Sample records for demanded generator torque

  1. Low Handicap Golfers Generate More Torque at the Shoe-Natural Grass Interface When Using a Driver

    PubMed Central

    Worsfold, Paul; Smith, Neal A.; Dyson, Rosemary J.

    2008-01-01

    The aim was to determine the rotational torque occurring at the shoe-natural grass interface during golf swing performance with different clubs, and to determine the influence of handicap and golf shoe design. Twenty-four golfers (8 low 0-7; 8 medium 8-14; and 8 high 15+) performed 5 shots with a driver, 3-iron and 7-iron when 3 shoes were worn: a modern 8 mm metal 7-spike shoe, an alternative 7-spike shoe and a flat soled shoe. Torque was measured at the front and back foot by grass covered force platforms in an outdoor field. Torque at the shoe- natural turf interface was similar at the front foot when using a driver, 3-iron and 7-iron with maximum mean torque (Tzmax 17-19 Nm) and torque generation in the entire backswing and downswing approximately 40 Nm. At the back foot, torque was less than at the front foot when using the driver, 3-iron and 7-iron. At the back foot Tzmax was 6-7 Nm, and torque generation was 10-16 Nm, with a trend for greater torque generation when using the driver rather than the irons. The metal spike shoe allowed significantly more back foot torque generation when using a driver than a flat- soled shoe (p < 0.05). There was no significant difference between the metal and alternative spike shoes for any torque measure (p > 0.05), although back foot mean torques generated tended to be greater for the metal spike shoe. The golf shot outcomes were similar for low, medium and high handicappers in both metal and alternative spike shoes (metal: 87%; 76%; 54%; alternative: 85%; 74%; 54% respectively). The better, low handicap golfers generated significantly more back foot torque (metal spike: 18.2 Nm; alternative: 15.8 Nm; p < 0.05) when using a driver. Further research should consider back foot shoe-grass interface demands during driver usage by low handicap and lighter body-weight golfers. Key pointsShoe to natural turf torque generation is an important component in performing a golf swing with a driver club.Torque at the shoe to natural turf interface was similar at the front foot when using a driver, 3-iron and 7-iron with Tzmax (17-19 Nm approx) and torque generation in the entire backswing and downswing of 40 Nm.Torque at the back foot was less than at the front foot when using the driver, 3-iron and 7-iron; Tzmax was 6-7 Nm, and torque generation 10-16 Nm with a trend to be greater when the driver was used.Low handicap golfers generated significantly more torque at the back foot than the medium or high handicappers (P<0.05) when using a driver.The metal spike shoe on natural turf allowed significantly more torque generation at the back foot than a flat-soled golf shoe when using a driver. Results have implications for golf shoe design. PMID:24149910

  2. The Motor and the Brake of the Trailing Leg in Human Walking: Leg Force Control Through Ankle Modulation and Knee Covariance

    PubMed Central

    Toney, Megan E.; Chang, Young-Hui

    2016-01-01

    Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step-to-step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production. PMID:27334888

  3. Torque coordinating robust control of shifting process for dry dual clutch transmission equipped in a hybrid car

    NASA Astrophysics Data System (ADS)

    Zhao, Z.-G.; Chen, H.-J.; Yang, Y.-Y.; He, L.

    2015-09-01

    For a hybrid car equipped with dual clutch transmission (DCT), the coordination control problems of clutches and power sources are investigated while taking full advantage of the integrated starter generator motor's fast response speed and high accuracy (speed and torque). First, a dynamic model of the shifting process is established, the vehicle acceleration is quantified according to the intentions of the driver, and the torque transmitted by clutches is calculated based on the designed disengaging principle during the torque phase. Next, a robust H∞ controller is designed to ensure speed synchronisation despite the existence of model uncertainties, measurement noise, and engine torque lag. The engine torque lag and measurement noise are used as external disturbances to initially modify the output torque of the power source. Additionally, during the torque switch phase, the torque of the power sources is smoothly transitioned to the driver's demanded torque. Finally, the torque of the power sources is further distributed based on the optimisation of system efficiency, and the throttle opening of the engine is constrained to avoid sharp torque variations. The simulation results verify that the proposed control strategies effectively address the problem of coordinating control of clutches and power sources, establishing a foundation for the application of DCT in hybrid cars.

  4. Experimental study of camel powered electricity generation unit

    NASA Astrophysics Data System (ADS)

    Jakhar, O. P.; Choudhary, Rahul Raj; Budaniya, Mukesh; Kumar, Ashish

    2018-05-01

    Developing nations are facing a huge gap in generation and demand of electricity across the world. In present scenario the demand of electricity is increasing day by day and the shortfall of electricity has become one of the major obstructions in the development of rural areas. There is a big gap between electricity supply and demand. In India it is very difficult that to give twenty four hours electric supply in rural areas. The traditional use of camel as draught animal, for the purpose of transport of goods and agricultural work, has been drastically reduced during last few decades, due to advancements and cheaper availability of mechanical machineries. In this research paper we experimentally studied the camel powered electricity generation system at National Research Centre on Camels (NRCC) Bikaner. Camel Energy in form of high torque low speed can be converted into low torque high speed through motion converting system i.e. gear and pulley mechanism for high RPM output. This high RPM (more than 3000) output is used for electricity generation. The electricity generated can be used directly or stored in the battery and later may be used whenever it is required either for DC light or AC light using inverter. According to experimental study a camel can comfortably generate electricity up to 1KW by rotating shaft. The complete set up for electricity generation using camel power has been designed, developed and physically commissioned at National Research Centre on Camels (NRCC) Bikaner.

  5. Influences of load characteristics on impaired control of grip forces in patients with cerebellar damage.

    PubMed

    Brandauer, B; Timmann, D; Häusler, A; Hermsdörfer, J

    2010-02-01

    Various studies showed a clear impairment of cerebellar patients to modulate grip force in anticipation of the loads resulting from movements with a grasped object. This failure corroborated the theory of internal feedforward models in the cerebellum. Cerebellar damage also impairs the coordination of multiple-joint movements and this has been related to deficient prediction and compensation of movement-induced torques. To study the effects of disturbed torque control on feedforward grip-force control, two self-generated load conditions with different demands on torque control-one with movement-induced and the other with isometrically generated load changes-were directly compared in patients with cerebellar degeneration. Furthermore the cerebellum is thought to be more involved in grip-force adjustment to self-generated loads than to externally generated loads. Consequently, an additional condition with externally generated loads was introduced to further test this hypothesis. Analysis of 23 patients with degenerative cerebellar damage revealed clear impairments in predictive feedforward mechanisms in the control of both self-generated load types. Besides feedforward control, the cerebellar damage also affected more reactive responses when the externally generated load destabilized the grip, although this impairment may vary with the type of load as suggested by control experiments. The present findings provide further support that the cerebellum plays a major role in predictive control mechanisms. However, this impact of the cerebellum does not strongly depend on the nature of the load and the specific internal forward model. Contributions to reactive (grip force) control are not negligible, but seem to be dependent on the physical characteristics of an externally generated load.

  6. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    NASA Astrophysics Data System (ADS)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs. The effect of various design parameters on the output torque and torque ripple are discussed. Design parameters include winding patterns, magnetization direction, magnet arc length, number of segments in poles and magnet pole shaping. New designs of trapezoidal BEMF motors are proposed to reduce the electromagnetic torque ripple. Magnet stepping and magnet edge shaping with reduced arc length, significantly reduce torque ripple, with minimal sacrifice of the maximum output torque. Acoustic noise of electromagnetic origin is investigated using a magnetic frame which emulates a DC motor. The driving electromagnetic force is calculated using finite element analysis and the resulting vibration and acoustic noise is measured. Acoustic noise of purely electromagnetic origin was also tested with a DC brushless motor to confirm the results of the magnetic frame. The mechanism of noise generation in a DC motor is a quasi-static response of a stator not only at the fundamental frequency but also at higher harmonic frequencies of alternating switched DC, which is a current characteristic of a DC motor. Noise generation is significantly aggravated when some of those harmonics are close to the resonant frequencies of the stator. Therefore, acoustic noise is highly dependent upon the excitation current shape, as higher harmonics may match with resonant frequencies of the stator.

  7. Muscle activation and the isokinetic torque-velocity relationship of the human triceps surae.

    PubMed

    Harridge, S D; White, M J

    1993-01-01

    The influence of muscle activation and the time allowed for torque generation on the angle-specific torque-velocity relationship of the triceps surae was studied during plantar flexion using supramaximal electrical stimulation and a release technique on six male subjects [mean (SD) age 25 (4) years]. Torque-velocity data were obtained under different levels of constant muscle activation by varying the stimulus frequency and the time allowed for isometric torque generation prior to release and isokinetic shortening. To eliminate the effects of the frequency response on absolute torque the isokinetic data were normalized to the maximum isometric torque values at 0.44 rad. There were no significant differences in the normalized torques generated at any angular velocity using stimulus frequencies of 20, 50 or 80 Hz. When the muscle was stimulated at 50 Hz the torques obtained after a 400 ms and 1 s pre-release isometric contraction did not differ significantly. However, with no pre-release contraction significantly less torque was generated at all angular velocities beyond 1.05 rad.s-1 when compared with either the 200, 400 ms or 1 s condition. With a 200 ms pre-release contraction significantly less torque was generated at angular velocities beyond 1.05 rad.s-1 when compared with the 400 ms or 1 s conditions. It would seem that the major factor governing the shape of the torque-velocity curve at a constant level of muscle activation is the time allowed for torque generation.

  8. Effect of the Glide Path Establishment on the Torque Generation to the Files during Instrumentation: An In Vitro Measurement.

    PubMed

    Kwak, Sang Won; Ha, Jung-Hong; Cheung, Gary Shun-Pan; Kim, Hyeon-Cheol; Kim, Sung Kyo

    2018-03-01

    The purpose of this study was to compare in vitro torque generation during instrumentation with or without glide path establishment. Endo-training resin blocks with J-shaped canals were randomly divided into 2 groups according to glide path establishment (with or without) and subdivided into 2 subgroups with shaping instruments (WaveOne [Dentsply Maillefer, Ballaigues, Switzerland] or WaveOne Gold [Dentsply Maillefer]) (n = 15). For the glide path-established group, the glide path was prepared using ProGlider (Dentsply Maillefer). During the instrumentation with WaveOne or WaveOne Gold, in vitro torque was measured. The acquired data were analyzed with software. The maximum torque and total torque (the sum of the generated torque) were calculated. The data were statistically evaluated using 2-way analysis of variance and the Duncan post hoc comparison to examine any correlation of torque generation with glide path establishment and nickel-titanium instruments. The significance level was set at 95%. The generated total torque by WaveOne Gold was significantly reduced by glide path establishment (P < .05), whereas glide path establishment did not induce significant changes in the maximum torque for both file systems. WaveOne Gold with a glide path showed the lowest total torque generation among all groups (P < .05). WaveOne generated a higher maximum torque than WaveOne Gold regardless of the establishment of a glide path (P < .05). Under the limitations of this study, glide path establishment and the mechanical property of instruments have a significant influence on torque generation. It is recommended to create the glide path and use a flexible file to reduce torque generation and, consequently, the risk of file fracture and root dentin damage. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Design and Performance Improvement of AC Machines Sharing a Common Stator

    NASA Astrophysics Data System (ADS)

    Guo, Lusu

    With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be discussed in this dissertation. In the design stage, an optimization method based on orthogonal experimental design will be introduced. Besides, a universal current profiling technique is proposed to minimize the torque pulsation along with the stator copper losses in modular interior permanent magnet motors. Instead of sinusoidal current waveforms, this algorithm will calculate the proper currents which can minimize the torque pulsation. Finite element analysis and Matlab programing will be used to develop this optimal current profiling algorithm. Permanent magnet machines are becoming more attractive in some modern traction applications, such as traction motors and generators for an electrified vehicle. The operating speed or the load condition in these applications may be changing all the time. Compared to electric machines used to operate at a constant speed and constant load, better control performance is required. In this dissertation, a novel model reference adaptive control (MRAC) used on five-phase interior permanent magnet motor drives is presented. The primary controller is designed based on artificial neural network (ANN) to simulate the nonlinear characteristics of the system without knowledge of accurate motor model or parameters. The proposed motor drive decouples the torque and flux components of five-phase IPM motors by applying a multiple reference frame transformation. Therefore, the motor can be easily driven below the rated speed with the maximum torque per ampere (MTPA) operation or above the rated speed with the flux weakening operation. The ANN based primary controller consists of a radial basis function (RBF) network which is trained on-line to adapt system uncertainties. The complete IPM motor drive is simulated in Matlab/Simulink environment and implemented experimentally utilizing dSPACE DS1104 DSP board on a five-phase prototype IPM motor. The proposed model reference adaptive control method has been applied on the commons stator SynRM and IPM machine as well.

  10. Manipulation of Spin-Torque Generation Using Ultrathin Au

    NASA Astrophysics Data System (ADS)

    An, Hongyu; Haku, Satoshi; Kanno, Yusuke; Nakayama, Hiroyasu; Maki, Hideyuki; Shi, Ji; Ando, Kazuya

    2018-06-01

    The generation and the manipulation of current-induced spin-orbit torques are of essential interest in spintronics. However, in spite of the vital progress in spin orbitronics, electric control of the spin-torque generation still remains elusive and challenging. We report on electric control of the spin-torque generation using ionic-liquid gating of ultrathin Au. We show that by simply depositing a SiO2 capping layer on an ultrathin-Au /Ni81Fe19 bilayer, the spin-torque generation efficiency is drastically enhanced by a maximum of 7 times. This enhancement is verified to be originated from the rough ultrathin-Au /Ni81Fe19 interface induced by the SiO2 deposition, which results in the enhancement of the interface spin-orbit scattering. We further show that the spin-torque generation efficiency from the ultrathin Au film can be reversibly manipulated by a factor of 2 using the ionic gating with an external electric field within a small range of 1 V. These results pave a way towards the efficient control of the spin-torque generation in spintronic applications.

  11. Active Power Control of Wind Turbines for Ancillary Services: A Comparison of Pitch and Torque Control Methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aho, Jacob; Fleming, Paul; Pao, Lucy Y.

    As wind energy generation becomes more prevalent in some regions, there is increased demand for wind power plants to provide ancillary services, which are essential for grid reliability. This paper compares two different wind turbine control methodologies to provide active power control (APC) ancillary services, which include derating or curtailing power generation, providing automatic generation control (AGC), and providing primary frequency control (PFC). The torque APC controller provides all power control through the power electronics whereas the pitch APC controller uses the blade pitch actuators as the primary means of power control. These controllers are simulated under various wind conditionsmore » with different derating set points and AGC participation levels. The metrics used to compare their performance are the damage equivalent loads (DELs) induced on the structural components and AGC performance metrics, which are used to determine the payments for AGC services by system operators in the United States. The simulation results show that derating the turbine reduces structural loads for both control methods, with the APC pitch control providing larger reductions in DELs, lower AGC performance scores, and higher root-mean-square pitch rates. Providing AGC increases the structural loads when compared to only derating the turbine, but even the AGC DELs are generally lower than those of the baseline control system. The torque APC control methodology also allows for more sustained PFC responses under certain derating conditions.« less

  12. Open circuit V-I characteristics of a coreless ironless electric generator for low density wind power generation

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Azlan, Syaiful; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The concept is then fabricated and experimentally validated to qualify its no-load characteristics. The rotational torque and power output are measured and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 416VAC at rotational speed of 1762 RPM. Torque required to rotate the generator was at 2Nm for various rotational speed. The generator has shown 30% lesser rotational torque compared to the conventional ironcore type generator due to the absent of cogging torque in the system. Lesser rotational torque required to rotate has made this type of generator has a potential to be used for low wind density wind turbine application.

  13. Method and apparatus for effecting light-off of a catalytic converter in a hybrid powertrain system

    DOEpatents

    Roos, Bryan Nathaniel; Spohn, Brian L

    2013-07-02

    A powertrain system includes a hybrid transmission and an internal combustion engine coupled to an exhaust aftertreatment device. A method for operating the powertrain system includes operating the hybrid transmission to generate tractive torque responsive to an operator torque request with the internal combustion engine in an engine-off state so long as the tractive torque is less than a threshold. The internal combustion engine is operated in an engine-on state at preferred operating conditions to effect light-off of the exhaust aftertreatment device and the hybrid transmission is coincidentally operated to generate tractive torque responsive to the operator torque request when the operator torque request exceeds the threshold. The internal combustion engine is then operated in the engine-on state to generate tractive torque responsive to the operator torque request.

  14. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  15. Probe And Drogue Aerial Refueling Requirements: How Will Air Force Special Operations Command Meet Future Demands?

    DTIC Science & Technology

    2002-06-01

    consists of a torque meter assembly, a 14-stage axial compressor with variable guide vanes, an annular combustor, a two-stage gas generator turbine, a two...married to Laura Shapland née Howells of Salisbury, England. iii ACKNOWLEDGEMENTS I would like to acknowledge several people...up this project and submitted it to Air University for a thesis topic: Lt Col Neil Billings, Lt Col Tracey Goetz, Lt Col Scott Howell , and Maj Jon

  16. Design and control of the phase current of a brushless dc motor to eliminate cogging torque

    NASA Astrophysics Data System (ADS)

    Jang, G. H.; Lee, C. J.

    2006-04-01

    This paper presents a design and control method of the phase current to reduce the torque ripple of a brushless dc (BLDC) motor by eliminating cogging torque. The cogging torque is the main source of torque ripple and consequently of speed error, and it is also the excitation source to generate the vibration and noise of a motor. This research proposes a modified current wave form, which is composed of main and auxiliary currents. The former is the conventional current to generate the commutating torque. The latter generates the torque with the same magnitude and opposite sign of the corresponding cogging torque at the given position in order to eliminate the cogging torque. Time-stepping finite element method simulation considering pulse-width-modulation switching method has been performed to verify the effectiveness of the proposed method, and it shows that this proposed method reduces torque ripple by 36%. A digital-signal-processor-based controller is also developed to implement the proposed method, and it shows that this proposed method reduces the speed ripple significantly.

  17. Spin currents and spin-orbit torques in ferromagnetic trilayers.

    PubMed

    Baek, Seung-Heon C; Amin, Vivek P; Oh, Young-Wan; Go, Gyungchoon; Lee, Seung-Jae; Lee, Geun-Hee; Kim, Kab-Jin; Stiles, M D; Park, Byong-Guk; Lee, Kyung-Jin

    2018-06-01

    Magnetic torques generated through spin-orbit coupling 1-8 promise energy-efficient spintronic devices. For applications, it is important that these torques switch films with perpendicular magnetizations without an external magnetic field 9-14 . One suggested approach 15 to enable such switching uses magnetic trilayers in which the torque on the top magnetic layer can be manipulated by changing the magnetization of the bottom layer. Spin currents generated in the bottom magnetic layer or its interfaces transit the spacer layer and exert a torque on the top magnetization. Here we demonstrate field-free switching in such structures and show that its dependence on the bottom-layer magnetization is not consistent with the anticipated bulk effects 15 . We describe a mechanism for spin-current generation 16,17 at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence. This other-layer-generated spin-orbit torque is relevant to energy-efficient control of spintronic devices.

  18. V-I characteristics of a coreless ironless electric generator in a closed-circuit mode for low wind density power generation

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The generator was fabricated and experimentally validated to qualify its loaded characteristics. The rotational torque and power output are measured and efficiency is then analyzed. At 100Ω load, the generator power output increased with the increased of rotational speed. Nearly 78% of efficiency was achieved when the generator was rotated at 250rpm. At this speed, the generator produced RMS voltage of 81VAC. Torque required to rotate the generator was found to be 3.2Nm. The slight increment of mechanical torque to spin the generator was due to the counter electromotive force (CEMF) existed in the copper windings. However, the torque required is still lower by nearly 30% than conventional AFPM generator. It is there concluded that this generator is suitable to be used for low wind density power generation application.

  19. Mechanical behavior of a novel non-fusion scoliosis correction device.

    PubMed

    Wessels, M; Hekman, E E G; Verkerke, G J

    2013-11-01

    We developed an innovative non-fusion correction system (XS LATOR) consisting of two individual implants that are extendable and extremely flexible. One implant, the XS LAT, generates a lateral, bending moment and one implant, the XS TOR, generates a torsion moment. Two 'inverse' implants were developed for generating torsion and lateral bending in a porcine model was tested for force delivery. An in vitro experiment was set up to describe the mechanical behavior of both implants. Narrow and wide ('inverse') versions of the XS TOR and XS LAT were mounted on an apparatus that was able to simulate different spinal geometries. The implants were anchored to three artificial vertebrae with integrated 6D force sensors, after which the vertebrae were rotated and translated towards the demanded position. The reaction forces and moments were recorded in all configurations. The maximal (lateral) bending moment, which occurred at the middle vertebra, was determined and, similarly, torque applied at the center of rotation of the middle vertebra was calculated. As expected, the wide and the small versions of the XS TOR generate a torque that increases during the growth of the system. Similarly, the XS LAT generates a bending moment that slightly increases during the growth of the system. The produced moments approximate the theoretically predicted ones. The contribution to the spinal stiffness ranges between 0.01Nm/° and 0.04Nm/° in bending and between 0.03Nm/° and 0.08Nm/° in torsion. The XS TOR and the XS LAT are able to generate a torque and a bending moment that remain (fairly) constant during spinal growth when a shape change due to the generated moment/torque is achieved. The stiffness of the implants is extremely low, being only a fraction of the stiffness of conventional, spinal fusion constructs. Current fusion systems, such as non-segmental spinal constructs generally, have 11 times higher stiffness in torsion and 6 times higher stiffness in lateral bending. Implantation of the XS LATOR adds 9% stiffness in axial rotation and 17% stiffness in lateral bending (to the original spinal stiffness). By preserving the flexibility of the spine after implantation, fusion of the vertebrae in the instrumented region is likely to be prevented. © 2013 Elsevier Ltd. All rights reserved.

  20. Design and analysis of a direct-drive wind power generator with ultra-high torque density

    NASA Astrophysics Data System (ADS)

    Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong

    2015-05-01

    In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.

  1. Dynamic Torque and Vertical Force Analysis during Nickel-titanium Rotary Root Canal Preparation with Different Modes of Reciprocal Rotation.

    PubMed

    Tokita, Daisuke; Ebihara, Arata; Nishijo, Miki; Miyara, Kana; Okiji, Takashi

    2017-10-01

    The purpose of the present study was to compare 2 modes of reciprocal movement (torque-sensitive and time-dependent reciprocal rotation) with continuous rotation in terms of torque and apical force generation during nickel-titanium rotary root canal instrumentation. A custom-made automated root canal instrumentation and torque/force analyzing device was used to prepare simulated canals in resin blocks and monitor the torque and apical force generated in the blocks during preparation. Experimental groups (n = 7, each) consisted of (1) torque-sensitive reciprocal rotation with torque-sensitive vertical movement (group TqR), (2) time-dependent reciprocal rotation with time-dependent vertical movement (group TmR), and (3) continuous rotation with time-dependent vertical movement (group CR). The canals were instrumented with TF Adaptive SM1 and SM2 rotary files (SybronEndo, Orange, CA), and the torque and apical force were measured during instrumentation with SM2. The mean and maximum torque and apical force values were statistically analyzed using 1-way analysis of variance and the Tukey test (α = 0.05). The recordings showed intermittent increases of upward apical force and clockwise torque, indicating the generation and release of screw-in forces. The maximum upward apical force values in group TmR were significantly smaller than those in group CR (P < .05). The maximum torque values in clockwise and counterclockwise directions in groups TqR and TmR were significantly smaller than those in group CR (P < .05). Under the present experimental conditions using TF Adaptive instruments, both torque-sensitive and time-dependent reciprocal rotation generated significantly lower maximum torque and may have advantages in reducing stress generation caused by screw-in forces when compared with continuous rotation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

    PubMed Central

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions. PMID:25202746

  3. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    PubMed

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  4. Torque during canal instrumentation using rotary nickel-titanium files.

    PubMed

    Sattapan, B; Palamara, J E; Messer, H H

    2000-03-01

    Nickel-titanium engine-driven rotary instruments are used increasingly in endodontic practice. One frequently mentioned problem is fracture of an instrument in the root canal. Very few studies have been conducted on torsional characteristics of these instruments, and none has been done under dynamic conditions. The purposes of this study were to measure the torque generated and the apical force applied during instrumentation with a commercial engine-driven nickel-titanium file system, and to relate torque generated during simulated clinical use to torsional failure of the instruments. Ten extracted human teeth (five with small-sized and five with medium-sized straight root canals) were instrumented with Quantec Series 2000 files, and the torque and apical force generated were measured. The applied apical force was generally low, not exceeding 150 g in either small or medium canals. The torque depended on the tip size and taper of each instrument, and on canal size. Instruments with 0.05 and 0.06 taper generated the highest torque, which was greater in small than in medium canals. The torque at failure was significantly (p < 0.001) higher than torque during instrumentation, but with considerable variation in the extent of the difference.

  5. Mechanics of torque generation in the bacterial flagellar motor.

    PubMed

    Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George

    2015-08-11

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.

  6. Investigation of torque generated by Test Blanket Module mock-up in DIII-D

    NASA Astrophysics Data System (ADS)

    Salmi, A.; Tala, T.; Lanctot, M.; Degrassie, J. S.; Paz-Soldan, C.; Logan, N.; Solomon, W. M.; Grierson, B. A.

    2015-11-01

    Experiments at DIII-D have investigated the scaling of Test Blanket Module (TBM) torque with plasma pressure and collisionality by performing dimensionless parameter scans. In each configuration, neutral beam torque modulation and TBM torque modulation were sequentially applied to allow experimental characterization of the TBM generated torque and the underlying transport. Calculations of the neoclassical toroidal viscosity (NTV) torque with PENT code of these plasmas find that TBM torque is strongly edge localized while the tentative experimental analysis indicates a more radially broad TBM torque profile. Both the experimental and PENT results will be elaborated and experimental TBM torque scaling with pressure and collisionality presented. Experimental validation of existing plasma response and NTV torque models is an important step toward understanding the impact of magnetic field ripple on plasma rotation, and for predicting the required compensation fields. Work supported by the US Department of Energy under DE-AC52-07NA27344, DE-FC02-04ER54698 and DE-AC02-09CH11466.

  7. Magnetic attitude control torque generation of a gravity gradient stabilized satellite

    NASA Astrophysics Data System (ADS)

    Suhadis, N. M.; Salleh, M. B.; Rajendran, P.

    2018-05-01

    Magnetic torquer is used to generate a magnetic dipole moment onboard satellites whereby a control torque for attitude control purposes is generated when it couples with the geomagnetic field. This technique has been considered very attractive for satellites operated in Low Earth Orbit (LEO) as the strength of the geomagnetic field is relatively high below the altitude of 1000 km. This paper presents the algorithm used to generate required magnetic dipole moment by 3 magnetic torquers mounted onboard a gravity gradient stabilized satellite operated at an altitude of 540 km with nadir pointing mission. As the geomagnetic field cannot be altered and its magnitude and direction vary with respect to the orbit altitude and inclination, a comparison study of attitude control torque generation performance with various orbit inclination is performed where the structured control algorithm is simulated for 13°, 33° and 53° orbit inclinations to see how the variation of the satellite orbit affects the satellite's attitude control torque generation. Results from simulation show that the higher orbit inclination generates optimum magnetic attitude control torque for accurate nadir pointing mission.

  8. 40 CFR 1065.510 - Engine mapping.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the warm-up until the engine coolant, block, or head absolute temperature is within ± 2% of its mean... demand to minimum, use the dynamometer or other loading device to target a torque of zero on the engine's...-speed governor, operate the engine at warm idle speed and zero torque on the engine's primary output...

  9. Control torque generation of a CMG-based small satellite with MTGAC system: a trade-off study

    NASA Astrophysics Data System (ADS)

    Salleh, M. B.; Suhadis, N. M.; Rajendran, P.; Mazlan, N. M.

    2018-05-01

    In this paper, the gimbal angle compensation method using magnetic control law has been adopted for a small satellite operating in low earth orbit under disturbance toques influence. Three light weight magnetic torquers have been used to generate the magnetic compensation torque to bring diverge gimbals at preferable angle. The magnetic control torque required to compensate the gimbal angle is based on the gimbal error rate which depends on the gimbal angle converging time. A simulation study has been performed without and with the MTGAC system to investigate the amount of generated control torque as a trade-off between the power consumption, attitude control performance and CMG dynamic performance. Numerical simulations show that the satellite with the MTGAC system generates more control torques which leads to the additional power requirement but in return results in a favorable attitude control performance and gimbal angle management.

  10. Torque expression of 0.018 and 0.022 inch conventional brackets.

    PubMed

    Sifakakis, Iosif; Pandis, Nikolaos; Makou, Margarita; Eliades, Theodore; Katsaros, Christos; Bourauel, Christoph

    2013-10-01

    The aim of this study was to assess the effect of the moments generated with low- and high-torque brackets. Four different bracket prescription-slot combinations of the same bracket type (Mini Diamond® Twin) were evaluated: high-torque 0.018 and 0.022 inch and low-torque 0.018 and 0.022 inch. These brackets were bonded on identical maxillary acrylic resin models with levelled and aligned teeth and each model was mounted on the orthodontic measurement and simulation system (OMSS). Ten specimens of 0.017 × 0.025 inch and ten 0.019 × 0.025 inch stainless steel archwires (ORMCO) were evaluated in the low- and high-torque 0.018 inch and 0.022 inch brackets, respectively. The wires were ligated with elastomerics into the brackets and each measurement was repeated once after religation. Two-way analysis of variance and t-test were conducted to compare the generated moments between wires at low- and high-torque brackets separately. The maximum moment generated by the 0.017 × 0.025 inch stainless steel archwire in the 0.018 inch brackets at +15 degrees ranged from 14.33 and 12.95 Nmm for the high- and low-torque brackets, respectively. The measured torque in the 0.022 inch brackets with the 0.019 × 0.025 inch stainless steel archwire was 9.32 and 6.48 Nmm, respectively. The recorded differences of maximum moments between the high- and low-torque series were statistically significant. High-torque brackets produced higher moments compared with low-torque brackets. Additionally, in both high- and low-torque configurations, the thicker 0.019 × 0.025 inch steel archwire in the 0.022 inch slot system generated lower moments in comparison with the 0.017 × 0.025 inch steel archwire in the 0.018 inch slot system.

  11. Design of a Torque Current Generator for Strapdown Gyroscopes. Ph.D. Thesis; [and performance prediction

    NASA Technical Reports Server (NTRS)

    Mcknight, R. D.; Blalock, T. V.; Kennedy, E. J.

    1974-01-01

    The design, analysis, and experimental evaluation of an optimum performance torque current generator for use with strapdown gyroscopes, is presented. Among the criteria used to evaluate the design were the following: (1) steady-state accuracy; (2) margins of stability against self-oscillation; (3) temperature variations; (4) aging; (5) static errors drift errors, and transient errors, (6) classical frequency and time domain characteristics; and (7) the equivalent noise at the input of the comparater operational amplifier. The DC feedback loop of the torque current generator was approximated as a second-order system. Stability calculations for gain margins are discussed. Circuit diagrams are shown and block diagrams showing the implementation of the torque current generator are discussed.

  12. How Fo-ATPase generates rotary torque.

    PubMed

    Oster, G; Wang, H; Grabe, M

    2000-04-29

    The F-ATPases synthesize ATP using a transmembrane ionmotive force (IMF) established by the electron transport chain. This transduction involves first converting the IMF to a rotary torque in the transmembrane Fo portion. This torque is communicated from Fo to the F1 portion where the energy is used to release the newly synthesized ATP from the catalytic sites according to Boyer's binding change mechanism. Here we explain the principle by which an IMF generates this rotary torque in the Fo ion engine.

  13. Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander

    2016-09-01

    This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.

  14. Control Strategies for Smoothing of Output Power of Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Pratap, Alok; Urasaki, Naomitsu; Senju, Tomonobu

    2013-10-01

    This article presents a control method for output power smoothing of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG) using the inertia of wind turbine and the pitch control. The WECS used in this article adopts an AC-DC-AC converter system. The generator-side converter controls the torque of the PMSG, while the grid-side inverter controls the DC-link and grid voltages. For the generator-side converter, the torque command is determined by using the fuzzy logic. The inputs of the fuzzy logic are the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. By means of the proposed method, the generator torque is smoothed, and the kinetic energy stored by the inertia of the wind turbine can be utilized to smooth the output power fluctuations of the PMSG. In addition, the wind turbines shaft stress is mitigated compared to a conventional maximum power point tracking control. Effectiveness of the proposed method is verified by the numerical simulations.

  15. Mechanics of torque generation in the bacterial flagellar motor

    PubMed Central

    Mandadapu, Kranthi K.; Nirody, Jasmine A.; Berry, Richard M.; Oster, George

    2015-01-01

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual “power stroke.” Specifically, we propose that ion-induced conformational changes about a proline “hinge” residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque–speed and speed–ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator. PMID:26216959

  16. Effect of pole number and slot number on performance of dual rotor permanent magnet wind power generator using ferrite magnets

    NASA Astrophysics Data System (ADS)

    Xu, Peifeng; Shi, Kai; Sun, Yuxin; Zhua, Huangqiu

    2017-05-01

    Dual rotor permanent magnet (DRPM) wind power generator using ferrite magnets has the advantages of low cost, high efficiency, and high torque density. How to further improve the performance and reduce the cost of the machine by proper choice of pole number and slot number is an important problem to be solved when performing preliminarily design a DRPM wind generator. This paper presents a comprehensive performance comparison of a DRPM wind generator using ferrite magnets with different slot and pole number combinations. The main winding factors are calculated by means of the star of slots. Under the same machine volume and ferrite consumption, the flux linkage, back-electromotive force (EMF), cogging torque, output torque, torque pulsation, and losses are investigated and compared using finite element analysis (FEA). The results show that the slot and pole number combinations have an important impact on the generator properties.

  17. Parametric motion control of robotic arms: A biologically based approach using neural networks

    NASA Technical Reports Server (NTRS)

    Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.

    1993-01-01

    A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.

  18. Mathematical models for principles of gyroscope theory

    NASA Astrophysics Data System (ADS)

    Usubamatov, Ryspek

    2017-01-01

    Gyroscope devices are primary units for navigation and control systems that have wide application in engineering. The main property of the gyroscope device is maintaining the axis of a spinning rotor. This gyroscope peculiarity is represented in terms of gyroscope effects in which known mathematical models have been formulated on the law of kinetic energy conservation and the change in the angular momentum. The gyroscope theory is represented by numerous publications, which mathematical models do not match the actual torques and motions in these devices.. The nature of gyroscope effects is more complex than represented in known publications. Recent investigations in this area have demonstrated that on a gyroscope can act until eleven internal torques simultaneously and interdependently around two axes. These gyroscope torques are generated by spinning rotor's mass-elements and by the gyroscope center-mass based on action of several inertial forces. The change in the angular momentum does not play first role for gyroscope motions. The external load generates several internal torques which directions may be distinguished. This situation leads changing of the angular velocities of gyroscope motions around two axes. Formulated mathematical models of gyroscope internal torques are representing the fundamental principle of gyroscope theory. In detail, the gyroscope is experienced the resistance torque generated by the centrifugal and Coriolis forces of the spinning rotor and the precession torque generated by the common inertial forces and the change in the angular momentum. The new mathematical models for the torques and motions of the gyroscope confirmed for most unsolvable problems. The mathematical models practically tested and the results are validated the theoretical approach.

  19. Mechanical Rectification of Oscillatory Motion for High Torque Microactuators

    NASA Astrophysics Data System (ADS)

    You, Liang; Tabib-Azar, Massood

    2004-03-01

    High-torque and scalable rotational micromotors were designed, microfabricated using a 3 mask LPCVD polysilicon process, and characterized. Oscillatory motions generated by comb-drive actuators were rectified by a rotor with fins. The actuator periodically deforms the fins generating forces with tangential and normal components in the rotor. Tangential forces generate rotation. In comparison to the electrostatic side-drive micromotor (torque pN-m), the measured torques for these micromotors were much larger and reached 4.5 µN-m at 200Vpp applied to the comb-drive at 1 KHz. Both the comb-drive and the finned rotor are second-order resonant structures that, when coupled, result in interesting dynamic that manifests itself as different excitation (forward, reverse, stepping, and chaotic) modes of the rotor.

  20. Torque Measurement of 3-DOF Haptic Master Operated by Controllable Electrorheological Fluid

    NASA Astrophysics Data System (ADS)

    Oh, Jong-Seok; Choi, Seung-Bok; Lee, Yang-Sub

    2015-02-01

    This work presents a torque measurement method of 3-degree-of-freedom (3-DOF) haptic master featuring controllable electrorheological (ER) fluid. In order to reflect the sense of an organ for a surgeon, the ER haptic master which can generate the repulsive torque of an organ is utilized as a remote controller for a surgery robot. Since accurate representation of organ feeling is essential for the success of the robot-assisted surgery, it is indispensable to develop a proper torque measurement method of 3-DOF ER haptic master. After describing the structural configuration of the haptic master, the torque models of ER spherical joint are mathematically derived based on the Bingham model of ER fluid. A new type of haptic device which has pitching, rolling, and yawing motions is then designed and manufactured using a spherical joint mechanism. Subsequently, the field-dependent parameters of the Bingham model are identified and generating repulsive torque according to applied electric field is measured. In addition, in order to verify the effectiveness of the proposed torque model, a comparative work between simulated and measured torques is undertaken.

  1. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold

    PubMed Central

    Ribardo, Deborah A.; Brennan, Caitlin A.; Ruby, Edward G.; Jensen, Grant J.; Hendrixson, David R.

    2016-01-01

    Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes. PMID:26976588

  2. Controller for a High-Power, Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  3. A Multiple Degree of Freedom Lower Extremity Isometric Device to Simultaneously Quantify Hip, Knee and Ankle Torques

    PubMed Central

    Sánchez, Natalia; Acosta, Ana Maria; Stienen, Arno H.A.

    2015-01-01

    Characterization of the joint torque coupling strategies used in the lower extremity to generate maximal and submaximal levels of torque at either the hip, knee or ankle is lacking. Currently, there are no available isometric devices that quantify all concurrent joint torques in the hip, knee and ankle of a single leg during maximum voluntary torque generation. Thus, joint-torque coupling strategies in the hip, knee and concurrent torques at ankle and/or coupling patterns at the hip and knee driven by the ankle have yet to be quantified. This manuscript describes the design, implementation and validation of a multiple degree of freedom, lower extremity isometric device (the MultiLEIT) that accurately quantifies simultaneous torques at the hip, knee and ankle. The system was mechanically validated and then implemented with two healthy control individuals and two post-stroke individuals to test usability and patient acceptance. Data indicated different joint torque coupling strategies used by both healthy individuals. In contrast, data showed the same torque coupling patterns in both post-stroke individuals, comparable to those described in the clinic. Successful implementation of the MultiLEIT can contribute to the understanding of the underlying mechanisms responsible for abnormal movement patterns and aid in the design of therapeutic interventions. PMID:25163064

  4. Dynamic restraint capacity of the hamstring muscles has important functional implications after anterior cruciate ligament injury and anterior cruciate ligament reconstruction.

    PubMed

    Bryant, Adam L; Creaby, Mark W; Newton, Robert U; Steele, Julie R

    2008-12-01

    The purpose of this study was to investigate the relation between knee functionality of anterior cruciate ligament deficient (ACLD) and anterior cruciate ligament reconstruction (ACLR) patients and hamstring antagonist torque generated during resisted knee extension. Cross-sectional. Laboratory based. Male ACLD subjects (n=10) (18-35 y) and 27 matched males who had undergone ACLR (14 patella tendon [PT] grafts and 13 combined semitendinosus/gracilis tendon grafts). Not applicable. Knee functionality was rated (0- to 100-point scale) by using the Cincinnati Knee Rating System. Using electromyography data from the semitendinosus (ST) and biceps femoris muscles, we created a mathematical model to estimate the opposing torque generated by the hamstrings during isokinetic knee extension in 10 degrees intervals from 80 degrees to 10 degrees knee flexion. Pearson product-moment correlations revealed that more functional ACLD subjects generated significantly (P<.05) higher hamstring antagonist torque throughout knee extension. In contrast, more functional PT subjects produced significantly lower hamstring antagonist torque at 80 degrees to 70 degrees knee flexion, whereas no significant associations were found between hamstring antagonist torque and knee functionality for the ST/gracilis tendon subjects. An increased hamstring antagonist torque generated by the more functional ACLD subjects, reflective of increased hamstring contractile force, is thought to represent a protective mechanism to compensate for mechanical instability. The restoration of anterior knee stability through ACLR negates the need for augmented hamstring antagonist torque.

  5. Intrinsic domain wall flexing from current-induced spin torque

    NASA Astrophysics Data System (ADS)

    Golovatski, Elizabeth; Flatté, Michael

    2012-02-01

    Spin torque generated by coherent carrier transport in domain walls [1] is a major component in the development of spintronic devices [2]. We model spin torque in N'eel walls [3] using a piecewise linear transfer-matrix method [4] to calculate spin torque on interior wall segments. For a π wall with a total positive torque (current left-to-right), we find the largest positive and negative spin torques left of the central region, 4-5 orders of magnitude larger than the center. The wall's rightward push comes from the back of the wall; all other significant regions pull to the left. Adding a second wall (both walls with positive total torque) changes the first wall little, but produces spin torques in the second wall with large canceling torques on the left, and the push rightward from a smaller torque on the right. The gradient of torque across the wall generates an intrinsic domain wall flexing (distinct from extrinsic wall flexing from pinning centers [5]). Work supported by an ARO MURI.[4pt] [1] M. Yamanouchi et al., Nature 428, 539 (2004).[0pt] [2] S. Parkin et al., Science 320, 190 (2008)[0pt] [3] G. Vignale and M. Flatt'e, Phys. Rev. Lett. 89, 098302 (2002)[0pt] [4] E. Golovatski and M. Flatt'e, Phys. Rev. B, 84, 115210 (2011)[0pt] [5] A. Balk et al., Phys. Rev. Lett. 107, 077205 (2011).

  6. A Computational Model of Torque Generation: Neural, Contractile, Metabolic and Musculoskeletal Components

    PubMed Central

    Callahan, Damien M.; Umberger, Brian R.; Kent-Braun, Jane A.

    2013-01-01

    The pathway of voluntary joint torque production includes motor neuron recruitment and rate-coding, sarcolemmal depolarization and calcium release by the sarcoplasmic reticulum, force generation by motor proteins within skeletal muscle, and force transmission by tendon across the joint. The direct source of energetic support for this process is ATP hydrolysis. It is possible to examine portions of this physiologic pathway using various in vivo and in vitro techniques, but an integrated view of the multiple processes that ultimately impact joint torque remains elusive. To address this gap, we present a comprehensive computational model of the combined neuromuscular and musculoskeletal systems that includes novel components related to intracellular bioenergetics function. Components representing excitatory drive, muscle activation, force generation, metabolic perturbations, and torque production during voluntary human ankle dorsiflexion were constructed, using a combination of experimentally-derived data and literature values. Simulation results were validated by comparison with torque and metabolic data obtained in vivo. The model successfully predicted peak and submaximal voluntary and electrically-elicited torque output, and accurately simulated the metabolic perturbations associated with voluntary contractions. This novel, comprehensive model could be used to better understand impact of global effectors such as age and disease on various components of the neuromuscular system, and ultimately, voluntary torque output. PMID:23405245

  7. Assessment of isometric muscle strength and rate of torque development with hand-held dynamometry: Test-retest reliability and relationship with gait velocity after stroke.

    PubMed

    Mentiplay, Benjamin F; Tan, Dawn; Williams, Gavin; Adair, Brooke; Pua, Yong-Hao; Bower, Kelly J; Clark, Ross A

    2018-04-27

    Isometric rate of torque development examines how quickly force can be exerted and may resemble everyday task demands more closely than isometric strength. Rate of torque development may provide further insight into the relationship between muscle function and gait following stroke. Aims of this study were to examine the test-retest reliability of hand-held dynamometry to measure isometric rate of torque development following stroke, to examine associations between strength and rate of torque development, and to compare the relationships of strength and rate of torque development to gait velocity. Sixty-three post-stroke adults participated (60 years, 34 male). Gait velocity was assessed using the fast-paced 10 m walk test. Isometric strength and rate of torque development of seven lower-limb muscle groups were assessed with hand-held dynamometry. Intraclass correlation coefficients were calculated for reliability and Spearman's rho correlations were calculated for associations. Regression analyses using partial F-tests were used to compare strength and rate of torque development in their relationship with gait velocity. Good to excellent reliability was shown for strength and rate of torque development (0.82-0.97). Strong associations were found between strength and rate of torque development (0.71-0.94). Despite high correlations between strength and rate of torque development, rate of torque development failed to provide significant value to regression models that already contained strength. Assessment of isometric rate of torque development with hand-held dynamometry is reliable following stroke, however isometric strength demonstrated greater relationships with gait velocity. Further research should examine the relationship between dynamic measures of muscle strength/torque and gait after stroke. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Perspective: Interface generation of spin-orbit torques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.

    We present that most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show howmore » ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions.« less

  9. Perspective: Interface generation of spin-orbit torques

    DOE PAGES

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...

    2016-11-14

    We present that most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show howmore » ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions.« less

  10. Brake blending strategy for a hybrid vehicle

    DOEpatents

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  11. Hip joint torques during the golf swing of young and senior healthy males.

    PubMed

    Foxworth, Judy L; Millar, Audrey L; Long, Benjamin L; Way, Michael; Vellucci, Matthew W; Vogler, Joshua D

    2013-09-01

    Descriptive, laboratory study. To compare the 3-D hip torques during a golf swing between young and senior healthy male amateur golfers. The secondary purpose was to compare the 3-D hip joint torques between the trail leg and lead leg. The generation of hip torques from the hip musculature is an important aspect of the golf swing. Golf is a very popular activity, and estimates of hip torques during the golf swing have not been reported. Twenty healthy male golfers were divided into a young group (mean ± SD age, 25.1 ± 3.1 years) and a senior group (age, 56.9 ± 4.7 years). All subjects completed 10 golf swings using their personal driver. A motion capture system and force plates were used to obtain kinematic and kinetic data. Inverse dynamic analyses were used to calculate 3-D hip joint torques of the trail and lead limbs. Two-way analyses of covariance (group by leg), with club-head velocity as a covariate, were used to compare peak hip torques between groups and limbs. Trail-limb hip external rotator torque was significantly greater in the younger group compared to the senior group, and greater in the trail leg versus the lead leg. When adjusting for club-head velocity, young and senior healthy male amateur golfers generated comparable hip torques during a golf swing, with the exception of the trail-limb hip external rotator torque. The largest hip torque found was the trail-limb hip extensor torque.

  12. Intramuscular pressure and torque during isometric, concentric and eccentric muscular activity

    NASA Technical Reports Server (NTRS)

    Styf, J.; Ballard, R.; Aratow, M.; Crenshaw, A.; Watenpaugh, D.; Hargens, A. R.

    1995-01-01

    Intramuscular pressures, electromyography (EMG) and torque generation during isometric, concentric and eccentric maximal isokinetic muscle activity were recorded in 10 healthy volunteers. Pressure and EMG activity were continuously and simultaneously measured side by side in the tibialis anterior and soleus muscles. Ankle joint torque and position were monitored continuously by an isokinetic dynamometer during plantar flexion and dorsiflexion of the foot. The increased force generation during eccentric muscular activity, compared with other muscular activity, was not accompanied by higher intramuscular pressure. Thus, this study demonstrated that eccentric muscular activity generated higher torque values for each increment of intramuscular pressure. Intramuscular pressures during antagonistic co-activation were significantly higher in the tibilis anterior muscle (42-46% of maximal agonistic activity) compared with the soleus muscle (12-29% of maximal agonistic activity) and was largely due to active recruitment of muscle fibers. In summary, eccentric muscular activity creates higher torque values with no additional increase of the intramuscular pressure compared with concentric and isometric muscular activity.

  13. Frequency analysis of tangential force measurements on a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Rossander, Morgan; Goude, Anders; Bernhoff, Hans; Eriksson, Sandra

    2016-09-01

    This paper presents experimental results of the torque ripple obtained from a three bladed 12 kW experimental H-rotor prototype. The measurements are performed by means of load cells installed on the base of the struts and by electrical measurements on the generator. The resulting torques are analysed in terms of frequency spectrum and order spectrum (synchronized with rotation). The measurements are compared to aerodynamic simulations of the turbine. The expected large torque ripple at three times the rotational speed (3 p) is only weakly represented at the hub and in the generator. This suggests that the system is filtering the ripple and/or that the simulations are overestimating the 3 p component. The torque ripple loads on the drive train are therefore lower than anticipated. Even if highly attenuated, most of the low frequencies correlating to aerodynamics are still represented in the generator electrical torque. Given a certain baseline, this opens for possible online monitoring of unbalances in the turbine by electrical measurements.

  14. A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor

    PubMed Central

    Nam, Ki-Tae; Jang, Dae-Jin; Kim, Yong Chol; Heo, Yoon; Hong, Eung-Pyo

    2016-01-01

    Demand for wheelchairs is increasing with growing numbers of aged and disabled persons. Manual wheelchairs are the most commonly used assistive device for mobility because they are convenient to transport. Manual wheelchairs have several advantages but are not easy to use for the elderly or those who lack muscular strength. Therefore, handrim-activated power-assist wheelchairs (HAPAW) that can aid driving power with a motor by detecting user driving intentions through the handrim are being researched. This research will be on HAPAW that judge user driving intentions by using non-contact torque sensors. To deliver the desired motion, which is sensed from handrim rotation relative to a fixed controller, a new driving wheel mechanism is designed by applying a non-contact torque sensor, and corresponding torques are simulated. Torques are measured by a driving wheel prototype and compared with simulation results. The HAPAW prototype was developed using the wheels and a driving control algorithm that uses left and right input torques and time differences are used to check if the non-contact torque sensor can distinguish users’ driving intentions. Through this procedure, it was confirmed that the proposed sensor can be used effectively in HAPAW. PMID:27509508

  15. Validity of trunk extensor and flexor torque measurements using isokinetic dynamometry.

    PubMed

    Guilhem, Gaël; Giroux, Caroline; Couturier, Antoine; Maffiuletti, Nicola A

    2014-12-01

    This study aimed to evaluate the validity and test-retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r=0.74-0.85; P<0.001) and between EMG activity and submaximal isometric torque (r ⩾ 0.99; P<0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from -3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test-retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Viscous Torques on a Levitating Body

    NASA Technical Reports Server (NTRS)

    Busse, F.; Wang, T.

    1982-01-01

    New analytical expressions for viscous torque generated by orthogonal sound waves agree well with experiment. It is possible to calculate torque on an object levitated in a fluid. Levitation has applications in containerless materials processing, coating, and fabrication of small precision parts. Sound waves cause fluid particles to move in elliptical paths and induce azimuthal circulation in boundary layer, giving rise to time-averaged torque.

  17. A theoretical model of speed-dependent steering torque for rolling tyres

    NASA Astrophysics Data System (ADS)

    Wei, Yintao; Oertel, Christian; Liu, Yahui; Li, Xuebing

    2016-04-01

    It is well known that the tyre steering torque is highly dependent on the tyre rolling speed. In limited cases, i.e. parking manoeuvre, the steering torque approaches the maximum. With the increasing tyre speed, the steering torque decreased rapidly. Accurate modelling of the speed-dependent behaviour for the tyre steering torque is a key factor to calibrate the electric power steering (EPS) system and tune the handling performance of vehicles. However, no satisfactory theoretical model can be found in the existing literature to explain this phenomenon. This paper proposes a new theoretical framework to model this important tyre behaviour, which includes three key factors: (1) tyre three-dimensional transient rolling kinematics with turn-slip; (2) dynamical force and moment generation; and (3) the mixed Lagrange-Euler method for contact deformation solving. A nonlinear finite-element code has been developed to implement the proposed approach. It can be found that the main mechanism for the speed-dependent steering torque is due to turn-slip-related kinematics. This paper provides a theory to explain the complex mechanism of the tyre steering torque generation, which helps to understand the speed-dependent tyre steering torque, tyre road feeling and EPS calibration.

  18. Control System for Bearingless Motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2008-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  19. Control system for bearingless motor-generator

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor); Kascak, Peter E. (Inventor)

    2010-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  20. Reduction of phase noise in nanowire spin orbit torque oscillators

    PubMed Central

    Yang, Liu; Verba, Roman; Tiberkevich, Vasil; Schneider, Tobias; Smith, Andrew; Duan, Zheng; Youngblood, Brian; Lenz, Kilian; Lindner, Jürgen; Slavin, Andrei N.; Krivorotov, Ilya N.

    2015-01-01

    Spin torque oscillators (STOs) are compact, tunable sources of microwave radiation that serve as a test bed for studies of nonlinear magnetization dynamics at the nanometer length scale. The spin torque in an STO can be created by spin-orbit interaction, but low spectral purity of the microwave signals generated by spin orbit torque oscillators hinders practical applications of these magnetic nanodevices. Here we demonstrate a method for decreasing the phase noise of spin orbit torque oscillators based on Pt/Ni80Fe20 nanowires. We experimentally demonstrate that tapering of the nanowire, which serves as the STO active region, significantly decreases the spectral linewidth of the generated signal. We explain the observed linewidth narrowing in the framework of the Ginzburg-Landau auto-oscillator model. The model reveals that spatial non-uniformity of the spin current density in the tapered nanowire geometry hinders the excitation of higher order spin-wave modes, thus stabilizing the single-mode generation regime. This non-uniformity also generates a restoring force acting on the excited self-oscillatory mode, which reduces thermal fluctuations of the mode spatial position along the wire. Both these effects improve the STO spectral purity. PMID:26592432

  1. Effect of strength and speed of torque development on balance recovery with the ankle strategy.

    PubMed

    Robinovitch, Stephen N; Heller, Britta; Lui, Andrew; Cortez, Jeffrey

    2002-08-01

    In the event of an unexpected disturbance to balance, the ability to recover a stable upright stance should depend not only on the magnitude of torque that can be generated by contraction of muscles spanning the lower extremity joints but also on how quickly these torques can be developed. In the present study, we used a combination of experimental and mathematical models of balance recovery by sway (feet in place responses) to test this hypothesis. Twenty-three young subjects participated in experiments in which they were supported in an inclined standing position by a horizontal tether and instructed to recover balance by contracting only their ankle muscles. The maximum lean angle where they could recover balance without release of the tether (static recovery limit) averaged 14.9 +/- 1.4 degrees (mean +/- SD). The maximum initial lean angle where they could recover balance after the tether was unexpectedly released and the ankles were initially relaxed (dynamic recovery limit) averaged 5.9 +/- 1.1 degrees, or 60 +/- 11% smaller than the static recovery limit. Peak ankle torque did not differ significantly between the two conditions (and averaged 116 +/- 32 Nm), indicating the strong effect on recovery ability of latencies in the onset and subsequent rates of torque generation (which averaged 99 +/- 13 ms and 372 +/- 267 N. m/s, respectively). Additional experiments indicated that dynamic recovery limits increased 11 +/- 14% with increases in the baseline ankle torques prior to release (from an average value of 31 +/- 18 to 54 +/- 24 N. m). These trends are in agreement with predictions from a computer simulation based on an inverted pendulum model, which illustrate the specific combinations of baseline ankle torque, rate of torque generation, and peak ankle torque that are required to attain target recovery limits.

  2. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone.

    PubMed

    Alam, K; Mitrofanov, A V; Silberschmidt, V V

    2011-03-01

    Bone drilling is widely used in orthopaedics and surgery; it is a technically demanding surgical procedure. Recent technological improvements in this area are focused on efforts to reduce forces in bone drilling. This study focuses on forces and a torque required for conventional and ultrasonically-assisted tool penetration into fresh bovine cortical bone. Drilling tests were performed with two drilling techniques, and the influence of drilling speed, feed rate and parameters of ultrasonic vibration on the forces and torque was studied. Ultrasonically-assisted drilling (UAD) was found to reduce a drilling thrust force and torque compared to conventional drilling (CD). The mechanism behind lower levels of forces and torque was explored, using high-speed filming of a drill-bone interaction zone, and was linked to the chip shape and character of its formation. It is expected that UAD will produce holes with minimal effort and avoid unnecessary damage and accompanying pain during the incision. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Resonance measurement of nonlocal spin torque in a three-terminal magnetic device.

    PubMed

    Xue, Lin; Wang, Chen; Cui, Yong-Tao; Liu, Luqiao; Swander, A; Sun, J Z; Buhrman, R A; Ralph, D C

    2012-04-06

    A pure spin current generated within a nonlocal spin valve can exert a spin-transfer torque on a nanomagnet. This nonlocal torque enables new design schemes for magnetic memory devices that do not require the application of large voltages across tunnel barriers that can suffer electrical breakdown. Here we report a quantitative measurement of this nonlocal spin torque using spin-torque-driven ferromagnetic resonance. Our measurement agrees well with the prediction of an effective circuit model for spin transport. Based on this model, we suggest strategies for optimizing the strength of nonlocal torque. © 2012 American Physical Society

  4. Ironless armature torque motor

    NASA Technical Reports Server (NTRS)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  5. A solid-state controller for a wind-driven slip-ring induction generator

    NASA Astrophysics Data System (ADS)

    Velayudhan, C.; Bundell, J. H.; Leary, B. G.

    1984-08-01

    The three-phase induction generator appears to become the preferred choice for wind-powered systems operated in parallel with existing power systems. A problem arises in connection with the useful operating speed range of the squirrel-cage machine, which is relatively narrow, as, for instance, in the range from 1 to 1.15. Efficient extraction of energy from a wind turbine, on the other hand, requires a speed range, perhaps as large as 1 to 3. One approach for 'matching' the generator to the turbine for the extraction of maximum power at any usable wind speed involves the use of a slip-ring induction machine. The power demand of the slip-ring machine can be matched to the available output from the wind turbine by modifying the speed-torque characteristics of the generator. A description is presented of a simple electronic rotor resistance controller which can optimize the power taken from a wind turbine over the full speed range.

  6. Charge-induced spin torque in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Kurebayashi, Daichi; Nomura, Kentaro

    In this work, we present phenomenological and microscopic derivations of spin torques in magnetically doped Weyl semimetals. As a result, we obtain the analytical expression of the spin torque generated, without a flowing current, when the chemical potential is modulated. We also find that this spin torque is a direct consequence of the chiral anomaly. Therefore, observing this spin torque in magnetic Weyl semimetals might be an experimental evidence of the chiral anomaly. This spin torque has also a great advantage in application. In contrast to conventional current-induced spin torques such as the spin-transfer torques, this spin torque does not accompany a constant current flow. Thus, devices using this operating principle is free from the Joule heating and possibly have higher efficiency than devices using conventional current-induced spin torques. This work was supported by JSPS KAKENHI Grant Number JP15H05854 and JP26400308.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would requiremore » the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.« less

  8. Balancing Power Absorption and Structural Loading for an Asymmetric Heave Wave-Energy Converter in Regular Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2016-06-24

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would requiremore » the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.« less

  9. Unsteady loading of a vertical-axis turbine in the interaction with an upstream deflector

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2014-01-01

    Torque generation and flow distribution of a lift-based vertical-axis turbine with an upstream deflecting plate are investigated in water tunnel experiments. The deployment of a deflector in front of a lift-based turbine is a promising approach to increase local flow velocity and enhance energy conversion efficiency without consideration for complicated control. For the turbine with the deflector, the phase during which the blade passes near the front end of the turbine has a major contribution to torque increase from the case without the deflector. Meanwhile, the deflector can have a negative effect in torque generation at the phase when the blade moves upstream against free stream if the turbine is placed close to the deflector in a crosswise direction. The change of nearby flow distribution by the deflector is also examined to find its correlation with torque generation. When the blade rotates through the near-wake region of the deflector, the blade can collides with the vortical structure shed from the deflector. This interaction causes significant torque fluctuation.

  10. The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backward

    PubMed Central

    Lele, Pushkar P.; Roland, Thibault; Shrivastava, Abhishek; Chen, Yihao; Berg, Howard C.

    2016-01-01

    Caulobacter crescentus, a monotrichous bacterium, swims by rotating a single right-handed helical filament. CW motor rotation thrusts the cell forward 1, a mode of motility known as the pusher mode; CCW motor rotation pulls the cell backward, a mode of motility referred to as the puller mode 2. The situation is opposite in E. coli, a peritrichous bacterium, where CCW rotation of multiple left-handed filaments drives the cell forward. The flagellar motor in E. coli generates more torque in the CCW direction than the CW direction in swimming cells 3,4. However, monotrichous bacteria including C. crescentus swim forward and backward at similar speeds, prompting the assumption that motor torques in the two modes are the same 5,6. Here, we present evidence that motors in C. crescentus develop higher torques in the puller mode than in the pusher mode, and suggest that the anisotropy in torque-generation is similar in two species, despite the differences in filament handedness and motor bias (probability of CW rotation). PMID:27499800

  11. Methodology for Determining Limit Torques for Threaded Fasteners

    NASA Technical Reports Server (NTRS)

    Hissam, Andy

    2011-01-01

    In aerospace design, where minimizing weight is always a priority, achieving the full capacity from fasteners is essential. To do so, the initial bolt preload must be maximized. The benefits of high preload are well documented and include improved fatigue resistance, a stiffer joint, and resistance to loosening. But many factors like elastic interactions and embedment tend to lower the initial preload placed on the bolt. These factors provide additional motivation to maximize the initial preload. But, to maximize bolt preload, you must determine what torque to apply. Determining this torque is greatly complicated by the large preload scatter generally seen with torque control. This paper presents a detailed methodology for generating limit torques for threaded fasteners. This methodology accounts for the large scatter in preload found with torque control, and therefore, addresses the statistical nature of the problem. It also addresses prevailing torque, a feature common in aerospace fasteners. Although prevailing torque provides a desired locking feature, it can also increase preload scatter. In addition, it can limit the amount of preload that can be generated due to the torsion it creates in the bolt. This paper discusses the complications of prevailing torque and how best to handle it. A wide range of torque-tension bolt testing was conducted in support of this research. The results from this research will benefit the design engineer as well as analyst involved in the design of bolted joints, leading to better, more optimized structural designs.

  12. Torque fluctuations caused by upstream mean flow and turbulence

    NASA Astrophysics Data System (ADS)

    Farr, T. D.; Hancock, P. E.

    2014-12-01

    A series of studies are in progress investigating the effects of turbine-array-wake interactions for a range of atmospheric boundary layer states by means of the EnFlo meteorological wind tunnel. The small, three-blade model wind turbines drive 4-quadrant motor-generators. Only a single turbine in neutral flow is considered here. The motor-generator current can be measured with adequate sensitivity by means of a current sensor allowing the mean and fluctuating torque to be inferred. Spectra of torque fluctuations and streamwise velocity fluctuations ahead of the rotor, between 0.1 and 2 diameters, show that only the large-scale turbulent motions contribute significantly to the torque fluctuations. Time-lagged cross-correlation between upstream velocity and torque fluctuations are largest over the inner part of the blade. They also show the turbulence to be frozen in behaviour over the 2 diameters upstream of the turbine.

