NASA Astrophysics Data System (ADS)
Ren, Qianyu; Li, Junhong; Hong, Yingping; Jia, Pinggang; Xiong, Jijun
2017-09-01
A new demodulation algorithm of the fiber-optic Fabry-Perot cavity length based on the phase generated carrier (PGC) is proposed in this paper, which can be applied in the high-temperature pressure sensor. This new algorithm based on arc tangent function outputs two orthogonal signals by utilizing an optical system, which is designed based on the field-programmable gate array (FPGA) to overcome the range limit of the original PGC arc tangent function demodulation algorithm. The simulation and analysis are also carried on. According to the analysis of demodulation speed and precision, the simulation of different numbers of sampling points, and measurement results of the pressure sensor, the arc tangent function demodulation method has good demodulation results: 1 MHz processing speed of single data and less than 1% error showing practical feasibility in the fiber-optic Fabry-Perot cavity length demodulation of the Fabry-Perot high-temperature pressure sensor.
Research on signal demodulation technology of Mach-Zehnder optical fiber sensor vibration system
NASA Astrophysics Data System (ADS)
Liu, Juncheng; Cheng, Pengshen; Hu, Tong
2017-08-01
Mach-Zehnder (M-Z) interferometer is frequently used in optical fiber vibration system. And signal demodulation technology plays an important role in the signal processing of M-Z optical fiber vibration system. In order to accurately get the phase information of the vibration signals, the signal demodulation technique based on M-Z interference principle is studied. In this paper, by analyzing the principles of 3 × 3 fiber coupler homodyne demodulation method and phase-generating carrier (PGC) technology, the advantages and disadvantages of the two demodulation methods for different vibration signal are presented. Then the method of judging signal strength is proposed. The correlation between the demodulation effects and strength of the perturbation signals is analyzed. Finally, the simulation experiments are carried out to compare the demodulation effects of the two demodulation methods, the results demonstrate that PGC demodulation technology has great advantages in weak signals, and the 3 × 3 fiber coupler is more suitable for strong signals.
A FBG pulse wave demodulation method based on PCF modal interference filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua
2016-10-01
Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.
Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin
2006-01-20
A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented, which is based on a Michelson interferometer and combines the methods of low-coherence interference and a Fourier-transform spectrum. The parallel demodulation theory is modeled with Fourier-transform spectrum technology, and a signal separation method with an EFPI and FBG is proposed. The design of an optical path difference scanning and sampling method without a reference light is described. Experiments show that the parallel demodulation system has good spectrum demodulation and low-coherence interference demodulation performance. It can realize simultaneous strain and temperature measurements while keeping the whole system configuration less complex.
Overlap Spectrum Fiber Bragg Grating Sensor Based on Light Power Demodulation
Zhang, Hao; Jiang, Junzhen; Liu, Shuang; Chen, Huaixi; Zheng, Xiaoqian; Qiu, Yishen
2018-01-01
Demodulation is a bottleneck for applications involving fiber Bragg gratings (FBGs). An overlap spectrum FBG sensor based on a light power demodulation method is presented in this paper. The demodulation method uses two chirp FBGs (cFBGs) of which the reflection spectra partially overlap each other. The light power variation of the overlap spectrum can be linked to changes in the measurand, and the sensor function can be realized via this relationship. A temperature experiment showed that the relationship between the overlap power spectrum of the FBG sensor and temperature had good linearity and agreed with the theoretical analysis. PMID:29772793
Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe.
He, A; Deepan, B; Quan, C
2017-09-01
A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.
Design of distributed FBG vibration measuring system based on Fabry-Perot tunable filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Changyun; Li, Hongqiang; Gao, Hua; Gan, Jingmeng
2011-11-01
A distributed optical fiber grating wavelength interrogator based on fiber Fabry Perot tunable filter(FFP-TF) was proposed, which could measure dynamic strain or vibration of multi-sensing fiber gratings in one optical fiber by time division way. The wavelength demodulated mathematical model was built, the formulas of system output voltage and sensitivity were deduced and the method of finding static operating point was determined. The wavelength drifting characteristic of FFP-TF was discussed when the center wavelength of FFP-TF was set on the static operating point. A wavelength locking method was proposed by introducing a high-frequency driving voltage signal. A demodulated system was established based on Labview and its demodulated wavelength dynamic range is 290pm in theory. In experiment, by digital filtering applied to the system output data, 100Hz and 250Hz vibration signals were measured. The experiment results proved the feasibility of the demodulated method.
High accuracy demodulation for twin-grating based sensor network with hybrid TDM/FDM
NASA Astrophysics Data System (ADS)
Ai, Fan; Sun, Qizhen; Cheng, Jianwei; Luo, Yiyang; Yan, Zhijun; Liu, Deming
2017-04-01
We demonstrate a high accuracy demodulation platform with a tunable Fabry-Perot filter (TFF) for twin-grating based fiber optic sensing network with hybrid TDM/FDM. The hybrid TDM/FDM scheme can improve the spatial resolution to centimeter but increases the requirement of high spectrum resolution. To realize the demodulation of the complex twin-grating spectrum, we adopt the TFF demodulation method and compensate the environmental temperature change and nonlinear effect through calibration FBGs. The performance of the demodulation module is tested by a temperature experiment. Spectrum resolution of 1pm is realized with precision of 2.5pm while the environmental temperature of TFF changes 9.3°C.
Yang, Yuan; Quan, Nannan; Bu, Jingjing; Li, Xueping; Yu, Ningmei
2016-09-26
High order modulation and demodulation technology can solve the frequency requirement between the wireless energy transmission and data communication. In order to achieve reliable wireless data communication based on high order modulation technology for visual prosthesis, this work proposed a Reed-Solomon (RS) error correcting code (ECC) circuit on the basis of differential amplitude and phase shift keying (DAPSK) soft demodulation. Firstly, recognizing the weakness of the traditional DAPSK soft demodulation algorithm based on division that is complex for hardware implementation, an improved phase soft demodulation algorithm for visual prosthesis to reduce the hardware complexity is put forward. Based on this new algorithm, an improved RS soft decoding method is hence proposed. In this new decoding method, the combination of Chase algorithm and hard decoding algorithms is used to achieve soft decoding. In order to meet the requirements of implantable visual prosthesis, the method to calculate reliability of symbol-level based on multiplication of bit reliability is derived, which reduces the testing vectors number of Chase algorithm. The proposed algorithms are verified by MATLAB simulation and FPGA experimental results. During MATLAB simulation, the biological channel attenuation property model is added into the ECC circuit. The data rate is 8 Mbps in the MATLAB simulation and FPGA experiments. MATLAB simulation results show that the improved phase soft demodulation algorithm proposed in this paper saves hardware resources without losing bit error rate (BER) performance. Compared with the traditional demodulation circuit, the coding gain of the ECC circuit has been improved by about 3 dB under the same BER of [Formula: see text]. The FPGA experimental results show that under the condition of data demodulation error with wireless coils 3 cm away, the system can correct it. The greater the distance, the higher the BER. Then we use a bit error rate analyzer to measure BER of the demodulation circuit and the RS ECC circuit with different distance of two coils. And the experimental results show that the RS ECC circuit has about an order of magnitude lower BER than the demodulation circuit when under the same coils distance. Therefore, the RS ECC circuit has more higher reliability of the communication in the system. The improved phase soft demodulation algorithm and soft decoding algorithm proposed in this paper enables data communication that is more reliable than other demodulation system, which also provide a significant reference for further study to the visual prosthesis system.
Phase demodulation from a single fringe pattern based on a correlation technique.
Robin, Eric; Valle, Valéry
2004-08-01
We present a method for determining the demodulated phase from a single fringe pattern. This method, based on a correlation technique, searches in a zone of interest for the degree of similarity between a real fringe pattern and a mathematical model. This method, named modulated phase correlation, is tested with different examples.
Fu, Yongqing; Li, Xingyuan; Li, Yanan; Yang, Wei; Song, Hailiang
2013-03-01
Chaotic communication has aroused general interests in recent years, but its communication effect is not ideal with the restriction of chaos synchronization. In this paper a new chaos M-ary digital modulation and demodulation method is proposed. By using region controllable characteristics of spatiotemporal chaos Hamilton map in phase plane and chaos unique characteristic, which is sensitive to initial value, zone mapping method is proposed. It establishes the map relationship between M-ary digital information and the region of Hamilton map phase plane, thus the M-ary information chaos modulation is realized. In addition, zone partition demodulation method is proposed based on the structure characteristic of Hamilton modulated information, which separates M-ary information from phase trajectory of chaotic Hamilton map, and the theory analysis of zone partition demodulator's boundary range is given. Finally, the communication system based on the two methods is constructed on the personal computer. The simulation shows that in high speed transmission communications and with no chaos synchronization circumstance, the proposed chaotic M-ary modulation and demodulation method has outperformed some conventional M-ary modulation methods, such as quadrature phase shift keying and M-ary pulse amplitude modulation in bit error rate. Besides, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-noise performance, and the system complexity is low and chaos signal is easy to generate.
An optimized strain demodulation method for PZT driven fiber Fabry-Perot tunable filter
NASA Astrophysics Data System (ADS)
Sheng, Wenjuan; Peng, G. D.; Liu, Yang; Yang, Ning
2015-08-01
An optimized strain-demodulation-method based on piezo-electrical transducer (PZT) driven fiber Fabry-Perot (FFP) filter is proposed and experimentally demonstrated. Using a parallel processing mode to drive the PZT continuously, the hysteresis effect is eliminated, and the system demodulation rate is increased. Furthermore, an AC-DC compensation method is developed to address the intrinsic nonlinear relationship between the displacement and voltage of PZT. The experimental results show that the actual demodulation rate is improved from 15 Hz to 30 Hz, the random error of the strain measurement is decreased by 95%, and the deviation between the test values after compensation and the theoretical values is less than 1 pm/με.
Analysis of the principal component algorithm in phase-shifting interferometry.
Vargas, J; Quiroga, J Antonio; Belenguer, T
2011-06-15
We recently presented a new asynchronous demodulation method for phase-sampling interferometry. The method is based in the principal component analysis (PCA) technique. In the former work, the PCA method was derived heuristically. In this work, we present an in-depth analysis of the PCA demodulation method.
Accelerating EPI distortion correction by utilizing a modern GPU-based parallel computation.
Yang, Yao-Hao; Huang, Teng-Yi; Wang, Fu-Nien; Chuang, Tzu-Chao; Chen, Nan-Kuei
2013-04-01
The combination of phase demodulation and field mapping is a practical method to correct echo planar imaging (EPI) geometric distortion. However, since phase dispersion accumulates in each phase-encoding step, the calculation complexity of phase modulation is Ny-fold higher than conventional image reconstructions. Thus, correcting EPI images via phase demodulation is generally a time-consuming task. Parallel computing by employing general-purpose calculations on graphics processing units (GPU) can accelerate scientific computing if the algorithm is parallelized. This study proposes a method that incorporates the GPU-based technique into phase demodulation calculations to reduce computation time. The proposed parallel algorithm was applied to a PROPELLER-EPI diffusion tensor data set. The GPU-based phase demodulation method reduced the EPI distortion correctly, and accelerated the computation. The total reconstruction time of the 16-slice PROPELLER-EPI diffusion tensor images with matrix size of 128 × 128 was reduced from 1,754 seconds to 101 seconds by utilizing the parallelized 4-GPU program. GPU computing is a promising method to accelerate EPI geometric correction. The resulting reduction in computation time of phase demodulation should accelerate postprocessing for studies performed with EPI, and should effectuate the PROPELLER-EPI technique for clinical practice. Copyright © 2011 by the American Society of Neuroimaging.
[Absorption spectrum of Quasi-continuous laser modulation demodulation method].
Shao, Xin; Liu, Fu-Gui; Du, Zhen-Hui; Wang, Wei
2014-05-01
A software phase-locked amplifier demodulation method is proposed in order to demodulate the second harmonic (2f) signal of quasi-continuous laser wavelength modulation spectroscopy (WMS) properly, based on the analysis of its signal characteristics. By judging the effectiveness of the measurement data, filter, phase-sensitive detection, digital filtering and other processing, the method can achieve the sensitive detection of quasi-continuous signal The method was verified by using carbon dioxide detection experiments. The WMS-2f signal obtained by the software phase-locked amplifier and the high-performance phase-locked amplifier (SR844) were compared simultaneously. The results show that the Allan variance of WMS-2f signal demodulated by the software phase-locked amplifier is one order of magnitude smaller than that demodulated by SR844, corresponding two order of magnitude lower of detection limit. And it is able to solve the unlocked problem caused by the small duty cycle of quasi-continuous modulation signal, with a small signal waveform distortion.
NASA Astrophysics Data System (ADS)
Yang, Yang; Peng, Zhike; Dong, Xingjian; Zhang, Wenming; Clifton, David A.
2018-03-01
A challenge in analysing non-stationary multi-component signals is to isolate nonlinearly time-varying signals especially when they are overlapped in time and frequency plane. In this paper, a framework integrating time-frequency analysis-based demodulation and a non-parametric Gaussian latent feature model is proposed to isolate and recover components of such signals. The former aims to remove high-order frequency modulation (FM) such that the latter is able to infer demodulated components while simultaneously discovering the number of the target components. The proposed method is effective in isolating multiple components that have the same FM behavior. In addition, the results show that the proposed method is superior to generalised demodulation with singular-value decomposition-based method, parametric time-frequency analysis with filter-based method and empirical model decomposition base method, in recovering the amplitude and phase of superimposed components.
Chen, Xianglong; Zhang, Bingzhi; Feng, Fuzhou; Jiang, Pengcheng
2017-01-01
The kurtosis-based indexes are usually used to identify the optimal resonant frequency band. However, kurtosis can only describe the strength of transient impulses, which cannot differentiate impulse noises and repetitive transient impulses cyclically generated in bearing vibration signals. As a result, it may lead to inaccurate results in identifying resonant frequency bands, in demodulating fault features and hence in fault diagnosis. In view of those drawbacks, this manuscript redefines the correlated kurtosis based on kurtosis and auto-correlative function, puts forward an improved correlated kurtosis based on squared envelope spectrum of bearing vibration signals. Meanwhile, this manuscript proposes an optimal resonant band demodulation method, which can adaptively determine the optimal resonant frequency band and accurately demodulate transient fault features of rolling bearings, by combining the complex Morlet wavelet filter and the Particle Swarm Optimization algorithm. Analysis of both simulation data and experimental data reveal that the improved correlated kurtosis can effectively remedy the drawbacks of kurtosis-based indexes and the proposed optimal resonant band demodulation is more accurate in identifying the optimal central frequencies and bandwidth of resonant bands. Improved fault diagnosis results in experiment verified the validity and advantage of the proposed method over the traditional kurtosis-based indexes. PMID:28208820
A novel fiber Bragg grating wavelength demodulation system based on F-P etalon
NASA Astrophysics Data System (ADS)
Yang, Gang; Guo, Jinghong; Xu, Guoliang; Lv, Lidong; Tu, Guojie; Xia, Lan
2014-10-01
This paper designs and implies a high precision FBG demodulation system which based on F-P etalon. In order to reduce the influence of the temperature drift effect, the peristaltic effect, and the nonlinear effect of F-P filter in traditional tunable filter method, F-P etalon is added as dynamical calibration and wavelength reference. Meanwhile segmentation demodulation which uses ASE spectral characteristics is applied to achieve high accuracy of the center wavelength of FBG. The experiment shows that the stability, resolution are 0.65pm, 0.23pm, respectively. Key words: fiber optics; fiber Bragg grating sensor system; tunable Fabry-Perot filter; F-P etalon; spectrum segmentation demodulation
Nonlinear Demodulation and Channel Coding in EBPSK Scheme
Chen, Xianqing; Wu, Lenan
2012-01-01
The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding. PMID:23213281
Nonlinear demodulation and channel coding in EBPSK scheme.
Chen, Xianqing; Wu, Lenan
2012-01-01
The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding.
Demodulation algorithm for optical fiber F-P sensor.
Yang, Huadong; Tong, Xinglin; Cui, Zhang; Deng, Chengwei; Guo, Qian; Hu, Pan
2017-09-10
The demodulation algorithm is very important to improving the measurement accuracy of a sensing system. In this paper, the variable step size hill climbing search method will be initially used for the optical fiber Fabry-Perot (F-P) sensing demodulation algorithm. Compared with the traditional discrete gap transformation demodulation algorithm, the computation is greatly reduced by changing step size of each climb, which could achieve nano-scale resolution, high measurement accuracy, high demodulation rates, and large dynamic demodulation range. An optical fiber F-P pressure sensor based on micro-electro-mechanical system (MEMS) has been fabricated to carry out the experiment, and the results show that the resolution of the algorithm can reach nano-scale level, the sensor's sensitivity is about 2.5 nm/KPa, which is similar to the theoretical value, and this sensor has great reproducibility.
NASA Astrophysics Data System (ADS)
Liao, Hao; Lu, Ping; Liu, Li; Liu, Deming; Zhang, Jiangshan
2017-02-01
A phase demodulation method for short-cavity extrinsic Fabry-Perot interferometer (EFPI) based on two orthogonal wavelengths via a tunable optical filter is proposed in this paper. A broadband light is launched into the EFPI sensor and two monochromatic beams with 3dB bandwidth of 0.2nm are selected out from the reflected light of the EFPI sensor. A phase bias is induced between the two interferential signals due to the wavelength difference of the two beams. The wavelength difference will have an affect on the sensitivity of demodulated signal, which has been theoretically and experimentally demonstrated. The maximum sensitivity can be obtained when the phase bias is 0.5π corresponding to the wavelength difference of 1/4 FSR of the EFPI spectrum. The acoustic wave induced phase variation can be interrogated through an optimized differential cross multiplication (DCM) method. A normalization process is induced into the traditional DCM method to eliminate the influence of ambient temperature and pressure fluctuation induced spectrum shift on output signal. This means that, once the wavelength difference is fixed, the wavelength variation of each individual beam will have little influence on the amplitude of demodulated signal. The EFPI sensing head is formed by a 3μm-thick aluminum diaphragm, which has a SNR of more than 53dB. Through the proposed demodulation scheme, a large dynamic range and good linearity is acquired and Q-point drift problem of traditional EFPI sensor can be solved. The demodulation scheme can be applied to other kinds of short-cavity EFPI based acoustic sensors.
He, Haijun; Shao, Liyang; Qian, Heng; Zhang, Xinpu; Liang, Jiawei; Luo, Bin; Pan, Wei; Yan, Lianshan
2017-03-20
A novel demodulation method for Sagnac loop interferometer based sensor has been proposed and demonstrated, by unwrapping the phase changes with birefringence interrogation. A temperature sensor based on Sagnac loop interferometer has been used to verify the feasibility of the proposed method. Several tests with 40 °C temperature range have been accomplished with a great linearity of 0.9996 in full range. The proposed scheme is universal for all Sagnac loop interferometer based sensors and it has unlimited linear measurable range which overwhelming the conventional demodulation method with peak/dip tracing. Furthermore, the influence of the wavelength sampling interval and wavelength span on the demodulation error has been discussed in this work. The proposed interrogation method has a great significance for Sagnac loop interferometer sensor and it might greatly enhance the availability of this type of sensors in practical application.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
NASA Astrophysics Data System (ADS)
Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.
2018-03-01
We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.
Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide
2018-01-01
In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms. PMID:29329225
Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide
2018-01-12
In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.
Phase demodulation method from a single fringe pattern based on correlation with a polynomial form.
Robin, Eric; Valle, Valéry; Brémand, Fabrice
2005-12-01
The method presented extracts the demodulated phase from only one fringe pattern. Locally, this method approaches the fringe pattern morphology with the help of a mathematical model. The degree of similarity between the mathematical model and the real fringe is estimated by minimizing a correlation function. To use an optimization process, we have chosen a polynomial form such as a mathematical model. However, the use of a polynomial form induces an identification procedure with the purpose of retrieving the demodulated phase. This method, polynomial modulated phase correlation, is tested on several examples. Its performance, in terms of speed and precision, is presented on very noised fringe patterns.
Frequency guided methods for demodulation of a single fringe pattern.
Wang, Haixia; Kemao, Qian
2009-08-17
Phase demodulation from a single fringe pattern is a challenging task but of interest. A frequency-guided regularized phase tracker and a frequency-guided sequential demodulation method with Levenberg-Marquardt optimization are proposed to demodulate a single fringe pattern. Demodulation path guided by the local frequency from the highest to the lowest is applied in both methods. Since critical points have low local frequency values, they are processed last so that the spurious sign problem caused by these points is avoided. These two methods can be considered as alternatives to the effective fringe follower regularized phase tracker. Demodulation results from one computer-simulated and two experimental fringe patterns using the proposed methods will be demonstrated. (c) 2009 Optical Society of America
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Strum, R.; Stiles, D.
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
Liu, Y.; Strum, R.; Stiles, D.; ...
2017-11-20
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Yang, Shangming; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Cui, Hong-Liang
2010-04-01
In this paper we report a scheme of low-cost, small-size differential electrical converter to change analog trigger signals into digital trigger signals. This converter successfully resolves the incompatibility between the digital trigger mode of NI (National Instruments) data acquisition card PCI 5105 in Measurement Studio development environment for a demodulator and the requirement from instability of spectra of fiber Bragg grating (FBG) sensors. The instability is caused by intrinsic drifts of FFP-TF inside this high speed demodulator. The obtained results of frequency response about the converter have clearly demonstrated that this method is effective when the frequency of trigger signal is less than 3,000 Hz. This converter can satisfy the current requirements of demodulator based on FFP-TF, since mostly actual working scanning frequency of FFP-TF is less than 1,000 Hz. This method may be recommended to resolve similar problems for other NI customers who have developed their data acquisition system based on Measurement Studio.
Asgarian, Farzad; Sodagar, Amir M
2009-01-01
A novel noncoherent BPSK demodulator is presented for inductively powered biomedical devices. Differential Manchester encoding technique is used and data demodulation is based on pulse width measurement method. In addition to ultra low power consumption, high data rate without increasing the carrier frequency is achieved with the outstanding data-rate-to-carrier-frequency ratio of 100%. The proposed demodulator is especially appropriate for biomedical applications where high speed data transfer is required, e.g., cochlear implants and visual prostheses. The circuit is designed in a 0.18-mum standard CMOS technology and consumes as low as 232 microW@1.8V at a data rate of 10 Mbps.
Multi-scale signed envelope inversion
NASA Astrophysics Data System (ADS)
Chen, Guo-Xin; Wu, Ru-Shan; Wang, Yu-Qing; Chen, Sheng-Chang
2018-06-01
Envelope inversion based on modulation signal mode was proposed to reconstruct large-scale structures of underground media. In order to solve the shortcomings of conventional envelope inversion, multi-scale envelope inversion was proposed using new envelope Fréchet derivative and multi-scale inversion strategy to invert strong contrast models. In multi-scale envelope inversion, amplitude demodulation was used to extract the low frequency information from envelope data. However, only to use amplitude demodulation method will cause the loss of wavefield polarity information, thus increasing the possibility of inversion to obtain multiple solutions. In this paper we proposed a new demodulation method which can contain both the amplitude and polarity information of the envelope data. Then we introduced this demodulation method into multi-scale envelope inversion, and proposed a new misfit functional: multi-scale signed envelope inversion. In the numerical tests, we applied the new inversion method to the salt layer model and SEG/EAGE 2-D Salt model using low-cut source (frequency components below 4 Hz were truncated). The results of numerical test demonstrated the effectiveness of this method.
Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun
2017-01-23
In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.
NASA Astrophysics Data System (ADS)
Liu, Bin; Gang, Tie; Wan, Chuhao; Wang, Changxi; Luo, Zhiwei
2015-07-01
Vibro-acoustic modulation technique is a nonlinear ultrasonic method in nondestructive testing. This technique detects the defects by monitoring the modulation components generated by the interaction between the vibration and the ultrasound wave due to the nonlinear material behaviour caused by the damage. In this work, a swept frequency signal was used as high frequency excitation, then the Hilbert transform based amplitude and phase demodulation and synchronous demodulation (SD) were used to extract the modulation information from the received signal, the results were graphed in the time-frequency domain after the short time Fourier transform. The demodulation results were quite different from each other. The reason for the difference was investigated by analysing the demodulation process of the two methods. According to the analysis and the subsequent verification test, it was indicated that the SD method was more proper for the test and a new index called MISD was defined to evaluate the structure quality in the Vibro-acoustic modulation test with swept probing excitation.
NASA Astrophysics Data System (ADS)
Zhou, Lei; Li, Zhengying; Xiang, Na; Bao, Xiaoyi
2018-06-01
A high speed quasi-distributed demodulation method based on the microwave photonics and the chromatic dispersion effect is designed and implemented for weak fiber Bragg gratings (FBGs). Due to the effect of dispersion compensation fiber (DCF), FBG wavelength shift leads to the change of the difference frequency signal at the mixer. With the way of crossing microwave sweep cycle, all wavelengths of cascade FBGs can be high speed obtained by measuring the frequencies change. Moreover, through the introduction of Chirp-Z and Hanning window algorithm, the analysis of difference frequency signal is achieved very well. By adopting the single-peak filter as a reference, the length disturbance of DCF caused by temperature can be also eliminated. Therefore, the accuracy of this novel method is greatly improved, and high speed demodulation of FBGs can easily realize. The feasibility and performance are experimentally demonstrated using 105 FBGs with 0.1% reflectivity, 1 m spatial interval. Results show that each grating can be distinguished well, and the demodulation rate is as high as 40 kHz, the accuracy is about 8 pm.
Lin, Cheng; Zhu, Yong; Wei, Wei; Zhang, Jie; Tian, Li; Xu, Zu-Wen
2013-05-01
An all-optical quartz-enhanced photoacoustic spectroscopy system, based on the F-P demodulation, for trace gas detection in the open environment was proposed. In quartz-enhanced photoacoustic spectroscopy (QEPAS), an optical fiber Fabry-Perot method was used to replace the conventional electronic demodulation method. The photoacoustic signal was obtained by demodulating the variation of the Fabry-Perot cavity between the quartz tuning fork side and the fiber face. An experimental system was setup. The experiment for detection of water vapour in the open environment was carried on. A normalized noise equivalent absorption coefficient of 2.80 x 10(-7) cm(-1) x W x Hz(-1/2) was achieved. The result demonstrated that the sensitivity of the all-optical quartz-enhanced photoacoustic spectroscopy system is about 2.6 times higher than that of the conventional QEPAS system. The all-optical quartz-enhanced photoacoustic spectroscopy system is immune to electromagnetic interference, safe in flammable and explosive gas detection, suitable for high temperature and high humidity environments and realizable for long distance, multi-point and network sensing.
NASA Astrophysics Data System (ADS)
Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng
2018-01-01
Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.
NASA Astrophysics Data System (ADS)
Li, Xinhua; Song, Zhenyu; Zhan, Yongjie; Wu, Qiongzhi
2009-12-01
Since the system capacity is severely limited, reducing the multiple access interfere (MAI) is necessary in the multiuser direct-sequence code division multiple access (DS-CDMA) system which is used in the telecommunication terminals data-transferred link system. In this paper, we adopt an adaptive multistage parallel interference cancellation structure in the demodulator based on the least mean square (LMS) algorithm to eliminate the MAI on the basis of overviewing various of multiuser dectection schemes. Neither a training sequence nor a pilot signal is needed in the proposed scheme, and its implementation complexity can be greatly reduced by a LMS approximate algorithm. The algorithm and its FPGA implementation is then derived. Simulation results of the proposed adaptive PIC can outperform some of the existing interference cancellation methods in AWGN channels. The hardware setup of mutiuser demodulator is described, and the experimental results based on it demonstrate that the simulation results shows large performance gains over the conventional single-user demodulator.
A hybrid demodulation method of fiber-optic Fabry-Perot pressure sensor
NASA Astrophysics Data System (ADS)
Yu, Le; Lang, Jianjun; Pan, Yong; Wu, Di; Zhang, Min
2013-12-01
The fiber-optic Fabry-Perot pressure sensors have been widely applied to measure pressure in oilfield. For multi-well it will take a long time (dozens of seconds) to demodulate downhole pressure values of all wells by using only one demodulation system and it will cost a lot when every well is equipped with one system, which heavily limits the sensor applied in oilfield. In present paper, a new hybrid demodulation method, combining the windowed nonequispaced discrete Fourier Transform (nDFT) method with segment search minimum mean square error estimation (MMSE) method, was developed, by which the demodulation time can be reduced to 200ms, i.e., measuring 10 channels/wells was less than 2s. Besides, experimental results showed the demodulation cavity length of the fiber-optic Fabry-Perot sensor has a maximum error of 0.5 nm and consequently pressure measurement accuracy can reach 0.4% F.S.
Incompatibility of Trellis-Based NonCoherent SOQPSK Demodulators for Use in FEC Applications
2012-03-12
AFFTC-PA-12071 Incompatibility Of Trellis-Based NonCoherent SOQPSK Demodulators For Use In FEC Applications Erik Perrins AIR FORCE FLIGHT...Feb 12 – Oct 12 4. TITLE AND SUBTITLE Incompatibility Of Trellis-Based NonCoherent SOQPSK Demodulators For Use In FEC Applications 5a...compatibility/incompatibility of trellis-based noncoherent shaped offset quadrature phase shift keying (SOQPSK) demodulators for use in forward
Research on the fault diagnosis of bearing based on wavelet and demodulation
NASA Astrophysics Data System (ADS)
Li, Jiapeng; Yuan, Yu
2017-05-01
As a most commonly-used machine part, antifriction bearing is extensively used in mechanical equipment. Vibration signal analysis is one of the methods to monitor and diagnose the running status of antifriction bearings. Therefore, using wavelet analysis for demising is of great importance in the engineering practice. This paper firstly presented the basic theory of wavelet analysis to study the transformation, decomposition and reconstruction of wavelet. In addition, edition software LabVIEW was adopted to conduct wavelet and demodulation upon the vibration signal of antifriction bearing collected. With the combination of Hilbert envelop demodulation analysis, the fault character frequencies of the demised signal were extracted to conduct fault diagnosis analysis, which serves as a reference for the wavelet and demodulation of the vibration signal in engineering practice.
NASA Astrophysics Data System (ADS)
Wang, Kuiru; Wang, Bo; Yan, Binbin; Sang, Xinzhu; Yuan, Jinhui; Peng, Gang-Ding
2013-10-01
We present a fiber Bragg grating Fabry-Perot (FBG-FP) sensor using the fast Fourier transform (FFT) demodulation for measuring the absolute strain and differential strain simultaneously. The amplitude and phase characteristics of Fourier transform spectrum have been studied. The relation between the amplitude of Fourier spectrum and the differential strain has been presented. We fabricate the fiber grating FP cavity sensor, and carry out the experiment on the measurement of absolute strain and differential strain. Experimental results verify the demodulation method, and show that this sensor has a good accuracy in the scope of measurement. The demodulating method can expand the number of multiplexed sensors combining with wavelength division multiplexing and time division multiplexing.
NASA Astrophysics Data System (ADS)
Yan, Bing-Nan; Liu, Chong-Xin; Ni, Jun-Kang; Zhao, Liang
2016-10-01
In order to grasp the downhole situation immediately, logging while drilling (LWD) technology is adopted. One of the LWD technologies, called acoustic telemetry, can be successfully applied to modern drilling. It is critical for acoustic telemetry technology that the signal is successfully transmitted to the ground. In this paper, binary phase shift keying (BPSK) is used to modulate carrier waves for the transmission and a new BPSK demodulation scheme based on Duffing chaos is investigated. Firstly, a high-order system is given in order to enhance the signal detection capability and it is realized through building a virtual circuit using an electronic workbench (EWB). Secondly, a new BPSK demodulation scheme is proposed based on the intermittent chaos phenomena of the new Duffing system. Finally, a system variable crossing zero-point equidistance method is proposed to obtain the phase difference between the system and the BPSK signal. Then it is determined that the digital signal transmitted from the bottom of the well is ‘0’ or ‘1’. The simulation results show that the demodulation method is feasible. Project supported by the National Natural Science Foundation of China (Grant No. 51177117) and the National Key Science & Technology Special Projects, China (Grant No. 2011ZX05021-005).
Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop
NASA Astrophysics Data System (ADS)
Wildeman, Sander
2018-06-01
A quantitative synthetic Schlieren imaging (SSI) method based on fast Fourier demodulation is presented. Instead of a random dot pattern (as usually employed in SSI), a 2D periodic pattern (such as a checkerboard) is used as a backdrop to the refractive object of interest. The range of validity and accuracy of this "Fast Checkerboard Demodulation" (FCD) method are assessed using both synthetic data and experimental recordings of patterns optically distorted by small waves on a water surface. It is found that the FCD method is at least as accurate as sophisticated, multi-stage, digital image correlation (DIC) or optical flow (OF) techniques used with random dot patterns, and it is significantly faster. Efficient, fully vectorized, implementations of both the FCD and DIC/OF schemes developed for this study are made available as open source Matlab scripts.
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Qin, Zunqi; Zou, Shengliang
2014-04-01
We present a high precision and fast speed demodulation method for a polarized low-coherence interferometer with location-dependent birefringence dispersion. Based on the characteristics of location-dependent birefringence dispersion and five-step phase-shifting technology, the method accurately retrieves the peak position of zero-fringe at the central wavelength, which avoids the fringe order ambiguity. The method processes data only in the spatial domain and reduces the computational load greatly. We successfully demonstrated the effectiveness of the proposed method in an optical fiber Fabry-Perot barometric pressure sensing experiment system. Measurement precision of 0.091 kPa was realized in the pressure range of 160 kPa, and computation time was improved by 10 times compared to the traditional phase-based method that requires Fourier transform operation.
Beam position monitor for energy recovered linac beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, Thomas; Evtushenko, Pavel
A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William [Overland Park, KS
2007-07-03
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William [Overland Park, KS
2008-10-21
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William [Overland Park, KS
2009-09-01
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William [Overland Park, KS
2007-07-17
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William
2007-10-02
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.
2017-12-01
Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of selected IMF, we discern planet bearing fault reasons according to the present peaks. The proposed spectral negentropy infogram based spectrum and demodulation analysis method is illustrated via a numerical simulated signal analysis. Considering the unique load bearing feature of planet bearings, experimental validations under both no-load and loading conditions are done to verify the derived fault symptoms and the proposed method. The localized faults on outer race, rolling element and inner race are successfully diagnosed.
NASA Astrophysics Data System (ADS)
Shoupeng, Song; Zhou, Jiang
2017-03-01
Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.
A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Transform Spectrometers
NASA Technical Reports Server (NTRS)
Campbell, Joel
2008-01-01
A method is developed to demodulate (velocity correct) Fourier transform spectrometer (FTS) data that is taken with an analog to digital converter that digitizes equally spaced in time. This method makes it possible to use simple low cost, high resolution audio digitizers to record high quality data without the need for an event timer or quadrature laser hardware, and makes it possible to use a metrology laser of any wavelength. The reduced parts count and simplicity implementation makes it an attractive alternative in space based applications when compared to previous methods such as the Brault algorithm.
Bit-rate transparent DPSK demodulation scheme based on injection locking FP-LD
NASA Astrophysics Data System (ADS)
Feng, Hanlin; Xiao, Shilin; Yi, Lilin; Zhou, Zhao; Yang, Pei; Shi, Jie
2013-05-01
We propose and demonstrate a bit-rate transparent differential phase shift-keying (DPSK) demodulation scheme based on injection locking multiple-quantum-well (MQW) strained InGaAsP FP-LD. By utilizing frequency deviation generated by phase modulation and unstable injection locking state with Fabry-Perot laser diode (FP-LD), DPSK to polarization shift-keying (PolSK) and PolSK to intensity modulation (IM) format conversions are realized. We analyze bit error rate (BER) performance of this demodulation scheme. Experimental results show that different longitude modes, bit rates and seeding power have influences on demodulation performance. We achieve error free DPSK signal demodulation under various bit rates of 10 Gbit/s, 5 Gbit/s, 2.5 Gbit/s and 1.25 Gbit/s with the same demodulation setting.
NASA Astrophysics Data System (ADS)
Lu, En; Ran, Zengling; Peng, Fei; Liu, Zhiwei; Xu, Fuguo
2012-03-01
Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic Fabry-Perot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.
NASA Astrophysics Data System (ADS)
Ran, Zengling; Rao, Yunjiang; Liu, Zhiwei; Xu, Fuguo
2011-05-01
Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic fabry-periot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.
Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak
NASA Astrophysics Data System (ADS)
Tongyu, WU; Wei, ZHANG; Haoxi, WANG; Yan, ZHOU; Zejie, YIN
2018-06-01
A synchronous demodulation system is proposed and deployed for CO2 dispersion interferometer on HL-2A, which aims at high plasma density measurements and real-time feedback control. In order to make sure that the demodulator and the interferometer signal are synchronous in phase, a phase adjustment (PA) method has been developed for the demodulation system. The method takes advantages of the field programmable gate array parallel and pipeline process capabilities to carry out high performance and low latency PA. Some experimental results presented show that the PA method is crucial to the synchronous demodulation system and reliable to follow the fast change of the electron density. The system can measure the line-integrated density with a high precision of 2.0 × 1018 m‑2.
A digitally implemented preambleless demodulator for maritime and mobile data communications
NASA Astrophysics Data System (ADS)
Chalmers, Harvey; Shenoy, Ajit; Verahrami, Farhad B.
The hardware design and software algorithms for a low-bit-rate, low-cost, all-digital preambleless demodulator are described. The demodulator operates under severe high-noise conditions, fast Doppler frequency shifts, large frequency offsets, and multipath fading. Sophisticated algorithms, including a fast Fourier transform (FFT)-based burst acquisition algorithm, a cycle-slip resistant carrier phase tracker, an innovative Doppler tracker, and a fast acquisition symbol synchronizer, were developed and extensively simulated for reliable burst reception. The compact digital signal processor (DSP)-based demodulator hardware uses a unique personal computer test interface for downloading test data files. The demodulator test results demonstrate a near-ideal performance within 0.2 dB of theory.
A wide range real-time synchronous demodulation system for the dispersion interferometer on HL-2M
NASA Astrophysics Data System (ADS)
Wu, Tongyu; Zhang, Wei; Yin, Zejie
2017-09-01
A real-time synchronous demodulation system has been developed for the dispersion interferometer on a HL-2M tokamak. The system is based on the phase extraction method which uses a ratio of modulation amplitudes. A high-performance field programmable gate array with pipeline process capabilities is used to realize the real time synchronous demodulation algorithm. A fringe jump correction algorithm is applied to follow the fast density changes of the plasma. By using the Peripheral Component Interconnect Express protocol, the electronics can perform real-time density feedback with a temporal resolution of 100 ns. Some experimental results presented show that the electronics can obtain a wide measurement range of 2.28 × 1022 m-2 with high precision.
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan
2013-08-15
A demodulation algorithm based on the birefringence dispersion characteristics for a polarized low-coherence interferometer is proposed. With the birefringence dispersion parameter taken into account, the mathematical model of the polarized low-coherence interference fringes is established and used to extract phase shift information between the measured coherence envelope center and the zero-order fringe, which eliminates the interferometric 2 π ambiguity of locating the zero-order fringe. A pressure measurement experiment using an optical fiber Fabry-Perot pressure sensor was carried out to verify the effectiveness of the proposed algorithm. The experiment result showed that the demodulation precision was 0.077 kPa in the range of 210 kPa, which was improved by 23 times compared to the traditional envelope detection method.
NASA Astrophysics Data System (ADS)
Shahriar, Md Rifat; Borghesani, Pietro; Randall, R. B.; Tan, Andy C. C.
2017-11-01
Demodulation is a necessary step in the field of diagnostics to reveal faults whose signatures appear as an amplitude and/or frequency modulation. The Hilbert transform has conventionally been used for the calculation of the analytic signal required in the demodulation process. However, the carrier and modulation frequencies must meet the conditions set by the Bedrosian identity for the Hilbert transform to be applicable for demodulation. This condition, basically requiring the carrier frequency to be sufficiently higher than the frequency of the modulation harmonics, is usually satisfied in many traditional diagnostic applications (e.g. vibration analysis of gear and bearing faults) due to the order-of-magnitude ratio between the carrier and modulation frequency. However, the diversification of the diagnostic approaches and applications shows cases (e.g. electrical signature analysis-based diagnostics) where the carrier frequency is in close proximity to the modulation frequency, thus challenging the applicability of the Bedrosian theorem. This work presents an analytic study to quantify the error introduced by the Hilbert transform-based demodulation when the Bedrosian identity is not satisfied and proposes a mitigation strategy to combat the error. An experimental study is also carried out to verify the analytical results. The outcome of the error analysis sets a confidence limit on the estimated modulation (both shape and magnitude) achieved through the Hilbert transform-based demodulation in case of violated Bedrosian theorem. However, the proposed mitigation strategy is found effective in combating the demodulation error aroused in this scenario, thus extending applicability of the Hilbert transform-based demodulation.
Grating-assisted demodulation of interferometric optical sensors.
Yu, Bing; Wang, Anbo
2003-12-01
Accurate and dynamic control of the operating point of an interferometric optical sensor to produce the highest sensitivity is crucial in the demodulation of interferometric optical sensors to compensate for manufacturing errors and environmental perturbations. A grating-assisted operating-point tuning system has been designed that uses a diffraction grating and feedback control, functions as a tunable-bandpass optical filter, and can be used as an effective demodulation subsystem in sensor systems based on optical interferometers that use broadband light sources. This demodulation method has no signal-detection bandwidth limit, a high tuning speed, a large tunable range, increased interference fringe contrast, and the potential for absolute optical-path-difference measurement. The achieved 40-nm tuning range, which is limited by the available source spectrum width, 400-nm/s tuning speed, and a step resolution of 0.4 nm, is sufficient for most practical measurements. A significant improvement in signal-to-noise ratio in a fiber Fabry-Perot acoustic-wave sensor system proved that the expected fringe contrast and sensitivity increase.
Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin
2005-03-15
A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented that is based on a Michelson interferometer and combines the methods of low-coherence interference and Fourier transform spectrum. Signals from EFPI and FBG sensors are obtained simultaneously by scanning one arm of a Michelson interferometer, and an algorithm model is established to process the signals and retrieve both the wavelength of the FBG and the cavity length of the EFPI at the same time, which are then used to determine the strain and temperature.
Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity
NASA Astrophysics Data System (ADS)
Pham, Xuantung; Si, Jinhai; Chen, Tao; Wang, Ruize; Yan, Lihe; Cao, Houjun; Hou, Xun
2018-05-01
In this paper, we propose a demodulation method for refractive index (RI) sensing with tilted fiber Bragg gratings (TFBGs). It operates by monitoring the TFBG cladding mode resonance "cut-off wavelengths." The idea of a "cut-off wavelength" and its determination method are introduced. The RI sensitivities of TFBGs are significantly enhanced in certain RI ranges by using our demodulation method. The temperature-induced cross sensitivity is eliminated. We also demonstrate a parallel-double-angle TFBG (PDTFBG), in which two individual TFBGs are inscribed in the fiber core in parallel using a femtosecond laser and a phase mask. The RI sensing range of the PDTFBG is significantly broader than that of a conventional single-angle TFBG. In addition, its RI sensitivity can reach 1023.1 nm/refractive index unit in the 1.4401-1.4570 RI range when our proposed demodulation method is used.
Ishidoshiro, K; Chinone, Y; Hasegawa, M; Hazumi, M; Nagai, M; Tajima, O
2012-05-01
We propose an innovative demodulation scheme for coherent detectors used in cosmic microwave background polarization experiments. Removal of non-white noise, e.g., narrow-band noise, in detectors is one of the key requirements for the experiments. A combination of modulation and demodulation is used to extract polarization signals as well as to suppress such noise. Traditional demodulation, which is based on the two-point numerical differentiation, works as a first-order high pass filter for the noise. The proposed demodulation is based on the three-point numerical differentiation. It works as a second-order high pass filter. By using a real detector, we confirmed significant improvements of suppression power for the narrow-band noise. We also found improvement of the noise floor.
Pseudo-coherent demodulation for mobile satellite systems
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Simon, Marvin K.
1993-01-01
This paper proposes three so-called pseudo-coherent demodulation schemes for use in land mobile satellite channels. The schemes are derived based on maximum likelihood (ML) estimation and detection of an N-symbol observation of the received signal. Simulation results for all three demodulators are presented to allow comparison with the performance of differential PSK (DPSK) and ideal coherent demodulation for various system parameter sets of practical interest.
A review of demodulation techniques for amplitude-modulation atomic force microscopy
Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J
2017-01-01
In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode. PMID:28900596
Demodulation circuit for AC motor current spectral analysis
Hendrix, Donald E.; Smith, Stephen F.
1990-12-18
A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.
Optimised Spectral Kurtosis for bearing diagnostics under electromagnetic interference
NASA Astrophysics Data System (ADS)
Smith, Wade A.; Fan, Zhiqi; Peng, Zhongxiao; Li, Huaizhong; Randall, Robert B.
2016-06-01
The selection of the optimal demodulation frequency band is a significant step in bearing fault diagnosis because it determines whether the fault information can be extracted from the demodulated signal via envelope analysis. Two well-known methods for selecting the demodulation band are the Fast Kurtogram, based on the kurtosis of the filtered time signal, and the Protrugram, which uses the kurtosis of the envelope (amplitude) spectrum. Although these two methods have been successfully applied in many cases, the authors have observed that they may fail in specific environments, such as in the presence of electromagnetic interference (EMI) or other impulsive masking signals. In this paper, a simple spectral kurtosis-based approach is proposed for selecting the best demodulation band to extract bearing fault-related impulsive content from vibration signals contaminated with strong EMI. The method is applied to vibration signals obtained from a planetary gearbox test rig with planet bearings seeded with inner and outer race faults. Results from the Fast Kurtogram and Protrugram methods are also included for comparison. The proposed approach is found to exhibit superior diagnostic performance in the presence of intense EMI. Another contribution of the paper is to introduce and explain the issue of EMI to the condition monitoring community. The paper outlines the characteristics of EMI arising from widely-used variable frequency drives, and these characteristics are used to simulate an EMI-contaminated vibration signal to further test the performance of the proposed approach. Although EMI has been acknowledged as a serious problem in many industrial cases, there have been very few studies showing its adverse effects on machine diagnostics. It is important for analysts to be able to identify EMI in measured vibration signals, lest it interfere with the analysis undertaken.
NASA Astrophysics Data System (ADS)
Chen, Xinwei; He, Shengnan; Li, Dandan; Wang, Kai; Fan, Yan'en; Wu, Shuai
2014-11-01
We present an optical fiber voltage sensor by Michelsion interferometer (MI) employing a Fabry-Perot (F-P) interferometer and the DC phase tracking (DCPT) signal processing method. By mounting a MI fabricated by an optical fiber coupler on a piezoelectric (PZT) transducer bar, a dynamic strain would be generated to change the optical path difference (OPD) of the interferometer when the measured voltage was applied on the PZT. Applying an F-P interferometer to demodulate the optical intensity variation output of the MI, the voltage can be obtained. The experiment results show that the relationship between the optical intensity variation and the voltage applied on the PZT is approximately linear. Furthermore, the phase generate carrier (PGC) algorithm was applied to demodulate the output of the sensor also.
360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.
Servin, Manuel; Padilla, Moises; Garnica, Guillermo
2016-01-11
360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.
Simulation of fiber optic liquid level sensor demodulation system
NASA Astrophysics Data System (ADS)
Yi, Cong-qin; Luo, Yun; Zhang, Zheng-ping
Measuring liquid level with high accuracy is an urgent requirement. This paper mainly focus on the demodulation system of fiber-optic liquid level sensor based on Fabry-Perot cavity, design and simulate the demodulation system by the single-chip simulation software.
