Sample records for demonstrate differential effects

  1. The effect of bisphosphonates on the endothelial differentiation of mesenchymal stem cells

    PubMed Central

    Sharma, Dileep; Hamlet, Stephen Mark; Petcu, Eugen Bogdan; Ivanovski, Saso

    2016-01-01

    The contribution of the local stem cell niche to providing an adequate vascular framework during healing cannot be overemphasized. Bisphosphonates (BPs) are known to have a direct effect on the local vasculature, but their effect on progenitor cell differentiation is unknown. This in vitro study evaluated the effect(s) of various BPs on the differentiation of human placental mesenchymal stem cells (pMSCs) along the endothelial lineage and their subsequent functional and morphogenic capabilities. pMSC multipotency was confirmed by successful differentiation into cells of both the osteogenic and endothelial lineages, as demonstrated by positive Alizarin Red S staining and Ac-LDL uptake. pMSC differentiation in the presence of non-cytotoxic BP concentrations showed that nitrogen containing BPs had a significant inhibitory effect on cell migration and endothelial marker gene expression, as well as compromised endothelial differentiation as demonstrated using von Willebrand factor immunofluorescence staining and tube formation assay. This in vitro study demonstrated that at non-cytotoxic levels, nitrogen-containing BPs inhibit differentiation of pMSCs into cells of an endothelial lineage and affect the downstream functional capability of these cells supporting a multi-modal effect of BPs on angiogenesis as pathogenic mechanism contributing to bone healing disorders such as bisphosphonate related osteonecrosis of the jaws (BRONJ). PMID:26857282

  2. Liraglutide attenuates the osteoblastic differentiation of MC3T3-E1 cells by modulating AMPK/mTOR signaling

    PubMed Central

    Hu, Xiong-Ke; Yin, Xin-Hua; Zhang, Hong-Qi; Guo, Chao-Feng; Tang, Ming-Xing

    2016-01-01

    Liraglutide, a synthetic analogue of glucagon-like peptide-1, is utilized in the treatment of type 2 diabetes and obesity. Liraglutide has been previously demonstrated to prevent osteoblastic differentiation of human vascular smooth muscle cells, resulting in the slowing of arterial calcification, however, its effect on bone formation remains unclear. The present study investigated the effect of liraglutide on osteoblastic differentiation using Alizarin Red S staining, and examined the molecular mechanisms underlying the regulatory effect by western blot analysis. The present study demonstrated that protein expression levels of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were downregulated in MC3T3-E1 cells during osteoblastic differentiation in commercial osteogenic differentiation medium, whereas protein expression levels of transforming growth factor-β (TGF-β) and phosphorylated mammalian target of rapamycin (p-mTOR) increased. Liraglutide was subsequently demonstrated to dose-dependently attenuate the osteoblastic differentiation of MC3T3-E1 cells, to upregulate p-AMPK, and downregulate p-mTOR and TGF-β protein expression levels. Treatment with an AMPK-specific inhibitor, Compound C, eradicated the effect of liraglutide on osteoblastic differentiation, and p-mTOR and TGF-β downregulation. An mTOR activator, MHY1485, also abolished the inhibitory effect of liraglutide on osteoblastic differentiation, and resulted in p-mTOR and TGF-β downregulation, but did not attenuate the liraglutide-induced increase in p-AMPK protein expression levels. The results of the present study demonstrate that liraglutide attenuates osteoblastic differentiation of MC3T3-E1 cells via modulation of AMPK/mTOR signaling. The present study revealed a novel function of liraglutide, which contributes to the understanding of its pharmacological and physiological effects in clinical settings. PMID:27600753

  3. PPARbeta agonists trigger neuronal differentiation in the human neuroblastoma cell line SH-SY5Y.

    PubMed

    Di Loreto, S; D'Angelo, B; D'Amico, M A; Benedetti, E; Cristiano, L; Cinque, B; Cifone, M G; Cerù, M P; Festuccia, C; Cimini, A

    2007-06-01

    Neuroblastomas are pediatric tumors originating from immature neuroblasts in the developing peripheral nervous system. Differentiation therapies could help lowering the high mortality due to rapid tumor progression to advanced stages. Oleic acid has been demonstrated to promote neuronal differentiation in neuronal cultures. Herein we report on the effects of oleic acid and of a specific synthetic PPARbeta agonist on cell growth, expression of differentiation markers and on parameters responsible for the malignancy such as adhesion, migration, invasiveness, BDNF, and TrkB expression of SH-SY5Y neuroblastoma cells. The results obtained demonstrate that many, but not all, oleic acid effects are mediated by PPARbeta and support a role for PPARbeta in neuronal differentiation strongly pointing towards PPAR ligands as new therapeutic strategies against progression and recurrences of neuroblastoma.

  4. Localized committed differentiation of neural stem cells based on the topographical regulation effects of TiO2 nanostructured ceramics.

    PubMed

    Mou, Xiaoning; Wang, Shu; Guo, Weibo; Ji, Shaozheng; Qiu, Jichuan; Li, Deshuai; Zhang, Xiaodi; Zhou, Jin; Tang, Wei; Wang, Changyong; Liu, Hong

    2016-07-21

    In this study, a porous-flat TiO2 micropattern was fabricated with flat and nanoporous TiO2 ceramics for investigating the effect of topography on neural stem cell (NSC) differentiation. This finding demonstrates that localized committed differentiation could be achieved in one system by integrating materials with different topographies.

  5. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakudo, Natsuko; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-07-27

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of humanmore » ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration.« less

  6. It Might Not Make a Big DIF: Improved Differential Test Functioning Statistics That Account for Sampling Variability

    ERIC Educational Resources Information Center

    Chalmers, R. Philip; Counsell, Alyssa; Flora, David B.

    2016-01-01

    Differential test functioning, or DTF, occurs when one or more items in a test demonstrate differential item functioning (DIF) and the aggregate of these effects are witnessed at the test level. In many applications, DTF can be more important than DIF when the overall effects of DIF at the test level can be quantified. However, optimal statistical…

  7. Differentiating Performance Approach Goals and Their Unique Effects

    ERIC Educational Resources Information Center

    Edwards, Ordene V.

    2014-01-01

    The study differentiates between two types of performance approach goals (competence demonstration performance approach goal and normative performance approach goal) by examining their unique effects on self-efficacy, interest, and fear of failure. Seventy-nine students completed questionnaires that measure performance approach goals,…

  8. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy

    NASA Astrophysics Data System (ADS)

    Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying

    2015-09-01

    Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.

  9. Directing the osteoblastic and chondrocytic differentiations of mesenchymal stem cells: matrix vs. induction media

    PubMed Central

    He, Jing; Guo, Jianglong; Jiang, Bo; Yao, Ruijuan; Wu, Yao

    2017-01-01

    Abstract While both induction culture media and matrix have been reported to regulate the stem cell fate, little is known about which factor plays a more decisive role in directing the MSC differentiation lineage as well as the underlying mechanisms. To this aim, we seeded MSCs on HA-collagen and HA-synthetic hydrogel matrixes, which had demonstrated highly different potentials toward osteoblastic and chondrocytic differentiation lineages, respectively, and cultured them with osteogenic, chondrogenic and normal culture media, respectively. A systematic comparison has been carried out on the effects of induction media and matrix on MSC adhesion, cytoskeleton organization, proliferation, and in particular differentiation into the osteoblastic and chondrocytic lineages. The results demonstrated that the matrix selection had a much more profound effect on directing the differentiation lineage than the induction media did. The strong modulation effect on the transcription activities might be the critical factor contributing to the above observations in our study, where canonical Wnt-β-Catenin signal pathway was directly involved in the matrix-driven osteoblastic differentiation. Such findings not only provide a critical insight on natural cellular events leading to the osteoblastic and chondrocytic differentiations, but also have important implications in biomaterial design for tissue engineering applications. PMID:29026640