  13. None of the Rotor Residues of F1-ATPase Are Essential for Torque Generation

    PubMed Central

    Chiwata, Ryohei; Kohori, Ayako; Kawakami, Tomonari; Shiroguchi, Katsuyuki; Furuike, Shou; Adachi, Kengo; Sutoh, Kazuo; Yoshida, Masasuke; Kinosita, Kazuhiko

    2014-01-01

    F1-ATPase is a powerful rotary molecular motor that can rotate an object several hundred times as large as the motor itself against the viscous friction of water. Forced reverse rotation has been shown to lead to ATP synthesis, implying that the mechanical work against the motor’s high torque can be converted into the chemical energy of ATP. The minimal composition of the motor protein is α3β3γ subunits, where the central rotor subunit γ turns inside a stator cylinder made of alternately arranged α3β3 subunits using the energy derived from ATP hydrolysis. The rotor consists of an axle, a coiled coil of the amino- and carboxyl-terminal α-helices of γ, which deeply penetrates the stator cylinder, and a globular protrusion that juts out from the stator. Previous work has shown that, for a thermophilic F1, significant portions of the axle can be truncated and the motor still rotates a submicron sized bead duplex, indicating generation of up to half the wild-type (WT) torque. Here, we inquire if any specific interactions between the stator and the rest of the rotor are needed for the generation of a sizable torque. We truncated the protruding portion of the rotor and replaced part of the remaining axle residues such that every residue of the rotor has been deleted or replaced in this or previous truncation mutants. This protrusionless construct showed an unloaded rotary speed about a quarter of the WT, and generated one-third to one-half of the WT torque. No residue-specific interactions are needed for this much performance. F1 is so designed that the basic rotor-stator interactions for torque generation and control of catalysis rely solely upon the shape and size of the rotor at very low resolution. Additional tailored interactions augment the torque to allow ATP synthesis under physiological conditions. PMID:24853745

  14. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.

    PubMed

    Ashkani, O; Maleki, A; Jamshidi, N

    2017-03-01

    Exoskeleton is a walking assistance device that improves human gait cycle through providing auxiliary force and transferring physical load to the stronger muscles. This device takes the natural state of organ and follows its natural movement. Exoskeleton functions as an auxiliary device to help those with disabilities in hip and knee such as devotees, elderly farmers and agricultural machinery operators who suffer from knee complications. In this research, an exoskeleton designed with two screw jacks at knee and hip joints. To simulate extension and flexion movements of the leg joints, bearings were used at the end of hip and knee joints. The generated torque and motion angles of these joints obtained as well as the displacement curves of screw jacks in the gait cycle. Then, the human gait cycle was simulated in stance and swing phases and the obtained torque curves were compared. The results indicated that they followed the natural circle of the generated torque in joints with a little difference from each other. The maximum displacement obtained 4 and 6 cm in hip and knee joints jack respectively. The maximum torques in hip and knee joints were generated in foot contact phase. Also the minimum torques in hip and knee joints were generated in toe off and heel off phases respectively.

  15. Electronic 4-wheel drive control device

    NASA Technical Reports Server (NTRS)

    Hayato, S.; Takanori, S.; Shigeru, H.; Tatsunori, S.

    1984-01-01

    The internal rotation torque generated during operation of a 4-wheel drive vehicle is reduced using a control device whose clutch is attached to one part of the rear-wheel drive shaft. One torque sensor senses the drive torque associated with the rear wheel drive shaft. A second sensor senses the drive torque associated with the front wheel drive shaft. Revolution count sensors sense the revolutions of each drive shaft. By means of a microcomputer, the engagement of the clutch is changed to insure that the ratio of the torque sensors remains constant.

  16. Understanding movement control in infants through the analysis of limb intersegmental dynamics.

    PubMed

    Schneider, K; Zernicke, R F; Ulrich, B D; Jensen, J L; Thelen, E

    1990-12-01

    One important component in the understanding of the control of limb movements is the way in which the central nervous system accounts for joint forces and torques that may be generated not only by muscle actions but by gravity and by passive reactions related to the movements of limb segments. In this study, we asked how the neuromotor system of young infants controls a range of active and passive forces to produce a stereotypic, nonintentional movement. We specifically analyzed limb intersegmental dynamics in spontaneous, cyclic leg movements (kicking) of varying intensity in supine 3-month-old human infants. Using inverse dynamics, we calculated the contributions of active (muscular) and passive (motion-dependent and gravitational) torque components at the hip, knee, and ankle joints from three-dimensional limb kinematics. To calculate joint torques, accurate estimates were needed of the limb's anthropometric parameters, which we determined using a model of the human body. Our analysis of limb intersegmental dynamics explicitly quantified the complex interplay of active and passive forces producing the simple, involuntary kicking movements commonly seen in 3-month-old infants. our results revealed that in nonvigorous kicks, hip joint reversal was the result of an extensor torque due to gravity, opposed by the combined flexor effect of the muscle torque and the total motion-dependent torque. The total motion-dependent torque increased as a hip flexor torque in more vigorous kicks; an extensor muscle torque was necessary to counteract the flexor influences of the total motion-dependent torque and, in the case of large ranges of motion, a flexor gravity torque as well. Thus, with changing passive torque influences due to motions of the linked segments, the muscle torques were adjusted to produce a net torque to reverse the kicking motion. As a consequence, despite considerable heterogeneity in the intensity, range of motion, coordination, and movement context of each kick, smooth trajectories resulted from the muscle torque, counteracting and complementing not only gravity but also the motion-dependent torques generated by movement of the linked segments.

  17. Cerebellar ataxia: abnormal control of interaction torques across multiple joints.

    PubMed

    Bastian, A J; Martin, T A; Keating, J G; Thach, W T

    1996-07-01

    1. We studied seven subjects with cerebellar lesions and seven control subjects as they made reaching movements in the sagittal plane to a target directly in front of them. Reaches were made under three different conditions: 1) "slow-accurate," 2) "fast-accurate," and 3) "fast as possible." All subjects were videotaped moving in a sagittal plane with markers on the index finger, wrist, elbow, and shoulder. Marker positions were digitized and then used to calculate joint angles. For each of the shoulder, elbow and wrist joints, inverse dynamics equations based on a three-segment limb model were used to estimate the net torque (sum of components) and each of the component torques. The component torques consisted of the torque due to gravity, the dynamic interaction torques induced passively by the movement of the adjacent joint, and the torque produced by the muscles and passive tissue elements (sometimes called "residual" torque). 2. A kinematic analysis of the movement trajectory and the change in joint angles showed that the reaches of subjects with cerebellar lesions were abnormal compared with reaches of control subjects. In both the slow-accurate and fast-accurate conditions the cerebellar subjects made abnormally curved wrist paths; the curvature was greater in the slow-accurate condition. During the slow-accurate condition, cerebellar subjects showed target undershoot and tended to move one joint at a time (decomposition). During the fast-accurate reaches, the cerebellar subjects showed target overshoot. Additionally, in the fast-accurate condition, cerebellar subjects moved the joints at abnormal rates relative to one another, but the movements were less decomposed. Only three subjects were tested in the fast as possible condition; this condition was analyzed only to determine maximal reaching speeds of subjects with cerebellar lesions. Cerebellar subjects moved more slowly than controls in all three conditions. 3. A kinetic analysis of torques generated at each joint during the slow-accurate reaches and the fast-accurate reaches revealed that subjects with cerebellar lesions produced very different torque profiles compared with control subjects. In the slow-accurate condition, the cerebellar subjects produced abnormal elbow muscle torques that prevented the normal elbow extension early in the reach. In the fast-accurate condition, the cerebellar subjects produced inappropriate levels of shoulder muscle torque and also produced elbow muscle torques that did not very appropriately with the dynamic interaction torques that occurred at the elbow. Lack of appropriate muscle torque resulted in excessive contributions of the dynamic interaction torque during the fast-accurate reaches. 4. The inability to produce muscle torques that predict, accommodate, and compensate for the dynamic interaction torques appears to be an important cause of the classic kinematic deficits shown by cerebellar subjects during attempted reaching. These kinematic deficits include incoordination of the shoulder and the elbow joints, a curved trajectory, and overshoot. In the fast-accurate condition, cerebellar subjects often made inappropriate muscle torques relative to the dynamic interaction torques. Because of this, interaction torques often determined the pattern of incoordination of the elbow and shoulder that produced the curved trajectory and target overshoot. In the slow-accurate condition, we reason that the cerebellar subjects may use a decomposition strategy so as to simplify the movement and not have to control both joints simultaneously. From these results, we suggest that a major role of the cerebellum is in generating muscle torques at a joint that will predict the interaction torques being generated by other moving joints and compensate for them as they occur.

  18. A comparison of preload values in gold and titanium dental implant retaining screws.

    PubMed

    Doolabh, R; Dullabh, H D; Sykes, L M

    2014-08-01

    This in vitro investigation compared the effect of using either gold or titanium retaining screws on preload in the dental implant- abutment complex. Inadequate preload can result in screw loosening, whilst fracture may occur if preload is excessive. These are the most commonly reported complications in implant-retained prostheses, and result in unscheduled, costly and time-consuming visits for the patient and the clinician. This study investigated changes in preload generation after repeated torque applications to gold and titanium screws. The test set-up consisted of an implant body, a cylindrical transmucosa abutment, and the test samples of gold and of titanium retaining screws. The implant bodies were anchored using a load cell, and the transmucosal abutments were attached using either gold or titanium retaining screws. A torque gauge was used to apply torque of 20Ncm, 32Ncm, and 40Ncm to the retaining screws. The preloads generated in each screw type were compared at each torque setting, and after repeated tightening episodes. In addition, the effect of applying torque beyond the manufacturers' recommendations was also examined. Gold retaining screws were found to achieve consistently higher preload values than titanium retaining screws. Preload values were not significantly different from the first to the tenth torque cycle. Titanium screws showed more consistent preload values, albeit lower than those of the gold screws. However due to possible galling of the internal thread of the implant body by titanium screws, gold screws remain the retaining screw of choice. Based on the findings of this study, gold retaining screws generate better preload than titanium. Torque beyond the manufacturers' recommendations resulted in a more stable implant complex. However, further investigations, with torque applications repeated until screw breakage, are needed to advise on ideal maintenance protocols.

  19. 40 CFR 86.1333-90 - Transient test cycle generation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... zero percent speed specified in the engine dynamometer schedules (appendix I (f)(1), (f)(2), or (f)(3... feedback torque equal to zero (using, for example, clutch disengagement, speed to torque control switching... reference speed and reference torque are zero percent values. For each idle segment that is ten seconds or...

  20. 40 CFR 86.1333-90 - Transient test cycle generation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... zero percent speed specified in the engine dynamometer schedules (appendix I (f)(1), (f)(2), or (f)(3... feedback torque equal to zero (using, for example, clutch disengagement, speed to torque control switching... reference speed and reference torque are zero percent values. For each idle segment that is ten seconds or...

  1. 40 CFR 86.1333-90 - Transient test cycle generation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... zero percent speed specified in the engine dynamometer schedules (appendix I (f)(1), (f)(2), or (f)(3... feedback torque equal to zero (using, for example, clutch disengagement, speed to torque control switching... reference speed and reference torque are zero percent values. For each idle segment that is ten seconds or...

  2. Control system design for the MOD-5A 7.3 mW wind turbine generator

    NASA Technical Reports Server (NTRS)

    Barton, Robert S.; Hosp, Theodore J.; Schanzenbach, George P.

    1995-01-01

    This paper provides descriptions of the requirements analysis, hardware development and software development phases of the Control System design for the MOD-5A 7.3 mW Wind Turbine Generator. The system, designed by General Electric Company, Advanced Energy Programs Department, under contract DEN 3-153 with NASA Lewis Research Center and DOE, provides real time regulation of rotor speed by control of both generator torque and rotor torque. A variable speed generator system is used to provide both airgap torque control and reactive power control. The wind rotor is designed with segmented ailerons which are positioned to control blade torque. The central component of the control system, selected early in the design process, is a programmable controller used for sequencing, alarm monitoring, communication, and real time control. Development of requirements for use of aileron controlled blades and a variable speed generator required an analytical simulation that combined drivetrain, tower and blade elastic modes with wind disturbances and control behavior. An orderly two phase plan was used for controller software development. A microcomputer based turbine simulator was used to facilitate hardware and software integration and test.

  3. Achieving production-level use of HEP software at the Argonne Leadership Computing Facility

    NASA Astrophysics Data System (ADS)

    Uram, T. D.; Childers, J. T.; LeCompte, T. J.; Papka, M. E.; Benjamin, D.

    2015-12-01

    HEP's demand for computing resources has grown beyond the capacity of the Grid, and these demands will accelerate with the higher energy and luminosity planned for Run II. Mira, the ten petaFLOPs supercomputer at the Argonne Leadership Computing Facility, is a potentially significant compute resource for HEP research. Through an award of fifty million hours on Mira, we have delivered millions of events to LHC experiments by establishing the means of marshaling jobs through serial stages on local clusters, and parallel stages on Mira. We are running several HEP applications, including Alpgen, Pythia, Sherpa, and Geant4. Event generators, such as Sherpa, typically have a split workload: a small scale integration phase, and a second, more scalable, event-generation phase. To accommodate this workload on Mira we have developed two Python-based Django applications, Balsam and ARGO. Balsam is a generalized scheduler interface which uses a plugin system for interacting with scheduler software such as HTCondor, Cobalt, and TORQUE. ARGO is a workflow manager that submits jobs to instances of Balsam. Through these mechanisms, the serial and parallel tasks within jobs are executed on the appropriate resources. This approach and its integration with the PanDA production system will be discussed.

  4. Feasibility of a Hydraulic Power Assist System for Use in Hybrid Neuroprostheses

    PubMed Central

    Foglyano, Kevin M.; Kobetic, Rudi; To, Curtis S.; Bulea, Thomas C.; Schnellenberger, John R.; Audu, Musa L.; Nandor, Mark J.; Quinn, Roger D.; Triolo, Ronald J.

    2015-01-01

    Feasibility of using pressurized hydraulic fluid as a source of on-demand assistive power for hybrid neuroprosthesis combining exoskeleton with functional neuromuscular stimulation was explored. Hydraulic systems were selected as an alternative to electric motors for their high torque/mass ratio and ability to be located proximally on the exoskeleton and distribute power distally to assist in moving the joints. The power assist system (PAS) was designed and constructed using off-the-shelf components to test the feasibility of using high pressure fluid from an accumulator to provide assistive torque to an exoskeletal hip joint. The PAS was able to provide 21 Nm of assistive torque at an input pressure of 3171 kPa with a response time of 93 ms resulting in 32° of hip flexion in an able-bodied test. The torque output was independent of initial position of the joint and was linearly related to pressure. Thus, accumulator pressure can be specified to provide assistive torque as needed in exoskeletal devices for walking or stair climbing beyond those possible either volitionally or with electrical stimulation alone. PMID:27017963

  5. Postural control model interpretation of stabilogram diffusion analysis

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    2000-01-01

    Collins and De Luca [Collins JJ. De Luca CJ (1993) Exp Brain Res 95: 308-318] introduced a new method known as stabilogram diffusion analysis that provides a quantitative statistical measure of the apparently random variations of center-of-pressure (COP) trajectories recorded during quiet upright stance in humans. This analysis generates a stabilogram diffusion function (SDF) that summarizes the mean square COP displacement as a function of the time interval between COP comparisons. SDFs have a characteristic two-part form that suggests the presence of two different control regimes: a short-term open-loop control behavior and a longer-term closed-loop behavior. This paper demonstrates that a very simple closed-loop control model of upright stance can generate realistic SDFs. The model consists of an inverted pendulum body with torque applied at the ankle joint. This torque includes a random disturbance torque and a control torque. The control torque is a function of the deviation (error signal) between the desired upright body position and the actual body position, and is generated in proportion to the error signal, the derivative of the error signal, and the integral of the error signal [i.e. a proportional, integral and derivative (PID) neural controller]. The control torque is applied with a time delay representing conduction, processing, and muscle activation delays. Variations in the PID parameters and the time delay generate variations in SDFs that mimic real experimental SDFs. This model analysis allows one to interpret experimentally observed changes in SDFs in terms of variations in neural controller and time delay parameters rather than in terms of open-loop versus closed-loop behavior.

  6. Role of the DELSEED Loop in Torque Transmission of F1-ATPase

    PubMed Central

    Tanigawara, Mizue; Tabata, Kazuhito V.; Ito, Yuko; Ito, Jotaro; Watanabe, Rikiya; Ueno, Hiroshi; Ikeguchi, Mitsunori; Noji, Hiroyuki

    2012-01-01

    F1-ATPase is an ATP-driven rotary motor that generates torque at the interface between the catalytic β-subunits and the rotor γ-subunit. The β-subunit inwardly rotates the C-terminal domain upon nucleotide binding/dissociation; hence, the region of the C-terminal domain that is in direct contact with γ—termed the DELSEED loop—is thought to play a critical role in torque transmission. We substituted all the DELSEED loop residues with alanine to diminish specific DELSEED loop-γ interactions and with glycine to disrupt the loop structure. All the mutants rotated unidirectionally with kinetic parameters comparable to those of the wild-type F1, suggesting that the specific interactions between DELSEED loop and γ is not involved in cooperative interplays between the catalytic β-subunits. Glycine substitution mutants generated half the torque of the wild-type F1, whereas the alanine mutant generated comparable torque. Fluctuation analyses of the glycine/alanine mutants revealed that the γ-subunit was less tightly held in the α3β3-stator ring of the glycine mutant than in the wild-type F1 and the alanine mutant. Molecular dynamics simulation showed that the DELSEED loop was disordered by the glycine substitution, whereas it formed an α-helix in the alanine mutant. Our results emphasize the importance of loop rigidity for efficient torque transmissions. PMID:23009846

  7. Lunar and Solar Torques on the Oceanic Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Bills, Bruce G.; Chao, Benjamin F.

    1998-01-01

    Brosche and Seiler recently suggested that direct lunar and solar tidal torques on the oceanic tides play a significant role in the earth's short-period angular momentum balance ("short-period" here meaning daily and sub-daily). We reexamine that suggestion here, concentrating on axial torques and hence on variations in rotation rate. Only those spherical harmonic components of the ocean tide having the same degree and order as the tidal potential induce nonzero torques. Prograde components (those moving in the same direction as the tide-generating body) produce the familiar secular braking of the earth's rotation. Retrograde components, however, produce rapid variations in UTI at twice the tidal frequency. There also exist interaction torques between tidal constituents, e.g. solar torques on lunar tides. They generate UTI variations at frequencies equal to the sums and differences of the original tidal frequencies. We give estimates of the torques and angular momentum variations for each of the important regimes, secular to quarter-diurnal. For the M(sub 2) potential acting on the M(sub 2) ocean tide, we find an associated angular momentum variation of amplitude 3 x 10(exp 19) N m. This is 5 to 6 orders of magnitude smaller than the angular momentum variations associated with tidal currents. We conclude that these torques do not play a significant role in the short-period angular momentum balance.

  8. Emergence of Chiral Phases in Active Torque Dipole Systems

    NASA Astrophysics Data System (ADS)

    Fialho, Ana; Tjhung, Elsen; Cates, Michael; Marenduzzo, Davide

    The common description of active particles as active force dipoles fails to take into account that active processes in biological systems often exhibit chiral asymmetries, generating active chiral processes and torque dipoles. Examples of such systems include cytoskeleton filaments which interact with motor proteins and beating cilia and flagella. In particular, the generation of active torques by the actomyosin cytoskeleton has been linked to the break of chiral symmetry at a cellular level. This phenomenon could constitute the primary determinant for the break of left-right symmetry in many living organisms, e.g. the position of the human heart within the human body. In order to account for the effects of chirality, we consider active torque dipoles which generate a chiral active stress. We characterize quasi-1D and 2D systems of torque dipoles, using a combination of linear stability analysis and numerical simulations (Lattice Boltzmann). Our results show that activity drives a spontaneous breaking of chiral symmetry, leading to the self-assembly of a chiral phase, in the absence of any thermodynamic interactions favoring cholesteric ordering. At high values of activity, we also observe labyrinthine patterns where the activity-induced chiral ordering is highly frustrated.

  9. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching.

    PubMed

    Lee, Lawrence K; Ginsburg, Michael A; Crovace, Claudia; Donohoe, Mhairi; Stock, Daniela

    2010-08-19

    The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.

  10. ELM Mitigation in Low-rotation ITER Baseline Scenario Plasmas on DIII-D with Deuterium Pellet Injection

    NASA Astrophysics Data System (ADS)

    Baylor, L. R.

    2016-10-01

    ELM mitigation using high frequency D2 pellet ELM pacing has been demonstrated in ITER baseline scenario plasmas on DIII D with low rotation obtained with low NBI input torque. The ITER burning plasmas will have relatively low input torque and are expected to have low rotation. ELM mitigation by on-demand pellet ELM triggering has not been observed before in these conditions. New experiments on DIII-D in these conditions with 90 Hz D2 pellets have shown that significant mitigation of the divertor ELM peak heat flux by a factor of 8 is possible without detrimental effects to the plasma confinement. High-Z impurity accumulation is dramatically reduced at all input torques from 0.1 to 2.5 N-m. Fueling with high field side injection of D2 pellets has been employed to demonstrate that density buildup can be obtained simultaneously with ELM mitigation. The implications are that rapid pellet injection remains a promising technique to trigger on-demand ELMs in low rotating plasmas with greatly reduced peak flux while preventing impurity accumulation in ITER. Supported by the US DOE under DE-AC05-00OR22725, DE-FC02-04ER54698.

  11. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  12. Analysis of the torque capacity of a completely customized lingual appliance of the next generation

    PubMed Central

    2014-01-01

    Introduction In lingual orthodontic therapy, effective torque control of the incisors is crucial due to the biomechanical particularities associated with the point of force application and the tight link between third order deviations and vertical tooth position. Aim The aim of the present in vitro investigation was to analyze the torque capacity of a completely customized lingual appliance of the next generation (WIN) in combination with different finishing archwire dimensions. Methods Using a typodont of the upper arch carrying the WIN appliance, slot filling and undersized individualized β-titanium archwires were engaged. Horizontal forces ranging from 0 to 100 cN were applied at the central incisor by means of spring gauges. The resulting angular deviations were recorded and the corresponding torque moments were calculated. Results For fullsize archwires (0.018”×0.018” β-titanium and 0.018”×0.025” β-titanium), an initial torque play of 0-2° had to be overcome prior to the development of an effective torque moment. Thereafter, a linear correlation between torque angle and torque moment developed for both archwire dimensions with steeper slopes calculated for the specimens with the larger dimension. A torque moment of 2 Nmm required for effective torque correction was noted after a minimum of 2-3° of twist for the 0.018”×0.018” β-titanium wires as compared to 2-4° for the 0.018”×0.025” β-titanium study sample. When undersized archwires were analyzed (0.0175”×0.0175” β-titanium), the measured torque play ranged from 5-7°. After 8-12° of torque angle, the threshold of 2 Nmm was reached. A linear relationship between twist angle and torque moment in which the steepness of the slopes was generally flatter than the ones calculated for the slot filling archwires was noted. Conclusions Given the high precision of the bracket slot-archwire-combination provided with the WIN appliance, an effective torque control can be clinically realized. PMID:24502426

  13. [Biomechanical testing of the new torque-segmented arch (TSA)].

    PubMed

    Wichelhaus, A; Sander, F G

    1995-07-01

    New torque-segmented arch wires are presented which consist of a superelastic anterior component with 30 degrees or 45 degrees torque and which are connected to 2 steel lateral components by means of a crimped connector. When using such torque-segmented arch wires, the crimped connector rests mesially to the canine bracket and the lateral components exhibit a torque of 0 degree. The use of the torque-segmented arch wires requires the practitioner to adjust the anterior tooth segment, to bend in first order bends in the steel lateral portion as well as to bend in a sweep to avoid an anterior tooth extrusion, and, if desired, to bend in third order bends to influence premolars and molars. In some cases the simultaneous application of palatal arches can become necessary, because each torque transfer results in a transversal enlargement in the molar area. Compared to conventional steel wires with dimensions of 0.016 x 0.022 in which an anterior tooth torque is bent, the torque segmented arch wires exhibit considerably fewer side effects, but there is a larger distally rotating moment for the molars. 1. When applying torque-segmented arch wires, the extrusive force transferred to the anterior teeth is considerably smaller. 2. The protrusive force acting on the anterior teeth is also considerably smaller, which results in a reduced demand being placed on the anchorage of the molars. 3. The torque transfer to the incisors rests in a quite moderate range, even in the case of a 50 degrees torque. For this reason, the practitioner can expect diminished or no resorptions at all compared to the aforementioned steel wires. 4. The Martensite plateau of the torque-segmented arch wires exhibit constant moments in large areas so that such arch wires can be used in almost every anterior tooth position. 5. The segmented wires presented here can be applied not only in the case of the standard edgewise technique but also in each case of the straight-wire technique. 6. These new arch wires require no readjustment of torque values. 7. To control the transferred torque values it is recommended that the already transferred torque values be monitored during each check-up with the help of the described torque key. 8. When the torque values of the brackets are known, the torque key renders frequent patient X-rays superfluous. 9. When the desired torque values are attained, treatment can proceed using conventional arch wires.

  14. Influence of second-order bracket-archwire misalignments on loads generated during third-order archwire rotation in orthodontic treatment.

    PubMed

    Romanyk, Dan L; George, Andrew; Li, Yin; Heo, Giseon; Carey, Jason P; Major, Paul W

    2016-05-01

    To investigate the influence of a rotational second-order bracket-archwire misalignment on the loads generated during third-order torque procedures. Specifically, torque in the second- and third-order directions was considered. An orthodontic torque simulator (OTS) was used to simulate the third-order torque between Damon Q brackets and 0.019 × 0.025-inch stainless steel archwires. Second-order misalignments were introduced in 0.5° increments from a neutral position, 0.0°, up to 3.0° of misalignment. A sample size of 30 brackets was used for each misalignment. The archwire was then rotated in the OTS from its neutral position up to 30° in 3° increments and then unloaded in the same increments. At each position, all forces and torques were recorded. Repeated-measures analysis of variance was used to determine if the second-order misalignments significantly affected torque values in the second- and third-order directions. From statistical analysis of the experimental data, it was found that the only statistically significant differences in third-order torque between a misaligned state and the neutral position occurred for 2.5° and 3.0° of misalignment, with mean differences of 2.54 Nmm and 2.33 Nmm, respectively. In addition, in pairwise comparisons of second-order torque for each misalignment increment, statistical differences were observed in all comparisons except for 0.0° vs 0.5° and 1.5° vs 2.0°. The introduction of a second-order misalignment during third-order torque simulation resulted in statistically significant differences in both second- and third-order torque response; however, the former is arguably clinically insignificant.

  15. The effect of different screw-tightening techniques on the strain generated on an internal-connection implant superstructure. Part 2: Models created with a splinted impression technique.

    PubMed

    Choi, Jung-Han

    2011-01-01

    This study aimed to evaluate the effect of different screw-tightening sequences, torques, and methods on the strains generated on an internal-connection implant (Astra Tech) superstructure with good fit. An edentulous mandibular master model and a metal framework directly connected to four parallel implants with a passive fit to each other were fabricated. Six stone casts were made from a dental stone master model by a splinted impression technique to represent a well-fitting situation with the metal framework. Strains generated by four screw-tightening sequences (1-2-3-4, 4-3-2-1, 2-4-3-1, and 2-3-1-4), two torques (10 and 20 Ncm), and two methods (one-step and two-step) were evaluated. In the two-step method, screws were tightened to the initial torque (10 Ncm) in a predetermined screw-tightening sequence and then to the final torque (20 Ncm) in the same sequence. Strains were recorded twice by three strain gauges attached to the framework (superior face midway between abutments). Deformation data were analyzed using multiple analysis of variance at a .05 level of statistical significance. In all stone casts, strains were produced by connection of the superstructure, regardless of screw-tightening sequence, torque, and method. No statistically significant differences in superstructure strains were found based on screw-tightening sequences (range, -409.8 to -413.8 μm/m), torques (-409.7 and -399.1 μm/m), or methods (-399.1 and -410.3 μm/m). Within the limitations of this in vitro study, screw-tightening sequence, torque, and method were not critical factors for the strain generated on a well-fitting internal-connection implant superstructure by the splinted impression technique. Further studies are needed to evaluate the effect of screw-tightening techniques on the preload stress in various different clinical situations.

  16. Torque Generation of Enterococcus hirae V-ATPase*

    PubMed Central

    Ueno, Hiroshi; Minagawa, Yoshihiro; Hara, Mayu; Rahman, Suhaila; Yamato, Ichiro; Muneyuki, Eiro; Noji, Hiroyuki; Murata, Takeshi; Iino, Ryota

    2014-01-01

    V-ATPase (VoV1) converts the chemical free energy of ATP into an ion-motive force across the cell membrane via mechanical rotation. This energy conversion requires proper interactions between the rotor and stator in VoV1 for tight coupling among chemical reaction, torque generation, and ion transport. We developed an Escherichia coli expression system for Enterococcus hirae VoV1 (EhVoV1) and established a single-molecule rotation assay to measure the torque generated. Recombinant and native EhVoV1 exhibited almost identical dependence of ATP hydrolysis activity on sodium ion and ATP concentrations, indicating their functional equivalence. In a single-molecule rotation assay with a low load probe at high ATP concentration, EhVoV1 only showed the “clear” state without apparent backward steps, whereas EhV1 showed two states, “clear” and “unclear.” Furthermore, EhVoV1 showed slower rotation than EhV1 without the three distinct pauses separated by 120° that were observed in EhV1. When using a large probe, EhVoV1 showed faster rotation than EhV1, and the torque of EhVoV1 estimated from the continuous rotation was nearly double that of EhV1. On the other hand, stepping torque of EhV1 in the clear state was comparable with that of EhVoV1. These results indicate that rotor-stator interactions of the Vo moiety and/or sodium ion transport limit the rotation driven by the V1 moiety, and the rotor-stator interactions in EhVoV1 are stabilized by two peripheral stalks to generate a larger torque than that of isolated EhV1. However, the torque value was substantially lower than that of other rotary ATPases, implying the low energy conversion efficiency of EhVoV1. PMID:25258315

  17. A comparative assessment of torque generated by lingual and conventional brackets.

    PubMed

    Sifakakis, Iosif; Pandis, Nikolaos; Makou, Margarita; Eliades, Theodore; Katsaros, Christos; Bourauel, Christoph

    2013-06-01

    The aim of this study was to assess the effect of bracket type on the labiopalatal moments generated by lingual and conventional brackets. Incognito™ lingual brackets (3M Unitek), STb™ lingual brackets (Light Lingual System; ORMCO), In-Ovation L lingual brackets (DENTSPLY GAC), and conventional 0.018 inch slot brackets (Gemini; 3M Unitek) were bonded on identical maxillary acrylic resin models with levelled and aligned teeth. Each model was mounted on the orthodontic measurement and simulation system and 10 0.0175 × 0.0175 TMA wires were used for each bracket type. The wire was ligated with elastomerics into the Incognito, STb, and conventional brackets and each measurement was repeated once after religation. A 15 degrees buccal root torque (+15 degrees) and then a 15 degrees palatal root torque (-15 degrees) were gradually applied to the right central incisor bracket. After each activation, the bracket returned to its initial position and the moments in the sagittal plane were recorded during these rotations of the bracket. One-way analysis of variance with post hoc multiple comparisons (Tukey test at 0.05 error rate) was conducted to assess the effect on bracket type on the generated moments. The magnitude of maximum moment at +15 degrees ranged 8.8, 8.2, 7.1, and 5.8 Nmm for the Incognito, STb, conventional Gemini, and the In-Ovation L brackets, respectively; similar values were recorded at -15 degrees: 8.6, 8.1, 7.0, and 5.7 Nmm, respectively. The recorded differences of maximum moments were statistically significant, except between the Incognito and STb brackets. Additionally, the torque angles were evaluated at which the crown torque fell well below the minimum levels of 5.0 Nmm, as well as the moment/torque ratio at the last part of the activation/deactivation curve, between 10 and 15 degrees. The lowest torque expression was observed at the self-ligating lingual brackets, followed by the conventional brackets. The Incognito and STb lingual brackets generated the highest moments.

  18. Special-Purpose High-Torque Permanent-Magnet Motors

    NASA Technical Reports Server (NTRS)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Z. X.; Wang, W. X.; Diamond, P. H.

    We report that intrinsic torque, which can be generated by turbulent stresses, can induce toroidal rotation in a tokamak plasma at rest without direct momentum injection. Reversals in intrinsic torque have been inferred from the observation of toroidal velocity changes in recent lower hybrid current drive (LHCD) experiments. Here we focus on understanding the cause of LHCD-induced intrinsic torque reversal using gyrokinetic simulations and theoretical analyses. A new mechanism for the intrinsic torque reversal linked to magnetic shear (sˆ) effects on the turbulence spectrum is identified. This reversal is a consequence of the ballooning structure at weak sˆ . Basedmore » on realistic profiles from the Alcator C-Mod LHCD experiments, simulations demonstrate that the intrinsic torque reverses for weak sˆ discharges and that the value of sˆ crit is consistent with the experimental results sˆ exp crit [Rice et al., Phys. Rev. Lett. 111, 125003 (2013)]. In conclusion, the consideration of this intrinsic torque feature in our work is important for the understanding of rotation profile generation at weak and its consequent impact on macro-instability stabilization and micro-turbulence reduction, which is crucial for ITER. It is also relevant to internal transport barrier formation at negative or weakly positive sˆ .« less

  20. In-line rotating torque sensor with on-board amplifier

    DOEpatents

    Kronberg, James W.

    1990-01-01

    A rotating torque sensor apparatus and method for measuring small torques comprising a shaft, a platform having a circuit board and a first moment arm attached to the shaft, a rotatable wheel coaxial with the shaft and having a second moment arm spaced apart from the first moment arm with a load cell therebetween for generating an electric signal as the torque is applied to the shaft and transferred through the moment arms to the load cell. The electrical signal is conducted from the load cell to the circuit board for filtering and amplification before being extracted from the torque assembly through a slip ring.

  1. Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Kohei; Pai, Chi-Feng; Tan, Aik Jun

    2016-06-06

    We report the effect of the rare earth metal Gd on current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Pt/Co/Gd heterostructures, characterized using harmonic measurements and spin-torque ferromagnetic resonance (ST-FMR). By varying the Gd metal layer thickness from 0 nm to 8 nm, harmonic measurements reveal a significant enhancement of the effective fields generated from the Slonczewski-like and field-like torques. ST-FMR measurements confirm an enhanced effective spin Hall angle and show a corresponding increase in the magnetic damping constant with increasing Gd thickness. These results suggest that Gd plays an active role in generating SOTs in these heterostructures. Our finding may lead tomore » spin-orbitronics device application such as non-volatile magnetic random access memory, based on rare earth metals.« less

  2. Direct mechanical torque sensor for model wind turbines

    NASA Astrophysics Data System (ADS)

    Kang, Hyung Suk; Meneveau, Charles

    2010-10-01

    A torque sensor is developed to measure the mechanical power extracted by model wind turbines. The torque is measured by mounting the model generator (a small dc motor) through ball bearings to the hub and by preventing its rotation by the deflection of a strain-gauge-instrumented plate. By multiplying the measured torque and rotor angular velocity, a direct measurement of the fluid mechanical power extracted from the flow is obtained. Such a measurement is more advantageous compared to measuring the electrical power generated by the model generator (dc motor), since the electrical power is largely affected by internal frictional, electric and magnetic losses. Calibration experiments are performed, and during testing, the torque sensor is mounted on a model wind turbine in a 3 rows × 3 columns array of wind turbines in a wind tunnel experiment. The resulting electrical and mechanical powers are quantified and compared over a range of applied loads, for three different incoming wind velocities. Also, the power coefficients are obtained as a function of the tip speed ratio. Significant differences between the electrical and mechanical powers are observed, which highlights the importance of using the direct mechanical power measurement for fluid dynamically meaningful results. A direct calibration with the measured current is also explored. The new torque sensor is expected to contribute to more accurate model wind tunnel tests which should provide added flexibility in model studies of the power that can be harvested from wind turbines and wind-turbine farms.

  3. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton

    PubMed Central

    Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong

    2017-01-01

    Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization. PMID:29311798

  4. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.

    PubMed

    Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong

    2017-01-01

    Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.

  5. Design and Simulation of a MEMS Control Moment Gyroscope for the Sub-Kilogram Spacecraft

    PubMed Central

    Chang, Honglong; Jiao, Wenlong; Fu, Qianyan; Xie, Jianbing; Yuan, Weizheng

    2010-01-01

    A novel design of a microelectromechanical systems (MEMS) control moment gyroscope (MCMG) was proposed in this paper in order to generate a torque output with a magnitude of 10−6 N·m. The MCMG consists of two orthogonal angular vibration systems, i.e., the rotor and gimbal; the coupling between which is based on the Coriolis effect and will cause a torque output in the direction perpendicular to the two vibrations. The angular rotor vibration was excited by the in-plane electrostatic rotary comb actuators, while the angular gimbal vibration was driven by an out-of-plane electrostatic parallel plate actuator. A possible process flow to fabricate the structure was proposed and discussed step by step. Furthermore, an array configuration using four MCMGs as an effective element, in which the torque was generated with a phase difference of 90 degrees between every two MCMGs, was proposed to smooth the inherent fluctuation of the torque output for a vibrational MCMG. The parasitic torque was cancelled by two opposite MCMGs with a phase difference of 180 degrees. The designed MCMG was about 1.1 cm × 1.1 cm × 0.04 cm in size and 0.1 g in weight. The simulation results showed that the maximum torque output of a MCMG, the resonant frequency of which was approximately 1,000 Hz, was about 2.5 × 10−8 N·m. The element with four MCMGs could generate a torque of 5 × 10−8 N·m. The torque output could reach a magnitude of 10−6 N·m when the frequency was improved from 1,000 Hz to 10,000 Hz. Using arrays of 4 × 4 effective elements on a 1 kg spacecraft with a standard form factor of 10 cm × 10 cm × 10 cm, a 10 degrees attitude change could be achieved in 26.96 s. PMID:22319346

  6. Design and simulation of a MEMS control moment gyroscope for the sub-kilogram spacecraft.

    PubMed

    Chang, Honglong; Jiao, Wenlong; Fu, Qianyan; Xie, Jianbing; Yuan, Weizheng

    2010-01-01

    A novel design of a microelectromechanical systems (MEMS) control moment gyroscope (MCMG) was proposed in this paper in order to generate a torque output with a magnitude of 10(-6) N·m. The MCMG consists of two orthogonal angular vibration systems, i.e., the rotor and gimbal; the coupling between which is based on the Coriolis effect and will cause a torque output in the direction perpendicular to the two vibrations. The angular rotor vibration was excited by the in-plane electrostatic rotary comb actuators, while the angular gimbal vibration was driven by an out-of-plane electrostatic parallel plate actuator. A possible process flow to fabricate the structure was proposed and discussed step by step. Furthermore, an array configuration using four MCMGs as an effective element, in which the torque was generated with a phase difference of 90 degrees between every two MCMGs, was proposed to smooth the inherent fluctuation of the torque output for a vibrational MCMG. The parasitic torque was cancelled by two opposite MCMGs with a phase difference of 180 degrees. The designed MCMG was about 1.1 cm×1.1 cm×0.04 cm in size and 0.1 g in weight. The simulation results showed that the maximum torque output of a MCMG, the resonant frequency of which was approximately 1,000 Hz, was about 2.5×10(-8) N·m. The element with four MCMGs could generate a torque of 5×10(-8) N·m. The torque output could reach a magnitude of 10(-6) N·m when the frequency was improved from 1,000 Hz to 10,000 Hz. Using arrays of 4×4 effective elements on a 1 kg spacecraft with a standard form factor of 10 cm×10 cm×10 cm, a 10 degrees attitude change could be achieved in 26.96 s.

  7. Torque, Current, and Discomfort During 3 Types of Neuromuscular Electrical Stimulation of Tibialis Anterior.

    PubMed

    Wiest, Matheus J; Bergquist, Austin J; Collins, David F

    2017-08-01

    The benefits of neuromuscular electrical stimulation (NMES) for rehabilitation depend on the capacity to generate functionally relevant torque with minimal fatigability and discomfort. Traditionally, NMES is delivered either over a muscle belly (mNMES) or a nerve trunk (nNMES). Recently, a technique that minimizes contraction fatigability by alternating pulses between the mNMES and nNMES sites, termed "interleaved" NMES (iNMES), was developed. However, discomfort and the ability to generate large torque during iNMES have not been explored adequately. The study objective was to compare discomfort and maximal torque between mNMES, nNMES, and iNMES. Stimulation trains (12 pulses at 40 Hz) were delivered to produce dorsiflexion torque using mNMES, nNMES, and iNMES. Discomfort was assessed using a visual analogue scale for contractions that generated 5-30% of a maximal voluntary isometric contraction (MVIC), and for the maximal tolerable torque. Discomfort scores were not different between NMES types when torque was ≤20% MVIC. At 30% MVIC, mNMES produced more discomfort than nNMES and iNMES. nNMES produced the most torque (65% MVIC), followed by iNMES (49% MVIC) and mNMES (33% MVIC); in these trials, mNMES produced more discomfort than nNMES, but not iNMES. The present results may be limited to individuals with no history of neuromusculoskeletal impairment. In terms of discomfort, there were no differences between mNMES, nNMES, or iNMES for contractions between 5-20% MVIC. However, mNMES produced more discomfort than nNMES and iNMES for contractions of 30% MVIC, while for larger contractions, mNMES only produced more discomfort than nNMES. The advantages and disadvantages of each NMES type should be considered prior to implementation in rehabilitation programs. © 2017 American Physical Therapy Association

  8. Autonomous momentum management for space station

    NASA Technical Reports Server (NTRS)

    Hahn, E.

    1984-01-01

    Momentum management for the CDG planar space platform is discussed. It is assumed that the external torques on the space station are gravity gradient and aerodynamic, both have bias and cyclic terms. The integrals of the cyclic torques are the cyclic momenti which will be stored in the momentum storage actuator. Techniques to counteract the bias torques and center the cyclic momentum and gravity gradient desaturation by adjusting vehicle attitude, aerodynamic desaturation using solar panels and radiators and the deployment of flat plates at the end of long booms generating aerodynamic torques are investigated.

  9. Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness

    NASA Astrophysics Data System (ADS)

    Zheng, Yisheng; Zhang, Xinong; Luo, Yajun; Zhang, Yahong; Xie, Shilin

    2018-02-01

    By now, many translation quasi-zero stiffness (QZS) mechanisms have been proposed to overcome the restriction between the isolation frequency range and the load bearing capacity of linear isolators. The couplings of rotor systems undertake the functions of transmitting static driving torque and isolating disturbing torque simultaneously, which creates the demand of torsion QZS mechanisms. Hence a QZS coupling is presented in this paper, where a torsion magnetic spring (TMS) composed of two coaxial ring magnet arrangements in repulsive configuration is employed to produce negative torsion stiffness to counteract the positive stiffness of a rubber spring. In this paper, the expressions of magnetic torque and stiffness are given firstly and verified by finite element simulations; and the effect of geometric parameters of the TMS on its stiffness characteristic is analyzed in detail, which contributes to the optimal design of the TMS. Then dynamic analysis of the QZS coupling is performed and the analytical expression of the torque transmissibility is achieved based on the Harmonic Balance Method. Finally, simulation of the torque transmissibility is carried out to reveal how geometric parameters of the TMS affect the isolation performance.

  10. Transition of torque pattern in undulatory locomotion due to wave number variation in resistive force dominated media

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Ming, Tingyu

    2016-11-01

    In undulatory locomotion, torque (bending moment) is required along the body to overcome the external forces from environments and bend the body. Previous observations on animals using less than two wavelengths on the body showed such torque has a single traveling wave pattern. Using resistive force theory model and considering the torque generated by external force in a resistive force dominated media, we found that as the wave number (number of wavelengths on the locomotor's body) increases from 0.5 to 1.8, the speed of the traveling wave of torque decreases. When the wave number increases to 2 and greater, the torque pattern transits from a single traveling wave to a two traveling waves and then a complex pattern that consists two wave-like patterns. By analyzing the force distribution and its contribution to the torque, we explain the speed decrease of the torque wave and the pattern transition. This research is partially supported by the Recruitment Program of Global Young Experts (China).

  11. Limiting Speed of the Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Nirody, Jasmine; Berry, Richard; Oster, George

    The bacterial flagellar motor (BFM) drives swimming in a wide variety of bacterial species, making it crucial for several fundamental biological processes including chemotaxis and community formation. Recent experiments have shown that the structure of this nanomachine is more dynamic than previously believed. Specifically, the number of active torque-generating units (stators) was shown to vary across applied loads. This finding invalidates the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. Here, we put forward a model for the torque generation mechanism of this motor and propose that the maximum speed of the motor increases as additional torque-generators are recruited. This is contrary to the current widely-held belief that there is a universal upper limit to the speed of the BFM. Our result arises from the assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence and consolidate our predictions with arguments that a processive motor must have a high duty ratio at high loads.

  12. Spin-Orbit Torques and Anisotropic Magnetization Damping in Skyrmion Crystals

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil; Brataas, Arne

    2014-03-01

    We theoretically study the effects of reactive and dissipative homogeneous spin-orbit torques and anisotropic damping on the current-driven skyrmion dynamics in cubic chiral magnets. Our results demonstrate that spin-orbit torques play a significant role in the current-induced skyrmion velocity. The dissipative spin-orbit torque generates a relativistic Magnus force on the skyrmions, whereas the reactive spin-orbit torque yields a correction to both the drift velocity along the current direction and the transverse velocity associated with the Magnus force. The spin-orbit torque corrections to the velocity scale linearly with the skyrmion size, which is inversely proportional to the spin-orbit coupling. Consequently, the reactive spin-orbit torque correction can be the same order of magnitude as the non-relativistic contribution. More importantly, the dissipative spin-orbit torque can be the dominant force that causes a deflected motion of the skyrmions if the torque exhibits a linear or quadratic relationship with the spin-orbit coupling. In addition, we demonstrate that the skyrmion velocity is determined by anisotropic magnetization damping parameters governed by the skyrmion size.

  13. 40 CFR 86.1333 - Transient test cycle generation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... zero percent speeds, zero percent torque points, but may be engaged up to two points preceding a non-zero point, and may be engaged for time segments with zero percent speed and torque points of durations...

  14. Fill-in binary loop pulse-torque quantizer

    NASA Technical Reports Server (NTRS)

    Lory, C. B.

    1975-01-01

    Fill-in binary (FIB) loop provides constant heating of torque generator, an advantage of binary current switching. At the same time, it avoids mode-related dead zone and data delay of binary, an advantage of ternary quantization.

  15. Improved direct torque control of an induction generator used in a wind conversion system connected to the grid.

    PubMed

    Abdelli, Radia; Rekioua, Djamila; Rekioua, Toufik; Tounzi, Abdelmounaïm

    2013-07-01

    This paper presents a modulated hysteresis direct torque control (MHDTC) applied to an induction generator (IG) used in wind energy conversion systems (WECs) connected to the electrical grid through a back-to-back converter. The principle of this strategy consists in superposing to the torque reference a triangular signal, as in the PWM strategy, with the desired switching frequency. This new modulated reference is compared to the estimated torque by using a hysteresis controller as in the classical direct torque control (DTC). The aim of this new approach is to lead to a constant frequency and low THD in grid current with a unit power factor and a minimum voltage variation despite the wind variation. To highlight the effectiveness of the proposed method, a comparison was made with classical DTC and field oriented control method (FOC). The obtained simulation results, with a variable wind profile, show an adequate dynamic of the conversion system using the proposed method compared to the classical approaches. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Multi-body dynamic coupling mechanism for generating throwing arm velocity during baseball pitching.

    PubMed

    Naito, Kozo; Takagi, Tokio; Kubota, Hideaki; Maruyama, Takeo

    2017-08-01

    The purpose of this study was to identify the detailed mechanism how the maximum throwing arm endpoint velocity is determined by the muscular torques and non-muscular interactive torques from the perspective of the dynamic coupling among the trunk, thorax and throwing and non-throwing arm segments. The pitching movements of ten male collegiate baseball pitchers were measured by a three-dimensional motion capture system. Using the induced-segmental velocity analysis (IVA) developed in this study, the maximum fingertip velocity of the throwing arm (MFV) was decomposed into each contribution of the muscular torques, passive motion-dependent torques due to gyroscopic moment, Coriolis force and centrifugal force, and other interactive torque components. The results showed that MFV (31.6±1.7m/s) was mainly attributed to two different mechanisms. The first is the passive motion-dependent effect on increasing the angular velocities of three joints (thorax rotation, elbow extension and wrist flexion). The second is the muscular torque effect of the shoulder internal rotation (IR) torque on generating IR angular velocity. In particular, the centrifugal force-induced elbow extension motion, which was the greatest contributor among individual joint contributions, was caused primarily by the angular velocity-dependent forces associated with the humerus, thorax, and trunk rotations. Our study also found that a compensatory mechanism was achieved by the negative and positive contributions of the muscular torque components. The current IVA is helpful to understand how the rapid throwing arm movement is determined by the dynamic coupling mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Speed, not magnitude, of knee extensor torque production is associated with self-reported knee function early after anterior cruciate ligament reconstruction.

    PubMed

    Hsieh, Chao-Jung; Indelicato, Peter A; Moser, Michael W; Vandenborne, Krista; Chmielewski, Terese L

    2015-11-01

    To examine the magnitude and speed of knee extensor torque production at the initiation of advanced anterior cruciate ligament (ACL) reconstruction rehabilitation and the associations with self-reported knee function. Twenty-eight subjects who were 12 weeks post-ACL reconstruction and 28 age- and sex-matched physically active controls participated in this study. Knee extensor torque was assessed bilaterally with an isokinetic dynamometer at 60°/s. The variables of interest were peak torque, average rate of torque development, time to peak torque and quadriceps symmetry index. Knee function was assessed with the International Knee Documentation Committee Subjective Knee Form (IKDC-SKF). Peak torque and average rate of torque development were lower on the surgical side compared to the non-surgical side and controls. Quadriceps symmetry index was lower in subjects with ACL reconstruction compared to controls. On the surgical side, average rate of torque development was positively correlated with IKDC-SKF score (r = 0.379) while time to peak torque was negatively correlated with IKDC-SKF score (r = -0.407). At the initiation of advanced ACL reconstruction rehabilitation, the surgical side displayed deficits in peak torque and average rate of torque development. A higher rate of torque development and shorter time to peak torque were associated with better self-reported knee function. The results suggest that the rate of torque development should be addressed during advanced ACL reconstruction rehabilitation and faster knee extensor torque generation may lead to better knee function. III.

  18. Central excitability contributes to supramaximal volitional contractions in human incomplete spinal cord injury

    PubMed Central

    Thompson, Christopher K; Lewek, Michael D; Jayaraman, Arun; Hornby, T George

    2011-01-01

    Abstract Despite greater muscle fatigue in individuals with spinal cord injury (SCI) when compared to neurologically intact subjects using neuromuscular electrical stimulation (NMES) protocols, few studies have investigated the extent of volitional fatigue in motor incomplete SCI. Using an established protocol of 20 repeated, intermittent, maximal volitional effort (MVE) contractions, we previously demonstrated that subjects with incomplete SCI unexpectedly demonstrated a 15% increase in peak knee extensor torques within the first five MVEs with minimal evidence of fatigue after 20 contraction. In the present study, we investigated potential segmental mechanisms underlying this supramaximal torque generation. Changes in twitch properties and maximum compound muscle action potentials (M-waves) were assessed prior to and following one, three and five MVEs, revealing a significant 17% increase only in maximum twitch torques after a single MVE. Despite this post-activation potentiation of the muscle, use of conventional NMES protocols to elicit repeated muscular contractions resulted in a significant decrease in evoked torque generation, suggesting limited the muscular contributions to the observed phenomenon. To evaluate potential central mechanisms underlying the augmented torques, non-linear responses to wide-pulse width (1 ms), low-intensity, variable-frequency (25–100 Hz) NMES were also tested prior to and following repeated MVEs. When variable-frequency NMES was applied following the repeated MVEs, augmented and prolonged torques were observed and accompanied by sustained quadriceps electromyographic activity often lasting >2s after stimulus termination. Such data suggest a potential contribution of elevated spinal excitability to the reserve in volitional force generation in incomplete SCI. PMID:21610138

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Z. X.; Tynan, G.; Center for Momentum Transport and Flow Organization and Center for Astrophysics and Space Science, University of California, San Diego, California 92093

    Intrinsic torque, which can be generated by turbulent stresses, can induce toroidal rotation in a tokamak plasma at rest without direct momentum injection. Reversals in intrinsic torque have been inferred from the observation of toroidal velocity changes in recent lower hybrid current drive (LHCD) experiments. This work focuses on understanding the cause of LHCD-induced intrinsic torque reversal using gyrokinetic simulations and theoretical analyses. A new mechanism for the intrinsic torque reversal linked to magnetic shear (s{sup ^}) effects on the turbulence spectrum is identified. This reversal is a consequence of the ballooning structure at weak s{sup ^}. Based on realisticmore » profiles from the Alcator C-Mod LHCD experiments, simulations demonstrate that the intrinsic torque reverses for weak s{sup ^} discharges and that the value of s{sup ^}{sub crit} is consistent with the experimental results s{sup ^}{sub crit}{sup exp}≈0.2∼0.3 [Rice et al., Phys. Rev. Lett. 111, 125003 (2013)]. The consideration of this intrinsic torque feature in our work is important for the understanding of rotation profile generation at weak s{sup ^} and its consequent impact on macro-instability stabilization and micro-turbulence reduction, which is crucial for ITER. It is also relevant to internal transport barrier formation at negative or weakly positive s{sup ^}.« less

  20. Removal torque of zirconia abutment screws under dry and wet conditions.

    PubMed

    Nigro, Frederico; Sendyk, Claudio L; Francischone, Carlos Eduardo; Francischone, Carlos Eduardo

    2010-01-01

    The aim of this study was to verify whether screw abutment lubrication can generate higher preload values compared to non-lubricated screws, a titanium abutment was screwed onto an implant analog and scanned with the Procera System to generate 20 zirconia abutments. MKIII Brånemark implants were clamped to a precision torque device, and the abutments were distributed in dry and wet groups with 10 specimens each. In the wet groups, the inner threads of the implants were filled with artificial saliva. All abutments were fastened with a Torqtite screw under 32 Ncm. Ten detorque measurements were performed per group pushing the reverse button of the Torque controller soon after screw tightening with values registered. The mean detorque values were calculated and compared by a Student's t test (α=0.05). The wet condition presented significantly higher mean detorque than the dry condition (31.5 ± 1.2 versus 27.5 ± 1.5 Ncm, respectively; p=0.0000024). In conclusion, there was always a loss in the initial torque values when the removal torque was measured under both conditions. The wet condition presented higher mean torque than the dry condition. Better preload values were established in the wet group, suggesting that the abutment screw must be lubricated in saliva to avoid further loosening.

  1. Ultrafast spintronics roadmap: from femtosecond spin current pulses to terahertz non-uniform spin dynamics via nano-confined spin transfer torques (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexey; Razdolski, Ilya; Alekhin, Alexandr; Ilin, Nikita; Meyburg, Jan; Diesing, Detlef; Roddatis, Vladimir; Rungger, Ivan; Stamenova, Maria; Sanvito, Stefano; Bovensiepen, Uwe

    2016-10-01

    Further development of spintronics requires miniaturization and reduction of characteristic timescales of spin dynamics combining the nanometer spatial and femtosecond temporal ranges. These demands shift the focus of interest towards the fundamental open question of the interaction of femtosecond spin current (SC) pulses with a ferromagnet (FM). The spatio-temporal properties of the spin transfer torque (STT) exerted by ultrashort SC pulses on the FM open the time domain for studying STT fingerprint on spatially non-uniform magnetization dynamics. Using the sensitivity of magneto-induced second harmonic generation to SC, we develop technique for SC monitoring. With 20 fs resolution, we demonstrate the generation of 250 fs-long SC pulses in Fe/Au/Fe/MgO(001) structures. Their temporal profile indicates (i) nearly-ballistic hot electron transport in Au and (ii) that the pulse duration is primarily determined by the thermalization time of laser-excited hot carriers in Fe. Together with strongly spin-dependent Fe/Au interface transmission calculated for these carriers, this suggests the non-thermal spin-dependent Seebeck effect dominating the generation of ultrashort SC pulses. The analysis of SC transmission/reflection at the Au/Fe interface shows that hot electron spins orthogonal to the Fe magnetization rotate gaining huge parallel (anti-parallel) projection in transmitted (reflected) SC. This is accompanied by a STT-induced perturbation of the magnetization localized at the interface, which excites the inhomogeneous high-frequency spin dynamics in the FM. Time-resolved magneto-optical studies reveal the excitation of several standing spin wave modes in the Fe film with their spectrum extending up to 0.6 THz and indicating the STT spatial confinement to 2 nm.

  2. Autonomous momentum management for space station, exhibit A

    NASA Technical Reports Server (NTRS)

    Hahn, E.

    1984-01-01

    The report discusses momentum management for the CDG Planar Space Platform. The external torques on the Space Station are assumed to be gravity gradient and aerodynamic with both having bias and cyclic terms. The integrals of the cyclic torques are the cyclic momenti which will be stored in the momentum storage actuator. Various techniques to counteract the bias torques and center the cyclic momentum were investigated including gravity gradient desaturation by adjusting vehicle attitude, aerodynamic desaturation using solar panels and radiators and the deployment of flat plates at the end of long booms generating aerodynamic torques.

  3. Cogging Torque Reduction in a Permanent Magnet Wind Turbine Generator: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, E.; Green, J.

    2002-01-01

    In this paper, we investigate three design options to minimize cogging torque: uniformity of air gap, pole width, and skewing. Although the design improvement is intended for small wind turbines, it is also applicable to larger wind turbines.

  4. Garrett Electric Boosting Systems (EBS) Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steve Arnold; Craig Balis; Pierre Barthelet

    2005-03-31

    Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-Turbo{trademark} designs do both The purpose of this project is to design and develop an electrically assistedmore » turbocharger, e-Turbo{trademark}, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-Turbo{trademark} can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-Turbo{trademark} consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration is slightly better. It was shown that in order to make full use of additional capabilities of e-Turbo{trademark} wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-Turbo{trademark} designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-Turbo{trademark} are to be developed in a future project. There is concern about high power demands (even though momentary) of e-Turbo{trademark}. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-Turbo{trademark} designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-Turbo{trademark}. Designs and hardware combining IBT and e-Turbo{trademark} are to be developed in a future project. e-Turbo{trademark} provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-Turbo{trademark} performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.« less

  5. Control system and method for a hybrid electric vehicle

    DOEpatents

    Tamor, Michael Alan

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  6. How joint torques affect hamstring injury risk in sprinting swing-stance transition.

    PubMed

    Sun, Yuliang; Wei, Shutao; Zhong, Yunjian; Fu, Weijie; Li, Li; Liu, Yu

    2015-02-01

    The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases.

  7. The Effect of a Combination of Implant Controller and Handpiece from Different Manufacturers on the Torque Value.

    PubMed

    Lee, Du-Hyeong; Kim, Yong-Gun; Lee, Jong-Ho; Hong, Sam-Pyo; Lim, Young-Jun; Lee, Kyu-Bok

    2015-01-01

    To determine the accuracy of applied torque of different implant controller and handpiece combinations by using an electronic torque gauge. Four combinations of the following devices were tested: Surgic XT controller (NSK), XIP10 controller (Saeshin), X-SG20L handpiece (NSK), CRB26LX handpiece (Saeshin). For five torque settings, 30 measurements were recorded at 30 revolutions per minute by using an electronic torque gauge fixed to jigs, and means were calculated. Applied torques were generally higher than the set torque of 10 and 20 Ncm and lower than the set values of 40 and 50 Ncm. The average torque deviations differed significantly among the combinations (P < .05). At 10 and 20 Ncm, the Surgic XT/X-SG20L combination yielded the closest value to the intended torque, followed by the XIP10/X-SG20L combination. At 30 Ncm, the XIP10/X-SG20L combination showed the nearest value. At 40 Ncm, the Surgic XT/X-SG20L, XIP10/CRB26LX, and XIP10/X-SG20L combinations showed deviations within 10%. At 50 Ncm, all the combinations showed lower applied torque than the set value. Large standard deviations were observed in the Surgic XT/CRB26LX (13.288) and Surgic XT/X-SG20L (7.858) combinations. Different combinations of implant controllers and handpieces do not generate significant variations in applied torque. The actual torque varies according to the torque setting. It is necessary to calibrate devices before use to reduce potentially problematic torque.

  8. How Joint Torques Affect Hamstring Injury Risk in Sprinting Swing–Stance Transition

    PubMed Central

    SUN, YULIANG; WEI, SHUTAO; ZHONG, YUNJIAN; FU, WEIJIE; LI, LI; LIU, YU

    2015-01-01

    ABSTRACT Purpose The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Methods Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. Results During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. Conclusions During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases. PMID:24911288

  9. Analysis Method of Friction Torque and Weld Interface Temperature during Friction Process of Steel Friction Welding

    NASA Astrophysics Data System (ADS)

    Kimura, Masaaki; Inoue, Haruo; Kusaka, Masahiro; Kaizu, Koichi; Fuji, Akiyoshi

    This paper describes an analysis method of the friction torque and weld interface temperature during the friction process for steel friction welding. The joining mechanism model of the friction welding for the wear and seizure stages was constructed from the actual joining phenomena that were obtained by the experiment. The non-steady two-dimensional heat transfer analysis for the friction process was carried out by calculation with FEM code ANSYS. The contact pressure, heat generation quantity, and friction torque during the wear stage were calculated using the coefficient of friction, which was considered as the constant value. The thermal stress was included in the contact pressure. On the other hand, those values during the seizure stage were calculated by introducing the coefficient of seizure, which depended on the seizure temperature. The relationship between the seizure temperature and the relative speed at the weld interface in the seizure stage was determined using the experimental results. In addition, the contact pressure and heat generation quantity, which depended on the relative speed of the weld interface, were solved by taking the friction pressure, the relative speed and the yield strength of the base material into the computational conditions. The calculated friction torque and weld interface temperatures of a low carbon steel joint were equal to the experimental results when friction pressures were 30 and 90 MPa, friction speed was 27.5 s-1, and weld interface diameter was 12 mm. The calculation results of the initial peak torque and the elapsed time for initial peak torque were also equal to the experimental results under the same conditions. Furthermore, the calculation results of the initial peak torque and the elapsed time for initial peak torque at various friction pressures were equal to the experimental results.

  10. Advanced emergency braking under split friction conditions and the influence of a destabilising steering wheel torque

    NASA Astrophysics Data System (ADS)

    Tagesson, Kristoffer; Cole, David

    2017-07-01

    The steering system in most heavy trucks is such that it causes a destabilising steering wheel torque when braking on split friction, that is, different friction levels on the two sides of the vehicle. Moreover, advanced emergency braking systems are now mandatory in most heavy trucks, making vehicle-induced split friction braking possible. This imposes higher demands on understanding how the destabilising steering wheel torque affects the driver, which is the focus here. Firstly, an experiment has been carried out involving 24 subjects all driving a truck where automatic split friction braking was emulated. Secondly, an existing driver-vehicle model has been adapted and implemented to improve understanding of the observed outcome. A common conclusion drawn, after analysing results, is that the destabilising steering wheel torque only has a small effect on the motion of the vehicle. The underlying reason is a relatively slow ramp up of the disturbance in comparison to the observed cognitive delay amongst subjects; also the magnitude is low and initially suppressed by passive driver properties.

  11. Hand-handle interface force and torque measurement system for pneumatic assembly tool operations: suggested enhancement to ISO 6544.