NASA Astrophysics Data System (ADS)
Rao, Wei; Niu, Siliang; Zhang, Nan; Cao, Chunyan; Hu, Yongmin
2011-09-01
This paper presents a demodulation scheme using phase-generated carrier (PGC) for a fiber Fabry-Pérot interferometric (FFPI) sensor with high finesse. The FFPI is constructed by a polarization maintaining fiber ring resonator with dual-coupler (PMDC-FRR), which can eliminate the polarization induced fading phenomenon. Compared with the former phase demodulation methods, the PGC scheme in this paper does not assume a two-beam interferometric approximation for the Fabry-Pérot cavity, and can work at arbitrary value of finesse in theory. Two PMDC-FRRs with reflective coefficients of 0.5 and 0.9 are made in experiments for demodulation. Both the single-frequency and the wideband signals are successfully demodulated from the transmission intensities using the PGC demodulation scheme. The experimental results demonstrate that the PGC demodulation scheme is feasible for the FFPI sensor with high finesse. The effects of the reflective coefficient and the intensity loss to the finesse are also discussed.
Analysis of the tunable asymmetric fiber F-P cavity for fiber sensor edge-filter demodulation
NASA Astrophysics Data System (ADS)
Chen, Haitao; Liang, Youcheng
2014-12-01
An asymmetric fiber (Fabry-Pérot,F-P) interferometric cavity with good linearity and wide dynamic range is successfully designed basing on optical thin film characteristic matrix theory; by choosing the material of two different thin metallic layers, the asymmetric fiber F-P interferometric cavity is fabricated by depositing the multi-layer thin films on the optical fiber's end face. The demodulation method for the wavelength shift of fiber Bragg grating (FBG) sensor basing on the F-P cavity is demonstrated and a theoretical formula is obtained. And the experimental results coincide well with computational results obtained from the theoretical model.
Fault Diagnosis for Centre Wear Fault of Roll Grinder Based on a Resonance Demodulation Scheme
NASA Astrophysics Data System (ADS)
Wang, Liming; Shao, Yimin; Yin, Lei; Yuan, Yilin; Liu, Jing
2017-05-01
Roll grinder is one of the important parts in the rolling machinery, and the grinding precision of roll surface has direct influence on the surface quality of steel strip. However, during the grinding process, the centre bears the gravity of the roll and alternating stress. Therefore, wear or spalling faults are easily observed on the centre, which will lead to an anomalous vibration of the roll grinder. In this study, a resonance demodulation scheme is proposed to detect the centre wear fault of roll grinder. Firstly, fast kurtogram method is employed to help select the sub-band filter parameters for optimal resonance demodulation. Further, the envelope spectrum are derived based on the filtered signal. Finally, two health indicators are designed to conduct the fault diagnosis for centre wear fault. The proposed scheme is assessed by analysing experimental data from a roll grinder of twenty-high rolling mill. The results show that the proposed scheme can effectively detect the centre wear fault of the roll grinder.
Wang, Linglan; Yan, Yuchao; Ma, Huilian; Jin, Zhonghe
2016-04-20
New developments are made in the resonant fiber optic gyro (RFOG), which is an optical sensor for the measurement of rotation rate. The digital signal processing system based on the phase modulation technique is capable of detecting the weak frequency difference induced by the Sagnac effect and suppressing the reciprocal noise in the circuit, which determines the detection sensitivity of the RFOG. A new technique based on the sinusoidal wave modulation and square wave demodulation is implemented, and the demodulation curve of the system is simulated and measured. Compared with the past technique using sinusoidal modulation and demodulation, it increases the slope of the demodulation curve by a factor of 1.56, improves the spectrum efficiency of the modulated signal, and reduces the occupancy of the field-programmable gate array resource. On the basis of this new phase modulation technique, the loop is successfully locked and achieves a short-term bias stability of 1.08°/h, which is improved by a factor of 1.47.
NASA Astrophysics Data System (ADS)
Su, Yang; Zhou, Hua; Wang, Yiming; Shen, Huiping
2018-03-01
In this paper we propose a new design to demodulate polarization properties induced by pressure using a PBS (polarization beam splitter), which is different with traditional polarimeter based on the 4-detector polarization measurement approach. The theoretical model is established by Muller matrix method. Experimental results confirm the validity of our analysis. Proportional relationships and linear fit are found between output signal and applied pressure. A maximum sensitivity of 0.092182 mv/mv is experimentally achieved and the frequency response exhibits a <0.14 dB variation across the measurement bandwidth. The sensitivity dependence on incident SOP (state of polarization) is investigated. The simple and all-fiber configuration, low-cost and high speed potential make it promising for fiber-based dynamic pressure sensing.
The modulation and demodulation module of a high resolution MOEMS accelerometer
NASA Astrophysics Data System (ADS)
Jiao, Xufen; Bai, Jian; Lu, Qianbo; Lou, Shuqi
2016-02-01
A MOEMS accelerometer with high precision based on grating interferometer is demonstrated in this paper. In order to increase the signal-to-noise ratio (SNR) and accuracy, a specific modulator and an orthogonal phase-lock demodulator are proposed. Phase modulation is introduced to this accelerometer by applying a sinusoidal signal to a piezoelectric translator (PZT) amounted to the accelerometer. Phase demodulation module consists of a circuit design and a digital design. In the circuit design, the modulated light intensity signal is converted to a voltage signal and processed. In the digital part, the demodulator is mainly composed of a Band Pass Filter, two Phase-Sensitive Detectors, a phase shifter, and two Low Pass Filters based on virtual instrument. Simulation results indicate that this approach can decrease the noise greatly, and the SNR of this demodulator is 50dB and the relative error is less than 4%.
FPGA based demodulation of laser induced fluorescence in plasmas
NASA Astrophysics Data System (ADS)
Mattingly, Sean W.; Skiff, Fred
2018-04-01
We present a field programmable gate array (FPGA)-based system that counts photons from laser-induced fluorescence (LIF) on a laboratory plasma. This is accomplished with FPGA-based up/down counters that demodulate the data, giving a background-subtracted LIF signal stream that is updated with a new point as each laser amplitude modulation cycle completes. We demonstrate using the FPGA to modulate a laser at 1 MHz and demodulate the resulting LIF data stream. This data stream is used to calculate an LIF-based measurement sampled at 1 MHz of a plasma ion fluctuation spectrum.
On optimal soft-decision demodulation
NASA Technical Reports Server (NTRS)
Lee, L. N.
1975-01-01
Wozencraft and Kennedy have suggested that the appropriate demodulator criterion of goodness is the cut-off rate of the discrete memoryless channel created by the modulation system; the criterion of goodness adopted in this note is the symmetric cut-off rate which differs from the former criterion only in that the signals are assumed equally likely. Massey's necessary condition for optimal demodulation of binary signals is generalized to M-ary signals. It is shown that the optimal demodulator decision regions in likelihood space are bounded by hyperplanes. An iterative method is formulated for finding these optimal decision regions from an initial good quess. For additive white Gaussian noise, the corresponding optimal decision regions in signal space are bounded by hypersurfaces with hyperplane asymptotes; these asymptotes themselves bound the decision regions of a demodulator which, in several examples, is shown to be virtually optimal. In many cases, the necessary condition for demodulator optimality is also sufficient, but a counter example to its general sufficiency is given.
An all-digital phase-locked loop demodulator based on FPGA
NASA Astrophysics Data System (ADS)
Gong, X. F.; Cui, Z. D.
2017-09-01
This paper studied the principle of analogue phase-locked loop demodulation and work process of digital phase-locked loop. It is found that the higher the reference signal frequency is, the smaller the duty ratio of the discriminator output signal is. Carrier detection is achieved by using this relationship. The experimental results indicate that the demodulator based on the principle could realize high-quality transmission of digital signals and could be an effective FM communication mode for studying wireless transmission of digital signals.
Chen, Chia-Wei; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung
2017-10-02
Recently even the low-end mobile-phones are equipped with a high-resolution complementary-metal-oxide-semiconductor (CMOS) image sensor. This motivates using a CMOS image sensor for visible light communication (VLC). Here we propose and demonstrate an efficient demodulation scheme to synchronize and demodulate the rolling shutter pattern in image sensor based VLC. The implementation algorithm is discussed. The bit-error-rate (BER) performance and processing latency are evaluated and compared with other thresholding schemes.
NASA Astrophysics Data System (ADS)
Jiang, Peng; Ma, Lina; Hu, Zhengliang; Hu, Yongming
2016-07-01
The inline time division multiplexing (TDM) fiber Fabry-Pérot (FFP) sensor array based on fiber Bragg gratings (FBGs) is attractive for many applications. But the intrinsic multi-reflection (MR) induced crosstalk limits applications especially those needing high resolution. In this paper we proposed an expandable method for MR-induced crosstalk reduction. The method is based on complexing-exponent synthesis using the phase-generated carrier (PGC) scheme and the special common character of the impulse responses. The method could promote demodulation stability simultaneously with the reduction of MR-induced crosstalk. A polarization-maintaining 3-TDM experimental system with an FBG reflectivity of about 5 % was set up to validate the method. The experimental results showed that crosstalk reduction of 13 dB and 15 dB was achieved for sensor 2 and sensor 3 respectively when a signal was applied to the first sensor and crosstalk reduction of 8 dB was achieved for sensor 3 when a signal was applied to sensor 2. The demodulation stability of the applied signal was promoted as well. The standard deviations of the amplitude distributions of the demodulated signals were reduced from 0.0046 to 0.0021 for sensor 2 and from 0.0114 to 0.0044 for sensor 3. Because of the convenience of the linear operation of the complexing-exponent and according to the common character of the impulse response we found, the method can be effectively extended to the array with more TDM channels if the impulse response of the inline FFP sensor array with more TDM channels is derived. It offers potential to develop a low-crosstalk inline FFP sensor array using the PGC interrogation technique with relatively high reflectivity FBGs which can guarantee enough light power received by the photo-detector.
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
FBG wavelength demodulation based on a radio frequency optical true time delay method.
Wang, Jin; Zhu, Wanshan; Ma, Chenyuan; Xu, Tong
2018-06-01
A new fiber Bragg grating (FBG) wavelength shift demodulation method based on optical true time delay microwave phase detection is proposed. We used a microwave photonic link (MPL) to transport a radio frequency (RF) signal over a dispersion compensation fiber (DCF). The wavelength shift of the FBG will cause the time delay change of the optical carrier that propagates in an optical fiber with chromatic dispersion, which will result in the variation of the RF signal phase. A long DCF was adopted to enlarge the RF signal phase variation. An IQ mixer was used to measure the RF phase variation of the RF signal propagating in the MPL, and the wavelength shift of the FBG can be obtained by the measured RF signal phase variation. The experimental results showed that the wavelength shift measurement resolution is 2 pm when the group velocity dispersion of the DCF is 79.5 ps/nm and the frequency of the RF signal is 18 GHz. The demodulation time is as short as 0.1 ms. The measurement resolution can be improved simply by using a higher frequency of the RF signal and a longer DCF or larger chromatic dispersion value of the DCF.
A reconfigurable multicarrier demodulator architecture
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Jamali, M. M.
1991-01-01
An architecture based on parallel and pipline design approaches has been developed for the Frequency Division Multiple Access/Time Domain Multiplexed (FDMA/TDM) conversion system. The architecture has two main modules namely the transmultiplexer and the demodulator. The transmultiplexer has two pipelined modules. These are the shared multiplexed polyphase filter and the Fast Fourier Transform (FFT). The demodulator consists of carrier, clock, and data recovery modules which are interactive. Progress on the design of the MultiCarrier Demodulator (MCD) using commercially available chips and Application Specific Integrated Circuits (ASIC) and simulation studies using Viewlogic software will be presented at the conference.
Expansion of linear range of Pound-Drever-Hall signal.
Miyoki, Shinji; Telada, Souich; Uchiyama, Takashi
2010-10-01
We propose new solutions for expanding the linear signal range between the laser frequency deviation (or mirror position) and the voltage signal derived by the Pound-Drever-Hall (PDH) method for optical Fabry-Perot cavity resonance control. One solution is to perform not in-phase demodulation but near-Q-phase demodulation. Another solution is to take a suitable combination of signals demodulated by odd-harmonic modulation frequencies in the in phase. Although the PDH signal sensitivity will be diminished, the PDH signal linear range can be extended. From a practical standpoint, it is desirable that a sideband frequency for the PDH method is near the FP cavity resonance.
NASA Astrophysics Data System (ADS)
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan; Zhao, Bofu; Xue, Lei; Mei, Yunqiao; Wu, Zhenhai
2013-12-01
We present an effective method to compensate the spatial-frequency nonlinearity for polarized low-coherence interferometer with location-dependent dispersion element. Through the use of location-dependent dispersive characteristics, the method establishes the exact relationship between wave number and discrete Fourier transform (DFT) serial number. The jump errors in traditional absolute phase algorithm are also avoided with nonlinearity compensation. We carried out experiments with an optical fiber Fabry-Perot (F-P) pressure sensing system to verify the effectiveness. The demodulated error is less than 0.139kPa in the range of 170kPa when using our nonlinearity compensation process in the demodulation.
Ruschke, Stefan; Eggers, Holger; Meineke, Jakob; Rummeny, Ernst J.; Karampinos, Dimitrios C.
2018-01-01
Purpose To improve the robustness of existing chemical shift encoding‐based water–fat separation methods by incorporating a priori information of the magnetic field distortions in complex‐based water–fat separation. Methods Four major field contributions are considered: inhomogeneities of the scanner magnet, the shim field, an object‐based field map estimate, and a residual field. The former two are completely determined by spherical harmonic expansion coefficients directly available from the magnetic resonance (MR) scanner. The object‐based field map is forward simulated from air–tissue interfaces inside the field of view (FOV). The missing residual field originates from the object outside the FOV and is investigated by magnetic field simulations on a numerical whole body phantom. In vivo the spatially linear first‐order component of the residual field is estimated by measuring echo misalignments after demodulation of other field contributions resulting in a linear residual field. Gradient echo datasets of the cervical and the ankle region without and with shimming were acquired, where all four contributions were incorporated in the water–fat separation with two algorithms from the ISMRM water–fat toolbox and compared to water–fat separation with less incorporated field contributions. Results Incorporating all four field contributions as demodulation steps resulted in reduced temporal and spatial phase wraps leading to almost swap‐free water–fat separation results in all datasets. Conclusion Demodulating estimates of major field contributions reduces the phase evolution to be driven by only small differences in local tissue susceptibility, which supports the field smoothness assumption of existing water–fat separation techniques. PMID:29424458
Analysis of the tunable asymmetric fiber F-P cavity for fiber strain sensor edge-filter demodulation
NASA Astrophysics Data System (ADS)
Chen, Haotao; Liang, Youcheng
2014-12-01
An asymmetric fiber (Fabry-Pérot, F-P) interferometric cavity with the good linearity and wide dynamic range was successfully designed based on the optical thin film characteristic matrix theory; by adjusting the material of two different thin metallic layers, the asymmetric fiber F-P interferometric cavity was fabricated by depositing the multi-layer thin films on the optical fiber's end face. The asymmetric F-P cavity has the extensive potential application. In this paper, the demodulation method for the wavelength shift of the fiber Bragg grating (FBG) sensor based on the F-P cavity is demonstrated, and a theoretical formula is obtained. And the experimental results coincide well with the computational results obtained from the theoretical model.
Li, Yi; Qian, Li; Zhou, Ciming; Fan, Dian; Xu, Qiannan; Pang, Yandong; Chen, Xi; Tang, Jianguan
2018-01-12
Multi-point vibration sensing at the low frequency range of 0.5-100 Hz is of vital importance for applications such as seismic monitoring and underwater acoustic imaging. Location-resolved multi-point sensing using a single fiber and a single demodulation system can greatly reduce system deployment and maintenance costs. We propose and demonstrate the demodulation of a fiber-optic system consisting of 500 identical ultra-weak Fiber Bragg gratings (uwFBGs), capable of measuring the amplitude, frequency and phase of acoustic signals from 499 sensing fibers covering a total range of 2.5 km. For demonstration purposes, we arbitrarily chose six consecutive sensors and studied their performance in detail. Using a passive demodulation method, we interrogated the six sensors simultaneously, and achieved a high signal-to-noise ratio of 22.1 dB, excellent linearity, phase sensitivity of around 0.024 rad/Pa, and a dynamic range of about 38 dB. We demonstrated a frequency response flatness of <1.2 dB in the range of 0.5-100 Hz. Compared to the prior state-of-the-art demonstration using a similar method, we have increased the sensing range from 1 km to 2.5 km, and increased the frequency range from 0.4 octaves to 7.6 octaves, in addition to achieving sensing in the very challenging low-frequency range of 0.5-100 Hz.
NASA Astrophysics Data System (ADS)
Wang, Dai-Hua; Jia, Ping-Gang
2013-05-01
The principle of a fiber optic Fabry-Perot (F-P) accelerometer (FOFPA) system using the laser emission frequency modulated phase generated carrier (FMPGC) demodulation scheme is first described and experimentally demonstrated. The F-P cavity, which is constituted by placing the end face of a gradient-index lens in parallel with the reflector on the inertial mass, directly translates the inertial mass's displacement generated by the measured acceleration into phase shifts of the interference output from the F-P cavity. An FMPGC demodulation scheme based on the arctangent (Arctan) algorithm is adapted to demodulate the phase shifts. The sensing model for the FOFPA system using the FMPGC-Arctan demodulation scheme is established and the sensing characteristics are theoretically analyzed. On these bases, the FOFPA is designed and fabricated and a prototyping system is built and tested. The results indicate that: (1) the nonlinearity of the FOFPA system using the FMPGC-Arctan demodulation scheme is less than 0.58%, (2) the resonant frequency, on-axial sensitivity, and resolution are 393 Hz, 13.11 rad/g, and 450 μ, respectively, and (3) the maximum deviation of the phase sensitivity of the FOFPA within the temperature range of 30 to 80°C is 0.49 dB re 1 rad/g.
Demodulation of messages received with low signal to noise ratio
NASA Astrophysics Data System (ADS)
Marguinaud, A.; Quignon, T.; Romann, B.
The implementation of this all-digital demodulator is derived from maximum likelihood considerations applied to an analytical representation of the received signal. Traditional adapted filters and phase lock loops are replaced by minimum variance estimators and hypothesis tests. These statistical tests become very simple when working on phase signal. These methods, combined with rigorous control data representation allow significant computation savings as compared to conventional realizations. Nominal operation has been verified down to energetic signal over noise of -3 dB upon a QPSK demodulator.
NASA Astrophysics Data System (ADS)
Hao, Zhenhua; Cui, Ziqiang; Yue, Shihong; Wang, Huaxiang
2018-06-01
As an important means in electrical impedance tomography (EIT), multi-frequency phase-sensitive demodulation (PSD) can be viewed as a matched filter for measurement signals and as an optimal linear filter in the case of Gaussian-type noise. However, the additive noise usually possesses impulsive noise characteristics, so it is a challenging task to reduce the impulsive noise in multi-frequency PSD effectively. In this paper, an approach for impulsive noise reduction in multi-frequency PSD of EIT is presented. Instead of linear filters, a singular value decomposition filter is employed as the pre-stage filtering module prior to PSD, which has advantages of zero phase shift, little distortion, and a high signal-to-noise ratio (SNR) in digital signal processing. Simulation and experimental results demonstrated that the proposed method can effectively eliminate the influence of impulsive noise in multi-frequency PSD, and it was capable of achieving a higher SNR and smaller demodulation error.
Self-adaptive demodulation for polarization extinction ratio in distributed polarization coupling.
Zhang, Hongxia; Ren, Yaguang; Liu, Tiegen; Jia, Dagong; Zhang, Yimo
2013-06-20
A self-adaptive method for distributed polarization extinction ratio (PER) demodulation is demonstrated. It is characterized by dynamic PER threshold coupling intensity (TCI) and nonuniform PER iteration step length (ISL). Based on the preset PER calculation accuracy and original distribution coupling intensity, TCI and ISL can be made self-adaptive to determine contributing coupling points inside the polarizing devices. Distributed PER is calculated by accumulating those coupling points automatically and selectively. Two different kinds of polarization-maintaining fibers are tested, and PERs are obtained after merely 3-5 iterations using the proposed method. Comparison experiments with Thorlabs commercial instrument are also conducted, and results show high consistency. In addition, the optimum preset PER calculation accuracy of 0.05 dB is obtained through many repeated experiments.
The demodulated band transform
Kovach, Christopher K.; Gander, Phillip E.
2016-01-01
Background Windowed Fourier decompositions (WFD) are widely used in measuring stationary and non-stationary spectral phenomena and in describing pairwise relationships among multiple signals. Although a variety of WFDs see frequent application in electrophysiological research, including the short-time Fourier transform, continuous wavelets, band-pass filtering and multitaper-based approaches, each carries certain drawbacks related to computational efficiency and spectral leakage. This work surveys the advantages of a WFD not previously applied in electrophysiological settings. New Methods A computationally efficient form of complex demodulation, the demodulated band transform (DBT), is described. Results DBT is shown to provide an efficient approach to spectral estimation with minimal susceptibility to spectral leakage. In addition, it lends itself well to adaptive filtering of non-stationary narrowband noise. Comparison with existing methods A detailed comparison with alternative WFDs is offered, with an emphasis on the relationship between DBT and Thomson's multitaper. DBT is shown to perform favorably in combining computational efficiency with minimal introduction of spectral leakage. Conclusion DBT is ideally suited to efficient estimation of both stationary and non-stationary spectral and cross-spectral statistics with minimal susceptibility to spectral leakage. These qualities are broadly desirable in many settings. PMID:26711370
Direct demodulation method for heavy atom position determination in protein crystallography
NASA Astrophysics Data System (ADS)
Zhou, Liang; Liu, Zhong-Chuan; Liu, Peng; Dong, Yu-Hui
2013-01-01
The first step of phasing in any de novo protein structure determination using isomorphous replacement (IR) or anomalous scattering (AD) experiments is to find heavy atom positions. Traditionally, heavy atom positions can be solved by inspecting the difference Patterson maps. Due to the weak signals in isomorphous or anomalous differences and the noisy background in the Patterson map, the search for heavy atoms may become difficult. Here, the direct demodulation (DD) method is applied to the difference Patterson maps to reduce the noisy backgrounds and sharpen the signal peaks. The real space Patterson search by using these optimized maps can locate the heavy atom positions more accurately. It is anticipated that the direct demodulation method can assist in heavy atom position determination and facilitate the de novo structure determination of proteins.
Mean phase predictor for maximum a posteriori demodulator
NASA Technical Reports Server (NTRS)
Altes, Richard A. (Inventor)
1996-01-01
A system and method for optimal maximum a posteriori (MAP) demodulation using a novel mean phase predictor. The mean phase predictor conducts cumulative averaging over multiple blocks of phase samples to provide accurate prior mean phases, to be input into a MAP phase estimator.
An FPGA-based demodulation system for fiber Bragg grating sensing
NASA Astrophysics Data System (ADS)
Li, Yongqian; He, Haitao; Yao, Guozhen
2010-11-01
This paper introduces the principle of fiber Bragg grating (FBG) sensor, designs and realizes a compact wavelength demodulation system for FBG sensing using a Fabry-Perot (F-P) filter. FPGA is adopted as a main controller to control a D/A converter to produce a sawtooth wave for driving the F-P filter, and to design the data acquisition circuit for collecting the output signals of photoelectric detector. The collected data is processed after transmitting to PC through the data transmission circuit, and then the demodulation of FBG wavelength is completed finally. This compact FBG wavelength demodulation system is expected to have wide applications in on-line monitoring of electric power equipment and large structures.
High Sensitivity Detection of Broadband Acoustic Vibration Using Optical Demodulation Method
NASA Astrophysics Data System (ADS)
Zhang, Zhen
Measuring the high frequency acoustic vibrations represents the fundamental interest in revealing the intrinsic dynamic characteristic of board range of systems, such as the growth of the fetus, blood flow in human palms, and vibrations of carbon nanotube. However, the acoustic wave detection capability is limited by the detection bandwidth and sensitivity of the commonly used piezoelectric based ultrasound detectors. To overcome these limitations, this thesis focuses on exploring the optical demodulation method for highly sensitive detection of broadband acoustic vibration. First, a transparent optical ultrasonic detector has been developed using micro-ring resonator (MRR) made of soft polymeric materials. It outperforms the traditional piezoelectric detectors with broader detection bandwidth, miniaturized size and wide angular sensitivity. Its ease of integration into photoacoustic microscopy system has resulted in the great improvement of the imaging resolution. A theoretic framework has been developed to establish the quantitative understanding of its unique distance and angular dependent detection characteristics and was subsequently validated experimentally. The developed theoretic framework provides a guideline to fully accounts for the trade-offs between axial and lateral resolution, working distance, and the field of view in developing optimal imaging performance for a wide range of biological and clinical applications. MRR-based ultrasonic detector is further integrated into confocal fluorescence microscopy to realize the simultaneous imaging of fluorescence and optical absorption of retinal pigment epithelium, achieving multi-contrast imaging at sub-cellular level. The needs to resolve the fine details of the biological specimen with the resolution beyond the diffraction limit further motivate the development of optical demodulated ultrasonic detection method based on near-field scanning optical microscopy (NSOM). The nano-focusing probe was developed for adiabatic focusing of surface plasmon polaritons to the probe apex with high energy efficiency and the suppression of the background noise was accomplished through the implementation of the harmonic demodulation technique. Collectively, this system is capable of delivering intense near-field illumination source while effectively suppressing the background signal due to the far-field scattering and thus, allows for quantitative mapping of local evanescent field with enhanced contrast and improved resolutions. The performance of the developed NSOM system has been validated through the experimental measurements of the surface plasmon polariton mode. This new NSOM system enables optical demodulated ultrasound detection at nanoscale spatial resolution. Using it to detect the ultrasound signal within the acoustic near-field has led to the successful experimental demonstration of the sub-surface photoacoustic imaging of buried objects with sub-diffraction-limited resolution and high sensitivity. Such a new ultrasound detection method holds promising potential for super-resolution ultrasound imaging.
On optimal soft-decision demodulation. [in digital communication system
NASA Technical Reports Server (NTRS)
Lee, L.-N.
1976-01-01
A necessary condition is derived for optimal J-ary coherent demodulation of M-ary (M greater than 2) signals. Optimality is defined as maximality of the symmetric cutoff rate of the resulting discrete memoryless channel. Using a counterexample, it is shown that the condition derived is generally not sufficient for optimality. This condition is employed as the basis for an iterative optimization method to find the optimal demodulator decision regions from an initial 'good guess'. In general, these regions are found to be bounded by hyperplanes in likelihood space; the corresponding regions in signal space are found to have hyperplane asymptotes for the important case of additive white Gaussian noise. Some examples are presented, showing that the regions in signal space bounded by these asymptotic hyperplanes define demodulator decision regions that are virtually optimal.
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Chu, Fulei; Zuo, Ming J.
2011-03-01
Energy separation algorithm is good at tracking instantaneous changes in frequency and amplitude of modulated signals, but it is subject to the constraints of mono-component and narrow band. In most cases, time-varying modulated vibration signals of machinery consist of multiple components, and have so complicated instantaneous frequency trajectories on time-frequency plane that they overlap in frequency domain. For such signals, conventional filters fail to obtain mono-components of narrow band, and their rectangular decomposition of time-frequency plane may split instantaneous frequency trajectories thus resulting in information loss. Regarding the advantage of generalized demodulation method in decomposing multi-component signals into mono-components, an iterative generalized demodulation method is used as a preprocessing tool to separate signals into mono-components, so as to satisfy the requirements by energy separation algorithm. By this improvement, energy separation algorithm can be generalized to a broad range of signals, as long as the instantaneous frequency trajectories of signal components do not intersect on time-frequency plane. Due to the good adaptability of energy separation algorithm to instantaneous changes in signals and the mono-component decomposition nature of generalized demodulation, the derived time-frequency energy distribution has fine resolution and is free from cross term interferences. The good performance of the proposed time-frequency analysis is illustrated by analyses of a simulated signal and the on-site recorded nonstationary vibration signal of a hydroturbine rotor during a shut-down transient process, showing that it has potential to analyze time-varying modulated signals of multi-components.
Senroy, Nilanjan [New Delhi, IN; Suryanarayanan, Siddharth [Littleton, CO
2011-03-15
A computer-implemented method of signal processing is provided. The method includes generating one or more masking signals based upon a computed Fourier transform of a received signal. The method further includes determining one or more intrinsic mode functions (IMFs) of the received signal by performing a masking-signal-based empirical mode decomposition (EMD) using the at least one masking signal.
NASA Astrophysics Data System (ADS)
Kirikera, G. R.; Balogun, O.; Krishnaswamy, S.
2008-02-01
A network of Fiber-Bragg Grating (FBG) sensors is developed as part of a Structural Health Monitoring system to identify impact damage. The sensor signals are adaptively demodulated using two-wave mixing (TWM) technology. The signals from multiple FBG sensors are multiplexed into a single TWM demodulator. The FBG sensor network is mounted on a plate, and the structure is subjected to impacts generated by dropping small ball bearings. Impact locations are identified based on time frequency analysis.
A digitalized silicon microgyroscope based on embedded FPGA.
Xia, Dunzhu; Yu, Cheng; Wang, Yuliang
2012-09-27
This paper presents a novel digital miniaturization method for a prototype silicon micro-gyroscope (SMG) with the symmetrical and decoupled structure. The schematic blocks of the overall system consist of high precision analog front-end interface, high-speed 18-bit analog to digital convertor, a high-performance core Field Programmable Gate Array (FPGA) chip and other peripherals such as high-speed serial ports for transmitting data. In drive mode, the closed-loop drive circuit are implemented by automatic gain control (AGC) loop and software phase-locked loop (SPLL) based on the Coordinated Rotation Digital Computer (CORDIC) algorithm. Meanwhile, the sense demodulation module based on varying step least mean square demodulation (LMSD) are addressed in detail. All kinds of algorithms are simulated by Simulink and DSPbuilder tools, which is in good agreement with the theoretical design. The experimental results have fully demonstrated the stability and flexibility of the system.
A Digitalized Silicon Microgyroscope Based on Embedded FPGA
Xia, Dunzhu; Yu, Cheng; Wang, Yuliang
2012-01-01
This paper presents a novel digital miniaturization method for a prototype silicon micro-gyroscope (SMG) with the symmetrical and decoupled structure. The schematic blocks of the overall system consist of high precision analog front-end interface, high-speed 18-bit analog to digital convertor, a high-performance core Field Programmable Gate Array (FPGA) chip and other peripherals such as high-speed serial ports for transmitting data. In drive mode, the closed-loop drive circuit are implemented by automatic gain control (AGC) loop and software phase-locked loop (SPLL) based on the Coordinated Rotation Digital Computer (CORDIC) algorithm. Meanwhile, the sense demodulation module based on varying step least mean square demodulation (LMSD) are addressed in detail. All kinds of algorithms are simulated by Simulink and DSPbuilder tools, which is in good agreement with the theoretical design. The experimental results have fully demonstrated the stability and flexibility of the system. PMID:23201990
Qi, Liang; Zhao, Chun-Liu; Kang, Juan; Jin, Yongxing; Wang, Jianfeng; Ye, Manping; Jin, Shangzhong
2013-07-01
A solution refractive index (SRI) and temperature simultaneous measurement sensor with intensity-demodulation system based on matching grating method were demonstrated. Long period grating written in a photonic crystal fiber (LPG-PCF), provides temperature stable and wavelength dependent optical intensity transmission. The reflective peaks of two fiber Bragg gratings (FBGs), one of which is etched then sensitive to both SRI and temperature, another (FBG2) is only sensitive to temperature, were located in the same linear range of the LPG-PCF's transmission spectrum. An identical FBG with FBG2 was chosen as a matching FBG. When environments (SRI and temperature) change, the wavelength shifts of the FBGs are translated effectively to the reflection intensity changes. By monitoring output lights of unmatching and matching paths, the SRI and temperature were deduced by a signal processing unit. Experimental results show that the simultaneous refractive index and temperature measurement system work well. The proposed sensor system is compact and suitable for in situ applications at lower cost.
Vocal Tremor Analysis with the Vocal Demodulator.
ERIC Educational Resources Information Center
Winholtz, William S.; Ramig, Lorraine Olson
1992-01-01
This paper describes the Vocal Demodulator as a new device for analysis of vocal tremor. The Vocal Demodulator produces amplitude-demodulated and frequency-demodulated outputs and measures the frequency and level of low-frequency tremor components in sustained phonation. The paper describes quantification of the demodulation process, validation…
High-speed real-time heterodyne interferometry using software-defined radio.
Riobo, L M; Veiras, F E; Gonzalez, M G; Garea, M T; Sorichetti, P A
2018-01-10
This paper describes the design and performance of a phase demodulation scheme based on software-defined radio (SDR), applied in heterodyne interferometry. The phase retrieval is performed in real time by means of a low-cost SDR with a wideband optoelectronic front-end. Compared to other demodulation schemes, the system is quite simpler, versatile, and of lower cost. The performance of the demodulator is demonstrated by measuring the displacement per volt of a thin-film polymeric piezoelectric transducer based on polyvinylidene fluoride for ultrasonic applications. We measured displacements between 3.5 pm and 122 pm with 7% relative uncertainty, in the frequency range from 20 kHz to 1 MHz.
A Single Chip VLSI Implementation of a QPSK/SQPSK Demodulator for a VSAT Receiver Station
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; King, Brent
1995-01-01
This thesis presents a VLSI implementation of a QPSK/SQPSK demodulator. It is designed to be employed in a VSAT earth station that utilizes the FDMA/TDM link. A single chip architecture is used to enable this chip to be easily employed in the VSAT system. This demodulator contains lowpass filters, integrate and dump units, unique word detectors, a timing recovery unit, a phase recovery unit and a down conversion unit. The design stages start with a functional representation of the system by using the C programming language. Then it progresses into a register based representation using the VHDL language. The layout components are designed based on these VHDL models and simulated. Component generators are developed for the adder, multiplier, read-only memory and serial access memory in order to shorten the design time. These sub-components are then block routed to form the main components of the system. The main components are block routed to form the final demodulator.
High speed, high performance, portable, dual-channel, optical fiber Bragg grating (FBG) demodulator
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Yang, Shangming; Cui, Hong-Liang
2009-10-01
A high speed, high performance, portable, dual-channel, optical Fiber Bragg Grating demodulator based on fiber Fabry- Pérot tunable filter (FFP-FT) is reported in this paper. The high speed demodulation can be achieved to detect the dynamical loads of vehicles with speed of 15 mph. However, the drifts of piezoelectric transducer (PZT) in the cavity of FFP-FT dramatically degrade the stability of system. Two schemes are implemented to improve the stability of system. Firstly, a temperature control system is installed to effectively remove the thermal drifts of PZT. Secondly, a scheme of changing the bias voltage of FFP-FT to restrain non-thermal drifts has been realized at lab and will be further developed to an automatic control system based on microcontroller. Although this demodulator is originally used in Weight-In- Motion (WIM) sensing system, it can be extended into other aspects and the schemes presented in this paper will be useful in many applications.
Circuit for Communication over DC Power Line Using High Temperature Electronics
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)
2014-01-01
A high temperature communications circuit includes a power conductor for concurrently conducting electrical energy for powering circuit components and transmitting a modulated data signal, and a demodulator for demodulating the data signal and generating a serial bit stream based on the data signal. The demodulator includes an absolute value amplifier for conditionally inverting or conditionally passing a signal applied to the absolute value amplifier. The absolute value amplifier utilizes no diodes to control the conditional inversion or passing of the signal applied to the absolute value amplifier.
NASA Astrophysics Data System (ADS)
Korganbayev, Sanzhar; Orazayev, Yerzhan; Sovetov, Sultan; Bazyl, Ali; Schena, Emiliano; Massaroni, Carlo; Gassino, Riccardo; Vallan, Alberto; Perrone, Guido; Saccomandi, Paola; Arturo Caponero, Michele; Palumbo, Giovanna; Campopiano, Stefania; Iadicicco, Agostino; Tosi, Daniele
2018-03-01
In this paper, we describe a novel method for spatially distributed temperature measurement with Chirped Fiber Bragg Grating (CFBG) fiber-optic sensors. The proposed method determines the thermal profile in the CFBG region from demodulation of the CFBG optical spectrum. The method is based on an iterative optimization that aims at minimizing the mismatch between the measured CFBG spectrum and a CFBG model based on coupled-mode theory (CMT), perturbed by a temperature gradient. In the demodulation part, we simulate different temperature distribution patterns with Monte-Carlo approach on simulated CFBG spectra. Afterwards, we obtain cost function that minimizes difference between measured and simulated spectra, and results in final temperature profile. Experiments and simulations have been carried out first with a linear gradient, demonstrating a correct operation (error 2.9 °C); then, a setup has been arranged to measure the temperature pattern on a 5-cm long section exposed to medical laser thermal ablation. Overall, the proposed method can operate as a real-time detection technique for thermal gradients over 1.5-5 cm regions, and turns as a key asset for the estimation of thermal gradients at the micro-scale in biomedical applications.
NASA Astrophysics Data System (ADS)
Wang, Wei; Hu, Zhengliang; Ma, Mingxiang; Lin, Huizu; Hu, Yongming
2014-03-01
A fiber Bragg grating based (FBG-based) Fabry-Perot (FP) sensor system utilizing multiple reflections between two strong FBGs with different reflectiveties to enhance the sensitivity is proposed. The different interference signals are obtained by using different multiple-path-matched Michelson interferometers (MIs). The system is lighted by the ultra-narrow line width erbium-doped fiber ring laser and the signal is demodulated by phase-generated carrier (PGC) scheme. The method to choose the optimal parameters of the FBG-based asymmetric FP sensor and the different matching MIs is analyzed. The experimental results show that each matching MI can steadily enhance the sensitivity of the demodulated signal in the bandwidth of 80-8000 Hz. The sensitivity of the system can be enhanced about 19.1 dB when the light reflects nine times between the two FBGs. Further more, this system can be used to extend the dynamic range and the effective working bandwidth and so on.
High-sensitivity fiber optic acoustic sensors
NASA Astrophysics Data System (ADS)
Lu, Ping; Liu, Deming; Liao, Hao
2016-11-01
Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.
Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing.
Patorski, Krzysztof; Trusiak, Maciej; Tkaczyk, Tomasz
2014-04-21
We introduce a fast, simple, adaptive and experimentally robust method for reconstructing background-rejected optically-sectioned images using two-shot structured illumination microscopy. Our innovative data demodulation method needs two grid-illumination images mutually phase shifted by π (half a grid period) but precise phase displacement between two frames is not required. Upon frames subtraction the input pattern with increased grid modulation is obtained. The first demodulation stage comprises two-dimensional data processing based on the empirical mode decomposition for the object spatial frequency selection (noise reduction and bias term removal). The second stage consists in calculating high contrast image using the two-dimensional spiral Hilbert transform. Our algorithm effectiveness is compared with the results calculated for the same input data using structured-illumination (SIM) and HiLo microscopy methods. The input data were collected for studying highly scattering tissue samples in reflectance mode. Results of our approach compare very favorably with SIM and HiLo techniques.
Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm
NASA Astrophysics Data System (ADS)
Yu, Zhihua; Zhang, Qi; Zhang, Mingyu; Dai, Haolong; Zhang, Jingjing; Liu, Li; Zhang, Lijun; Jin, Xing; Wang, Gaifang; Qi, Guang
2018-05-01
A novel optical fiber-distributed vibration-sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase-generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson interferometry to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000 m sensing fiber and demodulated correctly. The spatial resolution is 10 m, and the noise level of the Φ-OTDR system we proposed is about 10-3 rad/\\surd {Hz}, and the signal-to-noise ratio is about 30.34 dB.
Zhang, Baolin; Tong, Xinglin; Hu, Pan; Guo, Qian; Zheng, Zhiyuan; Zhou, Chaoran
2016-12-26
Optical fiber Fabry-Perot (F-P) sensors have been used in various on-line monitoring of physical parameters such as acoustics, temperature and pressure. In this paper, a wavelet phase extracting demodulation algorithm for optical fiber F-P sensing is first proposed. In application of this demodulation algorithm, search range of scale factor is determined by estimated cavity length which is obtained by fast Fourier transform (FFT) algorithm. Phase information of each point on the optical interference spectrum can be directly extracted through the continuous complex wavelet transform without de-noising. And the cavity length of the optical fiber F-P sensor is calculated by the slope of fitting curve of the phase. Theorical analysis and experiment results show that this algorithm can greatly reduce the amount of computation and improve demodulation speed and accuracy.
NASA Astrophysics Data System (ADS)
Mathews, Sunish; Semenova, Yuliya; Rajan, Ginu; Farrell, Gerald
2009-05-01
A discretely tunable Surface-Stabilized Ferroelectric Liquid Crystal based Lyot Filter, with tuning speeds in the order of microseconds, is demonstrated experimentally as a channel dropper for the demodulation of multiple Fibre Bragg Grating sensors. The 3-stage Lyot Filter designed and experimentally verified can be used together with the high-speed ratiometric wavelength measurement system employing a fibre bend loss edge filter. Such systems can be used for the demodulation of distributed Fibre Bragg Grating sensors employed in applications such as structural monitoring, industrial sensing and haptic telerobotic surgical systems.
Multidimensional signal modulation and/or demodulation for data communications
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2008-03-04
Systems and methods are described for multidimensional signal modulation and/or demodulation for data communications. A method includes modulating a carrier signal in a first domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; modulating the carrier signal in a second domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; and modulating the carrier signal in a third domain selected from the group consisting of phase, frequency, amplitude, polarization and spread.
Tunable-optical-filter-based white-light interferometry for sensing.
Yu, Bing; Wang, Anbo; Pickrell, Gary; Xu, Juncheng
2005-06-15
We describe tunable-optical-filter-based white-light interferometry for sensor interrogation. By introducing a tunable optical filter into a white-light interferometry system, one can interrogate an interferometer with either quadrature demodulation or spectral-domain detection at low cost. To demonstrate the feasibility of effectively demodulating various types of interferometric sensor, experiments have been performed using an extrinsic Fabry-Perot tunable filter to interrogate two extrinsic Fabry-Perot interferometric temperature sensors and a diaphragm-based pressure sensor.
NASA Astrophysics Data System (ADS)
Wei, Heming; Krishnaswamy, Sridhar
2017-04-01
Damages such as cracking or impact loading in civil, aerospace, and mechanical structures generate transient ultrasonic waves, which can be used to reveal the structural health condition. Hence, it is necessary to find a practical tool based on ultrasonic detection for structural health monitoring. In this work, we describe an intelligent fiber-optic ultrasonic sensing system, which is designed based on a fiber Bragg grating (FBG) and a reflective semiconductor optical amplifier (RSOA) used as an adaptive source, and demodulated by an adaptive photorefractive two wave mixing (TWM) technique without any active compensation of quasi-static strains and temperature. As the wavelength of the FBG shifts due to the excited ultrasonic waves, the wavelength of the optical output from the fiber cavity laser shifts accordingly. With regard to the shift of the FBG reflective spectrum, the adaptivity of the RSOA-based laser is analyzed theoretically and verified by the TWM demodulator. Additionally, due to the response time of the photorefractive crystal, the TWM demodulator is insensitive to low frequency-FBG spectral shift. The results demonstrate that this proposed FBG ultrasonic sensing system has high sensitivity and can respond the ultrasonic waves into the megahertz frequency range, which shows a potential for acoustic emission detection in practical applications.
NASA Astrophysics Data System (ADS)
Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos
2016-08-01
In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.
Mitigation of time-varying distortions in Nyquist-WDM systems using machine learning
NASA Astrophysics Data System (ADS)
Granada Torres, Jhon J.; Varughese, Siddharth; Thomas, Varghese A.; Chiuchiarelli, Andrea; Ralph, Stephen E.; Cárdenas Soto, Ana M.; Guerrero González, Neil
2017-11-01
We propose a machine learning-based nonsymmetrical demodulation technique relying on clustering to mitigate time-varying distortions derived from several impairments such as IQ imbalance, bias drift, phase noise and interchannel interference. Experimental results show that those impairments cause centroid movements in the received constellations seen in time-windows of 10k symbols in controlled scenarios. In our demodulation technique, the k-means algorithm iteratively identifies the cluster centroids in the constellation of the received symbols in short time windows by means of the optimization of decision thresholds for a minimum BER. We experimentally verified the effectiveness of this computationally efficient technique in multicarrier 16QAM Nyquist-WDM systems over 270 km links. Our nonsymmetrical demodulation technique outperforms the conventional QAM demodulation technique, reducing the OSNR requirement up to ∼0.8 dB at a BER of 1 × 10-2 for signals affected by interchannel interference.
Receiver Statistics for Cognitive Radios in Dynamic Spectrum Access Networks
2012-02-28
SNR) are employed by many protocols and processes in direct-sequence ( DS ) spread-spectrum packet radio networks, including soft-decision decoding...adaptive modulation protocols, and power adjustment protocols. For DS spread spectrum, we have introduced and evaluated SNR estimators that employ...obtained during demodulation in a binary CDMA receiver. We investigated several methods to apply the proposed metric to the demodulator’s soft-decision
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2002-01-01
The work presented here formulates the rigorous statistical basis for the correct estimation of communication link SNR of a BPSK, QPSK, and for that matter, any M-ary phase-modulated digital signal from what is known about its statistical behavior at the output of the receiver demodulator. Many methods to accomplish this have been proposed and implemented in the past but all of them are based on tacit and unwarranted assumptions and are thus defective. However, the basic idea is well founded, i.e., the signal at the output of a communications demodulator has convolved within it the prevailing SNR characteristic of the link. The acquisition of the SNR characteristic is of the utmost importance to a communications system that must remain reliable in adverse propagation conditions. This work provides a correct and consistent mathematical basis for the proper statistical 'deconvolution' of the output of a demodulator to yield a measure of the SNR. The use of such techniques will alleviate the need and expense for a separate propagation link to assess the propagation conditions prevailing on the communications link. Furthermore, they are applicable for every situation involving the digital transmission of data over planetary and space communications links.
Performance analysis and enhancement for visible light communication using CMOS sensors
NASA Astrophysics Data System (ADS)
Guan, Weipeng; Wu, Yuxiang; Xie, Canyu; Fang, Liangtao; Liu, Xiaowei; Chen, Yingcong
2018-03-01
Complementary Metal-Oxide-Semiconductor (CMOS) sensors are widely used in mobile-phone and cameras. Hence, it is attractive if these camera can be used as the receivers of visible light communication (VLC). Using the rolling shutter mechanism can increase the data rate of VLC based on CMOS camera, and different techniques have been proposed to improve the demodulation of the rolling shutter mechanism. However, these techniques are too complexity. In this work, we demonstrate and analyze the performance of the VLC link using CMOS camera for different LED luminaires for the first time in our knowledge. Experimental evaluation to compare their bit-error-rate (BER) performances and demodulation are also performed, and it can be summarized that just need to change the LED luminaire with more uniformity light output, the blooming effect would not exist; which not only can reduce the complexity of the demodulation but also enhance the communication quality. In addition, we propose and demonstrate to use contrast limited adaptive histogram equalization to extend the transmission distance and mitigate the influence of the background noise. And the experimental results show that the BER can be decreased by an order of magnitude by using the proposed method.
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Fan, Lingling; Wang, Pengfei; Park, Seong-Wook
2012-06-01
A National Instruments (NI) DAQ card PCI 5105 is installed in a high-speed demodulation system based on Fiber Fabry-Pérot Tunable Filter. The instability of the spectra of Fiber Bragg Grating sensors caused by intrinsic drifts of FFP-TF needs an appropriate, flexible trigger. However, the driver of the DAQ card in the current development environment does not provide the functions of analog trigger but digital trigger type. Moreover, the high level of the trigger signal from the tuning voltage of FFP-TF is larger than the maximum input overload voltage of PCI 5105 card. To resolve this incompatibility, a novel converter to change an analog trigger signal into a digital trigger signal has been reported previously. However, the obvious delay time between input and output signals limits the function of demodulation system. Accordingly, we report an improved low-cost, small-size converter with an adjustable delay time. This new scheme can decline the delay time to or close to zero when the frequency of trigger signal is less than 3,000 Hz. This method might be employed to resolve similar problems or to be applied in semiconductor integrated circuits.