  10. Effect of ECM2 expression on bovine skeletal muscle-derived satellite cell differentiation.

    PubMed

    Liu, Chang; Tong, Huili; Li, Shufeng; Yan, Yunqin

    2018-05-01

    Extracellular matrix components have important regulatory functions during cell proliferation and differentiation. In recent study, extracellular matrix were shown to have a strong effect on skeletal muscle differentiation. Here, we aimed to elucidate the effects of extracellular matrix protein 2 (ECM2), an extracellular matrix component, on the differentiation of bovine skeletal muscle-derived satellite cells (MDSCs). Western blot and immunofluorescence analyses were used to elucidate the ECM2 expression pattern in bovine MDSCs during differentiation in vitro. CRISPR/Cas9 technology was used to activate or inhibit ECM2 expression to study its effects on the in vitro differentiation of bovine MDSCs. ECM2 expression was shown to increase gradually during bovine MDSC differentiation, and the levels of this protein were higher in more highly differentiated myotubes. ECM2 activation promoted MDSC differentiation, whereas its suppression inhibited the differentiation of these cells. Here, for the first time, we demonstrated the importance of ECM2 expression during bovine MDSC differentiation; these results could lead to treatments that help to increase beef cattle muscularity. © 2018 International Federation for Cell Biology.

  11. Differential modulation of ROS signals and other mitochondrial parameters by the antioxidants MitoQ, resveratrol and curcumin in human adipocytes.

    PubMed

    Hirzel, Estelle; Lindinger, Peter W; Maseneni, Swarna; Giese, Maria; Rhein, Véronique Virginie; Eckert, Anne; Hoch, Matthias; Krähenbühl, Stephan; Eberle, Alex N

    2013-10-01

    Mitochondrial reactive oxygen species (ROS) have been demonstrated to play an important role as signaling and regulating molecules in human adipocytes. In order to evaluate the differential modulating roles of antioxidants, we treated human adipocytes differentiated from human bone marrow-derived mesenchymal stem cells with MitoQ, resveratrol and curcumin. The effects on ROS, viability, mitochondrial respiration and intracellular ATP levels were examined. MitoQ lowered both oxidizing and reducing ROS. Resveratrol decreased reducing and curcumin oxidizing radicals only. All three substances slightly decreased state III respiration immediately after addition. After 24 h of treatment, MitoQ inhibited both basal and uncoupled oxygen consumption, whereas curcumin and resveratrol had no effect. Intracellular ATP levels were not altered. This demonstrates that MitoQ, resveratrol and curcumin exert potent modulating effects on ROS signaling in human adipocyte with marginal effects on metabolic parameters.

  12. Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived mesenchymal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiou, Michael; Xu Yue; Longaker, Michael T.

    2006-05-05

    Adipose-derived mesenchymal cells (AMCs) have demonstrated a great capacity for differentiating into bone, cartilage, and fat. Studies using bone marrow-derived mesenchymal cells (BMSCs) have shown that fibroblast growth factor (FGF)-2, a potent mitogenic factor, plays an important role in tissue engineering due to its effects in proliferation and differentiation for mesenchymal cells. The aim of this study was to investigate the function of FGF-2 in AMC chondrogenic differentiation and its possible contributions to cell-based therapeutics in skeletal tissue regeneration. Data demonstrated that FGF-2 significantly promoted the proliferation of AMCs and enhanced chondrogenesis in three-dimensional micromass culture. Moreover, priming AMCs withmore » treatment of FGF-2 at 10 ng/ml demonstrated that cells underwent chondrogenic phenotypic differentiation, possibly by inducing N-Cadherin, FGF-receptor 2, and transcription factor Sox9. Our results indicated that FGF-2 potentiates chondrogenesis in AMCs, similar to its functions in BMSCs, suggesting the versatile potential applications of FGF-2 in skeletal regeneration and cartilage repair.« less

  13. Improving X-ray Optics Through Differential Deposition

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Kilaru, Kiranmayee; Atkins, Carolyn; Gubarev, Mikhail V.; Gaskin, Jessica A.; O'Dell, Steve; Weisskopf, Martin; Zhang, William; Romaine, Suzanne

    2012-01-01

    The differential deposition technique can in theory correct shell figures to approximate arcsecond value. We have received APRA funding and are building two custom system to demonstrate the technique on full shell and segmented optics. We hope to be able to demonstrate < 5 arcsec performance in < 2 years. To go beyond this, (arcsecond level) is very difficult to judge as we have not yet discovered the problems. May necessitate in-situ metrology, stress reduction investigations, correcting for gravity effects, correcting for temperature effects. Some of this will become obvious in early parts of the investigation.

  14. The Testing Effect: An Intervention on Behalf of Low-Skilled Comprehenders in General Chemistry

    ERIC Educational Resources Information Center

    Pyburn, Daniel T.; Pazicni, Samuel; Benassi, Victor A.; Tappin, Elizabeth M.

    2014-01-01

    Past work has demonstrated that language comprehension ability correlates with general chemistry course performance with medium effect sizes. We demonstrate here that language comprehension's strong cognitive grounding can be used to inform effective and equitable pedagogies, namely, instructional interventions that differentially aid low-skilled…

  15. Differential Effects of Differing Intensities of Acute Exercise on Speed and Accuracy of Cognition: A Meta-Analytical Investigation

    ERIC Educational Resources Information Center

    McMorris, Terry; Hale, Beverley J.

    2012-01-01

    The primary purpose of this study was to examine, using meta-analytical techniques, the differential effects of differing intensities of acute exercise on speed and accuracy of cognition. Overall, exercise demonstrated a small, significant mean effect size (g = 0.14, p less than 0.01) on cognition. Examination of the comparison between speed and…

  16. Thrombopoietin has a differentiative effect on late-stage human erythropoiesis.

    PubMed

    Liu, W; Wang, M; Tang, D C; Ding, I; Rodgers, G P

    1999-05-01

    To further explore the mechanism of the effect of thrombopoietin (TPO) on erythropoiesis, we used a two-phase culture system to investigate the effect of TPO on late-stage human erythroid lineage differentiation. In serum-free suspension and semisolid cultures of human peripheral blood derived erythroid progenitors, TPO alone did not produce benzidine-positive cells. However, in serum-containing culture, TPO alone stimulated erythroid cell proliferation and differentiation, demonstrated by erythroid colony formation, production of benzidine-positive cells and haemoglobin (Hb) synthesis. Monoclonal anti-human erythropoietin antibody and anti-human erythropoietin receptor antibody completely abrogated the erythroid differentiative ability of TPO in the serum-containing systems. This implied that binding of EPO and EPO-R was essential for erythropoiesis and the resultant signal transduction may be augmented by the signals emanating from TPO-c-Mpl interaction. Experiment of withdrawal of TPO further demonstrated the involvement of TPO in late-stage erythropoiesis. RT-PCR results showed that there was EPO-R but not c-Mpl expression on developing erythroblasts induced by TPO in serum-containing system. Our results establish that TPO affects not only the proliferation of erythroid progenitors but also the differentiation of erythroid progenitors to mature erythroid cells.

  17. Crosstalk between HIF-1 and ROCK pathways in neuronal differentiation of mesenchymal stem cells, neurospheres and in PC12 neurite outgrowth.