    PubMed

    Lin, Jia-Hua; McGorry, Raymond W; Chang, Chien-Chi

    2007-05-01

    A hand-handle interface force and torque measurement system is introduced to fill the void acknowledged in the international standard ISO 6544, which governs pneumatic, assembly tool reaction torque and force measurement. This system consists of an instrumented handle with a sensor capable of measuring grip force and reaction hand moment when threaded, fastener-driving tools are used by operators. The handle is rigidly affixed to the tool in parallel to the original tool handle allowing normal fastener-driving operations with minimal interference. Demonstration of this proposed system was made with tools of three different shapes: pistol grip, right angle, and in-line. During tool torque buildup, the proposed system measured operators exerting greater grip force on the soft joint than on the hard joint. The system also demonstrated that the soft joint demanded greater hand moment impulse than the hard joint. The results demonstrate that the measurement system can provide supplemental data useful in exposure assessment with power hand tools as proposed in ISO 6544.

  12. Preloads generated with repeated tightening in three types of screws used in dental implant assemblies.

    PubMed

    Byrne, Declan; Jacobs, Stuart; O'Connell, Brian; Houston, Frank; Claffey, Noel

    2006-01-01

    Abutment screw loosening, especially in the case of cemented single tooth restorations, is a cause of implant restoration failure. This study compared three screws (titanium alloy, gold alloy, and gold-coated) with similar geometry by recording the preload induced when torques of 10, 20, and 35 Ncm were used for fixation. Two abutment types were used-prefabricated preparable abutments and cast-on abutments. A custom-designed rig was used to measure preload in the abutment-screw-implant assembly with a strain gauge. Ten screws of each type were sequentially tightened to 10, 20, and 35 Ncm on ten of the two abutment types. The same screws were then loosened and re-tightened. This procedure was repeated. Thus, each screw was tightened on three occasions to the three insertion torques. A linear regression model was used to analyze the effects on preload values of screw type and abutment type for each of the three insertion torques. The results indicated that the gold-coated screw generated the highest preloads for all insertion torques and for each tightening episode. Further analysis focused on the effects of screw type and abutment type for each episode of tightening and for each fixation torque. The gold-coated screw, fixed to the prefabricated abutment, displayed higher preloads for the first tightening at 10, 20, and 35 Ncm. Conversely, the same screw fixed to the cast-on abutment showed higher values for the second and third tightening for all fixation torques. All screws showed decay in preload with the number of times tightened. Given the higher preloads generated using the gold-coated screw with both abutment types, it is more likely that this type of screw will maintain a secure joint when tightened for the second and third time. All screw types displayed some decay in preload with repeated tightening, irrespective of abutment type and insertion torque. The gold-coated screw showed markedly higher preloads for all insertion torques and for all instances of tightening when compared with the uncoated screws.

  13. A model predictive current control of flux-switching permanent magnet machines for torque ripple minimization

    NASA Astrophysics Data System (ADS)

    Huang, Wentao; Hua, Wei; Yu, Feng

    2017-05-01

    Due to high airgap flux density generated by magnets and the special double salient structure, the cogging torque of the flux-switching permanent magnet (FSPM) machine is considerable, which limits the further applications. Based on the model predictive current control (MPCC) and the compensation control theory, a compensating-current MPCC (CC-MPCC) scheme is proposed and implemented to counteract the dominated components in cogging torque of an existing three-phase 12/10 FSPM prototyped machine, and thus to alleviate the influence of the cogging torque and improve the smoothness of electromagnetic torque as well as speed, where a comprehensive cost function is designed to evaluate the switching states. The simulated results indicate that the proposed CC-MPCC scheme can suppress the torque ripple significantly and offer satisfactory dynamic performances by comparisons with the conventional MPCC strategy. Finally, experimental results validate both the theoretical and simulated predictions.

  14. Torque measurement at the single-molecule level.

    PubMed

    Forth, Scott; Sheinin, Maxim Y; Inman, James; Wang, Michelle D

    2013-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single-molecule field have led to the development of techniques that add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study that would be well suited for analysis with torsional measurement techniques.

  15. Limiting (zero-load) speed of the rotary motor of Escherichia coli is independent of the number of torque-generating units

    PubMed Central

    Wang, Bin; Zhang, Rongjing; Yuan, Junhua

    2017-01-01

    Rotation of the bacterial flagellar motor is driven by multiple torque-generating units (stator elements). The torque-generating dynamics can be understood in terms of the “duty ratio” of the stator elements, that is, the fraction of time a stator element engages with the rotor during its mechanochemical cycle. The dependence of the limiting speed (zero-load speed) of the motor on the number of stator elements is the determining test of the duty ratio, which has been controversial experimentally and theoretically over the past decade. Here, we developed a method combining laser dark-field microscopy and optical trapping to resolve this controversy. We found that the zero-load speed is independent of the number of stator elements for the bacterial flagellar motor in Escherichia coli, demonstrating that these elements have a duty ratio close to 1. PMID:29109285

  16. Limiting (zero-load) speed of the rotary motor of Escherichia coli is independent of the number of torque-generating units.

    PubMed

    Wang, Bin; Zhang, Rongjing; Yuan, Junhua

    2017-11-21

    Rotation of the bacterial flagellar motor is driven by multiple torque-generating units (stator elements). The torque-generating dynamics can be understood in terms of the "duty ratio" of the stator elements, that is, the fraction of time a stator element engages with the rotor during its mechanochemical cycle. The dependence of the limiting speed (zero-load speed) of the motor on the number of stator elements is the determining test of the duty ratio, which has been controversial experimentally and theoretically over the past decade. Here, we developed a method combining laser dark-field microscopy and optical trapping to resolve this controversy. We found that the zero-load speed is independent of the number of stator elements for the bacterial flagellar motor in Escherichia coli , demonstrating that these elements have a duty ratio close to 1.

  17. Solar Sail Attitude Control Performance Comparison

    NASA Technical Reports Server (NTRS)

    Bladt, Jeff J.; Lawrence, Dale A.

    2005-01-01

    Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.

  18. Estimates of the dissipative heat and axial torque generated by ocean tides on icy satellites in the outer solar system.

    NASA Astrophysics Data System (ADS)

    Tyler, R.

    2012-09-01

    The tidal flow response generated in a satellite ocean depends strongly on the ocean configuration parameters as these parameters control the form and frequencies of the ocean's natural modes of oscillation; if there is a near match between the form and frequency of one of these natural modes and that of one of the available tidal forcing constituents, the ocean can be resonantly excited, producing a strong tidal response. The fundamental elements of the response are described by the tidal flow and surface fluctuations. Derivative elements of the response include the associated dissipative heat, stress, and forces/torques. The dissipative heat has received much previous attention as it may be important in explaining the heat budget on several of the satellites in the Outer Solar System. While these estimates will be reviewed and compared with the tidal dissipation estimates compiled in Hussman et al. (2010), the primary goal in this presentation is to extend the analysis to consider the tidally generated axial torque on the satellites and the potential consquences for rotation. Interestingly, even a synchronously rotating satellite will, if a global fluid layer is included, experience a complex set of opportunities for torques in both the prograde and retrograde sense. The amplitude and sense of the torque sensitively depends on the ocean parameters controlling the tidal response. This sensitivity, combined with expected feedbacks whereby the tides affect the orbital parameters, suggests that the evolution of the satellite system will experience phases of both prograde and retrograde tidal torques during its evolution. A related point is that parameters of the ocean might be inferred from inferences or observations of torque or rotational deviations. In the panels to the right we show the nondimensional tidal torques associated with obliquity (top) and eccentricity (bottom). The parameters described in the labeling are the fluid density ρ, surface gravity g, ocean surface area A, tidal equilibrium height ηF, dissipation quality factor Q,and c=(gh)1/2, cr=Ωa, with ocean thickness h, rotation rate Ω, and radius a. Torque due to tides forced by obliquity as a function of the parameters c/cr and Q. Retrograde ("Westward") and prograde ("Eastward") components shown in left and right panels, respectively. Log10 scale shown in colorbar.

  19. Measurement of additional shear during sludge conditioning and dewatering.

    PubMed

    Ormeci, Banu; Ahmad, Ayaz

    2009-07-01

    Optimum polymer dose is influenced both by the polymer demand of the sludge and the shear applied during conditioning. Sludge exposed to additional shear following conditioning will experience a decrease in cake solids concentration for the same polymer dose. Therefore, it is necessary to measure or quantify the additional shear in order to optimize the conditioning and dewatering. There is currently no direct or indirect method to achieve this. The main objective of this study was to develop a method based on torque rheology to measure the amount of shear that a sludge network experiences during conditioning and dewatering. Anaerobically digested sludge samples were exposed to increasing levels of mixing intensities and times, and rheological characteristics of samples were measured using a torque rheometer. Several rheological parameters were evaluated including the peak torque and totalized torque (area under the rheograms). The results of this study show that at the optimum polymer dose, a linear relationship exists between the applied shear and the area under the rheograms, and this relationship can be used to estimate an unknown amount of shear that the sludge was exposed to. The method is useful as a research tool to study the effect of shear on dewatering but also as an optimization tool in a dewatering automation system based on torque rheology.

  20. Spin-orbit torques and anisotropic magnetization damping in skyrmion crystals

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil M. D.; Brataas, Arne

    2014-02-01

    The length scale of the magnetization gradients in chiral magnets is determined by the relativistic Dzyaloshinskii-Moriya interaction. Thus, even conventional spin-transfer torques are controlled by the relativistic spin-orbit coupling in these systems, and additional relativistic corrections to the current-induced torques and magnetization damping become important for a complete understanding of the current-driven magnetization dynamics. We theoretically study the effects of reactive and dissipative homogeneous spin-orbit torques and anisotropic damping on the current-driven skyrmion dynamics in cubic chiral magnets. Our results demonstrate that spin-orbit torques play a significant role in the current-induced skyrmion velocity. The dissipative spin-orbit torque generates a relativistic Magnus force on the skyrmions, whereas the reactive spin-orbit torque yields a correction to both the drift velocity along the current direction and the transverse velocity associated with the Magnus force. The spin-orbit torque corrections to the velocity scale linearly with the skyrmion size, which is inversely proportional to the spin-orbit coupling. Consequently, the reactive spin-orbit torque correction can be the same order of magnitude as the nonrelativistic contribution. More importantly, the dissipative spin-orbit torque can be the dominant force that causes a deflected motion of the skyrmions if the torque exhibits a linear or quadratic relationship with the spin-orbit coupling. In addition, we demonstrate that the skyrmion velocity is determined by anisotropic magnetization damping parameters governed by the skyrmion size.

  1. Current-driven second-harmonic domain wall resonance in ferromagnetic metal/nonmagnetic metal bilayers: A field-free method for spin Hall angle measurements

    NASA Astrophysics Data System (ADS)

    Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.

    2017-10-01

    We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.

  2. The third-generation turbocharged engine for the Audi 5000 CS and 5000 CS Quattro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stock, D.

    In September 1985 the new Audi 5000 CS Quattro was introduced to the American market. This luxurious high performance touring sedan has been equipped with a more advanced turbocharged engine with intercooler and electronic engine management giving improved performance, excellent torque, faster response and better fuel economy. The basic engine is the tried-and-tested Audi 5-cylinder unit. The turbocharged engine's ancillary systems, the electronic ignition control and fuel injection have all been newly developed, carefully optimized and well matched in the special demands of a turbocharged engine. The ignition system controls the engine and fuel injection and delivers analog and digitalmore » signals to the car's instrument panel display. The system also has an integrated self-diagnostic function.« less

  3. Electromagnetic tweezers with independent force and torque control

    NASA Astrophysics Data System (ADS)

    Jiang, Chang; Lionberger, Troy A.; Wiener, Diane M.; Meyhofer, Edgar

    2016-08-01

    Magnetic tweezers are powerful tools to manipulate and study the mechanical properties of biological molecules and living cells. In this paper we present a novel, bona fide electromagnetic tweezer (EMT) setup that allows independent control of the force and torque applied via micrometer-sized magnetic beads to a molecule under study. We implemented this EMT by combining a single solenoid that generates force (f-EMT) with a set of four solenoids arranged into a symmetric quadrupole to generate torque (τ-EMT). To demonstrate the capability of the tweezers, we attached optically asymmetric Janus beads to single, tethered DNA molecules. We show that tension in the piconewton force range can be applied to single DNA molecules and the molecule can simultaneously be twisted with torques in the piconewton-nanometer range. Furthermore, the EMT allows the two components to be independently controlled. At various force levels applied to the Janus bead, the trap torsional stiffness can be continuously changed simply by varying the current magnitude applied to the τ-EMT. The flexible and independent control of force and torque by the EMT makes it an ideal tool for a range of measurements where tensional and torsional properties need to be studied simultaneously on a molecular or cellular level.

  4. Definition and evaluation of testing scenarios for knee wear simulation under conditions of highly demanding daily activities.

    PubMed

    Schwiesau, Jens; Schilling, Carolin; Kaddick, Christian; Utzschneider, Sandra; Jansson, Volkmar; Fritz, Bernhard; Blömer, Wilhelm; Grupp, Thomas M

    2013-05-01

    The objective of our study was the definition of testing scenarios for knee wear simulation under various highly demanding daily activities of patients after total knee arthroplasty. This was mainly based on a review of published data on knee kinematics and kinetics followed by the evaluation of the accuracy and precision of a new experimental setup. We combined tibio-femoral load and kinematic data reported in the literature to develop deep squatting loading profiles for simulator input. A servo-hydraulic knee wear simulator was customised with a capability of a maximum flexion of 120°, a tibio-femoral load of 5000N, an anterior-posterior (AP) shear force of ±1000N and an internal-external (IE) rotational torque of ±50Nm to simulate highly demanding patient activities. During the evaluation of the newly configurated simulator the ability of the test machine to apply the required load and torque profiles and the flexion kinematics in a precise manner was examined by nominal-actual profile comparisons monitored periodically during subsequent knee wear simulation. For the flexion kinematics under displacement control a delayed actuator response of approximately 0.05s was inevitable due to the inertia of masses in movement of the coupled knee wear stations 1-3 during all applied activities. The axial load and IE torque is applied in an effective manner without substantial deviations between nominal and actual load and torque profiles. During the first third of the motion cycle a marked deviation between nominal and actual AP shear load profiles has to be noticed but without any expected measurable effect on the latter wear simulation due to the fact that the load values are well within the peak magnitude of the nominal load amplitude. In conclusion the described testing method will be an important tool to have more realistic knee wear simulations based on load conditions of the knee joint during activities of daily living. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Dual-loop self-optimizing robust control of wind power generation with Doubly-Fed Induction Generator.

    PubMed

    Chen, Quan; Li, Yaoyu; Seem, John E

    2015-09-01

    This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Output of skeletal muscle contractions. a study of isokinetic plantar flexion in athletes.

    PubMed

    Fugl-Meyer, A R; Mild, K H; Hörnsten, J

    1982-06-01

    Maximum torques, total work and mean power of isokinetic plantar flexions were measured with simultaneous registrations. The integrated electromyograms (iEMG) were obtained by surface electrodes from all three heads of the m. triceps surae. The method applied offers possibilities for adequate description of dynamic muscular work which in the case of plantar flexion in trained man declines as a negative exponential function of angular motion velocity. The decline is parallel to that of maximum torques. The summed triceps surae iEMG was inversely proportional to the velocity and direct proportional to time suggesting that structural rather than neural factors determine the relationships between velocity of angular motion and maximum torque/total work of single Mmaneuvers. Moreover, the fact that maximum mean power as well as maximum electrical efficiency were reached at the functional velocity of toe-off during gait suggests an influence of pragmatic demands on plantar flexion mechanical output.

  7. Torque sensor

    NASA Astrophysics Data System (ADS)

    Fgeppert, E.

    1984-09-01

    Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.

  8. Control of electro-rheological fluid-based torque generation components for use in active rehabilitation devices

    NASA Astrophysics Data System (ADS)

    Nikitczuk, Jason; Weinberg, Brian; Mavroidis, Constantinos

    2006-03-01

    In this paper we present the design and control algorithms for novel electro-rheological fluid based torque generation elements that will be used to drive the joint of a new type of portable and controllable Active Knee Rehabilitation Orthotic Device (AKROD) for gait retraining in stroke patients. The AKROD is composed of straps and rigid components for attachment to the leg, with a central hinge mechanism where a gear system is connected. The key features of AKROD include: a compact, lightweight design with highly tunable torque capabilities through a variable damper component, full portability with on board power, control circuitry, and sensors (encoder and torque), and real-time capabilities for closed loop computer control for optimizing gait retraining. The variable damper component is achieved through an electro-rheological fluid (ERF) element that connects to the output of the gear system. Using the electrically controlled rheological properties of ERFs, compact brakes capable of supplying high resistive and controllable torques, are developed. A preliminary prototype for AKROD v.2 has been developed and tested in our laboratory. AKROD's v.2 ERF resistive actuator was tested in laboratory experiments using our custom made ERF Testing Apparatus (ETA). ETA provides a computer controlled environment to test ERF brakes and actuators in various conditions and scenarios including emulating the interaction between human muscles involved with the knee and AKROD's ERF actuators / brakes. In our preliminary results, AKROD's ERF resistive actuator was tested in closed loop torque control experiments. A hybrid (non-linear, adaptive) Proportional-Integral (PI) torque controller was implemented to achieve this goal.

  9. The envelope of motion of the cervical spine and its influence on the maximum torque generating capability of the neck muscles.

    PubMed

    Siegler, Sorin; Caravaggi, Paolo; Tangorra, James; Milone, Mary; Namani, Ramya; Marchetto, Paul A

    2015-10-15

    The posture of the head and neck is critical for predicting and assessing the risk of injury during high accelerations, such as those arising during motor accidents or in collision sports. Current knowledge suggests that the head's range-of-motion (ROM) and the torque-generating capability of neck muscles are both dependent and affected by head posture. A deeper understanding of the relationship between head posture, ROM and maximum torque-generating capability of neck muscles may help assess the risk of injury and develop means to reduce such risks. The aim of this study was to use a previously-validated device, known as Neck Flexibility Tester, to quantify the effects of head's posture on the available ROM and torque-generating capability of neck muscles. Ten young asymptomatic volunteers were enrolled in the study. The tri-axial orientation of the subjects' head was controlled via the Neck Flexibility Tester device. The head ROM was measured for each flexed, extended, axially rotated, and laterally bent head's orientation and compared to that in unconstrained neutral posture. Similarly, the torque applied about the three anatomical axes during Isometric Maximum Voluntary Contraction (IMVC) of the neck muscles was measured in six head's postures and compared to that in fully-constrained neutral posture. The further from neutral the neck posture was the larger the decrease in ROM and IMVC. Head extension and combined two-plane rotations postures, such as extension with lateral bending, produced the largest decreases in ROM and IMVC, thus suggesting that these postures pose the highest potential risk for injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Three-axis attitude control by two-step rotations using only magnetic torquers in a low Earth orbit near the magnetic equator

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Otsuki, Kensuke; Sugawara, Yoshiki; Saisutjarit, Phongsatorn; Nakasuka, Shinichi

    2016-11-01

    This study proposes a novel method for three-axis attitude control using only magnetic torquers (MTQs). Previously, MTQs have been utilized for attitude control in many low Earth orbit satellites. Although MTQs are useful for achieving attitude control at low cost and high reliability without the need for propellant, these electromagnetic coils cannot be used to generate an attitude control torque about the geomagnetic field vector. Thus, conventional attitude control methods using MTQs assume the magnetic field changes in an orbital period so that the satellite can generate a required attitude control torque after waiting for a change in the magnetic field direction. However, in a near magnetic equatorial orbit, the magnetic field does not change in an inertial reference frame. Thus, satellites cannot generate a required attitude control torque in a single orbital period with only MTQs. This study proposes a method for achieving a rotation about the geomagnetic field vector by generating a torque that is perpendicular to it. First, this study shows that the three-axis attitude control using only MTQs is feasible with a two-step rotation. Then, the study proposes a method for controlling the attitude with the two-step rotation using a PD controller. Finally, the proposed method is assessed by examining the results of numerical simulations.

  11. Skyrmionic spin Seebeck effect via dissipative thermomagnonic torques

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.

    2014-06-01

    We derive thermomagnonic torque and its "β-type" dissipative correction from the stochastic Landau-Lifshitz-Gilbert equation. The β-type dissipative correction describes viscous coupling between magnetic dynamics and magnonic current and it stems from spin mistracking of the magnetic order. We show that thermomagnonic torque is important for describing temperature gradient induced motion of skyrmions in helical magnets while dissipative correction plays an essential role in generating transverse Magnus force. We propose to detect such skyrmionic motion by employing the transverse spin Seebeck effect geometry.

  12. Design, simulation and testing of a novel radial multi-pole multi-layer magnetorheological brake

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Li, Hua; Jiang, Xuezheng; Yao, Jin

    2018-02-01

    This paper deals with design, simulation and experimental testing of a novel radial multi-pole multi-layer magnetorheological (MR) brake. This MR brake has an innovative structural design with superposition principle of two magnetic fields generated by the inner coils and the outer coils. The MR brake has several media layers of magnetorheological (MR) fluid located between the inner coils and the outer coils, and it can provide higher torque and higher torque density than conventional single-disk or multi-disk or multi-pole single-layer MR brakes can. In this paper, a brief introduction to the structure of the proposed MR brake was given first. Then, theoretical analysis of the magnetic circuit and the braking torque was conducted. In addition, a 3D electromagnetic model of the MR brake was developed to simulate and examine the magnetic flux intensity and corresponding braking torque. A prototype of the brake was fabricated and several tests were carried out to validate its torque capacity. The results show that the proposed MR brake can produce a maximum braking torque of 133 N m and achieve a high torque density of 25.0 kN m-2, a high torque range of 42 and a high torque-to-power ratio of 0.95 N m W-1.

  13. Spin-orbit torque in a thin film of the topological insulator Bi2Se3: Crossover from the ballistic to diffusive regime

    NASA Astrophysics Data System (ADS)

    Ren, Y. J.; Deng, W. Y.; Geng, H.; Shen, R.; Shao, L. B.; Sheng, L.; Xing, D. Y.

    2017-12-01

    The spin-orbit torque provides an efficient method for switching the direction of a magnetization by using an electric field. Owing to the spin-orbit coupling, when an electric field is applied, a nonequilibrium spin density is generated, which exerts a torque on the local magnetization. Here, we investigate the spin-orbit torque in a thin film of topological insulator \\text{Bi}2\\text{Se}3 based upon a Boltzmann equation, with proper boundary conditions, which is applicable from the ballistic regime to the diffusive regime. It is shown that due to the spin-momentum interlocking of the electron surface states, the magnitude of the field-like torque is simply in linear proportion to the longitudinal electrical current. For a fixed electric field, the spin-orbit torque is proportional to the sample length in the ballistic limit, and saturates to a constant in the diffusive limit. The dependence of the torque on the magnetization direction and exchange coupling strength is also studied. Our theory may offer useful guidance for experimental investigations of the spin-orbit torque in finite-size systems.

  14. Predictive momentum management for the Space Station

    NASA Technical Reports Server (NTRS)

    Hatis, P. D.

    1986-01-01

    Space station control moment gyro momentum management is addressed by posing a deterministic optimization problem with a performance index that includes station external torque loading, gyro control torque demand, and excursions from desired reference attitudes. It is shown that a simple analytic desired attitude solution exists for all axes with pitch prescription decoupled, but roll and yaw coupled. Continuous gyro desaturation is shown to fit neatly into the scheme. Example results for pitch axis control of the NASA power tower Space Station are shown based on predictive attitude prescription. Control effector loading is shown to be reduced by this method when compared to more conventional momentum management techniques.

  15. Dynamics and control of instrumented harmonic drives

    NASA Technical Reports Server (NTRS)

    Kazerooni, H.; Ellis, S. R. (Principal Investigator)

    1995-01-01

    Since torque in harmonic drives is transmitted by a pure couple, harmonic drives do not generate radial forces and therefore can be instrumented with torque sensors without interference from radial forces. The installation of torque sensors on the stationary component of harmonic drives (the Flexipline cup in this research work) produce backdrivability needed for robotic and telerobotic compliant maneuvers. Backdrivability of a harmonic drive, when used as torque increaser, means that the output shaft can be rotated via finite amount of torque. A high ratio harmonic drive is non-backdrivable because its output shaft cannot be turned by applying a torque on it. This article first develops the dynamic behavior of a harmonic drive, in particular the non-backdrivability, in terms of a sensitivity transfer function. The instrumentation of the harmonic drive with torque sensor is then described. This leads to a description of the control architecture which allows modulation of the sensitivity transfer function within the limits established by the closed-loop stability. A set of experiments on an active hand controller, powered by a DC motor coupled to an instrumented harmonic drive, is given to exhibit this method's limitations.

  16. Self-current induced spin-orbit torque in FeMn/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Xu, Yanjun; Yang, Yumeng; Yao, Kui; Xu, Baoxi; Wu, Yihong

    2016-05-01

    Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications.

  17. Radiation torque on an absorptive spherical drop centered on an acoustic helicoidal Bessel beam

    NASA Astrophysics Data System (ADS)

    Zhang, Likun; Marston, Philip L.

    2009-11-01

    Circularly polarized electromagnetic waves carry axial angular momentum and analysis shows that the axial radiation torque on an illuminated sphere is proportional to the power absorbed by the sphere [1]. Helicoidal acoustic beams also carry axial angular momentum and absorption of such a beam should also produce an axial radiation torque [2]. In the present work the acoustic radiation torque on solid spheres and spherical drops centered on acoustic helicoidal Bessel beams is examined. The torque is predicted to be proportional to the ratio of the absorbed power to the acoustic frequency. Depending on the beam helicity, the torque is parallel or anti-parallel to the beam axis. The analysis uses a relation between the scattering and the partial wave coefficients for a sphere in a helicoidal Bessel beam. Calculations suggest that beams with a low topological charge are more efficient for generating torques on solid spheres.[4pt] [1] P. L. Marston and J. H. Crichton, Phys. Rev. A. 30, 2508-2516 (1984).[0pt] [2] B. T. Hefner and P. L. Marston, J. Acoust. Soc. Am. 106, 3313-3316 (1999).

  18. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques

    NASA Technical Reports Server (NTRS)

    Pigeon, Pascale; Bortolami, Simone B.; DiZio, Paul; Lackner, James R.

    2003-01-01

    When reaching movements involve simultaneous trunk rotation, additional interaction torques are generated on the arm that are absent when the trunk is stable. To explore whether the CNS compensates for such self-generated interaction torques, we recorded hand trajectories in reaching tasks involving various amplitudes and velocities of arm extension and trunk rotation. Subjects pointed to three targets on a surface slightly above waist level. Two of the target locations were chosen so that a similar arm configuration relative to the trunk would be required for reaching to them, one of these targets requiring substantial trunk rotation, the other very little. Significant trunk rotation was necessary to reach the third target, but the arm's radial distance to the body remained virtually unchanged. Subjects reached at two speeds-a natural pace (slow) and rapidly (fast)-under normal lighting and in total darkness. Trunk angular velocity and finger velocity relative to the trunk were higher in the fast conditions but were not affected by the presence or absence of vision. Peak trunk velocity increased with increasing trunk rotation up to a maximum of 200 degrees /s. In slow movements, peak finger velocity relative to the trunk was smaller when trunk rotation was necessary to reach the targets. In fast movements, peak finger velocity was approximately 1.7 m/s for all targets. Finger trajectories were more curved when reaching movements involved substantial trunk rotation; however, the terminal errors and the maximal deviation of the trajectory from a straight line were comparable in slow and fast movements. This pattern indicates that the larger Coriolis, centripetal, and inertial interaction torques generated during rapid reaches were compensated by additional joint torques. Trajectory characteristics did not vary with the presence or absence of vision, indicating that visual feedback was unnecessary for anticipatory compensations. In all reaches involving trunk rotation, the finger movement generally occurred entirely during the trunk movement, indicating that the CNS did not minimize Coriolis forces incumbent on trunk rotation by sequencing the arm and trunk motions into a turn followed by a reach. A simplified model of the arm/trunk system revealed that additional interaction torques generated on the arm during voluntary turning and reaching were equivalent to < or =1.8 g (1 g = 9.81 m/s(2)) of external force at the elbow but did not degrade performance. In slow-rotation room studies involving reaching movements during passive rotation, Coriolis forces as small as 0.2 g greatly deflect movement trajectories and endpoints. We conclude that compensatory motor innervations are engaged in a predictive fashion to counteract impending self-generated interaction torques during voluntary reaching movements.

  19. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.

    PubMed

    Pigeon, Pascale; Bortolami, Simone B; DiZio, Paul; Lackner, James R

    2003-01-01

    When reaching movements involve simultaneous trunk rotation, additional interaction torques are generated on the arm that are absent when the trunk is stable. To explore whether the CNS compensates for such self-generated interaction torques, we recorded hand trajectories in reaching tasks involving various amplitudes and velocities of arm extension and trunk rotation. Subjects pointed to three targets on a surface slightly above waist level. Two of the target locations were chosen so that a similar arm configuration relative to the trunk would be required for reaching to them, one of these targets requiring substantial trunk rotation, the other very little. Significant trunk rotation was necessary to reach the third target, but the arm's radial distance to the body remained virtually unchanged. Subjects reached at two speeds-a natural pace (slow) and rapidly (fast)-under normal lighting and in total darkness. Trunk angular velocity and finger velocity relative to the trunk were higher in the fast conditions but were not affected by the presence or absence of vision. Peak trunk velocity increased with increasing trunk rotation up to a maximum of 200 degrees /s. In slow movements, peak finger velocity relative to the trunk was smaller when trunk rotation was necessary to reach the targets. In fast movements, peak finger velocity was approximately 1.7 m/s for all targets. Finger trajectories were more curved when reaching movements involved substantial trunk rotation; however, the terminal errors and the maximal deviation of the trajectory from a straight line were comparable in slow and fast movements. This pattern indicates that the larger Coriolis, centripetal, and inertial interaction torques generated during rapid reaches were compensated by additional joint torques. Trajectory characteristics did not vary with the presence or absence of vision, indicating that visual feedback was unnecessary for anticipatory compensations. In all reaches involving trunk rotation, the finger movement generally occurred entirely during the trunk movement, indicating that the CNS did not minimize Coriolis forces incumbent on trunk rotation by sequencing the arm and trunk motions into a turn followed by a reach. A simplified model of the arm/trunk system revealed that additional interaction torques generated on the arm during voluntary turning and reaching were equivalent to < or =1.8 g (1 g = 9.81 m/s(2)) of external force at the elbow but did not degrade performance. In slow-rotation room studies involving reaching movements during passive rotation, Coriolis forces as small as 0.2 g greatly deflect movement trajectories and endpoints. We conclude that compensatory motor innervations are engaged in a predictive fashion to counteract impending self-generated interaction torques during voluntary reaching movements.

  20. Isokinetic strength differences between patients with primary reverse and total shoulder prostheses: muscle strength quantified with a dynamometer.

    PubMed

    Alta, Tjarco D W; Veeger, DirkJan H E J; de Toledo, Joelly M; Janssen, Thomas W J; Willems, W Jaap

    2014-11-01

    Range of motion after total shoulder arthroplasty is better than after reverse shoulder arthroplasty, however with similar clinical outcome. It is unclear if this difference can only be found in the different range of motion or also in the force generating capacity. (1) are isokinetically produced joint torques of reverse shoulder arthroplasty comparable to those of total shoulder arthroplasty? (2) Does this force-generating capacity correlate with functional outcome? Eighteen reverse shoulder arthroplasty patients (71years (SD 9years)) (21 shoulders, follow-up of 21months (SD 10months)) were recruited, 12 total shoulder arthroplasty patients (69years (SD 9years)) (14 shoulders, follow-up of 35months (SD 11months)). Pre- and post-operative Constant-Murley scores were obtained; two isokinetic protocols (ab-/adduction and ex-/internal rotations) at 60°/s were performed. Twelve of 18 reverse shoulder arthroplasty patients generated enough speed to perform the test (13 shoulders). Mean ab-/adduction torques are 16.3Nm (SD 5.6Nm) and 20.4Nm (SD 11.8Nm). All total shoulder arthroplasty patients generated enough speed (14 shoulders). Mean ab-/adduction torques are 32.1Nm (SD 13.3Nm) and 43.1Nm (SD 21.5Nm). Only 8 reverse shoulder arthroplasty patients (9 shoulders) could perform ex-/internal rotation tasks and all total shoulder arthroplasty patients. Mean ex-/internal rotation torques are 9.3Nm (SD 4.7Nm) and 9.2Nm (SD 2.1Nm) for reverse shoulder arthroplasty, and 17.9Nm (SD 7.7Nm) and 23.5Nm (SD 10.6Nm) for total shoulder arthroplasty. Significant correlations between sub-scores: activity, mobility and strength and external rotation torques for reverse shoulder arthroplasty. Moderate to strong correlation for sub-scores: strength in relation to abduction, adduction and internal rotation torques for total shoulder arthroplasty. Shoulders with a total shoulder arthroplasty are stronger. This can be explained by the absence of rotator cuff muscles and (probably) medialized center of rotation in reverse shoulder arthroplasty. The strong correlation between external rotation torques and post-operative Constant-Murley sub-scores demonstrates that external rotation is essential for good clinical functioning in reverse shoulder arthroplasty. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. ELECTROMAGNETIC AND ELECTROSTATIC GENERATORS: ANNOTATED BIBLIOGRAPHY.

    DTIC Science & Technology

    generator with split poles, ultrasonic-frequency generator, unipolar generator, single-phase micromotors , synchronous motor, asynchronous motor...asymmetrical rotor, magnetic circuit, dc micromotors , circuit for the automatic control of synchronized induction motors, induction torque micromotors , electric

  2. Real time simulation of nonlinear generalized predictive control for wind energy conversion system with nonlinear observer.

    PubMed

    Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand

    2014-01-01

    In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  3. [A dynamic model of the extravehicular (correction of extravehicuar) activity space suit].

    PubMed

    Yang, Feng; Yuan, Xiu-gan

    2002-12-01

    Objective. To establish a dynamic model of the space suit base on the particular configuration of the space suit. Method. The mass of the space suit components, moment of inertia, mobility of the joints of space suit, as well as the suit-generated torques, were considered in this model. The expressions to calculate the moment of inertia were developed by simplifying the geometry of the space suit. A modified Preisach model was used to mathematically describe the hysteretic torque characteristics of joints in a pressurized space suit, and it was implemented numerically basing on the observed suit parameters. Result. A dynamic model considering mass, moment of inertia and suit-generated torques was established. Conclusion. This dynamic model provides some elements for the dynamic simulation of the astronaut extravehicular activity.

  4. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  5. NLS clutching bearing cavity flow analysis

    NASA Technical Reports Server (NTRS)

    Tran, Ken; Chan, Daniel C.; Darian, Armen

    1992-01-01

    A flow model of the NLS clutching bearing cavity was built for 2-D axisymmetric viscous analysis. From the computational fluid dynamics (CFD) approach, the tangential force exerted on the surfaces of the inner race was integrated to calculate the dividing torque which, in conjunction with the resistance torque, was used to predict the operating speed of the inner race. In order to further reduce the inner race rotation, the swirling flow at the cavity inlet was partially redirected to generate an opposing torque. Thirty six slanted slots were incorporated into the anti-vortex rib to achieve this goal. A 3-D flow analysis performed on this configuration indicates a drastic reduction of the driving torque and inner race RPM.

  6. Origin of fieldlike spin-orbit torques in heavy metal/ferromagnet/oxide thin film heterostructures

    NASA Astrophysics Data System (ADS)

    Ou, Yongxi; Pai, Chi-Feng; Shi, Shengjie; Ralph, D. C.; Buhrman, R. A.

    2016-10-01

    We report measurements of the thickness and temperature (T ) dependencies of current-induced spin-orbit torques, especially the fieldlike (FL) component, in various heavy metal (HM)/normal metal (NM) spacer/ferromagnet (FM)/oxide (MgO and Hf Ox/MgO ) heterostructures. The FL torque in these samples originates from spin current generated by the spin Hall effect in the HM. For a FM layer sufficiently thin that a substantial portion of this spin current can reach the FM/oxide interface, T-dependent spin scattering there can yield a strong FL torque that is, in some cases, opposite in sign to that exerted at the NM/FM interface.

  7. Torque shudder protection device and method

    DOEpatents

    King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.

    1997-01-01

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.

  8. Torque shudder protection device and method

    DOEpatents

    King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.

    1997-03-11

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.

  9. Torque Measurement at the Single Molecule Level

    PubMed Central

    Forth, Scott; Sheinin, Maxim Y.; Inman, James; Wang, Michelle D.

    2017-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single molecule field have led to the development of techniques which add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study which would be well suited for analysis with torsional measurement techniques. PMID:23541162

  10. Substantially parallel flux uncluttered rotor machines

    DOEpatents

    Hsu, John S.

    2012-12-11

    A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator

  11. Convectively driven decadal zonal accelerations in Earth's fluid core

    NASA Astrophysics Data System (ADS)

    More, Colin; Dumberry, Mathieu

    2018-04-01

    Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been inferred to exist in Earth's fluid core on the basis of magnetic field observations and changes in the length-of-day. These accelerations have a typical timescale of decades. However, the physical mechanism causing the accelerations is not well understood. Scaling arguments suggest that the leading order torque averaged over cylindrical surfaces should arise from the Lorentz force. Decadal fluctuations in the magnetic field inside the core, driven by convective flows, could then force decadal changes in the Lorentz torque and generate zonal accelerations. We test this hypothesis by constructing a quasi-geostrophic model of magnetoconvection, with thermally driven flows perturbing a steady, imposed background magnetic field. We show that when the Alfvén number in our model is similar to that in Earth's fluid core, temporal fluctuations in the torque balance are dominated by the Lorentz torque, with the latter generating mean zonal accelerations. Our model reproduces both fast, free Alfvén waves and slow, forced accelerations, with ratios of relative strength and relative timescale similar to those inferred for the Earth's core. The temporal changes in the magnetic field which drive the time-varying Lorentz torque are produced by the underlying convective flows, shearing and advecting the magnetic field on a timescale associated with convective eddies. Our results support the hypothesis that temporal changes in the magnetic field deep inside Earth's fluid core drive the observed decadal zonal accelerations of cylindrical surfaces through the Lorentz torque.

  12. Design and analysis of an MR rotary brake for self-regulating braking torques.

    PubMed

    Yun, Dongwon; Koo, Jeong-Hoi

    2017-05-01

    This paper presents a novel Magneto-rheological (MR) brake system that can self-regulate the output braking torques. The proposed MR brake can generate a braking torque at a critical rotation speed without an external power source, sensors, or controllers, making it a simple and cost-effective device. The brake system consists of a rotary disk, permanent magnets, springs, and MR fluid. The permanent magnets are attached to the rotary disk via the springs, and they move outward through grooves with two different gap distances along the radial direction of the stator due to the centrifugal force. Thus, the position of the magnets is dependent on the spin speed, and it can determine the magnetic fields applied to MR fluids. Proper design of the stator geometry gives the system unique torque characteristics. To show the performance of an MR brake system, the electromagnetic characteristics of the system are analyzed, and the torques generated by the brake are calculated using the result of the electromagnetic analysis. Using a baseline model, a parametric study is conducted to investigate how the design parameters (geometric shapes and material selection) affect the performance of the brake system. After the simulation study, a prototype brake system is constructed and its performance is experimentally evaluated. The experimental results show that the prototype produced the maximum torque of 1.2 N m at the rotational speed of 100 rpm. The results demonstrate the feasibility of the proposed MR brake as a speed regulator in rotating systems.

  13. The insertional torque of a pedicle screw has a positive correlation with bone mineral density in posterior lumbar pedicle screw fixation.

    PubMed

    Lee, J H; Lee, J-H; Park, J W; Shin, Y H

    2012-01-01

    In patients with osteoporosis there is always a strong possibility that pedicle screws will loosen. This makes it difficult to select the appropriate osteoporotic patient for a spinal fusion. The purpose of this study was to determine the correlation between bone mineral density (BMD) and the magnitude of torque required to insert a pedicle screw. To accomplish this, 181 patients with degenerative disease of the lumbar spine were studied prospectively. Each underwent dual-energy x-ray absorptiometry (DEXA) and intra-operative measurement of the torque required to insert each pedicle screw. The levels of torque generated in patients with osteoporosis and osteopenia were significantly lower than those achieved in normal patients. Positive correlations were observed between BMD and T-value at the instrumented lumbar vertebrae, mean BMD and mean T-value of the lumbar vertebrae, and mean BMD and mean T-value of the proximal femur. The predictive torque (Nm) generated during pedicle screw insertion was [-0.127 + 1.62 × (BMD at the corresponding lumbar vertebrae)], as measured by linear regression analysis. The positive correlation between BMD and the maximum torque required to insert a pedicle screw suggests that pre-operative assessment of BMD may be useful in determining the ultimate strength of fixation of a device, as well as the number of levels that need to be fixed with pedicle screws in patients who are suspected of having osteoporosis.

  14. A thin membrane artificial muscle rotary motor

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Hale, Thom; Gisby, Todd; Inamura, Tokushu; McKay, Thomas; O'Brien, Benjamin; Walbran, Scott; Calius, Emilio P.

    2010-01-01

    Desirable rotary motor attributes for robotics include the ability to develop high torque in a low mass body and to generate peak power at low rotational speeds. Electro-active polymer artificial muscles offer promise as actuator elements for robotic motors. A promising artificial muscle technology for use as a driving mechanism for rotary motion is the dielectric elastomer actuator (DEA). We present a membrane DEA motor in which phased actuation of electroded sectors of the motor membrane impart orbital motion to a central drive that turns a rotor. The motor is inherently scalable, flexible, flat, silent in operation, amenable to deposition-based manufacturing approaches, and uses relatively inexpensive materials. As a membrane it can also form part of the skin of a robot. We have investigated the torque and power of stacked membrane layers. Specific power and torque ratios when calculated using active membrane mass only were 20.8 W/kg and 4.1 Nm/kg, respectively. These numbers compare favorably with a commercially available stepper motor. Multi-membrane fabrication substantially boosts torque and power and increases the active mass of membrane relative to supporting framework. Through finite element modeling, we show the mechanisms governing the maximum torque the device can generate and how the motor can be improved.

  15. Generation and Sustainment of Plasma Rotation by ICRF Heating

    NASA Astrophysics Data System (ADS)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  16. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks.

    PubMed

    Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E

    2016-07-01

    Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Descriptive laboratory study. A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, -7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. The mean (±SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60-0.65), flexion (r = 0.64-0.66), lateral (r = 0.57-0.69), and external rotation torques (r = 0.47-0.72) as well as inverse correlations with peak abduction (r = -0.42 to -0.61) and internal rotation torques (r = -0.39 to -0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64-0.69) and lateral knee force (r = 0.55-0.74) as well as inverse correlations with peak external torque (r = -0.34 to -0.67) and medial knee force (r = -0.58 to -0.59). These moderate correlations were also present during simulated sidestep cutting. The investigation supported the theory that increased posterior tibial slope would lead to greater magnitude knee joint moments, specifically, internally generated knee adduction and flexion torques. The knee torques that positively correlated with increased tibial slope angle in this investigation are associated with heightened risk of ACL injury. Therefore, the present data indicated that a higher posterior tibial slope is correlated to increased knee loads that are associated with heightened risk of ACL injury. © 2016 The Author(s).

  17. In-orbit performance of the ITOS improved attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1973-01-01

    The National Aeronautics and Space Administration (NASA), launched ITOS-D with an improved attitude control system. A Hall generator brushless dc torque motor replaced the brush dc torque motor on Tiros-M and ITOS-A. Two CO2 attitude horizon sensors and one mirror replaced the four wideband horizon sensors and two mirrors on ITOS-1 and NOAA-1. Redundant pitch-control electronic boxes containing additional electronic circuitry for earth-splitting and brushless motor electronics were used. A method of generating a spacecraft earth-facing side reference for comparison to the time occurrence of the earth-splitting pulse was used to automatically correct pitch-attitude error. A single rotating flywheel, supported by a single bearing, provided gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminated the requirement for expendable propellants which would limit satellite life in orbit.

  18. Load-dependent assembly of the bacterial flagellar motor.

    PubMed

    Tipping, Murray J; Delalez, Nicolas J; Lim, Ren; Berry, Richard M; Armitage, Judith P

    2013-08-20

    It is becoming clear that the bacterial flagellar motor output is important not only for bacterial locomotion but also for mediating the transition from liquid to surface living. The output of the flagellar motor changes with the mechanical load placed on it by the external environment: at a higher load, the motor runs more slowly and produces higher torque. Here we show that the number of torque-generating units bound to the flagellar motor also depends on the external mechanical load, with fewer stators at lower loads. Stalled motors contained at least as many stators as rotating motors at high load, indicating that rotation is unnecessary for stator binding. Mutant stators incapable of generating torque could not be detected around the motor. We speculate that a component of the bacterial flagellar motor senses external load and mediates the strength of stator binding to the rest of the motor. The transition between liquid living and surface living is important in the life cycles of many bacteria. In this paper, we describe how the flagellar motor, used by bacteria for locomotion through liquid media and across solid surfaces, is capable of adjusting the number of bound stator units to better suit the external load conditions. By stalling motors using external magnetic fields, we also show that rotation is not required for maintenance of stators around the motor; instead, torque production is the essential factor for motor stability. These new results, in addition to previous data, lead us to hypothesize that the motor stators function as mechanosensors as well as functioning as torque-generating units.

  19. Comparison of different strongman events: trunk muscle activation and lumbar spine motion, load, and stiffness.

    PubMed

    McGill, Stuart M; McDermott, Art; Fenwick, Chad Mj

    2009-07-01

    Strongman events are attracting more interest as training exercises because of their unique demands. Further, strongman competitors sustain specific injuries, particularly to the back. Muscle electromyographic data from various torso and hip muscles, together with kinematic measures, were input to an anatomically detailed model of the torso to estimate back load, low-back stiffness, and hip torque. Events included the farmer's walk, super yoke, Atlas stone lift, suitcase carry, keg walk, tire flip, and log lift. The results document the unique demands of these whole-body events and, in particular, the demands on the back and torso. For example, the very large moments required at the hip for abduction when performing a yoke walk exceed the strength capability of the hip. Here, muscles such as quadratus lumborum made up for the strength deficit by generating frontal plane torque to support the torso/pelvis. In this way, the stiffened torso acts as a source of strength to allow joints with insufficient strength to be buttressed, resulting in successful performance. Timing of muscle activation patterns in events such as the Atlas stone lift demonstrated the need to integrate the hip extensors before the back extensors. Even so, because of the awkward shape of the stone, the protective neutral spine posture was impossible to achieve, resulting in substantial loading on the back that is placed in a weakened posture. Unexpectedly, the super yoke carry resulted in the highest loads on the spine. This was attributed to the weight of the yoke coupled with the massive torso muscle cocontraction, which produced torso stiffness to ensure spine stability together with buttressing the abduction strength insufficiency of the hips. Strongman events clearly challenge the strength of the body linkage, together with the stabilizing system, in a different way than traditional approaches. The carrying events challenged different abilities than the lifting events, suggesting that loaded carrying would enhance traditional lifting-based strength programs. This analysis also documented the technique components of successful, joint-sparing, strongman event strategies.

  20. Low mass planet migration in magnetically torqued dead zones - I. Static migration torque

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan; Gressel, Oliver; Lyra, Wladimir

    2017-12-01

    Motivated by models suggesting that the inner planet forming regions of protoplanetary discs are predominantly lacking in viscosity-inducing turbulence, and are possibly threaded by Hall-effect generated large-scale horizontal magnetic fields, we examine the dynamics of the corotation region of a low-mass planet in such an environment. The corotation torque in an inviscid, isothermal, dead zone ought to saturate, with the libration region becoming both symmetrical and of a uniform vortensity, leading to fast inward migration driven by the Lindblad torques alone. However, in such a low viscosity situation, the material on librating streamlines essentially preserves its vortensity. If there is relative radial motion between the disc gas and the planet, the librating streamlines will no longer be symmetrical. Hence, if the gas is torqued by a large-scale magnetic field so that it undergoes a net inflow or outflow past the planet, driving evolution of the vortensity and inducing asymmetry of the corotation region, the corotation torque can grow, leading to a positive torque. In this paper, we treat this effect by applying a symmetry argument to the previously studied case of a migrating planet in an inviscid disc. Our results show that the corotation torque due to a laminar Hall-induced magnetic field in a dead zone behaves quite differently from that studied previously for a viscous disc. Furthermore, the magnetic field induced corotation torque and the dynamical corotation torque in a low viscosity disc can be regarded as one unified effect.

  1. Contraction type influences the human ability to use the available torque capacity of skeletal muscle during explosive efforts

    PubMed Central

    Tillin, Neale A.; Pain, Matthew T. G.; Folland, Jonathan P.

    2012-01-01

    The influence of contraction type on the human ability to use the torque capacity of skeletal muscle during explosive efforts has not been documented. Fourteen male participants completed explosive voluntary contractions of the knee extensors in four separate conditions: concentric (CON) and eccentric (ECC); and isometric at two knee angles (101°, ISO101 and 155°, ISO155). In each condition, torque was measured at 25 ms intervals up to 150 ms from torque onset, and then normalized to the maximum voluntary torque (MVT) specific to that joint angle and angular velocity. Explosive voluntary torque after 50 ms in each condition was also expressed as a percentage of torque generated after 50 ms during a supramaximal 300 Hz electrically evoked octet in the same condition. Explosive voluntary torque normalized to MVT was more than 60 per cent larger in CON than any other condition after the initial 25 ms. The percentage of evoked torque expressed after 50 ms of the explosive voluntary contractions was also greatest in CON (ANOVA; p < 0.001), suggesting higher concentric volitional activation. This was confirmed by greater agonist electromyography normalized to Mmax (recorded during the explosive voluntary contractions) in CON. These results provide novel evidence that the ability to use the muscle's torque capacity explosively is influenced by contraction type, with concentric contractions being more conducive to explosive performance due to a more effective neural strategy. PMID:22258636

  2. Effect of superconducting solenoid model cores on spanwise iron magnet roll control

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1985-01-01

    Compared with conventional ferromagnetic fuselage cores, superconducting solenoid cores appear to offer significant reductions in the projected cost of a large wind tunnel magnetic suspension and balance system. The provision of sufficient magnetic roll torque capability has been a long-standing problem with all magnetic suspension and balance systems; and the spanwise iron magnet scheme appears to be the most powerful system available. This scheme utilizes iron cores which are installed in the wings of the model. It was anticipated that the magnetization of these cores, and hence the roll torque generated, would be affected by the powerful external magnetic field of the superconducting solenoid. A preliminary study has been made of the effect of the superconducting solenoid fuselage model core concept on the spanwise iron magnet roll torque generation schemes. Computed data for one representative configuration indicate that reductions in available roll torque occur over a range of applied magnetic field levels. These results indicate that a 30-percent increase in roll electromagnet capacity over that previously determined will be required for a representative 8-foot wind tunnel magnetic suspension and balance system design.

  3. Characterization of the non axial thrust generated by large solid propellant rocket motors in three axis stabilized ascent

    NASA Technical Reports Server (NTRS)

    Kosmann, W. J.; Dionne, E. R.; Klemetson, R. W.

    1978-01-01

    Nonaxial thrusts produced by solid rocket motors during three-axis stabilized attitude control have been determined from ascent experience on twenty three Burner II, Burner IIA and Block 5D-1 upper stage vehicles. A data base representing four different rocket motor designs (three spherical and one extended spherical) totaling twenty five three-axis stabilized firings is generated. Solid rocket motor time-varying resultant and lateral side force vector magnitudes, directions and total impulses, and roll torque couple magnitudes, directions, and total impulses are tabulated in the appendix. Population means and three sigma deviations are plotted. Existing applicable ground test side force and roll torque magnitudes and total impulses are evaluated and compared to the above experience data base. Within the spherical motor population, the selected AEDC ground test data consistently underestimated experienced motor side forces, roll torques and total impulses. Within the extended spherical motor population, the selected AEDC test data predicted experienced motor side forces, roll torques, and total impulses, with surprising accuracy considering the very small size of the test and experience populations.

  4. An investigation into the torque density capabilities of flux-focusing magnetic gearboxes

    NASA Astrophysics Data System (ADS)

    Uppalapati, Krishna Kiran

    Wind and many rotary based ocean energy conversion devices rely on a mechanical gearbox to increase their speed so as to match the requirements of the electromagnetic generator. However, mechanical gearboxes have a number of disadvantages such as the need for gear lubrication, no overload protection and the creation of acoustic noise. Frequently direct-drive generators are employed to overcome these issues, wherein the gearbox is removed and the shaft of the turbine is directly connected to the synchronous generator, either with an electrically excited or permanent magnet rotor. If the input speed to the generator is very low the torque must be very high in order to generate the necessary power. However, as the electrical loading of a synchronous generator is thermally limited, the size of the generator will become excessively large at high power levels. An alternative to these technologies is to consider replacing the mechanical gearbox with a magnetic gear. A magnetic gear can create speed change without any physical contact. It has inherent overload protection, and its non-contact operation offers the potential for high reliability. Despite significant progress, existing magnetic gear designs do not achieve torque densities that are competitive with mechanical gearboxes. This research has focused on designing a coaxial magnetic gear that can operate at a volumetric torque density that is comparable to a mechanical gearbox. A flux-focusing rotor topology also called spoke-type rotor magnet arrangement was adopted to improve the air-gap magnetic flux density which in turn improves the torque transferred between the rotors. Finite element analysis was utilized to conduct a parameter sweep analysis of the different geometric parameters of the magnetic gear. A sub-scale magnetic gear with a diameter of 110 mm and a scaled-up magnetic gear with a diameter of 228 mm was designed, constructed and experimentally evaluated. The torque and torque density of sub-scale design was measured to be 115 Nm and 151.2 Nm/L respectively and that of the scaled-up model was measured to be 731 Nm and 239 Nm/L respectively. An iterative magnetomechanical analysis technique was developed to study the deflection of the magnetic gear steel rotor bars due to the magnetic forces coming from the inner and outer rotor permanent magnets. The accuracy of the technique was validated by using an experimental test-stand. It was shown that the deflection is an important issue to consider especially if the air-gaps are small. A 2-D analytical based model was derived for the flux-focusing coaxial magnetic gear by using the separation of variables method to solve the Laplace and Poisson equation in each region. After applying the applicable Dirchlet and Neumann boundary conditions a set of 16 equations with 16 unknown Fourier coefficients was obtained. The 16 unknowns were solved numerically by putting the equations in a matrix form. It was shown that the analytical based model immensely reduced the torque and field computational time when compared to using finite element analysis. However, the analytical model does not take into consideration the non-linear properties of the steel. The benefits of using the analytical model was demonstrated by conducting a radial scaling and gear-ratio analysis.

  5. Evaluation of the Accuracy and Related Factors of the Mechanical Torque-Limiting Device for Dental Implants

    PubMed Central

    Kazemi, Mahmood; Rohanian, Ahmad; Monzavi, Abbas; Nazari, Mohammad Sadegh

    2013-01-01

    Objective: Accurate delivery of torque to implant screws is critical to generate ideal preload in the screw joint and to offer protection against screw loosening. Mechanical torque-limiting devices (MTLDs) are available for this reason. In this study, the accuracy of one type of friction-style and two types of spring-style MTLDs at baseline, following fatigue conditions and sterilization processes were determined. Materials and Methods: Five unused MTLDs were selected from each of Straumann (ITI), Astra TECH and CWM systems. To measure the output of each MTLD, a digital torque gauge with a 3-jaw chuck was used to hold the driver. Force was applied to the MTLDs until either the friction styles released at a pre-calibrated torque value or the spring styles flexed to a pre-calibrated limit (target torque value). The peak torque value was recorded and the procedure was repeated 5 times for each MTLD. Then MTLDs were subjected to fatigue conditions at 500 and 1000 times and steam sterilization processes at 50 and 100 times and the peak torque value was recorded again at each stage. Results: Adjusted difference between measured torque values and target torque values differed significantly between stages for all 3 systems. Adjusted difference did not differ significantly between systems at all stages, but differed significantly between two different styles at baseline and 500 times fatigue stages. Conclusion: Straumann (ITI) devices differed minimally from target torque values at all stages. MTLDs with Spring-style were significantly more accurate than Friction-style device in achieving their target torque values at baseline and 500 times fatigue. PMID:23724209

  6. Computations of Torque-Balanced Coaxial Rotor Flows

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Chan, William M.; Pulliam, Thomas H.

    2017-01-01

    Interactional aerodynamics has been studied for counter-rotating coaxial rotors in hover. The effects of torque balancing on the performance of coaxial-rotor systems have been investigated. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. Computational results for an experimental model are compared to available data. The results for a coaxial quadcopter vehicle with and without torque balancing are discussed. Understanding interactions in coaxial-rotor flows would help improve the design of next-generation autonomous drones.

  7. Oscillation characteristics of zero-field spin transfer oscillators with field-like torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn; Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024

    2015-05-15

    We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties onmore » the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.« less

  8. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control

    PubMed Central

    2016-01-01

    Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking. PMID:26791608

  9. Hybrid excited claw pole generator with skewed and non-skewed permanent magnets

    NASA Astrophysics Data System (ADS)

    Wardach, Marcin

    2017-12-01

    This article contains simulation results of the Hybrid Excited Claw Pole Generator with skewed and non-skewed permanent magnets on rotor. The experimental machine has claw poles on two rotor sections, between which an excitation control coil is located. The novelty of this machine is existence of non-skewed permanent magnets on claws of one part of the rotor and skewed permanent magnets on the second one. The paper presents the construction of the machine and analysis of the influence of the PM skewing on the cogging torque and back-emf. Simulation studies enabled the determination of the cogging torque and the back-emf rms for both: the strengthening and the weakening of magnetic field. The influence of the magnets skewing on the cogging torque and the back-emf rms have also been analyzed.

  10. Self-current induced spin-orbit torque in FeMn/Pt multilayers

    PubMed Central

    Xu, Yanjun; Yang, Yumeng; Yao, Kui; Xu, Baoxi; Wu, Yihong

    2016-01-01

    Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications. PMID:27185656

  11. An advanced pitch change mechanism incorporating a hybrid traction drive

    NASA Technical Reports Server (NTRS)

    Steinetz, B. M.; Loewenthal, S. H.; Sargisson, D. F.; White, G.

    1984-01-01

    A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed.

  12. Motor impairments related to brain injury timing in early hemiparesis. Part II: abnormal upper extremity joint torque synergies.

    PubMed

    Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A

    2014-01-01

    Extensive neuromotor development occurs early in human life, and the timing of brain injury may affect the resulting motor impairment. In Part I of this series, it was demonstrated that the distribution of weakness in the upper extremity depended on the timing of brain injury in individuals with childhood-onset hemiparesis. The goal of this study was to characterize how timing of brain injury affects joint torque synergies, or losses of independent joint control. Twenty-four individuals with hemiparesis were divided into 3 groups based on the timing of their injury: before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), and after 6 months of age (POST-natal, n = 8). Individuals with hemiparesis and 8 typically developing peers participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks while their efforts were recorded by a multiple degree-of-freedom load cell. Motor output in 4 joints of the upper extremity was concurrently measured during 8 primary torque generation tasks to quantify joint torque synergies. There were a number of significant coupling patterns identified in individuals with hemiparesis that differed from the typically developing group. POST-natal differences were most noted in the coupling of shoulder abductors with elbow, wrist, and finger flexors, while the PRE-natal group demonstrated significant distal joint coupling with elbow flexion. The torque synergies measured provide indirect evidence for the use of bulbospinal pathways in the POST-natal group, while those with earlier injury may use relatively preserved ipsilateral corticospinal motor pathways.

  13. Rotational effect of buoyancy in frontcrawl: Does it really cause the legs to sink?

    PubMed

    Yanai, T

    2001-02-01

    The purposes of this study were to quantify the rotational effect of buoyant force (buoyant torque) during the performance of front crawl and to reexamine the mechanics of horizontal alignment of the swimmers. Three-dimensional videography was used to measure the position and orientation of the body segments of 11 competitive swimmers performing front crawl stroke at a sub-maximum sprinting speed. The dimensions of each body segment were defined mathematically to match the body segment parameters (mass, density, and centroid position) reported in the literature. The buoyant force and torque were computed for every video-field (60fields/s), assuming that the water surface followed a sine curve along the length of the swimmer. The average buoyant torque over the stroke cycle (mean=22Nm) was directed to raise the legs and lower the head, primarily because the recovery arm and a part of the head were lifted out of the water and the center of buoyancy shifted toward the feet. This finding contradicts the prevailing speculation that buoyancy only causes the legs to sink throughout the stroke cycle. On the basis of a theoretical analysis of the results, it is postulated that the buoyant torque, and perhaps the forces generated by kicks, function to counteract the torque generated by the hydrodynamic forces acting on the hands, so as to maintain the horizontal alignment of the body in front crawl.

  14. Modelling of human walking to optimise the function of ankle-foot orthosis in Guillan-Barré patients with drop foot.

    PubMed

    Jamshidi, N; Rostami, M; Najarian, S; Menhaj, M B; Saadatnia, M; Firooz, S

    2009-04-01

    This paper deals with the dynamic modelling of human walking. The main focus of this research was to optimise the function of the orthosis in patients with neuropathic feet, based on the kinematics data from different categories of neuropathic patients. The patient's body on the sagittal plane was modelled for calculating the torques generated in joints. The kinematics data required for mathematical modelling of the patients were obtained from the films of patients captured by high speed camera, and then the films were analysed through a motion analysis software. An inverse dynamic model was used for estimating the spring coefficient. In our dynamic model, the role of muscles was substituted by adding a spring-damper between the shank and ankle that could compensate for their weakness by designing ankle-foot orthoses based on the kinematics data obtained from the patients. The torque generated in the ankle was varied by changing the spring constant. Therefore, it was possible to decrease the torque generated in muscles which could lead to the design of more comfortable and efficient orthoses. In this research, unlike previous research activities, instead of studying the abnormal gait or modelling the ankle-foot orthosis separately, the function of the ankle-foot orthosis on the abnormal gait has been quantitatively improved through a correction of the torque.

  15. Serum brain-derived neurotrophic factor and interleukin-6 response to high-volume mechanically demanding exercise.

    PubMed

    Verbickas, Vaidas; Kamandulis, Sigitas; Snieckus, Audrius; Venckunas, Tomas; Baranauskiene, Neringa; Brazaitis, Marius; Satkunskiene, Danguole; Unikauskas, Alvydas; Skurvydas, Albertas

    2018-01-01

    The aim of this study was to follow circulating brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) levels in response to severe muscle-damaging exercise. Young healthy men (N = 10) performed a bout of mechanically demanding stretch-shortening cycle exercise consisting of 200 drop jumps. Voluntary and electrically induced knee extension torque, serum BDNF levels, and IL-6 levels were measured before and for up to 7 days after exercise. Muscle force decreased by up to 40% and did not recover by 24 hours after exercise. Serum BDNF was decreased 1 hour and 24 hours after exercise, whereas IL-6 increased immediately and 1 hour after but recovered to baseline by 24 hours after exercise. IL-6 and 100-Hz stimulation torque were correlated (r = -0.64, P < 0.05) 24 hours after exercise. In response to acute, severe muscle-damaging exercise, serum BDNF levels decrease, whereas IL-6 levels increase and are associated with peripheral fatigue. Muscle Nerve 57: E46-E51, 2018. © 2017 Wiley Periodicals, Inc.

  16. An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation

    NASA Astrophysics Data System (ADS)

    Kyozuka, Yusaku

    The Darrieus turbine is popular for tidal current power generation in Japan. It is simple in structure with straight wings rotating around a vertical axis, so that it has no directionality against the motion of tidal flow which changes its direction twice a day. However, there is one defect in the Darrieus turbine; its small starting torque. Once it stops, a Darrieus turbine is hard to re-start until a fairly fast current is exerted on it. To improve the starting torque of the Darrieus turbine used for tidal power generation, a hybrid turbine, composed of a Darrieus turbine and a Savonius rotor is proposed. Hydrodynamic characteristics of a semi-circular section used for the Savonius bucket were measured in a wind tunnel. The torque of a two bucket Savonius rotor was measured in a circulating water channel, where four different configurations of the bucket were compared. A combined Darrieus and Savonius turbine was tested in the circulating water channel, where the effect of the attaching angle between Darrieus wing and Savonius rotor was studied. Finally, power generation experiments using a 48 pole electric generator were conducted in a towing tank and the power coefficients were compared with the results of experiments obtained in the circulating water channel.