Hopkins, David James [Livermore, CA
2008-05-13
A control system and method for actively reducing vibration in a spindle housing caused by unbalance forces on a rotating spindle, by measuring the force-induced spindle-housing motion, determining control signals based on synchronous demodulation, and provide compensation for the measured displacement to cancel or otherwise reduce or attenuate the vibration. In particular, the synchronous demodulation technique is performed to recover a measured spindle housing displacement signal related only to the rotation of a machine tool spindle, and consequently rejects measured displacement not related to spindle motion or synchronous to a cycle of revolution. Furthermore, the controller actuates at least one voice-coil (VC) motor, to cancel the original force-induced motion, and adapts the magnitude of voice coil signal until this measured displacement signal is brought to a null. In order to adjust the signal to a null, it must have the correct phase relative to the spindle angle. The feedback phase signal is used to adjust a common (to both outputs) commutation offset register (offset relative to spindle encoder angle) to force the feedback phase signal output to a null. Once both of these feedback signals are null, the system is compensating properly for the spindle-induced motion.
Performance Optimization Design for a High-Speed Weak FBG Interrogation System Based on DFB Laser.
Yao, Yiqiang; Li, Zhengying; Wang, Yiming; Liu, Siqi; Dai, Yutang; Gong, Jianmin; Wang, Lixin
2017-06-22
A performance optimization design for a high-speed fiber Bragg grating (FBG) interrogation system based on a high-speed distributed feedback (DFB) swept laser is proposed. A time-division-multiplexing sensor network with identical weak FBGs is constituted to realize high-capacity sensing. In order to further improve the multiplexing capacity, a waveform repairing algorithm is designed to extend the dynamic demodulation range of FBG sensors. It is based on the fact that the spectrum of an FBG keeps stable over a long period of time. Compared with the pre-collected spectra, the distorted spectra waveform are identified and repaired. Experimental results show that all the identical weak FBGs are distinguished and demodulated at the speed of 100 kHz with a linearity of above 0.99, and the range of dynamic demodulation is extended by 40%.
Performance Optimization Design for a High-Speed Weak FBG Interrogation System Based on DFB Laser
Yao, Yiqiang; Li, Zhengying; Wang, Yiming; Liu, Siqi; Dai, Yutang; Gong, Jianmin; Wang, Lixin
2017-01-01
A performance optimization design for a high-speed fiber Bragg grating (FBG) interrogation system based on a high-speed distributed feedback (DFB) swept laser is proposed. A time-division-multiplexing sensor network with identical weak FBGs is constituted to realize high-capacity sensing. In order to further improve the multiplexing capacity, a waveform repairing algorithm is designed to extend the dynamic demodulation range of FBG sensors. It is based on the fact that the spectrum of an FBG keeps stable over a long period of time. Compared with the pre-collected spectra, the distorted spectra waveform are identified and repaired. Experimental results show that all the identical weak FBGs are distinguished and demodulated at the speed of 100 kHz with a linearity of above 0.99, and the range of dynamic demodulation is extended by 40%. PMID:28640187
NASA Astrophysics Data System (ADS)
Trusiak, M.; Patorski, K.; Tkaczyk, T.
2014-12-01
We propose a fast, simple and experimentally robust method for reconstructing background-rejected optically-sectioned microscopic images using two-shot structured illumination approach. Innovative data demodulation technique requires two grid-illumination images mutually phase shifted by π (half a grid period) but precise phase displacement value is not critical. Upon subtraction of the two frames the input pattern with increased grid modulation is computed. The proposed demodulation procedure comprises: (1) two-dimensional data processing based on the enhanced, fast empirical mode decomposition (EFEMD) method for the object spatial frequency selection (noise reduction and bias term removal), and (2) calculating high contrast optically-sectioned image using the two-dimensional spiral Hilbert transform (HS). The proposed algorithm effectiveness is compared with the results obtained for the same input data using conventional structured-illumination (SIM) and HiLo microscopy methods. The input data were collected for studying highly scattering tissue samples in reflectance mode. In comparison with the conventional three-frame SIM technique we need one frame less and no stringent requirement on the exact phase-shift between recorded frames is imposed. The HiLo algorithm outcome is strongly dependent on the set of parameters chosen manually by the operator (cut-off frequencies for low-pass and high-pass filtering and η parameter value for optically-sectioned image reconstruction) whereas the proposed method is parameter-free. Moreover very short processing time required to efficiently demodulate the input pattern predestines proposed method for real-time in-vivo studies. Current implementation completes full processing in 0.25s using medium class PC (Inter i7 2,1 GHz processor and 8 GB RAM). Simple modification employed to extract only first two BIMFs with fixed filter window size results in reducing the computing time to 0.11s (8 frames/s).
Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.
Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu
2018-03-10
This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.
Recovering Signals from Optical Fiber Interferometric Sensors
1991-06-01
GROUP SUB* GROUp Demodulation-, optical fiber, fi ber optic, sensors, passive -homodyne demodulation, symmetric demodul -ation, asymmetric demodulation...interferomeler without feedback control or modulation ofl th laser itself and without requiring the use of electronics withi -n the interferometer. One of...the 3x3 coupler permits Passive Homodyne Demodulation -of the phase-modulated signals provided by the interferometcr without feedback control or
Jiang, Junfeng; Wang, Shaohua; Liu, Tiegen; Liu, Kun; Yin, Jinde; Meng, Xiange; Zhang, Yimo; Wang, Shuang; Qin, Zunqi; Wu, Fan; Li, Dingjie
2012-07-30
A demodulation algorithm based on absolute phase recovery of a selected monochromatic frequency is proposed for optical fiber Fabry-Perot pressure sensing system. The algorithm uses Fourier transform to get the relative phase and intercept of the unwrapped phase-frequency linear fit curve to identify its interference-order, which are then used to recover the absolute phase. A simplified mathematical model of the polarized low-coherence interference fringes was established to illustrate the principle of the proposed algorithm. Phase unwrapping and the selection of monochromatic frequency were discussed in detail. Pressure measurement experiment was carried out to verify the effectiveness of the proposed algorithm. Results showed that the demodulation precision by our algorithm could reach up to 0.15kPa, which has been improved by 13 times comparing with phase slope based algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Qiao
2012-05-29
The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacitymore » factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a great potential to be adopted by the wind energy industry due to their almost no-cost, nonintrusive features. Although only validated for small direct-drive wind turbines without gearboxes, the proposed technologies are also applicable for CMFD of large-size wind turbines with and without gearboxes. However, additional investigations are recommended in order to apply the proposed technologies to those large-size wind turbines.« less
High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing
Hu, Chenyuan; Bai, Wei
2018-01-01
A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing. PMID:29495263
High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.
Hu, Chenyuan; Bai, Wei
2018-02-24
A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.
NASA Astrophysics Data System (ADS)
Zheng, Wanfu; Xie, Jianglei; Li, Yi; Xu, Ben; Kang, Juan; Shen, Changyu; Wang, Jianfeng; Jin, Yongxing; Liu, Honglin; Ni, Kai; Dong, Xinyong; Zhao, Chunliu; Jin, Shangzhong
In this study, a fiber in-line air-gap Fabry-Pérot interferometer (FPI) is fabricated by HF acid etching. For a low-cost and higher precise measurement, a demodulation system based on frequency modulated continuous wave (FMCW) technique is build up and demonstrated in this air-gap FPI. In temperature measurements, the temperature sensitivity is about 1.75 rad/°C by phase shift detection. We also test the long term performance of the system and the RMS error is about 0.04 rad, which corresponds to the temperature resolution of ~0.02 °C. It is much higher than the measurement resolution by using the traditional wavelength shift detection method. Our experiments show that the FMCW can provide a low-cost, high resolution and high speed interrogation solution to the fiber FPIs.
Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Yu, Qingxu; Zhou, Xinlei
2011-03-01
Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer (EFPI) have been extensively applied in various industrial and biomedical fields. In this paper, some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique, diaphragm-based EFPI sensors, and white light interference technology have been reviewed. Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced. Signal demodulation algorithms based on the cross correlation and mean square error (MSE) estimation have been proposed for retrieving the cavity length of EFPI. Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out. For downhole monitoring, an EFPI and a fiber Bragg grating (FBG) cascade multiplexing fiber-optic sensor system has been developed, which can operate in temperature 300 °C with a good long-term stability and extremely low temperature cross-sensitivity. Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection. Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.
Santos, J L; Jackson, D A
1991-08-01
A passive demodulation technique suitable for interferometric interrogation of short optical cavities is described. It is based on time multiplexing of two low-finesse Fabry-Perot interferometers subject to the same measurand and with a differential optical phase of pi/2 (modulo 2pi). Independently of the cavity length, two optical outputs in quadrature are generated, which permits signal reading free of fading. The concept is demonstrated for the measurement of vibration using a simple processing scheme.
Method of laser beam coding for control systems
NASA Astrophysics Data System (ADS)
Pałys, Tomasz; Arciuch, Artur; Walczak, Andrzej; Murawski, Krzysztof
2017-08-01
The article presents the method of encoding a laser beam for control systems. The experiments were performed using a red laser emitting source with a wavelength of λ = 650 nm and a power of P ≍ 3 mW. The aim of the study was to develop methods of modulation and demodulation of the laser beam. Results of research, in which we determined the effect of selected camera parameters, such as image resolution, number of frames per second on the result of demodulation of optical signal, is also shown in the paper. The experiments showed that the adopted coding method provides sufficient information encoded in a single laser beam (36 codes with the effectiveness of decoding at 99.9%).
Performance evaluation of a mobile satellite system modem using an ALE method
NASA Technical Reports Server (NTRS)
Ohsawa, Tomoki; Iwasaki, Motoya
1990-01-01
Experimental performance of a newly designed demodulation concept is presented. This concept applies an Adaptive Line Enhancer (ALE) to a carrier recovery circuit, which makes pull-in time significantly shorter in noisy and large carrier offset conditions. This new demodulation concept was actually developed as an INMARSAT standard-C modem, and was evaluated. On a performance evaluation, 50 symbol pull-in time is confirmed under 4 dB Eb/No condition.
NASA Technical Reports Server (NTRS)
Moore, Jason P. (Inventor)
2009-01-01
A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.
Pressure sensing of Fabry-Perot interferometer with a microchannel demodulated by a FBG
NASA Astrophysics Data System (ADS)
Yu, Yongqin; Chen, Xue; Huang, Quandong; Du, Chenlin; Ruan, Shuangchen
2015-07-01
A novel and compact fiber-probe pressure sensor was demonstrated based on micro Fabry-Perot interferometer (FPI). The device was fabricated by splicing both ends of a short section simplified hollow-core photonic crystal fiber (SHCPCF) with single mode fibers (SMFs), and then a micro channel was drilled by femtosecond laser micromachining in the SHC-PCF to significantly enhance the pressure sensitivity. The pressure sensing characteristics based on micro-FPI have been investigated by measuring the signals through the demodulation of phase since the external signal imposing on the interferometer will induce the phase change of interference signal. Then a FBG was cascaded to demodulate the signal. A micro FPI demonstrates a maximum pressure sensitivity of 32 dB/MPa, while a low temperature cross-sensitivity of 0.27 KPa/°C. Hence it may have potential for pressure applications in harsh environment.
Methodology and method and apparatus for signaling with capacity optimized constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2011-01-01
Communication systems having transmitter, includes a coder configured to receive user bits and output encoded bits at an expanded output encoded bit rate, a mapper configured to map encoded bits to symbols in a symbol constellation, a modulator configured to generate a signal for transmission via the communication channel using symbols generated by the mapper. In addition, the receiver includes a demodulator configured to demodulate the received signal via the communication channel, a demapper configured to estimate likelihoods from the demodulated signal, a decoder that is configured to estimate decoded bits from the likelihoods generated by the demapper. Furthermore, the symbol constellation is a capacity optimized geometrically spaced symbol constellation that provides a given capacity at a reduced signal-to-noise ratio compared to a signal constellation that maximizes d.sub.min.
The design and research of anti-color-noise chaos M-ary communication system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yongqing, E-mail: fuyongqing@hrbeu.edu.cn; Li, Xingyuan; Li, Yanan
Previously a novel chaos M-ary digital communication method based on spatiotemporal chaos Hamilton oscillator has been proposed. Without chaos synchronization circumstance, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-white-noise performance compared with traditional communication method. In this paper, the channel noise influence on chaotic modulation signals and the construction problem of anti-color-noise chaotic M-ary communication system are studied. The formula of zone partition demodulator’s boundary in additive white Gaussian noise is derived, besides, the problem about how to determine the boundary of zone partition demodulator in additive color noise is deeply studied; Then an approach on constructingmore » anti-color-noise chaos M-ary communication system is proposed, in which a pre-distortion filter is added after the chaos baseband modulator in the transmitter and whitening filter is added before zone partition demodulator in the receiver. Finally, the chaos M-ary communication system based on Hamilton oscillator is constructed and simulated in different channel noise. The result shows that the proposed method in this paper can improve the anti-color-noise performance of the whole communication system compared with the former system, and it has better anti-fading and resisting disturbance performance than Quadrature Phase Shift Keying system.« less
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-01-01
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method. PMID:25923938
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-04-27
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs' reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.
NASA Astrophysics Data System (ADS)
Firla, Marcin; Li, Zhong-Yang; Martin, Nadine; Pachaud, Christian; Barszcz, Tomasz
2016-12-01
This paper proposes advanced signal-processing techniques to improve condition monitoring of operating machines. The proposed methods use the results of a blind spectrum interpretation that includes harmonic and sideband series detection. The first contribution of this study is an algorithm for automatic association of harmonic and sideband series to characteristic fault frequencies according to a kinematic configuration. The approach proposed has the advantage of taking into account a possible slip of the rolling-element bearings. In the second part, we propose a full-band demodulation process from all sidebands that are relevant to the spectral estimation. To do so, a multi-rate filtering process in an iterative schema provides satisfying precision and stability over the targeted demodulation band, even for unsymmetrical and extremely narrow bands. After synchronous averaging, the filtered signal is demodulated for calculation of the amplitude and frequency modulation functions, and then any features that indicate faults. Finally, the proposed algorithms are validated on vibration signals measured on a test rig that was designed as part of the European Innovation Project 'KAStrion'. This rig simulates a wind turbine drive train at a smaller scale. The data show the robustness of the method for localizing and extracting a fault on the main bearing. The evolution of the proposed features is a good indicator of the fault severity.
Research on the output bit error rate of 2DPSK signal based on stochastic resonance theory
NASA Astrophysics Data System (ADS)
Yan, Daqin; Wang, Fuzhong; Wang, Shuo
2017-12-01
Binary differential phase-shift keying (2DPSK) signal is mainly used for high speed data transmission. However, the bit error rate of digital signal receiver is high in the case of wicked channel environment. In view of this situation, a novel method based on stochastic resonance (SR) is proposed, which is aimed to reduce the bit error rate of 2DPSK signal by coherent demodulation receiving. According to the theory of SR, a nonlinear receiver model is established, which is used to receive 2DPSK signal under small signal-to-noise ratio (SNR) circumstances (between -15 dB and 5 dB), and compared with the conventional demodulation method. The experimental results demonstrate that when the input SNR is in the range of -15 dB to 5 dB, the output bit error rate of nonlinear system model based on SR has a significant decline compared to the conventional model. It could reduce 86.15% when the input SNR equals -7 dB. Meanwhile, the peak value of the output signal spectrum is 4.25 times as that of the conventional model. Consequently, the output signal of the system is more likely to be detected and the accuracy can be greatly improved.
Spickermann, Gunnar; Friederich, Fabian; Roskos, Hartmut G; Bolívar, Peter Haring
2009-11-01
We present a 64x48 pixel 2D electro-optical terahertz (THz) imaging system using a photonic mixing device time-of-flight camera as an optical demodulating detector array. The combination of electro-optic detection with a time-of-flight camera increases sensitivity drastically, enabling the use of a nonamplified laser source for high-resolution real-time THz electro-optic imaging.
NASA Technical Reports Server (NTRS)
Omura, J. K.; Simon, M. K.
1982-01-01
A theory is presented for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the linear satellite channel. The underlying principle used is the development of receiver structures based on the maximum-likelihood decision rule. The application of the performance prediction tools, e.g., channel cutoff rate and bit error probability transfer function bounds to these modulation/demodulation techniques.
Demodulation Algorithms for the Ofdm Signals in the Time- and Frequency-Scattering Channels
NASA Astrophysics Data System (ADS)
Bochkov, G. N.; Gorokhov, K. V.; Kolobkov, A. V.
2016-06-01
We consider a method based on the generalized maximum-likelihood rule for solving the problem of reception of the signals with orthogonal frequency division multiplexing of their harmonic components (OFDM signals) in the time- and frequency-scattering channels. The coherent and incoherent demodulators effectively using the time scattering due to the fast fading of the signal are developed. Using computer simulation, we performed comparative analysis of the proposed algorithms and well-known signal-reception algorithms with equalizers. The proposed symbolby-symbol detector with decision feedback and restriction of the number of searched variants is shown to have the best bit-error-rate performance. It is shown that under conditions of the limited accuracy of estimating the communication-channel parameters, the incoherent OFDMsignal detectors with differential phase-shift keying can ensure a better bit-error-rate performance compared with the coherent OFDM-signal detectors with absolute phase-shift keying.
Simple interrogator for optical fiber-based white light Fabry-Perot interferometers.
Yu, Zhihao; Tian, Zhipeng; Wang, Anbo
2017-02-15
In this Letter, we present the design of a simple signal interrogator for optical fiber-based white light Fabry-Perot (F-P) interferometers. With the hardware being composed of only a flat fused silica wafer and a CCD camera, this interrogator translates the spectral interference into a spatial interference pattern, and then demodulates the F-P cavity length with the use of a relatively simple demodulation algorithm. The concept is demonstrated experimentally in a fiber optic sensor with a sapphire wafer as the F-P cavity.
Detection of fresh bruises in apples by structured-illumination reflectance imaging
NASA Astrophysics Data System (ADS)
Lu, Yuzhen; Li, Richard; Lu, Renfu
2016-05-01
Detection of fresh bruises in apples remains a challenging task due to the absence of visual symptoms and significant chemical alterations of fruit tissues during the initial stage after the fruit have been bruised. This paper reports on a new structured-illumination reflectance imaging (SIRI) technique for enhanced detection of fresh bruises in apples. Using a digital light projector engine, sinusoidally-modulated illumination at the spatial frequencies of 50, 100, 150 and 200 cycles/m was generated. A digital camera was then used to capture the reflectance images from `Gala' and `Jonagold' apples, immediately after they had been subjected to two levels of bruising by impact tests. A conventional three-phase demodulation (TPD) scheme was applied to the acquired images for obtaining the planar (direct component or DC) and amplitude (alternating component or AC) images. Bruises were identified in the amplitude images with varying image contrasts, depending on spatial frequency. The bruise visibility was further enhanced through post-processing of the amplitude images. Furthermore, three spiral phase transform (SPT)-based demodulation methods, using single and two images and two phase-shifted images, were proposed for obtaining AC images. Results showed that the demodulation methods greatly enhanced the contrast and spatial resolution of the AC images, making it feasible to detect the fresh bruises that, otherwise, could not be achieved by conventional imaging technique with planar or uniform illumination. The effectiveness of image enhancement, however, varied with spatial frequency. Both 2-image and 2-phase SPT methods achieved the performance similar to that by conventional TPD. SIRI technique has demonstrated the capability of detecting fresh bruises in apples, and it has the potential as a new imaging modality for enhancing food quality and safety detection.
Optical demodulation system for digitally encoded suspension array in fluoroimmunoassay
NASA Astrophysics Data System (ADS)
He, Qinghua; Li, Dongmei; He, Yonghong; Guan, Tian; Zhang, Yilong; Shen, Zhiyuan; Chen, Xuejing; Liu, Siyu; Lu, Bangrong; Ji, Yanhong
2017-09-01
A laser-induced breakdown spectroscopy and fluorescence spectroscopy-coupled optical system is reported to demodulate digitally encoded suspension array in fluoroimmunoassay. It takes advantage of the plasma emissions of assembled elemental materials to digitally decode the suspension array, providing a more stable and accurate recognition to target biomolecules. By separating the decoding procedure of suspension array and adsorption quantity calculation of biomolecules into two independent channels, the cross talk between decoding and label signals in traditional methods had been successfully avoided, which promoted the accuracy of both processes and realized more sensitive quantitative detection of target biomolecules. We carried a multiplexed detection of several types of anti-IgG to verify the quantitative analysis performance of the system. A limit of detection of 1.48×10-10 M was achieved, demonstrating the detection sensitivity of the optical demodulation system.
Shuttle Ku-band signal design study
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Braun, W. R.; Mckenzie, T. M.
1978-01-01
Carrier synchronization and data demodulation of Unbalanced Quadriphase Shift Keyed (UQPSK) Shuttle communications' signals by optimum and suboptimum methods are discussed. The problem of analyzing carrier reconstruction techniques for unbalanced QPSK signal formats is addressed. An evaluation of the demodulation approach of the Ku-Band Shuttle return link for UQPSK when the I-Q channel power ratio is large is carried out. The effects that Shuttle rocket motor plumes have on the RF communications are determined also. The effect of data asymmetry on bit error probability is discussed.
NASA Astrophysics Data System (ADS)
Mao, Xuefeng; Tian, Xiaoran; Zhou, Xinlei; Yu, Qingxu
2015-04-01
The characteristics of a fiber-optic Fabry-Perot interferometric acoustic sensor are investigated. An improved phase-generator carrier-demodulation mechanism is proposed for obtaining a high harmonic suppression ratio and stability of the demodulation results. A gold-coated polyethylene terephthalate membrane is used as the sensing diaphragm. By optimizing the parameters and the demodulation algorithm, the signal-to-noise ratio (SNR) and distortion ratio of 50.3 dB and the total harmonic distortion of 0.1% at 114 dB sound pressure level (SPL) (@ 1 kHz) are achieved, respectively. The sensor shows good temperature stability; the variation of the response is within 0.6 dB as the temperature changes from -10°C to 50°C. A sensitivity of 40 mV/Pa at 1 kHz and a frequency response range of 100 Hz to 12.5 kHz are reached, respectively. The SNR of the system is 60 dB (Re. 94 dB SPL). The sensor may be applied to photoacoustic spectrometers as a high-performance acoustic sensor.
Pulse transmission receiver with higher-order time derivative pulse correlator
Dress, Jr., William B.; Smith, Stephen F.
2003-09-16
Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators
NASA Astrophysics Data System (ADS)
Vincent, P.; Poncharal, P.; Barois, T.; Perisanu, S.; Gouttenoire, V.; Frachon, H.; Lazarus, A.; de Langre, E.; Minoux, E.; Charles, M.; Ziaei, A.; Guillot, D.; Choueib, M.; Ayari, A.; Purcell, S. T.
2011-04-01
We report on a systematic study of the use of resonating nanotubes in a field emission (FE) configuration to demodulate radio frequency signals. We particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance. Analytical formulas describing the demodulation are derived as functions of the system parameters. Experiments using AM and FM demodulations in a transmission electron microscope are also presented with a determination of all the pertinent experimental parameters. Finally we discuss the use of CNTs undergoing FE as nanoantennae and the different geometries that could be used for optimization and implementation.
Reconfigurable firmware-defined radios synthesized from standard digital logic cells
NASA Astrophysics Data System (ADS)
Faisal, Muhammad; Park, Youngmin; Wentzloff, David D.
2011-06-01
This paper presents recent work on reconfigurable all-digital radio architectures. We leverage the flexibility and scalability of synthesized digital cells to construct reconfigurable radio architectures that consume significantly less power than a software defined radio implementing similar architectures. We present two prototypes of such architectures that can receive and demodulate FM and FRS band signals. Moreover, a radio architecture based on a reconfigurable alldigital phase-locked loop for coherent demodulation is presented.
NASA Astrophysics Data System (ADS)
Chen, Da-Ming; Xu, Y. F.; Zhu, W. D.
2018-05-01
An effective and reliable damage identification method for plates with a continuously scanning laser Doppler vibrometer (CSLDV) system is proposed. A new constant-speed scan algorithm is proposed to create a two-dimensional (2D) scan trajectory and automatically scan a whole plate surface. Full-field measurement of the plate can be achieved by applying the algorithm to the CSLDV system. Based on the new scan algorithm, the demodulation method is extended from one dimension for beams to two dimensions for plates to obtain a full-field operating deflection shape (ODS) of the plate from velocity response measured by the CSLDV system. The full-field ODS of an associated undamaged plate is obtained by using polynomials with proper orders to fit the corresponding full-field ODS from the demodulation method. A curvature damage index (CDI) using differences between curvatures of ODSs (CODSs) associated with ODSs that are obtained by the demodulation method and the polynomial fit is proposed to identify damage. An auxiliary CDI obtained by averaging CDIs at different excitation frequencies is defined to further assist damage identification. An experiment of an aluminum plate with damage in the form of 10.5% thickness reduction in a damage area of 0.86% of the whole scan area is conducted to investigate the proposed method. Six frequencies close to natural frequencies of the plate and one randomly selected frequency are used as sinusoidal excitation frequencies. Two 2D scan trajectories, i.e., a horizontally moving 2D scan trajectory and a vertically moving 2D scan trajectory, are used to obtain ODSs, CODSs, and CDIs of the plate. The damage is successfully identified near areas with consistently high values of CDIs at different excitation frequencies along the two 2D scan trajectories; the damage area is also identified by auxiliary CDIs.
Intensity-demodulated torsion sensor based on thin-core polarization-maintaining fiber.
Kang, Xuexue; Zhang, Weigang; Zhang, Yanxin; Yang, Jiang; Chen, Lei; Kong, Lingxin; Zhang, Yunshan; Yu, Lin; Yan, Tieyi; Geng, Pengcheng
2018-05-01
An intensity-demodulated torsion sensor is designed and realized, which consists of a polarization ring as the sensing part and a section of thin-core polarization-maintaining fiber as the demodulation part. An intensity map of a sinusoidal change can be obtained at some specific wavelengths, and the experimental results correspond to the theoretical analysis well. The maximum sensitivity is about 0.29 dB/deg at the wavelength of 1584.6 nm, and the minimum sensitivity is about 0.10 dB/deg at the wavelength of 1510.2 nm. Meanwhile, the temperature characteristic is measured in the experiment. More broadly, the proposed structure can be used in an integrated smart device for loose-screw detection in devices in aeronautics and astronautics.
Research on a high-precision calibration method for tunable lasers
NASA Astrophysics Data System (ADS)
Xiang, Na; Li, Zhengying; Gui, Xin; Wang, Fan; Hou, Yarong; Wang, Honghai
2018-03-01
Tunable lasers are widely used in the field of optical fiber sensing, but nonlinear tuning exists even for zero external disturbance and limits the accuracy of the demodulation. In this paper, a high-precision calibration method for tunable lasers is proposed. A comb filter is introduced and the real-time output wavelength and scanning rate of the laser are calibrated by linear fitting several time-frequency reference points obtained from it, while the beat signal generated by the auxiliary interferometer is interpolated and frequency multiplied to find more accurate zero crossing points, with these points being used as wavelength counters to resample the comb signal to correct the nonlinear effect, which ensures that the time-frequency reference points of the comb filter are linear. A stability experiment and a strain sensing experiment verify the calibration precision of this method. The experimental result shows that the stability and wavelength resolution of the FBG demodulation can reach 0.088 pm and 0.030 pm, respectively, using a tunable laser calibrated by the proposed method. We have also compared the demodulation accuracy in the presence or absence of the comb filter, with the result showing that the introduction of the comb filter results to a 15-fold wavelength resolution enhancement.
A Comparative Study of Co-Channel Interference Suppression Techniques
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Satorius, Ed; Paparisto, Gent; Polydoros, Andreas
1997-01-01
We describe three methods of combatting co-channel interference (CCI): a cross-coupled phase-locked loop (CCPLL); a phase-tracking circuit (PTC), and joint Viterbi estimation based on the maximum likelihood principle. In the case of co-channel FM-modulated voice signals, the CCPLL and PTC methods typically outperform the maximum likelihood estimators when the modulation parameters are dissimilar. However, as the modulation parameters become identical, joint Viterbi estimation provides for a more robust estimate of the co-channel signals and does not suffer as much from "signal switching" which especially plagues the CCPLL approach. Good performance for the PTC requires both dissimilar modulation parameters and a priori knowledge of the co-channel signal amplitudes. The CCPLL and joint Viterbi estimators, on the other hand, incorporate accurate amplitude estimates. In addition, application of the joint Viterbi algorithm to demodulating co-channel digital (BPSK) signals in a multipath environment is also discussed. It is shown in this case that if the interference is sufficiently small, a single trellis model is most effective in demodulating the co-channel signals.
Study on the weighing system based on optical fiber Bragg grating
NASA Astrophysics Data System (ADS)
Wang, Xiaona; Yu, Qingxu; Li, Yefang
2010-10-01
The optical fiber sensor based on wavelength demodulation such as fiber Bragg grating(FBG), with merits of immunity to electromagnetic interference, low drift and high precision, has been widely used in many areas, such as structural health monitoring and smart materials, and the wavelength demodulation system was also studied widely. In the paper, a weighing system based on FBG was studied. The optical source is broadband Erbium-doped fiber ring laser with a spectral range of 1500~1600nm and optical power of 2mW; A Fabry-Perot Etalon with orientation precision of 1pm was adopted as real-time wavelength calibration for the swept laser; and multichannel high resolution simultaneous sampling card was used in the system to acquire sensing signals simultaneously, thus high-resolution and real-time calibration of sweep-wavelength can be achieved. The FBG was adhered to a cantilever beam and the Bragg wavelength was demodulated with the system. The weighing system was done after calibrated with standard weight. Experimental results show that the resolution of the weighing system is 0.5 g with a full scale of 2Kg.
Carbon nanotube nanoradios: The field emission and transistor configurations
NASA Astrophysics Data System (ADS)
Vincent, Pascal; Ayari, Anthony; Poncharal, Philippe; Barois, Thomas; Perisanu, Sorin; Gouttenoire, V.; Purcell, Stephen T.
2012-06-01
In this article, we explore and compare two distinct configurations of the "nanoradio" concept where individual carbon nanotube resonators are the central electromechanical element permitting signal demodulation. The two configurations of singly-clamped field emitters and doubly-clamped field effect transistors are examined which at first glance are quite different, but in fact involve quite similar physical concepts. Amplitude, frequency and digital demodulation are demonstrated and the analytical formulae describing the demodulation are derived as functions of the system parameters. The crucial role played by the mechanical resonance in demodulation is clearly demonstrated. For the field emission configuration we particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance and show that amplitude demodulation results in the best transmitted signal. For the transistor configuration the important aspect is the variation of the nanotube conductance as a function of its distance to the gate. In this case frequency demodulation is much more effective and digital signal processing was achieved. The respective strengths and weaknesses of each configuration are discussed throughout the article.
Schmidt, M; Werther, B; Fuerstenau, N; Matthias, M; Melz, T
2001-04-09
A fiber-optic extrinsic Fabry-Perot interferometer strain sensor (EFPI-S) of ls = 2.5 cm sensor length using three-wavelength digital phase demodulation is demonstrated to exhibit <50 pm displacement resolution (<2nm/m strain resolution) when measuring the cross expansion of a PZT-ceramic plate. The sensing (single-mode downlead-) and reflecting fibers are fused into a 150/360 microm capillary fiber where the fusion points define the sensor length. Readout is performed using an improved version of the previously described three-wavelength digital phase demodulation method employing an arctan-phase stepping algorithm. In the resent experiments the strain sensitivity was varied via the mapping of the arctan - lookup table to the 16-Bit DA-converter range from 188.25 k /V (6 Volt range 1130 k ) to 11.7 k /Volt (range 70 k ).
NASA Astrophysics Data System (ADS)
Zhang, Xian; Zhou, Binquan; Li, Hong; Zhao, Xinghua; Mu, Weiwei; Wu, Wenfeng
2017-10-01
Navigation technology is crucial to the national defense and military, which can realize the measurement of orientation, positioning, attitude and speed for moving object. Inertial navigation is not only autonomous, real-time, continuous, hidden, undisturbed but also no time-limited and environment-limited. The gyroscope is the core component of the inertial navigation system, whose precision and size are the bottleneck of the performance. However, nuclear magnetic resonance gyroscope is characteristic of the advantage of high precision and small size. Nuclear magnetic resonance gyroscope can meet the urgent needs of high-tech weapons and equipment development of new generation. This paper mainly designs a set of photoelectric signal processing system for nuclear magnetic resonance gyroscope based on FPGA, which process and control the information of detecting laser .The photoelectric signal with high frequency carrier is demodulated by in-phase and quadrature demodulation method. Finally, the processing system of photoelectric signal can compensate the residual magnetism of the shielding barrel and provide the information of nuclear magnetic resonance gyroscope angular velocity.
Li, Jin; Zhang, Min; Wang, Danshi; Wu, Shaojun; Zhan, Yueying
2018-04-16
A novel joint atmospheric turbulence (AT) detection and adaptive demodulation technique based on convolutional neural network (CNN) are proposed for the OAM-based free-space optical (FSO) communication. The AT detecting accuracy (ATDA) and the adaptive demodulating accuracy (ADA) of the 4-OAM, 8-OAM, 16-OAM FSO communication systems over computer-simulated 1000-m turbulent channels with 4, 6, 10 kinds of classic ATs are investigated, respectively. Compared to previous approaches using the self-organizing mapping (SOM), deep neural network (DNN) and other CNNs, the proposed CNN achieves the highest ATDA and ADA due to the advanced multi-layer representation learning without feature extractors designed carefully by numerous experts. For the AT detection, the ATDA of CNN is near 95.2% for 6 kinds of typical ATs, in cases of both weak and strong ATs. For the adaptive demodulation of optical vortices (OV) carrying OAM modes, the ADA of CNN is about 99.8% for the 8-OAM system over the computer-simulated 1000-m free-space strong turbulent link. In addition, the effects of image resolution, iteration number, activation functions and the structure of the CNN are also studied comprehensively. The proposed technique has the potential to be embedded in charge-coupled device (CCD) cameras deployed at the receiver to improve the reliability and flexibility for the OAM-FSO communication.
NASA Astrophysics Data System (ADS)
Marçal, L. A. P.; Kitano, C.; Higuti, R. T.; Nader, G.; Silva, E. C. N.
2012-12-01
Piezoelectric flextensional actuators (PFAs) are an efficient alternative to systems that demand nano-positioning of devices, such as in nanotechnology. Optical techniques constitute an excellent choice for contactless measurement of nano-displacements. In particular, optical interferometry constitutes an adequate choice for characterizing PFAs. There are several types of interferometers, as well as optical phase demodulation methods, used in practice. One interesting class of demodulation methods uses the spectrum of the photo-detected signal and its intrinsic properties when there is a harmonically varying time-domain modulating signal. In this work, a low cost homodyne Michelson interferometer, associated with simple electronic circuits for signal conditioning and acquisition, is used. A novel dynamic phase demodulation method, named Jm&Jm + 2, is proposed, which uses only the magnitude spectrum of the photo-detected signal, without the need to know its phase spectrum. The method is passive, direct, self-consistent, without problems of phase ambiguity and immune to fading, and presents a dynamic range from 0.45 to 100 rad displacements (between 22.6 nm and 5 µm, for λ = 632.8 nm). When applied to the measurement of half-wave voltage in a proof-of-concept Pockels cell, it presents errors smaller than 0.9% when compared to theory. For the estimation of PFA displacement, it allows the measurement of linearity and frequency response curves, with excellent results.
Correction of I/Q channel errors without calibration
Doerry, Armin W.; Tise, Bertice L.
2002-01-01
A method of providing a balanced demodular output for a signal such as a Doppler radar having an analog pulsed input; includes adding a variable phase shift as a function of time to the input signal, applying the phase shifted input signal to a demodulator; and generating a baseband signal from the input signal. The baseband signal is low-pass filtered and converted to a digital output signal. By removing the variable phase shift from the digital output signal, a complex data output is formed that is representative of the output of a balanced demodulator.
Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff
1999-02-02
An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.
Complex demodulation in VLBI estimation of high frequency Earth rotation components
NASA Astrophysics Data System (ADS)
Böhm, S.; Brzeziński, A.; Schuh, H.
2012-12-01
The spectrum of high frequency Earth rotation variations contains strong harmonic signal components mainly excited by ocean tides along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal tides in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within Earth rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated Earth rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in Earth rotation recommended by the International Earth Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of high frequency Earth rotation components and thus represents a qualified tool for future studies of irregular geophysical signals in ERP measured by space geodetic techniques.
Signal Processing Equipment and Techniques for Use in Measuring Ocean Acoustic Multipath Structures
1983-12-01
Demodulator 3.4 Digital Demodulator 3.4.1 Number of Bits in the Input A/D Converter Quantization Effects The Demodulator Output Filter Effects of... power caused by ignoring cross spectral term a) First order Butterworth filter b) Second order Butterworth filter 48 3.4 Ordering of e...spectrum 59 3.7 Multiplying D/A Converter input and output spectra a) Input b) Output 60 3.8 Demodulator output spectrum prior to filtering 63
Modeling of low-finesse, extrinsic fiber optic Fabry-Perot white light interferometers
NASA Astrophysics Data System (ADS)
Ma, Cheng; Tian, Zhipeng; Wang, Anbo
2012-06-01
This article introduces an approach for modeling the fiber optic low-finesse extrinsic Fabry-Pérot Interferometers (EFPI), aiming to address signal processing problems in EFPI demodulation algorithms based on white light interferometry. The main goal is to seek physical interpretations to correlate the sensor spectrum with the interferometer geometry (most importantly, the optical path difference). Because the signal demodulation quality and reliability hinge heavily on the understanding of such relationships, the model sheds light on optimizing the sensor performance.
NASA Technical Reports Server (NTRS)
Dohi, Tomohiro; Nitta, Kazumasa; Ueda, Takashi
1993-01-01
This paper proposes a new type of coherent demodulator, the unique-word (UW)-reverse-modulation type demodulator, for burst signal controlled by voice operated transmitter (VOX) in mobile satellite communication channels. The demodulator has three individual circuits: a pre-detection signal combiner, a pre-detection UW detector, and a UW-reverse-modulation type demodulator. The pre-detection signal combiner combines signal sequences received by two antennas and improves bit energy-to-noise power density ratio (E(sub b)/N(sub 0)) 2.5 dB to yield 10(exp -3) average bit error rate (BER) when carrier power-to-multipath power ratio (CMR) is 15 dB. The pre-detection UW detector improves UW detection probability when the frequency offset is large. The UW-reverse-modulation type demodulator realizes a maximum pull-in frequency of 3.9 kHz, the pull-in time is 2.4 seconds and frequency error is less than 20 Hz. The performances of this demodulator are confirmed through computer simulations and its effect is clarified in real-time experiments at a bit rate of 16.8 kbps using a digital signal processor (DSP).
Dual demodulation interferometer with two-wave mixing in GaAs photorefractive crystal
NASA Astrophysics Data System (ADS)
Zhenzhen, Zhang; Zhongqing, Jia; Guangrong, Ji; Qiwu, Wang
2018-07-01
A dual demodulation interferometer with two-wave mixing (TWM) in the GaAs photorefractive crystal (PRC) is proposed and experimentally demonstrated. The GaAs PRC has tiny temperature change under high voltage thus not requiring thermoelectric cooler (TEC) to stabilize the temperature, and adaptive to low frequency fluctuation below 200 Hz. The system is an unbalanced TWM interferometer, which could demodulate the phase change both space variation and wavelength shift induced by strain. Two demodulation modes' formulas are provided in theory respectively. Experimental results have been tested and compared with theoretical analysis, demonstrating that it is a practical and flexible system for detection of mechanical vibration or structure health monitoring (SHM) in engineering by selecting different demodulation mode.
A new method for blood velocity measurements using ultrasound FMCW signals.
Kunita, Masanori; Sudo, Masamitsu; Inoue, Shinya; Akahane, Mutsuhiro
2010-05-01
The low peak power of frequency-modulated continuous wave (FMCW) radar makes it attractive for various applications, including vehicle collision warning systems and airborne radio altimeters. This paper describes a new ultrasound Doppler measurement system that measures blood flow velocity based on principles similar to those of FMCW radar. We propose a sinusoidal wave for FM modulation and introduce a new demodulation technique for obtaining Doppler information with high SNR and range resolution. Doppler signals are demodulated with a reference FMCW signal to adjust delay times so that they are equal to propagation times between the transmitter and the receiver. Analytical results suggest that Doppler signals can be obtained from a selected position, as with a sample volume in pulse wave Doppler systems, and that the resulting SNR is nearly identical to that obtained with continuous wave (CW) Doppler systems. Additionally, clutter power is less than that of CW Doppler systems. The analytical results were verified by experiments involving electronic circuits and Doppler ultrasound phantoms.
47 CFR 73.9005 - Compliance requirements for covered demodulator products: Audio.
Code of Federal Regulations, 2010 CFR
2010-10-01
... products: Audio. 73.9005 Section 73.9005 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED....9005 Compliance requirements for covered demodulator products: Audio. Except as otherwise provided in §§ 73.9003(a) or 73.9004(a), covered demodulator products shall not output the audio portions of...
Mylvaganam, Saba
2018-01-01
This paper presents a concept for soft field tomographic scan of all the projections of electromagnetic waves emanating from an array of electrodes. Instead of the sequential excitation of all pairs of electrodes in the list of all projections, the new method present here consists of a single and continuous excitation. This excitation signal is the linear combination of the excitation signals in the projection set at different AC frequencies. The response to a given projection is discriminated by selecting the corresponding AC frequency component in the signal spectra of the digitally demodulated signals. The main advantage of this method is the suppression of transients after each projection, which is particularly problematic in electrical impedance tomography due to contact impedance phenomena and skin effect. The second benefit over the sequential scan method is the increased number of samples for each measurement for reduced noise sensitivity with digital demodulation. The third benefit is the increased temporal resolution in high-speed applications. The main drawback is the increased number of signal sources required (one per electrode). This paper focuses on electrical impedance tomography, based on earlier work by the authors. An experimental proof-of-concept using a simple 4-electrodes electrical impedance tomographic system is presented using simulations and laboratory data. The method presented here may be extended to other modalities (ultrasonic, microwave, optical, etc.). PMID:29597327
Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis
Tosi, Daniele
2015-01-01
The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975
Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.
Tosi, Daniele
2015-10-29
The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding.
Georgiades, N.P.; Polzik, E.S.; Kimble, H.J.
1999-02-02
An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies are disclosed. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100`s THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 {micro}m to 1.66 {micro}m for fiber optics can be accomplished with a nearly continuous frequency coverage. 7 figs.
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Yang, Shangming; Wang, Pengfei; Cui, Hong-Liang
2010-04-01
A high speed, portable, multi-function WIM sensing system based on Fiber Bragg Grating (FBG) technology is reported in this paper. This system is developed to measure the total weight, the distribution of weight of vehicle in motion, the distance of wheel axles and the distance between left and right wheels. In this system, a temperature control system and a real-time compensation system are employed to eliminate the drifts of optical fiber Fabry-Pérot tunable filter. Carbon Fiber Laminated Composites are used in the sensor heads to obtain high reliability and sensitivity. The speed of tested vehicles is up to 20 mph, the full scope of measurement is 4000 lbs, and the static resolution of sensor head is 20 lbs. The demodulator has high speed (500 Hz) data collection, and high stability. The demodulator and the light source are packed into a 17'' rack style enclosure. The prototype has been tested respectively at Stevens' campus and Army base. Some experiences of avoiding the pitfalls in developing this system are also presented in this paper.
NASA Astrophysics Data System (ADS)
Yang, Dong; Wang, Shun; Lu, Ping; Liu, Deming
2014-11-01
We propose and fabricate a new type fiber acoustic sensor based on dual fiber Bragg gratings (FBGs) configuration. The acoustic sensor head is constructed by putting the sensing cells enclosed in an aluminum cylinder space built by two Cband FBGs and a titanium diaphragm of 50 um thickness. One end of each FBG is longitudinally adhered to the diaphragm by UV glue. Both of the two FBGs are employed for reflecting light. The dual FBGs play roles not only as signal transmission system but also as sensing component, and they demodulate each other's optical signal mutually during the measurement. Both of the two FBGs are pre-strained and the output optical power experiences fluctuation in a linear relationship along with a variation of axial strain and surrounding acoustic interference. So a precise approach to measure the frequency and sound pressure of the acoustic disturbance is achieved. Experiments are performed and results show that a relatively flat frequency response in a range from 200 Hz to 1 kHz with the average signal-to-noise ratio (SNR) above 21 dB is obtained. The maximum sound pressure sensitivity of 11.35mV/Pa is achieved with the Rsquared value of 0.99131 when the sound pressure in the range of 87.7-106.6dB. It has potential applications in low frequency signal detection. Owing to its direct self-demodulation method, the sensing system reveals the advantages of easy to demodulate, good temperature stability and measurement reliability. Besides, performance of the proposed sensor could be improved by optimizing the parameters of the sensor, especially the diaphragm.
Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference.
Park, Hyoung-Jun; Song, Minho
2008-10-29
The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method.
Harmonics rejection in pixelated interferograms using spatio-temporal demodulation.
Padilla, J M; Servin, M; Estrada, J C
2011-09-26
Pixelated phase-mask interferograms have become an industry standard in spatial phase-shifting interferometry. These pixelated interferograms allow full wavefront encoding using a single interferogram. This allows the study of fast dynamic events in hostile mechanical environments. Recently an error-free demodulation method for ideal pixelated interferograms was proposed. However, non-ideal conditions in interferometry may arise due to non-linear response of the CCD camera, multiple light paths in the interferometer, etc. These conditions generate non-sinusoidal fringes containing harmonics which degrade the phase estimation. Here we show that two-dimensional Fourier demodulation of pixelated interferograms rejects most harmonics except the complex ones at {-3(rd), +5(th), -7(th), +9(th), -11(th),…}. We propose temporal phase-shifting to remove these remaining harmonics. In particular, a 2-step phase-shifting algorithm is used to eliminate the -3(rd) and +5(th) complex harmonics, while a 3-step one is used to remove the -3(rd), +5<(th), -7(th) and +9(th) complex harmonics. © 2011 Optical Society of America
Phase-locked-loop interferometry applied to aspheric testing with a computer-stored compensator.
Servin, M; Malacara, D; Rodriguez-Vera, R
1994-05-01
A recently developed technique for continuous-phase determination of interferograms with a digital phase-locked loop (PLL) is applied to the null testing of aspheres. Although this PLL demodulating scheme is also a synchronous or direct interferometric technique, the separate unwrapping process is not explicitly required. The unwrapping and the phase-detection processes are achieved simultaneously within the PLL. The proposed method uses a computer-generated holographic compensator. The holographic compensator does not need to be printed out by any means; it is calculated and used from the computer. This computer-stored compensator is used as the reference signal to phase demodulate a sample interferogram obtained from the asphere being tested. Consequently the demodulated phase contains information about the wave-front departures from the ideal computer-stored aspheric interferogram. Wave-front differences of ~ 1 λ are handled easily by the proposed PLL scheme. The maximum recorded frequency in the template's interferogram as well as in the sampled interferogram are assumed to be below the Nyquist frequency.