    PubMed

    Pacary, Emilie; Tixier, Emmanuelle; Coulet, Florence; Roussel, Simon; Petit, Edwige; Bernaudin, Myriam

    2007-07-01

    This study demonstrates that the Rho-kinase (ROCK) inhibitor, Y-27632, potentiates not only the effect of cobalt chloride (CoCl(2)) but also that of deferoxamine, another HIF-1 inducer, on mesenchymal stem cell (MSC) neuronal differentiation. HIF-1 is essential for CoCl(2)+/-Y-27632-induced MSC neuronal differentiation, since agents inhibiting HIF-1 abolish the changes of morphology and cell cycle arrest-related gene or protein expressions (p21, cyclin D1) and the increase of neuronal marker expressions (Tuj1, NSE). Y-27632 potentiates the CoCl(2)-induced decrease of cyclin D1 and nestin expressions, the increase of HIF-1 activation and EPO expression, and decreases pVHL expression. Interestingly, CoCl(2) decreases RhoA expression, an effect potentiated by Y-27632, revealing crosstalk between HIF-1 and RhoA/ROCK pathways. Moreover, we demonstrate a synergistic effect of CoCl(2) and Y-27632 on neurosphere differentiation into neurons and PC12 neurite outgrowth underlining that a co-treatment targeting both HIF-1 and ROCK pathways might be relevant to differentiate stem cells into neurons.

  18. The Effects of Differential Goal Weights on the Performance of a Complex Financial Task.

    ERIC Educational Resources Information Center

    Edmister, Robert O.; Locke, Edwin A.

    1987-01-01

    Determined whether people could obtain outcomes on a complex task that would be in line with differential goal weights corresponding to different aspects of the task. Bank lending officers were run through lender-simulation exercises. Five performance goals were weighted. Demonstrated effectiveness of goal setting with complex tasks, using group…

  19. Continuous angle steering of an optically- controlled phased array antenna based on differential true time delay constituted by micro-optical components.

    PubMed

    Wang, Jian; Hou, Peipei; Cai, Haiwen; Sun, Jianfeng; Wang, Shunan; Wang, Lijuan; Yang, Fei

    2015-04-06

    We propose an optically controlled phased array antenna (PAA) based on differential true time delay constructed optical beamforming network (OBFN). Differential true time delay is realized by stack integrated micro-optical components. Optically-controlled angle steering of radio frequency (RF) beams are realized and demonstrated by this configuration. Experimental results demonstrate that OBFN based PAA can accomplish RF-independent broadband beam steering without beam squint effect and can achieve continuous angle steering. In addition, multi-beams for different steering angles are acquired synchronously.

  20. Differentiated protection services with failure probability guarantee for workflow-based applications

    NASA Astrophysics Data System (ADS)

    Zhong, Yaoquan; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng

    2010-12-01

    A cost-effective and service-differentiated provisioning strategy is very desirable to service providers so that they can offer users satisfactory services, while optimizing network resource allocation. Providing differentiated protection services to connections for surviving link failure has been extensively studied in recent years. However, the differentiated protection services for workflow-based applications, which consist of many interdependent tasks, have scarcely been studied. This paper investigates the problem of providing differentiated services for workflow-based applications in optical grid. In this paper, we develop three differentiated protection services provisioning strategies which can provide security level guarantee and network-resource optimization for workflow-based applications. The simulation demonstrates that these heuristic algorithms provide protection cost-effectively while satisfying the applications' failure probability requirements.

  1. Terminal Differentiation of Adult Hippocampal Progenitor Cells Is a Step Functionally Dissociable from Proliferation and Is Controlled by Tis21, Id3 and NeuroD2

    PubMed Central

    Micheli, Laura; Ceccarelli, Manuela; Gioia, Roberta; D’Andrea, Giorgio; Farioli-Vecchioli, Stefano; Costanzi, Marco; Saraulli, Daniele; Cestari, Vincenzo; Tirone, Felice

    2017-01-01

    Cell proliferation and differentiation are interdependent processes. Here, we have asked to what extent the two processes of neural progenitor cell amplification and differentiation are functionally separated. Thus, we analyzed whether it is possible to rescue a defect of terminal differentiation in progenitor cells of the dentate gyrus, where new neurons are generated throughout life, by inducing their proliferation and/or their differentiation with different stimuli appropriately timed. As a model we used the Tis21 knockout mouse, whose dentate gyrus neurons, as demonstrated by us and others, have an intrinsic defect of terminal differentiation. We first tested the effect of two proliferative as well as differentiative neurogenic stimuli, one pharmacological (fluoxetine), the other cognitive (the Morris water maze (MWM) training). Both effectively enhanced the number of new dentate gyrus neurons produced, and fluoxetine also reduced the S-phase length of Tis21 knockout dentate gyrus progenitor cells and increased the rate of differentiation of control cells, but neither factor enhanced the defective rate of differentiation. In contrast, the defect of terminal differentiation was fully rescued by in vivo infection of proliferating dentate gyrus progenitor cells with retroviruses either silencing Id3, an inhibitor of neural differentiation, or expressing NeuroD2, a proneural gene expressed in terminally differentiated dentate gyrus neurons. This is the first demonstration that NeuroD2 or the silencing of Id3 can activate the differentiation of dentate gyrus neurons, complementing a defect of differentiation. It also highlights how the rate of differentiation of dentate gyrus neurons is regulated genetically at several levels and that a neurogenic stimulus for amplification of neural stem/progenitor cells may not be sufficient in itself to modify this rate. PMID:28740463

  2. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qi; Wan, Qilong; Yang, Rongtao

    Highlights: Black-Right-Pointing-Pointer Different PTH administration exerts different effects on condylar chondrocyte. Black-Right-Pointing-Pointer Intermittent PTH administration suppresses condylar chondrocyte proliferation. Black-Right-Pointing-Pointer Continuous PTH administration maintains condylar chondrocyte proliferating. Black-Right-Pointing-Pointer Intermittent PTH administration enhances condylar chondrocyte differentiation. -- Abstract: Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presentedmore » enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular asymmetry.« less

  3. Instrumental Implementation of an Experiment to Demonstrate αω -dynamos in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Si, Jiahe; Sonnenfeld, Richard; Colgate, Art; Li, Hui; Nornberg, Mark

    2016-10-01

    The New Mexico Liquid Metal αω -dynamo experiment is aimed to demonstrate a galactic dynamo. Our goal is to generate the ω-effect and α-effect by two semi-coherent flows in laboratory. Two coaxial cylinders are used to generate Taylor-Couette flows to simulate the differential rotation of accretion disks. Plumes induced by jets injected into the Couette flows are expected to produce helicities necessary for the α-effect. We have demonstrated an 8-fold poloidal-to-toroidal flux amplification from differential rotation (the ω-effect) by minimizing turbulence in our apparatus. To demonstrate the α-effect, the experimental apparatus is undergoing significant upgrade. We have constructed a helicity injection facility, and are also designing and testing a new data acquisition system capable of transmitting data in a high speed rotating frame. Additional magnetic field diagnostics will also be included. The upgrade is intended to answer the question of whether a self-sustaining αω -dynamo can be constructed with a realistic fluid flow field, as well as to obtain more details to understand dynamo action in highly turbulent Couette flow.