  17. Design and analysis of magneto rheological fluid brake for an all terrain vehicle

    NASA Astrophysics Data System (ADS)

    George, Luckachan K.; Tamilarasan, N.; Thirumalini, S.

    2018-02-01

    This work presents an optimised design for a magneto rheological fluid brake for all terrain vehicles. The actuator consists of a disk which is immersed in the magneto rheological fluid surrounded by an electromagnet. The braking torque is controlled by varying the DC current applied to the electromagnet. In the presence of a magnetic field, the magneto rheological fluid particle aligns in a chain like structure, thus increasing the viscosity. The shear stress generated causes friction in the surfaces of the rotating disk. Electromagnetic analysis of the proposed system is carried out using finite element based COMSOL multi-physics software and the amount of magnetic field generated is calculated with the help of COMSOL. The geometry is optimised and performance of the system in terms of braking torque is carried out. Proposed design reveals better performance in terms of braking torque from the existing literature.

  18. Bidirectional helical motility of cytoplasmic dynein around microtubules

    PubMed Central

    Can, Sinan; Dewitt, Mark A; Yildiz, Ahmet

    2014-01-01

    Cytoplasmic dynein is a molecular motor responsible for minus-end-directed cargo transport along microtubules (MTs). Dynein motility has previously been studied on surface-immobilized MTs in vitro, which constrains the motors to move in two dimensions. In this study, we explored dynein motility in three dimensions using an MT bridge assay. We found that dynein moves in a helical trajectory around the MT, demonstrating that it generates torque during cargo transport. Unlike other cytoskeletal motors that produce torque in a specific direction, dynein generates torque in either direction, resulting in bidirectional helical motility. Dynein has a net preference to move along a right-handed helical path, suggesting that the heads tend to bind to the closest tubulin binding site in the forward direction when taking sideways steps. This bidirectional helical motility may allow dynein to avoid roadblocks in dense cytoplasmic environments during cargo transport. DOI: http://dx.doi.org/10.7554/eLife.03205.001 PMID:25069614

  19. Torque Generation Mechanism of F1-ATPase upon NTP Binding

    PubMed Central

    Arai, Hidenobu C.; Yukawa, Ayako; Iwatate, Ryu John; Kamiya, Mako; Watanabe, Rikiya; Urano, Yasuteru; Noji, Hiroyuki

    2014-01-01

    Molecular machines fueled by NTP play pivotal roles in a wide range of cellular activities. One common feature among NTP-driven molecular machines is that NTP binding is a major force-generating step among the elementary reaction steps comprising NTP hydrolysis. To understand the mechanism in detail,in this study, we conducted a single-molecule rotation assay of the ATP-driven rotary motor protein F1-ATPase using uridine triphosphate (UTP) and a base-free nucleotide (ribose triphosphate) to investigate the impact of a pyrimidine base or base depletion on kinetics and force generation. Although the binding rates of UTP and ribose triphosphate were 103 and 106 times, respectively, slower than that of ATP, they supported rotation, generating torque comparable to that generated by ATP. Affinity change of F1 to UTP coupled with rotation was determined, and the results again were comparable to those for ATP, suggesting that F1 exerts torque upon the affinity change to UTP via rotation similar to ATP-driven rotation. Thus, the adenine-ring significantly enhances the binding rate, although it is not directly involved in force generation. Taking into account the findings from another study on F1 with mutated phosphate-binding residues, it was proposed that progressive bond formation between the phosphate region and catalytic residues is responsible for the rotation-coupled change in affinity. PMID:24988350

  20. High speed reaction wheels for satellite attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  1. PWM Switching Strategy for Torque Ripple Minimization in BLDC Motor

    NASA Astrophysics Data System (ADS)

    Salah, Wael A.; Ishak, Dahaman; Hammadi, Khaleel J.

    2011-05-01

    This paper describes a new PWM switching strategy to minimize the torque ripples in BLDC motor which is based on sensored rotor position control. The scheme has been implemented using a PIC microcontroller to generate a modified Pulse Width Modulation (PWM) signals for driving power inverter bridge. The modified PWM signals are successfully applied to the next up-coming phase current such that its current rise is slightly delayed during the commutation instant. Experimental results show that the current waveforms of the modified PWM are smoother than that in conventional PWM technique. Hence, the output torque exhibits lower ripple contents.

  2. Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training.

    PubMed

    Balshaw, Thomas G; Massey, Garry J; Maden-Wilkinson, Thomas M; Tillin, Neale A; Folland, Jonathan P

    2016-06-01

    Training specificity is considered important for strength training, although the functional and underpinning physiological adaptations to different types of training, including brief explosive contractions, are poorly understood. This study compared the effects of 12 wk of explosive-contraction (ECT, n = 13) vs. sustained-contraction (SCT, n = 16) strength training vs. control (n = 14) on the functional, neural, hypertrophic, and intrinsic contractile characteristics of healthy young men. Training involved 40 isometric knee extension repetitions (3 times/wk): contracting as fast and hard as possible for ∼1 s (ECT) or gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT). Torque and electromyography during maximum and explosive contractions, torque during evoked octet contractions, and total quadriceps muscle volume (QUADSVOL) were quantified pre and post training. MVT increased more after SCT than ECT [23 vs. 17%; effect size (ES) = 0.69], with similar increases in neural drive, but greater QUADSVOL changes after SCT (8.1 vs. 2.6%; ES = 0.74). ECT improved explosive torque at all time points (17-34%; 0.54 ≤ ES ≤ 0.76) because of increased neural drive (17-28%), whereas only late-phase explosive torque (150 ms, 12%; ES = 1.48) and corresponding neural drive (18%) increased after SCT. Changes in evoked torque indicated slowing of the contractile properties of the muscle-tendon unit after both training interventions. These results showed training-specific functional changes that appeared to be due to distinct neural and hypertrophic adaptations. ECT produced a wider range of functional adaptations than SCT, and given the lesser demands of ECT, this type of training provides a highly efficient means of increasing function. Copyright © 2016 the American Physiological Society.

  3. America’s Cup Sailing: Effect of Standing Arm-Cranking (“Grinding”) Direction on Muscle Activity, Kinematics, and Torque Application

    PubMed Central

    Pearson, Simon N.; Hume, Patria A.; Cronin, John; Slyfield, David

    2016-01-01

    Grinding is a key physical element in America’s Cup sailing. This study aimed to describe kinematics and muscle activation patterns in relation to torque applied in forward and backward grinding. Ten male America’s Cup sailors (33.6 ± 5.7 years, 97.9 ± 13.4 kg, 186.6 ± 7.4 cm) completed forward and backward grinding on a customised grinding ergometer. In forward grinding peak torque (77 Nm) occurred at 95° (0° = crank vertically up) on the downward section of the rotation at the end of shoulder flexion and elbow extension. Backward grinding torque peaked at 35° (69 Nm) following the pull action (shoulder extension, elbow flexion) across the top of the rotation. During forward grinding, relatively high levels of torque (>50 Nm) were maintained through the majority (72%) of the cycle, compared to 47% for backward grinding, with sections of low torque corresponding with low numbers of active muscles. Variation in torque was negatively associated with forward grinding performance (r = −0.60; 90% CI −0.88 to −0.02), but positively associated with backward performance (r = 0.48; CI = −0.15 to 0.83). Magnitude and distribution of torque generation differed according to grinding direction and presents an argument for divergent training methods to improve forward and backward grinding performance.

  4. Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers

    NASA Astrophysics Data System (ADS)

    MacNeill, D.; Stiehl, G. M.; Guimaraes, M. H. D.; Buhrman, R. A.; Park, J.; Ralph, D. C.

    2017-03-01

    Recent discoveries regarding current-induced spin-orbit torques produced by heavy-metal/ferromagnet and topological-insulator/ferromagnet bilayers provide the potential for dramatically improved efficiency in the manipulation of magnetic devices. However, in experiments performed to date, spin-orbit torques have an important limitation--the component of torque that can compensate magnetic damping is required by symmetry to lie within the device plane. This means that spin-orbit torques can drive the most current-efficient type of magnetic reversal (antidamping switching) only for magnetic devices with in-plane anisotropy, not the devices with perpendicular magnetic anisotropy that are needed for high-density applications. Here we show experimentally that this state of affairs is not fundamental, but rather one can change the allowed symmetries of spin-orbit torques in spin-source/ferromagnet bilayer devices by using a spin-source material with low crystalline symmetry. We use WTe2, a transition-metal dichalcogenide whose surface crystal structure has only one mirror plane and no two-fold rotational invariance. Consistent with these symmetries, we generate an out-of-plane antidamping torque when current is applied along a low-symmetry axis of WTe2/Permalloy bilayers, but not when current is applied along a high-symmetry axis. Controlling spin-orbit torques by crystal symmetries in multilayer samples provides a new strategy for optimizing future magnetic technologies.

  5. Microgrid Restraining Strategy Based on Improved DC Grid Connected DFIG Torque Ripple

    NASA Astrophysics Data System (ADS)

    Fei, Xia; Yang, Zhixiong; Zongze, Xia

    2017-05-01

    Aiming to the voltage of the stator side is generated by the modulation of the SSC in the improved topology, especially under the circumstance with the asymmTeric fault of stator side, DFIG’s electromagnTeic torque, amplifies ripple of grid-connected power for the grid side. The novel control mTehod suitable to stator side converter and rotor side converter based on reduced-order resonant controller (RORC) is proposed in this thesis, DFIG’s torque and output power performance are improved. Under the RORC control conditions the transfer functions of stator current and torque control system are established, the amplitude characteristic and the system stability of RORC control are analysed. The simulation results in Matlab/Simulink verify the correctness and validity of the proposed mTehod.

  6. Simulation model of a variable-speed pumped-storage power plant in unstable operating conditions in pumping mode

    NASA Astrophysics Data System (ADS)

    Martínez-Lucas, G.; Pérez-Díaz, J. I.; Sarasúa, J. I.; Cavazzini, G.; Pavesi, G.; Ardizzon, G.

    2017-04-01

    This paper presents a dynamic simulation model of a laboratory-scale pumped-storage power plant (PSPP) operating in pumping mode with variable speed. The model considers the dynamic behavior of the conduits by means of an elastic water column approach, and synthetically generates both pressure and torque pulsations that reproduce the operation of the hydraulic machine in its instability region. The pressure and torque pulsations are generated each from a different set of sinusoidal functions. These functions were calibrated from the results of a CFD model, which was in turn validated from experimental data. Simulation model results match the numerical results of the CFD model with reasonable accuracy. The pump-turbine model (the functions used to generate pressure and torque pulsations inclusive) was up-scaled by hydraulic similarity according to the design parameters of a real PSPP and included in a dynamic simulation model of the said PSPP. Preliminary conclusions on the impact of unstable operation conditions on the penstock fatigue were obtained by means of a Monte Carlo simulation-based fatigue analysis.

  7. Classification of the intention to generate a shoulder versus elbow torque by means of a time frequency synthesized spatial patterns BCI algorithm

    NASA Astrophysics Data System (ADS)

    Deng, Jie; Yao, Jun; Dewald, Julius P. A.

    2005-12-01

    In this paper, we attempt to determine a subject's intention of generating torque at the shoulder or elbow, two neighboring joints, using scalp electroencephalogram signals from 163 electrodes for a brain-computer interface (BCI) application. To achieve this goal, we have applied a time-frequency synthesized spatial patterns (TFSP) BCI algorithm with a presorting procedure. Using this method, we were able to achieve an average recognition rate of 89% in four healthy subjects, which is comparable to the highest rates reported in the literature but now for tasks with much closer spatial representations on the motor cortex. This result demonstrates, for the first time, that the TFSP BCI method can be applied to separate intentions between generating static shoulder versus elbow torque. Furthermore, in this study, the potential application of this BCI algorithm for brain-injured patients was tested in one chronic hemiparetic stroke subject. A recognition rate of 76% was obtained, suggesting that this BCI method can provide a potential control signal for neural prostheses or other movement coordination improving devices for patients following brain injury.

  8. Giant thermal spin torque assisted magnetic tunnel junction switching

    NASA Astrophysics Data System (ADS)

    Pushp, Aakash

    Spin-polarized charge-currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer-torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin-currents from temperature gradients, and their associated thermal-spin-torques (TSTs) have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge-currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe. Reference: A. Pushp*, T. Phung*, C. Rettner, B. P. Hughes, S.-H. Yang, S. S. P. Parkin, 112, 6585-6590 (2015).

  9. Haptic feedback can provide an objective assessment of arthroscopic skills.

    PubMed

    Chami, George; Ward, James W; Phillips, Roger; Sherman, Kevin P

    2008-04-01

    The outcome of arthroscopic procedures is related to the surgeon's skills in arthroscopy. Currently, evaluation of such skills relies on direct observation by a surgeon trainer. This type of assessment, by its nature, is subjective and time-consuming. The aim of our study was to identify whether haptic information generated from arthroscopic tools could distinguish between skilled and less skilled surgeons. A standard arthroscopic probe was fitted with a force/torque sensor. The probe was used by five surgeons with different levels of experience in knee arthroscopy performing 11 different tasks in 10 standard knee arthroscopies. The force/torque data from the hand and tool interface were recorded and synchronized with a video recording of the procedure. The torque magnitude and patterns generated were analyzed and compared. A computerized system was used to analyze the force/torque signature based on general principles for quality of performance using such measures as economy in movement, time efficiency, and consistency in performance. The results showed a considerable correlation between three haptic parameters and the surgeon's experience, which could be used in an automated objective assessment system for arthroscopic surgery. Level II, diagnostic study. See the Guidelines for Authors for a complete description of levels of evidence.

  10. A Microelectromechanical High-Density Energy Storage/Rapid Release System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, M. Steven; Allen, Jim J.; Meeks, Kent D.

    1999-07-21

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed,more » fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.« less

  11. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots

    NASA Astrophysics Data System (ADS)

    Palagi, Stefano; Mark, Andrew G.; Reigh, Shang Yik; Melde, Kai; Qiu, Tian; Zeng, Hao; Parmeggiani, Camilla; Martella, Daniele; Sanchez-Castillo, Alberto; Kapernaum, Nadia; Giesselmann, Frank; Wiersma, Diederik S.; Lauga, Eric; Fischer, Peer

    2016-06-01

    Microorganisms move in challenging environments by periodic changes in body shape. In contrast, current artificial microrobots cannot actively deform, exhibiting at best passive bending under external fields. Here, by taking advantage of the wireless, scalable and spatiotemporally selective capabilities that light allows, we show that soft microrobots consisting of photoactive liquid-crystal elastomers can be driven by structured monochromatic light to perform sophisticated biomimetic motions. We realize continuum yet selectively addressable artificial microswimmers that generate travelling-wave motions to self-propel without external forces or torques, as well as microrobots capable of versatile locomotion behaviours on demand. Both theoretical predictions and experimental results confirm that multiple gaits, mimicking either symplectic or antiplectic metachrony of ciliate protozoa, can be achieved with single microswimmers. The principle of using structured light can be extended to other applications that require microscale actuation with sophisticated spatiotemporal coordination for advanced microrobotic technologies.

  12. Microelectromechanical high-density energy storage/rapid release system

    NASA Astrophysics Data System (ADS)

    Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.

    1999-08-01

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

  13. Relationships Between Knee Extension Moments During Weighted and Unweighted Gait and Strength Measures That Predict Knee Moments After ACL Reconstruction.

    PubMed

    Hartigan, Erin; Aucoin, Jennifer; Carlson, Rita; Klieber-Kusak, Melanie; Murray, Thomas; Shaw, Bernadette; Lawrence, Michael

    Weighted gait increases internal knee extension moment impulses (KEMI) in the anterior cruciate ligament-reconstructed (ACLR) limb; however, limb differences persist. (1) KEMI during normal gait will influence KEMI during weighted gait and (2) peak knee extension (PKE) torque and time to reach PKE torque will predict KEMI during gait tasks. Descriptive laboratory study. Twenty-four women and 14 men completed 3 gait tasks (unweighted, vest, sled) and strength testing after discharge from rehabilitation and clearance to return to sports. KEMI were calculated during the first 25% of stance. PKE torque and time to reach PKE torque were obtained using a dynamometer. Data on the ACLR limb and symmetry indices (SIs) were analyzed for each sex. Women presented with asymmetrical PKE torques and KEMI across tasks. There were three correlations noted for KEMI: between the walk and vest, walk and sled, and vest and sled tasks. Slower time to PKE torque predicted limb asymmetries across tasks and KEMI in the ACLR limb during the sled task. Men presented with asymmetrical PKE torques and KEMI during the sled task. There was a correlation noted for KEMI between walk and vest tasks only. During the sled task, ACLR limb time to PKE torque predicted KEMI in the ACLR limb and PKE torque SI predicted KEMI SI. Women use asymmetrical KEMI profiles during all gait tasks, and those with worse KEMI during walking have worse KEMI during weighted gait. Men have asymmetrical KEMI when sled towing, and these KEMIs do not correlate with KEMI during walking or vest tasks. PKE torque deficits persist when attempting to return to sports. Only men use gains in PKE torque to improve KEMI profiles. Although quicker PKE torque generation will increase KEMI in women, normalization of KEMI profiles will not occur by increasing rate of force development only. Gait retraining is recommended to correct asymmetrical KEMI profiles used across gait tasks in women.

  14. Validity of Torque-Data Collection at Multiple Sites: A Framework for Collaboration on Clinical-Outcomes Research in Sports Medicine.

    PubMed

    Kuenze, Christopher; Eltouhky, Moataz; Thomas, Abbey; Sutherlin, Mark; Hart, Joseph

    2016-05-01

    Collecting torque data using a multimode dynamometer is common in sports-medicine research. The error in torque measurements across multiple sites and dynamometers has not been established. To assess the validity of 2 calibration protocols across 3 dynamometers and the error associated with torque measurement for each system. Observational study. 3 university laboratories at separate institutions. 2 Biodex System 3 dynamometers and 1 Biodex System 4 dynamometer. System calibration was completed using the manufacturer-recommended single-weight method and an experimental calibration method using a series of progressive weights. Both calibration methods were compared with a manually calculated theoretical torque across a range of applied weights. Relative error, absolute error, and percent error were calculated at each weight. Each outcome variable was compared between systems using 95% confidence intervals across low (0-65 Nm), moderate (66-110 Nm), and high (111-165 Nm) torque categorizations. Calibration coefficients were established for each system using both calibration protocols. However, within each system the calibration coefficients generated using the single-weight (System 4 = 2.42 [0.90], System 3a = 1.37 [1.11], System 3b = -0.96 [1.45]) and experimental calibration protocols (System 4 = 3.95 [1.08], System 3a = -0.79 [1.23], System 3b = 2.31 [1.66]) were similar and displayed acceptable mean relative error compared with calculated theoretical torque values. Overall, percent error was greatest for all 3 systems in low-torque conditions (System 4 = 11.66% [6.39], System 3a = 6.82% [11.98], System 3b = 4.35% [9.49]). The System 4 significantly overestimated torque across all 3 weight increments, and the System 3b overestimated torque over the moderate-torque increment. Conversion of raw voltage to torque values using the single-calibration-weight method is valid and comparable to a more complex multiweight calibration process; however, it is clear that calibration must be done for each individual system to ensure accurate data collection.

  15. Influence of Different Screw Torque Levels on the Biomechanical Behavior of Tapered Prosthetic Abutments.

    PubMed

    Herbst, Paulo Eduardo; de Carvalho, Eduardo Bortolas; Salatti, Rafael C; Valgas, Laiz; Tiossi, Rodrigo

    To study the force used for tightening tapered one-piece prosthetic abutments and their influence on the removal torque value and stress level of the prosthetic abutment after cyclic loading. Fourteen implants and prosthetic abutments were divided into two groups (n = 7): G1, 20 Ncm; and G2, 32 Ncm (manufacturer recommended). A 20-mm T-shaped horizontal bar was adapted to the abutments. A 12-Hz cyclic loading was applied to the specimens in an electrodynamic testing system with the maximum number of cycles set to 10 6 . Specimens were inclined by 15 degrees from the vertical axis, and a 5-mm off-center vertical load was applied to generate a combination of bending and torquing moments on the tapered connections. Progressive loads (from 164.85 to 362.85 N) were applied when the previous sample survived 10 6 cycles. The paired t test compared the screw removal torque with the initial tightening torque for each group (α = .05). A finite element analysis (FEA) of the mechanical testing analyzed the regions of stress concentration. No specimens failed after 10 6 cyclic loadings. The mean screw removal torque for both groups was similar to the initial abutment torque value applied for each group (G1, 20.36 ± 8.73 Ncm; and G2, 35.61 ± 6.99 Ncm) (P > .05). FEA showed similar stress behavior for both groups in the study despite the different simulated screw preloads (G1: 200 N; G2: 320 N). The coronal region of the implant body presented the highest strain values in both groups. Tightening tapered one-piece prosthetic abutments at 20 and 32 Ncm maintains a stable connection after cyclic loading. The stresses generated by the different tightening forces during cyclic loading are highest at the coronal level of the connection.

  16. Nanoscale imaging of magnetization reversal driven by spin-orbit torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Ian; Chen, P. J.; Gopman, Daniel B.

    We use scanning electron microscopy with polarization analysis to image deterministic, spin-orbit torque-driven magnetization reversal of in-plane magnetized CoFeB rectangles in zero applied magnetic field. The spin-orbit torque is generated by running a current through heavy metal microstrips, either Pt or Ta, upon which the CoFeB rectangles are deposited. We image the CoFeB magnetization before and after a current pulse to see the effect of spin-orbit torque on the magnetic nanostructure. The observed changes in magnetic structure can be complex, deviating significantly from a simple macrospin approximation, especially in larger elements. Overall, however, the directions of the magnetization reversal inmore » the Pt and Ta devices are opposite, consistent with the opposite signs of the spin Hall angles of these materials. Lastly, our results elucidate the effects of current density, geometry, and magnetic domain structure on magnetization switching driven by spin-orbit torque.« less

  17. Nanoscale imaging of magnetization reversal driven by spin-orbit torque

    DOE PAGES

    Gilbert, Ian; Chen, P. J.; Gopman, Daniel B.; ...

    2016-09-23

    We use scanning electron microscopy with polarization analysis to image deterministic, spin-orbit torque-driven magnetization reversal of in-plane magnetized CoFeB rectangles in zero applied magnetic field. The spin-orbit torque is generated by running a current through heavy metal microstrips, either Pt or Ta, upon which the CoFeB rectangles are deposited. We image the CoFeB magnetization before and after a current pulse to see the effect of spin-orbit torque on the magnetic nanostructure. The observed changes in magnetic structure can be complex, deviating significantly from a simple macrospin approximation, especially in larger elements. Overall, however, the directions of the magnetization reversal inmore » the Pt and Ta devices are opposite, consistent with the opposite signs of the spin Hall angles of these materials. Lastly, our results elucidate the effects of current density, geometry, and magnetic domain structure on magnetization switching driven by spin-orbit torque.« less

  18. Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss

    PubMed Central

    Sheinin, Maxim Y.; Li, Ming; Soltani, Mohammad; Luger, Karolin; Wang, Michelle D.

    2013-01-01

    The nucleosome, the fundamental packing unit of chromatin, has a distinct chirality: 147 bp of DNA are wrapped around the core histones in a left-handed, negative superhelix. It has been suggested that this chirality has functional significance, particularly in the context of the cellular processes that generate DNA supercoiling, such as transcription and replication. However, the impact of torsion on nucleosome structure and stability is largely unknown. Here we perform a detailed investigation of single nucleosome behavior on the high affinity 601 positioning sequence under tension and torque using the angular optical trapping technique. We find that torque has only a moderate effect on nucleosome unwrapping. In contrast, we observe a dramatic loss of H2A/H2B dimers upon nucleosome disruption under positive torque, while (H3/H4)2 tetramers are efficiently retained irrespective of torsion. These data indicate that torque could regulate histone exchange during transcription and replication. PMID:24113677

  19. A wearable robotic orthosis with a spring-assist actuator.

    PubMed

    Seungmin Jung; Chankyu Kim; Jisu Park; Dongyoub Yu; Jaehwan Park; Junho Choi

    2016-08-01

    This paper introduces a wearable robotic orthosis with spring-assist actuators, which is designed to assist people who have difficulty in walking. The spring-assist actuator consists of an electrical motor and a spring, which are attached to a rotational axis in parallel to each other. The spring-assist actuator is developed based on the analysis on the stiffness of the knee and hip joints during walking. "COWALK-Mobile," which is a wearable robotic orthosis, is developed using the spring-assist actuators to reduce the required motor torque during walking. The COWALK-Mobile has active hip and knee joints and passive ankle joints to provide assistive torque to the wearer. The required joint torque is generated by the spring as well as the electrical motor, which results in a decrease of maximum required torque for the motor. In order to evaluate the performance of the spring-assist actuator, experiments are carried out. The experiments show that the spring-assist actuators reduced the required motor torque during walking.

  20. Electromagnetic torques in the core and resonant excitation of decadal polar motion

    NASA Astrophysics Data System (ADS)

    Mound, Jon E.

    2005-02-01

    Motion of the rotation axis of the Earth contains decadal variations with amplitudes on the order of 10 mas. The origin of these decadal polar motions is unknown. A class of rotational normal modes of the core-mantle system termed torsional oscillations are known to affect the length of day (LOD) at decadal periods and have also been suggested as a possible excitation source for the observed decadal polar motion. Torsional oscillations involve relative motion between the outer core and the surrounding solid bodies, producing electromagnetic torques at the inner-core boundary (ICB) and core-mantle boundary (CMB). It has been proposed that the ICB torque can explain the excitation of the approximately 30-yr-period polar motion termed the Markowitz wobble. This paper uses the results of a torsional oscillation model to calculate the torques generated at Markowitz and other decadal periods and finds, in contrast to previous results, that electromagnetic torques at the ICB can not explain the observed polar motion.

  1. Interleaved neuromuscular electrical stimulation: Motor unit recruitment overlap.

    PubMed

    Wiest, Matheus J; Bergquist, Austin J; Schimidt, Helen L; Jones, Kelvin E; Collins, David F

    2017-04-01

    In this study, we quantified the "overlap" between motor units recruited by single pulses of neuromuscular electrical stimulation (NMES) delivered over the tibialis anterior muscle (mNMES) and the common peroneal nerve (nNMES). We then quantified the torque produced when pulses were alternated between the mNMES and nNMES sites at 40 Hz ("interleaved" NMES; iNMES). Overlap was assessed by comparing torque produced by twitches evoked by mNMES, nNMES, and both delivered together, over a range of stimulus intensities. Trains of iNMES were delivered at the intensity that produced the lowest overlap. Overlap was lowest (5%) when twitches evoked by both mNMES and nNMES produced 10% peak twitch torque. iNMES delivered at this intensity generated 25% of maximal voluntary dorsiflexion torque (11 Nm). Low intensity iNMES leads to low overlap and produces torque that is functionally relevant to evoke dorsiflexion during walking. Muscle Nerve 55: 490-499, 2017. © 2016 Wiley Periodicals, Inc.

  2. The aerodynamics of free-flight maneuvers in Drosophila.

    PubMed

    Fry, Steven N; Sayaman, Rosalyn; Dickinson, Michael H

    2003-04-18

    Using three-dimensional infrared high-speed video, we captured the wing and body kinematics of free-flying fruit flies as they performed rapid flight maneuvers. We then "replayed" the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. The results show that a fly generates rapid turns with surprisingly subtle modifications in wing motion, which nonetheless generate sufficient torque for the fly to rotate its body through each turn. The magnitude and time course of the torque and body motion during rapid turns indicate that inertia, not friction, dominates the flight dynamics of insects.

  3. An advanced pitch change mechanism incorporating a hybrid traction drive

    NASA Technical Reports Server (NTRS)

    Steinetz, B. M.; Sargisson, D. F.; White, G.; Loewenthal, S. H.

    1984-01-01

    A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed. Comparisons are made to the more conventional pitch control mechanisms.

  4. Quantification of pronator quadratus contribution to isometric pronation torque of the forearm.

    PubMed

    McConkey, Mark O; Schwab, Timothy D; Travlos, Andrew; Oxland, Thomas R; Goetz, Thomas

    2009-11-01

    The contribution of the pronator quadratus (PQ) muscle in generation of pronation torque has not been determined. The purpose of this study was to investigate pronation torque in healthy volunteers before and after temporary paralysis of the PQ with lidocaine, under electromyographic guidance. A custom apparatus was designed to allow isometric testing of pronation torque at 5 positions of rotation: 90 degrees of supination, 45 degrees of supination, neutral, 45 degrees of pronation, and 80 degrees of pronation. After validation of the apparatus, 17 (9 male, 8 female) right-hand-dominant volunteers were recruited. They were tested at all 5 positions in random order and then had their PQ muscles paralyzed with lidocaine. Repeat testing was performed in the same random order 30 minutes after injection. Three unblinded subjects underwent testing after injection of saline instead of lidocaine to determine effect of fluid volume alone on PQ function. The validation trial demonstrated reproducibility of the testing apparatus. After paralysis of PQ with lidocaine, pronation torque decreased by an average 21% (range, 16.7% to 23.2%) at all positions compared with preinjection testing. All were statistically significant except at 80 degrees of pronation. The subjects who underwent injection of saline showed no evidence of decrease in pronation torque. This study demonstrated a significant decrease in pronation torque with controlled elimination of PQ function. Open reduction and internal fixation of distal radius fractures damages the PQ and may result in a pronation torque deficit. Pronation torque measurement may help in postoperative outcome analysis of surgical procedures using the volar approach to the distal radius.

  5. Electric Boosting System for Light Truck/SUV Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Steve; Balis, Craig; Barthelet, Pierre

    2005-06-22

    Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assistedmore » turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.« less

  6. Analysis of forces developed during root canal preparation with the balanced force technique.

    PubMed

    Blum, J Y; Machtou, P; Esber, S; Micallef, J P

    1997-11-01

    The aim of this study was to examine the forces and torque developed during root canal preparation with the balanced force technique using a recently described force-analyser device. A tooth was placed in a holder within the Endograph and forces and torques exerted were recorded. These parameters, which can be studied during preparation (on-line) or stored and examinated subsequently (off-line) generated endograms, which showed the forces generated with time. In addition, the endograms of preparations performed by students and endodontists, as well as deliberately induced failures in preparation technique (broken instruments), were compared. The values for the forces and torques depended on the size of the instruments and were related to the phase of the preparation. For the endodontists, the vertical and horizontal forces varied, respectively, from 0.08 +/- 0.01 kg for a size 15 to 0.65 +/- 0.10 kg for a size 45, and from 0.01 +/- 0.005 kg for a size 15 to 0.4 +/- 0.1 kg for a size 40. The torque varied from 0.08 +/- 1 kg mm-1 for a size 15 to 1.6 +/- 0.4 kg mm-1 for a size 45. With the endograms used as a reference, the relation between the developed vertical forces and the torque became more similar between the groups of endodontists and students. The Endograph provides a new approach to the analysis of preparation technique because it depicts the relationships between the different parameters of the preparation.

  7. Performance and optimum characteristics by finite element analysis of a coreless ironless electric generator for low wind density power generation

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. There were several parameters analysed using the JMAG Designer. Transient response analysis was used in the JMAG Designer. The parameters analysed were the number of coil turns per phase, gap distance between the magnet pairs as well as the magnet grade used. These few parameters were analysed under the open circuit condition. Results showed with the increasing of gap distance, output voltage produced decreased. The increment of number of turns in the coils and higher magnet grades used, these increased the output voltage of the generator. With the help of these results, a reference point is established to get optimum design parameter for fabrication of working prototype.

  8. Development of haptic system for surgical robot

    NASA Astrophysics Data System (ADS)

    Gang, Han Gyeol; Park, Jiong Min; Choi, Seung-Bok; Sohn, Jung Woo

    2017-04-01

    In this paper, a new type of haptic system for surgical robot application is proposed and its performances are evaluated experimentally. The proposed haptic system consists of an effective master device and a precision slave robot. The master device has 3-DOF rotational motion as same as human wrist motion. It has lightweight structure with a gyro sensor and three small-sized MR brakes for position measurement and repulsive torque generation, respectively. The slave robot has 3-DOF rotational motion using servomotors, five bar linkage and a torque sensor is used to measure resistive torque. It has been experimentally demonstrated that the proposed haptic system has good performances on tracking control of desired position and repulsive torque. It can be concluded that the proposed haptic system can be effectively applied to the surgical robot system in real field.

  9. Electrostatic and tribological phenomena and their effect on the braking torque in the shaft-oil-lip seal system

    NASA Astrophysics Data System (ADS)

    Gajewski, Juliusz B.; Glogowski, Marek J.

    2008-12-01

    The former research [1] was carried out on the influence of tribocharging in a system: metal rotating shaft-oil-lip seal on its work, especially on changes in the shaft braking torque with the increasing angular shaft velocity and oil temperature. The results obtained suggested that there be a possibility of reducing the braking torque by an external electric field. The compensation for the electric field generated in the system by natural tribocharging was proposed. The reduction in the braking torque seemed possible while applying an external DC electric field to the system. In general, the torque tended to increase with the increasing DC electric field for a variety of the oils and lip seals used and for different shaft angular velocities (rotational speeds) and oil temperatures. The braking torque reduction was achieved only for one lip seal and some different oils, which was and is a promising, expected result. The research results were yet presented elsewhere [1-3] and here some novel attempt has been made to interpret the results obtained in their physical—tribological and especially electrostatic—aspects since there has been a lack of such an interpretation in the literature of the subject.

  10. Evaluation of selected strapdown inertial instruments and pulse torque loops, volume 1

    NASA Technical Reports Server (NTRS)

    Sinkiewicz, J. S.; Feldman, J.; Lory, C. B.

    1974-01-01

    Design, operational and performance variations between ternary, binary and forced-binary pulse torque loops are presented. A fill-in binary loop which combines the constant power advantage of binary with the low sampling error of ternary is also discussed. The effects of different output-axis supports on the performance of a single-degree-of-freedom, floated gyroscope under a strapdown environment are illustrated. Three types of output-axis supports are discussed: pivot-dithered jewel, ball bearing and electromagnetic. A test evaluation on a Kearfott 2544 single-degree-of-freedom, strapdown gyroscope operating with a pulse torque loop, under constant rates and angular oscillatory inputs is described and the results presented. Contributions of the gyroscope's torque generator and the torque-to-balance electronics on scale factor variation with rate are illustrated for a SDF 18 IRIG Mod-B strapdown gyroscope operating with various pulse rebalance loops. Also discussed are methods of reducing this scale factor variation with rate by adjusting the tuning network which shunts the torque coil. A simplified analysis illustrating the principles of operation of the Teledyne two-degree-of-freedom, elastically-supported, tuned gyroscope and the results of a static and constant rate test evaluation of that instrument are presented.

  11. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    NASA Astrophysics Data System (ADS)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  12. Comparison of performances between IPM and SPM motors with rotor eccentricity

    NASA Astrophysics Data System (ADS)

    Hwang, C. C.; Chang, C. M.; Cheng, S. P.; Chan, C. K.; Pan, C. T.; Chang, T. Y.

    2004-11-01

    Rotor eccentricity in two three-phase, 6-pole, 36-slot interior permanent magnet- and surface-mounted synchronous motors are investigated and compared by means of a transient finite element model. Magnet flux density, EMF, cogging torque and average torque generated by the model are presented for the cases of static rotor eccentricity. These results are compared with those obtained from a symmetric rotor case.

  13. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    NASA Astrophysics Data System (ADS)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  14. Giant spin torque in hybrids with anisotropic p-d exchange interaction

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2014-03-01

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here, I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the domain wall motion by current density 104 A/cm2 in ferromagnet/semiconductor hybrids. The experimental observation of the anisotropic torque will facilitate the integration of ferromagnetism into semiconductor electronics.

  15. Analysis of elbow-joints misalignment in upper-limb exoskeleton.

    PubMed

    Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Tosatti, Lorenzo Molinari

    2011-01-01

    This paper presents advantages of introducing elbow-joints misalignments in an exoskeleton for upper limb rehabilitation. Typical exoskeletons are characterized by axes of the device as much as possible aligned to the rotational axes of human articulations. This approach leads to advantages in terms of movements and torques decoupling, but can lead to limitations nearby the elbow singular configuration. A proper elbow axes misalignment between the exoskeleton and the human can improve the quality of collaborative rehabilitation therapies, in which a correct torque transmission from human articulations to mechanical joints of the device is required to react to torques generated by the patient. © 2011 IEEE

  16. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong

    2016-02-01

    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle force reproduction and muscle fatigue reduction.

  17. Comparative study of torque expression among active and passive self-ligating and conventional brackets

    PubMed Central

    Franco, Érika Mendonça Fernandes; Valarelli, Fabrício Pinelli; Fernandes, João Batista; Cançado, Rodrigo Hermont; de Freitas, Karina Maria Salvatore

    2015-01-01

    Abstract Objective: The aim of this study was to compare torque expression in active and passive self-ligating and conventional brackets. Methods: A total of 300 segments of stainless steel wire 0.019 x 0.025-in and six different brands of brackets (Damon 3MX, Portia, In-Ovation R, Bioquick, Roth SLI and Roth Max) were used. Torque moments were measured at 12°, 24°, 36° and 48°, using a wire torsion device associated with a universal testing machine. The data obtained were compared by analysis of variance followed by Tukey test for multiple comparisons. Regression analysis was performed by the least-squares method to generate the mathematical equation of the optimal curve for each brand of bracket. Results: Statistically significant differences were observed in the expression of torque among all evaluated bracket brands in all evaluated torsions (p < 0.05). It was found that Bioquick presented the lowest torque expression in all tested torsions; in contrast, Damon 3MX bracket presented the highest torque expression up to 36° torsion. Conclusions: The connection system between wire/bracket (active, passive self-ligating or conventional with elastic ligature) seems not to interfere in the final torque expression, the latter being probably dependent on the interaction between the wire and the bracket chosen for orthodontic mechanics. PMID:26691972

  18. The Spin Torque Lego - from spin torque nano-devices to advanced computing architectures

    NASA Astrophysics Data System (ADS)

    Grollier, Julie

    2013-03-01

    Spin transfer torque (STT), predicted in 1996, and first observed around 2000, brought spintronic devices to the realm of active elements. A whole class of new devices, based on the combined effects of STT for writing and Giant Magneto-Resistance or Tunnel Magneto-Resistance for reading has emerged. The second generation of MRAMs, based on spin torque writing : the STT-RAM, is under industrial development and should be out on the market in three years. But spin torque devices are not limited to binary memories. We will rapidly present how the spin torque effect also allows to implement non-linear nano-oscillators, spin-wave emitters, controlled stochastic devices and microwave nano-detectors. What is extremely interesting is that all these functionalities can be obtained using the same materials, the exact same stack, simply by changing the device geometry and its bias conditions. So these different devices can be seen as Lego bricks, each brick with its own functionality. During this talk, I will show how spin torque can be engineered to build new bricks, such as the Spintronic Memristor, an artificial magnetic nano-synapse. I will then give hints on how to assemble these bricks in order to build novel types of computing architectures, with a special focus on neuromorphic circuits. Financial support by the European Research Council Starting Grant NanoBrain (ERC 2010 Stg 259068) is acknowledged.

  19. Temperature Dependences of Torque Generation and Membrane Voltage in the Bacterial Flagellar Motor

    PubMed Central

    Inoue, Yuichi; Baker, Matthew A.B.; Fukuoka, Hajime; Takahashi, Hiroto; Berry, Richard M.; Ishijima, Akihiko

    2013-01-01

    In their natural habitats bacteria are frequently exposed to sudden changes in temperature that have been shown to affect their swimming. With our believed to be new methods of rapid temperature control for single-molecule microscopy, we measured here the thermal response of the Na+-driven chimeric motor expressed in Escherichia coli cells. Motor torque at low load (0.35 μm bead) increased linearly with temperature, twofold between 15°C and 40°C, and torque at high load (1.0 μm bead) was independent of temperature, as reported for the H+-driven motor. Single cell membrane voltages were measured by fluorescence imaging and these were almost constant (∼120 mV) over the same temperature range. When the motor was heated above 40°C for 1–2 min the torque at high load dropped reversibly, recovering upon cooling below 40°C. This response was repeatable over as many as 10 heating cycles. Both increases and decreases in torque showed stepwise torque changes with unitary size ∼150 pN nm, close to the torque of a single stator at room temperature (∼180 pN nm), indicating that dynamic stator dissociation occurs at high temperature, with rebinding upon cooling. Our results suggest that the temperature-dependent assembly of stators is a general feature of flagellar motors. PMID:24359752

  20. Plantar flexion force induced by amplitude-modulated tendon vibration and associated soleus V/F-waves as an evidence of a centrally-mediated mechanism contributing to extra torque generation in humans

    PubMed Central

    2013-01-01

    Background High-frequency trains of electrical stimulation applied over the human muscles can generate forces higher than would be expected by direct activation of motor axons, as evidenced by an unexpected relation between the stimuli and the evoked contractions, originating what has been called “extra forces”. This phenomenon has been thought to reflect nonlinear input/output neural properties such as plateau potential activation in motoneurons. However, more recent evidence has indicated that extra forces generated during electrical stimulation are mediated primarily, if not exclusively, by an intrinsic muscle property, and not from a central mechanism as previously thought. Given the inherent differences between electrical and vibratory stimuli, this study aimed to investigate: (a) whether the generation of vibration-induced muscle forces results in an unexpected relation between the stimuli and the evoked contractions (i.e. extra forces generation) and (b) whether these extra forces are accompanied by signs of a centrally-mediated mechanism or whether intrinsic muscle properties are the predominant mechanisms. Methods Six subjects had their Achilles tendon stimulated by 100 Hz vibratory stimuli that linearly increased in amplitude (with a peak-to-peak displacement varying from 0 to 5 mm) for 10 seconds and then linearly decreased to zero for the next 10 seconds. As a measure of motoneuron excitability taken at different times during the vibratory stimulation, short-latency compound muscle action potentials (V/F-waves) were recorded in the soleus muscle in response to supramaximal nerve stimulation. Results Plantar flexion torque and soleus V/F-wave amplitudes were increased in the second half of the stimulation in comparison with the first half. Conclusion The present findings provide evidence that vibratory stimuli may trigger a centrally-mediated mechanism that contributes to the generation of extra torques. The vibration-induced increased motoneuron excitability (leading to increased torque generation) presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms involved in rehabilitation programs and exercise training. PMID:23531240

  1. Eccentric Torque-Producing Capacity is Influenced by Muscle Length in Older Healthy Adults.

    PubMed

    Melo, Ruth C; Takahashi, Anielle C M; Quitério, Robison J; Salvini, Tânia F; Catai, Aparecida M

    2016-01-01

    Considering the importance of muscle strength to functional capacity in the elderly, the study investigated the effects of age on isokinetic performance and torque production as a function of muscle length. Eleven younger (24.2 ± 2.9 years) and 16 older men (62.7 ± 2.5 years) were subjected to concentric and eccentric isokinetic knee extension/flexion at 60 and 120° · s(-1) through a functional range of motion. The older group presented lower peak torque (in newton-meters) than the young group for both isokinetic contraction types (age effect, p < 0.001). Peak torque deficits in the older group were near 30 and 29% for concentric and eccentric contraction, respectively. Concentric peak torque was lower at 120° · s(-1) than at 60° · s(-1) for both groups (angular velocity effect, p < 0.001). Eccentric knee extension torque was the only exercise tested that showed an interaction effect between age and muscle length (p < 0.001), which suggested different torque responses to the muscle length between groups. Compared with the young group, the eccentric knee extension torque was 22-56% lower in the older group, with the deficits being lower in the shortened muscle length (22-27%) and higher (33-56%) in the stretched muscle length. In older men, the production of eccentric knee strength seems to be dependent on the muscle length. At more stretched positions, older subjects lose the capacity to generate eccentric knee extension torque. More studies are needed to assess the mechanisms involved in eccentric strength preservation with aging and its relationship with muscle length.

  2. Torsional Vibration in the National Wind Technology Center’s 2.5-Megawatt Dynamometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Keller, Jonathan; Wallen, Robb

    2016-08-31

    This report documents the torsional drivetrain dynamics of the NWTC's 2.5-megawatt dynamometer as identified experimentally and as calculated using lumped parameter models using known inertia and stiffness parameters. The report is presented in two parts beginning with the identification of the primary torsional modes followed by the investigation of approaches to damp the torsional vibrations. The key mechanical parameters for the lumped parameter models and justification for the element grouping used in the derivation of the torsional modes are presented. The sensitivities of the torsional modes to different test article properties are discussed. The oscillations observed from the low-speed andmore » generator torque measurements were used to identify the extent of damping inherently achieved through active and passive compensation techniques. A simplified Simulink model of the dynamometer test article integrating the electro-mechanical power conversion and control features was established to emulate the torque behavior that was observed during testing. The torque response in the high-speed, low-speed, and generator shafts were tested and validated against experimental measurements involving step changes in load with the dynamometer operating under speed-regulation mode. The Simulink model serves as a ready reference to identify the torque sensitivities to various system parameters and to explore opportunities to improve torsional damping under different conditions.« less

  3. Prediction of the body rotation-induced torques on the arm during reaching movements: evidence from a proprioceptively deafferented subject.

    PubMed

    Guillaud, Etienne; Simoneau, Martin; Blouin, Jean

    2011-06-01

    Reaching for a target while rotating the trunk generates substantial Coriolis and centrifugal torques that push the arm in the opposite direction of the rotations. These torques rarely perturb movement accuracy, suggesting that they are compensated for during the movement. Here we tested whether signals generated during body motion (e.g., vestibular) can be used to predict the torques induced by the body rotation and to modify the motor commands accordingly. We asked a deafferented subject to reach for a memorized visual target in darkness. At the onset of the reaching, the patient was rotated 25° or 40° in the clockwise or the counterclockwise directions. During the rotation, the patient's head remained either fixed in space (Head-Fixed condition) or fixed on the trunk (Head Rotation condition). At the rotation onset, the deafferented patient's hand largely deviated from the mid-sagittal plane in both conditions. The hand deviations were compensated for in the Head Rotation condition only. These results highlight the computational faculty of the brain and show that body rotation-related information can be processed for predicting the consequence of the rotation dynamics on the reaching arm movements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Torque generation mechanism of ATP synthase

    NASA Astrophysics Data System (ADS)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  5. Direct measurement of torque and twist generated by a dye binding to DNA

    NASA Astrophysics Data System (ADS)

    Gore, Jeff; Bryant, Zev; Bustamante, Carlos

    2004-03-01

    Many biologically important chemicals and proteins change the twist of DNA upon binding. We have used magnetic tweezers to directly measure the torque and twist generated when ethidium bromide binds and unbinds to DNA. One end of the DNA is bound specifically to a glass coverslip and the opposite end is held away from the surface by a paramagnetic bead. Attached to the middle of the DNA is a second fluorescent bead whose position can be tracked with high angular and temporal resolution. On one side of the fluorescent bead binding site we have engineered a single strand nick that acts like a free swivel. Addition of ethidium bromide then powered rotation of the central fluorescent bead. After the ethidium bromide was bound we used magnesium to compete out the intercalated ethidium bromide, thus inducing a rotation in the opposite direction. We studied the torque generation, energetics, and kinetics associated with ethidium bromide binding and unbinding by tracking the rotation of the fluorescent bead. This system is a demonstration of a reversible chemically powered DNA-based rotary motor. We also expect that this technique will be useful in studying proteins that bind to or rotate DNA, including recA, polymerases, and topoisomerases.

  6. Bias Momentum Sizing for Hovering Dual-Spin Platforms

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Shin, Jong-Yeob; Moerder, Daniel D.

    2006-01-01

    An atmospheric flight vehicle in hover is typically controlled by varying its thrust vector. Achieving both levitation and attitude control with the propulsion system places considerable demands on it for agility and precision, particularly if the vehicle is statically unstable, or nearly so. These demands can be relaxed by introducing an appropriately sized angular momentum bias aligned with the vehicle's yaw axis, thus providing an additional margin of attitude stability about the roll and pitch axes. This paper describes a methodical approach for trading off angular momentum bias level needed with desired levels of vehicle response due to the design disturbance environment given a vehicle's physical parameters. It also describes several simplifications that provide a more physical and intuitive understanding of dual-spin dynamics for hovering atmospheric vehicles. This approach also mitigates the need for control torques and inadvertent actuator saturation difficulties in trying to stabilize a vehicle via control torques produced by unsteady aerodynamics, thrust vectoring, and unsteady throttling. Simulation results, based on a subscale laboratory test flying platform, demonstrate significant improvements in the attitude control robustness of the vehicle with respect to both wind disturbances and off-center of gravity payload changes during flight.

  7. Modeling the effect of control on the wake of a utility-scale turbine via large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Annoni, Jennifer; Seiler, Pete; Sotiropoulos, Fotis

    2014-06-01

    A model of the University of Minnesota EOLOS research turbine (Clipper Liberty C96) is developed, integrating the C96 torque control law with a high fidelity actuator line large- eddy simulation (LES) model. Good agreement with the blade element momentum theory is obtained for the power coefficient curve under uniform inflow. Three different cases, fixed rotor rotational speed ω, fixed tip-speed ratio (TSR) and generator torque control, have been simulated for turbulent inflow. With approximately the same time-averaged ω, the time- averaged power is in good agreement with measurements for all three cases. Although the time-averaged aerodynamic torque is nearly the same for the three cases, the root-mean-square (rms) of the aerodynamic torque fluctuations is significantly larger for the case with fixed ω. No significant differences have been observed for the time-averaged flow fields behind the turbine for these three cases.

  8. Why do Cross-Flow Turbines Stall?

    NASA Astrophysics Data System (ADS)

    Cavagnaro, Robert; Strom, Benjamin; Polagye, Brian

    2015-11-01

    Hydrokinetic turbines are prone to instability and stall near their peak operating points under torque control. Understanding the physics of turbine stall may help to mitigate this undesirable occurrence and improve the robustness of torque controllers. A laboratory-scale two-bladed cross-flow turbine operating at a chord-based Reynolds number ~ 3 ×104 is shown to stall at a critical tip-speed ratio. Experiments are conducting bringing the turbine to this critical speed in a recirculating current flume by increasing resistive torque and allowing the rotor to rapidly decelerate while monitoring inflow velocity, torque, and drag. The turbine stalls probabilistically with a distribution generated from hundreds of such events. A machine learning algorithm identifies stall events and indicates the effectiveness of available measurements or combinations of measurements as predictors. Bubble flow visualization and PIV are utilized to observe fluid conditions during stall events including the formation, separation, and advection of leading-edge vortices involved in the stall process.

  9. Enhanced spin–orbit torques by oxygen incorporation in tungsten films

    PubMed Central

    Demasius, Kai-Uwe; Phung, Timothy; Zhang, Weifeng; Hughes, Brian P.; Yang, See-Hun; Kellock, Andrew; Han, Wei; Pushp, Aakash; Parkin, Stuart S. P.

    2016-01-01

    The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15 (β-phase) structure. Here we report large spin Hall angles of up to approximately –0.5 by incorporating oxygen into tungsten. While the incorporation of oxygen into the tungsten films leads to significant changes in their microstructure and electrical resistivity, the large spin Hall angles measured are found to be remarkably insensitive to the oxygen-doping level (12–44%). The invariance of the spin Hall angle for higher oxygen concentrations with the bulk properties of the films suggests that the spin–orbit torques in this system may originate dominantly from the interface rather than from the interior of the films. PMID:26912203

  10. Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.

    PubMed

    Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J

    2017-09-01

    Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  12. An ultra-low power wireless sensor network for bicycle torque performance measurements.

    PubMed

    Gharghan, Sadik K; Nordin, Rosdiadee; Ismail, Mahamod

    2015-05-21

    In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach.

  13. An Ultra-Low Power Wireless Sensor Network for Bicycle Torque Performance Measurements

    PubMed Central

    Gharghan, Sadik K.; Nordin, Rosdiadee; Ismail, Mahamod

    2015-01-01

    In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach. PMID:26007728

  14. A new model to compute the desired steering torque for steer-by-wire vehicles and driving simulators

    NASA Astrophysics Data System (ADS)

    Fankem, Steve; Müller, Steffen

    2014-05-01

    This paper deals with the control of the hand wheel actuator in steer-by-wire (SbW) vehicles and driving simulators (DSs). A novel model for the computation of the desired steering torque is presented. The introduced steering torque computation does not only aim to generate a realistic steering feel, which means that the driver should not miss the basic steering functionality of a modern conventional steering system such as an electric power steering (EPS) or hydraulic power steering (HPS), and this in every driving situation. In addition, the modular structure of the steering torque computation combined with suitably selected tuning parameters has the objective to offer a high degree of customisability of the steering feel and thus to provide each driver with his preferred steering feel in a very intuitive manner. The task and the tuning of each module are firstly described. Then, the steering torque computation is parameterised such that the steering feel of a series EPS system is reproduced. For this purpose, experiments are conducted in a hardware-in-the-loop environment where a test EPS is mounted on a steering test bench coupled with a vehicle simulator and parameter identification techniques are applied. Subsequently, how appropriate the steering torque computation mimics the test EPS system is objectively evaluated with respect to criteria concerning the steering torque level and gradient, the feedback behaviour and the steering return ability. Finally, the intuitive tuning of the modular steering torque computation is demonstrated for deriving a sportier steering feel configuration.

  15. Inner core tilt and polar motion

    NASA Astrophysics Data System (ADS)

    Dumberry, Mathieu; Bloxham, Jeremy

    2002-11-01

    A tilted inner core permits exchange of angular momentum between the core and the mantle through gravitational and pressure torques and, as a result, changes in the direction of Earth's axis of rotation with respect to the mantle. We have developed a model to calculate the amplitude of the polar motion that results from an equatorial torque at the inner core boundary which tilts the inner core out of alignment with the mantle. We specifically address the issue of the role of the inner core tilt in the decade polar motion known as the Markowitz wobble. We show that a decade polar motion of the same amplitude as the observed Markowitz wobble requires a torque of 1020 N m which tilts the inner core by 0.07 degrees. This result critically depends on the viscosity of the inner core; for a viscosity less than 5 × 1017 Pa s, larger torques are required. We investigate the possibility that a torque of 1020 N m with decadal periodicity can be produced by electromagnetic coupling between the inner core and torsional oscillations of the flow in the outer core. We demonstrate that a radial magnetic field at the inner core boundary of 3 to 4 mT is required to obtain a torque of such amplitude. The resulting polar motion is eccentric and polarized, in agreement with the observations. Our model suggests that equatorial torques at the inner core boundary might also excite the Chandler wobble, provided there exists a physical mechanism that can generate a large torque at a 14 month period.

  16. Development of a biomechanical energy harvester.

    PubMed

    Li, Qingguo; Naing, Veronica; Donelan, J Maxwell

    2009-06-23

    Biomechanical energy harvesting-generating electricity from people during daily activities-is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses. Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area. The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 +/- 0.8 W of electrical power with only a 5.0 +/- 21 W increase in metabolic cost. Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices.

  17. Development of a biomechanical energy harvester

    PubMed Central

    Li, Qingguo; Naing, Veronica; Donelan, J Maxwell

    2009-01-01

    Background Biomechanical energy harvesting–generating electricity from people during daily activities–is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses. Methods Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area. Results The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 ± 0.8 W of electrical power with only a 5.0 ± 21 W increase in metabolic cost. Conclusion Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices. PMID:19549313

  18. Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements

    PubMed Central

    Loram, Ian D; Lakie, Martin

    2002-01-01

    In standing, there are small sways of the body. Our interest is to use an artificial task to illuminate the mechanisms underlying the sways and to account for changes in their size. Using the ankle musculature, subjects balanced a large inverted pendulum. The equilibrium of the pendulum is unstable and quasi-regular sway was observed like that in quiet standing. By giving full attention to minimising sway subjects could systematically reduce pendulum movement. The pendulum position, the torque generated at each ankle and the soleus and tibialis anterior EMGs were recorded. Explanations about how the human inverted pendulum is balanced usually ignore the fact that balance is maintained over a range of angles and not just at one angle. Any resting equilibrium position of the pendulum is unstable and in practice temporary; movement to a different resting equilibrium position can only be accomplished by a biphasic ‘throw and catch’ pattern of torque and not by an elastic mechanism. Results showed that balance was achieved by the constant repetition of a neurally generated ballistic-like biphasic pattern of torque which can control both position and sway size. A decomposition technique revealed that there was a substantial contribution to changes in torque from intrinsic mechanical ankle stiffness; however, by itself this was insufficient to maintain balance or to control position. Minimisation of sway size was caused by improvement in the accuracy of the anticipatory torque impulses. We hypothesise that examination of centre of mass and centre of pressure data for quiet standing will duplicate these results. PMID:11986396

  19. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Büttner, Felix; Lemesh, Ivan; Schneider, Michael; Pfau, Bastian; Günther, Christian M.; Hessing, Piet; Geilhufe, Jan; Caretta, Lucas; Engel, Dieter; Krüger, Benjamin; Viefhaus, Jens; Eisebitt, Stefan; Beach, Geoffrey S. D.

    2017-11-01

    Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii-Moriya interaction (DMI). The last favours homochiral skyrmions, whose motion is driven by spin-orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin-orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect. This leads to torques that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field. Although spin-orbit torques led to domain nucleation in continuous films and to stochastic nucleation of skyrmions in magnetic tracks, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs.

  20. Pitching motion control of a butterfly-like 3D flapping wing-body model

    NASA Astrophysics Data System (ADS)

    Suzuki, Kosuke; Minami, Keisuke; Inamuro, Takaji

    2014-11-01

    Free flights and a pitching motion control of a butterfly-like flapping wing-body model are numerically investigated by using an immersed boundary-lattice Boltzmann method. The model flaps downward for generating the lift force and backward for generating the thrust force. Although the model can go upward against the gravity by the generated lift force, the model generates the nose-up torque, consequently gets off-balance. In this study, we discuss a way to control the pitching motion by flexing the body of the wing-body model like an actual butterfly. The body of the model is composed of two straight rigid rod connected by a rotary actuator. It is found that the pitching angle is suppressed in the range of +/-5° by using the proportional-plus-integral-plus-derivative (PID) control for the input torque of the rotary actuator.

  1. Stability analysis of offshore wind farm and marine current farm

    NASA Astrophysics Data System (ADS)

    Shawon, Mohammad Hasanuzzaman

    Renewable energy has been playing an important role to meet power demand and 'Green Energy' market is getting bigger platform all over the world in the last few years. Due to massive increase in the prices of fossil fuels along with global warming issues, energy harvesting from renewable energy sources has received considerable interest, nowadays, where extensive researches are going on to ensure optimum use of renewable sources. In order to meet the increasing demand of electricity and power, integration of renewable energy is getting highest priorities around the world. Wind is one of the most top growing renewable energy resources and wind power market penetration is expected to reach 3.35 percent by 2013 from its present market of about 240 GW. A wind energy system is the most environmental friendly, cost effective and safe among all renewable energy resources available. Another promising form of renewable energy is ocean energy which covers 70 % of the earth. Ocean energy can be tapped from waves, tides and thermal elements. Offshore Wind farm (OWF) has already become very popular for large scale wind power integration with the onshore grid. Recently, marine current farm (MCF) is also showing good potential to become mainstream energy sources and already successfully commissioned in United Kingdom. However, squirrel cage induction generator (SCIG) has the stability problem similar to synchronous generator especially during fault location to restore the electromagnetic torque. Series dynamic braking resistor (SDBR) has been known as a useful mean to stabilize fixed speed wind generator system. On the other hand, doubly fed induction generator (DFIG) has the capability of coupling the control of active and reactive power and to provide necessary reactive power demand during grid fault conditions. Series dynamic braking resistor (SDBR) can also be employed with DFIG to limit the rotor over current. An integration of wind and tidal energy represents a new-trend for large electric energy production using offshore wind generators and marine current generators, respectively. Thus DFIG based offshore wind farm can be an economic solution to stabilize squirrel cage induction generator based marine current farm without installing any addition FACTS devices. This thesis first focuses on the stabilization of fixed speed IG based marine current farm using SDBR. Also stabilization of DFIG based variable speed wind farm utilizing SDBR is studied in this work. Finally a co-operative control strategy is proposed where DFIG is controlled in such a way that it can even provide necessary reactive power demand of induction generator, so that additional cost of FACTS devices can be avoided. In that way, the DFIGs of the offshore wind farm (OWF) will actively compensate the reactive power demand of adjacent IGs of the marine current farm (MCF) during grid fault. Detailed modeling and control scheme for the proposed system are demonstrated considering some realistic scenarios. The power system small signal stability analysis is also carried out by eigenvalue analysis for marine current generator topology, wind turbine generator topology and integrated topology. The relation between the modes and state variables are discussed in light of modal and sensitivity analyses. The results of theoretical analyses are verified by MATLAB/SIMULINK and laboratory standard power system simulator PSCAD/EMTDC.

  2. Natural remanent magnetization acquisition in bioturbated sediment: General theory and implications for relative paleointensity reconstructions

    NASA Astrophysics Data System (ADS)

    Egli, R.; Zhao, X.

    2015-04-01

    We present a general theory for the acquisition of natural remanent magnetizations (NRM) in sediment under the influence of (a) magnetic torques, (b) randomizing torques, and (c) torques resulting from interaction forces. Dynamic equilibrium between (a) and (b) in the water column and at the sediment-water interface generates a detrital remanent magnetization (DRM), while much stronger randomizing torques may be provided by bioturbation inside the mixed layer. These generate a so-called mixed remanent magnetization (MRM), which is stabilized by mechanical interaction forces. During the time required to cross the surface mixed layer, DRM is lost and MRM is acquired at a rate that depends on bioturbation intensity. Both processes are governed by a MRM lock-in function. The final NRM intensity is controlled mainly by a single parameter γ that is defined as the product of rotational diffusion and mixed-layer thickness, divided by sedimentation rate. This parameter defines three regimes: (1) slow mixing (γ < 0.2) leading to DRM preservation and insignificant MRM acquisition, (2) fast mixing (γ > 10) with MRM acquisition and full DRM randomization, and (3) intermediate mixing. Because the acquisition efficiency of DRM is larger than that of MRM, NRM intensity is particularly sensitive to γ in case of mixed regimes, generating variable NRM acquisition efficiencies. This model explains (1) lock-in delays that can be matched with empirical reconstructions from paleomagnetic records, (2) the existence of small lock-in depths that lead to DRM preservation, (3) specific NRM acquisition efficiencies of magnetofossil-rich sediments, and (4) some relative paleointensity artifacts.

  3. Rotational and peak torque stiffness of rugby shoes.

    PubMed

    Ballal, Moez S; Usuelli, Federico Giuseppe; Montrasio, Umberto Alfieri; Molloy, Andy; La Barbera, Luigi; Villa, Tomaso; Banfi, Giuseppe

    2014-09-01

    Sports people always strive to avoid injury. Sports shoe designs in many sports have been shown to affect traction and injury rates. The aim of this study is to demonstrate the differing stiffness and torque in rugby boots that are designed for the same effect. Five different types of rugby shoes commonly worn by scrum forwards were laboratory tested for rotational stiffness and peak torque on a natural playing surface generating force patterns that would be consistent with a rugby scrum. The overall internal rotation peak torque was 57.75±6.26 Nm while that of external rotation was 56.55±4.36 Nm. The Peak internal and external rotational stiffness were 0.696±0.1 and 0.708±0.06 Nm/deg respectively. Our results, when compared to rotational stiffness and peak torques of football shoes published in the literature, show that shoes worn by rugby players exert higher rotational and peak torque stiffness compared to football shoes when tested on the same natural surfaces. There was significant difference between the tested rugby shoes brands. In our opinion, to maximize potential performance and lower the potential of non-contact injury, care should be taken in choosing boots with stiffness appropriate to the players main playing role. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Resonance at the wrist demonstrated by the use of a torque motor: an instrumental analysis of muscle tone in man.

