracies ranging from 87.4% to 109.4% and CVs of ≤8.5% (n = 6). To demonstrate isotope-resolved metabolic profiling, we used UPLC/quadrupole time-of-flight (QTOF)-MS to analyze the isotope distribution patterns of C3 to C6 free and phosphorylated reducing sugars in heart tissues from (13)C-labeled wild type and knockout mice. In conclusion, the preanalytical derivatization-LC/ESI-MS method has resulted in selective determination of free and phosphorylated reducing sugars without the interferences from their nonreducing structural isomers in mouse heart tissue, with analytical sensitivities in the femtomole to low picomole range.

  12. a Buffer Analysis Based on Co-Location Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Huang, S.; Wang, H.; Zhang, R.; Wang, Q.; Sha, H.; Liu, X.; Pan, Q.

    2018-05-01

    Buffer analysis is a common tool of spatial analysis, which deals with the problem of proximity in GIS. Buffer analysis researches the relationship between the center object and other objects around a certain distance. Buffer analysis can make the complicated problem be more scientifically and visually, and provide valuable information for users. Over the past decades, people have done a lot of researches on buffer analysis. Along with the constantly improvement of spatial analysis accuracy needed by people, people hope that the results of spatial analysis can be more exactly express the actual situation. Due to the influence of some certain factors, the impact scope and contact range of a geographic elements on the surrounding objects are uncertain. As all we know, each object has its own characteristics and changing rules in the nature. They are both independent and relative to each other. However, almost all the generational algorithms of existing buffer analysis are based on fixed buffer distance, which do not consider the co-location relationship among instances. Consequently, it is a waste of resource to retrieve the useless information, and useful information is ignored.

  13. Comparative evaluation and correlation of salivary total antioxidant capacity and salivary pH in caries-free and severe early childhood caries children.

    PubMed

    Muchandi, Sneha; Walimbe, Hrishikesh; Bijle, Mohammed Nadeem Ahmed; Nankar, Meenakshi; Chaturvedi, Srishti; Karekar, Priyanka

    2015-03-01

    Dental caries is a major problem in preschool children. The contribution of saliva in providing defense during caries process is of primary importance. pH buffer capacity through bicarbonate, phosphate and protein buffer systems have universal acceptance as a caries defense mechanism. Antioxidant capacity of saliva can constitute a first line of defense against chronic degenerative diseases including dental caries. Till date, no study is presented with salivary antioxidant capacity of younger children affected with severe early childhood caries with its salivary pH correlation. Hence, this study was carried out to compare, evaluate and correlate the salivary total antioxidant capacity (TAC) and salivary pH of children with caries-free and severe early childhood caries. Fifty children from ages 3 to 5 years divided into two study groups had undergone screening. Group I (n = 25) with severe early childhood caries (S-ECC) and group II (n = 25) who were caries free. Unstimulated whole saliva of subjects were in the collection during the study by draining method. Salivary pH determination of saliva samples was done using pH indicator paper strips. The TAC was done using an antioxidant assay with the help of a spectrophotometer at wavelength 532 nm. The means of salivary pH and TAC were subjected to analysis using unpaired student 't' test and correlation was determined using Pearsons correlation coefficient analysis. Mean salivary pH was higher in group II (7.46 ± 0.37). Mean TAC was greater in group I (1.82 ± 0.19). A statistically significant negative correlation as seen between TAC and salivary pH in S-ECC patients. The study concludes that salivary TAC increases in patients with S-ECC are by that showing a high indirect relationship with salivary pH.

  14. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi

    2012-09-01

    In this study, we have investigated the post-adsorption process of ytterbium (Yb) phosphate nano-particle formation by Saccharomyces cerevisiae (yeast). The yeast grown in P-rich medium were exposed to 1.44 × 10-4 mol/L Yb(III) solution for 2-120 h, and 2 months at 25 ± 1 °C at an initial pH of 3, 4, or 5, respectively. Ytterbium concentrations in solutions decreased as a function of exposure time. Field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM), transmission electron microscopy (TEM), and synchrotron-based extended X-ray absorption fine structure (EXAFS) analyses revealed that nano-sized blocky Yb phosphate with an amorphous phase formed on the yeast cells surfaces in the solutions with Yb. These nano-sized precipitates that formed on the cell surfaces remained stable even after 2 months of exposure at 25 ± 1 °C around neutral pHs. The EXAFS data revealed that the chemical state of the accumulated Yb on the cell surfaces changed from the adsorption on both phosphate and carboxyl sites at 30 min to Yb phosphate precipitates at 5 days, indicating the Yb-phosphate precipitation as a major post-adsorption process. In addition, the precipitation of Yb phosphate occurred on cell surfaces during 7 days of exposure in Yb-free solution after 2 h of exposure (short-term Yb adsorption) in Yb solution. These results suggest that the released P from the inside of yeast cells reacted with adsorbed Yb on cell surfaces, resulting in the formation of Yb precipitates, even though no P was added to the exposure solution. In an abiotic system, the EXAFS data showed that the speciation of sorbed Yb on the reference materials, carboxymethyl cellulose and Ln resin, did not change even when the Yb was exposed to P solution, without forming Yb phosphate precipitates. This result strongly suggests that the cell surface of the yeast plays an important role in the Yb-phosphate precipitation process, not only as a carrier of the

  15. Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with divalent metal ions and the substrate ribulose 5-phosphate: implications for the catalytic mechanism.