All-Optical Cantilever-Enhanced Photoacoustic Spectroscopy in the Open Environment
NASA Astrophysics Data System (ADS)
Wei, Wei; Zhu, Yong; Lin, Cheng; Tian, Li; Xu, Zhuwen; Nong, Jinpeng
2015-06-01
A novel all-optical cantilever-enhanced photoacoustic spectroscopy technique for trace gas detection in the open environment is proposed. A cantilever is set off-beam to "listen to" the photoacoustic signal, and an improved quadrature-point stabilization Fabry-Perot demodulation unit is used to pick up the vibration signal of the acoustic transducer instead of a complicated Michelson interferometer. The structure parameters of the cantilever are optimized to make the sensing system work more stably and reliably using a finite element method, which is then fabricated by surface micro-machining technology. Finally, related experiments are carried out to detect the absorption of water vapor at one atmosphere in the open environment. It was found that the normalized noise-equivalent absorption coefficient obtained by a traditional Fabry-Perot demodulation unit is , while that by a quadrature- point stabilization Fabry-Perot demodulation unit is , which indicates that the sensitivity is increased by a factor of 3.1 using improved cantilever-enhanced photoacoustic spectroscopy.
A Novel QEPAS with Microresonator in the Open Environment
NASA Astrophysics Data System (ADS)
Lin, Cheng; Zhu, Yong; Wei, Wei; Wang, Ning; Bao, Weiyi
2013-09-01
An improved quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing system for trace gas detection is proposed. The optical fiber Fabry-Perot (F-P) demodulation method is used to replace the conventional electrical one in the QEPAS system. The experimental QEPAS system, which has a microresonator consisting of two stainless steel tubes with a length of 2.3 mm and an inner diameter of 0.9 mm, is implemented to detect the absorption of water vapor in the open environment. The structure parameters of the quartz tuning fork (QTF) are optimized in order to make the sensing system work more stably and reliably. Demonstration experiments are carried out. The vibration signal of the QTF was picked up by the optical fiber F-P demodulator and the conventional electrical scheme at the same time. Normalized noise equivalent absorption coefficients of and are obtained, respectively. The experimental result demonstrates that the sensitivity of the improved QEPAS sensing system with an optical fiber F-P demodulator is about 5.9 times higher than that of the conventional QEPAS system.
Demodulation RFI statistics for a 3-stage op amp LED circuit
NASA Astrophysics Data System (ADS)
Whalen, James J.
An experiment has been performed to demonstrate the feasibility of combining several methods of electromagnetic-compatibility analysis. The part of the experiment that demonstrates how RF signals cause interference in an audio-frequency (AF) circuit and how the interference can be suppressed is described. The circuit includes three operational amplifiers (op amps) and a light-emitting diode (LED). A 50 percent amplitude-modulated (AM) radio-frequency-interference (RFI) signal is used, varied over the range from 0.1 to 400 MHz. The AM frequency is 1 kHz. The RFI is injected into the inverting input of the first op amp, and the 1-kHz demodulation response of the amplifier is amplified by the second and third op amps and lights the LED to provide a visual display of the existence of RFI. An RFI suppression capacitor was added to reduce the RFI. The demodulation RFI results are presented as scatter plots for 35 741 op amps. Mean values and standard deviations are also shown.
Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology
Xie, Wen-Ge; Wang, Peng-Zhao; Wang, Jian-Zhang
2018-01-01
A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach–Zehnder interferometer (MZI) typed sensors, Fabry–Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed. PMID:29419745
Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.
Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang
2018-02-08
A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.
On-board processing for telecommunications satellites
NASA Technical Reports Server (NTRS)
Nuspl, P. P.; Dong, G.
1991-01-01
In this decade, communications satellite systems will probably face dramatic challenges from alternative transmission means. To balance and overcome such competition, and to prepare for new requirements, INTELSAT has developed several on-board processing techniques, including Satellite-Switched TDMA (SS-TDMA), Satellite-Switched FDMA (SS-FDMA), several Modulators/Demodulators (Modem), a Multicarrier Multiplexer and Demodulator MCDD), an International Business Service (IBS)/Intermediate Data Rate (IDR) BaseBand Processor (BBP), etc. Some proof-of-concept hardware and software were developed, and tested recently in the INTELSAT Technical Laboratories. These techniques and some test results are discussed.
Fringe pattern demodulation with a two-frame digital phase-locked loop algorithm.
Gdeisat, Munther A; Burton, David R; Lalor, Michael J
2002-09-10
A novel technique called a two-frame digital phase-locked loop for fringe pattern demodulation is presented. In this scheme, two fringe patterns with different spatial carrier frequencies are grabbed for an object. A digital phase-locked loop algorithm tracks and demodulates the phase difference between both fringe patterns by employing the wrapped phase components of one of the fringe patterns as a reference to demodulate the second fringe pattern. The desired phase information can be extracted from the demodulated phase difference. We tested the algorithm experimentally using real fringe patterns. The technique is shown to be suitable for noncontact measurement of objects with rapid surface variations, and it outperforms the Fourier fringe analysis technique in this aspect. Phase maps produced withthis algorithm are noisy in comparison with phase maps generated with the Fourier fringe analysis technique.
SAW correlator spread spectrum receiver
Brocato, Robert W
2014-04-01
A surface acoustic wave (SAW) correlator spread-spectrum (SS) receiver is disclosed which utilizes a first demodulation stage with a chip length n and a second demodulation stage with a chip length m to decode a transmitted SS signal having a code length l=n.times.m which can be very long (e.g. up to 2000 chips or more). The first demodulation stage utilizes a pair of SAW correlators which demodulate the SS signal to generate an appropriate code sequence at an intermediate frequency which can then be fed into the second demodulation stage which can be formed from another SAW correlator, or by a digital correlator. A compound SAW correlator comprising two input transducers and a single output transducer is also disclosed which can be used to form the SAW correlator SS receiver, or for use in processing long code length signals.
NASA Astrophysics Data System (ADS)
Moshrefzadeh, Ali; Fasana, Alessandro
2018-05-01
Envelope analysis is one of the most advantageous methods for rolling element bearing diagnostics but finding a suitable frequency band for demodulation has been a substantial challenge for a long time. Introduction of the Spectral Kurtosis (SK) and Kurtogram mostly solved this problem but in situations where signal to noise ratio is very low or in presence of non-Gaussian noise these methods will fail. This major drawback may noticeably decrease their effectiveness and goal of this paper is to overcome this problem. Vibration signals from rolling element bearings exhibit high levels of second-order cyclostationarity, especially in the presence of localized faults. The autocovariance function of a 2nd order cyclostationary signal is periodic and the proposed method, named Autogram, takes advantage of this property to enhance the conventional Kurtogram. The method computes the kurtosis of the unbiased Autocorrelation (AC) of the squared envelope of the demodulated signal, rather than the kurtosis of the filtered time signal. Moreover, to take advantage of unique features of the lower and upper portions of the AC, two modified forms of kurtosis are introduced and the resulting colormaps are called Upper and Lower Autogram. In addition, a thresholding method is also proposed to enhance the quality of the frequency spectrum analysis. A new indicator, Combined Squared Envelope Spectrum, is employed to consider all the frequency bands with valuable diagnostic information and to improve the fault detectability of the Autogram. The proposed method is tested on experimental data and compared with literature results so to assess its performances in rolling element bearing diagnostics.
Comparison of methods for extracting annual cycle with changing amplitude in climate science
NASA Astrophysics Data System (ADS)
Deng, Q.; Fu, Z.
2017-12-01
Changes of annual cycle gains a growing concern recently. The basic hypothesis regards annual cycle as constant. Climatology mean within a time period is usually used to depict the annual cycle. Obviously this hypothesis contradicts with the fact that annual cycle is changing every year. For the lack of a unified definition about annual cycle, the approaches adopted in extracting annual cycle are various and may lead to different results. The precision and validity of these methods need to be examined. In this work we numerical experiments with known monofrequent annual cycle are set to evaluate five popular extracting methods: fitting sinusoids, complex demodulation, Ensemble Empirical Mode Decomposition (EEMD), Nonlinear Mode Decomposition (NMD) and Seasonal trend decomposition procedure based on loess (STL). Three different types of changing amplitude will be generated: steady, linear increasing and nonlinearly varying. Comparing the annual cycle extracted by these methods with the generated annual cycle, we find that (1) NMD performs best in depicting annual cycle itself and its amplitude change, (2) fitting sinusoids, complex demodulation and EEMD methods are more sensitive to long-term memory(LTM) of generated time series thus lead to overfitting annual cycle and too noisy amplitude, oppositely the result of STL underestimate the amplitude variation (3)all of them can present the amplitude trend correctly in long-time scale but the errors on account of noise and LTM are common in some methods over short time scales.
Hybrid Hard and Soft Decision Decoding of Reed-Solomon Codes for M-ary Frequency-Shift Keying
2010-06-01
Reed-Solomon (RS) coding, Orthogonal signaling, Additive White Gaussian Noise (AWGN), Pulse-Noise Interference (PNI), coherent detection, noncoherent ...Coherent Demodulation of MFSK ....................................................10 2. Noncoherent Demodulation of MFSK...62 V. PERFORMANCE SIMULATION AND ANALYSIS OF MFSK WITH RS ENCODING, HYBRID HD SD DECODING, AND NONCOHERENT DEMODULATION IN AWGN
NASA Astrophysics Data System (ADS)
Ito, Kazuhito; Nakagawa, Seiji
2015-07-01
A novel hearing aid system utilizing amplitude-modulated bone-conducted ultrasound (AM-BCU) is being developed for use by profoundly deaf people. However, there is a lack of research on the acoustic aspects of AM-BCU hearing. In this study, acoustic fields in the ear canal under AM-BCU stimulation were examined with respect to the self-demodulation effect of amplitude-modulated signal components generated in the ear canal. We found self-demodulated signals with an audible sound pressure level related to the amplitude-modulated signal components of bone-conducted ultrasonic stimulation. In addition, the increases in the self-demodulated signal levels at low frequencies in the ear canal after occluding the ear canal opening, i.e., the positive occlusion effect, indicate the existence of a pathway by which the self-demodulated signals pass through the aural cartilage and soft tissue, and radiate into the ear canal.
A parallel-pipelined architecture for a multi carrier demodulator
NASA Astrophysics Data System (ADS)
Kwatra, S. C.; Jamali, M. M.; Eugene, Linus P.
1991-03-01
Analog devices have been used for processing the information on board the satellites. Presently, digital devices are being used because they are economical and flexible as compared to their analog counterparts. Several schemes of digital transmission can be used depending on the data rate requirement of the user. An economical scheme of transmission for small earth stations uses single channel per carrier/frequency division multiple access (SCPC/FDMA) on the uplink and time division multiplexing (TDM) on the downlink. This is a typical communication service offered to low data rate users in commercial mass market. These channels usually pertain to either voice or data transmission. An efficient digital demodulator architecture is provided for a large number of law data rate users. A demodulator primarily consists of carrier, clock, and data recovery modules. This design uses principles of parallel processing, pipelining, and time sharing schemes to process large numbers of voice or data channels. It maintains the optimum throughput which is derived from the designed architecture and from the use of high speed components. The design is optimized for reduced power and area requirements. This is essential for satellite applications. The design is also flexible in processing a group of a varying number of channels. The algorithms that are used are verified by the use of a computer aided software engineering (CASE) tool called the Block Oriented System Simulator. The data flow, control circuitry, and interface of the hardware design is simulated in C language. Also, a multiprocessor approach is provided to map, model, and simulate the demodulation algorithms mainly from a speed view point. A hypercude based architecture implementation is provided for such a scheme of operation. The hypercube structure and the demodulation models on hypercubes are simulated in Ada.
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Jamali, M. M.; Eugene, Linus P.
1991-01-01
Analog devices have been used for processing the information on board the satellites. Presently, digital devices are being used because they are economical and flexible as compared to their analog counterparts. Several schemes of digital transmission can be used depending on the data rate requirement of the user. An economical scheme of transmission for small earth stations uses single channel per carrier/frequency division multiple access (SCPC/FDMA) on the uplink and time division multiplexing (TDM) on the downlink. This is a typical communication service offered to low data rate users in commercial mass market. These channels usually pertain to either voice or data transmission. An efficient digital demodulator architecture is provided for a large number of law data rate users. A demodulator primarily consists of carrier, clock, and data recovery modules. This design uses principles of parallel processing, pipelining, and time sharing schemes to process large numbers of voice or data channels. It maintains the optimum throughput which is derived from the designed architecture and from the use of high speed components. The design is optimized for reduced power and area requirements. This is essential for satellite applications. The design is also flexible in processing a group of a varying number of channels. The algorithms that are used are verified by the use of a computer aided software engineering (CASE) tool called the Block Oriented System Simulator. The data flow, control circuitry, and interface of the hardware design is simulated in C language. Also, a multiprocessor approach is provided to map, model, and simulate the demodulation algorithms mainly from a speed view point. A hypercude based architecture implementation is provided for such a scheme of operation. The hypercube structure and the demodulation models on hypercubes are simulated in Ada.
Gatti, Davide; Galzerano, Gianluca; Laporta, Paolo; Longhi, Stefano; Janner, Davide; Guglierame, Andrea; Belmonte, Michele
2008-07-01
Optimal demodulation of differential phase-shift keying signals at 10 Gbit/s is experimentally demonstrated using a specially designed structured fiber Bragg grating composed by Fabry-Perot coupled cavities. Bit-error-rate measurements show that, as compared with a conventional Gaussian-shaped filter, our demodulator gives approximately 2.8 dB performance improvement.
Degradation in finite-harmonic subcarrier demodulation
NASA Technical Reports Server (NTRS)
Feria, Y.; Townes, S.; Pham, T.
1995-01-01
Previous estimates on the degradations due to a subcarrier loop assume a square-wave subcarrier. This article provides a closed-form expression for the degradations due to the subcarrier loop when a finite number of harmonics are used to demodulate the subcarrier, as in the case of the buffered telemetry demodulator. We compared the degradations using a square wave and using finite harmonics in the subcarrier demodulation and found that, for a low loop signal-to-noise ratio, using finite harmonics leads to a lower degradation. The analysis is under the assumption that the phase noise in the subcarrier (SC) loop has a Tikhonov distribution. This assumption is valid for first-order loops.
Demodulator for binary-phase modulated signals having a variable clock rate
NASA Technical Reports Server (NTRS)
Wu, Ta Tzu (Inventor)
1976-01-01
Method and apparatus for demodulating binary-phase modulated signals recorded on a magnetic stripe on a card as the card is manually inserted into a card reader. Magnetic transitions are sensed as the card is read and the time interval between immediately preceeding basic transitions determines the duration of a data sampling pulse which detects the presence or absence of an intermediate transition pulse indicative of two respective logic states. The duration of the data sampling pulse is approximately 75 percent of the preceeding interval between basic transitions to permit tracking succeeding time differences in basic transition intervals of up to approximately 25 percent.
Optical fiber Fabry-Perot interferometry
NASA Astrophysics Data System (ADS)
Wang, Anbo
2014-06-01
Fiber Fabry-Perot (FP) interferometry is one of the most important tools for harsh environment sensing because of its great flexibility of sensor material selection, superior long--term stability, and nature of remote passive operation. Virginia Tech's Center for Photonics Technology has been involved in the research of this field for many years. After a quick review of the typical methods for the construction of F-P sensors, emphasis will be placed on the whitelight interferometry, which is perhaps the most robust interferometric sensor demodulation technique today. The recent discovery of an additional phase will be presented and its significance to the sensor demodulation will be discussed.
Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference
Park, Hyoung-Jun; Song, Minho
2008-01-01
The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method. PMID:27873898
NASA Astrophysics Data System (ADS)
Hao, Hongliang; Xiao, Wen; Chen, Zonghui; Ma, Lan; Pan, Feng
2018-01-01
Heterodyne interferometric vibration metrology is a useful technique for dynamic displacement and velocity measurement as it can provide a synchronous full-field output signal. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. However, due to the coherent nature of the laser sources, the sequence of heterodyne interferogram are corrupted by a mixture of coherent speckle and incoherent additive noise, which can severely degrade the accuracy of the demodulated signal and the optical display. In this paper, a new heterodyne interferometric demodulation method by combining auto-correlation analysis and spectral filtering is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly more accurate in both the amplitude and frequency of the vibrating waveform. We present a mathematical model of the signals obtained from interferograms that contain both vibration information of the measured objects and the noise. A simulation of the signal demodulation process is presented and used to investigate the noise from the system and external factors. The experimental results show excellent agreement with measurements from a commercial Laser Doppler Velocimetry (LDV).
Digitized synchronous demodulator
NASA Technical Reports Server (NTRS)
Woodhouse, Christopher E. (Inventor)
1990-01-01
A digitized synchronous demodulator is constructed entirely of digital components including timing logic, an accumulator, and means to digitally filter the digital output signal. Indirectly, it accepts, at its input, periodic analog signals which are converted to digital signals by traditional analog-to-digital conversion techniques. Broadly, the input digital signals are summed to one of two registers within an accumulator, based on the phase of the input signal and medicated by timing logic. At the end of a predetermined number of cycles of the inputted periodic signals, the contents of the register that accumulated samples from the negative half cycle is subtracted from the accumulated samples from the positive half cycle. The resulting difference is an accurate measurement of the narrow band amplitude of the periodic input signal during the measurement period. This measurement will not include error sources encountered in prior art synchronous demodulators using analog techniques such as offsets, charge injection errors, temperature drift, switching transients, settling time, analog to digital converter missing code, and linearity errors.
Demodulation processes in auditory perception
NASA Astrophysics Data System (ADS)
Feth, Lawrence L.
1994-08-01
The long range goal of this project is the understanding of human auditory processing of information conveyed by complex, time-varying signals such as speech, music or important environmental sounds. Our work is guided by the assumption that human auditory communication is a 'modulation - demodulation' process. That is, we assume that sound sources produce a complex stream of sound pressure waves with information encoded as variations ( modulations) of the signal amplitude and frequency. The listeners task then is one of demodulation. Much of past. psychoacoustics work has been based in what we characterize as 'spectrum picture processing.' Complex sounds are Fourier analyzed to produce an amplitude-by-frequency 'picture' and the perception process is modeled as if the listener were analyzing the spectral picture. This approach leads to studies such as 'profile analysis' and the power-spectrum model of masking. Our approach leads us to investigate time-varying, complex sounds. We refer to them as dynamic signals and we have developed auditory signal processing models to help guide our experimental work.
Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong
2015-01-01
An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201
Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong
2015-07-09
An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.
Flow analysis system and method
NASA Technical Reports Server (NTRS)
Hill, Wayne S. (Inventor); Barck, Bruce N. (Inventor)
1998-01-01
A non-invasive flow analysis system and method wherein a sensor, such as an acoustic sensor, is coupled to a conduit for transmitting a signal which varies depending on the characteristics of the flow in the conduit. The signal is amplified and there is a filter, responsive to the sensor signal, and tuned to pass a narrow band of frequencies proximate the resonant frequency of the sensor. A demodulator generates an amplitude envelope of the filtered signal and a number of flow indicator quantities are calculated based on variations in amplitude of the amplitude envelope. A neural network, or its equivalent, is then used to determine the flow rate of the flow in the conduit based on the flow indicator quantities.
Qin, Chuan; Zhao, Jianlin; Di, Jianglei; Wang, Le; Yu, Yiting; Yuan, Weizheng
2009-02-10
We employed digital holographic microscopy to visually test microoptoelectromechanical systems (MOEMS). The sample is a blazed-angle adjustable grating. Considering the periodic structure of the sample, a local area unwrapping method based on a binary template was adopted to demodulate the fringes obtained by referring to a reference hologram. A series of holograms at different deformation states due to different drive voltages were captured to analyze the dynamic character of the MOEMS, and the uniformity of different microcantilever beams was also inspected. The results show this testing method is effective for a periodic structure.
Schmidt, M; Fürstenau, N
1999-05-01
A three-wavelength-based passive quadrature digital phase-demodulation scheme has been developed for readout of fiber-optic extrinsic Fabry-Perot interferometer vibration, acoustic, and strain sensors. This scheme uses a superluminescent diode light source with interference filters in front of the photodiodes and real-time arctan calculation. Quasi-static strain and dynamic vibration sensing with up to an 80-kHz sampling rate is demonstrated. Periodic nonlinearities owing to dephasing with increasing fringe number are corrected for with a suitable algorithm, resulting in significant improvement of the linearity of the sensor characteristics.
Design, modeling, and analysis of multi-channel demultiplexer/demodulator
NASA Technical Reports Server (NTRS)
Lee, David D.; Woo, K. T.
1991-01-01
Traditionally, satellites have performed the function of a simple repeater. Newer data distribution satellite architectures, however, require demodulation of many frequency division multiplexed uplink channels by a single demultiplexer/demodulator unit, baseband processing and routing of individual voice/data circuits, and remodulation into time division multiplexed (TDM) downlink carriers. The TRW MCDD (Multichannel Demultiplexer/Multirate Demodulator) operates on a 37.4 MHz composite input signal. Individual channel data rates are either 64 Kbps or 2.048 Mbps. The wideband demultiplexer divides the input signal into 1.44 MHz segments containing either a single 2.048 Mbps channel or thirty two 64 Kbps channels. In the latter case, the narrowband demultiplexer further divides the single 1.44 MHz wideband channel into thirty two 45 KHz narrowband channels. With this approach the time domain Fast Fourier Transformation (FFT) channelizer processing capacity is matched well to the bandwidth and number of channels to be demultiplexed. By using a multirate demodulator fewer demodulators are required while achieving greater flexibility. Each demodulator can process a wideband channel or thirty two narrowband channels. Either all wideband channels, a mixture of wideband and narrowband channels, or all narrowband channels can be demodulated. The multirate demodulator approach also has lower nonrecurring costs since only one design and development effort is needed. TRW has developed a proof of concept (POC) model which fully demonstrates the signal processing fuctions of MCDD. It is capable of processing either three 2.048 Mbps channels or two 2.048 Mbps channels and thirty two 64 Kbps channels. An overview of important MCDD system engineering issues is presented as well as discussion on some of the Block Oriented System Simulation analyses performed for design verification and selection of operational parameters of the POC model. Systems engineering analysis of the POC model confirmed that the MCDD concepts are not only achievable but also balance the joint goals of minimizing on-board complexity and cost of ground equipment, while retaining the flexibility needed to meet a wide range of system requirements.
Statistics for demodulation RFI in inverting operational amplifier circuits
NASA Astrophysics Data System (ADS)
Sutu, Y.-H.; Whalen, J. J.
An investigation was conducted with the objective to determine statistical variations for RFI demodulation responses in operational amplifier (op amp) circuits. Attention is given to the experimental procedures employed, a three-stage op amp LED experiment, NCAP (Nonlinear Circuit Analysis Program) simulations of demodulation RFI in 741 op amps, and a comparison of RFI in four op amp types. Three major recommendations for future investigations are presented on the basis of the obtained results. One is concerned with the conduction of additional measurements of demodulation RFI in inverting amplifiers, while another suggests the employment of an automatic measurement system. It is also proposed to conduct additional NCAP simulations in which parasitic effects are accounted for more thoroughly.
A self-sensing active magnetic bearing based on a direct current measurement approach.
Niemann, Andries C; van Schoor, George; du Rand, Carel P
2013-09-11
Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance thereof. This paper presents the direct current measurement (DCM) approach for self-sensing AMBs, denoting the direct measurement of the current ripple component. In AMB systems, switching power amplifiers (PAs) modulate the rotor position information onto the current waveform. Demodulation self-sensing techniques then use bandpass and lowpass filters to estimate the rotor position from the voltage and current signals. However, the additional phase-shift introduced by these filters results in lower stability margins. The DCM approach utilizes a novel PA switching method that directly measures the current ripple to obtain duty-cycle invariant position estimates. Demodulation filters are largely excluded to minimize additional phase-shift in the position estimates. Basic functionality and performance of the proposed self-sensing approach are demonstrated via a transient simulation model as well as a high current (10 A) experimental system. A digital implementation of amplitude modulation self-sensing serves as a comparative estimator.
High speed demodulation systems for fiber optic grating sensors
NASA Technical Reports Server (NTRS)
Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)
2002-01-01
Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.
Average Likelihood Methods of Classification of Code Division Multiple Access (CDMA)
2016-05-01
case of cognitive radio applications. Modulation classification is part of a broader problem known as blind or uncooperative demodulation the goal of...Introduction 2 2.1 Modulation Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Research Objectives...6 3 Modulation Classification Methods 7 3.0.1 Ad Hoc
Singular-value demodulation of phase-shifted holograms.
Lopes, Fernando; Atlan, Michael
2015-06-01
We report on phase-shifted holographic interferogram demodulation by singular-value decomposition. Numerical processing of optically acquired interferograms over several modulation periods was performed in two steps: (1) rendering of off-axis complex-valued holograms by Fresnel transformation of the interferograms; and (2) eigenvalue spectrum assessment of the lag-covariance matrix of hologram pixels. Experimental results in low-light recording conditions were compared with demodulation by Fourier analysis, in the presence of random phase drifts.
Fringe pattern demodulation with a two-dimensional digital phase-locked loop algorithm.
Gdeisat, Munther A; Burton, David R; Lalor, Michael J
2002-09-10
A novel technique called a two-dimensional digital phase-locked loop (DPLL) for fringe pattern demodulation is presented. This algorithm is more suitable for demodulation of fringe patterns with varying phase in two directions than the existing DPLL techniques that assume that the phase of the fringe patterns varies only in one direction. The two-dimensional DPLL technique assumes that the phase of a fringe pattern is continuous in both directions and takes advantage of the phase continuity; consequently, the algorithm has better noise performance than the existing DPLL schemes. The two-dimensional DPLL algorithm is also suitable for demodulation of fringe patterns with low sampling rates, and it outperforms the Fourier fringe analysis technique in this aspect.
Structured FBG filters for 10-Gb/s DPSK signal demodulation in single ended applications
NASA Astrophysics Data System (ADS)
Marazzi, L.; Boffi, P.; Parolari, P.; Martinelli, M.; Gatti, D.; Coluccelli, N.; Longhi, S.
2011-05-01
Differential phase-shift keying (DPSK) demodulations operated by a structured fiber Bragg grating (FBG) filter and by a Mach-Zehnder delay interferometer (MZDI) in a single-ended configuration are compared. Experimental measurements at 10 Gb/s demonstrate that a specially designed FBG outperforms an integrated-optic MZDI of ˜4 dB and ˜3.5 dB in back-to-back and after 25-km propagation, respectively. Both demodulators show low polarization sensitivity and signal frequency detuning dependence, but only MZDI operating point requires a thermal control. FBG filter proves an interesting solution for DPSK demodulation in low-cost applications and, moreover, can be designed to match colorless requirements of wave division multiplexed passive optical network (WDM-PON) applications.
NASA Astrophysics Data System (ADS)
Li, Y. Chao; Ding, Q.; Gao, Y.; Ran, L. Ling; Yang, J. Ru; Liu, C. Yu; Wang, C. Hui; Sun, J. Feng
2014-07-01
This paper proposes a novel method of multi-beam laser heterodyne measurement for Young modulus. Based on Doppler effect and heterodyne technology, loaded the information of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by mass variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain value of Young modulus of the sample by the calculation. This novel method is used to simulate measurement for Young modulus of wire under different mass by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.3%.
Cognitive fiber Bragg grating sensors system based on fiber Fabry-Perot tunable filter technology
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wang, Pengfei; Zou, Jilin; Xie, Jing; Cui, Hong-Liang
2011-05-01
The wavelength demodulation based on a Fiber Fabry-Pérot Tunable Filter (FFP-TF) is a common method for multiplexing Fiber Bragg Grating (FBG) sensors. But this method cannot be used to detect high frequency signals due to the limitation by the highest scanning rate that the FFP-TF can achieve. To overcome this disadvantage, in this paper we present a scheme of cognitive sensors network based on FFP-TF technology. By perceiving the sensing environment, system can automatically switch into monitoring signals in two modes to obtain better measurement results: multi measurement points, low frequency (<1 KHz) signal, and few measurement points but high frequency (~50 KHz) signals. This cognitive sensors network can be realized in current technology and satisfy current most industrial requirements.
An additional study and implementation of tone calibrated technique of modulation
NASA Technical Reports Server (NTRS)
Rafferty, W.; Bechtel, L. K.; Lay, N. E.
1985-01-01
The Tone Calibrated Technique (TCT) was shown to be theoretically free from an error floor, and is only limited, in practice, by implementation constraints. The concept of the TCT transmission scheme along with a baseband implementation of a suitable demodulator is introduced. Two techniques for the generation of the TCT signal are considered: a Manchester source encoding scheme (MTCT) and a subcarrier based technique (STCT). The results are summarized for the TCT link computer simulation. The hardware implementation of the MTCT system is addressed and the digital signal processing design considerations involved in satisfying the modulator/demodulator requirements are outlined. The program findings are discussed and future direction are suggested based on conclusions made regarding the suitability of the TCT system for the transmission channel presently under consideration.
NASA Astrophysics Data System (ADS)
Xia, J.; Y Wang, F.; Luo, H.; Hu, Y. M.; Xiong, S. D.
2017-12-01
In this paper, a MEMS-based extrinsic Farby-Perot Interferometric (EFPI) acoustic pressure acoustic sensor is presented. The diaphragm structure is used as the second reflected surface, and the sensitive surface to acoustic pressure. A wavelength-switched phase demodulation system for EFPI sensors is used for acoustic signal recovery. The modified phase demodulation system has been demonstrated to recover the signal to a stable intensity fluctuation level of ±0.5 dB at the test frequency of 2000 Hz. In the test depth of 50cm, the sensor has a resonant frequency of 3.7 kHz, a flat frequency range of 10-800Hz, and a corresponding acoustic pressure sensitivity of -159 dB re. 1/μPa.
Demodulator electronics for laser vibrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudzik, G.; Waz, A. T.; Kaczmarek, P. R.
2012-06-13
One of the most important parts of a fiber-laser vibrometer is demodulation electronic section. The distortion, nonlinearity, offset and added noise of measured signal come from electronic circuits and they have direct influence on finale measuring results. Two main parameters of an investigated vibrating object: velocity V(t) and displacement s(t), influence of detected beat signals. They are: the Doppler frequency deviation f(t) and phase shift {phi}(t), respectively. Because of wide range of deviations it is difficult to use just one demodulator. That is the reason why we use three different types of demodulators. The first one is the IQ demodulator,more » which is the most sensitive one and its output is proportional to the displacement. Each IQ channel is sampled simultaneously by an analog to digital converter (ADC) integrated in a digital signal processor (DSP). The output signals from the two FM demodulators are proportional to the frequency deviation of heterodyne signals. They are sensitive directly to the velocity of the object. The main disadvantage of scattered light interferometry system is a ''speckle effect'', appearing in relatively large amplitude fluctuation of a heterodyne signal. To minimize ''speckle effect'' influence on quality of beat signals we applied the automatic gain control (AGC) system. Data acquisition, further signal processing (e.g. vibration frequency spectra) and presentation of results is realized by PC via USB interface.« less
Code-division multiple-access multiuser demodulator by using quantum fluctuations.
Otsubo, Yosuke; Inoue, Jun-Ichi; Nagata, Kenji; Okada, Masato
2014-07-01
We examine the average-case performance of a code-division multiple-access (CDMA) multiuser demodulator in which quantum fluctuations are utilized to demodulate the original message within the context of Bayesian inference. The quantum fluctuations are built into the system as a transverse field in the infinite-range Ising spin glass model. We evaluate the performance measurements by using statistical mechanics. We confirm that the CDMA multiuser modulator using quantum fluctuations achieve roughly the same performance as the conventional CDMA multiuser modulator through thermal fluctuations on average. We also find that the relationship between the quality of the original information retrieval and the amplitude of the transverse field is somehow a "universal feature" in typical probabilistic information processing, viz., in image restoration, error-correcting codes, and CDMA multiuser demodulation.
Code-division multiple-access multiuser demodulator by using quantum fluctuations
NASA Astrophysics Data System (ADS)
Otsubo, Yosuke; Inoue, Jun-ichi; Nagata, Kenji; Okada, Masato
2014-07-01
We examine the average-case performance of a code-division multiple-access (CDMA) multiuser demodulator in which quantum fluctuations are utilized to demodulate the original message within the context of Bayesian inference. The quantum fluctuations are built into the system as a transverse field in the infinite-range Ising spin glass model. We evaluate the performance measurements by using statistical mechanics. We confirm that the CDMA multiuser modulator using quantum fluctuations achieve roughly the same performance as the conventional CDMA multiuser modulator through thermal fluctuations on average. We also find that the relationship between the quality of the original information retrieval and the amplitude of the transverse field is somehow a "universal feature" in typical probabilistic information processing, viz., in image restoration, error-correcting codes, and CDMA multiuser demodulation.
Investigation on a fiber optic accelerometer based on FBG-FP interferometer
NASA Astrophysics Data System (ADS)
Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao
2014-12-01
A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.
NASA Astrophysics Data System (ADS)
He, A.; Quan, C.
2018-04-01
The principal component analysis (PCA) and region matching combined method is effective for fringe direction estimation. However, its mask construction algorithm for region matching fails in some circumstances, and the algorithm for conversion of orientation to direction in mask areas is computationally-heavy and non-optimized. We propose an improved PCA based region matching method for the fringe direction estimation, which includes an improved and robust mask construction scheme, and a fast and optimized orientation-direction conversion algorithm for the mask areas. Along with the estimated fringe direction map, filtered fringe pattern by automatic selective reconstruction modification and enhanced fast empirical mode decomposition (ASRm-EFEMD) is used for Hilbert spiral transform (HST) to demodulate the phase. Subsequently, windowed Fourier ridge (WFR) method is used for the refinement of the phase. The robustness and effectiveness of proposed method are demonstrated by both simulated and experimental fringe patterns.
NASA Astrophysics Data System (ADS)
Yang, Zhen; Zhang, Min; Liao, Yanbiao; Lai, Shurong; Tian, Qian; Li, Qisheng; Zhang, Yi; Zhuang, Zhi
2009-11-01
An extrinsic Fabry-Perot interferometric (EFPI) optical fiber hydrogen sensor based on palladium silver (Pd-Ag) film is designed for hydrogen leakage detection. A modified cross correlation signal processing method for an optical fiber EFPI hydrogen sensor is presented. As the applying of a special correlating factor which advises the effect on the fringe visibility of the gap length and wavelength, the cross correlation method has a high accuracy which is insensitive to light source power drift or changes in attenuation in the fiber, and the segment search method is employed to reduce computation and demodulating speed is fast. The Fabry-Perot gap length resolution of better than 0.2nm is achieved in a certain concentration of hydrogen.
Trellis coded multilevel DPSK system with doppler correction for mobile satellite channels
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Simon, Marvin K. (Inventor)
1991-01-01
A trellis coded multilevel differential phase shift keyed mobile communication system. The system of the present invention includes a trellis encoder for translating input signals into trellis codes; a differential encoder for differentially encoding the trellis coded signals; a transmitter for transmitting the differentially encoded trellis coded signals; a receiver for receiving the transmitted signals; a differential demodulator for demodulating the received differentially encoded trellis coded signals; and a trellis decoder for decoding the differentially demodulated signals.
1991-11-01
2 mega joule/m 2 (MJ/m 2 ) curie 3.700000 x E +1 *giga becquerel (GBq) degree (angle) 1.745329 x E -2 radian (rad) degree Farenheit tK = (tp...quantization assigned two quantization values. One value was assigned for demodulation values that was larger than zero and another quantization value to...demodulation values that were smaller than zero (for maximum-likelihood decisions). Logic 0 was assigned for a positive demodulation value and a logic 1 was
Synchronization for Optical PPM with Inter-Symbol Guard Times
NASA Astrophysics Data System (ADS)
Rogalin, R.; Srinivasan, M.
2017-05-01
Deep space optical communications promises orders of magnitude growth in communication capacity, supporting high data rate applications such as video streaming and high-bandwidth science instruments. Pulse position modulation is the modulation format of choice for deep space applications, and by inserting inter-symbol guard times between the symbols, the signal carries the timing information needed by the demodulator. Accurately extracting this timing information is crucial to demodulating and decoding this signal. In this article, we propose a number of timing and frequency estimation schemes for this modulation format, and in particular highlight a low complexity maximum likelihood timing estimator that significantly outperforms the prior art in this domain. This method does not require an explicit synchronization sequence, freeing up channel resources for data transmission.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang
2016-02-01
Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses hidden in vibration signals and performs well for bearing fault diagnosis.
A micromechanical analogue mixer with dynamic displacement amplification
NASA Astrophysics Data System (ADS)
Erismis, M. A.
2018-06-01
A new micromechanical device is proposed which is capable of modulation, demodulation and filtering operations. The device uses a patented 3-mass coupled micromechanical resonator which dynamically amplifies the displacement within a frequency range of interest. Modulation can be obtained by exciting different masses of the resonator with the data and the carrier signals. Demodulation can be obtained similarly by exciting the actuator with the input and carrier signals at the same time. With the help of dynamic motion amplification, filtering and signal amplification can be achieved simultaneously. A generic design approach is introduced which can be applied from kHz to MHz regime frequencies of interest. A sample mixer design for an silicon on insulator-based process is provided. A SPICE (Simulation Program with Integrated Circuit Emphasis)-based electro-mechanical co-simulation platform is also developed and the proposed mixer is simulated.
Detector for flow abnormalities in gaseous diffusion plant compressors
Smith, Stephen F.; Castleberry, Kim N.
1998-01-01
A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value.
Detector for flow abnormalities in gaseous diffusion plant compressors
Smith, S.F.; Castleberry, K.N.
1998-06-16
A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value. 6 figs.
Hong, Young-Joo; Makita, Shuichi; Sugiyama, Satoshi; Yasuno, Yoshiaki
2014-01-01
Polarization mode dispersion (PMD) degrades the performance of Jones-matrix-based polarization-sensitive multifunctional optical coherence tomography (JM-OCT). The problem is specially acute for optically buffered JM-OCT, because the long fiber in the optical buffering module induces a large amount of PMD. This paper aims at presenting a method to correct the effect of PMD in JM-OCT. We first mathematically model the PMD in JM-OCT and then derive a method to correct the PMD. This method is a combination of simple hardware modification and subsequent software correction. The hardware modification is introduction of two polarizers which transform the PMD into global complex modulation of Jones matrix. Subsequently, the software correction demodulates the global modulation. The method is validated with an experimentally obtained point spread function with a mirror sample, as well as by in vivo measurement of a human retina. PMID:25657888
Tian, Jiajun; Zhang, Qi; Fink, Thomas; Li, Hong; Peng, Wei; Han, Ming
2012-11-15
Intensity-based demodulation of extrinsic Fabry-Perot interferometric (EFPI) fiber-optic sensors requires the light wavelength to be on the quadrature point of the interferometric fringes for maximum sensitivity. In this Letter, we propose a novel and remote operating-point tuning method for EFPI fiber-optic sensors using microstructured fibers (MFs) and gas pressure. We demonstrated the method using a diaphragm-based EFPI sensor with a microstructured lead-in fiber. The holes in the MF were used as gas channels to remotely control the gas pressure inside the Fabry-Perot cavity. Because of the deformation of the diaphragm with gas pressure, the cavity length and consequently the operating point can be remotely tuned for maximum sensitivity. The proposed operating-point tuning method has the advantage of reduced complexity and cost compared to previously reported methods.
NASA Astrophysics Data System (ADS)
Li, Yan-Chao; Wang, Chun-Hui; Qu, Yang; Gao, Long; Cong, Hai-Fang; Yang, Yan-Ling; Gao, Jie; Wang, Ao-You
2011-01-01
This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%.
Wide-band doubler and sine wave quadrature generator
NASA Technical Reports Server (NTRS)
Crow, R. B.
1969-01-01
Phase-locked loop with photoresistive control, which provides both sine and cosine outputs for subcarrier demodulation, serves as a telemetry demodulator signal conditioner with a second harmonic signal for synchronization with the locally generated code.
NASA Astrophysics Data System (ADS)
Liu, Hai; Zhu, Chenghao; Wang, Yan; Tan, Ce; Li, Hongwei
2018-03-01
A transverse-stress sensor with enhanced sensitivity based on nematic liquid crystal (NLC) filled photonic crystal fiber (PCF) is proposed and analyzed by using the finite element method (FEM). The central hole of the PCF is infiltrated with NLC material with an adjustable rotation angle to achieve the polarization-dependent wavelength-selective sensing. And the combined use of side-hole structure and Surface Plasmon Resonance (SPR) technology enhanced the transverse-stress sensitivity enormously. Results reveal that the sensor can achieve a high sensitivity based on the polarization filter characteristic at special wavelengths. Besides that, the temperature and the transverse-stress in either direction can be effectively discriminated through dual-parameter demodulation method by adjusting the rotation angle of the NLC to introduce a new degree of freedom for sensing.
Neural Networks For Demodulation Of Phase-Modulated Signals
NASA Technical Reports Server (NTRS)
Altes, Richard A.
1995-01-01
Hopfield neural networks proposed for demodulating quadrature phase-shift-keyed (QPSK) signals carrying digital information. Networks solve nonlinear integral equations prior demodulation circuits cannot solve. Consists of set of N operational amplifiers connected in parallel, with weighted feedback from output terminal of each amplifier to input terminals of other amplifiers. Used to solve signal processing problems. Implemented as analog very-large-scale integrated circuit that achieves rapid convergence. Alternatively, implemented as digital simulation of such circuit. Also used to improve phase estimation performance over that of phase-locked loop.
Demodulation techniques for the amplitude modulated laser imager
NASA Astrophysics Data System (ADS)
Mullen, Linda; Laux, Alan; Cochenour, Brandon; Zege, Eleonora P.; Katsev, Iosif L.; Prikhach, Alexander S.
2007-10-01
A new technique has been found that uses in-phase and quadrature phase (I/Q) demodulation to optimize the images produced with an amplitude-modulated laser imaging system. An I/Q demodulator was used to collect the I/Q components of the received modulation envelope. It was discovered that by adjusting the local oscillator phase and the modulation frequency, the backscatter and target signals can be analyzed separately via the I/Q components. This new approach enhances image contrast beyond what was achieved with a previous design that processed only the composite magnitude information.
Low cost coherent demodulation for mobile satellite terminals
NASA Technical Reports Server (NTRS)
Dutta, Santanu; Henely, Steven J.
1993-01-01
This paper describes some low cost approaches to coherent BPSK demodulation for mobile satellite receivers. The specific application is an Inmarsat-C Land Mobile Earth Station (LMES), but the techniques are applicable to any PSK demodulator. The techniques discussed include combined sampling and quadrature downconversion with a single A/D and novel DSP algorithms for carrier acquisition offering both superior performance and economy of DSP resources. The DSP algorithms run at 5.7 MIPS, and the entire DSP subsystem, built with commercially available parts, costs under $60 at quantity-10,000.
On-board multicarrier demodulator for mobile applications using DSP implementation
NASA Astrophysics Data System (ADS)
Yim, W. H.; Kwan, C. C. D.; Coakley, F. P.; Evans, B. G.
1990-11-01
This paper describes the design and implementation of an on-board multicarrier demodulator using commercial digital signal processors. This is for use in a mobile satellite communication system employing an up-link SCPC/FDMA scheme. Channels are separated by a flexible multistage digital filter bank followed by a channel multiplexed digital demodulator array. The cross/dot product design approach of error detector leads to a new QPSK frequency control algorithm that allows fast acquisition without special preamble pattern. Timing correction is performed digitally using an extended stack of polyphase sub-filters.
On-chip WDM mode-division multiplexing interconnection with optional demodulation function.
Ye, Mengyuan; Yu, Yu; Chen, Guanyu; Luo, Yuchan; Zhang, Xinliang
2015-12-14
We propose and fabricate a wavelength-division-multiplexing (WDM) compatible and multi-functional mode-division-multiplexing (MDM) integrated circuit, which can perform the mode conversion and multiplexing for the incoming multipath WDM signals, avoiding the wavelength conflict. An phase-to-intensity demodulation function can be optionally applied within the circuit while performing the mode multiplexing. For demonstration, 4 × 10 Gb/s non-return-to-zero differential phase shift keying (NRZ-DPSK) signals are successfully processed, with open and clear eye diagrams. Measured bit error ratio (BER) results show less than 1 dB receive sensitivity variation for three modes and four wavelengths with demodulation. In the case without demodulation, the average power penalties at 4 wavelengths are -1.5, -3 and -3.5 dB for TE₀-TE₀, TE₀-TE₁ and TE₀-TE₂ mode conversions, respectively. The proposed flexible scheme can be used at the interface of long-haul and on-chip communication systems.
Simultaneous measurement for strain and temperature based on the twisted-tapering fiber structure
NASA Astrophysics Data System (ADS)
Ni, Wenjun; Lu, Ping; Liu, Deming; Zhang, Jiangshan
2017-10-01
A novel special fiber fabrication method based on a common single mode fiber (SMF) for dual-parameters measurement has been proposed and experimentally demonstrated. The fabrication setup is based on a three dimensional electric displacement platform which can realize the function of twisting and tapering at the same time. The proposed novel structure simultaneously undergoes the aforementioned two processes. Then a twisted-tapering fiber structure is formed. There are two dominant resonant wavelengths in the spectrum. Thus, simultaneous measurement for strain and temperature can be achieved. The following result shows that the strain measurement can be achieved by intensity demodulation, with the sensitivity of -0.01565 dB/μɛ and 0.00705 dB/μɛ corresponding to the dip1 and dip2, respectively. Therefore, the total sensitivity of the strain is 0.0227 dB/μɛ. Moreover, the cross impacts of the wavelength shift are - 0.772 pm/μɛ and 0.895 pm/μɛ. Similarly, the wavelength demodulation is selected to temperature measurement. The temperature sensitivity of 50.53pm/°C and 45.12pm/°C are obtained. The cross sensitivity of the intensity variation are 0.04058dB/°C and 0.02031 dB/°C. As a result, the dual-parameters can be described to a cross matrix of the sensitivity value. The proposed sensor has a great potential for engineering applications due to its compact structure, simple manufacture and low cost.
Using the ATL HDI 1000 to collect demodulated RF data for monitoring HIFU lesion formation
NASA Astrophysics Data System (ADS)
Anand, Ajay; Kaczkowski, Peter J.; Daigle, Ron E.; Huang, Lingyun; Paun, Marla; Beach, Kirk W.; Crum, Lawrence A.
2003-05-01
The ability to accurately track and monitor the progress of lesion formation during HIFU (High Intensity Focused Ultrasound) therapy is important for the success of HIFU-based treatment protocols. To aid in the development of algorithms for accurately targeting and monitoring formation of HIFU induced lesions, we have developed a software system to perform RF data acquisition during HIFU therapy using a commercially available clinical ultrasound scanner (ATL HDI 1000, Philips Medical Systems, Bothell, WA). The HDI 1000 scanner functions on a software dominant architecture, permitting straightforward external control of its operation and relatively easy access to quadrature demodulated RF data. A PC running a custom developed program sends control signals to the HIFU module via GPIB and to the HDI 1000 via Telnet, alternately interleaving HIFU exposures and RF frame acquisitions. The system was tested during experiments in which HIFU lesions were created in excised animal tissue. No crosstalk between the HIFU beam and the ultrasound imager was detected, thus demonstrating synchronization. Newly developed acquisition modes allow greater user control in setting the image geometry and scanline density, and enables high frame rate acquisition. This system facilitates rapid development of signal-processing based HIFU therapy monitoring algorithms and their implementation in image-guided thermal therapy systems. In addition, the HDI 1000 system can be easily customized for use with other emerging imaging modalities that require access to the RF data such as elastographic methods and new Doppler-based imaging and tissue characterization techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Dongfan, E-mail: fangdongfan1208@126.com; Sun, Qizhi; Zhao, Xiaoming
A 633 nm laser interferometer has been designed based on a novel concept, which, without the acousto-optic modulator or the demodulator circuit, adopts the fibers to connect all elements except photodetectors and oscilloscope in this system to make it more compact, portable, and efficient. The noteworthy feature is to mathematically compare the two divided interference signals, which have the same phase-shift caused by the electron density but possess the different initial phase and low angular frequencies. It is possible to read the plasma density directly on the oscilloscope by our original mathematic demodulation method without a camera. Based on themore » Abel inversion algorithm, the radial electron density profiles versus time can be obtained by using the multi-chord system. The designed measurable phase shift ranges from 0 to 2π rad corresponding to the maximum line integral of electron density less than 3.5 × 10{sup 17} cm{sup −2}, and the phase accuracy is about 0.017 rad corresponding to the line integral of electron density accuracy of 1 × 10{sup 15} cm{sup −2}. After the construction of eight-chord interferometer, it will provide the detailed time resolved information of the spatial distribution of the electron density in the field-reversed configuration (FRC) plasma target produced by the “Yingguang-1” programmed-discharge device, which is being constructed in the Key Laboratory of Pulsed Power, China Academy of Engineering Physics.« less
High Rate Digital Demodulator ASIC
NASA Technical Reports Server (NTRS)
Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew
1998-01-01
The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.