    PubMed Central

    Lakie, M; Walsh, E G; Wright, G W

    1984-01-01

    The resonance of the relaxed wrist for flexion-extension movements in the horizontal plane has been investigated by using rhythmic torques generated by a printed motor. In the normal subject the resonant frequency of the wrist is ca. 2 Hz unless the torque is reduced below a certain critical value when the system is no longer linear and the resonant frequency rises. This critical torque level, and the damping are both less in women than men. The resonant frequency is uninfluenced by surgical anaesthesia. With added bias the increase of resonant frequency at low torques still occurs although the hand is now oscillating about a displaced mean position. It follows that the stiffening implied by this elevation of resonant frequency for small movements is neither the result of pre-stressing of the muscles nor of reflex activity. With velocity feed-back of appropriate polarity the system will oscillate spontaneously at its resonant frequency. If the peak driving torque is progressively reduced the resonant frequency increases abruptly, indicating that the system has stiffened. Perturbations delivered to the wrist may reduce its stiffness. The postural system is thixotropic with a 'memory time' of 1-2 s. The resonant frequency is elevated in voluntary stiffening. PMID:6481624

  5. Forearm Torque and Lifting Strength: Normative Data.

    PubMed

    Axelsson, Peter; Fredrikson, Per; Nilsson, Anders; Andersson, Jonny K; Kärrholm, Johan

    2018-02-10

    To establish reference values for new methods designed to quantitatively measure forearm torque and lifting strength and to compare these values with grip strength. A total of 499 volunteers, 262 males and 237 females, aged 15 to 85 (mean, 44) years, were tested for lifting strength and forearm torque with the Kern and Baseline dynamometers. These individuals were also tested for grip strength with a Jamar dynamometer. Standardized procedures were used and information about sex, height, weight, hand dominance, and whether their work involved high or low manual strain was collected. Men had approximately 70% higher forearm torque and lifting strength compared with females. Male subjects aged 26 to 35 years and female subjects aged 36 to 45 years showed highest strength values. In patients with dominant right side, 61% to 78% had a higher or equal strength on this side in the different tests performed. In patients with dominant left side, the corresponding proportions varied between 41% and 65%. There was a high correlation between grip strength and forearm torque and lifting strength. Sex, body height, body weight, and age showed a significant correlation to the strength measurements. In a multiple regression model sex, age (entered as linear and squared) could explain 51% to 63% of the total variances of forearm torque strength and 30% to 36% of lifting strength. Reference values for lifting strength and forearm torque to be used in clinical practice were acquired. Grip strength has a high correlation to forearm torque and lifting strength. Sex, age, and height can be used to predict forearm torque and lifting strength. Prediction equations using these variables were generated. Normative data of forearm torque and lifting strength might improve the quality of assessment of wrist and forearm disorders as well as their treatments. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  6. Spring Ankle with Regenerative Kinetics to Build a New Generation of Transtibial Prostheses

    DTIC Science & Technology

    2009-07-01

    fiber keel. This feature can provide an alternative if the electronics fail in a field condition. We are focused on developing the most durable...step forward in design of new prosthesis 22 14. Discovery Channel, 2008, “Toad research could leapfrog to new muscle model”, show was called...turning on the proportional myoelectric control. The pneumatic muscles supplied 36% plantar flexor torque and 123% dorsi flexor torque. Challenges

  7. Maximum power point tracking analysis of a coreless ironless electric generator for renewable energy application

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    The magnetism attraction between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator is often known as cogging. Cogging requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator to see its performance characteristic. In the maximum power point tracking test, the fabricated ironless coreless electricity generator was tested by applying the load on the ironless coreless electricity generator optimization to maximize the power generated, voltage and the current produced by the ironless coreless electricity generator when the rotational speed of the rotor increased throughout the test. The rotational torque and power output are measured, and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 200VAC at rotational speed of 318 RPM. Torque required to rotate the generator was at 10.8Nm. The generator had working efficiency of 77.73% and the power generated was at 280W.

  8. Apparatus producing constant cable tension for intermittent demand

    DOEpatents

    Lauritzen, Ted

    1985-01-01

    The disclosed apparatus produces constant tension in superconducting electrical cable, or some other strand, under conditions of intermittent demand, as the cable is unreeled from a reel or reeled thereon. The apparatus comprises a pivotally supported swing frame on which the reel is rotatably supported, a rotary motor, a drive train connected between the motor and the reel and including an electrically controllable variable torque slip clutch, a servo transducer connected to the swing frame for producing servo input signals corresponding to the position thereof, a servo control system connected between the transducer and the clutch for regulating the torque transmitted by the clutch to maintain the swing frame in a predetermined position, at least one air cylinder connected to the swing frame for counteracting the tension in the cable, and pressure regulating means for supplying a constant air pressure to the cylinder to establish the constant tension in the cable, the servo system and the clutch being effective to produce torque on the reel in an amount sufficient to provide tension in the cable corresponding to the constant force exerted by the air cylinder. The drive train also preferably includes a fail-safe brake operable to its released position by electrical power in common with the servo system, for preventing rotation of the reel if there is a power failure. A shock absorber and biasing springs may also be connected to the swing frame, such springs biasing the frame toward its predetermined position. The tension in the cable may be measured by force measuring devices engageable with the bearings for the reel shaft, such bearings being supported for slight lateral movement. The reel shaft is driven by a Shmidt coupler which accommodates such movement.

  9. Direct Measurement of Helical Cell Motion of the Spirochete Leptospira

    PubMed Central

    Nakamura, Shuichi; Leshansky, Alexander; Magariyama, Yukio; Namba, Keiichi; Kudo, Seishi

    2014-01-01

    Leptospira are spirochete bacteria distinguished by a short-pitch coiled body and intracellular flagella. Leptospira cells swim in liquid with an asymmetric morphology of the cell body; the anterior end has a long-pitch spiral shape (S-end) and the posterior end is hook-shaped (H-end). Although the S-end and the coiled cell body called the protoplasmic cylinder are thought to be responsible for propulsion together, most observations on the motion mechanism have remained qualitative. In this study, we analyzed the swimming speed and rotation rate of the S-end, protoplasmic cylinder, and H-end of individual Leptospira cells by one-sided dark-field microscopy. At various viscosities of media containing different concentrations of Ficoll, the rotation rate of the S-end and protoplasmic cylinder showed a clear correlation with the swimming speed, suggesting that these two helical parts play a central role in the motion of Leptospira. In contrast, the H-end rotation rate was unstable and showed much less correlation with the swimming speed. Forces produced by the rotation of the S-end and protoplasmic cylinder showed that these two helical parts contribute to propulsion at nearly equal magnitude. Torque generated by each part, also obtained from experimental motion parameters, indicated that the flagellar motor can generate torque >4000 pN nm, twice as large as that of Escherichia coli. Furthermore, the S-end torque was found to show a markedly larger fluctuation than the protoplasmic cylinder torque, suggesting that the unstable H-end rotation might be mechanically related to changes in the S-end rotation rate for torque balance of the entire cell. Variations in torque at the anterior and posterior ends of the Leptospira cell body could be transmitted from one end to the other through the cell body to coordinate the morphological transformations of the two ends for a rapid change in the swimming direction. PMID:24411236

  10. Direct measurement of helical cell motion of the spirochete leptospira.

    PubMed

    Nakamura, Shuichi; Leshansky, Alexander; Magariyama, Yukio; Namba, Keiichi; Kudo, Seishi

    2014-01-07

    Leptospira are spirochete bacteria distinguished by a short-pitch coiled body and intracellular flagella. Leptospira cells swim in liquid with an asymmetric morphology of the cell body; the anterior end has a long-pitch spiral shape (S-end) and the posterior end is hook-shaped (H-end). Although the S-end and the coiled cell body called the protoplasmic cylinder are thought to be responsible for propulsion together, most observations on the motion mechanism have remained qualitative. In this study, we analyzed the swimming speed and rotation rate of the S-end, protoplasmic cylinder, and H-end of individual Leptospira cells by one-sided dark-field microscopy. At various viscosities of media containing different concentrations of Ficoll, the rotation rate of the S-end and protoplasmic cylinder showed a clear correlation with the swimming speed, suggesting that these two helical parts play a central role in the motion of Leptospira. In contrast, the H-end rotation rate was unstable and showed much less correlation with the swimming speed. Forces produced by the rotation of the S-end and protoplasmic cylinder showed that these two helical parts contribute to propulsion at nearly equal magnitude. Torque generated by each part, also obtained from experimental motion parameters, indicated that the flagellar motor can generate torque >4000 pN nm, twice as large as that of Escherichia coli. Furthermore, the S-end torque was found to show a markedly larger fluctuation than the protoplasmic cylinder torque, suggesting that the unstable H-end rotation might be mechanically related to changes in the S-end rotation rate for torque balance of the entire cell. Variations in torque at the anterior and posterior ends of the Leptospira cell body could be transmitted from one end to the other through the cell body to coordinate the morphological transformations of the two ends for a rapid change in the swimming direction. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Boring deep holes in southern pine

    Treesearch

    G. E. Woodson; C. W. McMillin

    1972-01-01

    When holes 10-1/2 inches deep and I inch in diameter were made with either a ship auger or a double-spur, double-twist machine bit, clogging occurred at a shallower depth (avg. 6.5 inches) when boring across the grain than when boring along the grain (avg. 10.1 inches). In both boring directions, thrust force and torque demand for unclogged bits were less for the ship...

  12. Internal Stresses Lead to Net Forces and Torques on Extended Elastic Bodies

    NASA Astrophysics Data System (ADS)

    Aharoni, Hillel; Kolinski, John M.; Moshe, Michael; Meirzada, Idan; Sharon, Eran

    2016-09-01

    A geometrically frustrated elastic body will develop residual stresses arising from the mismatch between the intrinsic geometry of the body and the geometry of the ambient space. We analyze these stresses for an ambient space with gradients in its intrinsic curvature, and show that residual stresses generate effective forces and torques on the center of mass of the body. We analytically calculate these forces in two dimensions, and experimentally demonstrate their action by the migration of a non-Euclidean gel disc in a curved Hele-Shaw cell. An extension of our analysis to higher dimensions shows that these forces are also generated in three dimensions, but are negligible compared to gravity.

  13. Advanced Direct-Drive Generator for Improved Availability of Oscillating Wave Surge Converter Power Generation Systems Phase II 10hp 30rpm Radial-Flux Magnetically Geared Generator Test Data

    DOE Data Explorer

    Ouyang, Wen; Tchida, Colin

    2017-05-02

    Static torque, no load, constant speed, and sinusoidal oscillation test data for a 10hp, 300rpm magnetically-geared generator prototype using either an adjustable load bank for a fixed resistance or an output power converter.

  14. Thermally induced magnonic spin current, thermomagnonic torques, and domain-wall dynamics in the presence of Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Wang, X.-G.; Chotorlishvili, L.; Guo, G.-H.; Sukhov, A.; Dugaev, V.; Barnaś, J.; Berakdar, J.

    2016-09-01

    Thermally activated domain-wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a consequence of the magnonic spin current due to the applied thermal bias. In addition to the exchange magnonic spin current and the exchange adiabatic and the entropic spin transfer torques, we also consider the DMI-induced magnonic spin current, thermomagnonic DMI fieldlike torque, and the DMI entropic torque. Analytical estimations are supported by numerical calculations. We found that the DMI has a substantial influence on the size and the geometry of DWs, and that the DWs become oriented parallel to the long axis of the nanostrip. Increasing the temperature smoothes the DWs. Moreover, the thermally induced magnonic current generates a torque on the DWs, which is responsible for their motion. From our analysis it follows that for a large enough DMI the influence of DMI-induced fieldlike torque is much stronger than that of the DMI and the exchange entropic torques. By manipulating the strength of the DMI constant, one can control the speed of the DW motion, and the direction of the DW motion can be switched, as well. We also found that DMI not only contributes to the total magnonic current, but also it modifies the exchange magnonic spin current, and this modification depends on the orientation of the steady-state magnetization. The observed phenomenon can be utilized in spin caloritronics devices, for example in the DMI based thermal diodes. By switching the magnetization direction, one can rectify the total magnonic spin current.

  15. Independent control of joint stiffness in the framework of the equilibrium-point hypothesis.

    PubMed

    Latash, M L

    1992-01-01

    In the framework of the equilibrium-point hypothesis, virtual trajectories and joint stiffness patterns have been reconstructed during two motor tasks practiced against a constant bias torque. One task required a voluntary increase in joint stiffness while preserving the original joint position. The other task involved fast elbow flexions over 36 degrees. Joint stiffness gradually subsided after the termination of fast movements. In both tasks, the external torque could slowly and unexpectedly change. The subjects were required not to change their motor commands if the torque changed, i.e. "to do the same no matter what the motor did". In both tasks, changes in joint stiffness were accompanied by unchanged virtual trajectories that were also independent of the absolute value of the bias torque. By contrast, the intercept of the joint compliant characteristic with the angle axis, r(t)-function, has demonstrated a clear dependence upon both the level of coactivation and external load. We assume that a template virtual trajectory is generated at a certain level of the motor hierarchy and is later scaled taking into account some commonly changing dynamic factors of the movement execution, for example, external load. The scaling leads to the generation of commands to the segmental structures that can be expressed, according to the equilibrium-point hypothesis, as changes in the thresholds of the tonic stretch reflex for corresponding muscles.

  16. Continuous monitoring of sonomyography, electromyography and torque generated by normal upper arm muscles during isometric contraction: sonomyography assessment for arm muscles.

    PubMed

    Shi, Jun; Zheng, Yong-Ping; Huang, Qing-Hua; Chen, Xin

    2008-03-01

    The aim of this study is to demonstrate the feasibility of using the continuous signals about the thickness and pennation angle changes of muscles detected in real-time from ultrasound images, named as sonomyography (SMG), to characterize muscles under isometric contraction, along with synchronized surface electromyography (EMG) and generated torque signals. The right biceps brachii muscles of seven normal young adult subjects were tested. We observed that exponential functions could well represent the relationships between the normalized EMG root-mean-square (RMS) and the torque, the RMS and the muscle deformation SMG, and the RMS and the pennation angle SMG for the data of the contraction phase, with exponent coefficients of 0.0341 +/- 0.0148 (Mean SD), 0.0619 +/- 0.0273, and 0.0266 +/- 0.0076, respectively. In addition, the preliminary results also demonstrated linear relationships between the normalized torque and the muscle deformation as well as the pennation angle with the ratios of 9 .79 +/- 3.01 and 2.02 +/- 0.53, respectively. The overall mean R2 for the regressions was approximately 0.9 and the overall mean relative root mean square error (RRMSE) smaller than 15%. The potential values of SMG together with EMG to provide a more comprehensive assessment for the muscle functions should be further investigated with more subjects and more muscle groups.

  17. Semidiurnal thermal tides in asynchronously rotating hot Jupiters

    NASA Astrophysics Data System (ADS)

    Auclair-Desrotour, P.; Leconte, J.

    2018-05-01

    Context. Thermal tides can torque the atmosphere of hot Jupiters into asynchronous rotation, while these planets are usually assumed to be locked into spin-orbit synchronization with their host star. Aims: In this work, our goal is to characterize the tidal response of a rotating hot Jupiter to the tidal semidiurnal thermal forcing of its host star by identifying the structure of tidal waves responsible for variation of mass distribution, their dependence on the tidal frequency, and their ability to generate strong zonal flows. Methods: We develop an ab initio global modelling that generalizes the early approach of Arras & Socrates (2010, ApJ, 714, 1) to rotating and non-adiabatic planets. We analytically derive the torque exerted on the body and the associated timescales of evolution, as well as the equilibrium tidal response of the atmosphere in the zero-frequency limit. Finally, we numerically integrate the equations of thermal tides for three cases, including dissipation and rotation step by step. Results: The resonances associated with tidally generated gravito-inertial waves significantly amplify the resulting tidal torque in the range 1-30 days. This torque can globally drive the atmosphere into asynchronous rotation, as its sign depends on the tidal frequency. The resonant behaviour of the tidal response is enhanced by rotation, which couples the forcing to several Hough modes in the general case, while the radiative cooling tends to regularize it and diminish its amplitude.

  18. Attitude control requirements for various solar sail missions

    NASA Technical Reports Server (NTRS)

    Williams, Trevor

    1990-01-01

    The differences are summarized between the attitude control requirements for various types of proposed solar sail missions (Earth orbiting; heliocentric; asteroid rendezvous). In particular, it is pointed out that the most demanding type of mission is the Earth orbiting one, with the solar orbit case quite benign and asteroid station keeping only slightly more difficult. It is then shown, using numerical results derived for the British Solar Sail Group Earth orbiting design, that the disturbance torques acting on a realistic sail can completely dominate the torques required for nominal maneuvering of an 'ideal' sail. This is obviously an important consideration when sizing control actuators; not so obvious is the fact that it makes the standard rotating vane actuator unsatisfactory in practice. The reason for this is given, and a set of new actuators described which avoids the difficulty.

  19. Fast Low-Current Spin-Orbit-Torque Switching of Magnetic Tunnel Junctions through Atomic Modifications of the Free-Layer Interfaces

    NASA Astrophysics Data System (ADS)

    Shi, Shengjie; Ou, Yongxi; Aradhya, S. V.; Ralph, D. C.; Buhrman, R. A.

    2018-01-01

    Future applications of spin-orbit torque will require new mechanisms to improve the efficiency of switching nanoscale magnetic tunnel junctions (MTJs), while also controlling the magnetic dynamics to achieve fast nanosecond-scale performance with low-write-error rates. Here, we demonstrate a strategy to simultaneously enhance the interfacial magnetic anisotropy energy and suppress interfacial spin-memory loss by introducing subatomic and monatomic layers of Hf at the top and bottom interfaces of the ferromagnetic free layer of an in-plane magnetized three-terminal MTJ device. When combined with a β -W spin Hall channel that generates spin-orbit torque, the cumulative effect is a switching current density of 5.4 ×106 A /cm2 .

  20. Derivation of the Torque Associated to Tesseral Resonances

    NASA Astrophysics Data System (ADS)

    El Moutamid, Maryame

    2018-04-01

    A so-called m+1:m Tesseral Resonance is simply equivalent to an inner m+1:m Lindblad Resonance or an outer Lindblad Resonance, where m is an integer. They are generated between a gravity anomaly that rotates with the primary and a test particle evolving around this primary, instead of being caused by a secondary, meaning that in this case the particle and the secondary do not share the same orbit. We show in this work that the torque is stronger for small values of |m|; as |m| tends to infinity, the torque tends to zero and that the Lagrange points are displaced away from the usual triangular configuration. These simple results have interesting implications on Saturn, Chariklo and Mars.

  1. Torque and power outputs on different subjects during manual wheelchair propulsion under different conditions

    NASA Astrophysics Data System (ADS)

    Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Kim, Youngho

    2012-02-01

    Manual wheelchair users are at a high risk of pain and injuries to the upper extremities due to mechanical inefficiency of wheelchair propulsion motion. The kinetic analysis of the upper extremities during manual wheelchair propulsion in various conditions needed to be investigated. We developed and calibrated a wheelchair dynamometer for measuring kinetic parameters during propulsion. We utilized the dynamometer to investigate and compare the propulsion torque and power values of experienced and novice users under four different conditions. Experienced wheelchair users generated lower torques with more power than novice users and reacted alertly and sensitively to changing conditions. We expect that these basic methods and results may help to quantitatively evaluate the mechanical efficiency of manual wheelchair propulsion.

  2. Spin Hall and Spin Swapping Torques in Diffusive Ferromagnets

    NASA Astrophysics Data System (ADS)

    Pauyac, Christian Ortiz; Chshiev, Mairbek; Manchon, Aurelien; Nikolaev, Sergey A.

    2018-04-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession, and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precession effects displays a complex spatial dependence that can be exploited to generate torques and nucleate or propagate domain walls in centrosymmetric geometries without the use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  3. Effects of an ATP analogue, adenosine 5'-[α-thio]-triphosphate, on F1-ATPase rotary catalysis, torque generation, and inhibited intermediated formation.

    PubMed

    Yukawa, Ayako; Watanabe, Rikiya; Noji, Hiroyuki

    2015-03-13

    F1-ATPase (F1), an important rotary motor protein, converts the chemical energy of ATP hydrolysis into mechanical energy using rotary motion with extremely high efficiency. The energy-conversion mechanism for this molecular motor has been extensively clarified by previous studies, which indicate that the interactions between the catalytic residues and the β- and γ-phosphates of ATP are indispensable for efficient catalysis and torque generation. However, the role of α-phosphate is largely unknown. In this study, we observed the rotation of F1 fuelled with an ATP analogue, adenosine 5'-[α-thio]-triphosphate (ATPαS), in which the oxygen has been substituted with a sulfur ion to perturb the α-phosphate/F1 interactions. In doing so, we have revealed that ATPαS does not appear to have any impact on the kinetic properties of the motor or on torque generation compared to ATP. On the other hand, F1 was observed to lapse into the ADP-inhibited intermediate states when in the presence of ATPαS more severely than in the presence of ATP, suggesting that the α-phosphate group of ATP contributes to the avoidance of ADP-inhibited intermediate formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. An optimal control strategy for hybrid actuator systems: Application to an artificial muscle with electric motor assist.

    PubMed

    Ishihara, Koji; Morimoto, Jun

    2018-03-01

    Humans use multiple muscles to generate such joint movements as an elbow motion. With multiple lightweight and compliant actuators, joint movements can also be efficiently generated. Similarly, robots can use multiple actuators to efficiently generate a one degree of freedom movement. For this movement, the desired joint torque must be properly distributed to each actuator. One approach to cope with this torque distribution problem is an optimal control method. However, solving the optimal control problem at each control time step has not been deemed a practical approach due to its large computational burden. In this paper, we propose a computationally efficient method to derive an optimal control strategy for a hybrid actuation system composed of multiple actuators, where each actuator has different dynamical properties. We investigated a singularly perturbed system of the hybrid actuator model that subdivided the original large-scale control problem into smaller subproblems so that the optimal control outputs for each actuator can be derived at each control time step and applied our proposed method to our pneumatic-electric hybrid actuator system. Our method derived a torque distribution strategy for the hybrid actuator by dealing with the difficulty of solving real-time optimal control problems. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Control strategies for wind farm power optimization: LES study

    NASA Astrophysics Data System (ADS)

    Ciri, Umberto; Rotea, Mario; Leonardi, Stefano

    2017-11-01

    Turbines in wind farms operate in off-design conditions as wake interactions occur for particular wind directions. Advanced wind farm control strategies aim at coordinating and adjusting turbine operations to mitigate power losses in such conditions. Coordination is achieved by controlling on upstream turbines either the wake intensity, through the blade pitch angle or the generator torque, or the wake direction, through yaw misalignment. Downstream turbines can be adapted to work in waked conditions and limit power losses, using the blade pitch angle or the generator torque. As wind conditions in wind farm operations may change significantly, it is difficult to determine and parameterize the variations of the coordinated optimal settings. An alternative is model-free control and optimization of wind farms, which does not require any parameterization and can track the optimal settings as conditions vary. In this work, we employ a model-free optimization algorithm, extremum-seeking control, to find the optimal set-points of generator torque, blade pitch and yaw angle for a three-turbine configuration. Large-Eddy Simulations are used to provide a virtual environment to evaluate the performance of the control strategies under realistic, unsteady incoming wind. This work was supported by the National Science Foundation, Grants No. 1243482 (the WINDINSPIRE project) and IIP 1362033 (I/UCRC WindSTAR). TACC is acknowledged for providing computational time.

  6. Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Geiyer, Daniel; Ostlund, Patrick N.; Allen, Phillip

    2011-01-01

    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor.

  7. Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer torque in polymer drag-reduced turbulent channel flows.

    PubMed

    Kim, Kyoungyoun; Sureshkumar, Radhakrishna

    2013-06-01

    To study the influence of dynamic interactions between turbulent vortical structures and polymer stress on turbulent friction drag reduction, a series of simulations of channel flow is performed. We obtain self-consistent evolution of an initial eddy in the presence of polymer stresses by utilizing the finitely extensible nonlinear elastic-Peterlin (FENE-P) model. The initial eddy is extracted by the conditional averages for the second quadrant event from fully turbulent Newtonian flow, and the initial polymer conformation fields are given by the solutions of the FENE-P model equations corresponding to the mean shear flow in the Newtonian case. At a relatively low Weissenberg number We(τ) (=50), defined as the ratio of the polymer relaxation time to the wall time scale, the generation of new vortices is inhibited by polymer-induced countertorques. Thus fewer vortices are generated in the buffer layer. However, the head of the primary hairpin is unaffected by the polymer stress. At larger We(τ) values (≥100), the hairpin head becomes weaker and vortex autogeneration and Reynolds stress growth are almost entirely suppressed. The temporal evolution of the vortex strength and polymer torque magnitude reveals that polymer extension by the vortical motion results in a polymer torque that increases in magnitude with time until a maximum value is reached over a time scale comparable to the polymer relaxation time. The polymer torque retards the vortical motion and Reynolds stress production, which in turn weakens flow-induced chain extension and torque itself. An analysis of the vortex time scales reveals that with increasing We(τ), vortical motions associated with a broader range of time scales are affected by the polymer stress. This is qualitatively consistent with Lumley's time criterion for the onset of drag reduction.

  8. Room-temperature spin-orbit torque in NiMnSb

    NASA Astrophysics Data System (ADS)

    Ciccarelli, C.; Anderson, L.; Tshitoyan, V.; Ferguson, A. J.; Gerhard, F.; Gould, C.; Molenkamp, L. W.; Gayles, J.; Železný, J.; Šmejkal, L.; Yuan, Z.; Sinova, J.; Freimuth, F.; Jungwirth, T.

    2016-09-01

    Materials that crystallize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneously, inversion asymmetries in their crystal structure and relativistic spin-orbit coupling led to discoveries of non-equilibrium spin-polarization phenomena that are now extensively explored as an electrical means for manipulating magnetic moments in a variety of spintronic structures. Current research of these relativistic spin-orbit torques focuses primarily on magnetic transition-metal multilayers. The low-temperature diluted magnetic semiconductor (Ga, Mn)As, in which spin-orbit torques were initially discovered, has so far remained the only example showing the phenomenon among bulk non-centrosymmetric ferromagnets. Here we present a general framework, based on the complete set of crystallographic point groups, for identifying the potential presence and symmetry of spin-orbit torques in non-centrosymmetric crystals. Among the candidate room-temperature ferromagnets we chose to use NiMnSb, which is a member of the broad family of magnetic Heusler compounds. By performing all-electrical ferromagnetic resonance measurements in single-crystal epilayers of NiMnSb we detect room-temperature spin-orbit torques generated by effective fields of the expected symmetry and of a magnitude consistent with our ab initio calculations.

  9. MRF actuators with reduced no-load losses

    NASA Astrophysics Data System (ADS)

    Güth, Dirk; Maas, Jürgen

    2012-04-01

    Magnetorheological fluids (MRF) are smart fluids with the particular characteristics of changing their apparent viscosity significantly under the influence of a magnetic field. This property allows the design of mechanical devices for torque transmission, such as brakes and clutches, with a continuously adjustable and smooth torque generation. A challenge that is opposed to a commercial use, are durable no-load losses, because a complete torque-free separation due to the permanent liquid intervention is inherently not yet possible. In this paper, the necessity of reducing these durable no-load losses will be shown by measurements performed with a MRF brake for high rotational speeds of 6000min-1 in a first step. The detrimental high viscous torque motivates the introduction of a novel concept that allows a controlled movement of the MR fluid from an active shear gap into an inactive shear gap and thus an almost separation of the fluid engaging surfaces. Simulation and measurement results show that the viscous induced drag torque can be reduced significantly. Based on this new approach, it is possible to realize MRF actuators for an energy-efficient use in the drive technology or power train, which avoid this inherent disadvantage and extend additionally the durability of the entire component.

  10. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.

    PubMed

    Moltedo, Marta; Bacek, Tomislav; Langlois, Kevin; Junius, Karen; Vanderborght, Bram; Lefeber, Dirk

    2017-07-01

    The human ankle joint plays a crucial role during walking. At the push-off phase the ankle plantarflexors generate the highest torque among the lower limb joints during this activity. The potential of the ankle plantarflexors is affected by numerous pathologies and injuries, which cause a decrease in the ability of the subject to achieve a natural gait pattern. Active orthoses have shown to have potential in assisting these subjects. The design of such robots is very challenging due to the contrasting design requirements of wearability (light weight and compact) and high torques capacity. This paper presents the development of a high-torque ankle actuator to assist the ankle joint in both dorsiflexion and plantarflexion. The compliant actuator is a spindle-driven MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). The design of the actuator was made to keep its weight as low as possible, while being able to provide high torques. As a result of this novel design, the actuator weighs 1.18kg. Some static characterization tests were perfomed on the actuator and their results are shown in the paper.

  11. Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity.

    PubMed

    Iino, Yoichi

    2018-04-01

    The purpose of this study was to determine hip joint kinetics during a table tennis topspin forehand, and to investigate the relationship between the relevant kinematic and kinetic variables and the racket horizontal and vertical velocities at ball impact. Eighteen male advanced table tennis players hit cross-court topspin forehands against backspin balls. The hip joint torque and force components around the pelvis coordinate system were determined using inverse dynamics. Furthermore, the work done on the pelvis by these components was also determined. The peak pelvis axial rotation velocity and the work done by the playing side hip pelvis axial rotation torque were positively related to the racket horizontal velocity at impact. The sum of the work done on the pelvis by the backward tilt torques and the upward joint forces was positively related to the racket vertical velocity at impact. The results suggest that the playing side hip pelvis axial rotation torque exertion is important for acquiring a high racket horizontal velocity at impact. The pelvis backward tilt torques and upward joint forces at both hip joints collectively contribute to the generation of the racket vertical velocity, and the mechanism for acquiring the vertical velocity may vary among players.

  12. Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Sun, Jonathan Z.

    2016-10-01

    Spin-transfer torque (or spin-torque, or STT) based magnetic tunnel junction (MTJ) is at the heart of a new generation of magnetism-based solid-state memory, the so-called spin-transfer-torque magnetic random access memory, or STT-MRAM. Over the past decades, STT-based switchable magnetic tunnel junction has seen progress on many fronts, including the discovery of (001) MgO as the most favored tunnel barrier, which together with (bcc) Fe or FeCo alloy are yielding best demonstrated tunnel magneto-resistance (TMR); the development of perpendicularly magnetized ultrathin CoFeB-type of thin films sufficient to support high density memories with junction sizes demonstrated down to 11nm in diameter; and record-low spin-torque switching threshold current, giving best reported switching efficiency over 5 kBT/μA. Here we review the basic device properties focusing on the perpendicularly magnetized MTJs, both in terms of switching efficiency as measured by sub-threshold, quasi-static methods, and of switching speed at super-threshold, forced switching. We focus on device behaviors important for memory applications that are rooted in fundamental device physics, which highlights the trade-off of device parameters for best suitable system integration.

  13. Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox

    NASA Astrophysics Data System (ADS)

    Li, R. N.; Liu, X.; Liu, S. J.

    2013-12-01

    In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.

  14. Active Joint Mechanism Driven by Multiple Actuators Made of Flexible Bags: A Proposal of Dual Structural Actuator

    PubMed Central

    Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868

  15. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    PubMed

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  16. Spacecraft attitude and velocity control system

    NASA Technical Reports Server (NTRS)

    Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)

    1992-01-01

    A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.

  17. A Constant-Force Resistive Exercise Unit

    NASA Technical Reports Server (NTRS)

    Colosky, Paul; Ruttley, Tara

    2010-01-01

    A constant-force resistive exercise unit (CFREU) has been invented for use in both normal gravitational and microgravitational environments. In comparison with a typical conventional exercise machine, this CFREU weighs less and is less bulky: Whereas weight plates and associated bulky supporting structures are used to generate resistive forces in typical conventional exercise machines, they are not used in this CFREU. Instead, resistive forces are generated in this CFREU by relatively compact, lightweight mechanisms based on constant-torque springs wound on drums. Each such mechanism is contained in a module, denoted a resistive pack, that includes a shaft for making a torque connection to a cable drum. During a stroke of resistive exercise, the cable is withdrawn from the cable drum against the torque exerted by the resistance pack. The CFREU includes a housing, within which can be mounted one or more resistive pack(s). The CFREU also includes mechanisms for engaging any combination of (1) one or more resistive pack(s) and (2) one or more spring(s) within each resistive pack to obtain a desired level of resistance.

  18. Torque efficiency of different archwires in 0.018- and 0.022-inch conventional brackets.

    PubMed

    Sifakakis, Iosif; Pandis, Nikolaos; Makou, Margarita; Eliades, Theodore; Katsaros, Christos; Bourauel, Christoph

    2014-01-01

    To compare the archwires inserted during the final stages of the orthodontic treatment with the generated moments at 0.018- and 0.022-inch brackets. The same bracket type, in terms of prescription, was evaluated in both slot dimensions. The brackets were bonded on two identical maxillary acrylic resin models, and each model was mounted on the orthodontic measurement and simulation system. Ten 0.017 × 0.025-inch TMA and ten 0.017 × 0.025-inch stainless steel archwires were evaluated in the 0.018-inch brackets. In the 0.022-inch brackets, ten 0.019 × 0.025-inch TMA and ten 0.019 × 0.025-inch stainless steel archwires were measured. A 15° buccal root torque (+15°) and then a 15° palatal root torque (-15°) were gradually applied to the right central incisor bracket, and the moments were recorded at these positions. A t-test was conducted to compare the generated moments between wires within the 0.018- and 0.022-inch bracket groups separately. The 0.017 × 0.025-inch archwire in the 0.018-inch brackets generated mean moments of 9.25 Nmm and 14.2 Nmm for the TMA and stainless steel archwires, respectively. The measured moments in the 0.022-inch brackets with the 0.019 × 0.025-inch TMA and stainless steel archwires were 6.6 Nmm and 9.3 Nmm, respectively. The 0.017 × 0.025-inch stainless steel and β-Ti archwires in the 0.018-inch slot generated higher moments than the 0.019 × 0.025-inch archwires because of lower torque play. This difference is exaggerated in steel archwires, in comparison with the β-Ti, because of differences in stiffness. The differences of maximum moments between the archwires of the same cross-section but different alloys were statistically significant at both slot dimensions.

  19. Adaptive force regulation of muscle strengthening rehabilitation device with magnetorheological fluids.

    PubMed

    Dong, Shufang; Lu, Ke-Qian; Sun, Jian Qiao; Rudolph, Katherine

    2006-03-01

    In rehabilitation from neuromuscular trauma or injury, strengthening exercises are often prescribed by physical therapists to recover as much function as possible. Strengthening equipment used in clinical settings range from low-cost devices, such as sandbag weights or elastic bands to large and expensive isotonic and isokinetic devices. The low-cost devices are incapable of measuring strength gains and apply resistance based on the lowest level of torque that is produced by a muscle group. Resistance that varies with joint angle can be achieved with isokinetic devices in which angular velocity is held constant and variable torque is generated when the patient attempts to move faster than the device but are ineffective if a patient cannot generate torque rapidly. In this paper, we report the development of a versatile rehabilitation device that can be used to strengthen different muscle groups based on the torque generating capability of the muscle that changes with joint angle. The device is low cost, is smaller than other commercially available machines, and can be programmed to apply resistance that is unique to a particular patient and that will optimize strengthening. The core of the device, a damper with smart magnetorheological fluids, provides passive exercise force. A digital adaptive control is capable of regulating exercise force precisely following the muscle strengthening profile prescribed by a physical therapist. The device could be programmed with artificial intelligence to dynamically adjust the target force profile to optimize rehabilitation effects. The device provides both isometric and isokinetic strength training and can be developed into a small, low-cost device that may be capable of providing optimal strengthening in the home.

  20. Analytical Approach Validation for the Spin-Stabilized Satellite Attitude

    NASA Technical Reports Server (NTRS)

    Zanardi, Maria Cecilia F. P. S.; Garcia, Roberta Veloso; Kuga, Helio Koiti

    2007-01-01

    An analytical approach for spin-stabilized spacecraft attitude prediction is presented for the influence of the residual magnetic torques and the satellite in an elliptical orbit. Assuming a quadripole model for the Earth s magnetic field, an analytical averaging method is applied to obtain the mean residual torque in every orbital period. The orbit mean anomaly is used to compute the average components of residual torque in the spacecraft body frame reference system. The theory is developed for time variations in the orbital elements, giving rise to many curvature integrals. It is observed that the residual magnetic torque does not have component along the spin axis. The inclusion of this torque on the rotational motion differential equations of a spin stabilized spacecraft yields conditions to derive an analytical solution. The solution shows that the residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spin axis of the spacecraft. The theory developed has been applied to the Brazilian s spin stabilized satellites, which are quite appropriated for verification and comparison of the theory with the data generated and processed by the Satellite Control Center of Brazil National Research Institute. The results show the period that the analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of Brazil National Research Institute.

  1. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, R.H.; Chai, J.; Lang, J.H.

    1997-01-14

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signalmore » and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.« less

  2. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOEpatents

    Lyon, R.H.; Chai, J.; Lang, J.H.; Hagman, W.H.; Umans, S.D.; Saarela, O.J.

    1997-01-14

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.

  3. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOEpatents

    Lyon, Richard H.; Chai, Jangbom; Lang, Jeffrey H.; Hagman, Wayne H.; Umans, Stephen D.; Saarela, Olli J.

    1997-01-01

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit.

  4. Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury

    PubMed Central

    Estigoni, Eduardo H.; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M.; Davis, Glen M.

    2014-01-01

    This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery. PMID:25479324

  5. The role of shoe design on the prediction of free torque at the shoe-surface interface using pressure insole technology.

    PubMed

    Weaver, Brian Thomas; Fitzsimons, Kathleen; Braman, Jerrod; Haut, Roger

    2016-09-01

    The goal of the current study was to expand on previous work to validate the use of pressure insole technology in conjunction with linear regression models to predict the free torque at the shoe-surface interface that is generated while wearing different athletic shoes. Three distinctly different shoe designs were utilised. The stiffness of each shoe was determined with a material's testing machine. Six participants wore each shoe that was fitted with an insole pressure measurement device and performed rotation trials on an embedded force plate. A pressure sensor mask was constructed from those sensors having a high linear correlation with free torque values. Linear regression models were developed to predict free torques from these pressure sensor data. The models were able to accurately predict their own free torque well (RMS error 3.72 ± 0.74 Nm), but not that of the other shoes (RMS error 10.43 ± 3.79 Nm). Models performing self-prediction were also able to measure differences in shoe stiffness. The results of the current study showed the need for participant-shoe specific linear regression models to insure high prediction accuracy of free torques from pressure sensor data during isolated internal and external rotations of the body with respect to a planted foot.

  6. Evoked EMG versus muscle torque during fatiguing functional electrical stimulation-evoked muscle contractions and short-term recovery in individuals with spinal cord injury.

    PubMed

    Estigoni, Eduardo H; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M; Davis, Glen M

    2014-12-03

    This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery.

  7. IMPACT OF GRAVITY LOADING ON POST-STROKE REACHING AND ITS RELATIONSHIP TO WEAKNESS

    PubMed Central

    Beer, Randall F.; Ellis, Michael D.; Holubar, Bradley G.; Dewald, Julius P.A.

    2010-01-01

    The ability to extend the elbow following stroke depends on the magnitude and direction of torques acting at the shoulder. The mechanisms underlying this link remain unclear. The purpose of this study was to evaluate whether the effects of shoulder loading on elbow function were related to weakness or its distribution in the paretic limb. Ten subjects with longstanding hemiparesis performed movements with the arm either passively supported against gravity by an air bearing, or by activation of shoulder muscles. Isometric maximum voluntary torques at the elbow and shoulder were measured using a load cell. The speed and range of elbow extension movements were negatively impacted by actively supporting the paretic limb against gravity. However, the effects of gravity loading were not related to proximal weakness or abnormalities in the elbow flexor–extensor strength balance. The findings support the existence of abnormal descending motor commands that constrain the ability of stroke survivors to generate elbow extension torque in combination with abduction torque at the shoulder. PMID:17486581

  8. Optimal control of motorsport differentials

    NASA Astrophysics Data System (ADS)

    Tremlett, A. J.; Massaro, M.; Purdy, D. J.; Velenis, E.; Assadian, F.; Moore, A. P.; Halley, M.

    2015-12-01

    Modern motorsport limited slip differentials (LSD) have evolved to become highly adjustable, allowing the torque bias that they generate to be tuned in the corner entry, apex and corner exit phases of typical on-track manoeuvres. The task of finding the optimal torque bias profile under such varied vehicle conditions is complex. This paper presents a nonlinear optimal control method which is used to find the minimum time optimal torque bias profile through a lane change manoeuvre. The results are compared to traditional open and fully locked differential strategies, in addition to considering related vehicle stability and agility metrics. An investigation into how the optimal torque bias profile changes with reduced track-tyre friction is also included in the analysis. The optimal LSD profile was shown to give a performance gain over its locked differential counterpart in key areas of the manoeuvre where a quick direction change is required. The methodology proposed can be used to find both optimal passive LSD characteristics and as the basis of a semi-active LSD control algorithm.

  9. Impact of gravity loading on post-stroke reaching and its relationship to weakness.

    PubMed

    Beer, Randall F; Ellis, Michael D; Holubar, Bradley G; Dewald, Julius P A

    2007-08-01

    The ability to extend the elbow following stroke depends on the magnitude and direction of torques acting at the shoulder. The mechanisms underlying this link remain unclear. The purpose of this study was to evaluate whether the effects of shoulder loading on elbow function were related to weakness or its distribution in the paretic limb. Ten subjects with longstanding hemiparesis performed movements with the arm either passively supported against gravity by an air bearing, or by activation of shoulder muscles. Isometric maximum voluntary torques at the elbow and shoulder were measured using a load cell. The speed and range of elbow extension movements were negatively impacted by actively supporting the paretic limb against gravity. However, the effects of gravity loading were not related to proximal weakness or abnormalities in the elbow flexor-extensor strength balance. The findings support the existence of abnormal descending motor commands that constrain the ability of stroke survivors to generate elbow extension torque in combination with abduction torque at the shoulder.

  10. Current-induced instability of domain walls in cylindrical nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Zhang, Zhaoyang; Pepper, Ryan A.; Mu, Congpu; Zhou, Yan; Fangohr, Hans

    2018-01-01

    We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW, Gaussian wave packets (spin waves) will be generated when the charge current is suddenly applied to the system. This effect is excluded when using the local spin-transfer torque. The existence of spin waves emission indicates that transverse domain walls can not move arbitrarily fast in cylindrical nanowires although they are free from the Walker limit. We establish an upper velocity limit for DW motion by analyzing the stability of Gaussian wave packets using the local spin-transfer torque. Micromagnetic simulations show that the stable region obtained by using nonlocal spin-transfer torque is smaller than that by using its local counterpart. This limitation is essential for multiple DWs since the instability of Gaussian wave packets will break the structure of multiple DWs.

  11. Design of a 7-DOF haptic master using a magneto-rheological devices for robot surgery

    NASA Astrophysics Data System (ADS)

    Kang, Seok-Rae; Choi, Seung-Bok; Hwang, Yong-Hoon; Cha, Seung-Woo

    2017-04-01

    This paper presents a 7 degrees-of-freedom (7-DOF) haptic master which is applicable to the robot-assisted minimally invasive surgery (RMIS). By utilizing a controllable magneto-rheological (MR) fluid, the haptic master can provide force information to the surgeon during surgery. The proposed haptic master consists of three degrees motions of X, Y, Z and four degrees motions of the pitch, yaw, roll and grasping. All of them have force feedback capability. The proposed haptic master can generate the repulsive forces or torques by activating MR clutch and MR brake. Both MR clutch and MR brake are designed and manufactured with consideration of the size and output torque which is usable to the robotic surgery. A proportional-integral-derivative (PID) controller is then designed and implemented to achieve torque/force tracking trajectories. It is verified that the proposed haptic master can track well the desired torque and force occurred in the surgical place by controlling the input current applied to MR clutch and brake.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shi-Zeng

    We derive the skyrmion dynamics in response to a weak external drive, taking all the magnon modes into account. A skyrmion has rotational symmetry, and the magnon modes can be characterized by an angular momentum. For a weak distortion of a skyrmion, only the magnon modes with an angular momentum | m | = 1 govern the dynamics of skyrmion topological center. We also determine that the skyrmion inertia comes by way of the magnon modes in the continuum spectrum. For a skyrmion driven by a magnetic field gradient or by a spin transfer torque generated by a current, themore » dynamical response is practically instantaneous. This justifies the rigid skyrmion approximation used in Thiele's collective coordinate approach. For a skyrmion driven by a spin Hall torque, the torque couples to the skyrmion motion through the magnons in the continuum and damping; therefore the skyrmion dynamics shows sizable inertia in this case. The trajectory of a skyrmion is an ellipse for an ac drive of spin Hall torque.« less

  13. Lower-extremity isokinetic strength profiling in professional rugby league and rugby union.

    PubMed

    Brown, Scott R; Brughelli, Matt; Griffiths, Peter C; Cronin, John B

    2014-03-01

    While several studies have documented isokinetic knee strength in junior and senior rugby league players, investigations of isokinetic knee and hip strength in professional rugby union players are limited. The purpose of this study was to provide lower-extremity strength profiles and compare isokinetic knee and hip strength of professional rugby league and rugby union players. 32 professional rugby league and 25 professional rugby union players. Cross-sectional analysis. Isokinetic dynamometry was used to evaluate peak torque and strength ratios of the dominant and nondominant legs during seated knee-extension/ flexion and supine hip-extension/flexion actions at 60°/s. Forwards from both codes were taller and heavier and had a higher body-mass index than the backs of each code. Rugby union forwards produced significantly (P < .05) greater peak torque during knee flexion in the dominant and nondominant legs (ES = 1.81 and 2.02) compared with rugby league forwards. Rugby league backs produced significantly greater hip-extension peak torque in the dominant and nondominant legs (ES = 0.83 and 0.77) compared with rugby union backs. There were no significant differences in hamstring-to-quadriceps ratios between code, position, or leg. Rugby union forwards and backs produced significantly greater knee-flexion-to-hip-extension ratios in the dominant and nondominant legs (ES = 1.49-2.26) than rugby union players. It seems that the joint torque profiles of players from rugby league and union codes differ, which may be attributed to the different demands of each code.

  14. A comparison of screw insertion torque and pullout strength.

    PubMed

    Ricci, William M; Tornetta, Paul; Petteys, Timothy; Gerlach, Darin; Cartner, Jacob; Walker, Zakiyyah; Russell, Thomas A

    2010-06-01

    Pullout strength of screws is a parameter used to evaluate plate screw fixation strength. However, screw fixation strength may be more closely related to its ability to generate sufficient insertion because stable nonlocked plate-screw fracture fixation requires sufficient compression between plate and bone such that no motion occurs between the plate and bone under physiological loads. Compression is generated by tightening of screws. In osteoporotic cancellous bone, sufficient screw insertion torque may not be generated before screw stripping. The effect of screw thread pitch on generation of maximum insertion torque (MIT) and pullout strength (POS) was investigated in an osteoporotic cancellous bone model and the relationship between MIT and POS was analyzed. Stainless steel screws with constant major (5.0 mm) and minor (2.7 mm) diameters but with varying thread pitches (1, 1.2, 1.5, 1.6, and 1.75 mm) were tested for MIT and POS in a validated osteoporotic surrogate for cancellous bone (density of 160 kg/m(3) [10 lbs/ft(3)]). MIT was measured with a torque-measuring hex driver for screws inserted through a one-third tubular plate. POS was measured after insertion of screws to a depth of 20 mm based on the Standard Specification and Test Methods for Metallic Medical Bone Screws (ASTM F 543-07). Five screws were tested for each failure mode and screw design. The relationship between MIT and compressive force between the plate and bone surrogate was evaluated using pressure-sensitive film. There was a significant difference in mean MIT based on screw pitch (P < 0.0001), whereas POS did not show statistically significant differences among the different screw pitches (P = 0.052). Small screw pitches (1.0 mm and 1.2 mm) had lower MIT and were distinguished from large pitches (1.5 mm, 1.6 mm, and the 1.75 mm) with higher MIT. For POS, only the 1-mm and 1.6-mm pitch screws were found to be different from each other. Linear regression analysis of MIT revealed a moderate correlation to the screw pitch (R(2) = 0.67, P < 0.0001), whereas the analysis of POS suggested no correlation to the screw pitch (R(2) = 0.28, P = 0.006). Pearson correlation analysis indicated no correlation between MIT and POS (P = 0.069, r = -0.37). A linear relationship of increased compression between the plate and bone surrogate was found for increasing screw torque (R(2) = 0.97). These results indicate that the ability of different screw designs to generate high screw insertion torque in a model of osteoporotic cancellous bone is unrelated to their pullout strength. Therefore, extrapolation of results for POS to identify optimal screw design for osteoporotic bone may not be valid. Screw designs that optimize MIT should be sought for fixation in osteoporotic bone.

  15. Local light-induced magnetization using nanodots and chiral molecules.

    PubMed

    Dor, Oren Ben; Morali, Noam; Yochelis, Shira; Baczewski, Lech Tomasz; Paltiel, Yossi

    2014-11-12

    With the increasing demand for miniaturization, nanostructures are likely to become the primary components of future integrated circuits. Different approaches are being pursued toward achieving efficient electronics, among which are spin electronics devices (spintronics). In principle, the application of spintronics should result in reducing the power consumption of electronic devices. Recently a new, promising, effective approach for spintronics has emerged, using spin selectivity in electron transport through chiral molecules. In this work, using chiral molecules and nanocrystals, we achieve local spin-based magnetization generated optically at ambient temperatures. Through the chiral layer, a spin torque can be transferred without permanent charge transfer from the nanocrystals to a thin ferromagnetic layer, creating local perpendicular magnetization. We used Hall sensor configuration and atomic force microscopy (AFM) to measure the induced local magnetization. At low temperatures, anomalous spin Hall effects were measured using a thin Ni layer. The results may lead to optically controlled spintronics logic devices that will enable low power consumption, high density, and cheap fabrication.

  16. Hysteresis Bearingless Slice Motors with Homopolar Flux-biasing.

    PubMed

    Noh, Minkyun; Gruber, Wolfgang; Trumper, David L

    2017-10-01

    We present a new concept of bearingless slice motor that levitates and rotates a ring-shaped solid rotor. The rotor is made of a semi-hard magnetic material exhibiting magnetic hysteresis, such as D2 steel. The rotor is radially biased with a homopolar permanent-magnetic flux, on which the stator can superimpose 2-pole flux to generate suspension forces. By regulating the suspension forces based on position feedback, the two radial rotor degrees of freedom are actively stabilized. The two tilting degrees of freedom and the axial translation are passively stable due to the reluctance forces from the bias flux. In addition, the stator can generate a torque by superimposing 6- pole rotating flux, which drags the rotor via hysteresis coupling. This 6-pole flux does not generate radial forces in conjunction with the homopolar flux or 2-pole flux, and therefore the suspension force generation is in principle decoupled from the driving torque generation. We have developed a prototype system as a proof of concept. The stator has twelve teeth, each of which has a single phase winding that is individually driven by a linear transconductance power amplifier. The system has four reflective-type optical sensors to differentially measure the two radial degrees of freedom of the rotor. The suspension control loop is implemented such that the phase margin is 25 degrees at the cross-over frequency of 110 Hz. The prototype system can levitate the rotor and drive it up to about 1730 rpm. The maximum driving torque is about 2.7 mNm.

  17. Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching.

    PubMed

    Olesh, Erienne V; Pollard, Bradley S; Gritsenko, Valeriya

    2017-01-01

    Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques.

  18. Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching

    PubMed Central

    Olesh, Erienne V.; Pollard, Bradley S.; Gritsenko, Valeriya

    2017-01-01

    Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques. PMID:29018339

  19. MRI induced torque and demagnetization in retention magnets for a bone conduction implant.

    PubMed

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Taghavi, Hamidreza; Eeg-Olofsson, Måns

    2014-06-01

    Performing magnetic resonance imaging (MRI) examinations in patients who use implantable medical devices involve safety risks both for the patient and the implant. Hearing implants often use two permanent magnets, one implanted and one external, for the retention of the external transmitter coil to the implanted receiver coil to achieve an optimal signal transmission. The implanted magnet is subjected to both demagnetization and torque, magnetically induced by the MRI scanner. In this paper, demagnetization and a comparison between measured and simulated induced torque is studied for the retention magnet used in a bone conduction implant (BCI) system. The torque was measured and simulated in a uniform static magnetic field of 1.5 T. The magnetic field was generated by a dipole electromagnet and permanent magnets with two different types of coercive fields were tested. Demagnetization and maximum torque for the high coercive field magnets was 7.7% ± 2.5% and 0.20 ± 0.01 Nm, respectively and 71.4% ± 19.1% and 0.18 ± 0.01 Nm for the low coercive field magnets, respectively. The simulated maximum torque was 0.34 Nm, deviating from the measured torque in terms of amplitude, mainly related to an insufficient magnet model. The BCI implant with high coercive field magnets is believed to be magnetic resonance (MR) conditional up to 1.5 T if a compression band is used around the skull to fix the implant. This is not approved and requires further investigations, and if removal of the implant is needed, the surgical operation is expected to be simple.

  20. The shape of the Eiffel Tower

    NASA Astrophysics Data System (ADS)

    Gallant, Joseph

    2002-02-01

    The distinctive shape of the Eiffel Tower is based on simple physics and is designed so that the maximum torque created by the wind is balanced by the torque due to the Tower's weight. We use this idea to generate an equation for the shape of the Tower. The solution depends only on the width of the base and the maximum wind pressure. We parametrize the wind pressure and reproduce the shape of the Tower. We also discuss some of the Tower's interesting history and characteristics.

  1. Research on Acoustical and Optical Scattering, Optics of Bubbles, Diffraction Catastrophes, Laser Generation of Sound, and Shock Induced Cavitation

    DTIC Science & Technology

    1984-09-01

    Crichton and E. H, Trinh. 19. KEY WOROS (Canttnum on rmr^tmm aid* It nacmmmarf and Idantily br block numbar) Acoustic scattering. Inverse...295 (1984). 6. P. L. Marston and J. H. Crichton , "Radiation torque on a sphere illuminated with circularly polarized light," Journal of the...Optical Society of America Bl, 528-529 (1984). 7. P. L. Marston and J. H. Crichton , "Radiation torque on a sphere caused by a circularly polarized

  2. Signal and power roll ring testing update

    NASA Technical Reports Server (NTRS)

    Smith, Dennis W.

    1989-01-01

    The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.

  3. Direct torque control method applied to the WECS based on the PMSG and controlled with backstepping approach

    NASA Astrophysics Data System (ADS)

    Errami, Youssef; Obbadi, Abdellatif; Sahnoun, Smail; Ouassaid, Mohammed; Maaroufi, Mohamed

    2018-05-01

    This paper proposes a Direct Torque Control (DTC) method for Wind Power System (WPS) based Permanent Magnet Synchronous Generator (PMSG) and Backstepping approach. In this work, generator side and grid-side converter with filter are used as the interface between the wind turbine and grid. Backstepping approach demonstrates great performance in complicated nonlinear systems control such as WPS. So, the control method combines the DTC to achieve Maximum Power Point Tracking (MPPT) and Backstepping approach to sustain the DC-bus voltage and to regulate the grid-side power factor. In addition, control strategy is developed in the sense of Lyapunov stability theorem for the WPS. Simulation results using MATLAB/Simulink validate the effectiveness of the proposed controllers.

  4. Current induced domain wall motion in antiferromagnetically coupled (Co70Fe30/Pd) multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoliang; He, Shikun; Huang, Lisen; Qiu, Jinjun; Zhou, Tiejun; Panagopoulos, Christos; Han, Guchang; Teo, Kie-Leong

    2016-10-01

    We investigate the current induced domain wall (DW) motion in the ultrathin CoFe/Pd multilayer based synthetically antiferromagnetic (SAF) structure nanowires by anomalous Hall effect measurement. The threshold current density (Jth) for the DW displacement decreases and the DW velocity (v) increases accordingly with the exchange coupling Jex between the top and bottom ferromagnetic CoFe/Pd multilayers. The lowest Jth = 9.3 × 1010 A/m2 and a maximum v = 150 m/s with J = 1.5 × 1012 A/m2 are achieved due to the exchange coupling torque (ECT) generated in the SAF structure. The strength of ECT is dependent on both of Jex and the strong spin-orbit torque mainly generated by Ta layer.

  5. GeneratorSE: A Sizing Tool for Variable-Speed Wind Turbine Generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Dykes, Katherine L

    This report documents a set of analytical models employed by the optimization algorithms within the GeneratorSE framework. The initial values and boundary conditions employed for the generation of the various designs and initial estimates for basic design dimensions, masses, and efficiency for the four different models of generators are presented and compared with empirical data collected from previous studies and some existing commercial turbines. These models include designs applicable for variable-speed, high-torque application featuring direct-drive synchronous generators and low-torque application featuring induction generators. In all of the four models presented, the main focus of optimization is electromagnetic design with themore » exception of permanent-magnet and wire-wound synchronous generators, wherein the structural design is also optimized. Thermal design is accommodated in GeneratorSE as a secondary attribute by limiting the winding current densities to acceptable limits. A preliminary validation of electromagnetic design was carried out by comparing the optimized magnetic loading against those predicted by numerical simulation in FEMM4.2, a finite-element software for analyzing electromagnetic and thermal physics problems for electrical machines. For direct-drive synchronous generators, the analytical models for the structural design are validated by static structural analysis in ANSYS.« less

  6. Severe splenic rupture after colorectal endoscopic submucosal dissection

    PubMed Central

    Herreros de Tejada, Alberto; Giménez-Alvira, Luis; Van den Brule, Enrique; Sánchez-Yuste, Rosario; Matallanos, Pilar; Blázquez, Esther; Calleja, Jose L; Abreu, Luis E

    2014-01-01

    Splenic rupture (SR) after colonoscopy is a very rare but potentially serious complication. Delayed diagnosis is common, and may increase morbidity and mortality associated. There is no clear relation between SR and difficult diagnostic or therapeutic procedures, but it has been suggested that loop formation and excessive torquing might be risk factors. This is a case of a 65-year-old woman who underwent endoscopic submucosal dissection (ESD) for lateral spreading tumor in the descending colon, and 36 h afterwards presented symptoms and signs of severe hypotension due to SR. Standard splenectomy was completed and the patient recovered uneventfully. Colorectal ESD is usually a long and position-demanding technique, implying torquing and loop formation. To our knowledge this is the first case of SR after colorectal ESD reported in the literature. Endoscopists performing colorectal ESD in the left colon must be aware of this potential complication. PMID:25071360

  7. Dynamic analysis of a bio-inspired climbing robot using ADAMS-Simulink co-simulation

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Dikshit, H.; Majumder, A.; Ghoshal, S.; Maity, A.

    2018-04-01

    Climbing robot has been an area of interest since the demand of inspection of pipeline, nuclear power plant, and various big structure is growing up rapidly. This paper represents the development of a bio-inspired modular robot which mimics inchworm locomotion during climbing. In the present paper, the climbing motion is achieved only on a flat vertical plane by magnetic adhesion principle. The robot is modelled as a 4-link planar mechanism with three revolute joints actuated by DC servo motors. Sinusoidal gait pattern is used to approximate the motion of an inchworm. The dynamics of the robot is presented by using ADAMS/MATLAB co-simulation methodology. The simulation result gives the maximum value of joint torque during one complete cycle of motion. This torque value is used for the selection of servo motor specifications required to build the prototype.

  8. The Functional Role of the Triceps Surae Muscle during Human Locomotion

    PubMed Central

    Honeine, Jean-Louis; Schieppati, Marco; Gagey, Olivier; Do, Manh-Cuong

    2013-01-01

    Aim Despite numerous studies addressing the issue, it remains unclear whether the triceps surae muscle group generates forward propulsive force during gait, commonly identified as ‘push-off’. In order to challenge the push-off postulate, one must probe the effect of varying the propulsive force while annulling the effect of the progression velocity. This can be obtained by adding a load to the subject while maintaining the same progression velocity. Methods Ten healthy subjects initiated gait in both unloaded and loaded conditions (about 30% of body weight attached at abdominal level), for two walking velocities, spontaneous and fast. Ground reaction force and EMG activity of soleus and gastrocnemius medialis and lateralis muscles of the stance leg were recorded. Centre of mass velocity and position, centre of pressure position, and disequilibrium torque were calculated. Results At spontaneous velocity, adding the load increased disequilibrium torque and propulsive force. However, load had no effect on the vertical braking force or amplitude of triceps activity. At fast progression velocity, disequilibrium torque, vertical braking force and triceps EMG increased with respect to spontaneous velocity. Still, adding the load did not further increase braking force or EMG. Conclusions Triceps surae is not responsible for the generation of propulsive force but is merely supporting the body during walking and restraining it from falling. By controlling the disequilibrium torque, however, triceps can affect the propulsive force through the exchange of potential into kinetic energy. PMID:23341916

  9. Contact acoustic nonlinearity (CAN)-based continuous monitoring of bolt loosening: Hybrid use of high-order harmonics and spectral sidebands

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Liu, Menglong; Liao, Yaozhong; Su, Zhongqing; Xiao, Yi

    2018-03-01

    The significance of evaluating bolt tightness in engineering structures, preferably in a continuous manner, cannot be overemphasized. With hybrid use of high-order harmonics (HOH) and spectral sidebands, a contact acoustic nonlinearity (CAN)-based monitoring framework is developed for detecting bolt loosening and subsequently evaluating the residual torque on a loose bolt. Low-frequency pumping vibration is introduced into the bolted joint to produce a "breathing" effect at the joining interface that modulates the propagation characteristics of a high-frequency probing wave when it traverses the bolt, leading to the generation of HOH and vibro-acoustic nonlinear distortions (manifested as sidebands in the signal spectrum). To gain insight into the mechanism of CAN generation and to correlate the acquired nonlinear responses of a loose joint with the residual torque remaining on the bolt, an analytical model based on micro-contact theory is established. Two types of nonlinear index, respectively exploiting the induced HOH and spectral sidebands, are defined without dependence on excitation intensity and are experimentally demonstrated to be effective in continuously monitoring bolt loosening in both aluminum-aluminum and composite-composite bolted joints. Taking a step further, variation of the index pair is quantitatively associated with the residual torque on a loose bolt. The approach developed provides a reliable method of continuous evaluation of bolt tightness in both composite and metallic joints, regardless of their working conditions, from early awareness of bolt loosening at an embryonic stage to quantitative estimation of residual torque.

  10. Motor impairment factors related to brain injury timing in early hemiparesis Part I: expression of upper extremity weakness

    PubMed Central

    Sukal-Moulton, Theresa; Krosschell, Kristin J.; Gaebler-Spira, Deborah J.; Dewald, Julius P.A.