  4. Amniotic Fluid-Derived Stem Cells for Cardiovascular Tissue Engineering Applications

    PubMed Central

    Petsche Connell, Jennifer; Camci-Unal, Gulden; Khademhosseini, Ali

    2013-01-01

    Recent research has demonstrated that a population of stem cells can be isolated from amniotic fluid removed by amniocentesis that are broadly multipotent and nontumorogenic. These amniotic fluid-derived stem cells (AFSC) could potentially provide an autologous cell source for treatment of congenital defects identified during gestation, particularly cardiovascular defects. In this review, the various methods of isolating, sorting, and culturing AFSC are compared, along with techniques for inducing differentiation into cardiac myocytes and endothelial cells. Although research has not demonstrated complete and high-yield cardiac differentiation, AFSC have been shown to effectively differentiate into endothelial cells and can effectively support cardiac tissue. Additionally, several tissue engineering and regenerative therapeutic approaches for the use of these cells in heart patches, injection after myocardial infarction, heart valves, vascularized scaffolds, and blood vessels are summarized. These applications show great promise in the treatment of congenital cardiovascular defects, and further studies of isolation, culture, and differentiation of AFSC will help to develop their use for tissue engineering, regenerative medicine, and cardiovascular therapies. PMID:23350771

  5. Controlled release of bioactive PDGF-AA from a hydrogel/nanoparticle composite.

    PubMed

    Elliott Donaghue, Irja; Shoichet, Molly S

    2015-10-01

    Polymer excipients, such as low molar mass poly(ethylene glycol) (PEG), have shown contradictory effects on protein stability when co-encapsulated in polymeric nanoparticles. To gain further insight into these effects, platelet-derived growth factor (PDGF-AA) was encapsulated in polymeric nanoparticles with vs. without PEG. PDGF-AA is a particularly compelling protein, as it has been demonstrated to promote cell survival and induce the oligodendrocyte differentiation of neural stem/progenitor cells (NSPCs) both in vitro and in vivo. Here we show, for the first time, the controlled release of bioactive PDGF-AA from an injectable nanoparticle/hydrogel drug delivery system (DDS). PDGF-AA was encapsulated, with high efficiency, in poly(lactide-co-glycolide) nanoparticles, and its release from the drug delivery system was followed over 21 d. Interestingly, the co-encapsulation of low molecular weight poly(ethylene glycol) increased the PDGF-AA loading but, unexpectedly, accelerated the aggregation of PDGF-AA, resulting in reduced activity and detection by enzyme-linked immunosorbent assay (ELISA). In the absence of PEG, released PDGF-AA remained bioactive as demonstrated with NSPC oligodendrocyte differentiation, similar to positive controls, and significantly different from untreated controls. This work presents a novel delivery method for differentiation factors, such as PDGF-AA, and provides insights into the contradictory effects reported in the literature of excipients, such as PEG, on the loading and release of proteins from polymeric nanoparticles. Previously, the polymer poly(ethylene glycol) (PEG) has been used in many biomaterials applications, from surface coatings to the encapsulation of proteins. In this work, we demonstrate that, unexpectedly, low molecular weight PEG has a deleterious effect on the release of the encapsulated protein platelet-derived growth factor AA (PDGF-AA). We also demonstrate release of bioactive PDGF-AA (in the absence of PEG). Specifically, we demonstrate the differentiation of neural stem and progenitor cells to oligodendrocytes, similar to what is observed with the addition of fresh PDGFAA. A differentiated oligodendrocyte population is a key strategy in central nervous system regeneration. This work is the first demonstration of controlled PDGF-AA release, and also brings new insights to the broader field of protein encapsulation. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells

    NASA Astrophysics Data System (ADS)

    Marcus, M.; Skaat, H.; Alon, N.; Margel, S.; Shefi, O.

    2014-12-01

    The search for regenerative agents that promote neuronal differentiation and repair is of great importance. Nerve growth factor (NGF) which is an essential contributor to neuronal differentiation has shown high pharmacological potential for the treatment of central neurodegenerative diseases such as Alzheimer's and Parkinson's. However, growth factors undergo rapid degradation, leading to a short biological half-life. In our study, we describe a new nano-based approach to enhance the NGF activity resulting in promoted neuronal differentiation. We covalently conjugated NGF to iron oxide nanoparticles (NGF-NPs) and studied the effect of the novel complex on the differentiation of PC12 cells. We found that the NGF-NP treatment, at the same concentration as free NGF, significantly promoted neurite outgrowth and increased the complexity of the neuronal branching trees. Examination of neuronal differentiation gene markers demonstrated higher levels of expression in PC12 cells treated with the conjugated factor. By manipulating the NGF specific receptor, TrkA, we have demonstrated that NGF-NPs induce cell differentiation via the regular pathway. Importantly, we have shown that NGF-NPs undergo slower degradation than free NGF, extending their half-life and increasing NGF availability. Even a low concentration of conjugated NGF treatment has led to an effective response. We propose the use of the NGF-NP complex which has magnetic characteristics, also as a useful method to enhance NGF efficiency and activity, thus, paving the way for substantial neuronal repair therapeutics.The search for regenerative agents that promote neuronal differentiation and repair is of great importance. Nerve growth factor (NGF) which is an essential contributor to neuronal differentiation has shown high pharmacological potential for the treatment of central neurodegenerative diseases such as Alzheimer's and Parkinson's. However, growth factors undergo rapid degradation, leading to a short biological half-life. In our study, we describe a new nano-based approach to enhance the NGF activity resulting in promoted neuronal differentiation. We covalently conjugated NGF to iron oxide nanoparticles (NGF-NPs) and studied the effect of the novel complex on the differentiation of PC12 cells. We found that the NGF-NP treatment, at the same concentration as free NGF, significantly promoted neurite outgrowth and increased the complexity of the neuronal branching trees. Examination of neuronal differentiation gene markers demonstrated higher levels of expression in PC12 cells treated with the conjugated factor. By manipulating the NGF specific receptor, TrkA, we have demonstrated that NGF-NPs induce cell differentiation via the regular pathway. Importantly, we have shown that NGF-NPs undergo slower degradation than free NGF, extending their half-life and increasing NGF availability. Even a low concentration of conjugated NGF treatment has led to an effective response. We propose the use of the NGF-NP complex which has magnetic characteristics, also as a useful method to enhance NGF efficiency and activity, thus, paving the way for substantial neuronal repair therapeutics. Electronic supplementary information (ESI) available: Conjugation ratio determination and supplementary figures. See DOI: 10.1039/c4nr05193a

  7. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells.

    PubMed

    Liao, Xiao-Bo; Zhang, Zhi-Yuan; Yuan, Ke; Liu, Yuan; Feng, Xiang; Cui, Rong-Rong; Hu, Ye-Rong; Yuan, Zhao-Shun; Gu, Lu; Li, Shi-Jun; Mao, Ding-An; Lu, Qiong; Zhou, Xin-Ming; de Jesus Perez, Vinicio A; Yuan, Ling-Qing

    2013-09-01

    Arterial calcification is a key pathologic component of vascular diseases such as atherosclerosis, coronary artery disease, and peripheral vascular disease. A hallmark of this pathological process is the phenotypic transition of vascular smooth muscle cells (VSMCs) to osteoblast-like cells. Several studies have demonstrated that microRNAs (miRNAs) regulate osteoblast differentiation, but it is unclear whether miRNAs also regulate VSMC-mediated arterial calcification. In the present study, we sought to characterize the role of miR-133a in regulating VSMC-mediated arterial calcification. Northern blotting analysis of VSMCs treated with β-glycerophosphate demonstrated that miR-133a was significantly decreased during osteogenic differentiation. Overexpression of miR-133a inhibited VSMC transdifferentiation into osteoblast-like cells as evidenced by a decrease in alkaline phosphatase activity, osteocalcin secretion, Runx2 expression, and mineralized nodule formation. Conversely, the knockdown of miR-133a using an miR-133a inhibitor promoted osteogenic differentiation of VSMCs by increasing alkaline phosphatase activity, osteocalcin secretion, and Runx2 expression. Runx2 was identified as a direct target of miR-133a by a cotransfection experiment in VSMCs with luciferase reporter plasmids containing wild-type or mutant 3'-untranslated region sequences of Runx2. Furthermore, the pro-osteogenic effects of miR-133a inhibitor were abrogated in Runx2-knockdown cells, and the inhibition of osteogenic differentiation by pre-miR-133a was reversed by overexpression of Runx2, providing functional evidence that the effects of miR-133a in osteogenic differentiation were mediated by targeting Runx2. These results demonstrate that miR-133a is a key negative regulator of the osteogenic differentiation of VSMCs.