Dual modulation laser line-locking technique for wavelength modulation spectroscopy
Bomse, David S.; Hovde, D. Christian; Silver, Joel A.
2002-01-01
Disclosed are a method and apparatus for dual modulation of an optical spectroscopy laser. Demodulation is accomplished in a manner resulting in measurement of absorbance of a gas species, as well as stabilization of laser wavelength and baseline noise reduction.
Brocato, Robert W.
2016-10-04
An unpowered signal receiver and a method for signal reception detects and responds to very weak signals using pyroelectric devices as impedance transformers and/or demodulators. In some embodiments, surface acoustic wave devices (SAW) are also used. Illustrative embodiments include satellite and long distance terrestrial communications applications.
NASA Astrophysics Data System (ADS)
Yi, Xiaoqing; Hao, Liling; Jiang, Fangfang; Xu, Lisheng; Song, Shaoxiu; Li, Gang; Lin, Ling
2017-08-01
Synchronous acquisition of multi-channel biopotential signals, such as electrocardiograph (ECG) and electroencephalograph, has vital significance in health care and clinical diagnosis. In this paper, we proposed a new method which is using single channel ADC to acquire multi-channel biopotential signals modulated by square waves synchronously. In this method, a specific modulate and demodulate method has been investigated without complex signal processing schemes. For each channel, the sampling rate would not decline with the increase of the number of signal channels. More specifically, the signal-to-noise ratio of each channel is n times of the time-division method or an improvement of 3.01 ×log2n dB, where n represents the number of the signal channels. A numerical simulation shows the feasibility and validity of this method. Besides, a newly developed 8-lead ECG based on the new method has been introduced. These experiments illustrate that the method is practicable and thus is potential for low-cost medical monitors.
Laser confocal feedback tomography and nano-step height measurement
Tan, Yidong; Wang, Weiping; Xu, Chunxin; Zhang, Shulian
2013-01-01
A promising method for tomography and step height measurement is proposed, which combines the high sensitivity of the frequency-shifted feedback laser and the axial positioning ability of confocal microscopy. By demodulating the feedback-induced intensity modulation signals, the obtained amplitude and phase information are used to respectively determine the coarse and fine measurement of the samples. Imaging the micro devices and biological samples by the demodulated amplitude, this approach is proved to be able to achieve the cross-sectional image in highly scattered mediums. And then the successful height measurement of nano-step on a glass-substrate grating by combination of both amplitude and phase information indicates its axial high resolution (better than 2 nm) in a non-ambiguous range of about ten microns. PMID:24145717
Ray, Laura B.; Sockeel, Stéphane; Soon, Melissa; Bore, Arnaud; Myhr, Ayako; Stojanoski, Bobby; Cusack, Rhodri; Owen, Adrian M.; Doyon, Julien; Fogel, Stuart M.
2015-01-01
A spindle detection method was developed that: (1) extracts the signal of interest (i.e., spindle-related phasic changes in sigma) relative to ongoing “background” sigma activity using complex demodulation, (2) accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and (3) employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60 s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile). Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11–16 Hz) filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles. PMID:26441604
Synthesis and evaluation of phase detectors for active bit synchronizers
NASA Technical Reports Server (NTRS)
Mcbride, A. L.
1974-01-01
Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.
Fiber Fabry-Perot interferometer sensor for measuring resonances of piezoelectric elements
NASA Astrophysics Data System (ADS)
da Silva, Ricardo E.; Oliveira, Roberson A.; Pohl, Alexandre A. P.
2011-05-01
The development of a fiber extrinsic Fabry-Perot interferometer for measuring vibration amplitude and resonances of piezoelectric elements is reported. The signal demodulation method based on the use of an optical spectrum analyzer allows the measurement of displacements and resonances with high resolution. The technique consists basically in monitoring changes in the intensity or the wavelength of a single interferometric fringe at a point of high sensitivity in the sensor response curve. For sensor calibration, three signal processing techniques were employed. Vibration amplitude measurement with 0.84 nm/V sensitivity and the characterization of the piezo resonance is demonstrated.
Dual-hole Photonic Crystal Fiber Intermodal Interference based Refractometer
NASA Astrophysics Data System (ADS)
Liu, Feng; Guo, Xuan; Zhang, Qing; Fu, Xinghu
2017-12-01
A refractive-index (RI) sensor and its sensing characteristics based on intermodal interference of dual-hole Polarization Maintaining Photonic Crystal Fiber (PM-PCF) are demonstrated in this letter. The sensor works from the interference between LP01 and LP11 modes of hydrofluoric acid etched PM-PCF. The influence of corrosion zone radius on the RI sensing sensitivity is also discussed. Via choosing a 2.5 cm etched PM-PCF(the etched area radius is 27.5 μm) and 650 nm laser, the sensor exhibits the RI sensitivity of 7.48 V/RIU. The simple sensor structure and inexpensive demodulation method can make this technology for online refractive index measurement in widespread areas.
Aluminum alloy material structure impact localization by using FBG sensors
NASA Astrophysics Data System (ADS)
Zhu, Xiubin
2014-12-01
The aluminum alloy structure impact localization system by using fiber Bragg grating (FBG) sensors and impact localization algorithm was investigated. A four-FBG sensing network was established. And the power intensity demodulation method was initialized employing the narrow-band tunable laser. The wavelet transform was used to weaken the impact signal noise. And the impact signal time difference was extracted to build the time difference localization algorithm. At last, a fiber Bragg grating impact localization system was established and experimentally verified. The experimental results showed that in the aluminum alloy plate with the 500 mm*500 mm*2 mm test area, the maximum and average impact abscissa localization errors were 11 mm and 6.25 mm, and the maximum and average impact ordinate localization errors were 9 mm and 4.25 mm, respectively. The fiber Bragg grating sensors and demodulation system are feasible to realize the aviation aluminum alloy material structure impact localization. The research results provide a reliable method for the aluminum alloy material structure impact localization.
Wei, Heming; Krishnaswamy, Sridhar
2017-05-01
Fiber Bragg grating (FBG) dynamic strain sensors using both an erbium-based fiber ring laser configuration and a reflective semiconductor optical amplifier (RSOA)-based linear laser configuration are investigated theoretically and experimentally. Fiber laser models are first presented to analyze the output characteristics of both fiber laser configurations when the FBG sensor is subjected to dynamic strains at high frequencies. Due to differences in the transition times of erbium and the semiconductor (InP/InGaAsP), erbium-doped fiber amplifier (EDFA)- and RSOA-based fiber lasers exhibit different responses and regimes of stability when the FBG is subjected to dynamic strains. The responses of both systems are experimentally verified using an adaptive photorefractive two-wave mixing (TWM) spectral demodulation technique. The experimental results show that the RSOA-FBG fiber linear cavity laser is stable and can stably respond to dynamic strains at high frequencies. An example application using a multiplexed TWM interferometer to demodulate multiple FBG sensors is also discussed.
Advanced satellite communication system
NASA Technical Reports Server (NTRS)
Staples, Edward J.; Lie, Sen
1992-01-01
The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.
Serial-to-parallel color-TV converter
NASA Technical Reports Server (NTRS)
Doak, T. W.; Merwin, R. B.; Zuckswert, S. E.; Sepper, W.
1976-01-01
Solid analog-to-digital converter eliminates flicker and problems with time base stability and gain variation in sequential color TV cameras. Device includes 3-bit delta modulator; two-field memory; timing, switching, and sync network; and three 3-bit delta demodulators
Multi-carrier Communications over Time-varying Acoustic Channels
NASA Astrophysics Data System (ADS)
Aval, Yashar M.
Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple-FFT demodulation, and are implemented as partial (P), shaped (S), fractional (F), and Taylor series expansion (T) FFT demodulation. They replace the conventional FFT demodulation with a few FFTs and a combiner. The input to each FFT is a specific transformation of the input signal (P,S,F,T), while the combiner performs weighted summation of the FFT outputs. We design an adaptive algorithm of stochastic gradient type to learn the combiner weights for coherent and differentially coherent detection. The algorithm is cast into the framework of multiple receiving elements to take advantage of spatial diversity. Synthetic data, as well as experimental data from the MACE'10 experiment are used to demonstrate the performance of the proposed methods, showing significant improvement over conventional detection techniques with or without inter-carrier interference equalization (5 dB--7 dB on average over multiple hours), as well as improved bandwidth efficiency.
A Sub-ps Stability Time Transfer Method Based on Optical Modems.
Frank, Florian; Stefani, Fabio; Tuckey, Philip; Pottie, Paul-Eric
2018-06-01
Coherent optical fiber links recently demonstrate their ability to compare the most advanced optical clocks over a continental scale. The outstanding performances of the optical clocks are stimulating the community to build much more stable time scales, and to develop the means to compare them. Optical fiber link is one solution that needs to be explored. Here, we are investigating a new method to transfer time based on an optical demodulation of a phase step imprint onto the optical carrier. We show the implementation of a proof-of-principle experiment over 86-km urban fiber, and report time interval transfer stability of 1 pulse per second signal with sub-ps resolution from 10 s to one day of measurement time. Prospects for future development and implementation in active telecommunication networks, not only regarding performance but also compatibility, conclude this paper.
Demodulation System for Fiber Optic Bragg Grating Dynamic Pressure Sensing
NASA Technical Reports Server (NTRS)
Lekki, John D.; Adamovsky, Grigory; Floyd, Bertram
2001-01-01
Fiber optic Bragg gratings have been used for years to measure quasi-static phenomena. In aircraft engine applications there is a need to measure dynamic signals such as variable pressures. In order to monitor these pressures a detection system with broad dynamic range is needed. This paper describes an interferometric demodulator that was developed and optimized for this particular application. The signal to noise ratio was maximized through temporal coherence analysis. The demodulator was incorporated in a laboratory system that simulates conditions to be measured. Several pressure sensor configurations incorporating a fiber optic Bragg grating were also explored. The results of the experiments are reported in this paper.
Wavelength-switched phase interrogator for EFPI sensors with polarization self-calibrated
NASA Astrophysics Data System (ADS)
Xia, Ji; Wang, Fuyin; Luo, Hong; Xiong, Shuidong
2017-10-01
The stability of the demodulation system for extrinsic Fabry-Perot interferometric(EFPI) sensors is significant to dynamic signal recovery. In the wavelength-switched demodulation system, a phase interrogation with a wavelength-switched structure has been presented. Two reflected peaks were in perpendicular polarization direction and switched in the time-domain. However, the operation point of system affected output of the linearly-polarized beams seriously, and the stability of the system decreased and even failed to work. In order to solve this problem, a polarization control unit is added into the system in this paper. The modified demodulation system has been demonstrated to have a higher stability.
Demodulation signal processing in multiphoton imaging
NASA Astrophysics Data System (ADS)
Fisher, Walter G.; Wachter, Eric A.; Piston, David W.
2002-06-01
Multiphoton laser scanning microscopy offers numerous advantages, but sensitivity can be seriously affected by contamination from ambient room light. Typically, this forces experiments to be performed in an absolutely dark room. Since mode-locked lasers are used to generate detectable signals, signal-processing can be used to avoid such problems by taking advantage of the pulsed characteristics of such lasers. Demodulation of the fluorescence signal generated at the mode-locked frequency can result in significant reduction of interference from ambient noise sources. Such demodulation can be readily adapted to existing microscopes by inserting appropriate processor circuitry between the detector and data collection system, yielding a more robust microscope.
Dickinson, R J
1985-04-01
In a recent paper, Vaknine and Lorenz discuss the merits of lateral deconvolution of demodulated B-scans. While this technique will decrease the lateral blurring of single discrete targets, such as the diaphragm in their figure 3, it is inappropriate to apply the method to the echoes arising from inhomogeneous structures such as soft tissue. In this latter case, the echoes from individual scatterers within the resolution cell of the transducer interfere to give random fluctuations in received echo amplitude termed speckle. Although his process can be modeled as a linear convolution similar to that of conventional image formation theory, the process of demodulation is a nonlinear process which loses the all-important phase information, and prevents the subsequent restoration of the image by Wiener filtering, itself a linear process.
47 CFR 73.9006 - Add-in covered demodulator products.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 73.9006 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... passed to an output (e.g., where a demodulator add-in card in a personal computer passes such content to an associated software application installed in the same computer), it shall pass such content: (1...
Demodulation Radio Frequency Interference Effects in Operational Amplifier Circuits
NASA Astrophysics Data System (ADS)
Sutu, Yue-Hong
A series of investigations have been carried out to determine RFI effects in analog circuits using monolithic integrated operational amplifiers (op amps) as active devices. The specific RFI effect investigated is how amplitude-modulated (AM) RF signals are demodulated in op amp circuits to produce undesired low frequency responses at AM-modulation frequency. The undesired demodulation responses were shown to be characterized by a second-order nonlinear transfer function. Four representative op amp types investigated were the 741 bipolar op amp, the LM10 bipolar op amp, the LF355 JFET-Bipolar op amp, and the CA081 MOS-Bipolar op amp. Two op amp circuits were investigated. The first circuit was a noninverting unity voltage gain buffer circuit. The second circuit was an inverting op amp configuration. In the second circuit, the investigation includes the effects of an RFI suppression capacitor in the feedback path. Approximately 30 units of each op amp type were tested to determine the statistical variations of RFI demodulation effects in the two op amp circuits. The Nonlinear Circuit Analysis Program, NCAP, was used to simulate the demodulation RFI response. In the simulation, the op amp was replaced with its incremental macromodel. Values of macromodel parameters were obtained from previous investigations and manufacturer's data sheets. Some key results of this work are: (1) The RFI demodulation effects are 10 to 20 dB lower in CA081 and LF355 FET-bipolar op amp than in 741 and LM10 bipolar op amp except above 40 MHz where the LM10 RFI response begins to approach that of CA081. (2) The experimental mean values for 30 741 op amps show that RFI demodulation responses in the inverting amplifier with a 27 pF feedback capacitor were suppressed from 10 to 35 dB over the RF frequency range 0.1 to 150 MHz except at 0.15 MHz where only 3.5 dB suppression was observed. (3) The NCAP program can predict RFI demodulation responses in 741 and LF355 unity gain buffer circuits within 6 and 7 dB respectively for RF frequencies 0.1 to 400 MHz except near the resonant frequencies for the LF355 circuit. (4) The NCAP simulations suggest that the resonances of the LF355 unity gain buffer circuit are related to small parasitic capacitance values of the order of 1 to 5 pF. (5) The NCAP sensitivity analysis indicates that variations in a second-order transfer function are sensitive to some macromodel parameters.
NASA Astrophysics Data System (ADS)
Yim, Wan Hung
Economical operation of future satellite systems for mobile communications can only be fulfilled by using dedicated on-board processing satellites, which would allow both cheap earth terminals and lower space segment costs. With on-board modems and codecs, the up-link and down-link can be optimized separately. An attractive scheme is to use frequency-division multiple access/single chanel per carrier (FDMA/SCPC) on the up-link and time division multiplexing (TDM) on the down-link. This scheme allows mobile terminals to transmit a narrow band, low power signal, resulting in smaller dishes and high power amplifiers (HPA's) with lower output power. On the up-link, there are hundreds to thousands of FDM channels to be demodulated on-board. The most promising approach is the use of all-digital multicarrier demodulators (MCD's), where analog and digital hardware are efficiently shared among channels, and digital signal processing (DSP) is used at an early stage to take advantage of very large scale integration (VLSI) implementation. A MCD consists of a channellizer for separation of frequency division multiplexing (FDM) channels, followed by individual modulators for each channel. Major research areas in MCD's are in multirate DSP, and the optimal estimation for synchronization, which form the basis of the thesis. Complex signal theories are central to the development of structured approaches for the sampling and processing of bandpass signals, which are the foundations in both channellizer and demodulator design. In multirate DSP, polyphase theories replace many ad-hoc, tedious and error-prone design procedures. For example, a polyphase-matrix deep space network frequency and timing system (DFT) channellizer includes all efficient filter bank techniques as special cases. Also, a polyphase-lattice filter is derived, not only for sampling rate conversion, but also capable of sampling phase variation, which is required for symbol timing adjustment in all-digital demodulators. In modulation schemes, a systematic survey is reported, based on two expressions that includes all formats in linear and constant envelope modulation. In synchronization techniques, classifications according to the criterion of statistical optimization, the data dependecy, and the method of parameter extraction, reflect the inherent complexity and performance of numerous existing algorithms. The designs of two new algorithms are presented: a differential decision frequency error detector that is simple and fast; a dual-comb-filter frequency/timing error detector that is targeted at VLSI implementation. The real-time implementation of a complete 4 x 16 kb/s MCD for the T-SAT project is described in detail, which proved many of the structured design concepts developed in this thesis. The requirements of software tools for various levels of simulation in multirate DSP and communications are analyzed. This led to the implementation of a data-flow oriented simulation system, which was used in all research work in the thesis.
Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming
2016-11-14
In practical applications of fiber optic sensors based on Fabry-Perot interferometers (FPIs), the lead-in optical fiber often experiences dynamic or static bending due to environmental perturbations or limited installation space. Bending introduces wavelength-dependent losses to the sensors, which can cause erroneous readings for sensors based on wavelength demodulation interrogation. Here, we investigate the bending-induced wavelength shift (BIWS) to sensors based on FPIs. Partially explicit expressions of BIWSs for the reflection fringe peaks and valleys have been derived for sensors based on low-finesse FPI. The theoretical model predicts these findings: 1) provided that a fringe peak experiences the same modulation slope by bending losses with a fringe valley, BIWSs for the peak and valley have opposite signs and the BIWS for the valley has a smaller absolute value; 2) BIWS is a linear function of the length of the bending section; 3) a FPI with higher visibility and longer optical path length is more resistant to the influence of bending. Experiments have been carried out and the results agree well with the theoretical predictions.
USDA-ARS?s Scientific Manuscript database
In this research, a novel method of fresh bruise detection was developed using a structured illumination reflectance imaging (SIRI) system. The SIRI system projects sinusoidal patterns of illumination onto samples, and image demodulation is then used to recover depth-specific information through var...
Zhang, Shengzhao; Li, Gang; Wang, Jiexi; Wang, Donggen; Han, Ying; Cao, Hui; Lin, Ling; Diao, Chunhong
2017-10-01
When an optical chopper is used to modulate the light source, the rotating speed of the wheel may vary with time and subsequently cause jitter of the modulation frequency. The amplitude calculated from the modulated signal would be distorted when the frequency fluctuations occur. To precisely calculate the amplitude of the modulated light flux, we proposed a method to estimate the range of the frequency fluctuation in the measurement of the spectrum and then extract the amplitude based on the sum of power of the signal in the selected frequency range. Experiments were designed to test the feasibility of the proposed method and the results showed lower root means square error than the conventional way.
Blind ICA detection based on second-order cone programming for MC-CDMA systems
NASA Astrophysics Data System (ADS)
Jen, Chih-Wei; Jou, Shyh-Jye
2014-12-01
The multicarrier code division multiple access (MC-CDMA) technique has received considerable interest for its potential application to future wireless communication systems due to its high data rate. A common problem regarding the blind multiuser detectors used in MC-CDMA systems is that they are extremely sensitive to the complex channel environment. Besides, the perturbation of colored noise may negatively affect the performance of the system. In this paper, a new coherent detection method will be proposed, which utilizes the modified fast independent component analysis (FastICA) algorithm, based on approximate negentropy maximization that is subject to the second-order cone programming (SOCP) constraint. The aim of the proposed coherent detection is to provide robustness against small-to-medium channel estimation mismatch (CEM) that may arise from channel frequency response estimation error in the MC-CDMA system, which is modulated by downlink binary phase-shift keying (BPSK) under colored noise. Noncoherent demodulation schemes are preferable to coherent demodulation schemes, as the latter are difficult to implement over time-varying fading channels. Differential phase-shift keying (DPSK) is therefore the natural choice for an alternative modulation scheme. Furthermore, the new blind differential SOCP-based ICA (SOCP-ICA) detection without channel estimation and compensation will be proposed to combat Doppler spread caused by time-varying fading channels in the DPSK-modulated MC-CDMA system under colored noise. In this paper, numerical simulations are used to illustrate the robustness of the proposed blind coherent SOCP-ICA detector against small-to-medium CEM and to emphasize the advantage of the blind differential SOCP-ICA detector in overcoming Doppler spread.
Optimum modulation and demodulation matrices for solar polarimetry.
del Toro Iniesta, J C; Collados, M
2000-04-01
Both temporal and/or spatial modulation are mandatory in current solar polarimetry [Appl. Opt. 24, 3893 (1985); 26, 3838 (1987)]. The modulating and demodulating processes are mathematically described by matrices O and D, respectively, on whose structure the accuracy of Stokes parameter measurements depend. We demonstrate, based on the definition of polarimetric efficiency [Instituto de Astrofísica de Canarias Internal Report (1994); ASP Conf. Ser. 184, 3 (1999)], that the maximum efficiencies of an ideal polarimeter are unity for Stokes I and for (Q(2) + U(2) + V(2))(1/2) and that this occurs if and only if O(T)O is diagonal; given a general (possibly nonideal) modulation matrix O, the optimum demodulation matrix turns out to be D = (O(T)O)(-1)O(T); and the maximum efficiencies in the nonideal case are given by the rms value of the column elements of matrix O and are reached by modulation matrices such that O(T)O is diagonal. From these analytical results we distill two recipes useful in the practical design of polarimeters. Their usefulness is illustrated by discussing cases of currently available solar polarimeters. Although specifically devoted to solar polarimetry, the results here may be applied in practically all other branches of science for which polarimetric measurements are needed.
Composite-cavity-based Fabry-Perot interferometric strain sensors.
Zhang, Jianzhong; Peng, G D; Yuan, Libo; Sun, Weimin
2007-07-01
A composite-cavity-based Fabry-Perot interferometric strain sensor system is proposed to gain the minimum cross sensitivity to temperature and a high multiplexing capability at the same time. The interrogation of the sensor system is based on a white-light interferometric technology, and the demodulation is achieved by analyzing the coherence spectra. A demonstration system with two sensors is presented and tested.
Improved PLL For FM Demodulator
NASA Technical Reports Server (NTRS)
Kirkham, Harold; Jackson, Shannon P.
1992-01-01
Phase-locked loop (PLL) for frequency demodulator contains improved frequency-to-voltage converter producing less ripple than conventional phase detector. In improved PLL, phase detector replaced by state estimator, implemented by ramp/sample-and-hold circuit. Intended to reduce noise in receiver of frequency-modulated (FM) telemetry link without sacrificing bandwidth. Also applicable to processing received FM signals.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Digital Broadcast... following conditions is true: (i) The party is a bona fide reseller; (ii) The party is a licensed digital... engaged, or about to become engaged, in the lawful retransmission of unencrypted digital terrestrial...
Discrete-Time Demodulator Architectures for Free-Space Broadband Optical Pulse-Position Modulation
NASA Technical Reports Server (NTRS)
Gray, A. A.; Lee, C.
2004-01-01
The objective of this work is to develop discrete-time demodulator architectures for broadband optical pulse-position modulation (PPM) that are capable of processing Nyquist or near-Nyquist data rates. These architectures are motivated by the numerous advantages of realizing communications demodulators in digital very large scale integrated (VLSI) circuits. The architectures are developed within a framework that encompasses a large body of work in optical communications, synchronization, and multirate discrete-time signal processing and are constrained by the limitations of the state of the art in digital hardware. This work attempts to create a bridge between theoretical communication algorithms and analysis for deep-space optical PPM and modern digital VLSI. The primary focus of this work is on the synthesis of discrete-time processing architectures for accomplishing the most fundamental functions required in PPM demodulators, post-detection filtering, synchronization, and decision processing. The architectures derived are capable of closely approximating the theoretical performance of the continuous-time algorithms from which they are derived. The work concludes with an outline of the development path that leads to hardware.
Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals
Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A
2014-10-14
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.
Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals
Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A
2014-05-20
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.
NASA Technical Reports Server (NTRS)
Redinbo, Robert
1994-01-01
Fault tolerance features in the first three major subsystems appearing in the next generation of communications satellites are described. These satellites will contain extensive but efficient high-speed processing and switching capabilities to support the low signal strengths associated with very small aperture terminals. The terminals' numerous data channels are combined through frequency division multiplexing (FDM) on the up-links and are protected individually by forward error-correcting (FEC) binary convolutional codes. The front-end processing resources, demultiplexer, demodulators, and FEC decoders extract all data channels which are then switched individually, multiplexed, and remodulated before retransmission to earth terminals through narrow beam spot antennas. Algorithm based fault tolerance (ABFT) techniques, which relate real number parity values with data flows and operations, are used to protect the data processing operations. The additional checking features utilize resources that can be substituted for normal processing elements when resource reconfiguration is required to replace a failed unit.
Harish, Achar V; Varghese, Bibin; Rao, Babu; Balasubramaniam, Krishnan; Srinivasan, Balaji
2015-07-01
Use of in-fiber Fabry-Perot (FP) filters based on fiber Bragg gratings as both sensor as well as an interrogator for enhancing the detection limit of elastic wave sensing is investigated in this paper. The sensitivity of such a demodulation scheme depends on the spectral discrimination of the sensor and interrogator gratings. Simulations have shown that the use of in-fiber FP filters with high finesse provide better performance in terms of sensitivity compared to the demodulation using fiber Bragg gratings. Based on these results, a dynamic interrogator capable of sensing acoustic waves with amplitude of less than 1 micro-strain over frequencies of 10 kHz to several 100 kHz has been implemented. Frequency response of the fiber Bragg gratings in the given experimental setup has been compared to that of the conventional piezo sensors demonstrating that fiber Bragg gratings can be used over a relatively broad frequency range. Dynamic interrogator has been packaged in a compact box without any degradation in its performance. Copyright © 2015 Elsevier B.V. All rights reserved.
In-fiber torsion sensor based on dual polarized Mach-Zehnder interference.
Chen, Lei; Zhang, Wei-Gang; Wang, Li; Zhang, Hao; Sieg, Jonathan; Zhou, Quan; Zhang, Li-Yu; Wang, Biao; Yan, Tie-Yi
2014-12-29
This paper presents a novel optical fiber torsion sensor based on dual polarized Mach-Zehnder interference (DPMZI). Unlike the conventional fiber sensor, the proposed sensor is composed of a sensor part and a demodulator. The demodulator is made by a bared single mode fiber (SMF) loop, and the sensor part is a segment of a coated SMF placed before the loop. A mathematical model is proposed based on DPMZI mechanism and from the model when the sensor part is twisted, the E-field rotational angle will bring a quasi-linear impact on the resonance dip wavelength in their matched detecting range. A proof-of-concept experiment was performed to verify the theoretical prediction. From the experimental data, a sensitivity of -0.3703, -1.00962, and -0.59881 nm•m/rad is achieved with the determining range of 12.0936, 7.6959, and 10.4444 rad/m respectively. The sensor which is composed only of the SMF has the advantages of low insertion loss (~-2dB), healthy structure, low manufacture cost, and easy assembly and application.
The instantaneous frequency rate spectrogram
NASA Astrophysics Data System (ADS)
Czarnecki, Krzysztof
2016-01-01
An accelerogram of the instantaneous phase of signal components referred to as an instantaneous frequency rate spectrogram (IFRS) is presented as a joint time-frequency distribution. The distribution is directly obtained by processing the short-time Fourier transform (STFT) locally. A novel approach to amplitude demodulation based upon the reassignment method is introduced as a useful by-product. Additionally, an estimator of energy density versus the instantaneous frequency rate (IFR) is proposed and referred to as the IFR profile. The energy density is estimated based upon both the classical energy spectrogram and the IFRS smoothened by the median filter. Moreover, the impact of an analyzing window width, additive white Gaussian noise and observation time is tested. Finally, the introduced method is used for the analysis of the acoustic emission of an automotive engine. The recording of the engine of a Lamborghini Gallardo is analyzed as an example.
Kusaka, A; Essinger-Hileman, T; Appel, J W; Gallardo, P; Irwin, K D; Jarosik, N; Nolta, M R; Page, L A; Parker, L P; Raghunathan, S; Sievers, J L; Simon, S M; Staggs, S T; Visnjic, K
2014-02-01
We evaluate the modulation of cosmic microwave background polarization using a rapidly rotating, half-wave plate (HWP) on the Atacama B-Mode Search. After demodulating the time-ordered-data (TOD), we find a significant reduction of atmospheric fluctuations. The demodulated TOD is stable on time scales of 500-1000 s, corresponding to frequencies of 1-2 mHz. This facilitates recovery of cosmological information at large angular scales, which are typically available only from balloon-borne or satellite experiments. This technique also achieves a sensitive measurement of celestial polarization without differencing the TOD of paired detectors sensitive to two orthogonal linear polarizations. This is the first demonstration of the ability to remove atmospheric contamination at these levels from a ground-based platform using a rapidly rotating HWP.
The digital phase-locked loop as a near-optimum FM demodulator.
NASA Technical Reports Server (NTRS)
Kelly, C. N.; Gupta, S. C.
1972-01-01
This paper presents an approach to the optimum digital demodulation of a continuous-time FM signal using stochastic estimation theory. The primary result is a digital phase-locked loop realization possessing performance characteristics that approach those of the analog counterpart. Some practical considerations are presented and simulation results for a first-order message model are presented.
Massagram, Wansuree; Hafner, Noah M; Park, Byung-Kwan; Lubecke, Victor M; Host-Madsen, Anders; Boric-Lubecke, Olga
2007-01-01
This paper describes the experimental results of the beat-to-beat interval measurement from a quadrature Doppler radar system utilizing arctangent demodulation with DC offset compensation techniques. The comparison in SDNN and in RMSDD of both signals demonstrates the potential of using quadrature Doppler radar for HRV analysis.
The payload/shuttle-data-communication-link handbook
NASA Technical Reports Server (NTRS)
1982-01-01
Communication links between the Orbiter, payloads, and ground are described: end-to-end, hardline, S-band, Ku-band, TDRSS relay, waveforms, premodulation, subcarrier modulation, carrier modulation, transmitter power, antennas, the RF channel, system noise, received signal-to-noise spectral density, carrier-tracking loop, carrier demodulation, subcarrier demodulation, digital data detection, digital data decoding, and tandem link considerations.
Real-time fringe pattern demodulation with a second-order digital phase-locked loop.
Gdeisat, M A; Burton, D R; Lalor, M J
2000-10-10
The use of a second-order digital phase-locked loop (DPLL) to demodulate fringe patterns is presented. The second-order DPLL has better tracking ability and more noise immunity than the first-order loop. Consequently, the second-order DPLL is capable of demodulating a wider range of fringe patterns than the first-order DPLL. A basic analysis of the first- and the second-order loops is given, and a performance comparison between the first- and the second-order DPLL's in analyzing fringe patterns is presented. The implementation of the second-order loop in real time on a commercial parallel image processing system is described. Fringe patterns are grabbed and processed, and the resultant phase maps are displayed concurrently.
Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients.
Kilpatrick, J M; MacPherson, W N; Barton, J S; Jones, J D
2000-03-20
The influence of reflector losses attracts little discussion in standard treatments of the Fabry-Perot interferometer yet may be an important factor contributing to errors in phase-stepped demodulation of fiber optic Fabry-Perot (FFP) sensors. We describe a general transfer function for FFP sensors with complex reflection coefficients and estimate systematic phase errors that arise when the asymmetry of the reflected fringe system is neglected, as is common in the literature. The measured asymmetric response of higher-finesse metal-dielectric FFP constructions corroborates a model that predicts systematic phase errors of 0.06 rad in three-step demodulation of a low-finesse FFP sensor (R = 0.05) with internal reflector losses of 25%.
PWM Switching Frequency Effects on Eddy Current Sensors for Magnetically Suspended Flywheel Systems
NASA Technical Reports Server (NTRS)
Jansen, Ralph; Lebron, Ramon; Dever, Timothy P.; Birchenough, Arthur G.
2003-01-01
A flywheel magnetic bearing (MB) pulse width modulated power amplifier (PWM) configuration is selected to minimize noise generated by the PWMs in the flywheel position sensor system. Two types of noise are addressed: beat frequency noise caused by variations in PWM switching frequencies, and demodulation noise caused by demodulation of high order harmonics of the switching voltage into the MB control band. Beat frequency noise is eliminated by synchronizing the PWM switch frequencies, and demodulation noise is minimized by selection of a switching frequency which does not have harmonics at the carrier frequency of the sensor. The recommended MB PWM system has five synchronized PWMs switching at a non-integer harmonic of the sensor carrier.
A Novel Method of Localization for Moving Objects with an Alternating Magnetic Field
Gao, Xiang; Yan, Shenggang; Li, Bin
2017-01-01
Magnetic detection technology has wide applications in the fields of geological exploration, biomedical treatment, wreck removal and localization of unexploded ordinance. A large number of methods have been developed to locate targets with static magnetic fields, however, the relation between the problem of localization of moving objectives with alternating magnetic fields and the localization with a static magnetic field is rarely studied. A novel method of target localization based on coherent demodulation was proposed in this paper. The problem of localization of moving objects with an alternating magnetic field was transformed into the localization with a static magnetic field. The Levenberg-Marquardt (L-M) algorithm was applied to calculate the position of the target with magnetic field data measured by a single three-component magnetic sensor. Theoretical simulation and experimental results demonstrate the effectiveness of the proposed method. PMID:28430153
NASA Astrophysics Data System (ADS)
Chen, Xiaowang; Feng, Zhipeng
2016-12-01
Planetary gearboxes are widely used in many sorts of machinery, for its large transmission ratio and high load bearing capacity in a compact structure. Their fault diagnosis relies on effective identification of fault characteristic frequencies. However, in addition to the vibration complexity caused by intricate mechanical kinematics, volatile external conditions result in time-varying running speed and/or load, and therefore nonstationary vibration signals. This usually leads to time-varying complex fault characteristics, and adds difficulty to planetary gearbox fault diagnosis. Time-frequency analysis is an effective approach to extracting the frequency components and their time variation of nonstationary signals. Nevertheless, the commonly used time-frequency analysis methods suffer from poor time-frequency resolution as well as outer and inner interferences, which hinder accurate identification of time-varying fault characteristic frequencies. Although time-frequency reassignment improves the time-frequency readability, it is essentially subject to the constraints of mono-component and symmetric time-frequency distribution about true instantaneous frequency. Hence, it is still susceptible to erroneous energy reallocation or even generates pseudo interferences, particularly for multi-component signals of highly nonlinear instantaneous frequency. In this paper, to overcome the limitations of time-frequency reassignment, we propose an improvement with fine time-frequency resolution and free from interferences for highly nonstationary multi-component signals, by exploiting the merits of iterative generalized demodulation. The signal is firstly decomposed into mono-components of constant frequency by iterative generalized demodulation. Time-frequency reassignment is then applied to each generalized demodulated mono-component, obtaining a fine time-frequency distribution. Finally, the time-frequency distribution of each signal component is restored and superposed to get the time-frequency distribution of original signal. The proposed method is validated using both numerical simulated and lab experimental planetary gearbox vibration signals. The time-varying gear fault symptoms are successfully extracted, showing effectiveness of the proposed iterative generalized time-frequency reassignment method in planetary gearbox fault diagnosis under nonstationary conditions.
Qin, Youxiang; Zhang, Junjie
2017-07-10
A novel low complexity and energy-efficient scheme by controlling the toggle-rate of ONU with time-domain amplitude identification is proposed for a heavy load downlink in an intensity-modulation and direct-detection orthogonal frequency division multiplexing passive optical network (IM-DD OFDM-PON). In a conventional OFDM-PON downlink, all ONUs have to perform demodulation for all the OFDM frames in a broadcast way no matter whether the frames are targeted to or not, which causes a huge energy waste. However, in our scheme, the optical network unit (ONU) logical link identifications (LLIDs) are inserted into each downlink OFDM frame in time-domain at the optical line terminal (OLT) side. At the ONU side, the LLID is obtained with a low complexity and high precision amplitude identification method. The ONU sets the toggle-rate of demodulation module to zero when the frames are not targeted to, which avoids unnecessary digital signal processing (DSP) energy consumption. Compared with the sleep-mode methods consisting of clock recovery and synchronization, toggle-rate shows its advantage in fast changing, which is more suitable for the heavy load scenarios. Moreover, for the first time to our knowledge, the characteristics of the proposed scheme are investigated in a real-time IM-DD OFDM system, which performs well at the received optical power as low as -21dBm. The experimental results show that 25.1% energy consumption can be saved in the receiver compared to the conventional configurations.
High resolution signal-processing method for extrinsic Fabry-Perot interferometric sensors
NASA Astrophysics Data System (ADS)
Xie, Jiehui; Wang, Fuyin; Pan, Yao; Wang, Junjie; Hu, Zhengliang; Hu, Yongming
2015-03-01
In this paper, a signal-processing method for optical fiber extrinsic Fabry-Perot interferometric sensors is presented. It achieves both high resolution and absolute measurement of the dynamic change of cavity length with low sampling points in wavelength domain. In order to improve the demodulation accuracy, the reflected interference spectrum is cleared by Discrete Wavelet Transform and adjusted by the Hilbert transform. Then the cavity length is interrogated by the cross correlation algorithm. The continuous tests show the resolution of cavity length is only 36.7 pm. Moreover, the corresponding resolution of cavity length is only 1 pm on the low frequency range below 420 Hz, and the corresponding power spectrum shows the possibility of detecting the ultra-low frequency signals based on spectra detection.
Joint Demodulation of Low-Entropy Narrowband Cochannel Signals
2006-12-01
Linear prediction: A tutorial review,” IEEE Proceedings, vol. 63, pp. 561–580, April 1975. [91] R. G. Brown and P. Y. C. Hwang , Introduction to Random...48 B. SECOND ORDER PREDICTOR . . . . . . . . . . . . . . . . . 49 C. KALMAN FILTER...38 4.1 Prediction algorithm based on the Kalman filter . . . . . . . . . . . . . . . . 52 4.2 self
Advanced Optical Fiber Communication Systems.
1993-02-28
feedback (DFB) laser and a fiber Fabry - Perot (FFP) interferometer for optical frequency discrimination. After the photodetector and amplification, a...filter, an envelope detector, and an integrator; these three components function in tandem as a phase demodulator . We have analyzed the nonlinearities...down-converter and FSK demodulator extract the desired video signals. The measured carrier-to-noise ratio (CNR) at the photodiode must be approximately
Wu, Sheng; Deev, Andrei; Palm, Steve L.; Tang, Yongchun; Goddard, William A.
2010-11-30
A frequency modulated spectroscopy system, including a photo-detector, a band-pass filter to filter the output of the photo-detector, and a rectifier to demodulate. The band-pass filter has a relatively high Q factor. With the high Q factor band-pass filter and rectifier, a reference sinusoid is not required for demodulation, resulting in phase-insensitive spectroscopy. Other embodiments are described and claimed.
Dual Brushless Resolver Rate Sensor
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor)
1997-01-01
A resolver rate sensor is disclosed in which dual brushless resolvers are mechanically coupled to the same output shaft. Diverse inputs are provided to each resolver by providing the first resolver with a DC input and the second resolver with an AC sinusoidal input. A trigonometric identity in which the sum of the squares of the sin and cosine components equal one is used to advantage in providing a sensor of increased accuracy. The first resolver may have a fixed or variable DC input to permit dynamic adjustment of resolver sensitivity thus permitting a wide range of coverage. In one embodiment of the invention the outputs of the first resolver are directly inputted into two separate multipliers and the outputs of the second resolver are inputted into the two separate multipliers, after being demodulated in a pair of demodulator circuits. The multiplied signals are then added in an adder circuit to provide a directional sensitive output. In another embodiment the outputs from the first resolver is modulated in separate modulator circuits and the output from the modulator circuits are used to excite the second resolver. The outputs from the second resolver are demodulated in separate demodulator circuit and added in an adder circuit to provide a direction sensitive rate output.
Optimal Methods for Classification of Digitally Modulated Signals
2013-03-01
of using a ratio of likelihood functions, the proposed approach uses the Kullback - Leibler (KL) divergence. KL...58 List of Acronyms ALRT Average LRT BPSK Binary Shift Keying BPSK-SS BPSK Spread Spectrum or CDMA DKL Kullback - Leibler Information Divergence...blind demodulation for develop classification algorithms for wider set of signals types. Two methodologies were used : Likelihood Ratio Test
High sensitivity rotation sensing based on tunable asymmetrical double-ring structure
NASA Astrophysics Data System (ADS)
Gu, Hong; Liu, Xiaoqing
2017-05-01
A very high sensitivity rotation sensor comprising a tunable asymmetrical double-ring structure (TADRS) coupled by a 3 × 3 coupler is presented. The phase difference caused by the TADRS between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in one cavity is amplified about 1.85 times while attenuated 79% in another. The maximum sensitivity of the TADRS sensor is two times larger than that of a single-ring structure. An experimental system is designed to verify the theoretical results and introduce the method of demodulation. The rotation sensor based on TADRS can enhance the sensitivity of the detection of the angular velocity by more than three orders of magnitude.
Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T. C.; Matsudaira, Paul; Barbastathis, George
2012-01-01
Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, “3D HiLo” where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts. PMID:23262684
Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T C; Matsudaira, Paul; Barbastathis, George
2012-12-03
Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, "3D HiLo" where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts.
Multiple bio-monitoring system using visible light for electromagnetic-wave free indoor healthcare
NASA Astrophysics Data System (ADS)
An, Jinyoung; Pham, Ngoc Quan; Chung, Wan-Young
2017-12-01
In this paper, a multiple biomedical data transmission system with visible light communication (VLC) is proposed for an electromagnetic-wave-free indoor healthcare. VLC technology has emerged as an alternative solution to radio-frequency (RF) wireless systems, due to its various merits, e.g., ubiquity, power efficiency, no RF radiation, and security. With VLC, critical bio-medical signals, including electrocardiography (ECG), can be transmitted in places where RF radiation is restricted. This potential advantage of VLC could save more lives in emergency situations. A time hopping (TH) scheme is employed to transfer multiple medical-data streams in real time with a simple system design. Multiple data streams are transmitted using identical color LEDs and go into an optical detector. The received multiple data streams are demodulated and rearranged using a TH-based demodulator. The medical data is then monitored and managed to provide the necessary medical care for each patient.
Distributed FBG sensors apply in spacecraft health monitoring
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Zhang, Cuicui; Shi, Dele; Shen, Jingshi
2017-10-01
At present, Spacecraft manufacturing face with high adventure for its complicate structure, serious space environment and not maintained on orbit. When something wrong with spacecraft, monitoring its health state, supply health data in real time would assure quickly locate error and save more time to rescue it. For FBG sensor can distributed test several parameters such as temperature, strain, vibration and easily construct net. At same time, it has more advantages such as ant-radiate, anti-jamming, rodent-resistant and with long lifetime, which more fit for applying in space. In this paper, a spacecraft health monitor system based on FBG sensors is present, Firstly, spacecraft health monitor system and its development are introduced. Then a four channels FBG demodulator is design. At last, Temperature and strain detecting experiment is done. The result shows that the demodulator fully satisfied the need of spacecraft health monitor system.
High Frequency Amplitude Detector for GMI Magnetic Sensors
Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul
2014-01-01
A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003
Fiber optic microphone with large dynamic range based on bi-fiber Fabry-Perot cavity
NASA Astrophysics Data System (ADS)
Cheng, Jin; Lu, Dan-feng; Gao, Ran; Qi, Zhi-mei
2017-10-01
In this paper, we report a fiber optic microphone with a large dynamic range. The probe of microphone consists of bi-fiber Fabry-Perot cavity architecture. The wavelength of the working laser is about 1552.05nm. At this wavelength, the interference spectroscopies of these two fiber Fabry-Perot cavities have a quadrature shift. So the outputs of these two fiber Fabry-Perot sensors are orthogonal signal. By using orthogonal signal demodulation method, this microphone can output a signal of acoustic wave. Due to no relationship between output signal and the linear region on interference spectroscopy, the microphones have a large maximum acoustic pressure above 125dB.
Silica-based PLC with heterogeneously-integrated PDs for one-chip DP-QPSK receiver.
Kurata, Yu; Nasu, Yusuke; Tamura, Munehisa; Kasahara, Ryoichi; Aozasa, Shinichi; Mizuno, Takayuki; Yokoyama, Haruki; Tsunashima, Satoshi; Muramoto, Yoshifumi
2012-12-10
To realize a DP-QPSK receiver PLC, we heterogeneously integrated eight high-speed PDs on a silica-based PLC platform with a PBS, 90-degree optical hybrids and a VOA. The use of a 2.5%-Δ waveguide reduced the receiver PLC size to 11 mm x 11 mm. We successfully demonstrated 32 Gbaud DP-QPSK signal demodulation with the receiver PLC.
2011-01-01
based demodulation approach for the measurement of strains, induced by structural vibrations, using Fiber Bragg Gratings ( FBG ). This companion...provide the Frequency Response Functions from a series of FBG arrays attached to a vibrating structure. RELEASE LIMITATION Approved for... FBG arrays attached to a vibrating structure. Both this technical note and its companion technical report are formal contributions to an
Silicon-photonic interferometric biosensor using active phase demodulation
NASA Astrophysics Data System (ADS)
Marin, Y.; Toccafondo, V.; Velha, P.; Scarano, S.; Tirelli, S.; Nottola, A.; Jeong, Y.; Jeon, H. P.; Minunni, M.; Di Pasquale, F.; Oton, C. J.
2018-02-01
Silicon photonics is becoming a consolidated technology, mainly in the telecom/datacom sector, but with a great potential in the chemical and biomedical sensor market too, mainly due to its CMOS compatibility, which allows massfabrication of huge numbers of miniaturized devices at a very low cost per chip. Integrated photonic sensors, typically based on resonators, interferometers, or periodic structures, are easy to multiplex as the light is confined in optical waveguides. In this work, we present a silicon-photonic sensor capable of measuring refractive index and chemical binding of biomolecules on the surface, using a low-cost phase interrogation scheme. The sensor consists of a pair of balanced Mach-Zehnder interferometers with interaction lengths of 2.5 mm and 22 mm, wound to a sensing area of only 500 μm x500 μm. The phase interrogation is performed with a fixed laser and an active phase demodulation approach based on a phase generated carrier (PGC) technique using a phase demodulator integrated within the chip. No laser tuning is required, and the technique can extract the univocal phase value with no sensitivity fading. The detection only requires a photo-receiver per interferometer, analog-to-digital conversion, and simple processing performed in real-time. We present repeatable and linear refractive index measurements, with a detection limit down to 4.7·10-7 RIU. We also present sensing results on a chemically-functionalized sample, where anti-BSA to BSA (bovine serum albumin) binding curves are clearly visible for concentrations down to 5 ppm. Considering the advantages of silicon photonics, this device has great potential over several applications in the chemical/biochemical sensing industry.