    2014-01-01

    Background Extensive neuromotor development occurs early in human life, but the time that a brain injury occurs during development has not been rigorously studied when quantifying motor impairments. Objective This study investigated the impact of timing of brain injury on magnitude and distribution of weakness in the paretic arm of individuals with childhood-onset hemiparesis. Methods Twenty-four individuals with hemiparesis were divided into time periods of injury before birth (PRE-natal, n=8), around the time of birth (PERI-natal, n=8) or after 6 months of age (POST-natal, n=8). They, along with 8 typically developing peers, participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks using a multiple degree-of-freedom load cell to quantify torques in 10 directions. A mixed model ANOVA was used to determine the effect of group and task on a calculated relative weakness ratio between arms. Results There was a significant effect of both time of injury group (p<0.001) and joint torque direction (p<0.001) on the relative weakness of the paretic arm. Distal joints were more affected compared to proximal joints, especially in the POST-natal group. Conclusions The distribution of weakness provides evidence for the relative preservation of ipsilateral corticospinal motor pathways to the paretic limb in those individuals injured earlier, while those who sustained later injury may rely more on indirect ipsilateral cortico-bulbospinal projections during the generation of torques with the paretic arm. PMID:24009182

  11. Motor impairment factors related to brain injury timing in early hemiparesis. Part I: expression of upper-extremity weakness.

    PubMed

    Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A

    2014-01-01

    Extensive neuromotor development occurs early in human life, but the time that a brain injury occurs during development has not been rigorously studied when quantifying motor impairments. This study investigated the impact of timing of brain injury on the magnitude and distribution of weakness in the paretic arm of individuals with childhood-onset hemiparesis. A total of 24 individuals with hemiparesis were divided into time periods of injury before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), or after 6 months of age (POST-natal, n = 8). They, along with 8 typically developing peers, participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks using a multiple-degree-of-freedom load cell to quantify torques in 10 directions. A mixed-model ANOVA was used to determine the effect of group and task on a calculated relative weakness ratio between arms. There was a significant effect of both time of injury group (P < .001) and joint torque direction (P < .001) on the relative weakness of the paretic arm. Distal joints were more affected compared with proximal joints, especially in the POST-natal group. The distribution of weakness provides evidence for the relative preservation of ipsilateral corticospinal motor pathways to the paretic limb in those individuals injured earlier, whereas those who sustained later injury may rely more on indirect ipsilateral corticobulbospinal projections during the generation of torques with the paretic arm.

  12. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    NASA Astrophysics Data System (ADS)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  13. Efficacy of Sealing Agents on Preload Maintenance of Screw-Retained Implant-Supported Prostheses.

    PubMed

    Seloto, Camila Berbel; Strazzi Sahyon, Henrico Badaoui; Dos Santos, Paulo Henrique; Delben, Juliana Aparecida; Assunção, Wirley Gonçalves

    The aim of this study was to evaluate the effect of sealing agents on preload maintenance of screw joints. A total of four groups (n = 10 in each group) of abutment/implant systems, including external hexagon implants and antirotational UCLA abutments with a metallic collar in cobalt-chromium alloy, were assessed. In the control group (CG), no sealing agent was used at the abutment screw/implant interface. In the other groups, three different sealing agents were used at the abutment screw/implant interface: anaerobic sealing agent for medium torque (ASMT), anaerobic sealing agent for high torque (ASHT), and cyanoacrylate-based bonding agent (CYAB). All abutments were attached to the implants at 32 ± 1 N.cm. After 48 ± 2 hours of initial tightening, loosing torque (detorque) was measured using a digital torque wrench. Data were analyzed using Shapiro-Wilk, Wilcoxon, and Kruskal-Wallis tests, at 5% level of significance. In the CG and ASMT groups, detorque was lower than the insertion torque (24.6 ± 1.5 N.cm and 24.3 ± 1.1 N.cm, respectively). In the ASHT and CYAB groups, mean detorque increased in comparison to the insertion torque (51.0 ± 7.4 N.cm and 47.7 ± 15.1 N.cm, respectively). The ASHT was more efficient than the other sealing agents, increasing the remaining preload (detorque value) 58.88%. Although the cyanoacrylate-based bonding agent also generated high detorque values, the high standard deviation suggested its lower reliability.

  14. Are friends electric?: A review of the electric handpiece in clinical dental practice.

    PubMed

    Campbell, Stuart C

    2013-04-01

    Contemporary restorative procedures demand precise detail in tooth preparation to achieve optimal results. Inadequate tooth preparation is a frequent cause of failure. This review considers the electric high-speed, high-torque handpiece and how it may assist clinicians in achieving greater accuracy in tooth preparation. The electric handpiece provides a satisfactory alternative to the air-turbine and may be considered by clinicians who wish greater control with operative procedures.

  15. Modelling and Simulation in the Design Process of Armored Vehicles

    DTIC Science & Technology

    2003-03-01

    trackway conditions is a demanding optimization task. Basically, a high level of ride comfort requires soft suspension tuning, whereas driving safety relies...The maximum off-road speed is generally limited by traction, input torque, driving safety and ride comfort. When obstacles are to be negotiated, the...wheel travel was defined during the mobility simulation runs. Figure 14: Ramp 1.5m at 40 kph; virtual and physical prototype Driving safety and ride

  16. Design, characterization and control of the Unique Mobility Corporation robot

    NASA Technical Reports Server (NTRS)

    Velasco, Virgilio B., Jr.; Newman, Wyatt S.; Steinetz, Bruce; Kopf, Carlo; Malik, John

    1994-01-01

    Space and mass are at a premium on any space mission, and thus any machinery designed for space use should be lightweight and compact, without sacrificing strength. It is for this reason that NASA/LeRC contracted Unique Mobility Corporation to exploit their novel actuator designs to build a robot that would advance the present state of technology with respect to these requirements. Custom-designed motors are the key feature of this robot. They are compact, high-performance dc brushless servo motors with a high pole count and low inductance, thus permitting high torque generation and rapid phase commutation. Using a custom-designed digital signal processor-based controller board, the pulse width modulation power amplifiers regulate the fast dynamics of the motor currents. In addition, the programmable digital signal processor (DSP) controller permits implementation of nonlinear compensation algorithms to account for motoring vs. regeneration, torque ripple, and back-EMF. As a result, the motors produce a high torque relative to their size and weight, and can do so with good torque regulation and acceptably high velocity saturation limits. This paper presents the Unique Mobility Corporation robot prototype: its actuators, its kinematic design, its control system, and its experimental characterization. Performance results, including saturation torques, saturation velocities and tracking accuracy tests are included.

  17. Kinetic analysis of the function of the upper body for elite race walkers during official men 20 km walking race.

    PubMed

    Hoga-Miura, Koji; Ae, Michiyoshi; Fujii, Norihisa; Yokozawa, Toshiharu

    2016-10-01

    This study investigated the function of the upper extremities of elite race walkers during official 20 km races, focusing on the angular momentum about the vertical axis and other parameters of the upper extremities. Sixteen walkers were analysed using the three-dimensional direct linear transformation method during three official men's 20 km walking races. The subjects, included participants at the Olympics and World Championships, who finished without disqualification and had not been disqualified during the two years prior to or following the races analysed in the present study. The angular momenta of the upper and lower body were counterbalanced as in running and normal walking. The momentum of the upper body was mainly generated by the upper extremities. The joint force moment of the right shoulder and the joint torque at the left shoulder just before right toe-off were significantly correlated with the walking speed. These were counterbalanced by other moments and torques to the torso torque, which worked to obtain a large mechanical energy flow from the recovery leg to the support leg in the final phase of the support phase. Therefore, a function of the shoulder torque was to counterbalance the torso torque to gain a fast walking speed with substantial mechanical energy flow.

  18. Characteristics of a multilayer one-touch-point ultrasonic motor for high torque

    NASA Astrophysics Data System (ADS)

    Jeong, Seong-Su; Park, Tae-Gone; Park, Jong-Kyu

    2013-04-01

    In this paper, a one-touch-point ultrasonic motor is proposed. Fabricating the stator is easy because of its simple structure and the use of a punching technique. Also, a thin stator is advantageous to use in tight spaces. A thin metal plate was used as a V-shaped stator and two to the upper and two to the lower ceramic plates were attached to the upper and the lower surfaces respectively of the metal plate. When two sinusoidal sources with a phase difference of 90 degrees were applied to the stator, an elliptical displacement was generated at contact tip of the stator. Modeling of the ultrasonic motor was done and the displacement characteristics were defined by using a finite element analysis program (ATILA). To improve the speed and the torque of the ultrasonic motor, we analyzed the effects of the leg angle and the number of ceramic layers. In addition, a model with large x-axis and y-axis displacements was fabricated, and the speed and the torque were measured under various conditions. The elliptical motion of the contact tip of the stator was consistently obtained at the resonance frequency. The maximum speed and torque were obtained by using maximum elliptical displacement model. The speed and the torque increased linearly with increasing voltage.

  19. Within- and between-session reliability of the maximal voluntary knee extension torque and activation.

    PubMed

    Park, Jihong; Hopkins, J Ty

    2013-01-01

    A ratio between the torque generated by maximal voluntary isometric contraction (MVIC) and exogenous electrical stimulus, central activation ratio (CAR), has been widely used to assess quadriceps function. To date, no data exist regarding between-session reliability of this measurement. Thirteen neurologically sound volunteers underwent three testing sessions (three trials per session) with 48 hours between-session. Subjects performed MVICs of the quadriceps with the knee locked at 90° flexion and the hip at 85°. Once the MVIC reached a plateau, an electrical stimulation from superimposed burst technique (SIB: 125 V with peak output current 450 mA) was manually delivered and transmitted directly to the quadriceps via stimulating electrodes. CAR was calculated by using the following equation: CAR = MVIC torque/MVIC + SIB torque. Intraclass correlation coefficients (ICC) were calculated within- (ICC((2,1))) and between-session (ICC((2,k))) for MVIC torques and CAR values. Our data show that quadriceps MVIC and CAR are very reliable both within- (ICC((2,1)) = 0.99 for MVIC; 0.94 for CAR) and between-measurement sessions (ICC((2,k)) = 0.92 for MVIC; 0.86 for CAR) in healthy young adults. For clinical research, more data of the patients with pathological conditions are required to ensure reproducibility of calculation of CAR.

  20. Analysis of mechanical preparations in extracted teeth using ProTaper rotary instruments: value of the safety quotient.

    PubMed

    Blum, J Y; Machtou, P; Ruddle, C; Micallef, J P

    2003-09-01

    The purpose of this study was to apply the Endographe to analyze the vertical forces and torque developed during mechanical preparations in extracted teeth. The data collected in this study may be used to calculate the safety quotient (SQ) as proposed by J.T. McSpadden. The SQ formula is defined as the torque required to break a file at D3 divided by the mean working torque required to cut dentin. The Endographe is a unique force-analyzer device equipped to measure, record, and generate graphs of the vertical forces and torque exerted during root canal preparation. All preparations were performed by endodontists in roots with narrow, more restrictive canals, larger, more open canals, or in roots sectioned in two halves. All canals, including the sectioned canals, were prepared with ProTaper files in accordance with the manufacturer's guidelines for use. For narrow canals, the mean values of the generated vertical forces (g) and torque (g.cm) varied from 80 (+/- 20) g (SX) to 232 (+/- 60) g (F2) and from 80 (+/- 24) g x cm (F1) to 150 (+/- 45) g x cm (S2), respectively. For large canals, the mean values of the generated vertical forces (g) and torque (g x cm) varied from 80 (+/- 20) g (SX) to 340 (+/- 20) g (F1) and from 31 (+/- 9) g x cm (S2) to 96 (+/- 35) g x cm (SX), respectively. The SQ varied from 0.93 to 7.95 for narrow canals and from 1.58 to 14.50 for large canals. The SQ is intended to provide values that can be analyzed to predict whether a rotary file will have a tendency to break or will work safely during clinical use. However, if the formula is going to provide useful information, it must index the "rotation to failure torque" with the "mean working torque" at a specific location along the cutting blades of a file. Additionally, this mathematical formula does not account for factors such as the concentration of forces, the way the instruments are used, or the wear of the instruments. A precise protocol for canal preparation should emphasize using small flexible stainless steel hand files to create or verify that within any portion of a root canal there is sufficient space for rotary instruments to follow. When there is a confirmed smooth, reproducible glide path, then a "secured" space exists to safely guide the more flexible terminal extent of a rotary NiTi file. Endogrammes provide an innovative approach to the analysis of mechanical preparations and suggest that the ProTaper shaping files are best used with lateral forces to decrease the coronal screwing effect. The ProTaper finishing files should be used with slow penetration and be introduced only into canals that have a confirmed smooth and reproducible glide path. When any part of the overall length of a canal has been secured, then the number of instruments, the time spent utilizing each instrument, and the overall time progressing through a sequence of instruments to shape this region of the canal is reduced.

  1. Viral Communities Associated with Human Pericardial Fluids in Idiopathic Pericarditis

    PubMed Central

    Fancello, Laura; Monteil, Sonia; Popgeorgiev, Nikolay; Rivet, Romain; Gouriet, Frédérique; Fournier, Pierre-Edouard; Raoult, Didier; Desnues, Christelle

    2014-01-01

    Pericarditis is a common human disease defined by inflammation of the pericardium. Currently, 40% to 85% of pericarditis cases have no identified etiology. Most of these cases are thought to be caused by an infection of undetected, unsuspected or unknown viruses. In this work, we used a culture- and sequence-independent approach to investigate the viral DNA communities present in human pericardial fluids. Seven viral metagenomes were generated from the pericardial fluid of patients affected by pericarditis of unknown etiology and one metagenome was generated from the pericardial fluid of a sudden infant death case. As a positive control we generated one metagenome from the pericardial fluid of a patient affected by pericarditis caused by herpesvirus type 3. Furthermore, we used as negative controls a total of 6 pericardial fluids from 6 different individuals affected by pericarditis of non-infectious origin: 5 of them were sequenced as a unique pool and the remaining one was sequenced separately. The results showed a significant presence of torque teno viruses especially in one patient, while herpesviruses and papillomaviruses were present in the positive control. Co-infections by different genotypes of the same viral type (torque teno viruses) or different viruses (herpesviruses and papillomaviruses) were observed. Sequences related to bacteriophages infecting Staphylococcus, Enterobacteria, Streptococcus, Burkholderia and Pseudomonas were also detected in three patients. This study detected torque teno viruses and papillomaviruses, for the first time, in human pericardial fluids. PMID:24690743

  2. Forces and moments generated by the human arm: Variability and control

    PubMed Central

    Xu, Y; Terekhov, AV; Latash, ML; Zatsiorsky, VM

    2012-01-01

    This is an exploratory study of the accurate endpoint force vector production by the human arm in isometric conditions. We formulated three common-sense hypotheses and falsified them in the experiment. The subjects (n=10) exerted static forces on the handle in eight directions in a horizontal plane for 25 seconds. The forces were of 4 magnitude levels (10 %, 20%, 30% and 40% of individual MVC). The torsion moment on the handle (grasp moment) was not specified in the instruction. The two force components and the grasp moment were recorded, and the shoulder, elbow, and wrist joint torques were computed. The following main facts were observed: (a) While the grasp moment was not prescribed by the instruction, it was always produced. The moment magnitude and direction depended on the instructed force magnitude and direction. (b) The within-trial angular variability of the exerted force vector (angular precision) did not depend on the target force magnitude (a small negative correlation was observed). (c) Across the target force directions, the variability of the exerted force magnitude and directional variability exhibited opposite trends: In the directions where the variability of force magnitude was maximal, the directional variability was minimal and vice versa. (d) The time profiles of joint torques in the trials were always positively correlated, even for the force directions where flexion torque was produced at one joint and extension torque was produced at the other joint. (e) The correlations between the grasp moment and the wrist torque were negative across the tasks and positive within the individual trials. (f) In static serial kinematic chains, the pattern of the joint torques distribution could not be explained by an optimization cost function additive with respect to the torques. Plans for several future experiments have been suggested. PMID:23080084

  3. Variation in the total lengths of abutment/implant assemblies generated with a function of applied tightening torque in external and internal implant-abutment connection.

    PubMed

    Kim, Ki-Seong; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom; Yang, Jae-Ho; Lee, Jai-Bong; Yim, Soon-Ho

    2011-08-01

    Settling (embedment relaxation), which is the main cause for screw loosening, is developed by microroughness between implant and abutment metal surface. The objective of this study was to evaluate and compare the relationship between the level of applied torque and the settling of abutments into implants in external and internal implant-abutment connection. Five different implant-abutment connections were used (Ext, External butt joint + two-piece abutment; Int-H2, Internal hexagon + two-piece abutment; Int-H1, Internal hexagon + one-piece abutment; Int-O2, Internal octagon + two-piece abutment; Int-O1, Internal octagon + one-piece abutment). All abutments of each group were assembled and tightened with corresponding implants by a digital torque gauge. The total lengths of implant-abutment samples were measured at each torque (5, 10, 30 N cm and repeated 30 N cm with 10-min interval) by an electronic digital micrometer. The settling values were calculated by changes between the total lengths of implant-abutment samples. All groups developed settling with repeated tightening. The Int-H2 group showed markedly higher settling for all instances of tightening torque and the Ext group was the lowest. Statistically significant differences were found in settling values between the groups and statistically significant increases were observed within each group at different tightening torques (P<0.05). After the second tightening of 30 N cm, repeated tightening showed almost constant settling values. Results from the present study suggested that to minimize the settling effect, abutment screws should be retightened at least twice at 30 N cm torque at a 10-min interval in all laboratory and clinical procedures. © 2010 John Wiley & Sons A/S.

  4. Inner Core Tilt and Polar Motion: Probing the Dynamics Deep Inside the Earth

    NASA Astrophysics Data System (ADS)

    Dumberry, M.; Bloxham, J.

    2003-12-01

    A tilted inner core permits exchange of angular momentum between the core and the mantle through gravitational and pressure torques and, as a result, changes in the direction of Earth's axis of rotation with respect to the mantle. Some of the observed variations in the direction of Earth's rotation could then be caused by equatorial torques on the inner core which tilt the latter out of its alignment with the mantle. In this work, we investigate whether such a scenario could explain the decade polar motion known as the Markowitz wobble. We show that a decade polar motion of the same amplitude as the observed Markowitz wobble requires a torque of 1020 N m which tilts the inner core by 0.07 degrees. This result critically depends on the viscosity of the inner core; for a viscosity less than 5 x 1017 Pa s, larger torques are required. A torque of 1020 N m with decadal periodicity can perhaps be produced by electromagnetic coupling between the inner core and a component of the flow in the outer core known as torsional oscillations, provided that the radial magnetic field at the inner core boundary is on the order of 3 to 4 mT and satisfies certain geometrical constraints. The resulting polar motion thus produced is eccentric and polarized, in agreement with the observations. Our model suggests that equatorial torques at the inner core boundary might also excite the Chandler wobble, provided shorter wavelength torsional oscillations with higher natural frequencies have enough power or provided there exists another physical mechanism that can generate a large torque at a 14 month period.

  5. Effects of Structural Deformations of the Crank-Slider Mechanism on the Estimation of the Instantaneous Engine Friction Torque

    NASA Astrophysics Data System (ADS)

    CHALHOUB, N. G.; NEHME, H.; HENEIN, N. A.; BRYZIK, W.

    1999-07-01

    The focus on the current study is to assess the effects of structural deformations of the crankshaft/connecting-rod/piston mechanism on the computation of the instantaneous engine friction torque. This study is performed in a fully controlled environment in order to isolate the effects of structural deformations from those of measurement errors or noise interference. Therefore, a detailed model, accounting for the rigid and flexible motions of the crank-slider mechanism and including engine component friction formulations, is considered in this study. The model is used as a test bed to generate the engine friction torque,Tfa, and to predict the rigid and flexible motions of the system in response to the cylinder gas pressure. The torsional vibrations and the rigid body angular velocity of the crankshaft, as predicted by the detailed model of the crank-slider mechanism, are used along with the engine load torque and the cylinder gas pressure in the (P-ω) method to estimate the engine friction torque,Tfe. This method is well suited for the purpose of this study because its formulation is based on the rigid body model of the crank-slider mechanism. The digital simulation results demonstrate that the exclusion of the structural deformations of the crank-slider mechanism from the formulation of the (P-ω) method leads to an overestimation of the engine friction torque near the top-dead-center (TDC) position of the piston under firing conditions. Moreover, for the remainder of the engine cycle, the estimated friction torque exhibits large oscillations and takes on positive numerical values as if it is inducing energy into the system. Thus, the adverse effects of structural deformations of the crank-slider mechanism on the estimation of the engine friction torque greatly differ in their nature from one phase of the engine cycle to another.

  6. Kinesthetic coupling between operator and remote manipulator

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Salisbury, J. K., Jr.

    1980-01-01

    A universal force-reflecting hand controller has been developed which allows the establishment of a kinesthetic coupling between the operator and a remote manipulator. The six-degree-of-freedom controller was designed to generate forces and torques on its three positional and three rotational axes in order to permit the operator to accurately feel the forces encountered by the manipulator and be as transparent to operate as possible. The universal controller has been used in an application involving a six-degree-of-freedom mechanical arm equipped with a six-dimensional force-torque sensor at its base. In this application, the hand controller acts as a position control input device to the arm, while forces and torques sensed at the base of the mechanical hand back drive the hand controller. The positional control relation and the back driving of the controller according to inputs experienced by the force-torque sensor are established through complex mathematical transformations performed by a minicomputer. The hand controller is intended as a development tool for investigating force-reflecting master-slave manipulator control technology.

  7. Distribution of peri-implant stresses with a countertorque device.

    PubMed

    Sendyk, Claudio Luiz; Lopez, Thais Torralbo; de Araujo, Cleudmar Amaral; Sendyk, Wilson Roberto; Goncalvez, Valdir Ferreira

    2013-01-01

    To verify the effectiveness of a countertorque device in dental implants in redistributing stress to the bone-implant interface during tightening of the abutment screw. Two prismatic photoelastic samples containing implants were made, one with a 3.75-mm-diameter implant and the other with a 5.0-mm-diameter implant (both implants had an external-hexagon interface) and the respective abutments were attached (CeraOne). The samples were placed in a support and submitted to torques of 10, 20, 32, and 45 Ncm with an electronic torque meter. The torque application was repeated 10 times on each sample (n = 10) with and without a countertorque device. Photoelastic patterns were detected; thus, a photographic register of each test was selected. The fringe patterns were analyzed at discrete points near the implants' external arch. In both implants analyzed, a stress gradient reduction was observed through the implant with the countertorque device. The countertorque device used in this study proved to be effective in reducing the stresses generated in the peri-implant bone tissue during torque application.

  8. Tilted orthodontic micro implants: a photoelastic stress analysis.

    PubMed

    Çehreli, Seçil; Özçırpıcı, Ayça Arman; Yılmaz, Alev

    2013-10-01

    The aim of this study was to examine peri-implant stresses around orthodontic micro implants upon torque-tightening and static load application by quasi-three-dimensional photoelastic stress analysis. Self-tapping orthodontic micro implants were progressively inserted into photoelastic models at 30, 45, 70, and 90 degrees and insertion torques were measured. Stress patterns (isochromatic fringe orders) were recorded by the quasi-three-dimensional photoelastic method using a circular polariscope after insertion and 250 g static force application. Torque-tightening of implants generated peri-implant stresses. Upon insertion, 90 degree placed implants displayed the lowest and homogeneous stress distribution followed by 30, 70, and 45 degree tilted implants. Static loading did not dramatically alter stress fields around the implants tested. The highest alteration in stress distribution was observed for the 90 degree placed implant, while 70 degree tilted implant had the lowest stresses among tilted implants. Torque-tightening of orthodontic micro implants creates a stress field that is not dramatically altered after application of static lateral moderate orthodontic loads, particularly at the cervical region of tilted implants.

  9. Dynamics and inertia of a skyrmion in chiral magnets and interfaces: A linear response approach based on magnon excitations

    DOE PAGES

    Lin, Shi-Zeng

    2017-07-06

    We derive the skyrmion dynamics in response to a weak external drive, taking all the magnon modes into account. A skyrmion has rotational symmetry, and the magnon modes can be characterized by an angular momentum. For a weak distortion of a skyrmion, only the magnon modes with an angular momentum | m | = 1 govern the dynamics of skyrmion topological center. We also determine that the skyrmion inertia comes by way of the magnon modes in the continuum spectrum. For a skyrmion driven by a magnetic field gradient or by a spin transfer torque generated by a current, themore » dynamical response is practically instantaneous. This justifies the rigid skyrmion approximation used in Thiele's collective coordinate approach. For a skyrmion driven by a spin Hall torque, the torque couples to the skyrmion motion through the magnons in the continuum and damping; therefore the skyrmion dynamics shows sizable inertia in this case. The trajectory of a skyrmion is an ellipse for an ac drive of spin Hall torque.« less

  10. Comparison study between wind turbine and power kite wakes

    NASA Astrophysics Data System (ADS)

    Haas, T.; Meyers, J.

    2017-05-01

    Airborne Wind Energy (AWE) is an emerging technology in the field of renewable energy that uses kites to harvest wind energy. However, unlike for conventional wind turbines, the wind environment in AWE systems has not yet been studied in much detail. We propose a simulation framework using Large Eddy Simulation to model the wakes of such kite systems and offer a comparison with turbine-like wakes. In order to model the kite effects on the flow, a lifting line technique is used. We investigate different wake configurations related to the operation modes of wind turbines and airborne systems in drag mode. In the turbine mode, the aerodynamic torque of the blades is directly added to the flow. In the kite drag mode, the aerodynamic torque of the wings is directly balanced by an opposite torque induced by on-board generators; this results in a total torque on the flow that is zero. We present the main differences in wake characteristics, especially flow induction and vorticity fields, for the depicted operation modes both with laminar and turbulent inflows.

  11. Improved ITOS attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1971-01-01

    The ITOS with an improved attitude control system is described. A Hall generator brushless dc torque motor will replace the brush dc torque motor on ITOS-I and ITOS-A (NOAA-1). The four attitude horizon sensors will be replaced with two CO2 sensors for better horizon definition. An earth horizon splitting technique will be used to keep the earth facing side of the satellite toward earth even if the desired circular orbit is not achieved. The external appearance of the pitch control subsystem differs from TIROS-M (ITOS-1) and ITOS-A (NOAA-1) in that two instead of one pitch control electronics (PCE) boxes are used. Two instead of four horizon sensors will be used and one instead of two mirrors will be used for sensor scanning. The brushless motor will eliminate the requirement for brushes, strain gages and the telemetry for the brush wear. A single rotating flywheel, supported by a single bearing provides the gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminates the requirement for expendable propellants which would limit satellite life in orbit.

  12. Self-healing bolted joint employing a shape memory actuator

    NASA Astrophysics Data System (ADS)

    Muntges, Daniel E.; Park, Gyuhae; Inman, Daniel J.

    2001-08-01

    This paper is a report of an initial investigation into the active control of preload in the joint using a shape memory actuator around the axis of the bolt shaft. Specifically, the actuator is a cylindrical Nitinol washer that expands axially when heated, according to the shape memory effect. The washer is actuated in response to an artificial decrease in torque. Upon actuation, the stress generated by its axial strain compresses the bolted members and creates a frictional force that has the effect of generating a preload and restoring lost torque. In addition to torque wrenches, the system in question was monitored in all stages of testing using piezoelectric impedance analysis. Impedance analysis drew upon research techniques developed at Center for Intelligent Material Systems and Structures, in which phase changes in the impedance of a self-sensing piezoceramic actuator correspond to changes in joint stiffness. Through experimentation, we have documented a successful actuation of the shape memory element. Due to complexity of constitutive modeling, qualitative analysis by the impedance method is used to illustrate the success. Additional considerations encountered in this initial investigation are made to guide further thorough research required for the successful commercial application of this promising technique.

  13. Stepper motor

    NASA Technical Reports Server (NTRS)

    Dekramer, Cornelis

    1994-01-01

    The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.

  14. Development of a Hardware-in-the-Loop Simulator for Control Moment Gyroscope-Based Attitude Control Systems

    DTIC Science & Technology

    2015-12-01

    angular momentum is simply the scalar value projected along the axis of rotation of the momentum wheel (see Figure 1). Since reaction wheels are fixed ...CMGs generate torque by gimbaling a momentum wheel rotating at a nominally fixed rate [2]. The torque output of a CMG is the cross product of the...notably the fixed skew angle of the original system. The goal of this research is to build upon the previous redesign efforts and develop a four-CMG HIL

  15. Novel Driving Control of Power Assisted Wheelchair Based on Minimum Jerk Trajectory

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu

    This paper describes a novel trajectory control scheme for power assisted wheelchair. Human input torque patterns are always intermittent in power assisted wheelchairs, therefore, the suitable trajectories must be generated also after the human decreases his/her input torque. This paper tries to solve this significant problem based on minimum jerk model minimizing the changing rate of acceleration. The proposed control system based on minimum jerk trajectory is expected to improve the ride quality, stability and safety. Some experiments show the effectiveness of the proposed method.

  16. The Monitoring System of the Operating State of the Gear Wheels of the Torque Multiplier of the Desalination Plant Steam Generator

    NASA Astrophysics Data System (ADS)

    Danilin, A. I.; Neverov, V. V.; Danilin, S. A.; Shimanov, A. A.; Tsapkova, A. B.

    2018-01-01

    The article describes a noncontact operational control method based on the processing of a microwave signal reflected from the controlled teeth of the wheel. In this paper describes the influence of wear patterns on the characteristic information parameters of the analyzed signals. The block diagram in section 3 shows the experimental system for monitoring the operating state of the gear wheels of the steam compressor torque multiplier. The design of the primary converter is briefly described.

  17. Fluidic emergency roll control system. [for emergency aircraft control following failure of primary roll control system

    NASA Technical Reports Server (NTRS)

    Haefner, K. B.; Honda, T. S.

    1973-01-01

    A fluidic emergency roll control system for aircraft stabilization in the event of primary flight control failure was evaluated. The fluidic roll control units were designed to provide roll torque proportional to an electrical command as operated by two diametrically opposed thrust nozzles located in the wing tips. The control package consists of a solid propellant gas generator, two diametrically opposed vortex valve modulated thrust nozzles, and an electromagnetic torque motor. The procedures for the design, development, and performance testing of the system are described.

  18. Decoupling analysis of a novel bearingless flux-switching permanent magnet motor

    NASA Astrophysics Data System (ADS)

    Zhao, Chenyin; Zhu, Huangqiu; Qin, Yuemei

    2017-05-01

    In this paper, a novel 12/10 stator/rotor pole bearingless flux-switching permanent magnet (BFSPM) motor is proposed to overcome the drawbacks of rotor permanent magnet type bearingless motors. The basic motor configuration, including motor configuration and winding configuration, is introduced firstly. Then, based on the principle of reverse direction magnetization for symmetrical rotor teeth, the radial suspension forces generation principle is analyzed in detail. Finally, decoupling performances between suspension force windings and torque windings are investigated. The results show that the proposed BFSPM not only ensures the merits of high torque output capability compared with conventional 12/10 stator/rotor pole FSPM motor, but also achieves stable radial suspension forces which have little mutual effect with torque. The validity of the proposed structure has been verified by finite element analysis (FEA).

  19. Sensorimotor adaptations to microgravity in humans.

    PubMed

    Edgerton, V R; McCall, G E; Hodgson, J A; Gotto, J; Goulet, C; Fleischmann, K; Roy, R R

    2001-09-01

    Motor function is altered by microgravity, but little detail is available as to what these changes are and how changes in the individual components of the sensorimotor system affect the control of movement. Further, there is little information on whether the changes in motor performance reflect immediate or chronic adaptations to changing gravitational environments. To determine the effects of microgravity on the neural control properties of selected motor pools, four male astronauts from the NASA STS-78 mission performed motor tasks requiring the maintenance of either ankle dorsiflexor or plantarflexor torque. Torques of 10 or 50% of a maximal voluntary contraction (MVC) were requested of the subjects during 10 degrees peak-to-peak sinusoidal movements at 0.5 Hz. When 10% MVC of the plantarflexors was requested, the actual torques generated in-flight were similar to pre-flight values. Post-flight torques were higher than pre- and in-flight torques. The actual torques when 50% MVC was requested were higher in- and post-flight than pre-flight. Soleus (Sol) electromyographic (EMG) amplitudes during plantarflexion were higher in-flight than pre- or post-flight for both the 10 and 50% MVC tasks. No differences in medial gastrocnemius (MG) EMG amplitudes were observed for either the 10 or 50% MVC tasks. The EMG amplitudes of the tibialis anterior (TA), an antagonist to plantarflexion, were higher in- and post-flight than pre-flight for the 50% MVC task. During the dorsiflexion tasks, the torques generated in both the 10 and 50% MVC tasks did not differ pre-, in- and post-flight. TA EMG amplitudes were significantly higher in- than pre-flight for both the 10 or 50% MVC tasks, and remained elevated post-flight for the 50% MVC test. Both the Sol and MG EMG amplitudes were significantly higher in-flight than either pre- or post-flight for both the 10 and 50% MVC tests. These data suggest that the most consistent response to space flight was an elevation in the level of contractions of agonists and antagonists when attempting to maintain constant torques at a given level of MVC. Also, the chronic levels of EMG activity in selected ankle flexor and extensor muscles during space flight and during routine activities on Earth were recorded. Compared with pre- and post-flight values, there was a marked increase in the total EMG activity of the TA and the Sol and no change in the MG EMG activity in-flight. These data indicate that space flight, as occurs on shuttle missions, is a model of elevated activation of both flexor and extensor muscles, probably reflecting the effects of programmed work schedules in flight rather than a direct effect of microgravity.

  20. Sensorimotor adaptations to microgravity in humans

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; McCall, G. E.; Hodgson, J. A.; Gotto, J.; Goulet, C.; Fleischmann, K.; Roy, R. R.

    2001-01-01

    Motor function is altered by microgravity, but little detail is available as to what these changes are and how changes in the individual components of the sensorimotor system affect the control of movement. Further, there is little information on whether the changes in motor performance reflect immediate or chronic adaptations to changing gravitational environments. To determine the effects of microgravity on the neural control properties of selected motor pools, four male astronauts from the NASA STS-78 mission performed motor tasks requiring the maintenance of either ankle dorsiflexor or plantarflexor torque. Torques of 10 or 50% of a maximal voluntary contraction (MVC) were requested of the subjects during 10 degrees peak-to-peak sinusoidal movements at 0.5 Hz. When 10% MVC of the plantarflexors was requested, the actual torques generated in-flight were similar to pre-flight values. Post-flight torques were higher than pre- and in-flight torques. The actual torques when 50% MVC was requested were higher in- and post-flight than pre-flight. Soleus (Sol) electromyographic (EMG) amplitudes during plantarflexion were higher in-flight than pre- or post-flight for both the 10 and 50% MVC tasks. No differences in medial gastrocnemius (MG) EMG amplitudes were observed for either the 10 or 50% MVC tasks. The EMG amplitudes of the tibialis anterior (TA), an antagonist to plantarflexion, were higher in- and post-flight than pre-flight for the 50% MVC task. During the dorsiflexion tasks, the torques generated in both the 10 and 50% MVC tasks did not differ pre-, in- and post-flight. TA EMG amplitudes were significantly higher in- than pre-flight for both the 10 or 50% MVC tasks, and remained elevated post-flight for the 50% MVC test. Both the Sol and MG EMG amplitudes were significantly higher in-flight than either pre- or post-flight for both the 10 and 50% MVC tests. These data suggest that the most consistent response to space flight was an elevation in the level of contractions of agonists and antagonists when attempting to maintain constant torques at a given level of MVC. Also, the chronic levels of EMG activity in selected ankle flexor and extensor muscles during space flight and during routine activities on Earth were recorded. Compared with pre- and post-flight values, there was a marked increase in the total EMG activity of the TA and the Sol and no change in the MG EMG activity in-flight. These data indicate that space flight, as occurs on shuttle missions, is a model of elevated activation of both flexor and extensor muscles, probably reflecting the effects of programmed work schedules in flight rather than a direct effect of microgravity.

  1. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments.

    PubMed

    Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph

    2017-09-26

    Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.

  2. Torque differences due to the material variation of the orthodontic appliance: a finite element study.

    PubMed

    Papageorgiou, Spyridon N; Keilig, Ludger; Vandevska-Radunovic, Vaska; Eliades, Theodore; Bourauel, Christoph

    2017-12-01

    Torque of the maxillary incisors is crucial to occlusal relationship and esthetics and can be influenced by many factors. The aim of this study was to assess the relative influence of the material of the orthodontic appliance (adhesive, bracket, ligature, and wire) on tooth displacements and developed stresses/strains after torque application. A three-dimensional upper right central incisor with its periodontal ligament (PDL) and alveolus was modeled. A 0.018-in. slot discovery® (Dentaurum, Ispringen, Germany) bracket with a rectangular 0.018 x 0.025-in. wire was generated. The orthodontic appliance varied in the material of its components: adhesive (composite resin or resin-modified glass ionomer cement), bracket (titanium, steel, or ceramic), wire (beta-titanium or steel), and ligature (elastomeric or steel). A total of 24 models were generated, and a palatal root torque of 5° was applied. Afterwards, crown and apex displacement, strains in the PDL, and stresses in the bracket were calculated and analyzed. The labial crown displacement and the palatal root displacement of the tooth were mainly influenced by the material of the wire (up to 150% variation), followed by the material of the bracket (up to 19% variation). The magnitude of strains developed in the PDL was primarily influenced by the material of the wire (up to 127% variation), followed by the material of the bracket (up to 30% variation) and the ligature (up to 13% variation). Finally, stresses developed at the bracket were mainly influenced by the material of the wire (up to 118% variation) and the bracket (up to 59% variation). The material properties of the orthodontic appliance and all its components should be considered during torque application. However, these in silico results need to be validated in vivo before they can be clinically extrapolated.

  3. In-situ, On-demand Lubrication System for Space Mechanisms

    NASA Technical Reports Server (NTRS)

    Marchetti, Mario; Jones, William R., Jr.; Pepper, Stephen V.; Jansen, Mark J.; Predmore, Roamer E.

    2002-01-01

    Many of today's spacecraft have long mission lifetimes. Whatever the lubrication method selected, the initial lubricant charge is required to last the entire mission. Fluid lubricant losses are mainly due to evaporation, tribo-degradation, and oil creep out of the tribological regions. In the past, several techniques were developed to maintain the appropriate amount of oil in the system. They were based on oil reservoirs (cartridges, impregnated porous parts), barrier films, and labyrinth seals. Nevertheless, all these systems have had limited success or have not established a proven record for space missions. The system reported here provides to the ball-race contact fresh lubricant in-situ and on demand. The lubricant is stored in a porous cartridge attached to the inner or the outer ring of a ball bearing. The oil is released by heating the cartridge to eject oil, taking advantage of the greater thermal expansion of the oil compared to the porous network. The heating may be activated by torque increases that signal the depletion of oil in the contact. The low surface tension of the oil compared to the ball bearing material is utilized and the close proximity of the cartridge to the moving balls allows the lubricant to reach the ball-race contacts. This oil resupply system can be used to avoid a mechanism failure or reduce torque to an acceptable level and extend the life of the component.

  4. Comparison between electrically evoked and voluntary isometric contractions for biceps brachii muscle oxidative metabolism using near-infrared spectroscopy.

    PubMed

    Muthalib, Makii; Jubeau, Marc; Millet, Guillaume Y; Maffiuletti, Nicola A; Nosaka, Kazunori

    2009-09-01

    This study compared voluntary (VOL) and electrically evoked isometric contractions by muscle stimulation (EMS) for changes in biceps brachii muscle oxygenation (tissue oxygenation index, DeltaTOI) and total haemoglobin concentration (DeltatHb = oxygenated haemoglobin + deoxygenated haemoglobin) determined by near-infrared spectroscopy. Twelve men performed EMS with one arm followed 24 h later by VOL with the contralateral arm, consisting of 30 repeated (1-s contraction, 1-s relaxation) isometric contractions at 30% of maximal voluntary contraction (MVC) for the first 60 s, and maximal intensity contractions thereafter (MVC for VOL and maximal tolerable current at 30 Hz for EMS) until MVC decreased approximately 30% of pre-exercise MVC. During the 30 contractions at 30% MVC, DeltaTOI decrease was significantly (P < 0.05) greater and DeltatHb was significantly (P < 0.05) lower for EMS than VOL, suggesting that the metabolic demand for oxygen in EMS is greater than VOL at the same torque level. However, during maximal intensity contractions, although EMS torque (approximately 40% of VOL) was significantly (P < 0.05) lower than VOL, DeltaTOI was similar and tHb was significantly (P < 0.05) lower for EMS than VOL towards the end, without significant differences between the two sessions in the recovery period. It is concluded that the oxygen demand of the activated biceps brachii muscle in EMS is comparable to VOL at maximal intensity.

  5. Strength deficits of the shoulder complex during isokinetic testing in people with chronic stroke

    PubMed Central

    Nascimento, Lucas R.; Teixeira-Salmela, Luci F.; Polese, Janaine C.; Ada, Louise; Faria, Christina D. C. M.; Laurentino, Glória E. C.

    2014-01-01

    OBJECTIVES: To examine the strength deficits of the shoulder complex after stroke and to characterize the pattern of weakness according to type of movement and type of isokinetic parameter. METHOD: Twelve chronic stroke survivors and 12 age-matched healthy controls had their shoulder strength measured using a Biodex isokinetic dynamometer. Concentric measures of peak torque and work during shoulder movements were obtained in random order at speeds of 60°/s for both groups and sides. Type of movement was defined as scapulothoracic (protraction and retraction), glenohumeral (shoulder internal and external rotation) or combined (shoulder flexion and extension). Type of isokinetic parameter was defined as maximum (peak torque) or sustained (work). Strength deficits were calculated using the control group as reference. RESULTS: The average strength deficit for the paretic upper limb was 52% for peak torque and 56% for work. Decreases observed in the non-paretic shoulder were 21% and 22%, respectively. Strength deficit of the scapulothoracic muscles was similar to the glenohumeral muscles, with a mean difference of 6% (95% CI -5 to 17). Ability to sustain torque throughout a given range of motion was decreased as much as the peak torque, with a mean difference of 4% (95% CI -2 to 10). CONCLUSIONS: The findings suggest that people after stroke might benefit from strengthening exercises directed at the paretic scapulothoracic muscles in addition to exercises of arm elevation. Clinicians should also prescribe different exercises to improve the ability to generate force and the ability to sustain the torque during a specific range of motion. PMID:25003280

  6. Mathematical model for gyroscope effects

    NASA Astrophysics Data System (ADS)

    Usubamatov, Ryspek

    2015-05-01

    Gyroscope effects are used in many engineering calculations of rotating parts, and a gyroscope is the basic unit of numerous devices and instruments used in aviation, space, marine and other industries. The primary attribute of a gyroscope is a spinning rotor that persists in maintaining its plane of rotation, creating gyroscope effects. Numerous publications represent the gyroscope theory using mathematical models based on the law of kinetic energy conservation and the rate of change in angular momentum of a spinning rotor. Gyroscope theory still attracts many researchers who continue to discover new properties of gyroscopic devices. In reality, gyroscope effects are more complex and known mathematical models do not accurately reflect the actual motions. Analysis of forces acting on a gyroscope shows that four dynamic components act simultaneously: the centrifugal, inertial and Coriolis forces and the rate of change in angular momentum of the spinning rotor. The spinning rotor generates a rotating plane of centrifugal and Coriols forces that resist the twisting of the spinning rotor with external torque applied. The forced inclination of the spinning rotor generates inertial forces, resulting in precession torque of a gyroscope. The rate of change of the angular momentum creates resisting and precession torques which are not primary one in gyroscope effects. The new mathematical model for the gyroscope motions under the action of the external torque applied can be as base for new gyroscope theory. At the request of the author of the paper, this corrigendum was issued on 24 May 2016 to correct an incomplete Table 1 and errors in Eq. (47) and Eq. (48).

  7. Vision-based stabilization of nonholonomic mobile robots by integrating sliding-mode control and adaptive approach

    NASA Astrophysics Data System (ADS)

    Cao, Zhengcai; Yin, Longjie; Fu, Yili

    2013-01-01

    Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.

  8. Energy harvesting using AC machines with high effective pole count

    NASA Astrophysics Data System (ADS)

    Geiger, Richard Theodore

    In this thesis, ways to improve the power conversion of rotating generators at low rotor speeds in energy harvesting applications were investigated. One method is to increase the pole count, which increases the generator back-emf without also increasing the I2R losses, thereby increasing both torque density and conversion efficiency. One machine topology that has a high effective pole count is a hybrid "stepper" machine. However, the large self inductance of these machines decreases their power factor and hence the maximum power that can be delivered to a load. This effect can be cancelled by the addition of capacitors in series with the stepper windings. A circuit was designed and implemented to automatically vary the series capacitance over the entire speed range investigated. The addition of the series capacitors improved the power output of the stepper machine by up to 700%. At low rotor speeds, with the addition of series capacitance, the power output of the hybrid "stepper" was more than 200% that of a similarly sized PMDC brushed motor. Finally, in this thesis a hybrid lumped parameter / finite element model was used to investigate the impact of number, shape and size of the rotor and stator teeth on machine performance. A typical off-the-shelf hybrid stepper machine has significant cogging torque by design. This cogging torque is a major problem in most small energy harvesting applications. In this thesis it was shown that the cogging and ripple torque can be dramatically reduced. These findings confirm that high-pole-count topologies, and specifically the hybrid stepper configuration, are an attractive choice for energy harvesting applications.

  9. Optimal combination of minimum degrees of freedom to be actuated in the lower limbs to facilitate arm-free paraplegic standing.

    PubMed

    Kim, Joon-Young; Mills, James K; Vette, Albert H; Popovic, Milos R

    2007-12-01

    Arm-free paraplegic standing via functional electrical stimulation (FES) has drawn much attention in the biomechanical field as it might allow a paraplegic to stand and simultaneously use both arms to perform daily activities. However, current FES systems for standing require that the individual actively regulates balance using one or both arms, thus limiting the practical use of these systems. The purpose of the present study was to show that actuating only six out of 12 degrees of freedom (12-DOFs) in the lower limbs to allow paraplegics to stand freely is theoretically feasible with respect to multibody stability and physiological torque limitations of the lower limb DOF. Specifically, the goal was to determine the optimal combination of the minimum DOF that can be realistically actuated using FES while ensuring stability and able-bodied kinematics during perturbed arm-free standing. The human body was represented by a three-dimensional dynamics model with 12-DOFs in the lower limbs. Nakamura's method (Nakamura, Y., and Ghodoussi, U., 1989, "Dynamics Computation of Closed-Link Robot Mechanisms With Nonredundant and Redundant Actuators," IEEE Trans. Rob. Autom., 5(3), pp. 294-302) was applied to estimate the joint torques of the system using experimental motion data from four healthy subjects. The torques were estimated by applying our previous finding that only 6 (6-DOFs) out of 12-DOFs in the lower limbs need to be actuated to facilitate stable standing. Furthermore, it was shown that six cases of 6-DOFs exist, which facilitate stable standing. In order to characterize each of these cases in terms of the torque generation patterns and to identify a potential optimal 6-DOF combination, the joint torques during perturbations in eight different directions were estimated for all six cases of 6-DOFs. The results suggest that the actuation of both ankle flexionextension, both knee flexionextension, one hip flexionextension, and one hip abductionadduction DOF will result in the minimum torque requirements to regulate balance during perturbed standing. To facilitate unsupported FES-assisted standing, it is sufficient to actuate only 6-DOFs. An optimal combination of 6-DOFs exists, for which this system can generate able-bodied kinematics while requiring lower limb joint torques that are producible using contemporary FES technology. These findings suggest that FES-assisted arm-free standing of paraplegics is theoretically feasible, even when limited by the fact that muscles actuating specific DOFs are often denervated or difficult to access.

  10. Characterization of the temperature-sensitive reaction of F1-ATPase by using single-molecule manipulation

    PubMed Central

    Watanabe, Rikiya; Noji, Hiroyuki

    2014-01-01

    F1-ATPase (F1) is a rotary motor protein that couples ATP hydrolysis to mechanical rotation with high efficiency. In our recent study, we observed a highly temperature-sensitive (TS) step in the reaction catalyzed by a thermophilic F1 that was characterized by a rate constant remarkably sensitive to temperature and had a Q10 factor of 6–19. Since reactions with high Q10 values are considered to involve large conformational changes, we speculated that the TS reaction plays a key role in the rotation of F1. To clarify the role of the TS reaction, in this study, we conducted a stall and release experiment using magnetic tweezers, and assessed the torque generated during the TS reaction. The results indicate that the TS reaction generates the same amount of rotational torque as does ATP binding, but more than that generated during ATP hydrolysis. Thus, we confirmed that the TS reaction contributes significantly to the rotation of F1. PMID:24825532

  11. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis.

    PubMed

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-08-01

    Orthodontic tooth movement is a complex procedure that occurs due to various biomechanical changes in the periodontium. Optimal orthodontic forces yield maximum tooth movement whereas if the forces fall beyond the optimal threshold it can cause deleterious effects. Among various types of tooth movements intrusion and lingual root torque are associated with causing root resoprtion, especially with the incisors. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with intrusion and lingual root torque using finite element method (FEM). A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with intrusive and lingual root torque movements by a 3D FEM using ANSYS software using linear stress analysis. It was observed that with the application of intrusive load compressive stresses were distributed at the apex whereas tensile stress was seen at the cervical margin. With the application of lingual root torque maximum compressive stress was distributed at the apex and tensile stress was distributed throughout the PDL. For intrusive and lingual root torque movements stress values over the PDL was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using linear properties.

  12. The effect of frictional torque and bending moment on corrosion at the taper interface : an in vitro study.

    PubMed

    Panagiotidou, A; Meswania, J; Osman, K; Bolland, B; Latham, J; Skinner, J; Haddad, F S; Hart, A; Blunn, G

    2015-04-01

    The aim of this study was to assess the effect of frictional torque and bending moment on fretting corrosion at the taper interface of a modular femoral component and to investigate whether different combinations of material also had an effect. The combinations we examined were 1) cobalt-chromium (CoCr) heads on CoCr stems 2) CoCr heads on titanium alloy (Ti) stems and 3) ceramic heads on CoCr stems. In test 1 increasing torque was imposed by offsetting the stem in the anteroposterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm when the torque generated was equivalent to 0 Nm, 9 Nm, 14 Nm and 18 Nm. In test 2 we investigated the effect of increasing the bending moment by offsetting the application of axial load from the midline in the mediolateral plane. Increments of offset equivalent to head + 0 mm, head + 7 mm and head + 14 mm were used. Significantly higher currents and amplitudes were seen with increasing torque for all combinations of material. However, Ti stems showed the highest corrosion currents. Increased bending moments associated with using larger offset heads produced more corrosion: Ti stems generally performed worse than CoCr stems. Using ceramic heads did not prevent corrosion, but reduced it significantly in all loading configurations. ©2015 The British Editorial Society of Bone & Joint Surgery.

  13. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis

    PubMed Central

    Hemanth, M; deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-01-01

    Background: Orthodontic tooth movement is a complex procedure that occurs due to various biomechanical changes in the periodontium. Optimal orthodontic forces yield maximum tooth movement whereas if the forces fall beyond the optimal threshold it can cause deleterious effects. Among various types of tooth movements intrusion and lingual root torque are associated with causing root resoprtion, especially with the incisors. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with intrusion and lingual root torque using finite element method (FEM). Materials and Methods: A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with intrusive and lingual root torque movements by a 3D FEM using ANSYS software using linear stress analysis. Results: It was observed that with the application of intrusive load compressive stresses were distributed at the apex whereas tensile stress was seen at the cervical margin. With the application of lingual root torque maximum compressive stress was distributed at the apex and tensile stress was distributed throughout the PDL. Conclusion: For intrusive and lingual root torque movements stress values over the PDL was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using linear properties. PMID:26464555

  14. Does Humeral Component Lateralization in Reverse Shoulder Arthroplasty Affect Rotator Cuff Torque? Evaluation in a Cadaver Model.

    PubMed

    Chan, Kevin; Langohr, G Daniel G; Mahaffy, Matthew; Johnson, James A; Athwal, George S

    2017-10-01

    Humeral component lateralization in reverse total shoulder arthroplasty (RTSA) may improve the biomechanical advantage of the rotator cuff, which could improve the torque generated by the rotator cuff and increase internal and external rotation of the shoulder. The purpose of this in vitro biomechanical study was to evaluate the effect of humeral component lateralization (or lateral offset) on the torque of the anterior and posterior rotator cuff. Eight fresh-frozen cadaveric shoulders from eight separate donors (74 ± 8 years; six males, two females) were tested using an in vitro simulator. All shoulders were prescreened for soft tissue deficit and/or deformity before testing. A custom RTSA prosthesis was implanted that allowed five levels of humeral component lateralization (15, 20, 25, 30, 35 mm), which avoided restrictions imposed by commercially available designs. The torques exerted by the anterior and posterior rotator cuff were measured three times and then averaged for varying humeral lateralization, abduction angle (0°, 45°, 90°), and internal and external rotation (-60°, -30°, 0°, 30°, 60°). A three-way repeated measures ANOVA (abduction angle, humeral lateralization, internal rotation and external rotation angles) with a significance level of α = 0.05 was used for statistical analysis. Humeral lateralization only affected posterior rotator cuff torque at 0° abduction, where increasing humeral lateralization from 15 to 35 mm at 60° internal rotation decreased external rotation torque by 1.6 ± 0.4 Nm (95% CI, -0.07 -1.56 Nm; p = 0.06) from 4.0 ± 0.3 Nm to 2.4 ± 0.6 Nm, respectively, but at 60° external rotation increased external rotation torque by 2.2 ± 0.5 Nm (95% CI, -4.2 to -0.2 Nm; p = 0.029) from 6.2 ± 0.5 Nm to 8.3 ± 0.5 Nm, respectively. Anterior cuff torque was affected by humeral lateralization in more arm positions than the posterior cuff, where increasing humeral lateralization from 15 to 35 mm when at 60° internal rotation increased internal rotation torque at 0°, 45°, and 90° abduction by 3.2 ± 0.5 Nm (95% CI, 1.1-5.2 Nm; p = 0.004) from 6.6 ± 0.6 Nm to 9.7 ± 0.6 Nm, 4.0 ± 0.3 Nm (95% CI, 2.8-5.0 Nm; p < 0.001) from 1.7 ± 1.0 Nm to 5.6 ± 0.9 Nm, and 2.2 ± 0.2 Nm (95% CI, 1.4-2.9 Nm; p < 0.001) from 0.6 ± 0.6 Nm to 2.8 ± 0.6 Nm, respectively. In neutral internal and external rotation, increasing humeral lateral offset from 15 to 35 mm increased the internal rotation torque at 45˚ and 90˚ abduction by 1.5 ± 0.3 Nm (95% CI, 0.2-2.7 Nm; p = 0.02) and 1.3 ± 0.2 Nm (95% CI, 0.4-2.3 Nm; p < 0.001), respectively. Humeral component lateralization improves rotator cuff torque. The results of this preliminary in vitro cadaveric study suggest that the lateral offset of the RTSA humeral component plays an important role in the torque generated by the anterior and posterior rotator cuff. However, further studies are needed before clinical application of these results. Increasing humeral offset may have adverse effects, such as the increased risk of implant modularity, increasing tension of the cuff and soft tissues, increased costs often associated with design modifications, and other possible as yet unforeseen negative consequences.

  15. Thermal spin current generation and spin transport in Pt/magnetic-insulator/Py heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tzu; Safranski, Christopher; Krivorotov, Ilya; Sun, Jonathan

    Magnetic insulators can transmit spin current via magnon propagation while blocking charge current. Furthermore, under Joule heating, magnon flow as a result of the spin Seeback effect can generate additional spin current. Incorporating magnetic insulators in a spin-orbit torque magnetoresistive memory device can potentially yield high switching efficiencies. Here we report the DC magneto-transport studies of these two effects in Pt/magnetic-insulator/Py heterostructures, using ferrimagnetic CoFexOy (CFO) and antiferromagnet NiO as the model magnetic insulators. We observe the presence and absence of the inverse spin-Hall signals from the thermal spin current in Pt/CFO/Py and Pt/NiO/Py structures. These results are consistent with our spin-torque FMR linewidths in comparison. We will also report investigations into the magnetic field-angle dependence of these observations.

  16. Modeling Attitude Dynamics in Simulink: A Study of the Rotational and Translational Motion of a Spacecraft Given Torques and Impulses Generated by RMS Hand Controllers

    NASA Technical Reports Server (NTRS)

    Mauldin, Rebecca H.

    2010-01-01

    In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.

  17. First-principles spin-transfer torque in CuMnAs |GaP |CuMnAs junctions

    NASA Astrophysics Data System (ADS)

    Stamenova, Maria; Mohebbi, Razie; Seyed-Yazdi, Jamileh; Rungger, Ivan; Sanvito, Stefano

    2017-02-01

    We demonstrate that an all-antiferromagnetic tunnel junction with current perpendicular to the plane geometry can be used as an efficient spintronic device with potential high-frequency operation. By using state-of-the-art density functional theory combined with quantum transport, we show that the Néel vector of the electrodes can be manipulated by spin-transfer torque. This is staggered over the two different magnetic sublattices and can generate dynamics and switching. At the same time the different magnetization states of the junction can be read by standard tunneling magnetoresistance. Calculations are performed for CuMnAs |GaP |CuMnAs junctions with different surface terminations between the antiferromagnetic CuMnAs electrodes and the insulating GaP spacer. We find that the torque remains staggered regardless of the termination, while the magnetoresistance depends on the microscopic details of the interface.

  18. Evaluation of the effect of custom burr holes on a surgeon's sense of screw fixation in revision porous metal cups.

    PubMed

    Nyland, Mark A; Lanting, Brent A; Nikolov, Hristo N; Somerville, Lyndsay E; Teeter, Matthew G; Howard, James L

    2016-12-01

    It is common practice to burr custom holes in revision porous metal cups for screw insertion. The objective of this study was to determine how different hole types affect a surgeon's sense of screw fixation. Porous revision cups were prepared with pre-drilled and custom burred holes. Cups were held in place adjacent to synthetic bone material of varying density. Surgeons inserted screws through the different holes and materials. Surgeon subjective rating, compression, and torque was recorded. The torque achieved was greater ( p  = 0.002) for screws through custom holes than pre-fabricated holes in low and medium density material, with no difference for high density. Peak compression was greater ( p  = 0.026) through the pre-fabricated holes only in high density material. Use of burred holes affects the torque generated, and may decrease the amount of cup-acetabulum compression achieved.

  19. Development and performance characterization of an electric ground vehicle with independently actuated in-wheel motors

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Chen, Yan; Feng, Daiwei; Huang, Xiaoyu; Wang, Junmin

    This paper presents the development and experimental characterizations of a prototyping pure electric ground vehicle, which is equipped with four independently actuated in-wheel motors (FIAIWM) and is powered by a 72 V 200 Ah LiFeYPO 4 battery pack. Such an electric ground vehicle (EGV) employs four in-wheel (or hub) motors to independently drive/brake the four wheels and is one of the promising vehicle architectures primarily due to its actuation flexibility, energy efficiency, and performance potentials. Experimental data obtained from the EGV chassis dynamometer tests were employed to generate the in-wheel motor torque response and power efficiency maps in both driving and regenerative braking modes. A torque distribution method is proposed to show the potentials of optimizing the FIAIWM EGV operational energy efficiency by utilizing the actuation flexibility and the characterized in-wheel motor efficiency and torque response.

  20. Possible charge analogues of spin transfer torques in bulk superconductors

    NASA Astrophysics Data System (ADS)

    Garate, Ion

    2014-03-01

    Spin transfer torques (STT) occur when electric currents travel through inhomogeneously magnetized systems and are important for the motion of magnetic textures such as domain walls. Since superconductors are easy-plane ferromagnets in particle-hole (charge) space, it is natural to ask whether any charge duals of STT phenomena exist therein. We find that the superconducting analogue of the adiabatic STT vanishes in a bulk superconductor with a momentum-independent order parameter, while the superconducting counterpart of the nonadiabatic STT does not vanish. This nonvanishing superconducting torque is induced by heat (rather than charge) currents and acts on the charge (rather than spin) degree of freedom. It can become significant in the vicinity of the superconducting transition temperature, where it generates a net quasiparticle charge and alters the dispersion and linewidth of low-frequency collective modes. This work has been financially supported by Canada's NSERC.

  1. Rotation of artificial rotor axles in rotary molecular motors

    PubMed Central

    Baba, Mihori; Iwamoto, Kousuke; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-01-01

    F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1. These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1. The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1. This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1. PMID:27647891

  2. Does the nervous system use equilibrium-point control to guide single and multiple joint movements?

    PubMed

    Bizzi, E; Hogan, N; Mussa-Ivaldi, F A; Giszter, S

    1992-12-01

    The hypothesis that the central nervous system (CNS) generates movement as a shift of the limb's equilibrium posture has been corroborated experimentally in studies involving single- and multijoint motions. Posture may be controlled through the choice of muscle length-tension curve that set agonist-antagonist torque-angle curves determining an equilibrium position for the limb and the stiffness about the joints. Arm trajectories seem to be generated through a control signal defining a series of equilibrium postures. The equilibrium-point hypothesis drastically simplifies the requisite computations for multijoint movements and mechanical interactions with complex dynamic objects in the environment. Because the neuromuscular system is springlike, the instantaneous difference between the arm's actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex "inverse dynamic" problem of computing the torques at the joints. The hypothesis provides a simple, unified description of posture and movement as well as contact control task performance, in which the limb must exert force stably and do work on objects in the environment. The latter is a surprisingly difficult problem, as robotic experience has shown. The prior evidence for the hypothesis came mainly from psychophysical and behavioral experiments. Our recent work has shown that microstimulation of the frog spinal cord's premotoneural network produces leg movements to various positions in the frog's motor space. The hypothesis can now be investigated in the neurophysiological machinery of the spinal cord.

  3. Mechanics of snout expansion in suction-feeding seahorses: musculoskeletal force transmission.

    PubMed

    Van Wassenbergh, Sam; Leysen, Heleen; Adriaens, Dominique; Aerts, Peter

    2013-02-01

    Seahorses and other syngnathid fishes rely on a widening of the snout to create the buccal volume increase needed to suck prey into the mouth. This snout widening is caused by abduction of the suspensoria, the long and flat bones outlining the lateral sides of the mouth cavity. However, it remains unknown how seahorses can generate a forceful abduction of the suspensoria. To understand how force is transmitted to the suspensoria via the hyoid and the lower jaw, we performed mathematical simulations with models based on computerized tomography scans of Hippocampus reidi. Our results show that the hinge joint between the left and right hyoid bars, as observed in H. reidi, allows for an efficient force transmission to the suspensorium from a wide range of hyoid angles, including the extremely retracted hyoid orientations observed in vivo for syngnathids. Apart from the hyoid retraction force by the sternohyoideus-hypaxial muscles, force generated in the opposite direction on the hyoid by the mandibulohyoid ligament also has an important contribution to suspensorium abduction torque. Forces on the lower jaw contribute only approximately 10% of the total suspensorium torque. In particular, when dynamical aspects of hyoid retraction are included in the model, a steep increase is shown in suspensorium abduction torque at highly retracted hyoid positions, when the linkages to the lower jaw counteract further hyoid rotation in the sagittal plane. A delayed strain in these linkages allows syngnathids to postpone suction generation until the end of cranial rotation, a fundamental difference from non-syngnathiform fishes.

  4. The degree of postural automaticity influences the prime movement and the anticipatory postural adjustments during standing in healthy young individuals.