  8. A Laboratory to Demonstrate the Effect of Thermal History on Semicrystalline Polymers Using Rapid Scanning Rate Differential Scanning Calorimetry

    ERIC Educational Resources Information Center

    Badrinarayanan, Prashanth; Kessler, Michael R.

    2010-01-01

    A detailed understanding of the effect of thermal history on the thermal properties of semicrystalline polymers is essential for materials scientists and engineers. In this article, we describe a materials science laboratory to demonstrate the effect of parameters such as heating rate and isothermal annealing conditions on the thermal behavior of…

  9. An Exploration of Metacognition and Its Effect on Mathematical Performance in Differential Equations

    ERIC Educational Resources Information Center

    Smith, Mary Jarratt

    2013-01-01

    Research suggests that students in certain contexts who are "metacognitively aware learners" demonstrate better academic performance (Shraw & Dennison, 1994; Md. Yunus & Ali, 2008). In this research, the metacognitive levels for two classes of differential equations students were studied. Students completed a survey adapted from…

  10. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling

    PubMed Central

    Baer, Alexandra S.; Syed, Yasir A.; Kang, Sung Ung; Mitteregger, Dieter; Vig, Raluca; ffrench-Constant, Charles; Franklin, Robin J. M.; Altmann, Friedrich; Lubec, Gert

    2009-01-01

    Failure of oligodendrocyte precursor cell (OPC) differentiation contributes significantly to failed myelin sheath regeneration (remyelination) in chronic demyelinating diseases. Although the reasons for this failure are not completely understood, several lines of evidence point to factors present following demyelination that specifically inhibit differentiation of cells capable of generating remyelinating oligodendrocytes. We have previously demonstrated that myelin debris generated by demyelination inhibits remyelination by inhibiting OPC differentiation and that the inhibitory effects are associated with myelin proteins. In the present study, we narrow down the spectrum of potential protein candidates by proteomic analysis of inhibitory protein fractions prepared by CM and HighQ column chromatography followed by BN/SDS/SDS–PAGE gel separation using Nano-HPLC-ESI-Q-TOF mass spectrometry. We show that the inhibitory effects on OPC differentiation mediated by myelin are regulated by Fyn-RhoA-ROCK signalling as well as by modulation of protein kinase C (PKC) signalling. We demonstrate that pharmacological or siRNA-mediated inhibition of RhoA-ROCK-II and/or PKC signalling can induce OPC differentiation in the presence of myelin. Our results, which provide a mechanistic link between myelin, a mediator of OPC differentiation inhibition associated with demyelinating pathologies and specific signalling pathways amenable to pharmacological manipulation, are therefore of significant potential value for future strategies aimed at enhancing CNS remyelination. PMID:19208690

  11. Osteoblast gene expression is differentially regulated by TGF-beta isoforms.

    PubMed

    Fagenholz, P J; Warren, S M; Greenwald, J A; Bouletreau, P J; Spector, J A; Crisera, F E; Longaker, M T

    2001-03-01

    The transforming growth factor beta (TGF-beta) superfamily encompasses a number of important growth factors including several TGF-beta isoforms, the bone morphogenetic proteins, activins, inhibins, and growth and differentiation factors. TGF-beta 1, -beta 2, and -beta 3 are three closely related isoforms that are widely expressed during skeletal morphogenesis and bone repair. Numerous studies suggest that each isoform has unique in vivo functions; however, the effects of these TGF-beta isoforms on osteoblast gene expression and maturation have never been directly compared. In the current study, we treated undifferentiated neonatal rat calvaria osteoblast-enriched cell cultures with 2.5 ng/ml of each TGF-beta isoform and analyzed gene expression at 0, 3, 6, and 24 hours. We demonstrated unique isoform-specific regulation of endogenous TGF-beta 1 and type I collagen mRNA transcription. To assess the effects of extended TGF-beta treatment on osteoblast maturation, we differentiated osteoblast cultures in the presence of 2.5 ng/ml of each TGF-beta isoform. Analysis of collagen I, alkaline phosphatase, and osteocalcin demonstrated that each TGF-beta isoform uniquely suppressed the transcription of these osteoblast differentiation markers. Interestingly, TGF-beta isoform treatment increased osteopontin expression in primary osteoblasts after 4 and 10 days of differentiation. To our knowledge, these data provide the first direct comparison of the effects of the TGF-beta isoforms on osteoblast gene expression in vitro. Furthermore, these data suggest that TGF-beta isoforms may exert their unique in vivo effects by differentially regulating osteoblast cytokine secretion, extracellular matrix production, and the rate of cellular maturation.

  12. Bruton tyrosine kinase (Btk) suppresses osteoblastic differentiation.

    PubMed

    Kaneshiro, Shoichi; Ebina, Kosuke; Shi, Kenrin; Yoshida, Kiyoshi; Otsuki, Dai; Yoshikawa, Hideki; Higuchi, Chikahisa

    2015-09-01

    The Tec family of nonreceptor tyrosine kinases has been shown to play a key role in inflammation and bone destruction. Bruton tyrosine kinase (Btk) has been the most widely studied because of its critical role in B cells. Furthermore, recent evidence has demonstrated that blocking Btk signaling is effective in ameliorating lymphoma progression and experimental arthritis. The role of Btk in osteoblastic differentiation has not been well elucidated. In this study, we demonstrated the role of Btk in osteoblastic differentiation and investigated the effects of a Btk inhibitor on osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells, primary calvarial osteoblasts, and bone marrow stromal ST2 cells. Btk expression was detected in all three cell lines. Btk inhibition stimulated mRNA expression of osteoblastic markers (alkaline phosphatase, osteocalcin, and osterix) and promoted mineralization of the extracellular matrix. In addition, Btk knockdown caused increased mRNA expression of osteoblastic markers. Furthermore, Btk inhibition suppressed the phosphorylation of mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NFκB), and protein kinase Cα (PKCα). Our results indicate that Btk may regulate osteoblastic differentiation through the MAPK, NFκB, and PKCα signaling pathways.

  13. JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium.

    PubMed

    Gomi, Kazunori; Staudt, Michelle R; Salit, Jacqueline; Kaner, Robert J; Heldrich, Jonna; Rogalski, Allison M; Arbelaez, Vanessa; Crystal, Ronald G; Walters, Matthew S

    2016-08-01

    Basal cells (BC) are the stem/progenitor cells of the human airway epithelium capable of differentiating into secretory and ciliated cells. Notch signaling activation increases BC differentiation into secretory cells, but the role of individual Notch ligands in regulating this process in the human airway epithelium is largely unknown. The objective of this study was to define the role of the Notch ligand JAG1 in regulating human BC differentiation. JAG1 over-expression in BC increased secretory cell differentiation, with no effect on ciliated cell differentiation. Conversely, knockdown of JAG1 decreased expression of secretory cell genes. These data demonstrate JAG1-mediated Notch signaling regulates differentiation of BC into secretory cells.

  14. Olive (Olea europaea) Leaf Extract Induces Apoptosis and Monocyte/Macrophage Differentiation in Human Chronic Myelogenous Leukemia K562 Cells: Insight into the Underlying Mechanism

    PubMed Central

    Han, Junkyu; Jlaiel, Lobna; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells. PMID:24803988

  15. Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism.

    PubMed

    Samet, Imen; Han, Junkyu; Jlaiel, Lobna; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells.

  16. Inhibition of EGR-1 and NF-kappa B gene expression by dexamethasone during phorbol ester-induced human monocytic differentiation.