NASA Astrophysics Data System (ADS)
Wang, Jianhua; Yang, Yanxi
2018-05-01
We present a new wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry (2-D WTP). First of all, the maximum value point is extracted from two-dimensional wavelet transform coefficient modulus, and the local extreme value points over 90% of maximum value are also obtained, they both constitute wavelet ridge candidates. Then, the gradient of rotate factor is introduced into the Abid's cost function, and the logarithmic Logistic model is used to adjust and improve the cost function weights so as to obtain more reasonable value estimation. At last, the dynamic programming method is used to accurately find the optimal wavelet ridge, and the wrapped phase can be obtained by extracting the phase at the ridge. Its advantage is that, the fringe pattern with low signal-to-noise ratio can be demodulated accurately, and its noise immunity will be better. Meanwhile, only one fringe pattern is needed to projected to measured object, so dynamic three-dimensional (3-D) measurement in harsh environment can be realized. Computer simulation and experimental results show that, for the fringe pattern with noise pollution, the 3-D surface recovery accuracy by the proposed algorithm is increased. In addition, the demodulation phase accuracy of Morlet, Fan and Cauchy mother wavelets are compared.
A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne
NASA Astrophysics Data System (ADS)
Li, Yan-Chao; Wang, Chun-Hui
2012-02-01
In this paper, we propose a novel method of multi-beam laser heterodyne measurement for micro-impulse. The measurement of the micro-impulse, which is converted into the measurement of the small tuning angle of the torsion pendulum, is realized by considering the interaction between pulse laser and working medium. Based on Doppler effect and heterodyne technology, the information regarding the small tuning angle is loaded to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, thereby obtaining many values of the small tuning angle after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, the small tuning angle can be obtained accurately and the value of the micro-impulse can eventually be calculated. Using Polyvinylchlorid+2%C as a working medium, this novel method is used to simulate the value of the micro-impulse by MATLAB which is generated by considering the interaction between the pulse laser and the working medium, the obtained result shows that the relative error of this method is just 0.5%.
Research on fiber Bragg grating heart sound sensing and wavelength demodulation method
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Chang-Yun; Gao, Hua; Gan, Jing-Meng; Li, Hong-Qiang
2010-11-01
Heart sound includes a lot of physiological and pathological information of heart and blood vessel. Heart sound detecting is an important method to gain the heart status, and has important significance to early diagnoses of cardiopathy. In order to improve sensitivity and reduce noise, a heart sound measurement method based on fiber Bragg grating was researched. By the vibration principle of plane round diaphragm, a heart sound sensor structure of fiber Bragg grating was designed and a heart sound sensing mathematical model was established. A formula of heart sound sensitivity was deduced and the theoretical sensitivity of the designed sensor is 957.11pm/KPa. Based on matched grating method, the experiment system was built, by which the excursion of reflected wavelength of the sensing grating was detected and the information of heart sound was obtained. Experiments show that the designed sensor can detect the heart sound and the reflected wavelength variety range is about 70pm. When the sampling frequency is 1 KHz, the extracted heart sound waveform by using the db4 wavelet has the same characteristics with a standard heart sound sensor.
Research on pressure tactile sensing technology based on fiber Bragg grating array
NASA Astrophysics Data System (ADS)
Song, Jinxue; Jiang, Qi; Huang, Yuanyang; Li, Yibin; Jia, Yuxi; Rong, Xuewen; Song, Rui; Liu, Hongbin
2015-09-01
A pressure tactile sensor based on the fiber Bragg grating (FBG) array is introduced in this paper, and the numerical simulation of its elastic body was implemented by finite element software (ANSYS). On the basis of simulation, fiber Bragg grating strings were implanted in flexible silicone to realize the sensor fabrication process, and a testing system was built. A series of calibration tests were done via the high precision universal press machine. The tactile sensor array perceived external pressure, which is demodulated by the fiber grating demodulation instrument, and three-dimension pictures were programmed to display visually the position and size. At the same time, a dynamic contact experiment of the sensor was conducted for simulating robot encountering other objects in the unknown environment. The experimental results show that the sensor has good linearity, repeatability, and has the good effect of dynamic response, and its pressure sensitivity was 0.03 nm/N. In addition, the sensor also has advantages of anti-electromagnetic interference, good flexibility, simple structure, low cost and so on, which is expected to be used in the wearable artificial skin in the future.
Inoue, Takashi; Namiki, Shu
2013-12-02
We find that an adaptive equalizer and a phase-locked loop operating with decision-directed mode exhibit degraded performances when they are used in a digital coherent receiver to demodulate a 16QAM signal with intrinsically distorted constellation, and that the degradation is more significant for the dual-polarization case. We then propose a scheme to correctly demodulate such a distorted 16QAM signal, where the reference constellation and the threshold for the decision are adaptively adjusted such that they fit to the distorted ones. We experimentally confirm the improved performance of the proposed scheme over the conventional one for single-and dual-polarization 16QAM signals with distortion. We also investigate the applicable range of the proposed scheme for the degree of distortion of the signal.
NASA Astrophysics Data System (ADS)
Valis, Tomas; Tapanes, Edward; Liu, Kexing; Measures, Raymond M.
1991-04-01
A strain sensor embedded in composite materials that is intrinsic, all fiber, local, and phase demodulated is described. It is the combination of these necessary elements that represents an advance in the state of the art. Sensor localization is achieved by using a pair of mirror-ended optical fibers of different lengths that are mechanically coupled up until the desired gauge length for common-mode suppression has been reached. This fiber-optic sensor has been embedded in both thermoset (Kevlar/epoxy and graphite/epoxy) and thermoplastic (graphite/PEEK) composite materials in order to make local strain measurements at the lamina level. The all-fiber system uses a 3 x 3 coupler for phase demodulation. Parameters such as strain sensitivity, transverse strain sensitivity, failure strain, and frequency response are discussed, along with applications.
Watanabe, Yuuki; Yamaguchi, Ichirou
2002-08-01
A wavelength-scanning heterodyne interference confocal microscope quickly accomplishes the simultaneous measurement of the thickness and the refractive index of a sample by detection of the amplitude and the phase of the interference signal during a sample scan. However, the measurement range of the optical path difference (OPD) that is obtained from the phase changes is limited by the time response of the phase-locked loop circuit in the FM demodulator. To overcome this limitation and to improve the accuracy of the separation measurement, we propose an OPD detection using digital signal processing with a Hilbert transform. The measurement range is extended approximately five times, and the resolution of the OPD is improved to 5.5 from 9 microm without the electrical noise of the FM demodulator circuit. By applying this method for simultaneous measurement of thickness and the refractive index, we can measure samples 20-30-microm thick with refractive indices between 1 and 1.5.
NASA Astrophysics Data System (ADS)
Watanabe, Yuuki; Yamaguchi, Ichirou
2002-08-01
A wavelength-scanning heterodyne interference confocal microscope quickly accomplishes the simultaneous measurement of the thickness and the refractive index of a sample by detection of the amplitude and the phase of the interference signal during a sample scan. However, the measurement range of the optical path difference (OPD) that is obtained from the phase changes is limited by the time response of the phase-locked loop circuit in the FM demodulator. To overcome this limitation and to improve the accuracy of the separation measurement, we propose an OPD detection using digital signal processing with a Hilbert transform. The measurement range is extended approximately five times, and the resolution of the OPD is improved to 5.5 from 9 mum without the electrical noise of the FM demodulator circuit. By applying this method for simultaneous measurement of thickness and the refractive index, we can measure samples 20-30-mum thick with refractive indices between 1 and 1.5.
Four-quadrant gratings moiré fringe alignment measurement in proximity lithography.
Zhu, Jiangping; Hu, Song; Yu, Junsheng; Zhou, Shaolin; Tang, Yan; Zhong, Min; Zhao, Lixin; Chen, Minyong; Li, Lanlan; He, Yu; Jiang, Wei
2013-02-11
This paper aims to deal with a four-quadrant gratings alignment method benefiting from phase demodulation for proximity lithography, which combines the advantages of interferometry with image processing. Both the mask alignment mark and the wafer alignment mark consist of four sets of gratings, which bring the convenience and simplification of realization for coarse alignment and fine alignment. Four sets of moiré fringes created by superposing the mask alignment mark and the wafer alignment mark are highly sensitive to the misalignment between them. And the misalignment can be easily determined through demodulating the phase of moiré fringe without any external reference. Especially, the period and phase distribution of moiré fringes are unaffected by the gap between the mask and the wafer, not excepting the wavelength of alignment illumination. Disturbance from the illumination can also be negligible, which enhances the technological adaptability. The experimental results bear out the feasibility and rationality of our designed approach.
Ultrasonic speech translator and communications system
Akerman, M.A.; Ayers, C.W.; Haynes, H.D.
1996-07-23
A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.
Methods and apparatuses using filter banks for multi-carrier spread spectrum signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A
2017-01-31
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less
Methods and apparatuses using filter banks for multi-carrier spread spectrum signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A.
2016-06-14
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less
Iterative demodulation and decoding of coded non-square QAM
NASA Technical Reports Server (NTRS)
Li, L.; Divsalar, D.; Dolinar, S.
2003-01-01
Simulation results show that, with iterative demodulation and decoding, coded NS-8QAM performs 0.5 dB better than standard 8QAM and 0.7 dB better than 8PSK at BER= 10(sup -5), when the FEC code is the (15, 11) Hamming code concatenated with a rate-1 accumulator code, while coded NS-32QAM performs 0.25 dB better than standard 32QAM.
Performance Analysis of the Link-16/JTIDS Waveform With Concatenated Coding
2009-09-01
noncoherent demodulation in terms of both required signal power and throughput. 15. NUMBER OF PAGES 101 14. SUBJECT TERMS Link-16/JTIDS, Reed-Solomon...Pulsed-Noise Interference (PNI), Additive White Gaussian Noise (AWGN), coherent detection, noncoherent detection. 16. PRICE CODE 17. SECURITY...than the existing Link-16/JTIDS waveform in both AWGN and PNI, for both coherent and noncoherent demodulation, in terms of both required signal
NASA Technical Reports Server (NTRS)
1978-01-01
The theoretical background for a coherent demodulator for minimum shift keying signals generated by the advanced data collection/position locating system breadboard is presented along with a discussion of the design concept. Various tests and test results, obtained with the breadboard system described, include evaluation of bit-error rate performance, acquisition time, clock recovery, recycle time, frequency measurement accuracy, and mutual interference.
NASA Astrophysics Data System (ADS)
Dua, Rohit; Watkins, Steve E.
2009-03-01
Strain analysis due to vibration can provide insight into structural health. An Extrinsic Fabry-Perot Interferometric (EFPI) sensor under vibrational strain generates a non-linear modulated output. Advanced signal processing techniques, to extract important information such as absolute strain, are required to demodulate this non-linear output. Past research has employed Artificial Neural Networks (ANN) and Fast Fourier Transforms (FFT) to demodulate the EFPI sensor for limited conditions. These demodulation systems could only handle variations in absolute value of strain and frequency of actuation during a vibration event. This project uses an ANN approach to extend the demodulation system to include the variation in the damping coefficient of the actuating vibration, in a near real-time vibration scenario. A computer simulation provides training and testing data for the theoretical output of the EFPI sensor to demonstrate the approaches. FFT needed to be performed on a window of the EFPI output data. A small window of observation is obtained, while maintaining low absolute-strain prediction errors, heuristically. Results are obtained and compared from employing different ANN architectures including multi-layered feedforward ANN trained using Backpropagation Neural Network (BPNN), and Generalized Regression Neural Networks (GRNN). A two-layered algorithm fusion system is developed and tested that yields better results.
Analog signal processing for optical coherence imaging systems
NASA Astrophysics Data System (ADS)
Xu, Wei
Optical coherence tomography (OCT) and optical coherence microscopy (OCM) are non-invasive optical coherence imaging techniques, which enable micron-scale resolution, depth resolved imaging capability. Both OCT and OCM are based on Michelson interferometer theory. They are widely used in ophthalmology, gastroenterology and dermatology, because of their high resolution, safety and low cost. OCT creates cross sectional images whereas OCM obtains en face images. In this dissertation, the design and development of three increasingly complicated analog signal processing (ASP) solutions for optical coherence imaging are presented. The first ASP solution was implemented for a time domain OCT system with a Rapid Scanning Optical Delay line (RSOD)-based optical signal modulation and logarithmic amplifier (Log amp) based demodulation. This OCT system can acquire up to 1600 A-scans per second. The measured dynamic range is 106dB at 200A-scan per second. This OCT signal processing electronics includes an off-the-shelf filter box with a Log amp circuit implemented on a PCB board. The second ASP solution was developed for an OCM system with synchronized modulation and demodulation and compensation for interferometer phase drift. This OCM acquired micron-scale resolution, high dynamic range images at acquisition speeds up to 45,000 pixels/second. This OCM ASP solution is fully custom designed on a perforated circuit board. The third ASP solution was implemented on a single 2.2 mm x 2.2 mm complementary metal oxide semiconductor (CMOS) chip. This design is expandable to a multiple channel OCT system. A single on-chip CMOS photodetector and ASP channel was used for coherent demodulation in a time domain OCT system. Cross-sectional images were acquired with a dynamic range of 76dB (limited by photodetector responsivity). When incorporated with a bump-bonded InGaAs photodiode with higher responsivity, the expected dynamic range is close to 100dB.
Antenna unit and radio base station therewith
Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru
2007-04-10
Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.
Chest-Worn Health Monitor Based on a Bistatic Self-Injection-Locked Radar.
Wang, Fu-Kang; Chou, You-Rung; Chiu, Yen-Chen; Horng, Tzyy-Sheng
2015-12-01
This paper presents wearable health monitors that are based on continuous-wave Doppler radar technology. To achieve low complexity, low power consumption, and simultaneous wireless transmission of Doppler information, the radar architecture is bistatic with a self-injection-locked oscillator (SILO) tag and an injection-locked oscillator (ILO)-based frequency demodulator. In experiments with a prototype that was operated in the medical body area network and the industrial scientific and medical bands from 2.36 to 2.484 GHz, the SILO tag is attached to the chest of a subject to transform the movement of the chest due to cardiopulmonary activity and body exercise into a transmitted frequency-modulated wave. The tag consumes a very low power of 4.4 mW. The ILO-based frequency demodulator, located 30 cm from the subject, receives and processes this wave to yield the waveform that is associated with the movement of the chest. Following further digital signal processing, the cardiopulmonary activity and body exercise are displayed as time-frequency spectrograms. Promisingly, the experimental results that are presented in this paper reveal that the proposed health monitor has high potential to integrate a cardiopulmonary sensor, a pedometer, and a wireless transmission device on a single radar platform.
A Fiber-Optic Interferometric Tri-Component Geophone for Ocean Floor Seismic Monitoring
Chen, Jiandong; Chang, Tianying; Fu, Qunjian; Lang, Jinpeng; Gao, Wenzhi; Wang, Zhongmin; Yu, Miao; Zhang, Yanbo; Cui, Hong-Liang
2016-01-01
For the implementation of an all fiber observation network for submarine seismic monitoring, a tri-component geophone based on Michelson interferometry is proposed and tested. A compliant cylinder-based sensor head is analyzed with finite element method and tested. The operation frequency ranges from 2 Hz to 150 Hz for acceleration detection, employing a phase generated carrier demodulation scheme, with a responsivity above 50 dB re rad/g for the whole frequency range. The transverse suppression ratio is about 30 dB. The system noise at low frequency originated mainly from the 1/f fluctuation, with an average system noise level −123.55 dB re rad/Hz ranging from 0 Hz to 500 Hz. The minimum detectable acceleration is about 2 ng/Hz, and the dynamic range is above 116 dB. PMID:28036011
Distributed acoustic sensing technique and its field trial in SAGD well
NASA Astrophysics Data System (ADS)
Han, Li; He, Xiangge; Pan, Yong; Liu, Fei; Yi, Duo; Hu, Chengjun; Zhang, Min; Gu, Lijuan
2017-10-01
Steam assisted gravity drainage (SAGD) is a very promising way for the development of heavy oil, extra heavy oil and tight oil reservoirs. Proper monitoring of the SAGD operations is essential to avoid operational issues and improve efficiency. Among all the monitoring techniques, micro-seismic monitoring and related interpretation method can give useful information about the steam chamber development and has been extensively studied. Distributed acoustic sensor (DAS) based on Rayleigh backscattering is a newly developed technique that can measure acoustic signal at all points along the sensing fiber. In this paper, we demonstrate a DAS system based on dual-pulse heterodyne demodulation technique and did field trial in SAGD well located in Xinjiang Oilfield, China. The field trail results validated the performance of the DAS system and indicated its applicability in steam-chamber monitoring and hydraulic monitoring.
ROSA: Distributed Joint Routing and Dynamic Spectrum Allocation in Cognitive Radio Ad Hoc Networks
2010-03-01
Aug. 1999. [20] I. N. Psaromiligkos and S. N. Batalama. Rapid Combined Synchronization/Demodulation Structures for DS - CDMA Systems - Part II: Finite...Medley. Rapid Combined Synchronization/Demodulation Structures for DS - CDMA Systems - Part I: Algorithmic developments. IEEE Transactions on...multiple access ( CDMA ) [21][20] al- low concurrent co-located communications so that a message from node i to node j can be correctly received even if
Simple lock-in detection technique utilizing multiple harmonics for digital PGC demodulators.
Duan, Fajie; Huang, Tingting; Jiang, Jiajia; Fu, Xiao; Ma, Ling
2017-06-01
A simple lock-in detection technique especially suited for digital phase-generated carrier (PGC) demodulators is proposed in this paper. It mixes the interference signal with rectangular waves whose Fourier expansions contain multiple odd or multiple even harmonics of the carrier to recover the quadrature components needed for interference phase demodulation. In this way, the use of a multiplier is avoided and the efficiency of the algorithm is improved. Noise performance with regard to light intensity variation and circuit noise is analyzed theoretically for both the proposed technique and the traditional lock-in technique, and results show that the former provides a better signal-to-noise ratio than the latter with proper modulation depth and average interference phase. Detailed simulations were conducted and the theoretical analysis was verified. A fiber-optic Michelson interferometer was constructed and the feasibility of the proposed technique is demonstrated.
NASA Technical Reports Server (NTRS)
Sayegh, S.; Kappes, M.; Thomas, J.; Snyder, J.; Eng, M.; Poklemba, John J.; Steber, M.; House, G.
1991-01-01
To make satellite channels cost competitive with optical cables, the use of small, inexpensive earth stations with reduced antenna size and high powered amplifier (HPA) power will be needed. This will necessitate the use of high e.i.r.p. and gain-to-noise temperature ratio (G/T) multibeam satellites. For a multibeam satellite, onboard switching is required in order to maintain the needed connectivity between beams. This switching function can be realized by either an receive frequency (RF) or a baseband unit. The baseband switching approach has the additional advantage of decoupling the up-link and down-link, thus enabling rate and format conversion as well as improving the link performance. A baseband switching satellite requires the demultiplexing and demodulation of the up-link carriers before they can be switched to their assigned down-link beams. Principles of operation, design and implementation issues of such an onboard demultiplexer/demodulator (bulk demodulator) that was recently built at COMSAT Labs. are discussed.
He, Xiangge; Xie, Shangran; Liu, Fei; Cao, Shan; Gu, Lijuan; Zheng, Xiaoping; Zhang, Min
2017-02-01
We demonstrate a novel type of distributed optical fiber acoustic sensor, with the ability to detect and retrieve actual temporal waveforms of multiple vibration events that occur simultaneously at different positions along the fiber. The system is realized via a dual-pulse phase-sensitive optical time-domain reflectometry, and the actual waveform is retrieved by heterodyne phase demodulation. Experimental results show that the system has a background noise level as low as 8.91×10-4 rad/√Hz with a demodulation signal-to-noise ratio of 49.17 dB at 1 kHz, and can achieve a dynamic range of ∼60 dB at 1 kHz (0.1 to 104 rad) for phase demodulation, as well as a detection frequency range from 20 Hz to 25 kHz.
Concentration sensor based on a tilted fiber Bragg grating for anions monitoring
NASA Astrophysics Data System (ADS)
Melo, L. B.; Rodrigues, J. M. M.; Farinha, A. S. F.; Marques, C. A.; Bilro, L.; Alberto, N.; Tomé, J. P. C.; Nogueira, R. N.
2014-08-01
The ubiquity and importance of anions in many crucial roles accounts for the current high interest in the design and preparation of effective sensors for these species. Therefore, a tilted fiber Bragg grating sensor was fabricated to investigate individual detection of different anion concentrations in ethyl acetate, namely acetate, fluoride and chloride. The influence of the refractive index on the transmission spectrum of a tilted fiber Bragg grating was determined by developing a new demodulation method. This is based on the calculation of the standard deviation between the cladding modes of the transmission spectrum and its smoothing function. The standard deviation method was used to monitor concentrations of different anions. The sensor resolution obtained for the anion acetate, fluoride and chloride is 79 × 10-5 mol/dm3, 119 × 10-5 mol/dm3 and 78 × 10-5 mol/dm3, respectively, within the concentration range of (39-396) × 10-5 mol/dm3.
Method for traceable measurement of LTE signals
NASA Astrophysics Data System (ADS)
Sunder Dash, Soumya; Pythoud, Frederic; Leuchtmann, Pascal; Leuthold, Juerg
2018-04-01
This contribution presents a reference setup to measure the power of the cell-specific resource elements present in downlink long term evolution (LTE) signals in a way that the measurements are traceable to the international system of units. This setup can be used to calibrate the LTE code-selective field probes that are used to measure the radiation of base stations for mobile telephony. It can also be used to calibrate LTE signal generators and receivers. The method is based on traceable scope measurements performed directly at the output of a measuring antenna. It implements offline digital signal processing demodulation algorithms that consider the digital down-conversion, timing synchronization, frequency synchronization, phase synchronization and robust LTE cell identification to produce the downlink time-frequency LTE grid. Experimental results on conducted test scenarios, both single-input-single-output and multiple-input-multiple-output antenna configuration, show promising results confirming measurement uncertainties of the order of 0.05 dB with a coverage factor of 2.
Baseband pulse shaping techniques for nonlinearly amplified pi/4-QPSK and QAM systems
NASA Technical Reports Server (NTRS)
Feher, Kamilo
1991-01-01
A new generation of multi-stage pi/4-shifted QPSK and of superposed quadrature-amplitude-modulated (SQAM) modulators-coherent demodulators (modems) and of continuous phase modulated (CPM)-gaussian premodulation filtered minimum-shift-keying (MGMSK) systems is proposed and studied. These modems will lead to bandwidth and power efficient satellite communications systems designs. As an illustrative application, a baseband processing technique pi/4-controlled transition PSK (pi/4-CTPSK) is described. To develop a cost and power efficient design strategy, we assume that nonlinear, fully saturated high power amplifiers (HPA) are utilized in the satellite earth station transmitter and in the satellite transponder. Modem structures which could lead to application specific integrated circuit (ASIC) satellite on-board processing universal modem applications are also considered. Multistate GMSK (i.e., MGMSK) signal generation methods by means of two or more RF combined nonlinearly amplified SQAM modems and by one multistate (in-phase and quadrature-baseband premodulation filtered-superposed) SQAM architecture and one RF nonlinear amplifier are studied. During the SQAM modem development phase we investigate the potential system advantages of the pi/4-shifted logic. The bandwidth efficiency of the proposed multistate GMSK and baseband filtered PAM-FM modulator (a new class in the CPM family) will be significantly higher than that of conventional G-MSK systems. To optimize the practical P(sub e) = f((E sub b)/(N sub o)) performance we consider improved coherent demodulation MGMSK structures such as deviated-frequency locking coherent demodulators. For relative low bit rate SATCOM applications, e.g., bit rates less than 300 kb/s, phase noise tracking cancellation (for fixed site earth station) and phase noise cancellation as well as Doppler compensation (for satellite to mobile earth station) applications may be required. We study digital channel sounding methods which could cancel the phase noise-caused degradations of CPM and GMSK modems.
Laser anemometry for hot flows
NASA Astrophysics Data System (ADS)
Kugler, P.; Langer, G.
1987-07-01
The fundamental principles, instrumentation, and practical operation of LDA and laser-transit-anemometry systems for measuring velocity profiles and the degree of turbulence in high-temperature flows are reviewed and illustrated with diagrams, drawings and graphs of typical data. Consideration is given to counter, tracker, spectrum-analyzer and correlation methods of LDA signal processing; multichannel analyzer and cross correlation methods for LTA data; LTA results for a small liquid fuel rocket motor; and experiments demonstrating the feasibility of an optoacoustic demodulation scheme for LDA signals from unsteady flows.
Apparatus and Method for Communication over Power Lines
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor); Greer, III, Lawrence C. (Inventor); Nappier, Jennifer M. (Inventor)
2017-01-01
An apparatus and method are provided for communicating over power lines. The apparatus includes a coupling modem that is situated between a power line and a device. The coupling modem is configured to demodulate a signal received from the power line into a sine signal and a cosine signal. The coupling modem is also configured to modulate a communicated bit stream received from the device into a transmitted signal in order to impose the transmitted signal onto the power line.
Apparatus and Method for Communication over Power Lines
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor); Greer, Lawrence C., III (Inventor); Nappier, Jennifer M. (Inventor)
2015-01-01
An apparatus and method are provided for communicating over power lines. The apparatus includes a coupling modem that is situated between a power line and a device. The coupling modem is configured to demodulate a signal received from the power line into a sine signal and a cosine signal. The coupling modem is also configured to modulate a communicated bit stream received from the device into a transmitted signal in order to impose the transmitted signal onto the power line.
Experimental Investigation of Propagation and Reflection Phenomena in Finite Amplitude Sound Beams.
NASA Astrophysics Data System (ADS)
Averkiou, Michalakis Andrea
Measurements of finite amplitude sound beams are compared with theoretical predictions based on the KZK equation. Attention is devoted to harmonic generation and shock formation related to a variety of propagation and reflection phenomena. Both focused and unfocused piston sources were used in the experiments. The nominal source parameters are piston radii of 6-25 mm, frequencies of 1-5 MHz, and focal lengths of 10-20 cm. The research may be divided into two parts: propagation and reflection of continuous-wave focused sound beams, and propagation of pulsed sound beams. In the first part, measurements of propagation curves and beam patterns of focused pistons in water, both in the free field and following reflection from curved targets, are presented. The measurements are compared with predictions from a computer model that solves the KZK equation in the frequency domain. A novel method for using focused beams to measure target curvature is developed. In the second part, measurements of pulsed sound beams from plane pistons in both water and glycerin are presented. Very short pulses (less than 2 cycles), tone bursts (5-30 cycles), and frequency modulated (FM) pulses (10-30 cycles) were measured. Acoustic saturation of pulse propagation in water is investigated. Self-demodulation of tone bursts and FM pulses was measured in glycerin, both in the near and far fields, on and off axis. All pulse measurements are compared with numerical results from a computer code that solves the KZK equation in the time domain. A quasilinear analytical solution for the entire axial field of a self-demodulating pulse is derived in the limit of strong absorption. Taken as a whole, the measurements provide a broad data base for sound beams of finite amplitude. Overall, outstanding agreement is obtained between theory and experiment.
NASA Astrophysics Data System (ADS)
Zhang, Yinan; Huang, Jie; Lan, Xinwei; Yuan, Lei; Xiao, Hai
2014-06-01
This paper presents an approach for simultaneous measurement of temperature and pressure using miniaturized fiber inline sensors. The approach utilizes the cascaded optical fiber inline intrinsic Fabry-Perot interferometer and extrinsic Fabry-Perot interferometer as temperature and pressure sensing elements, respectively. A CO2 laser was used to create a loss between them to balance their reflection power levels. The multiplexed signals were demodulated using a Fast Fourier transform-based wavelength tracking method. Experimental results showed that the sensing system could measure temperature and pressure unambiguously in a pressure range of 0 to 6.895×105 Pa and a temperature range from 20°C to 700°C.
Two laboratory methods for the calibration of GPS speed meters
NASA Astrophysics Data System (ADS)
Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie
2015-01-01
The set-ups of two calibration systems are presented to investigate calibration methods of GPS speed meters. The GPS speed meter calibrated is a special type of high accuracy speed meter for vehicles which uses Doppler demodulation of GPS signals to calculate the measured speed of a moving target. Three experiments are performed: including simulated calibration, field-test signal replay calibration, and in-field test comparison with an optical speed meter. The experiments are conducted at specific speeds in the range of 40-180 km h-1 with the same GPS speed meter as the device under calibration. The evaluation of measurement results validates both methods for calibrating GPS speed meters. The relative deviations between the measurement results of the GPS-based high accuracy speed meter and those of the optical speed meter are analyzed, and the equivalent uncertainty of the comparison is evaluated. The comparison results justify the utilization of GPS speed meters as reference equipment if no fewer than seven satellites are available. This study contributes to the widespread use of GPS-based high accuracy speed meters as legal reference equipment in traffic speed metrology.
Modulation/demodulation techniques for satellite communications. Part 1: Background
NASA Technical Reports Server (NTRS)
Omura, J. K.; Simon, M. K.
1981-01-01
Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.
Wideband FM Demodulation and Multirate Frequency Transformations
2016-12-15
FM signals. 2.2.1 Adaptive Linear Predictive IF Tracking For a pure FM signal, the IF demodulation approach employing adaptive filters was proposed...desired signal. As summarized in [5], the prediction error filter is given by: E (z) = 1− L∑ l=1 goptl z −l, (8) 2 Approved for public release...assumption and the further assumption that the message signal remains es- sentially invariant over the sampling range of the linear prediction filter , we end
Investigation of design considerations for a complex demodulation filter
NASA Technical Reports Server (NTRS)
Stoughton, J. W.
1984-01-01
The digital design of an adaptive digital filter to be employed in the processing of microwave remote sensor data was developed. In particular, a complex demodulation approach was developed to provide narrow band power estimation for a proposed Doppler scatterometer system. This scatterometer was considered for application in the proposed National Oceanographic survey satellite, on an improvement of SEASAT features. A generalized analysis of complex diagrams for the digital architecture component of the proposed system.
NASA Astrophysics Data System (ADS)
Gelmini, E.; Minoni, U.; Docchio, F.
1995-08-01
A double heterodyne interferometric instrument using a tunable synthetic wavelength for the absolute measurements of distance and position is presented. The optical synthetic wavelength is generated by a pair of PZT-tunable diode-pumped Nd:YAG lasers operating at 1.064 μm. Based on a closed-loop scheme, a suitable electronic circuit has been developed to implement the frequency locking of the two lasers. A digital frequency comparator provides an error signal, used to control the slave laser, by comparing the laser beat frequency to a reference oscillator. Demodulation of the superheterodyne signals is obtained by a rf detector followed by low-pass filtering. Distance measurements are obtained by a digital phase meter gauging the phase difference between the demodulated signals from a measuring interferometer and from a reference interferometer. The paper presents the optical and the electronic layouts of the instrument as well as experimental results from a laboratory prototype.
NASA Astrophysics Data System (ADS)
Zhang, Liang; Tian, Ming; Dong, Lei
2017-10-01
In order to improve the detection distance and the sensitivity, we propose a novel distributed optical fiber sensing system. This system is composed of bidirectional pumping fiber Raman amplifier and unbalanced fiber Mach-Zehnder interferometer. Based on the interference mechanism of phase sensitive optical time domain reflectometer (φ-OTDR), the system can get the sensing information of the whole optical fiber by analyzing the backward scattered light. The interferometer is used as the demodulator of the sensing system, which consists of a 3×3 coupler and two faraday rotator mirrors. By means of the demodulator, the signal light is divided into three beams with fixed phase difference. To deal with these three signals, we can get the vibration information directly on the optical fiber. Through experimental study, this system has a high sensitivity. The maximum sensing length and the spatial resolution of the φ-OTDR system are 100 km and 10 m. The signal to noise ratio about 18 dB is achieved.
Bi, Meihua; Xiao, Shilin; He, Hao; Yi, Lilin; Li, Zhengxuan; Li, Jun; Yang, Xuelin; Hu, Weisheng
2013-07-15
We propose a symmetric 40-Gb/s aggregate rate time and wavelength division multiplexed passive optical network (TWDM-PON) system with the capability of simultaneous downstream differential phase shift keying (DPSK) signal demodulation and upstream signal chirp management based on delay interferometer (DI). With the bi-pass characteristic of DI, we experimentally demonstrate the bidirectional transmission of signals at 10-Gb/s per wavelength, and achieve negligible power penalties after 50-km single mode fiber (SMF). For the uplink transmission with DI, a ~11-dB optical power budget improvement at a bit error ratio of 1e-3 is obtained and the extinction ratio (ER) of signal is also improved from 3.4 dB to 13.75 dB. Owing to this high ER, the upstream burst-mode transmitting is successfully presented in term of time-division multiplexing. Moreover, in our experiment, a ~38-dB power budget is obtained to support 256 users with 50-km SMF transmission.
Multichannel demultiplexer/demodulator technologies for future satellite communication systems
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Budinger, James M.; Staples, Edward J.; Abramovitz, Irwin; Courtois, Hector A.
1992-01-01
NASA-Lewis' Space Electronics Div. supports ongoing research in advanced satellite communication architectures, onboard processing, and technology development. Recent studies indicate that meshed VSAT (very small aperture terminal) satellite communication networks using FDMA (frequency division multiple access) uplinks and TDMA (time division multiplexed) downlinks are required to meet future communication needs. One of the critical advancements in such a satellite communication network is the multichannel demultiplexer/demodulator (MCDD). The progress is described which was made in MCDD development using either acousto-optical, optical, or digital technologies.
1980-12-01
A 60 Kiz. A scanning Fabry - Perot etalon was used to measure the frequency spectrum. I -.8 -.4 0 .4 .8 n(O/sec) a 4-mode (expt) / 2-mode(expt) / -- 4...light from one mode into the counter- rotating one is Doppler shifted. In summary, a two-mode ring laser gyro has two counter- Fig. 4. The demodulated ...input rate so that the locking Fig. 4 shows the demodulated beat note versus rotation rate region is avoided. The rotation rate measurement then depends
SAW chirp filter technology for satellite on-board processing applications
NASA Astrophysics Data System (ADS)
Shaw, M. D.; Miller, N. D. J.; Malarky, A. P.; Warne, D. H.
1989-11-01
Market growth in the area of thin route satellite communications services has led to consideration of nontraditional system architectures requiring sophisticated on-board processing functions. Surface acoustic wave (SAW) technology exists today which can provide implementation of key on-board processing subsystems by using multicarrier demodulators. This paper presents a review of this signal processing technology, along with a brief review of dispersive SAW device technology as applied to the implementation of multicarrier demodulators for on-board signal processing.
Design of vibration sensor based on fiber Bragg grating
NASA Astrophysics Data System (ADS)
Zhang, Zhengyi; Liu, Chuntong
2017-12-01
Fiber grating is a kind of new type of fiber optic light source device which has been rapidly changing in the refractive index of the core in recent years. Especially, it can realize the high precision of the external parameters by means of the special structure design and the encapsulation technology [1, 2]. In this paper, a fiber grating vibration sensor which is suitable for vibration monitoring in key areas is designed based on the technical background of vibration monitoring system. The sensor uses a single beam structure and pastes the fiber Bragg grating (FBG) to measure the vibration wavelength on the surface. When the vibration is simply harmonic vibration, the Bragg reflection wavelength will change periodically, and the periodic variation of the wavelength curve can be measured by the fiber grating demodulator, then the correctness of the experimental results is verified. In this paper, through the analysis of the data measured by the demodulator, the MATLAB software is used to verify the data, and the different frequency domains, the modes, and the phase frequency curves are obtained. The measurement range is 0 Hz-100 Hz, and the natural frequency is 90.6 Hz.
Authorship Attribution of Short Messages Using Multimodal Features
2011-03-01
demodulation algorithm, but does say that it has to be able to handle two multipath 27 signals of equal power received at up to 16 µs apart. This...possible with appropriate normalization of the data. The fields of biometrics, image analysis, and handwriting analysis also use diverse feature sets...Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition,” IEEE Transactions on Systems, Man, and Cybernetics
Simplified signal processing for impedance spectroscopy with spectrally sparse sequences
NASA Astrophysics Data System (ADS)
Annus, P.; Land, R.; Reidla, M.; Ojarand, J.; Mughal, Y.; Min, M.
2013-04-01
Classical method for measurement of the electrical bio-impedance involves excitation with sinusoidal waveform. Sinusoidal excitation at fixed frequency points enables wide variety of signal processing options, most general of them being Fourier transform. Multiplication with two quadrature waveforms at desired frequency could be easily accomplished both in analogue and in digital domains, even simplest quadrature square waves can be considered, which reduces signal processing task in analogue domain to synchronous switching followed by low pass filter, and in digital domain requires only additions. So called spectrally sparse excitation sequences (SSS), which have been recently introduced into bio-impedance measurement domain, are very reasonable choice when simultaneous multifrequency excitation is required. They have many good properties, such as ease of generation and good crest factor compared to similar multisinusoids. Typically, the usage of discrete or fast Fourier transform in signal processing step is considered so far. Usage of simplified methods nevertheless would reduce computational burden, and enable simpler, less costly and less energy hungry signal processing platforms. Accuracy of the measurement with SSS excitation when using different waveforms for quadrature demodulation will be compared in order to evaluate the feasibility of the simplified signal processing. Sigma delta modulated sinusoid (binary signal) is considered to be a good alternative for a synchronous demodulation.
M-OTDR sensing system based on 3D encoded microstructures
Sun, Qizhen; Ai, Fan; Liu, Deming; Cheng, Jianwei; Luo, Hongbo; Peng, Kuan; Luo, Yiyang; Yan, Zhijun; Shum, Perry Ping
2017-01-01
In this work, a quasi-distributed sensing scheme named as microstructured OTDR (M-OTDR) by introducing ultra-weak microstructures along the fiber is proposed. Owing to its relative higher reflectivity compared with the backscattered coefficient in fiber and three dimensional (3D) i.e. wavelength/frequency/time encoded property, the M-OTDR system exhibits the superiorities of high signal to noise ratio (SNR), high spatial resolution of millimeter level and high multiplexing capacity up to several ten thousands theoretically. A proof-of-concept system consisting of 64 sensing units is constructed to demonstrate the feasibility and sensing performance. With the help of the demodulation method based on 3D analysis and spectrum reconstruction of the signal light, quasi-distributed temperature sensing with a spatial resolution of 20 cm as well as a measurement resolution of 0.1 °C is realized. PMID:28106132
Transformer partial discharge monitoring based on optical fiber sensing
NASA Astrophysics Data System (ADS)
Wang, Kun; Tong, Xinglin; Zhu, Xiaolong
2014-06-01
The power transformer is the most important equipment of the high voltage power grid, however, some traditional methods of online partial discharge monitoring have some limitations. Based on many advantages of the optical fiber sensing technology, we have done some research on fiber optics Fabry-Perot (FP) sensing which can be useful for the transformer on online partial discharge monitoring. This research aimed at improving the reliability of power system safety monitoring. We have done some work as follows: designing a set for fiber optics FP sensor preparation, according to the fabrication procedure strictly making out the sensors, building a reasonable signal demodulation system for fiber optics FP sensing, doing a preliminary analysis about online partial discharge signal monitoring, including the research on different discharge intensities with the same measuring distance and different measuring distances with the same discharge intensity, and then making a detailed analysis of the experimental results.
Ultrasonic speech translator and communications system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerman, M.A.; Ayers, C.W.; Haynes, H.D.
1996-07-23
A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulatesmore » an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.« less
Ultrasonic speech translator and communications system
Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.
1996-01-01
A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).
Optimal space communications techniques. [all digital phase locked loop for FM demodulation
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1973-01-01
The design, development, and analysis are reported of a digital phase-locked loop (DPLL) for FM demodulation and threshold extension. One of the features of the developed DPLL is its synchronous, real time operation. The sampling frequency is constant and all the required arithmetic and logic operations are performed within one sampling period, generating an output sequence which is converted to analog form and filtered. An equation relating the sampling frequency to the carrier frequency must be satisfied to guarantee proper DPLL operation. The synchronous operation enables a time-shared operation of one DPLL to demodulate several FM signals simultaneously. In order to obtain information about the DPLL performance at low input signal-to-noise ratios, a model of an input noise spike was introduced, and the DPLL equation was solved using a digital computer. The spike model was successful in finding a second order DPLL which yielded a five db threshold extension beyond that of a first order DPLL.
Separation of Intercepted Multi-Radar Signals Based on Parameterized Time-Frequency Analysis
NASA Astrophysics Data System (ADS)
Lu, W. L.; Xie, J. W.; Wang, H. M.; Sheng, C.
2016-09-01
Modern radars use complex waveforms to obtain high detection performance and low probabilities of interception and identification. Signals intercepted from multiple radars overlap considerably in both the time and frequency domains and are difficult to separate with primary time parameters. Time-frequency analysis (TFA), as a key signal-processing tool, can provide better insight into the signal than conventional methods. In particular, among the various types of TFA, parameterized time-frequency analysis (PTFA) has shown great potential to investigate the time-frequency features of such non-stationary signals. In this paper, we propose a procedure for PTFA to separate overlapped radar signals; it includes five steps: initiation, parameterized time-frequency analysis, demodulating the signal of interest, adaptive filtering and recovering the signal. The effectiveness of the method was verified with simulated data and an intercepted radar signal received in a microwave laboratory. The results show that the proposed method has good performance and has potential in electronic reconnaissance applications, such as electronic intelligence, electronic warfare support measures, and radar warning.
Development of a fiber optic pavement subgrade strain measurement system
NASA Astrophysics Data System (ADS)
Miller, Craig Emerson
2000-11-01
This dissertation describes the development of a fiber optic sensing system to measure strains within the soil subgrade of highway pavements resulting from traffic loads. The motivation to develop such a device include improvements to: (1)all phases of pavement design, (2)theoretical models used to predict pavement performance, and (3)pavement rehabilitation. The design of the sensing system encompasses selecting an appropriate transducer design as well as the development of optimal optical and demodulation systems. The first is spring based, which attempts to match its spring stiffness to that of the soil-data indicate it is not an optimal transducer design. The second transducer implements anchoring plates attached to two telescoping tubes which allows the soil to be compacted to a desired density between the plates to dictate the transducer's behavior. Both transducers include an extrinsic Fabry- Perot cavity to impose the soil strains onto a phase change of the optical signal propagating through the cavity. The optical system includes a low coherence source and allows phase modulation via path length stretching by adding a second interferometer in series with the transducer, resulting in a path matched differential interferometer. A digitally implemented synthetic heterodyne demodulator based on a four step phase stepping algorithm is used to obtain unambiguous soil strain information from the displacement of the Fabry-Perot cavity. The demodulator is calibrated and characterized by illuminating the transducer with a second long coherence source of different wavelength. The transducer using anchoring plates is embedded within cylindrical soil specimens of varying soil types and soil moisture contents. Loads are applied to the specimen and resulting strains are measured using the embedded fiber optic gage and LVDTs attached to the surface of the specimen. This experimental verification is substantiated using a finite element analysis to predict any differences between interior and surface strains in the specimens. The experimental data indicate 2-inch diameter anchoring plates embedded in soil close to its optimum moisture content allow for very accurate soil strain measurements.
NASA Astrophysics Data System (ADS)
Vahidi, Vahid; Saberinia, Ebrahim; Regentova, Emma E.
2017-10-01
A channel estimation (CE) method based on compressed sensing (CS) is proposed to estimate the sparse and doubly selective (DS) channel for hyperspectral image transmission from unmanned aircraft vehicles to ground stations. The proposed method contains three steps: (1) the priori estimate of the channel by orthogonal matching pursuit (OMP), (2) calculation of the linear minimum mean square error (LMMSE) estimate of the received pilots given the estimated channel, and (3) estimate of the complex amplitudes and Doppler shifts of the channel using the enhanced received pilot data applying a second round of a CS algorithm. The proposed method is named DS-LMMSE-OMP, and its performance is evaluated by simulating transmission of AVIRIS hyperspectral data via the communication channel and assessing their fidelity for the automated analysis after demodulation. The performance of the DS-LMMSE-OMP approach is compared with that of two other state-of-the-art CE methods. The simulation results exhibit up to 8-dB figure of merit in the bit error rate and 50% improvement in the hyperspectral image classification accuracy.
Varying-energy CT imaging method based on EM-TV
NASA Astrophysics Data System (ADS)
Chen, Ping; Han, Yan
2016-11-01
For complicated structural components with wide x-ray attenuation ranges, conventional fixed-energy computed tomography (CT) imaging cannot obtain all the structural information. This limitation results in a shortage of CT information because the effective thickness of the components along the direction of x-ray penetration exceeds the limit of the dynamic range of the x-ray imaging system. To address this problem, a varying-energy x-ray CT imaging method is proposed. In this new method, the tube voltage is adjusted several times with the fixed lesser interval. Next, the fusion of grey consistency and logarithm demodulation are applied to obtain full and lower noise projection with a high dynamic range (HDR). In addition, for the noise suppression problem of the analytical method, EM-TV (expectation maximization-total Jvariation) iteration reconstruction is used. In the process of iteration, the reconstruction result obtained at one x-ray energy is used as the initial condition of the next iteration. An accompanying experiment demonstrates that this EM-TV reconstruction can also extend the dynamic range of x-ray imaging systems and provide a higher reconstruction quality relative to the fusion reconstruction method.
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Sennott, J. W. (Inventor)
1984-01-01
In a global positioning system (GPS), such as the NAVSTAR/GPS system, wherein the position coordinates of user terminals are obtained by processing multiple signals transmitted by a constellation of orbiting satellites, an acquisition-aiding signal generated by an earth-based control station is relayed to user terminals via a geostationary satellite to simplify user equipment. The aiding signal is FSK modulated on a reference channel slightly offset from the standard GPS channel. The aiding signal identifies satellites in view having best geometry and includes Doppler prediction data as well as GPS satellite coordinates and identification data associated with user terminals within an area being served by the control station and relay satellite. The aiding signal significantly reduces user equipment by simplifying spread spectrum signal demodulation and reducing data processing functions previously carried out at the user terminals.
Optical fiber extrinsic Fabry-Perot interferometer sensors for ultrasound detection
NASA Astrophysics Data System (ADS)
Sun, Qingguo; Chen, Na; Ding, Yuetong; Chen, Zhenyi; Wang, Tingyun
2009-11-01
In this paper, a new method is proposed to fabricate an optical fiber extrinsic Fabry-Perot interferometer (EFPI) as an ultrasonic sensor. An acoustic emission detecting system is constructed based on multiple EFPI sensors and demodulation circuit. Ultrasound detection experiments were done from both traditional piezoelectric transducer (PZT) and high voltage discharge. In the experiments, strong ultrasound signals were detected in both cases. The signal attenuation related to the distance and the angle between the acoustic emission source and the FP sensor are obtained. The results indicate that the receiving angle of the FP sensor is nearly 90° and the maximum detection distance in the air is more than 200cm. Furthermore, four sensors are used to locate the position of the ultrasound source produced by high voltage discharge.
NASA Astrophysics Data System (ADS)
Adachi, Yoshiaki; Oyama, Daisuke
2017-05-01
We developed a two-dimensional imaging method for weak magnetic charge distribution using a commercially available magnetic impedance sensor whose magnetic field resolution is 10 pT/Hz1/2 at 10 Hz. When we applied the vibrating sample magnetometry, giving a minute mechanical vibration to the sample and detecting magnetic signals modulated by the vibration frequency, the effects of 1/f noise and the environmental low-frequency band noise were suppressed, and a weak magnetic charge distribution was obtained without magnetic shielding. Furthermore, improvement in the spatial resolution was also expected when the signals were demodulated at the second harmonic frequency of the vibration. In this paper, a preliminary magnetic charge imaging using the vibrating sample magnetometry and its results are demonstrated.