    PubMed

    Steinbacher, Stefan; Schiffmann, Susanne; Richter, Gerald; Huber, Robert; Bacher, Adelbert; Fischer, Markus

    2003-10-24

    Skeletal rearrangements of carbohydrates are crucial for many biosynthetic pathways. In riboflavin biosynthesis ribulose 5-phosphate is converted into 3,4-dihydroxy-2-butanone 4-phosphate while its C4 atom is released as formate in a sequence of metal-dependent reactions. Here, we present the crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with the substrate ribulose 5-phosphate at a dimetal center presumably consisting of non-catalytic zinc and calcium ions at 1.7-A resolution. The carbonyl group (O2) and two out of three free hydroxyl groups (OH3 and OH4) of the substrate are metal-coordinated. We correlate previous mutational studies on this enzyme with the present structural results. Residues of the first coordination sphere involved in metal binding are indispensable for catalytic activity. Only Glu-185 of the second coordination sphere cannot be replaced without complete loss of activity. It contacts the C3 hydrogen atom directly and probably initiates enediol formation in concert with both metal ions to start the reaction sequence. Mechanistic similarities to Rubisco acting on the similar substrate ribulose 1,5-diphosphate in carbon dioxide fixation as well as other carbohydrate (reducto-) isomerases are discussed.

  16. Mineral induced formation of sugar phosphates

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Eschenmoser, A.; Gedulin, B.; Hui, S.; Arrhenius, G.

    1995-01-01

    Glycolaldehyde phosphate, sorbed from highly dilute, weakly alkaline solution into the interlayer of common expanding sheet structure metal hydroxide minerals, condenses extensively to racemic aldotetrose-2, 4-diphophates, and aldohexose-2, 4, 6-triphosphates. The reaction proceeds mainly through racemic erythrose-2, 4-phosphate, and terminates with a large fraction of racemic altrose-2, 4, 6-phosphate. In the absence of an inductive mineral phase, no detectable homogeneous reaction takes place in the concentration- and pH range used. The reactant glycolaldehyde phosphate is practically completely sorbed within an hour from solutions with concentrations as low as 50 micron; the half-time for conversion to hexose phosphates is of the order of two days at room temperature and pH 9.5. Total production of sugar phosphates in the mineral interlayer is largely independent of the glycolaldehyde phosphate concentration in the external solution, but is determined by the total amount of GAP offered for sorption up to the capacity of the mineral. In the presence of equimolar amounts of rac-glyceraldehyde-2-phosphate, but under otherwise similar conditions, aldopentose-2, 4, -diphosphates also form, but only as a small fraction of the hexose-2, 4, 6-phosphates.

  17. Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers.

    PubMed

    Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita

    2016-11-01

    Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G 0 /G 1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain-nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members belonging to this highly complex polyploid family

  18. Impact of endocrine hyperfunction and phosphate wasting on bone in McCune-Albright syndrome.

    PubMed

    Lala, R; Matarazzo, P; Andreo, M; Defilippi, C; de Sanctis, C

    2002-01-01

    Skin dysplasia, as café-au-lait spots, bone fibrous dysplasia and peripheral endocrinopathies are the main clinical features of McCune-Albright syndrome (MAS). This illness is due to activating mutations of the Gsalpha protein and is spread with a mosaic pattern in affected tissues that consist of intermixed areas of normal and mutated cells. Peripheral endocrine secretion, free of hypothalamic pituitary control, is the hallmark of the endocrine syndromes: precocious puberty, Cushing's syndrome, hyperthyroidism and gigantism/acromegaly. In addition, phosphate wasting as hyperphosphaturia is often present. The impact of hormonal hypersecretion and phosphate loss on the bones of patients with MAS is poorly understood both in normal and fibrous bone tissue. As hypercortisolism and hyperthyroidism increase bone resorption, hyperestrogenism and growth hormone hypersecretion stimulate bone growth and mineralization, and phosphate wasting reduces bone mineral content. All these actions can be exerted at varying times and degrees in a single patient on lesional and non-lesional bones. Sonographic evidence of multiple diffused hyperechogenic spots in the testes of patients with MAS do not seem to be related to alterations in calcium-phosphate metabolism but rather to zonal dysplasia/hyperplasia of testicular tissue.

  19. Increased resistance to oxidative stress in normal and glucose-6-phosphate dehydrogenase-deficient hemolysates in the presence of enzyme substrates.

    PubMed

    Yücel, G; Yeşilkaya, A; Aksu, T A; Yeğin, A; Alicigüzel, Y

    1997-01-01

    Erythrocytes and hemolysates from 10 normal and 10 glucose-6-phosphate dehydrogenase-deficient individuals were incubated with cumene hydroperoxide, and free radical-induced lipid peroxidation was monitored by chemiluminescence. Chemiluminescence intensities in erythrocytes of normal and deficient subjects were similar in the presence or absence of glucose-6-phosphate dehydrogenase substrates. Hemolysates of normal and deficient subjects also showed similar chemiluminescence in the absence of substrates. However, with the addition of substrates to the incubation medium, deficient hemolysates reached maximum chemiluminescence intensity within a shorter period, and maximum values were higher than in normal hemolysates. We believe this offers a new means of detection of glucose-6-phosphate dehydrogenase-deficient patients.

  20. The active centre of triose phosphate isomerase

    PubMed Central

    Burton, Pamela M.; Waley, S. G.

    1966-01-01

    The molecular weight and amino acid composition of triose phosphate isomerase have been determined. The molecular weight (43000) is lower and the molecular activity (500000) higher than those of most other glycolytic enzymes. Reaction with iodoacetate (studied with radioactive reagent) takes place in two phases: in the first phase, at pH6·3, cysteine and methionine groups react and enzymic activity is unimpaired; in the second phase, histidine reacts and enzymic activity is lost. Photo-oxidation leads to inactivation, with loss of cysteine, of histidine and of tryptophan, but little loss of tyrosine. The mechanism postulated for the action of the enzyme demands the intervention of a group functioning as a base, and the results obtained are consistent with histidine's being the basic group in the active centre. PMID:5969283