    PubMed

    Hass, R; Brach, M; Gunji, H; Kharbanda, S; Kufe, D

    1992-10-20

    The treatment of human myeloid leukemia cells (HL-60, U-937, THP-1) with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with growth arrest and appearance of a differentiated monocytic phenotype. While previous studies have reported that the glucocorticoid dexamethasone blocks phenotypic characteristics of monocytic differentiation, we demonstrated in the present work that dexamethasone delays the effects of TPA on the loss of U-937 cell proliferation. We also demonstrated that this glucocorticoid inhibits TPA-induced increases in expression of the EGR-1 early response gene. The results of nuclear run-on assays and half-life experiments indicated that this effect of dexamethasone is regulated at the post-transcriptional level. Similar studies were performed for the NF-kappa B gene. While TPA treatment was associated with transient increases in NF-kappa B mRNA levels, this induction was blocked by dexamethasone. In contrast, dexamethasone had no significant effect on the activation of pre-existing NF-kappa B protein as determined in DNA-binding assays. Taken together, these findings suggest that the activated glucocorticoid receptor inhibits signaling pathways which include expression of the EGR-1 and NF-kappa B genes and that such effects may contribute to a block in TPA-induced monocytic differentiation.

  17. Deleterious effects of tributyltin on porcine vascular stem cells physiology.

    PubMed

    Bernardini, Chiara; Zannoni, Augusta; Bertocchi, Martina; Bianchi, Francesca; Salaroli, Roberta; Botelho, Giuliana; Bacci, Maria Laura; Ventrella, Vittoria; Forni, Monica

    2016-01-01

    The vascular functional and structural integrity is essential for the maintenance of the whole organism and it has been demonstrated that different types of vascular progenitor cells resident in the vessel wall play an important role in this process. The purpose of the present research was to observe the effect of tributyltin (TBT), a risk factor for vascular disorders, on porcine Aortic Vascular Precursor Cells (pAVPCs) in term of cytotoxicity, gene expression profile, functionality and differentiation potential. We have demonstrated that pAVPCs morphology deeply changed following TBT treatment. After 48h a cytotoxic effect has been detected and Annexin binding assay demonstrated that TBT induced apoptosis. The transcriptional profile of characteristic pericyte markers has been altered: TBT 10nM substantially induced alpha-SMA, while, TBT 500nM determined a significant reduction of all pericyte markers. IL-6 protein detected in the medium of pAVPCs treated with TBT at both doses studied and with a dose response. TBT has interfered with normal pAVPC functionality preventing their ability to support a capillary-like network. In addition TBT has determined an increase of pAVPC adipogenic differentiation. In conclusion in the present paper we have demonstrated that TBT alters the vascular stem cells in terms of structure, functionality and differentiating capability, therefore effects of TBT in blood should be deeply explored to understand the potential vascular risk associated with the alteration of vascular stem cell physiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effect of heat flux on differential rotation in turbulent convection.

    PubMed

    Kleeorin, Nathan; Rogachevskii, Igor

    2006-04-01

    We studied the effect of the turbulent heat flux on the Reynolds stresses in a rotating turbulent convection. To this end we solved a coupled system of dynamical equations which includes the equations for the Reynolds stresses, the entropy fluctuations, and the turbulent heat flux. We used a spectral tau approximation in order to close the system of dynamical equations. We found that the ratio of the contributions to the Reynolds stresses caused by the turbulent heat flux and the anisotropic eddy viscosity is of the order of approximately 10(L rho/l0)2, where l0 is the maximum scale of turbulent motions and L rho is the fluid density variation scale. This effect is crucial for the formation of the differential rotation and should be taken into account in the theories of the differential rotation of the Sun, stars, and planets. In particular, we demonstrated that this effect may cause the differential rotation which is comparable with the typical solar differential rotation.

  19. Combination of miRNA499 and miRNA133 Exerts a Synergic Effect on Cardiac Differentiation

    PubMed Central

    Pisano, Federica; Altomare, Claudia; Cervio, Elisabetta; Barile, Lucio; Rocchetti, Marcella; Ciuffreda, Maria Chiara; Malpasso, Giuseppe; Copes, Francesco; Mura, Manuela; Danieli, Patrizia; Viarengo, Gianluca; Zaza, Antonio; Gnecchi, Massimiliano

    2015-01-01

    Several studies have demonstrated that miRNA are involved in cardiac development, stem cell maintenance, and differentiation. In particular, it has been shown that miRNA133, miRNA1, and miRNA499 are involved in progenitor cell differentiation into cardiomyocytes. However, it is unknown whether different miRNA may act synergistically to improve cardiac differentiation. We used mouse P19 cells as a cardiogenic differentiation model. miRNA499, miRNA1, or miRNA133 were transiently over-expressed in P19 cells individually or in different combinations. The over-expression of miRNA499 alone increased the number of beating cells and the association of miRNA499 with miRNA133 exerted a synergistic effect, further increasing the number of beating cells. Real-time polymerase chain reaction showed that the combination of miRNA499 + 133 enhanced the expression of cardiac genes compared with controls. Western blot and immunocytochemistry for connexin43 and cardiac troponin T confirmed these findings. Importantly, caffeine responsiveness, a clear functional parameter of cardiac differentiation, was increased by miRNA499 in association with miRNA133 and was directly correlated with the activation of the cardiac troponin I isoform promoter. Cyclic contractions were reversibly abolished by extracellular calcium depletion, nifedipine, ryanodine, and IP3R blockade. Finally, we demonstrated that the use of miRNA499 + 133 induced cardiac differentiation even in the absence of dimethyl sulfoxide. Our results show that the areas spontaneously contracting possess electrophysiological and pharmacological characteristics compatible with true cardiac excitation-contraction coupling. The translational relevance of our findings was reinforced by the demonstration that the over-expression of miRNA499 and miRNA133 was also able to induce the differentiation of human mesenchymal stromal cells toward the cardiac lineage. Stem Cells 2015;33:1187–1199 PMID:25534971

  20. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex

    PubMed Central

    Zhang, Wei; Kim, Paul Jong; Chen, Zhongcan; Lokman, Hidayat; Qiu, Lifeng; Zhang, Ke; Rozen, Steven George; Tan, Eng King; Je, Hyunsoo Shawn; Zeng, Li

    2016-01-01

    During the development, tight regulation of the expansion of neural progenitor cells (NPCs) and their differentiation into neurons is crucial for normal cortical formation and function. In this study, we demonstrate that microRNA (miR)-128 regulates the proliferation and differentiation of NPCs by repressing pericentriolar material 1 (PCM1). Specifically, overexpression of miR-128 reduced NPC proliferation but promoted NPC differentiation into neurons both in vivo and in vitro. In contrast, the reduction of endogenous miR-128 elicited the opposite effects. Overexpression of miR-128 suppressed the translation of PCM1, and knockdown of endogenous PCM1 phenocopied the observed effects of miR-128 overexpression. Furthermore, concomitant overexpression of PCM1 and miR-128 in NPCs rescued the phenotype associated with miR-128 overexpression, enhancing neurogenesis but inhibiting proliferation, both in vitro and in utero. Taken together, these results demonstrate a novel mechanism by which miR-128 regulates the proliferation and differentiation of NPCs in the developing neocortex. DOI: http://dx.doi.org/10.7554/eLife.11324.001 PMID:26883496

  1. Non-autonomous equations with unpredictable solutions

    NASA Astrophysics Data System (ADS)

    Akhmet, Marat; Fen, Mehmet Onur

    2018-06-01

    To make research of chaos more amenable to investigating differential and discrete equations, we introduce the concepts of an unpredictable function and sequence. The topology of uniform convergence on compact sets is applied to define unpredictable functions [1,2]. The unpredictable sequence is defined as a specific unpredictable function on the set of integers. The definitions are convenient to be verified as solutions of differential and discrete equations. The topology is metrizable and easy for applications with integral operators. To demonstrate the effectiveness of the approach, the existence and uniqueness of the unpredictable solution for a delay differential equation are proved as well as for quasilinear discrete systems. As a corollary of the theorem, a similar assertion for a quasilinear ordinary differential equation is formulated. The results are demonstrated numerically, and an application to Hopfield neural networks is provided. In particular, Poincaré chaos near periodic orbits is observed. The completed research contributes to the theory of chaos as well as to the theory of differential and discrete equations, considering unpredictable solutions.