Gobron, O; Jung, K; Galland, N; Predehl, K; Le Targat, R; Ferrier, A; Goldner, P; Seidelin, S; Le Coq, Y
2017-06-26
Frequency-locking a laser to a spectral hole in rare-earth doped crystals at cryogenic temperature has been shown to be a promising alternative to the use of high finesse Fabry-Perot cavities when seeking a very high short term stability laser (M. J. Thorpe et al., Nature Photonics 5, 688 (2011)). We demonstrate here a novel technique for achieving such stabilization, based on generating a heterodyne beat-note between a master laser and a slave laser whose dephasing caused by propagation near a spectral hole generate the error signal of the frequency lock. The master laser is far detuned from the center of the inhomogeneous absorption profile, and therefore exhibits only limited interaction with the crystal despite a potentially high optical power. The demodulation and frequency corrections are generated digitally with a hardware and software implementation based on a field-programmable gate array and a Software Defined Radio platform, making it straightforward to address several frequency channels (spectral holes) in parallel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Wenhui; Jiang, Yi; Gao, Ran, E-mail: bitjy@bit.edu.cn
A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.
A real-time chirp-coded imaging system with tissue attenuation compensation.
Ramalli, A; Guidi, F; Boni, E; Tortoli, P
2015-07-01
In ultrasound imaging, pulse compression methods based on the transmission (TX) of long coded pulses and matched receive filtering can be used to improve the penetration depth while preserving the axial resolution (coded-imaging). The performance of most of these methods is affected by the frequency dependent attenuation of tissue, which causes mismatch of the receiver filter. This, together with the involved additional computational load, has probably so far limited the implementation of pulse compression methods in real-time imaging systems. In this paper, a real-time low-computational-cost coded-imaging system operating on the beamformed and demodulated data received by a linear array probe is presented. The system has been implemented by extending the firmware and the software of the ULA-OP research platform. In particular, pulse compression is performed by exploiting the computational resources of a single digital signal processor. Each image line is produced in less than 20 μs, so that, e.g., 192-line frames can be generated at up to 200 fps. Although the system may work with a large class of codes, this paper has been focused on the test of linear frequency modulated chirps. The new system has been used to experimentally investigate the effects of tissue attenuation so that the design of the receive compression filter can be accordingly guided. Tests made with different chirp signals confirm that, although the attainable compression gain in attenuating media is lower than the theoretical value expected for a given TX Time-Bandwidth product (BT), good SNR gains can be obtained. For example, by using a chirp signal having BT=19, a 13 dB compression gain has been measured. By adapting the frequency band of the receiver to the band of the received echo, the signal-to-noise ratio and the penetration depth have been further increased, as shown by real-time tests conducted on phantoms and in vivo. In particular, a 2.7 dB SNR increase has been measured through a novel attenuation compensation scheme, which only requires to shift the demodulation frequency by 1 MHz. The proposed method characterizes for its simplicity and easy implementation. Copyright © 2015 Elsevier B.V. All rights reserved.
Flexible black phosphorus ambipolar transistors, circuits and AM demodulator.
Zhu, Weinan; Yogeesh, Maruthi N; Yang, Shixuan; Aldave, Sandra H; Kim, Joon-Seok; Sonde, Sushant; Tao, Li; Lu, Nanshu; Akinwande, Deji
2015-03-11
High-mobility two-dimensional (2D) semiconductors are desirable for high-performance mechanically flexible nanoelectronics. In this work, we report the first flexible black phosphorus (BP) field-effect transistors (FETs) with electron and hole mobilities superior to what has been previously achieved with other more studied flexible layered semiconducting transistors such as MoS2 and WSe2. Encapsulated bottom-gated BP ambipolar FETs on flexible polyimide afforded maximum carrier mobility of about 310 cm(2)/V·s with field-effect current modulation exceeding 3 orders of magnitude. The device ambipolar functionality and high-mobility were employed to realize essential circuits of electronic systems for flexible technology including ambipolar digital inverter, frequency doubler, and analog amplifiers featuring voltage gain higher than other reported layered semiconductor flexible amplifiers. In addition, we demonstrate the first flexible BP amplitude-modulated (AM) demodulator, an active stage useful for radio receivers, based on a single ambipolar BP transistor, which results in audible signals when connected to a loudspeaker or earphone. Moreover, the BP transistors feature mechanical robustness up to 2% uniaxial tensile strain and up to 5000 bending cycles.
Monitoring method and apparatus using high-frequency carrier
Haynes, Howard D.
1996-01-01
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.
Experimentally-Based Ocean Acoustic Propagation and Coherence Studies
2013-09-30
degradation and/or exploitation of available sonic information. OBJECTIVES An objective is to quantify and explain underwater sound fluctuation...focusing did not entirely match the data because of terrain uncertainty. The paper further notes that a rapid drop-off of received sound level from the...covariance functions of complex demodulated signals. The array gain is defined as the signal to noise ratio for coherently added (beam steered) acoustic
NASA Astrophysics Data System (ADS)
Degaudenzi, Riccardo; Vanghi, Vieri
1994-02-01
In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.
Modelling Nonlinear Ultrasound Propagation in Bone
NASA Astrophysics Data System (ADS)
Cleveland, Robin O.; Johnson, Paul A.; Muller, Marie; Talmant, Maryline; Padilla, Frederic; Laugier, Pascal
2006-05-01
Simulations have been carried out to assess the possibility for detecting the nonlinear properties of bone in vivo. We employed a time domain solution to the KZK equation to determine the nonlinear field generated by an unfocussed circular transducer in both cancellous and cortical bone. The results indicate that determining nonlinear properties from the generation of higher harmonics is challenging in both bone types (for propagation distances and source amplitudes appropriate in the body). In cancellous bone this is because the attenuation length scale is very short (about 5 mm) and in cortical bone because the high sound speed and density result in long nonlinear length scales (hundreds of millimeters). An alternative approach to determine the nonlinear properties was considered using self-demodulation of sound. For cancellous bone this may result in a detectable signal although the predicted amplitude of the self-demodulation signal was almost 90 dB below the source level (1 MPa). In cortical bone the self-demodulated signal was even weaker that in cancellous bone (˜110 dB down) and, for a practical length signal, was not easy to separate from the components associated with the source.
Acceleration Strain Transducer
2007-11-05
accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type cavity fiber laser or a distributed feedback fiber laser. In a... Fabry - Perot type fiber laser, the laser cavity is a length of erbium- doped optical fiber with a Bragg grating written in the fiber core at either end of...the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by various methods well known in the
2014-03-27
Access (OFDMA) signal so that jamming effectiveness can be assessed; referred to in this research as Battle Damage Assessment ( BDA ). The research extends...the 802.16 Wireless Metropolitan Area Network (MAN) OFDMA standard, and presents a novel method for performing BDA via observation of Sub Carrier (SC...interferer is also evaluated where the blind demodulator’s performance is degraded. BDA is achieved via observing SC LA modulation behavior of the
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Zhiwen; Miao, Qiang; Zhang, Xin
2018-03-01
A time-frequency analysis method based on ensemble local mean decomposition (ELMD) and fast kurtogram (FK) is proposed for rotating machinery fault diagnosis. Local mean decomposition (LMD), as an adaptive non-stationary and nonlinear signal processing method, provides the capability to decompose multicomponent modulation signal into a series of demodulated mono-components. However, the occurring mode mixing is a serious drawback. To alleviate this, ELMD based on noise-assisted method was developed. Still, the existing environmental noise in the raw signal remains in corresponding PF with the component of interest. FK has good performance in impulse detection while strong environmental noise exists. But it is susceptible to non-Gaussian noise. The proposed method combines the merits of ELMD and FK to detect the fault for rotating machinery. Primarily, by applying ELMD the raw signal is decomposed into a set of product functions (PFs). Then, the PF which mostly characterizes fault information is selected according to kurtosis index. Finally, the selected PF signal is further filtered by an optimal band-pass filter based on FK to extract impulse signal. Fault identification can be deduced by the appearance of fault characteristic frequencies in the squared envelope spectrum of the filtered signal. The advantages of ELMD over LMD and EEMD are illustrated in the simulation analyses. Furthermore, the efficiency of the proposed method in fault diagnosis for rotating machinery is demonstrated on gearbox case and rolling bearing case analyses.
A study of FM threshold extension techniques
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Loch, F. J.
1972-01-01
The characteristics of three postdetection threshold extension techniques are evaluated with respect to the ability of such techniques to improve the performance of a phase lock loop demodulator. These techniques include impulse-noise elimination, signal correlation for the detection of impulse noise, and delta modulation signal processing. Experimental results from signal to noise ratio data and bit error rate data indicate that a 2- to 3-decibel threshold extension is readily achievable by using the various techniques. This threshold improvement is in addition to the threshold extension that is usually achieved through the use of a phase lock loop demodulator.
High precision optical fiber Fabry-Perot sensor for gas pressure detection
NASA Astrophysics Data System (ADS)
Mao, Yan; Tong, Xing-lin
2013-09-01
An optical fiber Fabry-Perot (F-P) sensor with quartz diaphragm for gas pressure testing was designed and fabricated. It consisted of single-mode fiber, hollow glass tube and quartz diaphragm. It uses the double peak demodulation to obtain the initialized cavity length. The variety of cavity length can be calcultated by the single peak demodulation after changing the gas pressure. The results show that the sensor is small in size, whose sensitivity is 19 pm/kPa in the range of the 10 ~ 260 kPa gas pressure. And it has good linearity and repeatability.
Low power electromagnetic flowmeter providing accurate zero set
NASA Technical Reports Server (NTRS)
Fryer, T. B. (Inventor)
1971-01-01
A low power, small size electromagnetic flowmeter system is described which produces a zero output signal for zero flow. The system comprises an air core type electromagnetic flow transducer, a field current supply circuit for the transducer coils and a pre-amplifier and demodulation circuit connected to the output of the transducer. To prevent spurious signals at zero flow, separate, isolated power supplies are provided for the two circuits. The demodulator includes a pair of synchronous rectifiers which are controlled by signals from the field current supply circuit. Pulse transformer connected in front of the synchronous rectifiers provide isolation between the two circuits.
A Novel Multiple-Access Correlation-Delay-Shift-Keying
NASA Astrophysics Data System (ADS)
Duan, J. Y.; Jiang, G. P.; Yang, H.
In Correlation-Delay-Shift-Keying (CDSK), the reference signal and the information-bearing signal are added together during a certain time delay. Because the reference signal is not strictly orthogonal to the information-bearing signal, the cross-correlation between the adjacent chaotic signal (Intra-signal Interference, ISI) will be introduced into the demodulation at the receiver. Therefore, the Bit-Error Ratio (BER) of CDSK is higher than that of Differential-Chaos-Shift-Keying (DCSK). To avoid the ISI component and enhance the BER performance of CDSK in multiuser scenario, Multiple-Access CDSK with No Intra-signal Interference (MA-CDSK-NII) is proposed. By constructing the repeated chaotic generator and applying the Walsh code sequence to modulate the reference signal, in MA-CDSK-NII, the ISI component will be eliminated during the demodulation. Gaussian approximation method is adopted here to obtain the exact performance analysis of MA-CDSK-NII over additive white Gaussian noise (AWGN) channel and Rayleigh multipath fading channels. Results show that, due to no ISI component and lower transmitting power, the BER performance of MA-CDSK-NII can be better than that of multiple-access CDSK and Code-Shifted Differential-Chaos-Shift-Keying (CS-DCSK).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alves, D.; Coelho, R.; Collaboration: JET-EFDA Contributors
2013-08-15
The real-time tracking of instantaneous quantities such as frequency, amplitude, and phase of components immerse in noisy signals has been a common problem in many scientific and engineering fields such as power systems and delivery, telecommunications, and acoustics for the past decades. In magnetically confined fusion research, extracting this sort of information from magnetic signals can be of valuable assistance in, for instance, feedback control of detrimental magnetohydrodynamic modes and disruption avoidance mechanisms by monitoring instability growth or anticipating mode-locking events. This work is focused on nonlinear Kalman filter based methods for tackling this problem. Similar methods have already provenmore » their merits and have been successfully employed in this scientific domain in applications such as amplitude demodulation for the motional Stark effect diagnostic. In the course of this work, three approaches are described, compared, and discussed using magnetic signals from the Joint European Torus tokamak plasma discharges for benchmarking purposes.« less
Unclassified Publications of Lincoln Laboratory, 1 January - 31 December 1991. Volume 17
1991-12-31
FIBER OPTIC ANALOG LINK MS-9183 MS-8873 FABRY - PEROT LASER FIBER OPTIC APPLICATIONS JA-6656 JA-6686 FABRY - PEROT SCANNING FIBER OPTIC LINK JA-6567 MS...8532, MS-9353 FABRY - PEROT SPECTRUM ANALYZER FIBER OPTICS TECHNOLOGY JA-6682 JA-6458 FAR-FIELD BEAM DIVERGENCE FIELD EFFECT TRANSISTORS JA-6505 JA-6662...8734 JA-6604, JA-6680 CRAMER-RAO LOWER BOUND DELAY LINES JA-6461 MS-8890 CROSS-CORRELATION DEMODULATION MS-8734 TR-91 0 CROSSLINK DEPOSITION METHODS JA
High-temperature fiber-optic Fabry-Perot interferometric sensors.
Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu
2015-05-01
A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.
High-temperature fiber-optic Fabry-Perot interferometric sensors
NASA Astrophysics Data System (ADS)
Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu
2015-05-01
A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.
NASA Astrophysics Data System (ADS)
Chatterjee, Julius
This dissertation demonstrates a fiber-optic phase shifted Fabry-Perot interferometer (PS-FPI) as a sensor using modal demultiplexing. Single wavelength Fabry-Perot interferometers suffer from fringe ambiguity and loss of sensitivity at fringe extremes. These hindrances cause it to be a secondary choice when being selected for a measurement task at hand, and more often than not, white light based sensors are selected in favor of the single wavelength Fabry-Perot sensors. This work aims to introduce a technique involving the demultiplexing of the propagating linearly polarized (LP) modes in few mode fibers to obtain two fringe systems from the same sensing cavity. This results in a few-mode interferometer that effectively has two to three orders of magnitude higher perturbation sensitivity than a conventional few mode interferometer for the same sensing region. In this work, two different modal demultiplexing techniques (MD) are used to demodulate the propagating modes and to obtain two fringe sets. These output fringe sets are shifted in phase with respect to each other by a phase shift due to the propagation of the modes in the fiber-optic layout. A method of controlling this phase shift by straining a length of a two mode fiber located separate from the PS-FPI cavity is demonstrated and corresponding changes in phase shifts are shown. The results show a controllable phase shift for both the MD techniques, which is useful in sensing by permitting quadrature demodulation of interferometric fringes and also results in a novel few-mode sensing system having more than two orders of magnitude sensitivity than conventional few-mode devices.
1983-03-01
36*13.2 Implementation .................................................................................. 36 3.3 Cells ...46 4.2 Cells ...56 5.1 Implementation .................................................................................. 57 5.3 Cells
A single active nanoelectromechanical tuning fork front-end radio-frequency receiver
NASA Astrophysics Data System (ADS)
Bartsch, Sebastian T.; Rusu, A.; Ionescu, Adrian M.
2012-06-01
Nanoelectromechanical systems (NEMS) offer the potential to revolutionize fundamental methods employed for signal processing in today’s telecommunication systems, owing to their spectral purity and the prospect of integration with existing technology. In this work we present a novel, front-end receiver topology based on a single device silicon nanoelectromechanical mixer-filter. The operation is demonstrated by using the signal amplification in a field effect transistor (FET) merged into a tuning fork resonator. The combination of both a transistor and a mechanical element into a hybrid unit enables on-chip functionality and performance previously unachievable in silicon. Signal mixing, filtering and demodulation are experimentally demonstrated at very high frequencies ( > 100 MHz), maintaining a high quality factor of Q = 800 and stable operation at near ambient pressure (0.1 atm) and room temperature (T = 300 K). The results show that, ultimately miniaturized, silicon NEMS can be utilized to realize multi-band, single-chip receiver systems based on NEMS mixer-filter arrays with reduced system complexity and power consumption.
An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications.
Bhattacharyya, Mayukh; Gruenwald, Waldemar; Jansen, Dirk; Reindl, Leonhard; Aghassi-Hagmann, Jasmin
2018-05-07
Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μ m CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 m m 2 . The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μ W. The analog part of the design consumes only 36 μ W, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches.
An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications
Gruenwald, Waldemar; Jansen, Dirk; Aghassi-Hagmann, Jasmin
2018-01-01
Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μm CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 mm2. The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μW. The analog part of the design consumes only 36 μW, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches. PMID:29735939
Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator.
Ma, Jun; Wu, Jiande; Wang, Xiaodong
2018-06-04
Aiming at the problems that the incipient fault of rolling bearings is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, taking full advantages of the adaptive segmentation of scale spectrum and Teager energy operator (TEO) demodulation, a new method for early fault feature extraction of rolling bearings based on the modified VMD and Teager energy operator (MVMD-TEO) is proposed. Firstly, the vibration signal of rolling bearings is analyzed by adaptive scale space spectrum segmentation to obtain the spectrum segmentation support boundary, and then the number K of IMFs decomposed by VMD is adaptively determined. Secondly, the original vibration signal is adaptively decomposed into K IMFs, and the effective IMF components are extracted based on the correlation coefficient criterion. Finally, the Teager energy spectrum of the reconstructed signal of the effective IMF components is calculated by the TEO, and then the early fault features of rolling bearings are extracted to realize the fault identification and location. Comparative experiments of the proposed method and the existing fault feature extraction method based on Local Mean Decomposition and Teager energy operator (LMD-TEO) have been implemented using experimental data-sets and a measured data-set. The results of comparative experiments in three application cases show that the presented method can achieve a fairly or slightly better performance than LMD-TEO method, and the validity and feasibility of the proposed method are proved. Copyright © 2018. Published by Elsevier Ltd.
Yin, Jinde; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; Wu, Fan; Ding, Zhenyang
2013-10-01
We propose a new wavelength-division-multiplexing method for extrinsic fiber Fabry-Perot interferometric (EFPI) sensing in a polarized low-coherence interferometer configuration. In the proposed method, multiple LED sources are used with different center wavelengths, and each LED is used by a specific sensing channel, and therefore the spatial frequency of the low-coherence interferogram of each channel can be separated. A bandpass filter is used to extract the low-coherence interferogram of each EFPI channel, and thus the cavity length of each EFPI channel can be identified through demultiplexing. We successfully demonstrate the simultaneous demodulation of EFPI sensors with same nominal cavity length while maintaining high measurement precision.
Monitoring method and apparatus using high-frequency carrier
Haynes, H.D.
1996-04-30
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.
Full wave modulator-demodulator amplifier apparatus. [for generating rectified output signal
NASA Technical Reports Server (NTRS)
Black, J. M. (Inventor)
1974-01-01
A full-wave modulator-demodulator apparatus is described including an operational amplifier having a first input terminal coupled to a circuit input terminal, and a second input terminal alternately coupled to the circuit input terminal. A circuit is ground by a switching circuit responsive to a phase reference signal and the operational amplifier is alternately switched between a non-inverting mode and an inverting mode. The switching circuit includes three field-effect transistors operatively associated to provide the desired switching function in response to an alternating reference signal of the same frequency as an AC input signal applied to the circuit input terminal.
Design and test of a regenerative satellite transmultiplexer
NASA Astrophysics Data System (ADS)
Hung, Kenny King-Ming
1993-05-01
In a multiple access scheme for regenerative satellite communications, the bulk frequency division multiple access (FDMA) uplink signal is demodulated on board the satellite and then remodulated for time division multiplexing (TDM) downlink transmission. Conversion from frequency to time division multiplex format requires that the uplink signal be frequency demultiplexed and each individual carrier be subsequently demodulated. For thin-route application which consists of a large number of channels with fixed data rate, multicarrier demodulation can be accomplished efficiently by a digital transmultiplexer (TMUX) using a fast Fourier transform processor followed by a bank of per-channel processors. A time domain description of the TMUX algorithm is derived which elucidates how the TMUX functions. The per-channel processor performs timing and carrier recovery for optimum and coherent data detection. Timing recovery is necessarily achieved asynchronously by a filter coefficient interpolation. Carrier recovery is performed using an all-digital phase-locked loop. The combination of both timing and carrier loops is investigated for a multi-user system. The performance of the overall system is assessed over a multi-user, additive white Gaussian noise channel for a bit energy to noise power spectral density ratio down to zero dB.
NASA Technical Reports Server (NTRS)
Perez-Peraza, J.; Alvarez-Madrigal, M.; Rivero, F.; Miroshnichenko, L. I.
1985-01-01
The data on source energy spectra of solar cosmic rays (SCR), i.e. the data on the spectrum form and on the absolute SCR are of interest for three reasons: (1) the SCR contain the energy comparable to the total energy of electromagnetic flare radiation (less than or equal to 10 to the 32nd power ergs); (2) the source spectrum form indicates a possible acceleration mechanism (or mechanism); and (3) the accelerated particles are efficiently involved in nuclear electromagnetic and plasma processes in the solar atmosphere. Therefore, the data on SCR source spectra are necessary for a theoretical description of the processes mentioned and for the formulation of the consistent flare model. Below it is attempted to sound solar particle sources by means of SCR energy spectrum obtained near the Sun, at the level of the roots of the interplanetary field lines in the upper solar corona. Data from approx. 60 solar proton events (SPE) between 1956-1981. These data were obtained mainly by the interplanetary demodulation of observed fluxes near the Earth. Further, a model of coronal azimuthal transport is used to demodulate those spectra, and to obtain the source energy spectra.
Bahoura, Messaoud; Clairon, André
2003-11-01
We report a theoretical dynamical analysis on effect of semiconductor laser phase noise on the achievable linewidth when locked to a Fabry-Pérot cavity fringe using a modulation-demodulation frequency stabilization technique such as the commonly used Pound-Drever-Hall frequency locking scheme. We show that, in the optical domain, the modulation-demodulation operation produces, in the presence of semiconductor laser phase noise, two kinds of excess noise, which could be much above the shot noise limit, namely, conversion noise (PM-to-AM) and intermodulation noise. We show that, in typical stabilization conditions, the ultimate semiconductor laser linewidth reduction can be severely limited by the intermodulation excess noise. The modulation-demodulation operation produces the undesirable nonlinear intermodulation effect through which the phase noise spectral components of the semiconductor laser, in the vicinity of even multiples of the modulation frequency, are downconverted into the bandpass of the frequency control loop. This adds a spurious signal, at the modulation frequency, to the error signal and limits the performance of the locked semiconductor laser. This effect, reported initially in the microwave domain using the quasistatic approximation, can be considerably reduced by a convenient choice of the modulation frequency.
NASA Astrophysics Data System (ADS)
Kida, Yukihiro; Shimura, Takuya; Deguchi, Mitsuyasu; Watanabe, Yoshitaka; Ochi, Hiroshi; Meguro, Koji
2017-07-01
In this study, the performance of passive time reversal (PTR) communication techniques in multipath rich underwater acoustic environments is investigated. It is recognized empirically and qualitatively that a large number of multipath arrivals could generally raise the demodulation result of PTR. However, the relationship between multipath and the demodulation result is hardly evaluated quantitatively. In this study, the efficiency of the PTR acoustic communication techniques for multipath interference cancelation was investigated quantitatively by applying a PTR-DFE (decision feed-back filter) scheme to a synthetic dataset of a horizontal underwater acoustic channel. Mainly, in this study, we focused on the relationship between the signal-to-interference ratio (SIR) of datasets and the output signal-to-noise ratio (OSNR) of demodulation results by a parametric study approach. As a result, a proportional relation between SIR and OSNR is confirmed in low-SNR datasets. It was also found that PTR has a performance limitation, that is OSNR converges to a typical value depending on the number of receivers. In conclusion, results indicate that PTR could utilize the multipath efficiently and also withstand the negative effects of multipath interference at a given limitation.
Integrated optic single-ring filter for narrowband phase demodulation
NASA Astrophysics Data System (ADS)
Madsen, C. K.
2017-05-01
Integrated optic notch filters are key building blocks for higher-order spectral filter responses and have been demonstrated in many technology platforms from dielectrics (such as Si3N4) to semiconductors (Si photonics). Photonic-assisted RF processing applications for notch filters include identifying and filtering out high-amplitude, narrowband signals that may be interfering with the desired signal, including undesired frequencies detected in radar and free-space optical links. The fundamental tradeoffs for bandwidth and rejection depth as a function of the roundtrip loss and coupling coefficient are investigated along with the resulting spectral phase response for minimum-phase and maximum-phase responses compared to the critical coupling condition and integration within a Mach Zehnder interferometer. Based on a full width at half maximum criterion, it is shown that maximum-phase responses offer the smallest bandwidths for a given roundtrip loss. Then, a new role for passive notch filters in combination with high-speed electro-optic phase modulation is explored around narrowband phase-to-amplitude demodulation using a single ring operating on one sideband. Applications may include microwave processing and instantaneous frequency measurement (IFM) for radar, space and defense applications.
Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.
Li, Sikun; Su, Xianyu; Chen, Wenjing; Xiang, Liqun
2009-05-01
Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process. Then the zero spectrum is separated from the high-frequency components effectively. Experiments validate the feasibility of this method.
Luo, Yiyang; Xia, Li; Xu, Zhilin; Yu, Can; Sun, Qizhen; Li, Wei; Huang, Di; Liu, Deming
2015-02-09
An optical chaos and hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) based large capacity quasi-distributed sensing network with real-time fiber fault monitoring is proposed. Chirped fiber Bragg grating (CFBG) intensity demodulation is adopted to improve the dynamic range of the measurements. Compared with the traditional sensing interrogation methods in time, radio frequency and optical wavelength domains, the measurand sensing and the precise locating of the proposed sensing network can be simultaneously interrogated by the relative amplitude change (RAC) and the time delay of the correlation peak in the cross-correlation spectrum. Assisted with the WDM/TDM technology, hundreds of sensing units could be potentially multiplexed in the multiple sensing fiber lines. Based on the proof-of-concept experiment for axial strain measurement with three sensing fiber lines, the strain sensitivity up to 0.14% RAC/με and the precise locating of the sensors are achieved. Significantly, real-time fiber fault monitoring in the three sensing fiber lines is also implemented with a spatial resolution of 2.8 cm.
Broadband unidirectional ultrasound propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Dipen N.; Pantea, Cristian
A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystalmore » provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.« less
A low cost Doppler system for vascular dialysis access surveillance.
Molina, P S C; Moraes, R; Baggio, J F R; Tognon, E A
2004-01-01
The National Kidney Foundation guidelines for vascular access recommend access surveillance to avoid morbidity among patients undergoing hemodialysis. Methods to detect access failure based on CW Doppler system are being proposed to implement surveillance programs at lower cost. This work describes a low cost Doppler system implemented in a PC notebook designed to carry out this task. A Doppler board samples the blood flow velocity and delivers demodulated quadrature Doppler signals. These signals are sampled by a notebook sound card. Software for Windows OS (running at the notebook) applies CFFT to consecutive 11.6 ms intervals of Doppler signals. The sonogram is presented on the screen in real time. The software also calculates the maximum and the intensity weighted mean frequency envelopes. Since similar systems employ DSP boards to process the Doppler signals, cost reduction was achieved. The Doppler board electronic circuits and routines to process the Doppler signals are presented.
Development of an FBG Sensor Array for Multi-Impact Source Localization on CFRP Structures.
Jiang, Mingshun; Sai, Yaozhang; Geng, Xiangyi; Sui, Qingmei; Liu, Xiaohui; Jia, Lei
2016-10-24
We proposed and studied an impact detection system based on a fiber Bragg grating (FBG) sensor array and multiple signal classification (MUSIC) algorithm to determine the location and the number of low velocity impacts on a carbon fiber-reinforced polymer (CFRP) plate. A FBG linear array, consisting of seven FBG sensors, was used for detecting the ultrasonic signals from impacts. The edge-filter method was employed for signal demodulation. Shannon wavelet transform was used to extract narrow band signals from the impacts. The Gerschgorin disc theorem was used for estimating the number of impacts. We used the MUSIC algorithm to obtain the coordinates of multi-impacts. The impact detection system was tested on a 500 mm × 500 mm × 1.5 mm CFRP plate. The results show that the maximum error and average error of the multi-impacts' localization are 9.2 mm and 7.4 mm, respectively.
Developments in fiber optics for distribution automation
NASA Technical Reports Server (NTRS)
Kirkham, H.; Friend, H.; Jackson, S.; Johnston, A.
1991-01-01
An optical fiber based communications system of unusual design is described. The system consists of a network of optical fibers overlaid on the distribution system. It is configured as a large number of interconnected rings, with some spurs. Protocols for access to and control of the network are described. Because of the way they function, the protocols are collectively called AbNET, in commemoration of the microbiologists' abbreviation Ab for antibody. Optical data links that could be optically powered are described. There are two versions, each of which has a good frequency response and minimal filtering requirements. In one, a conventional FM pulse train is used at the transmitter, and a novel form of phase-locked loop is used as demodulator. In the other, the FM transmitter is replaced with a pulse generator arranged so that the period between pulses represents the modulating signal. Transmitter and receiver designs, including temperature compensation methods, are presented. Experimental results are given.
NASA Astrophysics Data System (ADS)
Dong, Bo; Han, Ming; Wang, Anbo
2012-06-01
A reliable and low-cost two-wavelength quadrature interrogating method has been developed to demodulate optical signals from diaphragm-based Fabry-Perot interferometric fiber optic sensors for multipoint partial discharge detection in power transformers. Commercial available fused-silica parts (a wafer, a fiber ferrule, and a mating sleeve) and a cleaved optical single mode fiber were bonded together to form an extrinsic Fabry-Perot acoustic sensor. Two lasers with center wavelengths separated by a quarter of the period of sensor interference fringes were used to probe acousticwave- induced diaphragm vibration. A coarse wavelength-division multiplexing (CWDM) add/drop multiplexer was used to separate the reflected two wavelengths before two photo detectors. Optical couplers were used to distribute mixed laser light to each sensor-detector module for multiplexing purpose. Sensor structure, detection system design and experiment results are presented.
A Self-Calibrating Radar Sensor System for Measuring Vital Signs.
Huang, Ming-Chun; Liu, Jason J; Xu, Wenyao; Gu, Changzhan; Li, Changzhi; Sarrafzadeh, Majid
2016-04-01
Vital signs (i.e., heartbeat and respiration) are crucial physiological signals that are useful in numerous medical applications. The process of measuring these signals should be simple, reliable, and comfortable for patients. In this paper, a noncontact self-calibrating vital signs monitoring system based on the Doppler radar is presented. The system hardware and software were designed with a four-tiered layer structure. To enable accurate vital signs measurement, baseband signals in the radar sensor were modeled and a framework for signal demodulation was proposed. Specifically, a signal model identification method was formulated into a quadratically constrained l1 minimization problem and solved using the upper bound and linear matrix inequality (LMI) relaxations. The performance of the proposed system was comprehensively evaluated using three experimental sets, and the results indicated that this system can be used to effectively measure human vital signs.
Potential and Limitations of an Improved Method to Produce Dynamometric Wheels
García de Jalón, Javier
2018-01-01
A new methodology for the estimation of tyre-contact forces is presented. The new procedure is an evolution of a previous method based on harmonic elimination techniques developed with the aim of producing low cost dynamometric wheels. While the original method required stress measurement in many rim radial lines and the fulfillment of some rigid conditions of symmetry, the new methodology described in this article significantly reduces the number of required measurement points and greatly relaxes symmetry constraints. This can be done without compromising the estimation error level. The reduction of the number of measuring radial lines increases the ripple of demodulated signals due to non-eliminated higher order harmonics. Therefore, it is necessary to adapt the calibration procedure to this new scenario. A new calibration procedure that takes into account angular position of the wheel is completely described. This new methodology is tested on a standard commercial five-spoke car wheel. Obtained results are qualitatively compared to those derived from the application of former methodology leading to the conclusion that the new method is both simpler and more robust due to the reduction in the number of measuring points, while contact forces’ estimation error remains at an acceptable level. PMID:29439427
NASA Astrophysics Data System (ADS)
Abdelrhman, Ahmed M.; Sei Kien, Yong; Salman Leong, M.; Meng Hee, Lim; Al-Obaidi, Salah M. Ali
2017-07-01
The vibration signals produced by rotating machinery contain useful information for condition monitoring and fault diagnosis. Fault severities assessment is a challenging task. Wavelet Transform (WT) as a multivariate analysis tool is able to compromise between the time and frequency information in the signals and served as a de-noising method. The CWT scaling function gives different resolutions to the discretely signals such as very fine resolution at lower scale but coarser resolution at a higher scale. However, the computational cost increased as it needs to produce different signal resolutions. DWT has better low computation cost as the dilation function allowed the signals to be decomposed through a tree of low and high pass filters and no further analysing the high-frequency components. In this paper, a method for bearing faults identification is presented by combing Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) with envelope analysis for bearing fault diagnosis. The experimental data was sampled by Case Western Reserve University. The analysis result showed that the proposed method is effective in bearing faults detection, identify the exact fault’s location and severity assessment especially for the inner race and outer race faults.
NASA Astrophysics Data System (ADS)
Saris, Anne E. C. M.; Nillesen, Maartje M.; Lopata, Richard G. P.; de Korte, Chris L.
2013-03-01
Automated segmentation of 3D echocardiographic images in patients with congenital heart disease is challenging, because the boundary between blood and cardiac tissue is poorly defined in some regions. Cardiologists mentally incorporate movement of the heart, using temporal coherence of structures to resolve ambiguities. Therefore, we investigated the merit of temporal cross-correlation for automated segmentation over the entire cardiac cycle. Optimal settings for maximum cross-correlation (MCC) calculation, based on a 3D cross-correlation based displacement estimation algorithm, were determined to obtain the best contrast between blood and myocardial tissue over the entire cardiac cycle. Resulting envelope-based as well as RF-based MCC values were used as additional external force in a deformable model approach, to segment the left-ventricular cavity in entire systolic phase. MCC values were tested against, and combined with, adaptive filtered, demodulated RF-data. Segmentation results were compared with manually segmented volumes using a 3D Dice Similarity Index (3DSI). Results in 3D pediatric echocardiographic images sequences (n = 4) demonstrate that incorporation of temporal information improves segmentation. The use of MCC values, either alone or in combination with adaptive filtered, demodulated RF-data, resulted in an increase of the 3DSI in 75% of the cases (average 3DSI increase: 0.71 to 0.82). Results might be further improved by optimizing MCC-contrast locally, in regions with low blood-tissue contrast. Reducing underestimation of the endocardial volume due to MCC processing scheme (choice of window size) and consequential border-misalignment, could also lead to more accurate segmentations. Furthermore, increasing the frame rate will also increase MCC-contrast and thus improve segmentation.
Digital tracking loops for a programmable digital modem
NASA Technical Reports Server (NTRS)
Poklemba, John J.
1992-01-01
In this paper, an analysis and hardware emulation of the tracking loops for a very flexible programmable digital modem (PDM) will be presented. The modem is capable of being programmed for 2, 4, 8, 16-PSK, 16-QAM, MSK, and Offset-QPSK modulation schemes over a range of data rates from 2.34 to 300 Mbps with programmable spectral occupancy from 1.2 to 1.8 times the symbol rate; these operational parameters are executable in burst or continuous mode. All of the critical processing in both the modulator and demodulator is done at baseband with very high-speed digital hardware and memory. Quadrature analog front-ends are used for translation between baseband and the IF center frequency. The modulator is based on a table lookup approach, where precomputed samples are stored in memory and clocked out according to the incoming data pattern. The sample values are predistorted to counteract the effects of the other filtering functions in the link as well as any transmission impairments. The demodulator architecture was adapted from a joint estimator-detector (JED) mathematical analysis. Its structure is applicable to most signalling formats that can be represented in a two-dimensional space. The JED realization uses interdependent, mutually aiding tracking loops with post-detection data feedback. To expedite and provide for more reliable synchronization, initial estimates for these loops are computed in a parallel acquisition processor. The cornerstone of the demodulator realization is the pre-averager received data filter which allows operation over a broad range of data rates without any hardware changes and greatly simplifies the implementation complexity. The emulation results confirmed tracking loop operation over the entire range of operational parameters listed above, as well as the capability of achieving and maintaining synchronization at BER's in excess of 10(exp -1). The emulation results also showed very close agreement with the tracking loop analysis, and validated the resolution apportionment of the various hardware elements in the tracking loops.
NASA Astrophysics Data System (ADS)
Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu
2016-02-01
We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.
Lamberti, A; Vanlanduit, S; De Pauw, B; Berghmans, F
2014-03-24
Fiber Bragg Gratings (FBGs) can be used as sensors for strain, temperature and pressure measurements. For this purpose, the ability to determine the Bragg peak wavelength with adequate wavelength resolution and accuracy is essential. However, conventional peak detection techniques, such as the maximum detection algorithm, can yield inaccurate and imprecise results, especially when the Signal to Noise Ratio (SNR) and the wavelength resolution are poor. Other techniques, such as the cross-correlation demodulation algorithm are more precise and accurate but require a considerable higher computational effort. To overcome these problems, we developed a novel fast phase correlation (FPC) peak detection algorithm, which computes the wavelength shift in the reflected spectrum of a FBG sensor. This paper analyzes the performance of the FPC algorithm for different values of the SNR and wavelength resolution. Using simulations and experiments, we compared the FPC with the maximum detection and cross-correlation algorithms. The FPC method demonstrated a detection precision and accuracy comparable with those of cross-correlation demodulation and considerably higher than those obtained with the maximum detection technique. Additionally, FPC showed to be about 50 times faster than the cross-correlation. It is therefore a promising tool for future implementation in real-time systems or in embedded hardware intended for FBG sensor interrogation.
Multiple-access relaying with network coding: iterative network/channel decoding with imperfect CSI
NASA Astrophysics Data System (ADS)
Vu, Xuan-Thang; Renzo, Marco Di; Duhamel, Pierre
2013-12-01
In this paper, we study the performance of the four-node multiple-access relay channel with binary Network Coding (NC) in various Rayleigh fading scenarios. In particular, two relay protocols, decode-and-forward (DF) and demodulate-and-forward (DMF) are considered. In the first case, channel decoding is performed at the relay before NC and forwarding. In the second case, only demodulation is performed at the relay. The contributions of the paper are as follows: (1) two joint network/channel decoding (JNCD) algorithms, which take into account possible decoding error at the relay, are developed in both DF and DMF relay protocols; (2) both perfect channel state information (CSI) and imperfect CSI at receivers are studied. In addition, we propose a practical method to forward the relays error characterization to the destination (quantization of the BER). This results in a fully practical scheme. (3) We show by simulation that the number of pilot symbols only affects the coding gain but not the diversity order, and that quantization accuracy affects both coding gain and diversity order. Moreover, when compared with the recent results using DMF protocol, our proposed DF protocol algorithm shows an improvement of 4 dB in fully interleaved Rayleigh fading channels and 0.7 dB in block Rayleigh fading channels.
Downie, John D; Hurley, Jason; Mauro, Yihong
2008-09-29
We experimentally demonstrate uncompensated 8-channel wavelength division multiplexing (WDM) and single channel transmission at 10.7 Gb/s over a 470 km hybrid fiber link with in-line semiconductor optical amplifiers (SOAs). Two different forms of the duobinary modulation format are investigated and compared. Maximum Likelihood Sequence Estimation (MLSE) receiver technology is found to significantly mitigate nonlinear effects from the SOAs and to enable the long transmission, especially for optical duobinary signals derived from differential phase shift keying (DPSK) signals directly detected after narrowband optical filter demodulation. The MLSE also helps to compensate for a non-optimal Fabry-Perot optical filter demodulator.
A proposed technique for the Venus balloon telemetry and Doppler frequency recovery
NASA Technical Reports Server (NTRS)
Jurgens, R. F.; Divsalar, D.
1985-01-01
A technique is proposed to accurately estimate the Doppler frequency and demodulate the digitally encoded telemetry signal that contains the measurements from balloon instruments. Since the data are prerecorded, one can take advantage of noncausal estimators that are both simpler and more computationally efficient than the usual closed-loop or real-time estimators for signal detection and carrier tracking. Algorithms for carrier frequency estimation subcarrier demodulation, bit and frame synchronization are described. A Viterbi decoder algorithm using a branch indexing technique has been devised to decode constraint length 6, rate 1/2 convolutional code that is being used by the balloon transmitter. These algorithms are memory efficient and can be implemented on microcomputer systems.
DETECTOR FOR MODULATED AND UNMODULATED SIGNALS
Patterson, H.H.; Webber, G.H.
1959-08-25
An r-f signal-detecting device is described, which is embodied in a compact coaxial circuit principally comprising a detecting crystal diode and a modulating crystal diode connected in parallel. Incoming modulated r-f signals are demodulated by the detecting crystal diode to furnish an audio input to an audio amplifier. The detecting diode will not, however, produce an audio signal from an unmodulated r-f signal. In order that unmodulated signals may be detected, such incoming signals have a locally produced audio signal superimposed on them at the modulating crystal diode and then the"induced or artificially modulated" signal is reflected toward the detecting diode which in the process of demodulation produces an audio signal for the audio amplifier.
Fundamentals of satellite navigation
NASA Astrophysics Data System (ADS)
Stiller, A. H.
The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.
Fang, Simin; Zhou, Sheng; Wang, Xiaochun; Ye, Qingsheng; Tian, Ling; Ji, Jianjun; Wang, Yanqun
2015-01-01
To design and improve signal processing algorithms of ophthalmic ultrasonography based on FPGA. Achieved three signal processing modules: full parallel distributed dynamic filter, digital quadrature demodulation, logarithmic compression, using Verilog HDL hardware language in Quartus II. Compared to the original system, the hardware cost is reduced, the whole image shows clearer and more information of the deep eyeball contained in the image, the depth of detection increases from 5 cm to 6 cm. The new algorithms meet the design requirements and achieve the system's optimization that they can effectively improve the image quality of existing equipment.
Masoudi, Ali; Belal, Mohammad; Newson, Trevor P
2013-09-01
A Brillouin-based distributed optical fiber dynamic strain sensor is described which converts strain-induced Brillouin frequency shift into optical intensity variations by using an imbalanced Mach-Zhender interferometer. A 3×3 coupler is used at the output of this interferometer to permit differentiate and cross multiply demodulation. The demonstrated sensor is capable of probing dynamic strain disturbances over 2 km of sensing length every 0.5 s up to a strain of 10 mε with an accuracy of ±50 με and spatial resolution of 1.3 m.
All-optical phase discrimination using SOA.
Power, Mark J; Webb, Roderick P; Manning, Robert J
2013-11-04
We describe the first experimental demonstration of a novel all-optical phase discrimination technique, which can separate the two orthogonal phase components of a signal onto different frequencies. This method exploits nonlinear mixing in a semiconductor optical amplifier (SOA) to separate a 10.65 Gbaud QPSK signal into two 10.65 Gb/s BPSK signals which are then demodulated using a delay interferometer (DI). Eye diagrams and spectral measurements verify correct operation and a conversion efficiency greater than 9 dB is observed on both output BPSK channels when compared with the input QPSK signal.
Self-referenced interferometer for cylindrical surfaces.
Šarbort, Martin; Řeřucha, Šimon; Holá, Miroslava; Buchta, Zdeněk; Lazar, Josef
2015-11-20
We present a new interferometric method for shape measurement of hollow cylindrical tubes. We propose a simple and robust self-referenced interferometer where the reference and object waves are represented by the central and peripheral parts, respectively, of the conical wave generated by a single axicon lens. The interferogram detected by a digital camera is characterized by a closed-fringe pattern with a circular carrier. The interference phase is demodulated using spatial synchronous detection. The capabilities of the interferometer are experimentally tested for various hollow cylindrical tubes with lengths up to 600 mm.
NASA Astrophysics Data System (ADS)
Dubnishchev, Yu N.; Chugui, Yu V.; Kompenhans, J.
2009-10-01
The method of laser Doppler visualisation and measurement of the velocity field in gas and liquid flows by suppressing the influence of multiparticle scattering is discussed. The cross section of the flow under study is illuminated by a laser beam transformed by an anamorphic optical system into a laser sheet. The effect of multiparticle scattering is eliminated by obtaining differential combinations of frequency-demodulated images of the laser sheet in different regions of the angular spectrum of scattered light.
(DARPA) Nonlinear Optics at Low Light Levels
2010-05-28
of 104. The receiver modulator, M2 is run in anti-phase to the transmitter modulator so as to demodulate the photon beam and reduce its bandwidth to...spectrum that is wider than 3.5 MHz. After passing through the second phase modulator the anti-Stokes photon is sent through a 65-MHz fiber based Fabry ... Perot filter (Micron Optics) with a free spectral range of 13.6 GHz. If the spectral width of the photon after the second phase modulator is less than
Study on index system of GPS interference effect evaluation
NASA Astrophysics Data System (ADS)
Zhang, Kun; Zeng, Fangling; Zhao, Yuan; Zeng, Ruiqi
2018-05-01
Satellite navigation interference effect evaluation is the key technology to break through the research of Navigation countermeasure. To evaluate accurately the interference degree and Anti-jamming ability of GPS receiver, this text based on the existing research results of Navigation interference effect evaluation, build the index system of GPS receiver effectiveness evaluation from four levels of signal acquisition, tracking, demodulation and positioning/timing and establish the model for each index. These indexes can accurately and quantitatively describe the interference effect at all levels.
Photonic sensors review recent progress of fiber sensing technologies in Tianjin University
NASA Astrophysics Data System (ADS)
Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Li, Enbang; Zhang, Hongxia; Jia, Dagong; Zhang, Yimo
2011-03-01
The up to date progress of fiber sensing technologies in Tianjin University are proposed in this paper. Fiber-optic temperature sensor based on the interference of selective higher-order modes in circular optical fiber is developed. Parallel demodulation for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is realized based on white light interference. Gas concentration detection is realized based on intra-cavity fiber laser spectroscopy. Polarization maintaining fiber (PMF) is used for distributed position or displacement sensing. Based on the before work and results, we gained National Basic Research Program of China on optical fiber sensing technology and will develop further investigation in this area.
Calibration of GPS based high accuracy speed meter for vehicles
NASA Astrophysics Data System (ADS)
Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie
2015-02-01
GPS based high accuracy speed meter for vehicles is a special type of GPS speed meter which uses Doppler Demodulation of GPS signals to calculate the speed of a moving target. It is increasingly used as reference equipment in the field of traffic speed measurement, but acknowledged standard calibration methods are still lacking. To solve this problem, this paper presents the set-ups of simulated calibration, field test signal replay calibration, and in-field test comparison with an optical sensor based non-contact speed meter. All the experiments were carried out on particular speed values in the range of (40-180) km/h with the same GPS speed meter. The speed measurement errors of simulated calibration fall in the range of +/-0.1 km/h or +/-0.1%, with uncertainties smaller than 0.02% (k=2). The errors of replay calibration fall in the range of +/-0.1% with uncertainties smaller than 0.10% (k=2). The calibration results justify the effectiveness of the two methods. The relative deviations of the GPS speed meter from the optical sensor based noncontact speed meter fall in the range of +/-0.3%, which validates the use of GPS speed meter as reference instruments. The results of this research can provide technical basis for the establishment of internationally standard calibration methods of GPS speed meters, and thus ensures the legal status of GPS speed meters as reference equipment in the field of traffic speed metrology.