    PubMed

    Sakamoto, Sadanori; Iguchi, Masaki

    2018-06-08

    Less attention to a balance task reduces the center of foot pressure (COP) variability by automating the task. However, it is not fully understood how the degree of postural automaticity influences the voluntary movement and anticipatory postural adjustments. Eleven healthy young adults performed a bipedal, eyes closed standing task under the three conditions: Control (C, standing task), Single (S, standing + reaction tasks), and Dual (D, standing  +  reaction + mental tasks). The reaction task was flexing the right shoulder to an auditory stimulus, which causes counter-clockwise rotational torque, and the mental task was arithmetic task. The COP variance before the reaction task was reduced in the D condition compared to that in the C and S conditions. On average the onsets of the arm movement and the vertical torque (Tz, anticipatory clockwise rotational torque) were both delayed, and the maximal Tz slope (the rate at which the torque develops) became less steep in the D condition compared to those in the S condition. When these data in the D condition were expressed as a percentage of those in the S condition, the arm movement onset and the Tz slope were positively and negatively, respectively, correlated with the COP variance. By using the mental-task induced COP variance reduction as the indicator of postural automaticity, our data suggest that the balance task for those with more COP variance reduction is less cognitively demanding, leading to the shorter reaction time probably due to the attention shift from the automated balance task to the reaction task. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Torque Studies of Quantum Oscillations in Anisotropic Metals and Superconductors

    NASA Astrophysics Data System (ADS)

    Julian, Stephen

    1998-03-01

    Quantum oscillations provide unique information about the properties of charged quasiparticles at the Fermi surface, but their measurement demands both very pure samples and extremely high measurement sensitivity. Shoenberg first used a torque method to study de Haas van Alphen oscillations in 1937. Since then, under the combined influence of the development of competing techniques, the evolution of magnet technology, and the changing frontiers of condensed matter physics, the technique has come in and out of vogue a number of times. Today the method is undergoing a renaissance for two reasons. Firstly it is ideally suited to the study of quantum oscillations in highly anisotropic metals such as organic metals,( C. Lupien, L. Taillefer, et al., to be published.) two dimensional electron gases in semiconductor heterostructures,( S.A.J. Wiegers, M. Specht, L.P. Lévy, M.Y. Simmons, D.A. Ritchie, A. Cavanna, B. Etienne, G. Martinez and P. Wyder, Phys. Rev. Lett. 79) (1997) 3238, and references therein. and strongly correlated oxides,( C. Bergemann, S.R. Julian, A.P. Mackenzie, et al., to be published.) all of which have become subjects of intense interest. Secondly, the development of micromachined levers allows the observation of quantum oscillations in nanogram sized samples. It is hoped that this will allow the study of quasiparticle Fermi surfaces in the large number of materials for which only very small single crystals are available. In this talk the information available from quantum oscillation measurements, and the historical development of the torque technique, will be reviewed. An overview will then be given of recent measurements, emphasising the advantages and disadvantages of the torque method as compared with competing techniques.

  6. Developing a Knowledge Base for Detection of Powertrain Failures by Reversibly Seeding Engine Faults

    DTIC Science & Technology

    2010-08-01

    output, in terms of torque, speed and heat losses, can be accurately performed. Our investigation has focused on creating faulty operating conditions...open loop case”, used to measure the engine output for a given driver demand, for instance, 100% pedal); in the other case (“ closed loop ”) engine...could be changed in nine steps ranging from completely open to fully closed . Another butterfly valve was placed at the end of the exhaust pipe before

  7. Planet-disc interaction in laminar and turbulent discs

    NASA Astrophysics Data System (ADS)

    Stoll, Moritz H. R.; Picogna, Giovanni; Kley, Wilhelm

    2017-07-01

    In weakly ionised discs turbulence can be generated through the vertical shear instability (VSI). Embedded planets are affected by a stochastic component in the torques acting on them, which can impact their migration. In this work we study the interplay between a growing planet embedded in a protoplanetary disc and the VSI turbulence. We performed a series of 3D hydrodynamical simulations for locally isothermal discs with embedded planets in the mass range from 5 to 100 Earth masses. We study planets embedded in an inviscid disc that is VSI unstable, becomes turbulent, and generates angular momentum transport with an effective α = 5 × 10-4. This is compared to the corresponding viscous disc using exactly this α-value. In general we find that the planets have only a weak impact on the disc turbulence. Only for the largest planet (100 M⊕) does the turbulent activity become enhanced inside of the planet. The depth and width of a gap created by the more massive planets (30,100 M⊕) in the turbulent disc equal exactly that of the corresponding viscous case, leading to very similar torque strengths acting on the planet, with small stochastic fluctuations for the VSI disc. At the gap edges vortices are generated that are stronger and longer-lived in the VSI disc. Low mass planets (with Mp ≤ 10 M⊕) do not open gaps in the disc in either case, but generate for the turbulent disc an overdensity behind the planet that exerts a significant negative torque. This can boost the inward migration in VSI turbulent discs well above the Type I rate. Owing to the finite turbulence level in realistic 3D discs the gap depth will always be limited and migration will not stall in inviscid discs.

  8. Full-order observer for direct torque control of induction motor based on constant V/F control technique.

    PubMed

    Pimkumwong, Narongrit; Wang, Ming-Shyan

    2018-02-01

    This paper presents another control method for the three-phase induction motor that is direct torque control based on constant voltage per frequency control technique. This method uses the magnitude of stator flux and torque errors to generate the stator voltage and phase angle references for controlling the induction motor by using constant voltage per frequency control method. Instead of hysteresis comparators and optimum switching table, the PI controllers and space vector modulation technique are used to reduce torque and stator-flux ripples and achieve constant switching frequency. Moreover, the coordinate transformations are not required. To implement this control method, a full-order observer is used to estimate stator flux and overcome the problems from drift and saturation in using pure integrator. The feedback gains are designed by simple manner to improve the convergence of stator flux estimation, especially in low speed range. Furthermore, the necessary conditions to maintain the stability for feedback gain design are introduced. The simulation and experimental results show accurate and stable operation of the introduced estimator and good dynamic response of the proposed control method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Monitoring bolt torque levels through signal processing of full-field ultrasonic data

    NASA Astrophysics Data System (ADS)

    Haynes, Colin; Yeager, Michael; Todd, Michael; Lee, Jung-Ryul

    2014-03-01

    Using full-field ultrasonic guided wave data can provide a wealth of information on the state of a structure through a detailed characterization of its wave propagation properties. However, the need for appropriate feature selection and quantified metrics for making rigorous assessments of the structural state is in no way lessened by the density of information. In this study, a simple steel bolted connection with two bolts is monitored for bolt loosening. The full-field data were acquired using a scanning-laser-generated ultrasound system with a single surface-mounted sensor. Such laser systems have many advantages that make them attractive for nondestructive evaluation, including their high-speed, high spatial resolution, and the ability to scan large areas of in-service structures. In order to characterize the relationship between bolt torque and the resulting wavefield in this specimen, the bolt torque in each of the bolts is independently varied from fully tightened to fully loosened in several steps. First, qualitative observations about the changes in the wavefield are presented. Next, an approach to quantifying the wave transmission through the bolted joint is discussed. Finally, a method of monitoring the bolt torque using the ultrasonic data is demonstrated.

  10. Oscillation of the human ankle joint in response to applied sinusoidal torque on the foot

    PubMed Central

    Agarwal, Gyan C.; Gottlieb, Gerald L.

    1977-01-01

    1. Low-frequency (3-30 Hz) oscillatory rotation of the ankle joint in plantarflexion—dorsiflexion was generated with a torque motor. Torque, rotation about the ankle and electromyograms (e.m.g.s) for the gastrocnemius—soleus and the anterior tibial muscles were recorded. 2. Fourier coefficients at each drive frequency were used to calculate the effective compliance (ratio of rotation and torque). The compliance has a sharp resonance when tonic, voluntary muscle activity is present. 3. The resonant frequency of compliance is between 3 and 8 Hz. The location of the resonant frequency and the magnitude of the compliance at resonance depend upon both the degree of tonic muscle activity and the amplitude of the driving torque. The resonant frequency increases with increasing tonic activity. 4. With tonic muscle activity, the compliance in the frequency range below resonance increases with increasing amplitudes of driving torque. 5. The e.m.g., when evoked by the rhythmic stretch, lags the start of stretching by between 50 and 70 msec. 6. When tonic muscle activity is present, the resonant frequency of the stretch reflex is between 5 and 6·5 Hz. 7. Following the start of driven oscillation at frequencies near resonance, slowly increasing amplitudes of angular rotation (to a limit) are observed. 8. Distortion (from the sinusoidal wave shape) of angular rotation is frequently observed with drive frequencies between 8 and 12 Hz during which there sometimes occur spontaneous recurrences of oscillation at the drive frequency. For the angular rotation, a significant portion of the power may be in subharmonic frequency components of the drive frequency when that frequency is between 8 and 12 Hz. 9. Self-sustaining oscillation (clonus) near the resonant frequency of the compliance is sometimes observed after the modulation signal to the motor is turned off. This is most often seen when the gastrocnemius—soleus muscles are fatigued. Clonus may be evoked by driven oscillation at any frequency. 10. The hypothesis that physiological tremor, which occurs between 8 and 12 Hz, is a consequence of stretch reflex servo properties seems to be at odds with the observations of resonance in the compliance and of self-generated clonus both occurring in the 5-8 Hz region. PMID:874886

  11. Spin-orbit torque induced switching in a magnetic insulator thin film with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Li, J. X.; Yu, G. Q.; Tang, C.; Wang, K. L.; Shi, J.

    Spin-orbit torque (SOT) has been demonstrated to be efficient to manipulate the magnetization in heavy-metal/ferromagnetic metal (HM/FMM) heterostructures. In HM/magnetic insulator (MI) heterostructures, charge currents do not flow in MI, but pure spin currents generated by the spin Hall effect in HM can enter the MI layer to cause magnetization dynamics. Here we report SOT-induced magnetization switching in Tm3Fe5O12/Pt heterostructures, where Tm3Fe5O12 (TmIG) is a MI grown by pulsed laser deposition with perpendicular magnetic anisotropy. The anomalous Hall signal in Pt is used as a probe to detect the magnetization switching. Effective magnetic fields due to the damping-like and field-like torques are extracted using a harmonic Hall detection method. The experiments are carried out in heterostructures with different TmIG film thicknesses. Both the switching and harmonic measurements indicate a more efficient SOT generation in HM/MI than in HM/FMM heterostructures. Our comprehensive experimental study and detailed analysis will be presented. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award No. SC0012670.

  12. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles

    PubMed Central

    Ristroph, Leif; Bergou, Attila J.; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J.; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2010-01-01

    Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial “stumble,” and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2° in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly’s ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances. PMID:20194789

  13. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.

    PubMed

    Ristroph, Leif; Bergou, Attila J; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2010-03-16

    Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial "stumble," and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2 degrees in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly's ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances.

  14. Use of magnetic compression to support turbine engine rotors

    NASA Technical Reports Server (NTRS)

    Pomfret, Chris J.

    1994-01-01

    Ever since the advent of gas turbine engines, their rotating disks have been designed with sufficient size and weight to withstand the centrifugal forces generated when the engine is operating. Unfortunately, this requirement has always been a life and performance limiting feature of gas turbine engines and, as manufacturers strive to meet operator demands for more performance without increasing weight, the need for innovative technology has become more important. This has prompted engineers to consider a fundamental and radical breakaway from the traditional design of turbine and compressor disks which have been in use since the first jet engine was flown 50 years ago. Magnetic compression aims to counteract, by direct opposition rather than restraint, the centrifugal forces generated within the engine. A magnetic coupling is created between a rotating disk and a stationary superconducting coil to create a massive inwardly-directed magnetic force. With the centrifugal forces opposed by an equal and opposite magnetic force, the large heavy disks could be dispensed with and replaced with a torque tube to hold the blades. The proof of this concept has been demonstrated and the thermal management of such a system studied in detail; this aspect, especially in the hot end of a gas turbine engine, remains a stiff but not impossible challenge. The potential payoffs in both military and commercial aviation and in the power generation industry are sufficient to warrant further serious studies for its application and optimization.

  15. Effects of underestimating the kinematics of trunk rotation on simultaneous reaching movements: predictions of a biomechanical model

    PubMed Central

    2013-01-01

    Background Rotation of the torso while reaching produces torques (e.g., Coriolis torque) that deviate the arm from its planned trajectory. To ensure an accurate reaching movement, the brain may take these perturbing torques into account during movement planning or, alternatively, it may correct hand trajectory during movement execution. Irrespective of the process selected, it is expected that an underestimation of trunk rotation would likely induce inaccurate shoulder and elbow torques, resulting in hand deviation. Nonetheless, it is still undetermined to what extent a small error in the perception of trunk rotations, translating into an inappropriate selection of motor commands, would affect reaching accuracy. Methods To investigate, we adapted a biomechanical model (J Neurophysiol 89: 276-289, 2003) to predict the consequences of underestimating trunk rotations on right hand reaching movements performed during either clockwise or counter clockwise torso rotations. Results The results revealed that regardless of the degree to which the torso rotation was underestimated, the amplitude of hand deviation was much larger for counter clockwise rotations than for clockwise rotations. This was attributed to the fact that the Coriolis and centripetal joint torques were acting in the same direction during counter clockwise rotation yet in opposite directions during clockwise rotations, effectively cancelling each other out. Conclusions These findings suggest that in order to anticipate and compensate for the interaction torques generated during torso rotation while reaching, the brain must have an accurate prediction of torso rotation kinematics. The present study proposes that when designing upper limb prostheses controllers, adding a sensor to monitor trunk kinematics may improve prostheses control and performance. PMID:23758968

  16. Finite element analysis of slot wall deformation in stainless steel and titanium orthodontic brackets during simulated palatal root torque.

    PubMed

    Magesh, Varadaraju; Harikrishnan, Pandurangan; Kingsly Jeba Singh, Devadhas

    2018-04-01

    Torque applied on anterior teeth is vital for root positioning and stability. The aim of this study was to evaluate the detailed slot wall deformation in stainless steel (SS) and titanium (Ti) edgewise brackets during palatal root torque using finite element analysis. A finite element model was developed from a maxillary central incisor SS bracket (0.022 in). The generated torque values from an SS rectangular archwire (0.019 × 0.025 in) while twisting from 5° to 40° were obtained experimentally by a spine tester, and the calculated torque force was applied in the bracket slot. The deformations of the slot walls in both SS and Ti brackets were measured at various locations. There were gradual increases in the deformations of both bracket slot walls from the bottom to top locations. In the SS bracket slot for the 40° twist, the deformations were 9.28, 36.8, and 44.8 μm in the bottom, middle, and top slot wall locations, respectively. Similarly, in the Ti bracket slot for the 40° twist, the deformations were 39.2, 62.4, and 76.2 μm in the bottom, middle, and top slot wall locations, respectively. The elastic limits were reached at 28° for SS and at 37° for Ti. Both SS and Ti bracket slots underwent deformation during torque application. There are variations in the deformations at different locations in the slot walls and between the materials. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  17. Preliminary results on noncollocated torque control of space robot actuators

    NASA Technical Reports Server (NTRS)

    Tilley, Scott W.; Francis, Colin M.; Emerick, Ken; Hollars, Michael G.

    1989-01-01

    In the Space Station era, more operations will be performed robotically in space in the areas of servicing, assembly, and experiment tending among others. These robots may have various sets of requirements for accuracy, speed, and force generation, but there will be design constraints such as size, mass, and power dissipation limits. For actuation, a leading motor candidate is a dc brushless type, and there are numerous potential drive trains each with its own advantages and disadvantages. This experiment uses a harmonic drive and addresses some inherent limitations, namely its backdriveability and low frequency structural resonances. These effects are controlled and diminished by instrumenting the actuator system with a torque transducer on the output shaft. This noncollocated loop is closed to ensure that the commanded torque is accurately delivered to the manipulator link. The actuator system is modelled and its essential parameters identified. The nonlinear model for simulations will include inertias, gearing, stiction, flexibility, and the effects of output load variations. A linear model is extracted and used for designing the noncollocated torque and position feedback loops. These loops are simulated with the structural frequency encountered in the testbed system. Simulation results are given for various commands in position. The use of torque feedback is demonstrated to yield superior performance in settling time and positioning accuracy. An experimental setup being finished consists of a bench mounted motor and harmonic drive actuator system. A torque transducer and two position encoders, each with sufficient resolution and bandwidth, will provide sensory information. Parameters of the physical system are being identified and matched to analytical predictions. Initial feedback control laws will be incorporated in the bench test equipment and various experiments run to validate the designs. The status of these experiments is given.

  18. On-Command Force and Torque Impeding Devices (OC-FTID) Using ERF

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart

    2014-01-01

    Various machines have been developed to address the need for countermeasures of bone and muscle deterioration when humans operate over extended time in space. Even though these machines are in use, each of them has many limitations that need to be addressed in an effort to prepare for human missions to distant bodies in the solar system. An exercise exoskeleton was conceived that performs on-demand resistivity by inducing force and torque impedance via ElectroRheological Fluid (ERF). The resistive elements consist of pistons that are moving inside ERF-filled cylinders or a donut-shaped cavity, and the fluid flows through the piston when the piston is moved. Tests of the operation of ERF against load showed the feasibility of this approach. ERF properties of high yield stress, low current density, and fast response (less than one millisecond) offer essential characteristics for the construction of the exoskeleton. ERFs can apply very high electrically controlled resistive forces or torque while their size (weight and geometric parameters) can be very small. Their long life and ability to function in a wide temperature range (from -40 to 200 C) allows for their use in extreme environments. ERFs are also nonabrasive, non-toxic, and nonpolluting (meet health and safety regulations). The technology is applicable as a compact exercise machine for astronauts' countermeasure of microgravity, an exercise machine for sport, or as a device for rehabilitation of patients with limb issues.

  19. Power-to-load balancing for asymmetric heave wave energy converters with nonideal power take-off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    The aim of this study is to maximize the power-to-load ratio for asymmetric heave wave energy converters. Linear hydrodynamic theory was used to calculate bounds of the expected time-averaged power (TAP) and corresponding surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinusoidal displacement. This paper formulates an optimal control problem to handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force, thereby allowing the controlmore » focus to concentrate on either power absorption or load mitigation. The penalty weights are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for 'The Berkeley Wedge' in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the surge-restraining force, pitch-restraining torque, and PTO control force are shown.« less

  20. Power-to-load balancing for asymmetric heave wave energy converters with nonideal power take-off

    DOE PAGES

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2017-12-11

    The aim of this study is to maximize the power-to-load ratio for asymmetric heave wave energy converters. Linear hydrodynamic theory was used to calculate bounds of the expected time-averaged power (TAP) and corresponding surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinusoidal displacement. This paper formulates an optimal control problem to handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force, thereby allowing the controlmore » focus to concentrate on either power absorption or load mitigation. The penalty weights are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for 'The Berkeley Wedge' in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the surge-restraining force, pitch-restraining torque, and PTO control force are shown.« less

  1. Potential roles of force cues in human stance control.

    PubMed

    Cnyrim, Christian; Mergner, Thomas; Maurer, Christoph

    2009-04-01

    Human stance is inherently unstable. A small deviation from upright body orientation is enough to yield a gravitational component in the ankle joint torque, which tends to accelerate the body further away from upright ('gravitational torque'; magnitude is related to body-space lean angle). Therefore, to maintain a given body lean position, a corresponding compensatory torque must be generated. It is well known that subjects use kinematic sensory information on body-space lean from the vestibular system for this purpose. Less is known about kinetic cues from force/torque receptors. Previous work indicated that they are involved in compensating external contact forces such as a pull or push having impact on the body. In this study, we hypothesized that they play, in addition, a role when the vestibular estimate of the gravitational torque becomes erroneous. Reasons may be sudden changes in body mass, for instance by a load, or an impairment of the vestibular system. To test this hypothesis, we mimicked load effects on the gravitational torque in normal subjects and in patients with chronic bilateral vestibular loss (VL) with eyes closed. We added/subtracted extra torque to the gravitational torque by applying an external contact force (via cable winches and a body harness). The extra torque was referenced to body-space lean, using different proportionality factors. We investigated how it affected body-space lean responses that we evoked using sinusoidal tilts of the support surface (motion platform) with different amplitudes and frequencies (normals +/-1 degrees, +/-2 degrees, and +/-4 degrees at 0.05, 0.1, 0.2, and 0.4 Hz; patients +/-1 degrees and +/-2 degrees at 0.05 and 0.1 Hz). We found that added/subtracted extra torque scales the lean response in a systematic way, leading to increase/decrease in lean excursion. Expressing the responses in terms of gain and phase curves, we compared the experimental findings to predictions obtained from a recently published sensory feedback model. For the trials in which the extra torque tended to endanger stance control, predictions in normals were better when the model included force cues than without these cues. This supports our notion that force cues provide an automatic 'gravitational load compensation' upon changes in body mass in normals. The findings in the patients support our notion that the presumed force cue mechanism provides furthermore vestibular loss compensation. Patients showed a body-space stabilization that cannot be explained by ankle angle proprioception, but must involve graviception, most likely by force cues. Our findings suggest that force cues contribute considerably to the redundancy and robustness of the human stance control system.

  2. Kinematic and kinetic comparisons between American and Korean professional baseball pitchers.

    PubMed

    Escamilla, Rafael; Fleisig, Glen; Barrentine, Steven; Andrews, James; Moorman, Claude

    2002-07-01

    The purpose of this study was to quantify and compare kinematic, temporal, and kinetic characteristics of American and Korean professional pitchers in order to investigate differences in pitching mechanics, performance, and injury risks among two different cultures and populations of baseball pitchers. Eleven American and eight Korean healthy professional baseball pitchers threw multiple fastball pitches off an indoor throwing mound positioned at regulation distance from home plate. A Motion Analysis three-dimensional automatic digitizing system was used to collect 200 Hz video data from four electronically synchronized cameras. Twenty kinematic, six temporal, and 11 kinetic variables were analyzed at lead foot contact, during the arm cocking and arm acceleration phases, at ball release, and during the arm deceleration phase. A radar gun was used to quantify ball velocity. At lead foot contact, the American pitchers had significantly greater horizontal abduction of the throwing shoulder, while Korean pitchers exhibited significantly greater abduction and external rotation of the throwing shoulder. During arm cocking, the American pitchers displayed significantly greater maximum shoulder external rotation and maximum pelvis angular velocity. At the instant of ball release, the American pitchers had significantly greater forward trunk tilt and ball velocity and significantly less knee flexion, which help explain why the American pitchers had 10% greater ball velocity compared to the Korean pitchers. The American pitchers had significantly greater maximum shoulder internal rotation torque and maximum elbow varus torque during arm cocking, significantly greater elbow flexion torque during arm acceleration, and significantly greater shoulder and elbow proximal forces during arm deceleration. While greater shoulder and elbow forces and torques generated in the American pitchers helped generate greater ball velocity for the American group, these greater kinetics may predispose this group to a higher risk of shoulder and elbow injuries.

  3. Postural steadiness during quiet stance does not associate with ability to recover balance in older women.

    PubMed

    Mackey, Dawn C; Robinovitch, Stephen N

    2005-10-01

    Fall risk depends on ability to maintain balance during daily activities, and on ability to recover balance following a perturbation such as a slip or trip. We examined whether similar neuromuscular variables govern these two domains of postural stability. We conducted experiments with 25 older women (mean age=78 yrs, SD=7 yrs). We acquired measures of postural steadiness during quiet stance (mean amplitude, velocity, and frequency of centre-of-pressure movement when standing with eyes open or closed, on a rigid or compliant surface). We also measured ability to recover balance using the ankle strategy after release from a forward leaning position (based on the maximum release angle where recovery was possible, and corresponding values of reaction time, rate of ankle torque generation, and peak ankle torque). We found that balance recovery variables were not strongly or consistently correlated with postural steadiness variables. The maximum release angle associated with only three of the sixteen postural steadiness variables (mean frequency in rigid, eyes open condition (r=0.36, P=.041), and mean amplitude (r=0.41, P=.038) and velocity (r=0.49, P=.015) in compliant, eyes closed condition). Reaction time and peak torque did not correlate with any steadiness variables, and rate of torque generation correlated moderately with the mean amplitude and velocity of the centre-of-pressure in the compliant, eyes closed condition (r=0.48-0.60). Our results indicate that postural steadiness during quiet stance is not predictive of ability to recover balance with the ankle strategy. Accordingly, balance assessment and fall prevention programs should individually target these two components of postural stability.

  4. Extremely Coherent Microwave Emission from Spin Torque Oscillator Stabilized by Phase Locked Loop

    PubMed Central

    Tamaru, Shingo; Kubota, Hitoshi; Yakushiji, Kay; Yuasa, Shinji; Fukushima, Akio

    2015-01-01

    Spin torque oscillator (STO) has been attracting a great deal of attention as a candidate for the next generation microwave signal sources for various modern electronics systems since its advent. However, the phase noise of STOs under free running oscillation is still too large to be used in practical microwave applications, thus an industrially viable means to stabilize its oscillation has been strongly sought. Here we demonstrate implementation of a phase locked loop using a STO as a voltage controlled oscillator (VCO) that generates a 7.344 GHz microwave signal stabilized by a 153 MHz reference signal. Spectrum measurement showed successful phase locking of the microwave signal to the reference signal, characterized by an extremely narrow oscillation peak with a linewidth of less than the measurement limit of 1 Hz. This demonstration should be a major breakthrough toward various practical applications of STOs. PMID:26658880

  5. Electrorotation of a metal sphere immersed in an electrolyte of finite Debye length.

    PubMed

    García-Sánchez, Pablo; Ramos, Antonio

    2015-11-01

    We theoretically study the rotation induced on a metal sphere immersed in an electrolyte and subjected to a rotating electric field. The rotation arises from the interaction of the field with the electric charges induced at the metal-electrolyte interface, i.e., the induced electrical double layer (EDL). Particle rotation is due to the torque on the induced dipole, and also from induced-charge electro-osmostic flow (ICEO). The interaction of the electric field with the induced dipole on the system gives rise to counterfield rotation, i.e., the direction opposite to the rotation of the electric field. ICEO generates co-field rotation of the sphere. For thin EDL, ICEO generates negligible rotation. For increasing size of EDL, co-field rotation appears and, in the limit of very thick EDL, it compensates the counter-field rotation induced by the electrical torque. We also report computations of the rotating fluid velocity field around the sphere.

  6. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.

    PubMed

    Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen

    2015-09-20

    Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.

  7. Torque undergone by assemblies of single-domain magnetic nanoparticles submitted to a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Carrey, J.; Hallali, N.

    2016-11-01

    In the last 10 years, it has been shown in various types of experiments that it is possible to induce biological effects in cells using the torque generated by magnetic nanoparticles submitted to an alternating or a rotating magnetic field. In biological systems, particles are generally found under the form of assemblies because they accumulate at the cell membrane, are internalized inside lysosomes, or are synthesized under the form of beads containing several particles. The torque undergone by assemblies of single-domain magnetic nanoparticles has not been addressed theoretically so far and is the subject of the present article. The results shown in the present article have been obtained using kinetic Monte Carlo simulations, in which thermal activation is taken into account, so the torque undergone by ferromagnetic and superparamagnetic nanoparticles could both be simulated. The first system under study is a single ferromagnetic particle with its easy axis in the plane of the rotating magnetic field. Then, elements adding complexity to the problem are introduced progressively and the properties of the resulting system presented and analyzed: random anisotropy axes, thermal activation, assemblies, and finally magnetic interactions. The most complex studied systems are particularly relevant for applications and are assemblies of interacting superparamagnetic nanoparticles with randomly oriented anisotropy axes. Whenever it is possible, analytical equations describing the torque properties are provided, as well as their domain of validity. Although the properties of an assembly naturally derive from those of single particles, it is shown here that several of them were unexpected and are particularly interesting with regard to the maximization of torque amplitude in biological applications. In particular, it is shown that, in a given range of parameters, the torque of an assembly increases dramatically in the direction perpendicular to the plane of the rotating magnetic field. This effect results from a breaking of time reversal symmetry when the field is rotated and is comprehensively explained. This strong enhancement occurs only if the magnetic field rotates, not if it oscillates. When this enhancement does not occur, the total torque of an assembly scales with the square root of the number of particles in the assembly. In the enhancement regime, the total torque scales with a power exponent larger than 1/2. It is also found that, in superparamagnetic nanoparticles, this enhancement is induced by the presence of magnetic interactions so that, in a rather large range of parameters, interacting superparamagnetic particles display a much larger torque than otherwise identical ferromagnetic particles. In all cases studied, the conditions required to obtain this enhancement are provided. The concepts presented in this article should help chemists and biologists in synthesizing nano-objects with optimized torque properties. For physicists, it would be interesting to test experimentally the results described in this article. For this purpose, torque measurements on well-characterized assemblies of nanoparticles should be performed and compared with numerical simulations.

  8. Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor

    PubMed Central

    Yuan, Junhua; Fahrner, Karen A.; Turner, Linda; Berg, Howard C.

    2010-01-01

    Cells of Escherichia coli are able to swim up gradients of chemical attractants by modulating the direction of rotation of their flagellar motors, which spin alternately clockwise (CW) and counterclockwise (CCW). Rotation in either direction has been thought to be symmetric and exhibit the same torques and speeds. The relationship between torque and speed is one of the most important measurable characteristics of the motor, used to distinguish specific mechanisms of motor rotation. Previous measurements of the torque–speed relationship have been made with cells lacking the response regulator CheY that spin their motors exclusively CCW. In this case, the torque declines slightly up to an intermediate speed called the “knee speed” after which it falls rapidly to zero. This result is consistent with a “power-stroke” mechanism for torque generation. Here, we measure the torque–speed relationship for cells that express large amounts of CheY and only spin their motors CW. We find that the torque decreases linearly with speed, a result remarkably different from that for CCW rotation. We obtain similar results for wild-type cells by reexamining data collected in previous work. We speculate that CCW rotation might be optimized for runs, with higher speeds increasing the ability of cells to sense spatial gradients, whereas CW rotation might be optimized for tumbles, where the object is to change cell trajectories. But why a linear torque–speed relationship might be optimum for the latter purpose we do not know. PMID:20615986

  9. Forces and moments generated by removable thermoplastic aligners: incisor torque, premolar derotation, and molar distalization.

    PubMed

    Simon, Mareike; Keilig, Ludger; Schwarze, Jörg; Jung, Britta A; Bourauel, Christoph

    2014-06-01

    The exact force systems as well as their progressions generated by removable thermoplastic appliances have not been investigated. Thus, the purposes of this experimental study were to quantify the forces and moments delivered by a single aligner and a series of aligners (Invisalign; Align Technology, Santa Clara, Calif) and to investigate the influence of attachments and power ridges on the force transfer. We studied 970 aligners of the Invisalign system (60 series of aligners). The aligners came from 30 consecutive patients, of which 3 tooth movements (incisor torque, premolar derotation, molar distalization) with 20 movements each were analyzed. The 3 movement groups were subdivided so that 10 movements were supported with an attachment and 10 were not. The patients' ClinCheck (Align Technology, Santa Clara, Calif) was planned so that the movements to be investigated were performed in isolation in the respective quadrant. Resin replicas of the patients' intraoral situation before the start of the investigated movement were taken and mounted in a biomechanical measurement system. An aligner was put on the model, the force systems were measured, and the calculated movements were experimentally performed until no further forces or moments were generated. Subsequently, the next aligners were installed, and the measurements were repeated. The initial mean moments were about 7.3 N·mm for maxillary incisor torque and about 1.0 N for distalization. Significant differences in the generated moments were measured in the premolar derotation group, whether they were supported with an attachment (8.8 N·mm) or not (1.2 N·mm). All measurements showed an exponential force change. Apart from a few maximal initial force systems, the forces and moments generated by aligners of the Invisalign system are within the range of orthodontic forces. The force change is exponential while a patient is wearing removable thermoplastic appliances. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  10. Torque limit of PM motors for field-weakening region operation

    DOEpatents

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH

    2012-02-14

    The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.

  11. Design and analysis of a flux intensifying permanent magnet embedded salient pole wind generator

    NASA Astrophysics Data System (ADS)

    Guo, Yujing; Jin, Ping; Lin, Heyun; Yang, Hui; Lyu, Shukang

    2018-05-01

    This paper presents an improved flux intensifying permanent magnet embedded salient pole wind generator (FI-PMESPWG) with mirror symmetrical magnetizing directions permanent magnet (PM) for improving generator's performances. The air-gap flux densities, the output voltage, the cogging torque and the d- and q-axis inductances of FI-PMESPWG are all calculated and analyzed by using the finite element method (FEM). To highlight the advantages of the proposed FI-PMESPWG, an original permanent magnet embedded salient pole wind generator (PMESPWG) model is adopted for comparison under the same operating conditions. The calculating results show that the air-gap flux densities of FI-PMESPWG are intensified with the same magnet amounts because the PMs are set in a form of V shape in each pole. The difference between d-axis inductance and q-axis inductance of the proposed FI-PMESPWG is reduced. Thus, the output power of the proposed FI-PMESPWG reaches a higher value than that of the original PMESPWG at the same current phase angle. The cogging torque is diminished because the flux path is changed. All the analysis results indicate that the electromagnetic characteristics of the proposed FI-PMESPWG are significantly better than that of the original PMESPWG.

  12. A novel torsional exciter for modal vibration testing of large rotating machinery

    NASA Astrophysics Data System (ADS)

    Sihler, Christof

    2006-10-01

    A novel exciter for applying a dynamic torsional force to a rotating structure is presented in this paper. It has been developed at IPP in order to perform vibration tests with shaft assemblies of large flywheel generators (synchronous machines). The electromagnetic exciter (shaker) needs no fixture to the rotating shaft because the torque is applied by means of the stator winding of an electrical machine. Therefore, the exciter can most easily be applied in cases where a three-phase electrical machine (a motor or generator) is part of the shaft assembly. The oscillating power for the shaker is generated in a separate current-controlled DC circuit with an inductor acting as a buffer storage of magnetic energy. An AC component with adjustable frequency is superimposed on the inductor current in order to generate pulsating torques acting on the rotating shaft with the desired waveform and frequency. Since this torsional exciter does not require an external power source, can easily be installed (without contact to the rotating structure) and provides dynamic torsional forces which are sufficient for multi-megawatt applications, it is best suited for on-site tests of large rotating machinery.

  13. Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling.

    PubMed

    Ting, L H; Raasch, C C; Brown, D A; Kautz, S A; Zajac, F E

    1998-09-01

    The objective of this study was to determine if independent central pattern generating elements controlling the legs in bipedal and unipedal locomotion is a viable theory for locomotor propulsion in humans. Coordinative coupling of the limbs could then be accomplished through mechanical interactions and ipsilateral feedback control rather than through central interlimb neural pathways. Pedaling was chosen as the locomotor task to study because interlimb mechanics can be significantly altered, as pedaling can be executed with the use of either one leg or two legs (cf. walking) and because the load on the limb can be well-controlled. Subjects pedaled a modified bicycle ergometer in a two-legged (bilateral) and a one-legged (unilateral) pedaling condition. The loading on the leg during unilateral pedaling was designed to be identical to the loading experienced by the leg during bilateral pedaling. This loading was achieved by having a trained human "motor" pedal along with the subject and exert on the opposite crank the torque that the subject's contralateral leg generated in bilateral pedaling. The human "motor" was successful at reproducing each subject's one-leg crank torque. The shape of the motor's torque trajectory was similar to that of subjects, and the amount of work done during extension and flexion was not significantly different. Thus the same muscle coordination pattern would allow subjects to pedal successfully in both the bilateral and unilateral conditions, and the afferent signals from the pedaling leg could be the same for both conditions. Although the overall work done by each leg did not change, an 86% decrease in retarding (negative) crank torque during limb flexion was measured in all 11 subjects during the unilateral condition. This corresponded to an increase in integrated electromyography of tibialis anterior (70%), rectus femoris (43%), and biceps femoris (59%) during flexion. Even given visual torque feedback in the unilateral condition, subjects still showed a 33% decrease in negative torque during flexion. These results are consistent with the existence of an inhibitory pathway from elements controlling extension onto contralateral flexion elements, with the pathway operating during two-legged pedaling but not during one-legged pedaling, in which case flexor activity increases. However, this centrally mediated coupling can be overcome with practice, as the human "motor" was able to effectively match the bilateral crank torque after a longer practice regimen. We conclude that the sensorimotor control of a unipedal task is affected by interlimb neural pathways. Thus a task performed unilaterally is not performed with the same muscle coordination utilized in a bipedal condition, even if such coordination would be equally effective in the execution of the unilateral task.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dürrenfeld, P., E-mail: philipp.durrenfeld@physics.gu.se; Ranjbar, M.; Gerhard, F.

    We investigate the influence of a spin current generated from a platinum layer on the ferromagnetic resonance (FMR) properties of an adjacent ferromagnetic layer composed of the halfmetallic half-Heusler material NiMnSb. Spin Hall nano-oscillator devices are fabricated, and the technique of spin torque FMR is used to locally study the magnetic properties as in-plane anisotropies and resonance fields. A change in the FMR linewidth, in accordance with the additional spin torque produced by the spin Hall effect, is present for an applied dc current. For sufficiently large currents, this should yield auto-oscillations, which however are not achievable in the presentmore » device geometry.« less

  15. Skid Prevention for EVs Based on the Emulation of Torque Reduction Characteristics of Separately-excited DC Motor

    NASA Astrophysics Data System (ADS)

    Kodama, Shinya; Hori, Yoichi

    It is well-known that the separately-excited DC motor has effective torque (current) reduction characteristics in response to rapid increase in the rotational speed of the motor. These characteristics have been utilized in adhesion control of electric railway trains with separately-excited DC motor. Up to now, we have proposed a new skid prevention method for EVs, utilizing these characteristics and have made experiments with the hardware skid simulator “Motor-Generator setup”. In this paper, we applied this skid prevention control to our new vehicle “UOT CADWELL EV" equipped with BLDC motors and showed its effectiveness.

  16. Nonlinear Attitude Control of Planar Structures in Space Using Only Internal Controls

    NASA Technical Reports Server (NTRS)

    Reyhanoglu, Mahmut; Mcclamroch, N. Harris

    1993-01-01

    An attitude control strategy for maneuvers of an interconnection of planar bodies in space is developed. It is assumed that there are no exogeneous torques and that torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero. The control strategy utilizes the nonintegrability of the expression for the angular momentum. Large angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is summarized.

  17. Development of pneumatic actuator with low-wave reflection characteristics

    NASA Astrophysics Data System (ADS)

    Chang, H.; Tsung, T. T.; Jwo, C. S.; Chiang, J. C.

    2010-08-01

    This study aims at the development of a less reflective electromagnetic pneumatic actuator often used in the anechoic chamber. Because a pneumatic actuator on the market is not appropriate for use in such a chamber and a metallic one has high dielectric constant which generates reflective electromagnetic waves to influence test parameters in the chamber. The newly developed pneumatic actuator is made from low dielectric constant plastics with less reflective of electromagnetic. A turbine-type air motor is used to develop the pneumatic actuator and a employ Prony tester is used to run the brake horsepower test for the performance test of pneumatic actuator. Test results indicate that the pneumatic actuator in the minimal starting flow is 17 l/min, and it generates a brake horsepower of 48 mW; in the maximum flow is 26 l/min, it generates a brake horsepower of 108 mW. Therefore, it works with a torque between 0.24 N-m and 0.55 N-m, and such a torque will be sufficient to drive the target button.

  18. Current control of time-averaged magnetization in superparamagnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Bapna, Mukund; Majetich, Sara A.

    2017-12-01

    This work investigates spin transfer torque control of time-averaged magnetization in a small 20 nm × 60 nm nanomagnet with a low thermal stability factor, Δ ˜ 11. Here, the nanomagnet is a part of a magnetic tunnel junction and fluctuates between parallel and anti-parallel magnetization states with respect to the magnetization of the reference layer generating a telegraph signal in the current versus time measurements. The response of the nanomagnet to an external field is first analyzed to characterize the magnetic properties. We then show that the time-averaged magnetization in the telegraph signal can be fully controlled between +1 and -1 by voltage over a small range of 0.25 V. NIST Statistical Test Suite analysis is performed for testing true randomness of the telegraph signal that the device generates when operated at near critical current values for spin transfer torque. Utilizing the probabilistic nature of the telegraph signal generated at two different voltages, a prototype demonstration is shown for multiplication of two numbers using an artificial AND logic gate.

  19. Laboratory versus outdoor cycling conditions: differences in pedaling biomechanics.

    PubMed

    Bertucci, William; Grappe, Frederic; Groslambert, Alain

    2007-05-01

    The aim of our study was to compare crank torque profile and perceived exertion between the Monark ergometer (818 E) and two outdoor cycling conditions: level ground and uphill road cycling. Seven male cyclists performed seven tests in seated position at different pedaling cadences: (a) in the laboratory at 60, 80, and 100 rpm; (b) on level terrain at 80 and 100 rpm; and (c) on uphill terrain (9.25% grade) at 60 and 80 rpm. The cyclists exercised for 1 min at their maximal aerobic power. The Monark ergometer and the bicycle were equipped with the SRM Training System (Schoberer, Germany) for the measurement of power output (W), torque (Nxm), pedaling cadence (rpm), and cycling velocity (kmxh-1). The most important findings of this study indicate that at maximal aerobic power the crank torque profiles in the Monark ergometer (818 E) were significantly different (especially on dead points of the crank cycle) and generate a higher perceived exertion compared with road cycling conditions.

  20. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque

    PubMed Central

    Collet, M.; de Milly, X.; d'Allivy Kelly, O.; Naletov, V. V.; Bernard, R.; Bortolotti, P.; Ben Youssef, J.; Demidov, V. E.; Demokritov, S. O.; Prieto, J. L.; Muñoz, M.; Cros, V.; Anane, A.; de Loubens, G.; Klein, O.

    2016-01-01

    In recent years, spin–orbit effects have been widely used to produce and detect spin currents in spintronic devices. The peculiar symmetry of the spin Hall effect allows creation of a spin accumulation at the interface between a metal with strong spin–orbit interaction and a magnetic insulator, which can lead to a net pure spin current flowing from the metal into the insulator. This spin current applies a torque on the magnetization, which can eventually be driven into steady motion. Tailoring this experiment on extended films has proven to be elusive, probably due to mode competition. This requires the reduction of both the thickness and lateral size to reach full damping compensation. Here we show clear evidence of coherent spin–orbit torque-induced auto-oscillation in micron-sized yttrium iron garnet discs of thickness 20 nm. Our results emphasize the key role of quasi-degenerate spin-wave modes, which increase the threshold current. PMID:26815737

  1. Singularity and steering logic for control moment gyros on flexible space structures

    NASA Astrophysics Data System (ADS)

    Hu, Quan; Guo, Chuandong; Zhang, Jun

    2017-08-01

    Control moment gyros (CMGs) are a widely used device for generating control torques for spacecraft attitude control without expending propellant. Because of its effectiveness and cleanness, it has been considered to be mounted on a space structure for active vibration suppression. The resultant system is the so-called gyroelastic body. Since CMGs could exert both torque and modal force to the structure, it can also be used to simultaneously achieve attitude maneuver and vibration reduction of a flexible spacecraft. In this paper, we consider the singularity problem in such application of CMGs. The dynamics of an unconstrained gyroelastic body is established, from which the output equations of the CMGs are extracted. Then, torque singular state and modal force singular state are defined and visualized to demonstrate the singularity. Numerical examples of several typical CMGs configurations on a gyroelastic body are given. Finally, a steering law allowing output error is designed and applied to the vibration suppression of a plate with distributed CMGs.

  2. Optimal current waveforms for brushless permanent magnet motors

    NASA Astrophysics Data System (ADS)

    Moehle, Nicholas; Boyd, Stephen

    2015-07-01

    In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.

  3. Remotely detected vehicle mass from engine torque-induced frame twisting

    NASA Astrophysics Data System (ADS)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.

    2017-06-01

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.

  4. Dusty disc-planet interaction with dust-free simulations

    NASA Astrophysics Data System (ADS)

    Chen, Jhih-Wei; Lin, Min-Kai

    2018-05-01

    Protoplanets may be born into dust-rich environments if planetesimals formed through streaming or gravitational instabilities, or if the protoplanetary disc is undergoing mass loss due to disc winds or photoevaporation. Motivated by this possibility, we explore the interaction between low mass planets and dusty protoplanetary discs with focus on disc-planet torques. We implement Lin & Youdin's newly developed, purely hydrodynamic model of dusty gas into the PLUTO code to simulate dusty protoplanetary discs with an embedded planet. We find that for imperfectly coupled dust and high metallicity, e.g. Stokes number 10-3 and dust-to-gas ratio Σd/Σg = 0.5, a `bubble' develops inside the planet's co-orbital region, which introduces unsteadiness in the flow. The resulting disc-planet torques sustain large amplitude oscillations that persists well beyond that in simulations with perfectly coupled dust or low dust-loading, where co-rotation torques are always damped. We show that the desaturation of the co-rotation torques by finite-sized particles is related to potential vorticity generation from the misalignment of dust and gas densities. We briefly discuss possible implications for the orbital evolution of protoplanets in dust-rich discs. We also demonstrate Lin & Youdin's dust-free framework reproduces previous results pertaining to dusty protoplanetary discs, including dust-trapping by pressure bumps, dust settling, and the streaming instability.

  5. Stress Induced in Periodontal Ligament under Orthodontic Loading (Part II): A Comparison of Linear Versus Non-Linear Fem Study.

    PubMed

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-09-01

    Simulation of periodontal ligament (PDL) using non-linear finite element method (FEM) analysis gives better insight into understanding of the biology of tooth movement. The stresses in the PDL were evaluated for intrusion and lingual root torque using non-linear properties. A three-dimensional (3D) FEM model of the maxillary incisors was generated using Solidworks modeling software. Stresses in the PDL were evaluated for intrusive and lingual root torque movements by 3D FEM using ANSYS software. These stresses were compared with linear and non-linear analyses. For intrusive and lingual root torque movements, distribution of stress over the PDL was within the range of optimal stress value as proposed by Lee, but was exceeding the force system given by Proffit as optimum forces for orthodontic tooth movement with linear properties. When same force load was applied in non-linear analysis, stresses were more compared to linear analysis and were beyond the optimal stress range as proposed by Lee for both intrusive and lingual root torque. To get the same stress as linear analysis, iterations were done using non-linear properties and the force level was reduced. This shows that the force level required for non-linear analysis is lesser than that of linear analysis.

  6. MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.

    PubMed

    Najjar-Khodabakhsh, Abbas; Soltani, Jafar

    2016-03-01

    In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Quantification of wing and body kinematics in connection to torque generation during damselfly yaw turn

    NASA Astrophysics Data System (ADS)

    Zeyghami, Samane; Bode-Oke, Ayodeji T.; Dong, HaiBo

    2017-01-01

    This study provides accurate measurements of the wing and body kinematics of three different species of damselflies in free yaw turn flights. The yaw turn is characterized by a short acceleration phase which is immediately followed by an elongated deceleration phase. Most of the heading change takes place during the latter stage of the flight. Our observations showed that yaw turns are executed via drastic rather than subtle changes in the kinematics of all four wings. The motion of the inner and outer wings were found to be strongly linked through their orientation as well as their velocities with the inner wings moving faster than the outer wings. By controlling the pitch angle and wing velocity, a damselfly adjusts the angle of attack. The wing angle of attack exerted the strongest influence on the yaw torque, followed by the flapping and deviation velocities of the wings. Moreover, no evidence of active generation of counter torque was found in the flight data implying that deceleration and stopping of the maneuver is dominated by passive damping. The systematic analysis carried out on the free flight data advances our understanding of the mechanisms by which these insects achieve their observed maneuverability. In addition, the inspiration drawn from this study can be employed in the design of low frequency flapping wing micro air vehicles (MAV's).

  8. Novel swing-assist un-motorized exoskeletons for gait training.

    PubMed

    Mankala, Kalyan K; Banala, Sai K; Agrawal, Sunil K

    2009-07-03

    Robotics is emerging as a promising tool for functional training of human movement. Much of the research in this area over the last decade has focused on upper extremity orthotic devices. Some recent commercial designs proposed for the lower extremity are powered and expensive - hence, these could have limited affordability by most clinics. In this paper, we present a novel un-motorized bilateral exoskeleton that can be used to assist in treadmill training of motor-impaired patients, such as with motor-incomplete spinal cord injury. The exoskeleton is designed such that the human leg will have a desirable swing motion, once it is strapped to the exoskeleton. Since this exoskeleton is un-motorized, it can potentially be produced cheaply and could reduce the physical demand on therapists during treadmill training. A swing-assist bilateral exoskeleton was designed and fabricated at the University of Delaware having the following salient features: (i) The design uses torsional springs at the hip and the knee joints to assist the swing motion. The springs get charged by the treadmill during stance phase of the leg and provide propulsion forces to the leg during swing. (ii) The design of the exoskeleton uses simple dynamic models of sagittal plane walking, which are used to optimize the parameters of the springs so that the foot can clear the ground and have a desirable forward motion during walking. The bilateral exoskeleton was tested on a healthy subject during treadmill walking for a range of walking speeds between 1.0 mph and 4.0 mph. Joint encoders and interface force-torque sensors mounted on the exoskeleton were used to evaluate the effectiveness of the exoskeleton in terms of the hip and knee joint torques applied by the human during treadmill walking. We compared two different cases. In case 1, we estimated the torque applied by the human joints when walking with the device using the joint kinematic data and interface force-torque sensors. In case 2, we calculated the required torque to perform a similar gait only using the kinematic data collected from joint motion sensors. On analysis, we found that at 2.0 mph, the device was effective in reducing the maximum hip torque requirement and the knee joint torque during the beginning of the swing. These behaviors were retained as the treadmill speed was changed between 1-4 mph. These results were remarkable considering the simplicity of the dynamic model, model uncertainty, non-ideal spring behavior, and friction in the joints. We believe that the results can be further improved in the future. Nevertheless, this promises to provide a useful and effective methodology for design of un-motorized exoskeletons to assist and train swing of motor-impaired patients.

  9. NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J.; Halse, C.

    The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.

  10. High and low torque handpieces: cutting dynamics, enamel cracking and tooth temperature.

    PubMed

    Watson, T F; Flanagan, D; Stone, D G

    2000-06-24

    The aim of these experiments was to compare the cutting dynamics of high-speed high-torque (speed-increasing) and high-speed low-torque (air-turbine) handpieces and evaluate the effect of handpiece torque and bur type on sub-surface enamel cracking. Temperature changes were also recorded in teeth during cavity preparation with high and low torque handpieces with diamond and tungsten carbide (TC) burs. The null hypothesis of this study was that high torque handpieces cause more damage to tooth structure during cutting and lead to a rise in temperature within the pulp-chamber. Images of the dynamic interactions between burs and enamel were recorded at video rate using a confocal microscope. Central incisors were mounted on a specially made servomotor driven stage for cutting with a type 57 TC bur. The two handpiece types were used with simultaneous recording of cutting load and rate. Sub-surface enamel cracking caused by the use of diamond and TC burs with high and low torque was also examined. Lower third molars were sectioned horizontally to remove the cusp tips and then the two remaining crowns cemented together with cyanoacrylate adhesive, by their flat surfaces. Axial surfaces of the crowns were then prepared with the burs and handpieces. The teeth were then separated and the original sectioned surface examined for any cracks using a confocal microscope. Heat generation was measured using thermocouples placed into the pulp chambers of extracted premolars, with diamond and TC burs/high-low torque handpiece variables, when cutting occlusal and cervical cavities. When lightly loaded the two handpiece types performed similarly. However, marked differences in cutting mechanisms were noted when increased forces were applied to the handpieces with, generally, an increase in cutting rate. The air turbine could not cope with steady heavy loads, tending to stall. 'Rippling' was seen in the interface as this stall developed, coinciding with the bur 'clearing' itself. No differences were noted between different handpieces and burs, in terms of sub-surface enamel cracking. Similarly, no differences were recorded for temperature rise during cavity preparation. Differences in cutting mechanisms were seen between handpieces with high and low torque, especially when the loads and cutting rates were increased. The speed increasing handpiece was better able to cope with increased loading. Nevertheless, there was no evidence of increased tooth cracking or heating with this type handpiece, indicating that these do not have any deleterious effects on the tooth.

  11. Heat generation during implant placement in low-density bone: effect of surgical technique, insertion torque and implant macro design.

    PubMed

    Marković, Aleksa; Mišić, Tijana; Miličić, Biljana; Calvo-Guirado, Jose Luis; Aleksić, Zoran; Ðinić, Ana

    2013-07-01

    The study aimed to investigate the effect of surgical technique, implant macrodesign and insertion torque on bone temperature changes during implant placement. In the in vitro study, 144 self-tapping (blueSKY(®) 4 × 10 mm; Bredent) and 144 non-self-tapping (Standard implant(®) 4.1 × 10 mm; Straumann) were placed in osteotomies prepared in pig ribs by lateral bone condensing or bone drilling techniques. The maximum insertion torque values of 30, 35 and 40 Ncm were used. Real-time bone temperature measurement during implant placement was performed by three thermocouples positioned vertically, in tripod configuration around every osteotomy, at a distance of 5 mm from it and at depths of 1, 5 and 10 mm. Data were analysed using Kruskal-Wallis, Mann-Whitney U-tests and Regression analysis. Significant predictor of bone temperature at the osteotomy depth of 1 mm was insertion torque (P = 0.003) and at the depth of 10-mm implant macrodesign (P = 0.029), while no significant predictor at depth of 5 mm was identified (P > 0.05). Higher insertion torque values as well as non-self-tapping implant macrodesign were related to higher temperatures. Implant placement in sites prepared by bone drilling induced significantly higher temperature increase (P = 0.021) compared with bone condensing sites at the depth of 5 mm, while no significant difference was recorded at other depths. Compared with 30 Ncm, insertion torque values of 35 and 40 Ncm produced significantly higher temperature increase (P = 0.005; P = 0.003, respectively) at the depth of 1 mm. There was no significant difference in temperature change induced by 35 and 40 Ncm, neither by implant macrodesign at all investigated depths (P > 0.05). Placement of self-tapping implants with low insertion torque into sites prepared by lateral bone condensing technique might be advantageous in terms of thermal effect on bone. © 2012 John Wiley & Sons A/S.

  12. The Influence of a Bout of Exertion on Novice Barefoot Running Dynamics

    PubMed Central

    Hashish, Rami; Samarawickrame, Sachithra D.; Baker, Lucinda; Salem, George J.

    2016-01-01

    Barefoot, forefoot strike (FFS) running has recently risen in popularity. Relative to shod, rear-foot strike (RFS) running, employing a FFS is associated with heightened triceps surae muscle activation and ankle mechanical demand. Novice to this pattern, it is plausible that habitually shod RFS runners exhibit fatigue to the triceps surae when acutely transitioning to barefoot running, thereby limiting their ability to attenuate impact. Therefore, the purpose was to determine how habitually shod RFS runners respond to an exertion bout of barefoot running, operationally defined as a barefoot run 20% of mean daily running distance. Twenty-one RFS runners performed novice barefoot running, before and after exertion. Ankle peak torque, triceps surae EMG median frequency, foot-strike patterns, joint energy absorption, and loading rates were evaluated. Of the 21 runners, 6 maintained a RFS, 10 adopted a mid-foot strike (MFS), and 5 adopted a FFS during novice barefoot running. In-response to exertion, MFS and FFS runners demonstrated reductions in peak torque, median frequency, and ankle energy absorption, and an increase in loading rate. RFS runners demonstrated reductions in peak torque and loading rate. These results indicate that a short bout of running may elicit fatigue to novice barefoot runners, limiting their ability to attenuate impact. Key points In response to exertion, novice barefoot runners demonstrate fatigue to their soleus. In response to exertion, novice barefoot runners demonstrate a reduction in ankle energy absorption In response to exertion, novice barefoot runners demonstrate an increase in loading rate PMID:27274672

  13. The Influence of a Bout of Exertion on Novice Barefoot Running Dynamics.

    PubMed

    Hashish, Rami; Samarawickrame, Sachithra D; Baker, Lucinda; Salem, George J

    2016-06-01

    Barefoot, forefoot strike (FFS) running has recently risen in popularity. Relative to shod, rear-foot strike (RFS) running, employing a FFS is associated with heightened triceps surae muscle activation and ankle mechanical demand. Novice to this pattern, it is plausible that habitually shod RFS runners exhibit fatigue to the triceps surae when acutely transitioning to barefoot running, thereby limiting their ability to attenuate impact. Therefore, the purpose was to determine how habitually shod RFS runners respond to an exertion bout of barefoot running, operationally defined as a barefoot run 20% of mean daily running distance. Twenty-one RFS runners performed novice barefoot running, before and after exertion. Ankle peak torque, triceps surae EMG median frequency, foot-strike patterns, joint energy absorption, and loading rates were evaluated. Of the 21 runners, 6 maintained a RFS, 10 adopted a mid-foot strike (MFS), and 5 adopted a FFS during novice barefoot running. In-response to exertion, MFS and FFS runners demonstrated reductions in peak torque, median frequency, and ankle energy absorption, and an increase in loading rate. RFS runners demonstrated reductions in peak torque and loading rate. These results indicate that a short bout of running may elicit fatigue to novice barefoot runners, limiting their ability to attenuate impact. Key pointsIn response to exertion, novice barefoot runners demonstrate fatigue to their soleus.In response to exertion, novice barefoot runners demonstrate a reduction in ankle energy absorptionIn response to exertion, novice barefoot runners demonstrate an increase in loading rate.

  14. Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents

    DOE PAGES

    Heinonen, Olle; Jiang, Wanjun; Somaily, Hamoud; ...

    2016-03-07

    Recent experiments have shown that magnetic skyrmion bubbles can be generated and injected at room temperature in thin films. In this study, we demonstrate, using micromagnetic modeling, that such skyrmions can be generated by an inhomogeneous spin Hall torque in the presence of Dzyaloshinskii-Moriya interactions (DMIs). In the experimental Ta-Co 20Fe 60B 20 thin films, the DMI is rather small; nevertheless, the skyrmion bubbles are stable, or at least metastable on observational time scales.

  15. Insights into the Molecular Mechanism of Rotation in the Fo Sector of ATP Synthase

    PubMed Central

    Aksimentiev, Aleksij; Balabin, Ilya A.; Fillingame, Robert H.; Schulten, Klaus

    2004-01-01

    F1Fo-ATP synthase is a ubiquitous membrane protein complex that efficiently converts a cell's transmembrane proton gradient into chemical energy stored as ATP. The protein is made of two molecular motors, Fo and F1, which are coupled by a central stalk. The membrane unit, Fo, converts the transmembrane electrochemical potential into mechanical rotation of a rotor in Fo and the physically connected central stalk. Based on available data of individual components, we have built an all-atom model of Fo and investigated through molecular dynamics simulations and mathematical modeling the mechanism of torque generation in Fo. The mechanism that emerged generates the torque at the interface of the a- and c-subunits of Fo through side groups aSer-206, aArg-210, and aAsn-214 of the a-subunit and side groups cAsp-61 of the c-subunits. The mechanism couples protonation/deprotonation of two cAsp-61 side groups, juxtaposed to the a-subunit at any moment in time, to rotations of individual c-subunit helices as well as rotation of the entire c-subunit. The aArg-210 side group orients the cAsp-61 side groups and, thereby, establishes proton transfer via aSer-206 and aAsn-214 to proton half-channels, while preventing direct proton transfer between the half-channels. A mathematical model proves the feasibility of torque generation by the stated mechanism against loads typical during ATP synthesis; the essential model characteristics, e.g., helix and subunit rotation and associated friction constants, have been tested and furnished by steered molecular dynamics simulations. PMID:14990464

  16. Experimental Characterization of a Grid-Loss Event on a 2.5-MW Dynamometer Using Advanced Operational Modal Analysis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helsen, J.; Weijtjens, W.; Guo, Y.

    2015-02-01

    This paper experimentally investigates a worst case grid loss event conducted on the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) drivetrain mounted on the 2.5MW NREL dynamic nacelle test-rig. The GRC drivetrain has a directly grid-coupled, fixed speed asynchronous generator. The main goal is the assessment of the dynamic content driving this particular assess the dynamic content of the high-speed stage of the GRC gearbox. In addition to external accelerometers, high frequency sampled measurements of strain gauges were used to assess torque fluctuations and bending moments both at the nacelle main shaft and gearbox high-speed shaft (HSS) throughmore » the entire duration of the event. Modal analysis was conducted using a polyreference Least Squares Complex Frequency-domain (pLSCF) modal identification estimator. The event driving the torsional resonance was identified. Moreover, the pLSCF estimator identified main drivetrain resonances based on a combination of acceleration and strain measurements. Without external action during the grid-loss event, a mode shape characterized by counter phase rotation of the rotor and generator rotor determined by the drivetrain flexibility and rotor inertias was the main driver of the event. This behavior resulted in significant torque oscillations with large amplitude negative torque periods. Based on tooth strain measurements of the HSS pinion, this work showed that at each zero-crossing, the teeth lost contact and came into contact with the backside flank. In addition, dynamic nontorque loads between the gearbox and generator at the HSS played an important role, as indicated by strain gauge-measurements.« less

  17. Engine-driven preparation of curved root canals: measuring cyclic fatigue and other physical parameters.

    PubMed

    Peters, Ove A; Kappeler, Stefan; Bucher, Willi; Barbakow, Fred

    2002-04-01

    An increasing number of engine-driven rotary systems are marketed to shape root canals. Although these systems may improve the quality of canal preparations, the risk for instrument fracture is also increased. Unfortunately, the stresses generated in rotary instruments when shaping curved root canals have not been adequately studied. Consequently, the aim of an ongoing project was to develop a measurement platform that could more accurately detail physical parameters generated in a simulated clinical situation. Such a platform was constructed by fitting a torque-measuring device between the rotating endodontic instrument and the motor driving it. Apically directed force and instrument insertion depth were also recorded. Additional devices were constructed to assess cyclic fatigue and static fracture loads. The current pilot study evaluated GT rotary instruments during the shaping of curved canals in plastic blocks as well as "ISO 3630-1 torque to fracture" and number of rotations required for fatigue fracture. Results indicated that torques in excess of 40 Nmm were generated by rotary GT-Files, a significantly higher figure than static fracture loads (less than 13 Nmm for the size 20. 12 GT-File). Furthermore, the number of rotations needed to shape simulated canals with a 5 mm radius of curvature in plastic blocks was 10 times lower than the number of rotations needed to fracture instruments in a "cyclic fatigue test". Apical forces were always greater than 1 N, and in some specimens, scores of 8 N or more were recorded. Further studies are required using extracted natural teeth, with their wide anatomical variation, in order to reduce the incidence of fracture of rotary instruments. In this way, the clinical potential of engine-driven rotary instruments to safely prepare curved canals can be fully appreciated.

  18. Knee and Ankle Joint Angles Influence the Plantarflexion Torque of the Gastrocnemius.

    PubMed

    Landin, Dennis; Thompson, Melissa; Reid, Meghan

    2015-08-01

    The gastrocnemius (GA) is the lone bi-articular muscle of the leg, crossing both the knee and ankle. As with any bi-articular muscle, both joints affect its length/tension curve. The role of the GA as a plantarflexor is firmly established; however, no current research has investigated how changes in knee and ankle joint positions on its ability to generate a plantarflexion (PF) torque. This paper reports on the PF force generated by the GA at specific knee and ankle joint combinations. The right GA of 26 participants was electrically stimulated via surface electrodes following a standardized protocol at 24 knee and ankle joint combinations. Three stimulations were applied at each of the 24 positions. Data were recorded on three dependent measures: the passive moment, which was the PF moment created by the tissue without stimulation, the maximum moment, which was the highest PF moment during the stimulation and included the passive moment, and the stimulated moment, which reflected the PF moment during stimulation minus the passive moment. A straight knee and dorsiflexed ankle create the position in which the GA generates the greatest PF moment, but it is also the position of greatest length. This finding is in contrast to conclusions from previous research with bi-articular muscles, which has consistently shown that the greatest length is not a muscle's optimal length. The full ranges of motion for the knee and ankle apparently do not elongate the GA beyond its optimal length for producing a PF moment. Clinicians commonly evaluate GA status with the patient seated and the foot subject to gravity. The present results indicate that manual testing of the GA in isolation should be performed, whenever possible, with the knee extended and the ankle dorsiflexed to potentially elicit the maximum PF torque from the GA.