  2. Silibinin alleviates high glucose-suppressed osteogenic differentiation of human bone marrow stromal cells via antioxidant effect and PI3K/Akt signaling.

    PubMed

    Ying, Xiaozhou; Chen, Xiaowei; Liu, Haixiao; Nie, Pengfei; Shui, Xiaolong; Shen, Yue; Yu, Kehe; Cheng, Shaowen

    2015-10-15

    High glucose is one of the possible causes for osteoporosis and fracture in diabetes mellitus. Our previous study showed that silibinin can increase osteogenic effect by stimulating osteogenic genes expression in human bone marrow stem cells (hBMSCs). However, no study has yet investigated the effect of silibinin on osteogenic differentiation of hBMSCs cultured with high glucose. The aim of this study was to evaluate the influence of high glucose on osteogenic differentiation of hBMSCs and to determine if silibinin can alleviate those effects. In this study, the hBMSCs were cultured in an osteogenic medium with physiological (normal glucose, NG, 5.5mM) or diabetic (high glucose, HG, 30mM). The effects of silibinin on HG-induced osteogenic differentiation were evaluated by alkaline phosphatas (ALP) activity assay, Von Kossa staining and real time-polymerase chain reaction. HG-induced oxidative damage was also assessed. Western blot were performed to examine the role of PI3K/Akt pathway. We demonstrated that HG suppressed osteogenic differentiation of hBMSCs, manifested by a decrease in expression of osteogenic markers and an increase of oxidative damage markers including reactive oxygen species and lipid peroxide (MDA). Remarkably, all of the observed oxidative damage and osteogenic dysfunction induced by HG were inhibited by silibinin. Furthermore, the PI3K/Akt pathway was activated by silibinin. These results demonstrate that silibinin may attenuate HG-mediated hBMSCs dysfunction through antioxidant effect and modulation of PI3K/Akt pathway, suggesting that silibinin may be a superior drug candidate for the treatment of diabetes related bone diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Propionibacterium acnes induces an adjuvant effect in B-1 cells and affects their phagocyte differentiation via a TLR2-mediated mechanism.

    PubMed

    Gambero, Monica; Teixeira, Daniela; Butin, Liane; Ishimura, Mayari Eika; Mariano, Mario; Popi, Ana Flavia; Longo-Maugéri, Ieda Maria

    2016-09-01

    B-1 lymphocytes are present in large numbers in the mouse peritoneal cavity, as are macrophages, and are responsible for natural IgM production. These lymphocytes migrate to inflammatory foci and are also involved in innate immunity. It was also demonstrated that B-1 cells are able to differentiated into phagocytes (B-1CDP), which is characterized by expression of F4/80 and increased phagocytic activity. B-1 cell responses to antigens and adjuvants are poorly characterized. It has been shown that Propionibacterium acnes suspensions induce immunomodulatory effects in both macrophages and B-2 lymphocytes. We recently demonstrated that this bacterium has the ability to increase B-1 cell populations both in vitro and in vivo. P. acnes induces B-1CDP differentiation, increases the expression of TLR2, TLR4 and TLR9 and augments the expression of CD80, CD86 and CD40 in B-1 and B-1CDP cells. Because P. acnes has been shown to modulate TLR expression, in this study, we investigated the role of TLR2 and TLR4 in B-1 cell population, including B-1CDP differentiation and phagocytic activity in vitro and in vivo. Interestingly, we have demonstrated that TLR2 signaling could be involved in the increase in the B-1 cell population induced by P. acnes. Furthermore, the early differentiation of B-1CDP is also dependent of TLR2. It was also observed that TLR signals also interfere in the phagocytic ability of B-1 cells and their phagocytes. According to these data, it is clear that P. acnes promotes an important adjuvant effect in B-1 cells by inducing them to differentiate into B-1CDP cells and modulates their phagocytic functions both in vivo and in vitro. Moreover, most of these effects are mediated primarily via TLR2. These data reinforce the findings that such bacterial suspensions have powerful adjuvant properties. The responses of B-1 cells to exogenous stimulation indicate that these cells are important to the innate immune response. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Temporal Profiling and Pulsed SILAC Labeling Identify Novel Secreted Proteins During Ex Vivo Osteoblast Differentiation of Human Stromal Stem Cells*

    PubMed Central

    Kristensen, Lars P.; Chen, Li; Nielsen, Maria Overbeck; Qanie, Diyako W.; Kratchmarova, Irina; Kassem, Moustapha; Andersen, Jens S.

    2012-01-01

    It is well established that bone forming cells (osteoblasts) secrete proteins with autocrine, paracrine, and endocrine function. However, the identity and functional role for the majority of these secreted and differentially expressed proteins during the osteoblast (OB) differentiation process, is not fully established. To address these questions, we quantified the temporal dynamics of the human stromal (mesenchymal, skeletal) stem cell (hMSC) secretome during ex vivo OB differentiation using stable isotope labeling by amino acids in cell culture (SILAC). In addition, we employed pulsed SILAC labeling to distinguish genuine secreted proteins from intracellular contaminants. We identified 466 potentially secreted proteins that were quantified at 5 time-points during 14-days ex vivo OB differentiation including 41 proteins known to be involved in OB functions. Among these, 315 proteins exhibited more than 2-fold up or down-regulation. The pulsed SILAC method revealed a strong correlation between the fraction of isotope labeling and the subset of proteins known to be secreted and involved in OB differentiation. We verified SILAC data using qRT-PCR analysis of 9 identified potential novel regulators of OB differentiation. Furthermore, we studied the biological effects of one of these proteins, the hormone stanniocalcin 2 (STC2) and demonstrated its autocrine effects in enhancing osteoblastic differentiation of hMSC. In conclusion, combining complete and pulsed SILAC labeling facilitated the identification of novel factors produced by hMSC with potential role in OB differentiation. Our study demonstrates that the secretome of osteoblastic cells is more complex than previously reported and supports the emerging evidence that osteoblastic cells secrete proteins with endocrine functions and regulate cellular processes beyond bone formation. PMID:22801418

  5. A 3-D well-differentiated model of pediatric bronchial epithelium demonstrates unstimulated morphological differences between asthmatic and nonasthmatic cells.

    PubMed

    Parker, Jeremy; Sarlang, Severine; Thavagnanam, Surendran; Williamson, Grace; O'donoghue, Dara; Villenave, Remi; Power, Ultan; Shields, Michael; Heaney, Liam; Skibinski, Grzegorz

    2010-01-01

    There is a need for reproducible and effective models of pediatric bronchial epithelium to study disease states such as asthma. We aimed to develop, characterize, and differentiate an effective, an efficient, and a reliable three-dimensional model of pediatric bronchial epithelium to test the hypothesis that children with asthma differ in their epithelial morphologic phenotype when compared with nonasthmatic children. Primary cell cultures from both asthmatic and nonasthmatic children were grown and differentiated at the air-liquid interface for 28 d. Tight junction formation, MUC5AC secretion, IL-8, IL-6, prostaglandin E2 production, and the percentage of goblet and ciliated cells in culture were assessed. Well-differentiated, multilayered, columnar epithelium containing both ciliated and goblet cells from asthmatic and nonasthmatic subjects were generated. All cultures demonstrated tight junction formation at the apical surface and exhibited mucus production and secretion. Asthmatic and nonasthmatic cultures secreted similar quantities of IL-8, IL-6, and prostaglandin E2. Cultures developed from asthmatic children contained considerably more goblet cells and fewer ciliated cells compared with those from nonasthmatic children. A well-differentiated model of pediatric epithelium has been developed that will be useful for more in vivo like study of the mechanisms at play during asthma.