A Low Cost Single Chip VDL Compatible Transceiver ASIC
NASA Technical Reports Server (NTRS)
Becker, Robert
2004-01-01
Recent trends in commercial communications system components have focussed almost exclusively on cellular telephone technology. As many of the traditional sources of receiver components have discontinued non-cellular telephone products, the designers of avionics and other low volume radio applications find themselves increasingly unable to find highly integrated components. This is particularly true for low power, low cost applications which cannot afford the lavish current consumption of the software defined radio approach increasingly taken by certified device manufacturers. In this paper, we describe a low power transceiver chip targeting applications from low VHF to low UHF frequencies typical of avionics systems. The chip encompasses a selectable single or double conversion design for the receiver and a low power IF upconversion transmitter. All local oscillators are synthesized and integrated into the chip. An on-chip I-Q modulator and demodulator provide baseband modulation and demodulation capability allowing the use of low power, fixed point signal processing components for signal demodulation. The goal of this program is to demonstrate a low cost VDL mode-3 transceiver using this chip to receive text weather information sent using 4-slot TDMA with no support for voice. The data will be sent from an experimental ground station. This work is funded by NASA Glenn Research Center.
Barbaro, V; Bartolini, P; Calcagnini, G; Censi, F; Beard, B; Ruggera, P; Witters, D
2003-06-07
The aim of this study was to investigate the mechanisms by which the radiated radiofrequency (RF) GSM (global system for mobile communication) signal may affect pacemaker (PM) function. We measured the signal at the output of the sensing amplifier of PMs with various configurations of low-pass filters. We used three versions of the same PM model: one with a block capacitor which short circuits high-frequency signals; one with a ceramic feedthrough capacitor, a hermetically sealed mechanism connecting the internal electronics to the external connection block, and one with both. The PMs had been modified to have an electrical shielded connection to the output of the sensing amplifier. For each PM, the output of the sensing amplifier was monitored under exposure to modulated and non-modulated RF signals, and to GSM signals (900 and 1800 MHz). Non-modulated RF signals did not alter the response of the PM sensing amplifier. Modulated RF signals showed that the block capacitor did not succeed in short circuiting the RF signal, which is somehow demodulated by the PM internal non-linear circuit elements. Such a demodulation phenomenon poses a critical problem because digital cellular phones use extremely low-frequency modulation (as low as 2 Hz). which can be mistaken for normal heartbeat.
Fast fringe pattern phase demodulation using FIR Hilbert transformers
NASA Astrophysics Data System (ADS)
Gdeisat, Munther; Burton, David; Lilley, Francis; Arevalillo-Herráez, Miguel
2016-01-01
This paper suggests the use of FIR Hilbert transformers to extract the phase of fringe patterns. This method is computationally faster than any known spatial method that produces wrapped phase maps. Also, the algorithm does not require any parameters to be adjusted which are dependent upon the specific fringe pattern that is being processed, or upon the particular setup of the optical fringe projection system that is being used. It is therefore particularly suitable for full algorithmic automation. The accuracy and validity of the suggested method has been tested using both computer-generated and real fringe patterns. This novel algorithm has been proposed for its advantages in terms of computational processing speed as it is the fastest available method to extract the wrapped phase information from a fringe pattern.
Adaptive fault feature extraction from wayside acoustic signals from train bearings
NASA Astrophysics Data System (ADS)
Zhang, Dingcheng; Entezami, Mani; Stewart, Edward; Roberts, Clive; Yu, Dejie
2018-07-01
Wayside acoustic detection of train bearing faults plays a significant role in maintaining safety in the railway transport system. However, the bearing fault information is normally masked by strong background noises and harmonic interferences generated by other components (e.g. axles and gears). In order to extract the bearing fault feature information effectively, a novel method called improved singular value decomposition (ISVD) with resonance-based signal sparse decomposition (RSSD), namely the ISVD-RSSD method, is proposed in this paper. A Savitzky-Golay (S-G) smoothing filter is used to filter singular vectors (SVs) in the ISVD method as an extension of the singular value decomposition (SVD) theorem. Hilbert spectrum entropy and a stepwise optimisation strategy are used to optimize the S-G filter's parameters. The RSSD method is able to nonlinearly decompose the wayside acoustic signal of a faulty train bearing into high and low resonance components, the latter of which contains bearing fault information. However, the high level of noise usually results in poor decomposition results from the RSSD method. Hence, the collected wayside acoustic signal must first be de-noised using the ISVD component of the ISVD-RSSD method. Next, the de-noised signal is decomposed by using the RSSD method. The obtained low resonance component is then demodulated with a Hilbert transform such that the bearing fault can be detected by observing Hilbert envelope spectra. The effectiveness of the ISVD-RSSD method is verified through both laboratory field-based experiments as described in the paper. The results indicate that the proposed method is superior to conventional spectrum analysis and ensemble empirical mode decomposition methods.
Error compensation of IQ modulator using two-dimensional DFT
NASA Astrophysics Data System (ADS)
Ohshima, Takashi; Maesaka, Hirokazu; Matsubara, Shinichi; Otake, Yuji
2016-06-01
It is important to precisely set and keep the phase and amplitude of an rf signal in the accelerating cavity of modern accelerators, such as an X-ray Free Electron Laser (XFEL) linac. In these accelerators an acceleration rf signal is generated or detected by an In-phase and Quadrature (IQ) modulator, or a demodulator. If there are any deviations of the phase and the amplitude from the ideal values, crosstalk between the phase and the amplitude of the output signal of the IQ modulator or the demodulator arises. This causes instability of the feedback controls that simultaneously stabilize both the rf phase and the amplitude. To compensate for such deviations, we developed a novel compensation method using a two-dimensional Discrete Fourier Transform (DFT). Because the observed deviations of the phase and amplitude of an IQ modulator involve sinusoidal and polynomial behaviors on the phase angle and the amplitude of the rf vector, respectively, the DFT calculation with these basis functions makes a good approximation with a small number of compensation coefficients. Also, we can suppress high-frequency noise components arising when we measure the deviation data. These characteristics have advantages compared to a Look Up Table (LUT) compensation method. The LUT method usually demands many compensation elements, such as about 300, that are not easy to treat. We applied the DFT compensation method to the output rf signal of a C-band IQ modulator at SACLA, which is an XFEL facility in Japan. The amplitude deviation of the IQ modulator after the DFT compensation was reduced from 15.0% at the peak to less than 0.2% at the peak for an amplitude control range of from 0.1 V to 0.9 V (1.0 V full scale) and for a phase control range from 0 degree to 360 degrees. The number of compensation coefficients is 60, which is smaller than that of the LUT method, and is easy to treat and maintain.
Advanced technology satellite demodulator development
NASA Technical Reports Server (NTRS)
Ames, Stephen A.
1989-01-01
Ford Aerospace has developed a proof-of-concept satellite 8 phase shift keying (PSK) modulation and coding system operating in the Time Division Multiple Access (TDMA) mode at a data range of 200 Mbps using rate 5/6 forward error correction coding. The 80 Msps 8 PSK modem was developed in a mostly digital form and is amenable to an ASIC realization in the next phase of development. The codec was developed as a paper design only. The power efficiency goal was to be within 2 dB of theoretical at a bit error rate (BER) of 5x10(exp 7) while the measured implementation loss was 4.5 dB. The bandwidth efficiency goal was 2 bits/sec/Hz while the realized bandwidth efficiency was 1.8 bits/sec/Hz. The burst format used a preamble of only 40 8 PSK symbol times including 32 symbols of all zeros and an eight symbol unique word. The modem and associated special test equipment (STE) were fabricated mostly on a specially designed stitch-weld board although a few of the highest rate circuits were built on printed circuit cards. All the digital circuits were ECL to support the clock rates of from 80 MHz to 360 MHz. The transmitter and receiver matched filters were square-root Nyquist bandpass filters realized at the 3.37 GHz i.f. The modem operated as a coherent system although no analog phase locked (PLL) loop was employed. Within the budgetary constraints of the program, the approach to the demodulator has been proven and is eligible to proceed to the next phase of development of a satellite demodulator engineering model. This would entail the development of an ASIC version of the digital portion of the demodulator, and MMIC version of the quadrature detector, and SAW Nyquist filters to realize the bandwidth efficiency.
Digital coherent receiver based transmitter penalty characterization.
Geisler, David J; Kaufmann, John E
2016-12-26
For optical communications links where receivers are signal-power-starved, such as through free-space, it is important to design transmitters and receivers that can operate as close as practically possible to theoretical limits. A total system penalty is typically assessed in terms of how far the end-to-end bit-error rate (BER) is from these limits. It is desirable, but usually difficult, to determine the division of this penalty between the transmitter and receiver. This paper describes a new rigorous and computationally based method that isolates which portion of the penalty can be assessed against the transmitter. There are two basic parts to this approach: (1) use of a coherent optical receiver to perform frequency down-conversion of a transmitter's optical signal waveform to the electrical domain, preserving both optical field amplitude and phase information, and (2): software-based analysis of the digitized electrical waveform. The result is a single numerical metric that quantifies how close a transmitter's signal waveform is to the ideal, based on its BER performance with a perfect software-defined matched-filter receiver demodulator. A detailed description of applying the proposed methodology to the waveform characterization of an optical burst-mode differential phase-shifted keying (DPSK) transmitter is experimentally demonstrated.
A continuous-wave ultrasound system for displacement amplitude and phase measurement.
Finneran, James J; Hastings, Mardi C
2004-06-01
A noninvasive, continuous-wave ultrasonic technique was developed to measure the displacement amplitude and phase of mechanical structures. The measurement system was based on a method developed by Rogers and Hastings ["Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated," U.S. Patent No. 4,819,643 (1989)] and expanded to include phase measurement. A low-frequency sound source was used to generate harmonic vibrations in a target of interest. The target was simultaneously insonified by a low-power, continuous-wave ultrasonic source. Reflected ultrasound was phase modulated by the target motion and detected with a separate ultrasonic transducer. The target displacement amplitude was obtained directly from the received ultrasound frequency spectrum by comparing the carrier and sideband amplitudes. Phase information was obtained by demodulating the received signal using a double-balanced mixer and low-pass filter. A theoretical model for the ultrasonic receiver field is also presented. This model coupled existing models for focused piston radiators and for pulse-echo ultrasonic fields. Experimental measurements of the resulting receiver fields compared favorably with theoretical predictions.
NASA Astrophysics Data System (ADS)
Li, Cheng; Peng, Xiaobin; Liu, Qianwen; Gan, Xin; Lv, Ruitao; Fan, Shangchun
2017-02-01
Thickness measurement plays an important role for characterizing optomechanical behaviors of graphene. From the view of graphene-based Fabry-Perot (F-P) sensors, a simple, nondestructive and in situ method of determining the thickness of nanothick graphene membranes was demonstrated by using optical fiber F-P interference. Few-layer/multilayer graphene sheets were suspendedly adhered onto the endface of a ferrule with a 125 µm inner diameter by van der Waals interactions to construct micro F-P cavities. Along with the Fresnel’s law and complex index of refraction of the membrane working as a light reflector of an F-P interferometer, the optical reflectivity of graphene was modeled to investigate the effects of light wavelength and temperature. Then the average thickness of graphene membranes were extracted by F-P interference demodulation, and yielded a very strong cross-correlation coefficient of 99.95% with the experimental results observed by Raman spectrum and atomic force microscope. The method could be further extended for determining the number of layers of other 2D materials.
Scannerless loss modulated flash color range imaging
Sandusky, John V [Albuquerque, NM; Pitts, Todd Alan [Rio Rancho, NM
2008-09-02
Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.
Scannerless loss modulated flash color range imaging
Sandusky, John V [Albuquerque, NM; Pitts, Todd Alan [Rio Rancho, NM
2009-02-24
Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.
A comparative analysis of frequency modulation threshold extension techniques
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Loch, F. J.
1970-01-01
FM threshold extension for system performance improvement, comparing impulse noise elimination, correlation detection and delta modulation signal processing techniques implemented at demodulator output
Microgyroscope with closed loop output
NASA Technical Reports Server (NTRS)
Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor); Cargille, Donald R. (Inventor)
2002-01-01
A micro-gyroscope (10) having closed loop operation by a control voltage (V.sub.TY), that is demodulated by an output signal of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis). The present invention provides wide-band, closed-loop operation for a micro-gyroscope (10) and allows the drive frequency to be closely tuned to a high Q sense axis resonance. A differential sense signal (S1-S2) is compensated and fed back by differentially changing the voltage on the drive electrodes to rebalance Coriolis torque. The feedback signal is demodulated in phase with the drive axis signal (K.sub..omega..crclbar..sub.x) to produce a measure of the Coriolis force.
LDPC-PPM Coding Scheme for Optical Communication
NASA Technical Reports Server (NTRS)
Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael
2009-01-01
In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.
Human heart failure biomarker immunosensor based on excessively tilted fiber gratings.
Luo, Binbin; Wu, Shengxi; Zhang, Zhonghao; Zou, Wengen; Shi, Shenghui; Zhao, Mingfu; Zhong, Nianbing; Liu, Yong; Zou, Xue; Wang, Lingling; Chai, Weina; Hu, Chuanmin; Zhang, Lin
2017-01-01
A label-free immunosensor platform based on excessively tilted fiber gratings (Ex-TFGs) was developed for highly specific and fast detection of human N-terminal pro-B-type natriuretic peptide (NT-proBNP), which is considered a powerful biomarker for prognosis and risk stratification of heart failure (HF). High-purity anti-NT-proBNP monoclonal antibodies (MAbs) prepared in our laboratory were immobilized on fiber surface through the staphylococcal protein A (SPA) method for subsequent specific binding of the targeted NT-proBNP. Utilizing fiber optic grating demodulation system (FOGDS), immunoassays were carried out in vitro by monitoring the resonance wavelength shift of Ex-TFG biosensor with immobilized anti-NT-proBNP MAbs. Lowest detectable concentration of ~0.5ng/mL for NT-proBNP was obtained, and average sensitivity for NT-proBNP at a concentration range of 0~1.0 ng/mL was approximately 45.967 pm/(ng/mL). Several human serum samples were assessed by the proposed Ex-TFG biomarker sensor, with high specificity for NT-proBNP, indicating potential application in early diagnosing patients with acute HF symptoms.
Phase editing as a signal pre-processing step for automated bearing fault detection
NASA Astrophysics Data System (ADS)
Barbini, L.; Ompusunggu, A. P.; Hillis, A. J.; du Bois, J. L.; Bartic, A.
2017-07-01
Scheduled maintenance and inspection of bearing elements in industrial machinery contributes significantly to the operating costs. Savings can be made through automatic vibration-based damage detection and prognostics, to permit condition-based maintenance. However automation of the detection process is difficult due to the complexity of vibration signals in realistic operating environments. The sensitivity of existing methods to the choice of parameters imposes a requirement for oversight from a skilled operator. This paper presents a novel approach to the removal of unwanted vibrational components from the signal: phase editing. The approach uses a computationally-efficient full-band demodulation and requires very little oversight. Its effectiveness is tested on experimental data sets from three different test-rigs, and comparisons are made with two state-of-the-art processing techniques: spectral kurtosis and cepstral pre- whitening. The results from the phase editing technique show a 10% improvement in damage detection rates compared to the state-of-the-art while simultaneously improving on the degree of automation. This outcome represents a significant contribution in the pursuit of fully automatic fault detection.
NASA Astrophysics Data System (ADS)
Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen
2017-04-01
We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.
Application of fiber Bragg grating sensors to real-time strain measurement of cryogenic tanks
NASA Astrophysics Data System (ADS)
Takeda, Nobuo; Mizutani, Tadahito; Hayashi, Kentaro; Okabe, Yoji
2003-08-01
Although many researches of strain measurement using fiber Bragg grating (FBG) sensors were conducted, there were few applications of FBG sensors to spacecraft in operation. It is very significant to develop an onboard system for the real-time strain measurement during the flight operation. In the present research, the real-time strain measurement of a composite liquid hydrogen (LH2) tank, which consisted of CFRP and aluminum liner, was attempted. Adhesive property of the FBG sensors was investigated first of all. As a result, UV coated FBG sensors and polyurethane adhesive were adopted. Then, reflection spectra from FBG sensors were measured through the tensile test at liquid helium (LHe) temperature. Since the center wavelength shifted in proportion to the applied strain, the FBG sensor was suitable as a precise strain sensor even at LHe temperature. Next, the development of an onboard FBG demodulator was discussed. This onboard demodulator was designed for weight saving to be mounted on a reusable rocket vehicle test (RVT) operated by the Institute of Space and Astronautical Science (ISAS). FBG sensors were bonded on the surface of the composite LH2 tank for the RVT. Then, strain measurement using the onboard demodulator was conducted through the cryogenic pressure test of the tank and compared with the result measured using the optical spectrum analyzer (OSA).
40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission.
Kanno, Atsushi; Inagaki, Keizo; Morohashi, Isao; Sakamoto, Takahide; Kuri, Toshiaki; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Kitayama, Ken-ichi
2011-12-12
The generation of a 40-Gb/s 16-QAM radio-over-fiber (RoF) signal and its demodulation of the wireless signal transmitted over free space of 30 mm in W-band (75-110 GHz) is demonstrated. The 16-QAM signal is generated by a coherent polarization synthesis method using a dual-polarization QPSK modulator. A combination of the simple RoF generation and the versatile digital receiver technique is suitable for the proposed coherent optical/wireless seamless network. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Li, L.; Tong, X. L.; Zhou, C. M.; Wen, H. Q.; Lv, D. J.; Ling, K.; Wen, C. S.
2011-03-01
A sensor has been fabricated by the integration of a fiber Bragg gating sensor (FBGs) with a fiber Fabry-Perot (F-P) sensor fabricated by etching method. In the integrated sensor, the FBG was used to measure temperature, while the fiber Fabry-Perot interferometer sensor (FFPIs) was used for strain measurement. Wavelength decoding for FBG and peak tracking for FFPI was employed for demodulation, respectively. The result showed that the temperature and strain sensitivity for the integrated sensor is ~ 2.7 pm/ μɛand ~ 9.3 pm/°C, respectively.
Han, Ming; Wang, Anbo
2006-05-01
Theoretical and experimental results have shown that mode power distribution (MPD) variations could significantly vary the phase of spectral fringes from multimode fiber extrinsic Fabry-Perot interferometric (MMF-EFPI) sensor systems, owing to the fact that different modes introduce different extra phase shifts resulting from the coupling of modes reflected at the second surface to the lead-in fiber end. This dependence of fringe pattern on MPD could cause measurement errors in signal demodulation methods of white-light MMF-EFPI sensors that implement the phase information of the fringes.
A 2D spiral turbo-spin-echo technique.
Li, Zhiqiang; Karis, John P; Pipe, James G
2018-03-09
2D turbo-spin-echo (TSE) is widely used in the clinic for neuroimaging. However, the long refocusing radiofrequency pulse train leads to high specific absorption rate (SAR) and alters the contrast compared to conventional spin-echo. The purpose of this work is to develop a robust 2D spiral TSE technique for fast T 2 -weighted imaging with low SAR and improved contrast. A spiral-in/out readout is incorporated into 2D TSE to fully take advantage of the acquisition efficiency of spiral sampling while avoiding potential off-resonance-related artifacts compared to a typical spiral-out readout. A double encoding strategy and a signal demodulation method are proposed to mitigate the artifacts because of the T 2 -decay-induced signal variation. An adapted prescan phase correction as well as a concomitant phase compensation technique are implemented to minimize the phase errors. Phantom data demonstrate the efficacy of the proposed double encoding/signal demodulation, as well as the prescan phase correction and concomitant phase compensation. Volunteer data show that the proposed 2D spiral TSE achieves fast scan speed with high SNR, low SAR, and improved contrast compared to conventional Cartesian TSE. A robust 2D spiral TSE technique is feasible and provides a potential alternative to conventional 2D Cartesian TSE for T 2 -weighted neuroimaging. © 2018 International Society for Magnetic Resonance in Medicine.
LIDAR pulse coding for high resolution range imaging at improved refresh rate.
Kim, Gunzung; Park, Yongwan
2016-10-17
In this study, a light detection and ranging system (LIDAR) was designed that codes pixel location information in its laser pulses using the direct- sequence optical code division multiple access (DS-OCDMA) method in conjunction with a scanning-based microelectromechanical system (MEMS) mirror. This LIDAR can constantly measure the distance without idle listening time for the return of reflected waves because its laser pulses include pixel location information encoded by applying the DS-OCDMA. Therefore, this emits in each bearing direction without waiting for the reflected wave to return. The MEMS mirror is used to deflect and steer the coded laser pulses in the desired bearing direction. The receiver digitizes the received reflected pulses using a low-temperature-grown (LTG) indium gallium arsenide (InGaAs) based photoconductive antenna (PCA) and the time-to-digital converter (TDC) and demodulates them using the DS-OCDMA. When all of the reflected waves corresponding to the pixels forming a range image are received, the proposed LIDAR generates a point cloud based on the time-of-flight (ToF) of each reflected wave. The results of simulations performed on the proposed LIDAR are compared with simulations of existing LIDARs.
Optimization of an integrated wavelength monitor device
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Farrell, Gerald
2011-05-01
In this paper an edge filter based on multimode interference in an integrated waveguide is optimized for a wavelength monitoring application. This can also be used as a demodulation element in a fibre Bragg grating sensing system. A global optimization algorithm is presented for the optimum design of the multimode interference device, including a range of parameters of the multimode waveguide, such as length, width and position of the input and output waveguides. The designed structure demonstrates the desired spectral response for wavelength measurements. Fabrication tolerance is also analysed numerically for this structure.
NASA Astrophysics Data System (ADS)
Tian, Xiange; Xi Gu, James; Rehab, Ibrahim; Abdalla, Gaballa M.; Gu, Fengshou; Ball, A. D.
2018-02-01
Envelope analysis is a widely used method for rolling element bearing fault detection. To obtain high detection accuracy, it is critical to determine an optimal frequency narrowband for the envelope demodulation. However, many of the schemes which are used for the narrowband selection, such as the Kurtogram, can produce poor detection results because they are sensitive to random noise and aperiodic impulses which normally occur in practical applications. To achieve the purposes of denoising and frequency band optimisation, this paper proposes a novel modulation signal bispectrum (MSB) based robust detector for bearing fault detection. Because of its inherent noise suppression capability, the MSB allows effective suppression of both stationary random noise and discrete aperiodic noise. The high magnitude features that result from the use of the MSB also enhance the modulation effects of a bearing fault and can be used to provide optimal frequency bands for fault detection. The Kurtogram is generally accepted as a powerful means of selecting the most appropriate frequency band for envelope analysis, and as such it has been used as the benchmark comparator for performance evaluation in this paper. Both simulated and experimental data analysis results show that the proposed method produces more accurate and robust detection results than Kurtogram based approaches for common bearing faults under a range of representative scenarios.
The Mariner Venus Mercury flight data subsystem.
NASA Technical Reports Server (NTRS)
Whitehead, P. B.
1972-01-01
The flight data subsystem (FDS) discussed handles both the engineering and scientific measurements performed on the MVM'73. It formats the data into serial data streams, and sends it to the modulation/demodulation subsystem for transmission to earth or to the data storage subsystem for storage on a digital tape recorder. The FDS is controlled by serial digital words, called coded commands, received from the central computer sequencer of from the ground via the modulation/demodulation subsystem. The eight major blocks of the FDS are: power converter, timing and control, engineering data, memory, memory input/output and control, nonimaging data, imaging data, and data output. The FDS incorporates some 4000 components, weighs 17 kg, and uses 35 W of power. General data on the mission and spacecraft are given.
Closed Loop solar array-ion thruster system with power control circuitry
NASA Technical Reports Server (NTRS)
Gruber, R. P. (Inventor)
1979-01-01
A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power.
System for transmitting low frequency analog signals over AC power lines
Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.
1989-01-01
A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.
System for transmitting low frequency analog signals over AC power lines
Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.
1989-09-05
A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.
A system for tranmitting low frequency analog signals over ac power lines
Baker, S.P.; Durall, R.L.; Haynes, H.D.
1987-07-30
A system for transmitting low frequency analog signals over ac power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an ac power line. The modulation signal frequency range is selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the ac power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal. 4 figs.
Design of an anti-Rician-fading modem for mobile satellite communication systems
NASA Technical Reports Server (NTRS)
Kojima, Toshiharu; Ishizu, Fumio; Miyake, Makoto; Murakami, Keishi; Fujino, Tadashi
1995-01-01
To design a demodulator applicable to mobile satellite communication systems using differential phase shift keying modulation, we have developed key technologies including an anti-Rician-fading demodulation scheme, an initial acquisition scheme, automatic gain control (AGC), automatic frequency control (AFC), and bit timing recovery (BTR). Using these technologies, we have developed one-chip digital signal processor (DSP) modem for mobile terminal, which is compact, of light weight, and of low power consumption. Results of performance test show that the developed DSP modem achieves good performance in terms of bit error ratio in mobile satellite communication environment, i.e., Rician fading channel. It is also shown that the initial acquisition scheme acquires received signal rapidly even if the carrier-to-noise power ratio (CNR) of the received signal is considerably low.
NASA Astrophysics Data System (ADS)
Rerucha, Simon; Sarbort, Martin; Hola, Miroslava; Cizek, Martin; Hucl, Vaclav; Cip, Ondrej; Lazar, Josef
2016-12-01
The homodyne detection with only a single detector represents a promising approach in the interferometric application which enables a significant reduction of the optical system complexity while preserving the fundamental resolution and dynamic range of the single frequency laser interferometers. We present the design, implementation and analysis of algorithmic methods for computational processing of the single-detector interference signal based on parallel pipelined processing suitable for real time implementation on a programmable hardware platform (e.g. the FPGA - Field Programmable Gate Arrays or the SoC - System on Chip). The algorithmic methods incorporate (a) the single detector signal (sine) scaling, filtering, demodulations and mixing necessary for the second (cosine) quadrature signal reconstruction followed by a conic section projection in Cartesian plane as well as (a) the phase unwrapping together with the goniometric and linear transformations needed for the scale linearization and periodic error correction. The digital computing scheme was designed for bandwidths up to tens of megahertz which would allow to measure the displacements at the velocities around half metre per second. The algorithmic methods were tested in real-time operation with a PC-based reference implementation that employed the advantage pipelined processing by balancing the computational load among multiple processor cores. The results indicate that the algorithmic methods are suitable for a wide range of applications [3] and that they are bringing the fringe counting interferometry closer to the industrial applications due to their optical setup simplicity and robustness, computational stability, scalability and also a cost-effectiveness.
A short-range optical wireless transmission method based on LED
NASA Astrophysics Data System (ADS)
Miao, Meiyuan; Chen, Ailin; Zhu, Mingxing; Li, Ping; Gao, Yingming; Zou, Nianyu
2016-10-01
As to electromagnetic wave interfere and only one to one transmission problem of Bluetooth, a short-range LED optical wireless transmission method is proposed to be complementary technology in this paper. Furthermore achieved image transmission through this method. The system makes C52 to be the mater controller, transmitter got data from terminals by USB and sends modulated signals with LED. Optical signal is detected by PD, through amplified, filtered with shaping wave from, and demodulated on receiver. Then send to terminals like PC and reverted back to original image. Analysis the performance from peak power and average power, power consumption of transmitter, relationship of bit error rate and modulation mode, and influence of ambient light, respectively. The results shows that image can be received accurately which uses this method. The most distant transmission distance can get to 1m with transmitter LED source of 1w, and the transfer rate is 14.4Kbit/s with OOK modulation mode on stabilization system, the ambient light effect little to LED transmission system in normal light environment. The method is a convenient to carry LED wireless short range transmission for mobile transmission equipment as a supplement of Bluetooth short-range transmission for its ISM band interfere, and the analysis method in this paper can be a reference for other similar systems. It also proves the system is feasibility for next study.
47 CFR 32.2231 - Radio systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... costs. This account shall also include the original cost of earth stations and spare parts, material or..., amplification, propagation, reception, modulation, and demodulation of radio waves in free space over which...
Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer
NASA Astrophysics Data System (ADS)
Band, Alan; Donohue, Matthew P.; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A.
2018-03-01
We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems.
Design and realization of the baseband processor in satellite navigation and positioning receiver
NASA Astrophysics Data System (ADS)
Zhang, Dawei; Hu, Xiulin; Li, Chen
2007-11-01
The content of this paper is focused on the Design and realization of the baseband processor in satellite navigation and positioning receiver. Baseband processor is the most important part of the satellite positioning receiver. The design covers baseband processor's main functions include multi-channel digital signal DDC, acquisition, code tracking, carrier tracking, demodulation, etc. The realization is based on an Altera's FPGA device, that makes the system can be improved and upgraded without modifying the hardware. It embodies the theory of software defined radio (SDR), and puts the theory of the spread spectrum into practice. This paper puts emphasis on the realization of baseband processor in FPGA. In the order of choosing chips, design entry, debugging and synthesis, the flow is presented detailedly. Additionally the paper detailed realization of Digital PLL in order to explain a method of reducing the consumption of FPGA. Finally, the paper presents the result of Synthesis. This design has been used in BD-1, BD-2 and GPS.
Chen, Pengcheng; Shu, Xuewen; Cao, Haoran; Sugden, Kate
2017-08-15
Most sensors face a common trade-off between high sensitivity and a large dynamic range. We demonstrate here an all-fiber refractometer based on a dual-cavity Fabry-Perot interferometer (FPI) that possesses the advantage of both high sensitivity and a large dynamic range. Since the two composite cavities have a large cavity length difference, one can observe both fine and coarse fringes, which correspond to the long cavity and the short cavity, respectively. The short-cavity FPI and the use of an intensity demodulation method mean that the individual fine fringe dips correspond to a series of quasi-continuous highly sensitive zones for refractive index measurement. By calculating the parameters of the composite FPI, we find that the range of the ultra-sensitive zones can be considerably adjusted to suit the end requirements. The experimental trends are in good agreement with the theoretical predictions. The co-existence of high sensitivity and a large dynamic range in a composite FPI is of great significance to practical RI measurements.
MIMO channel estimation and evaluation for airborne traffic surveillance in cellular networks
NASA Astrophysics Data System (ADS)
Vahidi, Vahid; Saberinia, Ebrahim
2018-01-01
A channel estimation (CE) procedure based on compressed sensing is proposed to estimate the multiple-input multiple-output sparse channel for traffic data transmission from drones to ground stations. The proposed procedure consists of an offline phase and a real-time phase. In the offline phase, a pilot arrangement method, which considers the interblock and block mutual coherence simultaneously, is proposed. The real-time phase contains three steps. At the first step, it obtains the priori estimate of the channel by block orthogonal matching pursuit; afterward, it utilizes that estimated channel to calculate the linear minimum mean square error of the received pilots. Finally, the block compressive sampling matching pursuit utilizes the enhanced received pilots to estimate the channel more accurately. The performance of the CE procedure is evaluated by simulating the transmission of traffic data through the communication channel and evaluating its fidelity for car detection after demodulation. Simulation results indicate that the proposed CE technique enhances the performance of the car detection in a traffic image considerably.
NASA Astrophysics Data System (ADS)
Chen, Wen; Tang, Ming
2017-04-01
The abnormal temperature rise is the precursor of the defective composite insulator in power transmission line. However no consolidated techniques or methodologies can on line monitor its internal temperature now. Thus a new method using embedding fiber Bragg grating (FBG) in fiber reinforced polymer (FRP) rod is adopted to monitor its internal temperature. To correctly demodulate the internal temperature of FRP rod from the Bragg wavelength shift of FBG, the conversion coefficient between them is deduced theoretically based on comprehensive investigation on the thermal stresses of the metal-composite joint, as well as its material and structural properties. Theoretical model shows that the conversion coefficients of FBG embedded in different positions will be different because of non-uniform thermal stress distribution, which is verified by an experiment. This work lays the theoretical foundation of monitoring the internal temperature of composite insulator with embedding FBG, which is of great importance to its health structural monitoring, especially early diagnosis.
Wilson, Robert H; Crouzet, Christian; Torabzadeh, Mohammad; Bazrafkan, Afsheen; Farahabadi, Maryam H; Jamasian, Babak; Donga, Dishant; Alcocer, Juan; Zaher, Shuhab M; Choi, Bernard; Akbari, Yama; Tromberg, Bruce J
2017-10-01
Quantifying rapidly varying perturbations in cerebral tissue absorption and scattering can potentially help to characterize changes in brain function caused by ischemic trauma. We have developed a platform for rapid intrinsic signal brain optical imaging using macroscopically structured light. The device performs fast, multispectral, spatial frequency domain imaging (SFDI), detecting backscattered light from three-phase binary square-wave projected patterns, which have a much higher refresh rate than sinusoidal patterns used in conventional SFDI. Although not as fast as "single-snapshot" spatial frequency methods that do not require three-phase projection, square-wave patterns allow accurate image demodulation in applications such as small animal imaging where the limited field of view does not allow single-phase demodulation. By using 655, 730, and 850 nm light-emitting diodes, two spatial frequencies ([Formula: see text] and [Formula: see text]), three spatial phases (120 deg, 240 deg, and 360 deg), and an overall camera acquisition rate of 167 Hz, we map changes in tissue absorption and reduced scattering parameters ([Formula: see text] and [Formula: see text]) and oxy- and deoxyhemoglobin concentration at [Formula: see text]. We apply this method to a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) to quantify hemodynamics and scattering on temporal scales ([Formula: see text]) ranging from tens of milliseconds to minutes. We observe rapid concurrent spatiotemporal changes in tissue oxygenation and scattering during CA and following CPR, even when the cerebral electrical signal is absent. We conclude that square-wave SFDI provides an effective technical strategy for assessing cortical optical and physiological properties by balancing competing performance demands for fast signal acquisition, small fields of view, and quantitative information content.
Exploiting Phase Diversity for CDMA2000 1X Smart Antenna Base Stations
NASA Astrophysics Data System (ADS)
Kim, Seongdo; Hyeon, Seungheon; Choi, Seungwon
2004-12-01
A performance analysis of an access channel decoder is presented which exploits a diversity gain due to the independent magnitude of received signals energy at each of the antenna elements of a smart-antenna base-station transceiver subsystem (BTS) operating in CDMA2000 1X signal environment. The objective is to enhance the data retrieval at cellsite during the access period, for which the optimal weight vector of the smart antenna BTS is not available. It is shown in this paper that the access channel decoder proposed in this paper outperforms the conventional one, which is based on a single antenna channel in terms of detection probability of access probe, access channel failure probability, and Walsh-code demodulation performance.
NASA Astrophysics Data System (ADS)
Kota, Sriharsha; Patel, Jigesh; Ghillino, Enrico; Richards, Dwight
2011-01-01
In this paper, we demonstrate a computer model for simulating a dual-rate burst mode receiver that can readily distinguish bit rates of 1.25Gbit/s and 10.3Gbit/s and demodulate the data bursts with large power variations of above 5dB. To our knowledge, this is the first such model to demodulate data bursts of different bit rates without using any external control signal such as a reset signal or a bit rate select signal. The model is based on a burst-mode bit rate discrimination circuit (B-BDC) and makes use of a unique preamble sequence attached to each burst to separate out the data bursts with different bit rates. Here, the model is implemented using a combination of the optical system simulation suite OptSimTM, and the electrical simulation engine SPICE. The reaction time of the burst mode receiver model is about 7ns, which corresponds to less than 8 preamble bits for the bit rate of 1.25Gbps. We believe, having an accurate and robust simulation model for high speed burst mode transmission in GE-PON systems, is indispensable and tremendously speeds up the ongoing research in the area, saving a lot of time and effort involved in carrying out the laboratory experiments, while providing flexibility in the optimization of various system parameters for better performance of the receiver as a whole. Furthermore, we also study the effects of burst specifications like the length of preamble sequence, and other receiver design parameters on the reaction time of the receiver.
Dowla, Farid U; Nekoogar, Faranak
2015-03-03
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications according to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowla, Farid; Nekoogar, Faranak
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications accordingmore » to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.« less
NASA Technical Reports Server (NTRS)
Eno, R. F.
1984-01-01
Clock switched on and off in response to data signal. Flip-flop modulator generates square-wave carrier frequency that is half clock frequency and turns carrier on and off. Final demodulator output logical inverse of data input.
Self-calibrating threshold detector
NASA Technical Reports Server (NTRS)
Barnes, J. R.; Huang, M. Y. (Inventor)
1980-01-01
A self calibrating threshold detector comprises a single demodulating channel which includes a mixer having one input receiving the incoming signal and another input receiving a local replica code. During a short time interval, an incorrect local code is applied to the mixer to incorrectly demodulate the incoming signal and to provide a reference level that calibrates the noise propagating through the channel. A sample and hold circuit is coupled to the channel for storing a sample of the reference level. During a relatively long time interval, the correct replica code provides an output level which ranges between the reference level and a maximum level that represents incoming signal presence and synchronism with the replica code. A summer substracts the stored sample reference from the output level to provide a resultant difference signal indicative of the acquisition of the expected signal.
Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces
Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés
2011-01-01
The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems. PMID:22163907
NASA Astrophysics Data System (ADS)
Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; Zheng, Lu; Jiang, Zhanzhi; Ganesan, Vishal; Wang, Yayu; Lai, Keji
2018-04-01
We report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-field microwave imaging with small distance modulation.
Health monitoring of unmanned aerial vehicle based on optical fiber sensor array
NASA Astrophysics Data System (ADS)
Luo, Yuxiang; Shen, Jingshi; Shao, Fei; Guo, Chunhui; Yang, Ning; Zhang, Jiande
2017-10-01
The unmanned aerial vehicle (UAV) in flight needs to face the complicated environment, especially to withstand harsh weather conditions, such as the temperature and pressure. Compared with conventional sensors, fiber Bragg grating (FBG) sensor has the advantages of small size, light weight, high reliability, high precision, anti-electromagnetic interference, long lift-span, moistureproof and good resistance to causticity. It's easy to be embedded in composite structural components of UAVs. In the paper, over 1000 FBG sensors distribute regularly on a wide range of UAVs body, combining wavelength division multiplexing (WDM), time division multiplexing (TDM) and multichannel parallel architecture. WDM has the advantage of high spatial resolution. TDM has the advantage of large capacity and wide range. It is worthful to constitute a sensor network by different technologies. For the signal demodulation of FBG sensor array, WDM works by means of wavelength scanning light sources and F-P etalon. TDM adopts the technology of optical time-domain reflectometry. In order to demodulate efficiently, the most proper sensor multiplex number with some reflectivity is given by the curves fitting. Due to the regular array arrangement of FBG sensors on the UAVs, we can acquire the health state of UAVs in the form of 3D visualization. It is helpful to master the information of health status rapidly and give a real-time health evaluation.
NASA Technical Reports Server (NTRS)
Feher, Kamilo
1993-01-01
The performance and implementation complexity of coherent and of noncoherent QPSK and GMSK modulation/demodulation techniques in a complex mobile satellite systems environment, including large Doppler shift, delay spread, and low C/I, are compared. We demonstrate that for large f(sub d)T(sub b) products, where f(sub d) is the Doppler shift and T(sub b) is the bit duration, noncoherent (discriminator detector or differential demodulation) systems have a lower BER floor than their coherent counterparts. For significant delay spreads, e.g., tau(sub rms) greater than 0.4 T(sub b), and low C/I, coherent systems outperform noncoherent systems. However, the synchronization time of coherent systems is longer than that of noncoherent systems. Spectral efficiency, overall capacity, and related hardware complexity issues of these systems are also analyzed. We demonstrate that coherent systems have a simpler overall architecture (IF filter implementation-cost versus carrier recovery) and are more robust in an RF frequency drift environment. Additionally, the prediction tools, computer simulations, and analysis of coherent systems is simpler. The threshold or capture effect in low C/I interference environment is critical for noncoherent discriminator based systems. We conclude with a comparison of hardware architectures of coherent and of noncoherent systems, including recent trends in commercial VLSI technology and direct baseband to RF transmit, RF to baseband (0-IF) receiver implementation strategies.
NASA Astrophysics Data System (ADS)
Feher, Kamilo
The performance and implementation complexity of coherent and of noncoherent QPSK and GMSK modulation/demodulation techniques in a complex mobile satellite systems environment, including large Doppler shift, delay spread, and low C/I, are compared. We demonstrate that for large f(sub d)T(sub b) products, where f(sub d) is the Doppler shift and T(sub b) is the bit duration, noncoherent (discriminator detector or differential demodulation) systems have a lower BER floor than their coherent counterparts. For significant delay spreads, e.g., tau(sub rms) greater than 0.4 T(sub b), and low C/I, coherent systems outperform noncoherent systems. However, the synchronization time of coherent systems is longer than that of noncoherent systems. Spectral efficiency, overall capacity, and related hardware complexity issues of these systems are also analyzed. We demonstrate that coherent systems have a simpler overall architecture (IF filter implementation-cost versus carrier recovery) and are more robust in an RF frequency drift environment. Additionally, the prediction tools, computer simulations, and analysis of coherent systems is simpler. The threshold or capture effect in low C/I interference environment is critical for noncoherent discriminator based systems. We conclude with a comparison of hardware architectures of coherent and of noncoherent systems, including recent trends in commercial VLSI technology and direct baseband to RF transmit, RF to baseband (0-IF) receiver implementation strategies.
Noninvasive hemoglobin measurement using dynamic spectrum
NASA Astrophysics Data System (ADS)
Yi, Xiaoqing; Li, Gang; Lin, Ling
2017-08-01
Spectroscopy methods for noninvasive hemoglobin (Hgb) measurement are interfered by individual difference and particular weak signal. In order to address these problems, we have put forward a series of improvement methods based on dynamic spectrum (DS), including instrument design, spectrum extraction algorithm, and modeling approach. The instrument adopts light sources composed of eight laser diodes with the wavelength range from 600 nm to 1100 nm and records photoplethysmography signals at eight wavelengths synchronously. In order to simplify the optical design, we modulate the light sources with orthogonal square waves and design the corresponding demodulation algorithm, instead of adopting a beam-splitting system. A newly designed algorithm named difference accumulation has been proved to be effective in improving the accuracy of dynamic spectrum extraction. 220 subjects are involved in the clinical experiment. An extreme learning machine calibration model between the DS data and the Hgb levels is established. Correlation coefficient and root-mean-square error of prediction sets are 0.8645 and 8.48 g/l, respectively. The results indicate that the Hgb level can be derived by this approach noninvasively with acceptable precision and accuracy. It is expected to achieve a clinic application in the future.
DOT National Transportation Integrated Search
1976-03-01
Two Quadrature Modulation/Phase Shift Keyed (QM/PSK) Voice/Data Modem systems have been developed as part of the satellite communications hardware for advanced air traffic control systems. These systems consist of a modulator and demodulator unti whi...
Real-time high-resolution PC-based system for measurement of errors on compact disks
NASA Astrophysics Data System (ADS)
Tehranchi, Babak; Howe, Dennis G.
1994-10-01
Hardware and software utilities are developed to directly monitor the Eight-to-Fourteen (EFM) demodulated data bytes at the input of a CD player's Cross-Interleaved Reed-Solomon Code (CIRC) block decoder. The hardware is capable of identifying erroneous data with single-byte resolution in the serial data stream read from a Compact Disc by a CDD 461 Philips CD-ROM drive. In addition, the system produces graphical maps that show the physical location of the measured errors on the entire disc, or via a zooming and planning feature, on user selectable local disc regions.
Short cavity DFB fiber laser based vector hydrophone for low frequency signal detection
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Faxiang; Jiang, Shaodong; Min, Li; Li, Ming; Peng, Gangding; Ni, Jiasheng; Wang, Chang
2017-12-01
A short cavity distributed feedback (DFB) fiber laser is used for low frequency acoustic signal detection. Three DFB fiber lasers with different central wavelengths are chained together to make three-element vector hydrophone with proper sensitivity enhancement design, which has extensive and significant applications to underwater acoustic monitoring for the national defense, oil, gas exploration, and so on. By wavelength-phase demodulation, the lasing wavelength changes under different frequency signals can be interpreted, and the sensitivity is tested about 33 dB re pm/g. The frequency response range is rather flat from 5 Hz to 300 Hz.
Pipe flow measurements of turbulence and ambiguity using laser-Doppler velocimetry
NASA Technical Reports Server (NTRS)
Berman, N. S.; Dunning, J. W.
1973-01-01
The laser-Doppler ambiguities predicted by George and Lumley (1973) have been verified experimentally for turbulent pipe flows. Experiments were performed at Reynolds numbers from 5000 to 15,000 at the center line and near the wall. Ambiguity levels were measured from power spectral densities of FM demodulated laser signals and were compared with calculations based on the theory. The turbulent spectra for these water flows after accounting for the ambiguity were equivalent to hot-film measurements at similar Reynolds numbers. The feasibility of laser-Doppler measurements very close to the wall in shear flows is demonstrated.
Cotton-Mouton polarimeter with HCN laser on CHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akiyama, T.; Kawahata, K.; Ito, Y.
Polarimeters based on the Cotton-Mouton effect hold promise for electron density measurements. We have designed and installed a Cotton-Mouton polarimeter on the Compact Helical System. The Cotton-Mouton effect is measured as the phase difference between probe and reference beams. In this system, an interferometric measurement can be performed simultaneously with the same probe chord. The light source is a HCN laser (wavelength of 337 {mu}m). Digital complex demodulation is adopted for small phase analysis. The line averaged density evaluated from the polarimeter along a plasma center chord is almost consistent with that from the interferometer.
Dynamic Strain Measured by Mach-Zehnder Interferometric Optical Fiber Sensors
Her, Shiuh-Chuan; Yang, Chih-Min
2012-01-01
Optical fibers possess many advantages such as small size, light weight and immunity to electro-magnetic interference that meet the sensing requirements to a large extent. In this investigation, a Mach-Zehnder interferometric optical fiber sensor is used to measure the dynamic strain of a vibrating cantilever beam. A 3 × 3 coupler is employed to demodulate the phase shift of the Mach-Zehnder interferometer. The dynamic strain of a cantilever beam subjected to base excitation is determined by the optical fiber sensor. The experimental results are validated with the strain gauge. PMID:22737010
Multiplexed EFPI sensors with ultra-high resolution
NASA Astrophysics Data System (ADS)
Ushakov, Nikolai; Liokumovich, Leonid
2014-05-01
An investigation of performance of multiplexed displacement sensors based on extrinsic Fabry-Perot interferometers has been carried out. We have considered serial and parallel configurations and analyzed the issues and advantages of the both. We have also extended the previously developed baseline demodulation algorithm for the case of a system of multiplexed sensors. Serial and parallel multiplexing schemes have been experimentally implemented with 3 and 4 sensing elements, respectively. For both configurations the achieved baseline standard deviations were between 30 and 200 pm, which is, to the best of our knowledge, more than an order less than any other multiplexed EFPI resolution ever reported.
A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP).
Zhao, Xing; Zhao, Dechun; Wang, Xia; Hou, Xiaorong
2017-01-01
SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift-Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent "Bit 0," "Bit 1" and "Bit 2" respectively. Different to common BFSK in digital communication, "Bit 0" and "Bit 1" composited the unique identifier of stimuli in binary bit stream form, while "Bit 2" indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2 n -1 ( n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations.
NASA Astrophysics Data System (ADS)
Nakamura, Yusuke; Hoshizawa, Taku
2016-09-01
Two methods for increasing the data capacity of a holographic data storage system (HDSS) were developed. The first method is called “run-length-limited (RLL) high-density recording”. An RLL modulation has the same effect as enlarging the pixel pitch; namely, it optically reduces the hologram size. Accordingly, the method doubles the raw-data recording density. The second method is called “RLL turbo signal processing”. The RLL turbo code consists of \\text{RLL}(1,∞ ) trellis modulation and an optimized convolutional code. The remarkable point of the developed turbo code is that it employs the RLL modulator and demodulator as parts of the error-correction process. The turbo code improves the capability of error correction more than a conventional LDPC code, even though interpixel interference is generated. These two methods will increase the data density 1.78-fold. Moreover, by simulation and experiment, a data density of 2.4 Tbit/in.2 is confirmed.