  19. Magnetostrictive direct drive motors

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1992-01-01

    A new rare earth alloy, Terfenol-D, combines low frequency operation and extremely high energy density with high magnetostriction. Its material properties make it suitable as a drive element for actuators requiring high output torque. The high strains, the high forces and the high controllability of Terfenol alloys provide a powerful and challenging basis for new ways to generate motion in actuators. Two prototypes of motors using Terfenol-D rods were developed at NASA Goddard. The basic principles of operation are provided of the motor along with other relevant details. A conceptual design of a torque limiting safety clutch/brake under development is illustrated. Also, preliminary design drawings of a linear actuator using Terfenol-D is shown.

  20. Clustering of cycloidal wave energy converters

    DOEpatents

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  1. Acoustically assisted spin-transfer-torque switching of nanomagnets: An energy-efficient hybrid writing scheme for non-volatile memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Ayan K.; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    We show that the energy dissipated to write bits in spin-transfer-torque random access memory can be reduced by an order of magnitude if a surface acoustic wave (SAW) is launched underneath the magneto-tunneling junctions (MTJs) storing the bits. The SAW-generated strain rotates the magnetization of every MTJs' soft magnet from the easy towards the hard axis, whereupon passage of a small spin-polarized current through a target MTJ selectively switches it to the desired state with > 99.99% probability at room temperature, thereby writing the bit. The other MTJs return to their original states at the completion of the SAW cycle.

  2. Vehicle handling and stability control by the cooperative control of 4WS and DYC

    NASA Astrophysics Data System (ADS)

    Shen, Huan; Tan, Yun-Sheng

    2017-07-01

    This paper proposes an integrated control system that cooperates with the four-wheel steering (4WS) and direct yaw moment control (DYC) to improve the vehicle handling and stability. The design works of the four-wheel steering and DYC control are based on sliding mode control. The integration control system produces the suitable 4WS angle and corrective yaw moment so that the vehicle tracks the desired yaw rate and sideslip angle. Considering the change of the vehicle longitudinal velocity that means the comfort of driving conditions, both the driving torque and braking torque are used to generate the corrective yaw moment. Simulation results show the effectiveness of the proposed control algorithm.

  3. Changes in pennation with joint angle and muscle torque: in vivo measurements in human brachialis muscle.

    PubMed Central

    Herbert, R D; Gandevia, S C

    1995-01-01

    1. Estimates of pennation in human muscles are usually obtained from cadavers. In this study, pennation of human brachialis was measured in vivo using sonography. Effects of static and dynamic changes in elbow angle and torque were investigated. 2. Pennation was measured in eight subjects using an 80 mm, 5 MHz, linear-array ultrasound transducer to generate sagittal images of the brachialis during maximal and submaximal isometric contractions at various elbow angles. It was shown that estimates of pennation were reproducible, representative of measurements made throughout the belly of the muscle and not distorted by compression of the muscle with the transducer or rotation of the muscle out of the plane of the transducer. 3. Mean resting pennation was 9.0 +/- 2.0 deg (S.D., range 6.5-12.9 deg). When the muscle was relaxed there was no effect of elbow angle on pennation. However, during a maximal isometric contraction (MVC), with the elbow flexed to 90 deg, pennation increased non-linearly with elbow torque to between 22 and 30 deg (mean 24.7 +/- 2.4 deg). The effect of increasing torque was small when the elbow was fully extended. The relationship between elbow angle, elbow torque and brachialis pennation suggests that the relaxed brachialis muscle is slack over much of its physiological range of lengths. 4. There was no hysteresis in the relationship between torque and pennation during slow isometric contractions (0.2 MVC s-1), and the relationship between elbow angle and pennation was similar during slow shortening and lengthening contractions. 5. Two consequences follow from these findings. Firstly, intramuscular mechanics are complex and simple planar models of muscles underestimate the increases in pennation which occur during muscle contraction. Second, spindle afferents from relaxed muscles may not encode joint angle over the full range of movement. Images Figure 2 PMID:7602542

  4. Quick torque coupling

    DOEpatents

    Luft, Peter A [El Cerrito, CA

    2009-05-12

    A coupling for mechanically connecting modular tubular struts of a positioning apparatus or space frame, comprising a pair of toothed rings (10, 12) attached to separate strut members (16), the teeth (18, 20) of the primary rings (10, 12) mechanically interlocking in both an axial and circumferential manner, and a third part comprising a sliding, toothed collar (14) the teeth (22) of which interlock the teeth (18, 20) of the primary rings (10, 12), preventing them from disengaging, and completely locking the assembly together. A secondary mechanism provides a nesting force for the collar, and/or retains it. The coupling is self-contained and requires no external tools for installation, and can be assembled with gloved hands in demanding environments. No gauging or measured torque is required for assembly. The assembly can easily be visually inspected to determine a "go" or "no-go" status. The coupling is compact and relatively light-weight. Because of it's triply interlocking teeth, the connection is rigid. The connection does not primarily rely on clamps, springs or friction based fasteners, and is therefore reliable in fail-safe applications.

  5. Performance Evaluation on Otto Engine Generator Using Gasoline and Biogas from Palm Oil Mill Effluent

    NASA Astrophysics Data System (ADS)

    Irvan; Trisakti, B.; Husaini, T.; Sitio, A.; Sitorus, TB

    2017-06-01

    Biogas is a flammable gas produced from the fermentation of organic materials by anaerobic bacteria originating from household waste manure and organic waste including palm oil mill effluent (POME). POME is mainly discharged from the sterilization unit of palm oil processing into crude palm oil. This study utilized biogas produced from liquid waste palm oil for use as fuel in the Otto engine generator 4 - stroke, type STARKE GFH1900LX with a peak power of 1.3 kW, 1.0 kW average power, bore 55 mm, stroke 40 mm, Vd 95 × 10-6 m3, Vc 10 × 10-6 m3, compression ratio of 10.5 : 1, and the number of cylinders = 1. The objective of this study is to evaluate the performance of Otto engine generator fueled with biogas that generated from POME, then comparing its performance fueled by gasoline. The performance included power, torque, specific fuel consumption, thermal efficiency, and the air-fuel ratio. Experiment was conducted by using a variation of the lamp load of 100, 200, 300, 400, and 500 W. The results revealed that the use of biogas as fuel decreased in power, torque, brake thermal efficiency, and air fuel ratio (AFR), while there is an increasing of value specific fuel consumption (SFC).

  6. Real-time physics-based 3D biped character animation using an inverted pendulum model.

    PubMed

    Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee

    2010-01-01

    We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.

  7. In vitro biomechanical analysis of torque capabilities of various 0.018″ lingual bracket-wire systems: total torque play and slot size.

    PubMed

    Daratsianos, Nikolaos; Bourauel, Christoph; Fimmers, Rolf; Jäger, Andreas; Schwestka-Polly, Rainer

    2016-10-01

    To determine the total torque play of various rectangular titanium molybdenum alloy (TMA)/stainless steel (SS) wires in various 0.018″ upper incisor lingual brackets and slot size measurements. TMA (0.0175″ × 0.0175″, 0.0170″ × 0.025″, 0.0182″ × 0.0182″, 0.0182″ × 0.025″) and SS wires (0.016″ × 0.022″, 0.016″ × 0.024″, 0.018″ × 0.025″) were twisted in standard (Hiro, Incognito™, Joy®, Kurz 7th generation, STb™: fixation with elastic modules) and self-ligating brackets (Evolution SLT®, In-Ovation® L MTM: closed ligation mechanism) from -20 degrees to +20 degrees with a custom-made machine. The total torque play was calculated by extrapolating the linear portion of the twist/moment curves to the x-axis and adding the absolute negative and positive angle values at the intercepts. The bracket slot height was measured before and after the experiments with a series of pin gauges with round profile. Brackets in ascending order for total torque play with the most slot-filling wire TMA 0.0182″ × 0.025″: Evolution SLT® (0 degree ± 0 degree), Incognito™ (2.2 degrees ±1.1 degrees), Hiro (5.1 degrees ±3.0 degrees), In-Ovation® L MTM (6.3 degrees ±2.2 degrees), STb™ (6.6 degrees ±1.8 degrees), Kurz 7th generation (7.1 degrees ±0.8 degrees), and Joy® (12.0 degrees ±0.8 degrees). Wires in ascending order for total torque play with the most precise slot Incognito™: TMA 0.0182″ × 0.025″ (2.2 degrees ±1.1 degrees), TMA 0.0182″ × 0.0182″ (2.4 degrees ±0.9 degrees), SS 0.018″ × 0.025″ (5.5 degrees ±1.0 degrees), TMA 0.0170″ × 0.025″ (9.4 degrees ±1.8 degrees), TMA 0.0175″ × 0.0175″ (13.0 degrees ±1.5 degrees), SS 0.016″ × 0.024″ (16.1 degrees ±1.4 degrees), SS 0.016″ × 0.022″ (17.8 degrees ±1.0 degrees); differences between some of the experimental groups were not statistically significant. Bracket slot dimensions in ascending order: Evolution SLT® (less than 0.452mm), Incognito™ (0.460mm ±0.002mm), In-Ovation® L MTM (0.469mm ±0.001mm), Hiro (0.469mm ±0.010mm), STb™ (0.471mm ±0.002mm), Kurz 7th generation (0.473mm ±0.002mm), and Joy® (greater than 0.498mm). The applied method must be questioned when used with brackets with incomplete slot walls (Evolution SLT®). Slot measurement with pin gauges may not register bracket wing deformation. All brackets showed a differing slot size from the nominal 0.018″ (0.457mm). Incognito™ presented the most precise and Joy® the widest slot. The main wires for the retraction phase SS 0.016″ × 0.022″/SS 0.016″ × 0.024″ showed poor torque control. Among the finishing TMA wires, TMA 0.0175″ × 0.0175″ exhibited the highest and TMA 0.0182″ × 0.0182″/TMA 0.0182″ × 0.025″ the smallest torque play. The manufacturers could profit from this investigation towards optimization of the dimensional precision of their products. The orthodontist must be aware of the torque play of the wire-bracket combinations to be able to plan and individualize the appliance by third order customization. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Lightweight Exoskeletons with Controllable Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mavrodis, Constantinos; Melli-Huber, Juan; Fisch, Avi (Alan)

    2004-01-01

    A proposed class of lightweight exoskeletal electromechanical systems would include electrically controllable actuators that would generate torques and forces that, depending on specific applications, would resist and/or assist wearers movements. The proposed systems would be successors to relatively heavy, bulky, and less capable human-strength-amplifying exoskeletal electromechanical systems that have been subjects of research during the past four decades. The proposed systems could be useful in diverse applications in which there are needs for systems that could be donned or doffed easily, that would exert little effect when idle, and that could be activated on demand: examples of such applications include (1) providing controlled movement and/or resistance to movement for physical exercise and (2) augmenting wearers strengths in the performance of military, law-enforcement, and industrial tasks. An exoskeleton according to the proposal would include adjustable lightweight graphite/epoxy struts and would be attached to the wearer's body by belts made of hook-and-pile material. At selected rotary and linear joints, the exoskeleton would be fitted, variously, with lightweight, low-power-consumption rotary and linear brakes, clutches, and motors. The exoskeleton would also be equipped with electronic circuitry for monitoring, control, and possibly communication with external electronic circuits that would perform additional monitoring and control functions.

  9. Biomechanical measurements of stopping and stripping torques during screw insertion in five types of human and artificial humeri.

    PubMed

    Aziz, Mina Sr; Tsuji, Matthew Rs; Nicayenzi, Bruce; Crookshank, Meghan C; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Radovan

    2014-05-01

    During orthopedic surgery, screws are inserted by "subjective feel" in humeri for fracture fixation, that is, stopping torque, while trying to prevent accidental over-tightening that causes screw-bone interface failure, that is, stripping torque. However, no studies exist on stopping torque, stripping torque, or stopping/stripping torque ratio in human or artificial humeri. This study evaluated five types of humeri, namely, human fresh-frozen (n = 19), human embalmed (n = 18), human dried (n = 15), artificial "normal" (n = 13), and artificial "osteoporotic" (n = 13). An orthopedic surgeon used a torque screwdriver to insert 3.5-mm-diameter cortical screws into humeral shafts and 6.5-mm-diameter cancellous screws into humeral heads by "subjective feel" to obtain stopping and stripping torques. The five outcome measures were raw and normalized stopping torque, raw and normalized stripping torque, and stopping/stripping torque ratio. Normalization was done as raw torque/screw-bone interface area. For "gold standard" fresh-frozen humeri, cortical screw tests yielded averages of 1312 N mm (raw stopping torque), 30.4 N/mm (normalized stopping torque), 1721 N mm (raw stripping torque), 39.0 N/mm (normalized stripping torque), and 82% (stopping/stripping torque ratio). Similarly, fresh-frozen humeri gave cancellous screw average results of 307 N mm (raw stopping torque), 0.9 N/mm (normalized stopping torque), 392 N mm (raw stripping torque), 1.2 N/mm (normalized stripping torque), and 79% (stopping/stripping torque ratio). Of the five cortical screw parameters for fresh-frozen humeri versus other groups, statistical equivalence (p ≥ 0.05) occurred in four cases (embalmed), three cases (dried), four cases (artificial "normal"), and four cases (artificial "osteoporotic"). Of the five cancellous screw parameters for fresh-frozen humeri versus other groups, statistical equivalence (p ≥ 0.05) occurred in five cases (embalmed), one case (dried), one case (artificial "normal"), and zero cases (artificial "osteoporotic"). Stopping/stripping torque ratios were relatively constant for all groups at 77%-88% (cortical screws) and 79%-92% (cancellous screws). © IMechE 2014.

  10. Assessment of utility side financial benefits of demand side management considering environmental impacts

    NASA Astrophysics Data System (ADS)

    Abeygunawardane, Saranga Kumudu

    2018-02-01

    Any electrical utility prefers to implement demand side management and change the shape of the demand curve in a beneficial manner. This paper aims to assess the financial gains (or losses) to the generating sector through the implementation of demand side management programs. An optimization algorithm is developed to find the optimal generation mix that minimizes the daily total generating cost. This daily total generating cost includes the daily generating cost as well as the environmental damage cost. The proposed optimization algorithm is used to find the daily total generating cost for the base case and for several demand side management programs using the data obtained from the Sri Lankan power system. Results obtained for DSM programs are compared with the results obtained for the base case to assess the financial benefits of demand side management to the generating sector.

  11. Validation of Kinetic-Turbulent-Neoclassical Theory for Edge Intrinsic Rotation in DIII-D Plasmas

    NASA Astrophysics Data System (ADS)

    Ashourvan, Arash

    2017-10-01

    Recent experiments on DIII-D with low-torque neutral beam injection (NBI) have provided a validation of a new model of momentum generation in a wide range of conditions spanning L- and H-mode with direct ion and electron heating. A challenge in predicting the bulk rotation profile for ITER has been to capture the physics of momentum transport near the separatrix and steep gradient region. A recent theory has presented a model for edge momentum transport which predicts the value and direction of the main-ion intrinsic velocity at the pedestal-top, generated by the passing orbits in the inhomogeneous turbulent field. In this study, this model-predicted velocity is tested on DIII-D for a database of 44 low-torque NBI discharges comprised of bothL- and H-mode plasmas. For moderate NBI powers (PNBI<4 MW), model prediction agrees well with the experiments for both L- and H-mode. At higher NBI power the experimental rotation is observed to saturate and even degrade compared to theory. TRANSP-NUBEAM simulations performed for the database show that for discharges with nominally balanced - but high powered - NBI, the net injected torque through the edge can exceed 1 N.m in the counter-current direction. The theory model has been extended to compute the rotation degradation from this counter-current NBI torque by solving a reduced momentum evolution equation for the edge and found the revised velocity prediction to be in agreement with experiment. Projecting to the ITER baseline scenario, this model predicts a value for the pedestal-top rotation (ρ 0.9) comparable to 4 kRad/s. Using the theory modeled - and now tested - velocity to predict the bulk plasma rotation opens up a path to more confidently projecting the confinement and stability in ITER. Supported by the US DOE under DE-AC02-09CH11466 and DE-FC02-04ER54698.

  12. Trunk isometric force production parameters during erector spinae muscle vibration at different frequencies

    PubMed Central

    2013-01-01

    Background Vibration is known to alter proprioceptive afferents and create a tonic vibration reflex. The control of force and its variability are often considered determinants of motor performance and neuromuscular control. However, the effect of vibration on paraspinal muscle control and force production remains to be determined. Methods Twenty-one healthy adults were asked to perform isometric trunk flexion and extension torque at 60% of their maximal voluntary isometric contraction, under three different vibration conditions: no vibration, vibration frequencies of 30 Hz and 80 Hz. Eighteen isometric contractions were performed under each condition without any feedback. Mechanical vibrations were applied bilaterally over the lumbar erector spinae muscles while participants were in neutral standing position. Time to peak torque (TPT), variable error (VE) as well as constant error (CE) and absolute error (AE) in peak torque were calculated and compared between conditions. Results The main finding suggests that erector spinae muscle vibration significantly decreases the accuracy in a trunk extension isometric force reproduction task. There was no difference between both vibration frequencies with regard to force production parameters. Antagonist muscles do not seem to be directly affected by vibration stimulation when performing a trunk isometric task. Conclusions The results suggest that acute erector spinae muscle vibration interferes with torque generation sequence of the trunk by distorting proprioceptive information in healthy participants. PMID:23919578

  13. Insulating nanomagnets driven by spin torque

    DOE PAGES

    Jungfleisch, Matthias B.; Ding, Junjia; Zhang, Wei; ...

    2016-11-29

    Magnetic insulators, such as yttrium iron garnet (Y 3Fe 5O 12), are ideal materials for ultra-low power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y 3Fe 5O 12/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y 3Fe 5O 12/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd 3Ga 5O 12 substrates and lift-off. We observe field-likemore » and anti-damping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y 3Fe 5O 12/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident. In conclusion, our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.« less

  14. Muscle function in aged women in response to a water-based exercises program and progressive resistance training.

    PubMed

    Bento, Paulo Cesar Barauce; Rodacki, André Luiz Felix

    2015-11-01

    The purpose of the present study was to determine the effects of a water-based exercise program on muscle function compared with regular high-intensity resistance training. Older women (n = 87) were recruited from the local community. The inclusion criteria were, to be aged 60 years or older, able to walk and able to carry out daily living activities independently. Participants were randomly assigned to one of the following groups: water-based exercises (WBG), resistance training (RTG) or control (CG). The experimental groups carried out 12 weeks of an excise program performed on water or on land. The dynamic strength, the isometric peak, and rate of torque development for the lower limbs were assessed before and after interventions. The water-based program provided a similar improvement in dynamic strength in comparison with resistance training. The isometric peak torque increased around the hip and ankle joints in the water-based group, and around the knee joint in the resistance-training group (P < 0.05). The rate of torque development increased only in the water-based group around the hip extensors muscles (P < 0.05). Water-based programs constitute an attractive alternative to promote relevant strength gains using moderate loads and fast speed movements, which were also effective to improve the capacity to generate fast torques. © 2014 Japan Geriatrics Society.

  15. Remotely detected vehicle mass from engine torque-induced frame twisting

    DOE PAGES

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; ...

    2017-06-08

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less

  16. Effective utilization of gravity during arm downswing in keystrokes by expert pianists.

    PubMed

    Furuya, S; Osu, R; Kinoshita, H

    2009-12-01

    The present study investigated a skill-level-dependent interaction between gravity and muscular force when striking piano keys. Kinetic analysis of the arm during the downswing motion performed by expert and novice piano players was made using an inverse dynamic technique. The corresponding activities of the elbow agonist and antagonist muscles were simultaneously recorded using electromyography (EMG). Muscular torque at the elbow joint was computed while excluding the effects of gravitational and motion-dependent interaction torques. During descending the forearm to strike the keys, the experts kept the activation of the triceps (movement agonist) muscle close to the resting level, and decreased anti-gravity activity of the biceps muscle across all loudness levels. This suggested that elbow extension torque was produced by gravity without the contribution of agonist muscular work. For the novices, on the other hand, a distinct activity in the triceps muscle appeared during the middle of the downswing, and its amount and duration were increased with increasing loudness. Therefore, for the novices, agonist muscular force was the predominant contributor to the acceleration of elbow extension during the downswing. We concluded that a balance shift from muscular force dependency to gravity dependency for the generation of a target joint torque occurs with long-term piano training. This shift would support the notion of non-muscular force utilization for improving physiological efficiency of limb movement with respect to the effective use of gravity.

  17. Remotely detected vehicle mass from engine torque-induced frame twisting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less

  18. Multibody dynamics simulation of an all-wheel-drive motorcycle for handling and energy efficiency investigations

    NASA Astrophysics Data System (ADS)

    Griffin, J. W.; Popov, A. A.

    2018-07-01

    It is now possible, through electrical, hydraulic or mechanical means, to power the front wheel of a motorcycle. The aim of this is often to improve performance in limit-handling scenarios including off-road low-traction conditions and on-road high-speed cornering. Following on from research into active torque distribution in 4-wheeled vehicles, the possibility exists for efficiency improvements to be realised by reducing the total amount of energy dissipated as slip at the wheel-road contact. This paper presents the results of an investigation into the effect that varying the torque distribution ratio has on the energy consumption of the two-wheeled vehicle. A 13-degree of freedom multibody model was created, which includes the effects of suspension, aerodynamics and gyroscopic bodies. SimMechanics, from the MathWorks?, is used for automatic generation of equations of motion and time-domain simulation, in conjunction with MATLAB and Simulink. A simple driver model is used to control the speed and yaw rate of the motorcycle. The handling characteristics of the motorcycle are quantitatively analysed, and the impact of torque distribution on energy consumption is considered during straight line and cornering situations. The investigation has shown that only a small improvement in efficiency can be made by transferring a portion of the drive torque to the front wheel. Tyre longevity could be improved by reduced slip energy dissipation.

  19. Modeling of toroidal torques exerted by internal kink instability in a tokamak plasma

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Liu, Y. Q.; Yu, D. L.; Wang, S.; Xia, G. L.; Dong, G. Q.; Bai, X.

    2017-08-01

    Toroidal modeling efforts are initiated to systematically compute and compare various toroidal torques, exerted by an unstable internal kink in a tokamak plasma, using the MARS-F/K/Q suite of codes. The torques considered here include the resonant electromagnetic torque due to the Maxwell stress (the EM or JXB torque), the neoclassical toroidal viscous (NTV) torque, and the torque associated with the Reynolds stress. Numerical results show that the relative magnitude of the net resonant electromagnetic and the Reynolds stress torques increases with the equilibrium flow speed of the plasma, whilst the net NTV torque follows the opposite trend. The global flow shear sensitively affects the Reynolds stress torque, but not the electromagnetic and the NTV torques. Detailed examinations reveal dominant contributions to the Maxwell and Reynolds stress torques, in terms of the poloidal harmonic numbers of various perturbation fields, as well as their relative toroidal phasing.

  20. Application of computational fluid dynamics (CFD) simulation in a vertical axis wind turbine (VAWT) system

    NASA Astrophysics Data System (ADS)

    Kao, Jui-Hsiang; Tseng, Po-Yuan

    2018-01-01

    The objective of this paper is to describe the application of CFD (Computational fluid dynamics) technology in the matching of turbine blades and generator to increase the efficiency of a vertical axis wind turbine (VAWT). A VAWT is treated as the study case here. The SST (Shear-Stress Transport) k-ω turbulence model with SIMPLE algorithm method in transient state is applied to solve the T (torque)-N (r/min) curves of the turbine blades at different wind speed. The T-N curves of the generator at different CV (constant voltage) model are measured. Thus, the T-N curves of the turbine blades at different wind speed can be matched by the T-N curves of the generator at different CV model to find the optimal CV model. As the optimal CV mode is selected, the characteristics of the operating points, such as tip speed ratio, revolutions per minute, blade torque, and efficiency, can be identified. The results show that, if the two systems are matched well, the final output power at a high wind speed of 9-10 m/s will be increased by 15%.

  1. Accuracy of electronic implant torque controllers following time in clinical service.

    PubMed

    Mitrani, R; Nicholls, J I; Phillips, K M; Ma, T

    2001-01-01

    Tightening of the screws in implant-supported restorations has been reported to be problematic, in that if the applied torque is too low, screw loosening occurs. If the torque is too high, then screw fracture can take place. Thus, accuracy of the torque driver is of the utmost importance. This study evaluated 4 new electronic torque drivers (controls) and 10 test electronic torque drivers, which had been in clinical service for a minimum of 5 years. Torque values of the test drivers were measured and were compared with the control values using a 1-way analysis of variance. Torque delivery accuracy was measured using a technique that simulated the clinical situation. In vivo, the torque driver turns the screw until the selected tightening torque is reached. In this laboratory experiment, an implant, along with an attached abutment and abutment gold screw, was held firmly in a Tohnichi torque gauge. Calibration accuracy for the Tohnichi is +/- 3% of the scale value. During torque measurement, the gold screw turned a minimum of 180 degrees before contact was made between the screw and abutment. Three torque values (10, 20, and 32 N-cm) were evaluated, at both high- and low-speed settings. The recorded torque measurements indicated that the 10 test electronic torque drivers maintained a torque delivery accuracy equivalent to the 4 new (unused) units. Judging from the torque output values obtained from the 10 test units, the clinical use of the electronic torque driver suggests that accuracy did not change significantly over the 5-year period of clinical service.

  2. Intended and Achieved Torque of Implant Abutment's Screw using Manual Wrenches in Simulated Clinical Setting.

    PubMed

    Al-Otaibi, Hanan N

    2016-11-01

    To measure the difference between the intended torque and the achieved torque by the operator using the spring-style mechanical torque-limiting device (MTLD). Inexperienced and experienced clinicians used one spring-type MTLD to torque two abutment screws of each anterior and posterior implants, which were attached to two digital torque meters through a jaw model. The jaw model was part of a preclinical bench manikin attached to a dental chair. The intended torque value was 35 N cm (recommended by manufacturer) and the technique of torquing was observed for all the participants (instantaneous and repeated). The mean torque value was calculated for each subject for the anterior and posterior implants independently; t-test was used to compare between the intended and achieved torque values and to compare between the experienced and inexperienced clinicians (p ≤ 0.05). Thirty-seven clinicians participated, with an overall mean torque value of 34.30 N cm. The mean torque value of the achieved torque (34.30 ± 4.13 N cm) was statistically significantly less than the intended torque (p = 0.041). The male clinicians produced more statistically significantly accurate torque value (34.54 ± 3.78 N cm) than the female clinicians (p = 0.034), and the experienced clinicians produced more accurate torque values (34.9 ± 5.13 N cm) than the inexperienced clinicians (p = 0.048). Within the limitation of this study, the use of MTLDs did not always produce consistent torque values and the technique by which the operators use the MTLD might affect the torque value.

  3. An integrated power/attitude control system /IPACS/ for space vehicle application

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Keckler, C. R.

    1973-01-01

    An integrated power and attitude control system (IPACS) concept with potential application to a broad class of space missions is discussed. The concept involves the storage and supply on demand of electrical energy in rotating flywheels while simultaneously providing control torques by controlled precession of the flywheels. The system is thus an alternative to the storage batteries used on present spacecraft while providing similar capability for attitude control as that represented by a control moment gyroscope (CMG) system. Potential IPACS configurations discussed include single- and double-rotor double-gimbal IPACS units. Typical sets of control laws which would manage the momentum and energy exchange between the IPACS and a typical space vehicle are discussed. Discussion of a simulation of a typical potential IPACS configuration and candidate mission concerned with pointing capability, power supply and demand flow, and discussion of the interactions between stabilization and control requirements and power flow requirements are presented.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hessell, Steven M.; Morris, Robert L.; McGrogan, Sean W.

    A powertrain including an engine and torque machines is configured to transfer torque through a multi-mode transmission to an output member. A method for controlling the powertrain includes employing a closed-loop speed control system to control torque commands for the torque machines in response to a desired input speed. Upon approaching a power limit of a power storage device transferring power to the torque machines, power limited torque commands are determined for the torque machines in response to the power limit and the closed-loop speed control system is employed to determine an engine torque command in response to the desiredmore » input speed and the power limited torque commands for the torque machines.« less

  5. Robust Fault Diagnosis in Electric Drives Using Machine Learning

    DTIC Science & Technology

    2004-09-08

    detection of fault conditions of the inverter. A machine learning framework is developed to systematically select torque-speed domain operation points...were used to generate various fault condition data for machine learning . The technique is viable for accurate, reliable and fast fault detection in electric drives.

  6. Measurement of the force and torque produced in the calcium response of reactivated rat sperm flagella.

    PubMed

    Moritz, M J; Schmitz, K A; Lindemann, C B

    2001-05-01

    Rat sperm that are demembranated with Triton X-100 and reactivated with Mg-ATP show a strong mechanical response to the presence of free calcium ion. At pCa < 4, the midpiece region of the flagellum develops a strong and sustained curvature that gives the cell the overall appearance of a fishhook [Lindemann and Goltz, 1988: Cell Motil. Cytoskeleton 10:420-431]. In the present study, the force and torque that maintain the calcium-induced hook have been examined quantitatively. In addition, full-length and shortened flagella were manipulated to evaluate the plasticity of the hooks and determined the critical length necessary for maintaining the curvature. The hooks were found to be highly resilient, returning to their original configuration (>95%) after being straightened and released. The results from manipulating the shortened flagella suggest that the force holding the hook in the curved configuration is generated in the basal 60 microm of the flagellum. The force required to straighten the calcium-induced hooks was measured with force-calibrated glass microprobes, and the bending torque was calculated from the measured force. The force and torque required to straighten the flagellum were found to be proportional to the change in curvature of the hooked region of the flagellum, suggesting an elastic-like behavior. The average torque to open the hooks to a straight position was 2.6 (+/-1.4) x 10(-7) dyne x cm (2.6 x 10(-14) N x m) and the apparent stiffness was 4.3 (+/-1.3) x 10(-10) dyne x cm(2) (4.3 x 10(-19) N x m(2)). The stiffness of the hook was determined to be approximately one quarter the rigor stiffness of a rat sperm flagellum measured under comparable conditions.

  7. The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor.

    PubMed

    Castillo, David J; Nakamura, Shuichi; Morimoto, Yusuke V; Che, Yong-Suk; Kami-Ike, Nobunori; Kudo, Seishi; Minamino, Tohru; Namba, Keiichi

    2013-01-01

    The bacterial flagellar motor is made of a rotor and stators. In Salmonella it is thought that about a dozen MotA/B complexes are anchored to the peptidoglycan layer around the motor through the C-terminal peptidoglycan-binding domain of MotB to become active stators as well as proton channels. MotB consists of 309 residues, forming a single transmembrane helix (30-50), a stalk (51-100) and a C-terminal peptidoglycan-binding domain (101-309). Although the stalk is dispensable for torque generation by the motor, it is required for efficient motor performance. Residues 51 to 72 prevent premature proton leakage through the proton channel prior to stator assembly into the motor. However, the role of residues 72-100 remains unknown. Here, we analyzed the torque-speed relationship of the MotB(Δ72-100) motor. At a low speed near stall, this mutant motor produced torque at the wild-type level. Unlike the wild-type motor, however, torque dropped off drastically by slight decrease in external load and then showed a slow exponential decay over a wide range of load by its further reduction. Since it is known that the stator is a mechano-sensor and that the number of active stators changes in a load-dependent manner, we interpreted this unusual torque-speed relationship as anomaly in load-dependent control of the number of active stators. The results suggest that residues 72-100 of MotB is required for proper load-dependent control of the number of active stators around the rotor.

  8. Optimization of torque on an optically driven micromotor by manipulation of the index of refraction

    NASA Astrophysics Data System (ADS)

    Wing, Frank M., III; Mahajan, Satish; Collett, Walter

    2004-12-01

    Since the 1970"s, the focused laser beam has become a familiar tool to manipulate neutral, dielectric micro-objects. A number of authors, including Higurashi and Gauthier, have described the effects of radiation pressure from laser light on microrotors. Collett, et al. developed a wave, rather than a ray optic, approach in the calculation of such forces on a microrotor for the first time. This paper describes a modification to the design of a laser driven, radiation pressure microrotor, intended to improve the optically generated torque. Employing the wave approach, the electric and magnetic fields in the vicinity of the rotor are calculated using the finite difference time domain (FDTD) method, which takes into account the wave nature of the incident light. Forces are calculated from the application of Maxwell"s stress tensor over the surfaces of the rotor. Results indicate a significant increase in torque when the index of refraction of the microrotor is changed from a single value to an inhomogeneous profile. The optical fiber industry has successfully employed a variation in the index of refraction across the cross section of a fiber for the purpose of increasing the efficiency of light transmission. Therefore, it is hoped that various fabrication methods can be utilized for causing desired changes in the index of refraction of an optically driven microrotor. Various profiles of the index of refraction inside a microrotor are considered for optimization of torque. Simulation methodology and results of torque on a microrotor for various profiles of the index of refraction are presented. Guidelines for improvised fabrication of efficient microrotors may then be obtained from these profiles.

  9. Prehension Synergies in Three Dimensions

    PubMed Central

    Shim, Jae Kun; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2010-01-01

    The goal of this study was to investigate the conjoint changes of digit forces/moments in 3 dimensions during static prehension under external torques acting on the object in one plane. The experimental paradigm was similar to holding a book vertically in the air where the center of mass of the book is located farther from the hand than the points of digit contacts. Three force and 3 moment components from each digit were recorded during static prehension of a customized handle. Subjects produced forces and moments in all 3 directions, although the external torques were exerted on the handheld object about only the Z-axis. The 3-dimensional response to a 2-dimensional task was explained by the cause– effect chain effects prompted by the noncollinearity of the normal forces of the thumb and the 4 fingers (represented by the “virtual finger”). Because the forces are not collinear (not along the same line), they generate moments of force about X- and Y-axes that are negated by the finger forces along the Y- and X-directions. The magnitudes of forces produced by lateral fingers (index and little) with longer moment arms were larger compared with the central fingers (middle and ring). At the virtual finger (an imaginary digit whose mechanical action is equivalent to the summed action of the 4 fingers) level, the relative contribution of different fractions of the resistive moment produced by subjects did not depend on the torque magnitude. We conclude that the CNS 1) solves a planar prehension task by producing forces and moments in all 3 directions, 2) uses mechanical advantage of fingers, and 3) shares the total torque among finger forces and moments in a particular way disregarding the torque magnitude. PMID:15456799

  10. Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design

    NASA Technical Reports Server (NTRS)

    Newman, Dava

    2003-01-01

    The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.

  11. Ultralow Friction in a Superconducting Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Bornemann, Hans J.; Siegel, Michael; Zaitsev, Oleg; Bareiss, Martin; Laschuetza, Helmut

    1996-01-01

    Passive levitation by superconducting magnetic bearings can be utilized in flywheels for energy storage. Basic design criteria of such a bearing are high levitation force, sufficient vertical and horizontal stability and low friction. A test facility was built for the measurement and evaluation of friction in a superconducting magnetic bearing as a function of operating temperature and pressure in the vacuum vessel. The bearing consists of a commercial disk shaped magnet levitated above single grain, melt-textured YBCO high-temperature superconductor material. The superconductor was conduction cooled by an integrated AEG tactical cryocooler. The temperature could be varied from 50 K to 80 K. The pressure in the vacuum chamber was varied from 1 bar to 10(exp -5) mbar. At the lowest pressure setting, the drag torque shows a linear frequency dependence over the entire range investigated (0 less than f less than 40 Hz). Magnetic friction, the frequency independent contribution, is very low. The frequency dependent drag torque is generated by molecular friction from molecule-surface collisions and by eddy currents. Given the specific geometry of the set-up and gas pressure, the molecular drag torque can be estimated. At a speed of 40 Hz, the coefficient of friction (drag-to-lift ratio) was measured to be mu = 1.6 x 10(exp -7) at 10(exp -5) mbar and T = 60 K. This is equivalent to a drag torque of 7.6 x 10(exp -10) Nm. Magnetic friction causes approx. 1% of the total losses. Molecular friction accounts for about 13% of the frequency dependent drag torque, the remaining 87% being due to eddy currents and losses from rotor unbalance. The specific energy loss is only 0.3% per hour.

  12. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.

  13. Immediate compensation for variations in self-generated Coriolis torques related to body dynamics and carried objects

    PubMed Central

    DiZio, Paul; Lackner, James R.

    2013-01-01

    We have previously shown that the Coriolis torques that result when an arm movement is performed during torso rotation do not affect movement trajectory. Our purpose in the present study was to examine whether torso motion-induced Coriolis and other interaction torques are counteracted during a turn and reach (T&R) movement when the effective mass of the hand is augmented, and whether the dominant arm has an advantage in coordinating intersegmental dynamics as predicted by the dynamic dominance hypothesis (Sainburg RL. Exp Brain Res 142: 241–258, 2002). Subjects made slow and fast T&R movements in the dark to just extinguished targets with either arm, while holding or not holding a 454-g object. Movement endpoints were equally accurate at both speeds, with either hand, and in both weight conditions, but subjects tended to angularly undershoot and produce more variable endpoints for targets requiring greater torso rotation. There were no changes in endpoint accuracy or trajectory deviation over repeated movements. The dominant right arm was more stable in its control of trajectory direction across targets, whereas the nondominant left arm had an improved ability to stop accurately on the target for higher levels of interaction torques. The trajectories to more eccentric targets were straighter when performed at higher speeds but slightly more deviated when subjects held the weight. Subjects did not slow their torso velocity or change the timing of the arm and torso velocities when holding the weight, although there was a slight decrease in their hand velocity relative to the torso. The delay between the onsets of torso and finger movements was almost twice as large for the right arm than the left, suggesting the right arm was better able to account for torso rotation in the arm movement. Holding the weight increased the peak Coriolis torque by 40% at the shoulder and 45% at the elbow and, for the most eccentric target, increased the peak net torque by 12% at the shoulder and 34% at the elbow. In accordance with Sainburg's dynamic dominance hypothesis, the right arm exhibited an advantage for coordinating intersegmental dynamics, showing a more stable finger velocity in relation to the torso across targets, decreasing error variability with movement speed, and more synchronized peaks of finger relative and torso angular velocities in conditions with greater joint torque requirements. The arm used had little effect on the movement path and the magnitude of the joint torques in any of the conditions. These results indicate that compensations for forthcoming Coriolis torque variations take into account the dynamic properties of the body and of external objects, as well as the planned velocities of the torso and arm. PMID:23803330

  14. Immediate compensation for variations in self-generated Coriolis torques related to body dynamics and carried objects.

    PubMed

    Pigeon, Pascale; Dizio, Paul; Lackner, James R

    2013-09-01

    We have previously shown that the Coriolis torques that result when an arm movement is performed during torso rotation do not affect movement trajectory. Our purpose in the present study was to examine whether torso motion-induced Coriolis and other interaction torques are counteracted during a turn and reach (T&R) movement when the effective mass of the hand is augmented, and whether the dominant arm has an advantage in coordinating intersegmental dynamics as predicted by the dynamic dominance hypothesis (Sainburg RL. Exp Brain Res 142: 241-258, 2002). Subjects made slow and fast T&R movements in the dark to just extinguished targets with either arm, while holding or not holding a 454-g object. Movement endpoints were equally accurate at both speeds, with either hand, and in both weight conditions, but subjects tended to angularly undershoot and produce more variable endpoints for targets requiring greater torso rotation. There were no changes in endpoint accuracy or trajectory deviation over repeated movements. The dominant right arm was more stable in its control of trajectory direction across targets, whereas the nondominant left arm had an improved ability to stop accurately on the target for higher levels of interaction torques. The trajectories to more eccentric targets were straighter when performed at higher speeds but slightly more deviated when subjects held the weight. Subjects did not slow their torso velocity or change the timing of the arm and torso velocities when holding the weight, although there was a slight decrease in their hand velocity relative to the torso. The delay between the onsets of torso and finger movements was almost twice as large for the right arm than the left, suggesting the right arm was better able to account for torso rotation in the arm movement. Holding the weight increased the peak Coriolis torque by 40% at the shoulder and 45% at the elbow and, for the most eccentric target, increased the peak net torque by 12% at the shoulder and 34% at the elbow. In accordance with Sainburg's dynamic dominance hypothesis, the right arm exhibited an advantage for coordinating intersegmental dynamics, showing a more stable finger velocity in relation to the torso across targets, decreasing error variability with movement speed, and more synchronized peaks of finger relative and torso angular velocities in conditions with greater joint torque requirements. The arm used had little effect on the movement path and the magnitude of the joint torques in any of the conditions. These results indicate that compensations for forthcoming Coriolis torque variations take into account the dynamic properties of the body and of external objects, as well as the planned velocities of the torso and arm.

  15. Synergies and strategies underlying normal and vestibulary deficient control of balance: implication for neuroprosthetic control.

    PubMed

    Allum, J H; Honegger, F

    1993-01-01

    Future developments of neuroprosthetic control will probably permit locomotion and posture to be maintained without the aid of crutches and will therefore require some form of balance control. Three fundamental questions will arise. First, the question of the location of imbalance-sensing transducers must be assessed. Secondly, the synergy, which is the relative amplitude and timing of muscle activity, and/or the strategy of joint torques required to re-establish a stable posture for different types of balance disturbances must be addressed. Thirdly, the control laws that map either trunk muscle activity or imbalance-sensing transducer outputs into multi-joint postural control of standing by paraplegic individuals must be generated. The most appropriate means of gathering the relevant information applicable to neuroprosthetic control systems is through the detailed analysis of normal and non-normal human models. In order to gain such detailed insights into normal balance control and its dependence on head angular and linear accelerations, the synergy and strategy of balance corrections in normal subjects or patients with vestibular deficits were investigated for two types of support surface perturbation, a dorsiflexion rotation (ROT) and a rearward translation (TRANS). These experimentally induced perturbations to upright stance were adjusted to cause equal amplitudes of ankle dorsiflexion, thus providing additional information about the role of lower leg proprioception on balance control. Synergies defined on the basis of peak cross-correlations of each recorded muscle's EMG to that of the largest muscle response were significantly different for TRANS and ROT. Translation synergies consisted of a sequential coactivation at several levels (soleus and abdominals some 30 msec before hamstrings, and trapezius some 15 msec before paraspinals), whereas the sequential activation of paraspinals and tibialis anterior dominated the balance synergy to ROT. Likewise, response strategies, defined using cross-correlations of joint torques, differed. That for TRANS was organised as a multi-link strategy with neck torques leading those of all other joints by 40 msec or more; hip joint lead ankle torques by 30 msec. That for ROT was organised around hip and ankle torques without a major correlation to neck torques. Vestibulary deficient subjects developed weaker synergies with respect to subjects with normal balance systems under eyes-open conditions and there was no clear synergy with eyes closed. Consequently, hip torques were delayed some 180 msec with respect to ankle torques, and correlations to neck torques were completely out of phase under eyes-closed conditions. Fundamental changes in TRANS synergies and strategies also occurred in vestibulary deficient subjects for eyes-open and eyes-closed conditions.(ABSTRACT TRUNCATED AT 400 WORDS)

  16. 3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study.

    PubMed

    Hussain, Sara J; Frey-Law, Laura

    2016-01-01

    The ankle is an important component of the human kinetic chain, and deficits in ankle strength can negatively impact functional tasks such as balance and gait. While peak torque is influenced by joint angle and movement velocity, ankle strength is typically reported for a single angle or movement speed. To better identify deficits and track recovery of ankle strength after injury or surgical intervention, ankle strength across a range of movement velocities and joint angles in healthy adults is needed. Thus, the primary goals of this study were to generate a database of strength values and 3-dimensional strength surface models for plantarflexion (PF) and dorsiflexion (DF) ankle strength in healthy men and women. Secondary goals were to develop a means to estimate ankle strength percentiles as well as examine predictors of maximal ankle strength in healthy adults. Using an isokinetic dynamometer, we tested PF and DF peak torques at five joint angles (-10° [DF], 0° [neutral], 10° [PF], 20° [PF] and 30° [PF]) and six velocities (0°/s, 30°/s, 60°/s, 90°/s, 120°/s and 180°/s) in 53 healthy adults. These data were used to generate 3D plots, or "strength surfaces", for males and females for each direction; surfaces were fit using a logistic equation. We also tested predictors of ankle strength, including height, weight, sex, and self-reported physical activity levels. Torque-velocity and torque-angle relationships at the ankle interact, indicating that these relationships are interdependent and best modeled using 3D surfaces. Sex was the strongest predictor of ankle strength over height, weight, and self-reported physical activity levels. 79 to 97 % of the variance in mean peak torque was explained by joint angle and movement velocity using logistic equations, for men and women and PF and DF directions separately. The 3D strength data and surface models provide a more comprehensive dataset of ankle strength in healthy adults than previously reported. These models may allow researchers and clinicians to quantify ankle strength deficits and track recovery in patient populations, using angle- and velocity-specific ankle strength values and/or strength percentiles from healthy adults.

  17. Difference Between Adolescent and Collegiate Baseball Pitchers in the Kinematics and Kinetics of the Lower Limbs and Trunk During Pitching Motion

    PubMed Central

    Kageyama, Masahiro; Sugiyama, Takashi; Kanehisa, Hiroaki; Maeda, Akira

    2015-01-01

    The purpose of this study was to clarify the differences between adolescent and collegiate baseball pitchers in the kinematic and kinetic profiles of the trunk and lower limbs during the pitching motion. The subjects were thirty-two adolescent baseball pitchers aged 12-15 years (APG) and thirty collegiate baseball pitchers aged 18-22 years (CPG). Three-dimensional motion analysis with a comprehensive lower-extremity model was used to evaluate kinematic and kinetic parameters during baseball pitching. The ground reaction forces (GRFs) of the pivot and stride legs during pitching were determined using two multicomponent force plates. The joint torques of hip, knee, and ankle were calculated by the inverse-dynamics computation of musculoskeletal human models using motion-capture data. To eliminate any effect of variation in body size, kinetic and GRFs data were normalized by dividing them by body mass. The velocity of a pitched ball was significantly higher (p < 0.01) in CPG (35.2 ± 1.9 m·s-1) than in the APG (30.7 ± 2.7 m·s-1). Most kinematic parameters for the lower limbs were similar between the CPG and the APG. Maximum Fy (toward the throwing direction) on the pivot leg and Fy and resultant forces on the stride leg at ball release were significantly greater in the CPG than in the APG (p < 0.05). Hip and knee joint torques on the lower limbs were significantly greater in the CPG than in the APG (p < 0.05). The present study indicates that the kinematics of lower limbs during baseball pitching are similar between adolescent and collegiate pitchers, but the momentum of the lower limbs during pitching is lower in adolescent pitchers than in collegiate ones, even when the difference in body mass is considered. Key points Collegiate baseball pitchers can generate the hip and knee joint torques on the pivot leg for accelerating the body forward. Collegiate baseball pitchers can generate the hip and knee joint torques to control/stabilize the stride leg in order to increase momentum on the stride leg during the arm acceleration phase. The kinematics of the lower limbs during baseball pitching are similar between adolescent and collegiate pitchers, but the momentum of the lower limbs during pitching is lower in adolescent pitchers than in collegiate ones, even when the difference in body mass is considered. Adolescent baseball pitchers cannot generate the hip and knee joint torques in the pivot and stride leg for transfer of the energy of trunk and the arm. PMID:25983571

  18. Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators

    DOE PAGES

    Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle

    2017-07-27

    Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less

  19. A novel contact model of piezoelectric traveling wave rotary ultrasonic motors with the finite volume method.

    PubMed

    Renteria-Marquez, I A; Renteria-Marquez, A; Tseng, B T L

    2018-06-06

    The operating principle of the piezoelectric traveling wave rotary ultrasonic motor is based on two energy conversion processes: the generation of the stator traveling wave and the rectification of the stator movement through the stator-rotor contact mechanism. This paper presents a methodology to model in detail the stator-rotor contact interface of these motors. A contact algorithm that couples a model of the stator which is discretized with the finite volume method and an analytical model of the rotor is presented. The outputs of the proposed model are the normal and tangential force distribution produced at the stator-rotor contact interface, contact length, height and shape of the stator traveling wave and rotor speed. The torque-speed characteristic of the USR60 is calculated with the proposed model, and the results of the model are compared versus the real torque-speed of the motor. A good agreement between the proposed model results and the torque-speed characteristic of the USR60 was observed. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: experimental evaluation

    NASA Astrophysics Data System (ADS)

    Sohn, Jung Woo; Jeon, Juncheol; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-08-01

    In this paper, a disc-type magneto-rheological (MR) brake is designed for a mid-sized motorcycle and its performance is experimentally evaluated. The proposed MR brake consists of an outer housing, a rotating disc immersed in MR fluid, and a copper wire coiled around a bobbin to generate a magnetic field. The structural configuration of the MR brake is first presented with consideration of the installation space for the conventional hydraulic brake of a mid-sized motorcycle. The design parameters of the proposed MR brake are optimized to satisfy design requirements such as the braking torque, total mass of the MR brake, and cruising temperature caused by the magnetic-field friction of the MR fluid. In the optimization procedure, the braking torque is calculated based on the Herschel-Bulkley rheological model, which predicts MR fluid behavior well at high shear rate. An optimization tool based on finite element analysis is used to obtain the optimized dimensions of the MR brake. After manufacturing the MR brake, mechanical performances regarding the response time, braking torque and cruising temperature are experimentally evaluated.

  1. Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle

    Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less

  2. Assessment of System Frequency Support Effect of PMSG-WTG Using Torque-Limit-Based Inertial Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao; Gao, Wenzhong; Wang, Jianhui

    2017-02-16

    To release the 'hidden inertia' of variable-speed wind turbines for temporary frequency support, a method of torque-limit based inertial control is proposed in this paper. This method aims to improve the frequency support capability considering the maximum torque restriction of a permanent magnet synchronous generator. The advantages of the proposed method are improved frequency nadir (FN) in the event of an under-frequency disturbance; and avoidance of over-deceleration and a second frequency dip during the inertial response. The system frequency response is different, with different slope values in the power-speed plane when the inertial response is performed. The proposed method ismore » evaluated in a modified three-machine, nine-bus system. The simulation results show that there is a trade-off between the recovery time and FN, such that a gradual slope tends to improve the FN and restrict the rate of change of frequency aggressively while causing an extension of the recovery time. These results provide insight into how to properly design such kinds of inertial control strategies for practical applications.« less

  3. A variable-speed, constant-frequency wind power generation scheme using a slip-ring induction generator

    NASA Astrophysics Data System (ADS)

    Velayudhan, C.; Bundell, J. H.

    This paper investigates a variable-speed, constant-frequency double output induction generator which is capable of absorbing the mechanical energy from a fixed pitch wind turbine and converting it into electrical energy at constant grid voltage and frequency. Rotor power at varying voltage and frequency is either fed to electronically controlled resistances and used as heat energy or is rectified, inverted by a controllable line-commutated inverter and returned to the grid. Optimal power tracking is by means of an adaptive controller which controls the developed torque of the generator by monitoring the shaft speed.

  4. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOEpatents

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  5. Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque.

    PubMed

    Janssen, Xander J A; Lipfert, Jan; Jager, Tessa; Daudey, Renier; Beekman, Jaap; Dekker, Nynke H

    2012-07-11

    The well-established single-molecule force-spectroscopy techniques have recently been complemented by methods that can measure torque and twist directly, notably magnetic torque tweezers and the optical torque wrench. A limitation of the current torque measurement schemes is the intrinsic coupling between the force and torque degrees of freedom. Here we present electromagnetic torque tweezers (eMTT) that combine permanent and electromagnets to enable independent control of the force and torsional trap stiffness for sensitive measurements of single molecule torque and twist. Using the eMTT, we demonstrate sensitive torque measurements on tethered DNA molecules from simple tracking of the beads' (x,y)-position, obviating the need for any angular tracking algorithms or markers. Employing the eMTT for high-resolution torque measurements, we experimentally confirm the theoretically predicted torque overshoot at the DNA buckling transition in high salt conditions. We envision that the flexibility and control afforded by the eMTT will enable a range of new torque and twist measurement schemes from single-molecules to living cells.

  6. Adaptive controller for regenerative and friction braking system

    DOEpatents

    Davis, R.I.

    1990-10-16

    A regenerative and friction braking system for a vehicle having one or more road wheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the road wheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the road wheels of the vehicle without skidding or slipping will not be exceeded. 8 figs.

  7. Adaptive controller for regenerative and friction braking system

    DOEpatents

    Davis, Roy I.

    1990-01-01

    A regenerative and friction braking system for a vehicle having one or more roadwheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the roadwheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the roadwheels of the vehicle without skidding or slipping will not be exceeded.

  8. Measurements of the Rotation of the Flagellar Motor by Bead Assay.

    PubMed

    Kasai, Taishi; Sowa, Yoshiyuki

    2017-01-01

    The bacterial flagellar motor is a reversible rotary nano-machine powered by the ion flux across the cytoplasmic membrane. Each motor rotates a long helical filament that extends from the cell body at several hundreds revolutions per second. The output of the motor is characterized by its generated torque and rotational speed. The torque can be calculated as the rotational frictional drag coefficient multiplied by the angular velocity. Varieties of methods, including a bead assay, have been developed to measure the flagellar rotation rate under various load conditions on the motor. In this chapter, we describe a method to monitor the motor rotation through a position of a 1 μm bead attached to a truncated flagellar filament.

  9. Proposed CMG momentum management scheme for space station

    NASA Technical Reports Server (NTRS)

    Bishop, L. R.; Bishop, R. H.; Lindsay, K. L.

    1987-01-01

    A discrete control moment gyro (CMG) momentum management scheme (MMS) applicable to spacecraft with principal axes misalignments, such as the proposed NASA dual keel space station, is presented in this paper. The objective of the MMS is to minmize CMG angular momentum storage requirements for maintaining the space station near local vertical in the presence of environmental disturbances. It utilizes available environmental disturbances, namely gravity gradient torques, to minimize CMG momentum storage. The MMS is executed once per orbit and generates a commanded torque equilibrium attitude (TEA) time history which consists of a yaw, pitch and roll angle command profile. Although the algorithm is called only once per orbit to compute the TEA profile, the space station will maneuver several discrete times each orbit.

  10. Biomechanical Analysis of T2 Exercise

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Ploutz-Snyder, Lori; Everett, Meghan; Newby, Nathaniel; Scott-Pandorf, Melissa; Guilliams, Mark E.

    2010-01-01

    Crewmembers regularly perform treadmill exercise on the ISS. With the implementation of T2 on ISS, there is now the capacity to obtain ground reaction force (GRF) data GRF data combined with video motion data allows biomechanical analyses to occur that generate joint torque estimates from exercise conditions. Knowledge of how speed and load influence joint torque will provide quantitative information on which exercise prescriptions can be based. The objective is to determine the joint kinematics, ground reaction forces, and joint kinetics associated with treadmill exercise on the ISS. This study will: 1) Determine if specific exercise speed and harness load combinations are superior to others in exercise benefit; and 2) Aid in the design of exercise prescriptions that will be most beneficial in maintaining crewmember health.

  11. Planar reorientation maneuvers of space multibody systems using internal controls

    NASA Technical Reports Server (NTRS)

    Reyhanoglu, Mahmut; Mcclamroch, N. H.

    1992-01-01

    In this paper a reorientation maneuvering strategy for an interconnection of planar rigid bodies in space is developed. It is assumed that there are no exogeneous torques, and torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero in this paper. The maneuver strategy uses the nonintegrability of the expression for the angular momentum. We demonstrate that large-angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is briefly summarized. Specifications and computer simulations of a specific reorientation maneuver, and the corresponding control strategies, are described.

  12. Design aspects of a solar array drive for spot, with a high platform stability objective

    NASA Technical Reports Server (NTRS)

    Cabillic, J.; Fournier, J. P.; Anstett, P.; Souliac, M.; Thomin, G.

    1981-01-01

    A solar array drive mechanism (MEGS) for the SPOT platform, which is a prototype of a multimission platform, is described. High-resolution cameras and other optical instruments are carried by the platform, requiring excellent platform stability in order to obtain high-quality pictures. Therefore, a severe requirement for the MEGS is the low level of disturbing torques it may generate considering the 0.6 times 10 to the minus 3 power deg/sec stability required. The mechanical design aspects aiming at reducing the mean friction torque, and therefore its fluctuations, are described as well as the method of compensation of the motor imperfections. It was concluded, however, that this is not sufficient to reach the stability requirement.

  13. Extraneous torque and compensation control on the electric load simulator

    NASA Astrophysics Data System (ADS)

    Jiao, Zongxia; Li, Chenggong; Ren, Zhiting

    2003-09-01

    In this paper a novel motor-drive load simulator based on compensation control strategy is proposed and designed. Through analyzing the torque control system consisting of DC torque motor, PWM module and torque sensor, it is shown that performance of the motor-drive load simulator is possible to be as good as that of the electro-hydraulic load simulator in the range of small torque. In the course of loading, the rotation of the actuator would cause a strong disturbance torque through the motor back-EMF, which produces extraneous torque similar as in electro-hydraulic load simulator. This paper analyzes the cause of extraneous torque inside the torque motor in detail and presents an appropriate compensation control with which the extraneous torque can be compensated and the good performance of the torque control system can be obtained. The results of simulation indicate that the compensation is very effective and the track performance is according with the request.

  14. Pressurized fluid torque driver control and method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  15. Displaceable Gear Torque Controlled Driver

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  16. Zero Rare-Earth Magnet Integrated Starter-Generator Development for Military Vehicle Applications

    DTIC Science & Technology

    2013-08-14

    platform. – Support of on-board hybrid electric features such as regenerative braking , torque assist and stop-start operation. 14 August 2013 4...13. SUPPLEMENTARY NOTES GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM (GVSETS), SET FOR AUG. 21-22, 2013 14. ABSTRACT Briefing Charts

  17. Atmospheric Torques on the Solid Earth and Oceans Based on the GEOS-1 General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Au, Andrew Y.

    1998-01-01

    The GEOS-1 general circulation model has been used to compute atmospheric torques on the oceans and solid Earth for the period 1980-1995. The time series for the various torque components have been analyzed by means of Fourier transform techniques. It was determined that the wind stress torque over land is more powerful than the wind stress torque over water by 55%, 42%, and 80% for the x, y, and z components respectively. This is mainly the result of power in the high frequency range. The pressure torques due to polar flattening, equatorial ellipticity, marine geoid, and continental orography were computed. The orographic or "mountain torque" components are more powerful than their wind stress counterparts (land plus ocean) by 231% (x), 191% (y), and 77% (z). The marine pressure torques due to geoidal undulations are much smaller than the orographic ones, as expected. They are only 3% (x), 4% (y), and 5% (z) of the corresponding mountain torques. The geoidal pressure torques are approximately equal in magnitude to those produced by the equatorial ellipticity of the Earth. The pressure torque due to polar flattening makes the largest contributions to the atmospheric torque budget. It has no zonal component, only equatorial ones. Most of the power of the latter, between 68% and 69%, is found in modes with periods under 15 days. The single most powerful mode has a period of 361 days. The gravitational torque ranks second in power only to the polar flattening pressure torque. Unlike the former, it does produce a zonal component, albeit much smaller (1%) than the equatorial ones. The gravitational and pressure torques have opposite signs, therefore, the gravitational torque nullifies 42% of the total pressure torque. Zonally, however, the gravitational torque amounts to only 6% of the total pressure torque. The power budget for the total atmospheric torque yields 7595 and 7120 Hadleys for the equatorial components and 966 Hadleys for the zonal. The x-component exhibits a large mean value (1811 H), mainly the result of polar flattening pressure torque acting on the ocean surfaces. Atmospheric torque modes with periods of 408, 440, and 476 days appear in the spectrum of the equatorial components.

  18. Atmospheric Torques on the Solid Earth and Oceans Based on the GEOS-1 General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio

    1999-01-01

    The GEOS-1 general circulation model has been used to compute atmospheric torques on the oceans and solid Earth for the period 1980-1995. The time series for the various torque components have been analyzed by means of Fourier transform techniques. It was determined that the wind stress torque over land is more powerful than the wind stress torque over water by 55\\%, 42\\%, and 80\\t for the x, y, and z components respectively. This is mainly the result of power in the high frequency range. The pressure torques due to polar flattening, equatorial ellipticity, marine geoid, and continental orography were computed. The orographic or "mountain torque" components are more powerful than their wind stress counterparts (land plus ocean) by 231\\% (x), 191\\% (y), and 77\\% (z). The marine pressure torques due to geoidal undulations are much smaller than the orographic ones, as expected. They are only 3\\% (x), 4\\% (y), and 5\\% (z) of the corresponding mountain torques. The geoidal pressure torques are approximately equal in magnitude to those produced by the equatorial ellipticity of the Earth. The pressure torque due to polar flattening makes the largest contributions to the atmospheric'torque budget. It has no zonal component, only equatorial ones. Most of the power of the latter, between 68\\% and 69 %, is found in modes with periods under 15 days. The single most powerful mode has a period of 361 days. The gravitational torque ranks second in power only to the polar flattening pressure torque. Unlike the former, it does produce a zonal component, albeit much smaller (1\\ ) than the equatorial ones. The gravitational and pressure torques have opposite signs, therefore, the gravitational torque nullifies 42\\% of the total pressure torque. Zonally, however, the gravitational torque amounts to only 6\\% of the total pressure torque. The power budget for the total atmospheric torque yields 7595 and 7120 Hadleys for the equatorial components and 966 Hadleys for the zonal. The x-component exhibits a large mean value (1811 H), mainly the result of polar flattening pressure torque acting on the ocean surfaces. Atmospheric torque modes with periods of 408, 440, and 476 days appear in the spectrum of the equatorial components.

  19. James Webb Space Telescope Deployment Brushless DC Motor Characteristics Analysis

    NASA Technical Reports Server (NTRS)

    Tran, Ahn N.

    2016-01-01

    A DC motor's performance is usually characterized by a series of tests, which are conducted by pass/fail criteria. In most cases, these tests are adequate to address the performance characteristics under environmental and loading effects with some uncertainties and decent power/torque margins. However, if the motor performance requirement is very stringent, a better understanding of the motor characteristics is required. The purpose of this paper is to establish a standard way to extract the torque components of the brushless motor and gear box characteristics of a high gear ratio geared motor from the composite geared motor testing and motor parameter measurement. These torque components include motor magnetic detent torque, Coulomb torque, viscous torque, windage torque, and gear tooth sliding torque. The Aerospace Corp bearing torque model and MPB torque models are used to predict the Coulomb torque of the motor rotor bearings and to model the viscous components. Gear tooth sliding friction torque is derived from the dynamo geared motor test data. With these torque data, the geared motor mechanical efficiency can be estimated and provide the overall performance of the geared motor versus several motor operating parameters such as speed, temperature, applied current, and transmitted power.

  20. Temperature dependence of spin-orbit torques in Cu-Au alloys

    NASA Astrophysics Data System (ADS)

    Wen, Yan; Wu, Jun; Li, Peng; Zhang, Qiang; Zhao, Yuelei; Manchon, Aurelien; Xiao, John Q.; Zhang, Xixiang

    2017-03-01

    We investigated current driven spin-orbit torques in C u40A u60/N i80F e20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

Top