  6. Extracellular Purines Promote the Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells to the Osteogenic and Adipogenic Lineages

    PubMed Central

    Zini, Roberta; Rossi, Lara; Salvestrini, Valentina; Ferrari, Davide; Manfredini, Rossella; Lemoli, Roberto M.

    2013-01-01

    Extracellular nucleotides are potent signaling molecules mediating cell-specific biological functions, mostly within the processes of tissue damage and repair and flogosis. We previously demonstrated that adenosine 5′-triphosphate (ATP) inhibits the proliferation of human bone marrow-derived mesenchymal stem cells (BM-hMSCs), while stimulating, in vitro and in vivo, their migration. Here, we investigated the effects of ATP on BM-hMSC differentiation capacity. Molecular analysis showed that ATP treatment modulated the expression of several genes governing adipogenic and osteoblastic (ie, WNT-pathway-related genes) differentiation of MSCs. Functional studies demonstrated that ATP, under specific culture conditions, stimulated adipogenesis by significantly increasing the lipid accumulation and the expression levels of the adipogenic master gene PPARγ (peroxisome proliferator-activated receptor-gamma). In addition, ATP stimulated osteogenic differentiation by promoting mineralization and expression of the osteoblast-related gene RUNX2 (runt-related transcription factor 2). Furthermore, we demonstrated that ATP stimulated adipogenesis via its triphosphate form, while osteogenic differentiation was induced by the nucleoside adenosine, resulting from ATP degradation induced by CD39 and CD73 ectonucleotidases expressed on the MSC membrane. The pharmacological profile of P2 purinergic receptors (P2Rs) suggests that adipogenic differentiation is mainly mediated by the engagement of P2Y1 and P2Y4 receptors, while stimulation of the P1R adenosine-specific subtype A2B is involved in adenosine-induced osteogenic differentiation. Thus, we provide new insights into molecular regulation of MSC differentiation. PMID:23259837

  7. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xin; Dai, Hui; Zhuang, Binyu

    The effects and the underlying mechanisms of hydrogen sulfide (H{sub 2}S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H{sub 2}S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H{sub 2}S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagicmore » vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H{sub 2}S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H{sub 2}S promotes keratinocyte proliferation and differentiation. • The effects of H{sub 2}S on proliferation and differentiation is modulated by autophagy. • Exogenous H{sub 2}S has no effect on keratinocyte apoptosis.« less

  8. Vitamin E isomer δ-tocopherol enhances the efficiency of neural stem cell differentiation via L-type calcium channel.

    PubMed

    Deng, Sihao; Hou, Guoqiang; Xue, Zhiqin; Zhang, Longmei; Zhou, Yuye; Liu, Chao; Liu, Yanqing; Li, Zhiyuan

    2015-01-12

    The effects of the vitamin E isomer δ-tocopherol on neural stem cell (NSC) differentiation have not been investigated until now. Here we investigated the effects of δ-tocopherol on NSC neural differentiation, maturation and its possible mechanisms. Neonatal rat NSCs were grown in suspended neurosphere cultures, and were identified by their expression of nestin protein and their capacity for self-renewal. Treatment with a low concentration of δ-tocopherol induced a significant increase in the percentage of β-III-tubulin-positive cells. δ-Tocopherol also stimulated morphological maturation of neurons in culture. We further observed that δ-tocopherol stimulation increased the expression of voltage-dependent Ca(2+) channels. Moreover, a L-type specific Ca(2+) channel blocker verapamil reduced the percentage of differentiated neurons after δ-tocopherol treatment, and blocked the effects of δ-tocopherol on NSC differentiation into neurons. Together, our study demonstrates that δ-tocopherol may act through elevation of L-type calcium channel activity to increase neuronal differentiation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. The Role of Paracrine and Autocrine Signaling in the Early Phase of Adipogenic Differentiation of Adipose-derived Stem Cells

    PubMed Central

    Hemmingsen, Mette; Vedel, Søren; Skafte-Pedersen, Peder; Sabourin, David; Collas, Philippe; Bruus, Henrik; Dufva, Martin

    2013-01-01

    Introduction High cell density is known to enhance adipogenic differentiation of mesenchymal stem cells, suggesting secretion of signaling factors or cell-contact-mediated signaling. By employing microfluidic biochip technology, we have been able to separate these two processes and study the secretion pathways. Methods and results Adipogenic differentiation of human adipose-derived stem cells (ASCs) cultured in a microfluidic system was investigated under perfusion conditions with an adipogenic medium or an adipogenic medium supplemented with supernatant from differentiating ASCs (conditioned medium). Conditioned medium increased adipogenic differentiation compared to adipogenic medium with respect to accumulation of lipid-filled vacuoles and gene expression of key adipogenic markers (C/EBPα, C/EBPβ, C/EBPδ, PPARγ, LPL and adiponectin). The positive effects of conditioned medium were observed early in the differentiation process. Conclusions Using different cell densities and microfluidic perfusion cell cultures to suppress the effects of cell-released factors, we have demonstrated the significant role played by auto- or paracrine signaling in adipocyte differentiation. The cell-released factor(s) were shown to act in the recruitment phase of the differentiation process. PMID:23723991

  10. Native denaturation differential scanning fluorimetry: Determining the effect of urea using a quantitative real-time thermocycler.

    PubMed

    Childers, Christine L; Green, Stuart R; Dawson, Neal J; Storey, Kenneth B

    2016-09-01

    The effect of protein stability on kinetic function is monitored with many techniques that often require large amounts of expensive substrates and specialized equipment not universally available. We present differential scanning fluorimetry (DSF), a simple high-throughput assay performed in real-time thermocyclers, as a technique for analysis of protein unfolding. Furthermore, we demonstrate a correlation between the half-maximal rate of protein unfolding (Knd), and protein unfolding by urea (I50). This demonstrates that DSF methods can determine the structural stability of an enzyme's active site and can compare the relative structural stability of homologous enzymes with a high degree of sequence similarity. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Rho/ROCK pathway is essential to the expansion, differentiation, and morphological rearrangements of human neural stem/progenitor cells induced by lysophosphatidic acid.

    PubMed

    Frisca, Frisca; Crombie, Duncan E; Dottori, Mirella; Goldshmit, Yona; Pébay, Alice

    2013-05-01

    We previously reported that lysophosphatidic acid (LPA) inhibits the neuronal differentiation of human embryonic stem cells (hESC). We extended these studies by analyzing LPA's effects on the expansion of neural stem/progenitor cells (NS/PC) derived from hESCs and human induced pluripotent stem cells (iPSC), and we assessed whether data obtained on the neural differentiation of hESCs were relevant to iPSCs. We showed that hESCs and iPSCs exhibited comparable mRNA expression profiles of LPA receptors and producing enzymes upon neural differentiation. We demonstrated that LPA inhibited the expansion of NS/PCs of both origins, mainly by increased apoptosis in a Rho/Rho-associated kinase (ROCK)-dependent mechanism. Furthermore, LPA inhibited the neuronal differentiation of iPSCs. Lastly, LPA induced neurite retraction of NS/PC-derived early neurons through Rho/ROCK, which was accompanied by myosin light chain (MLC) phosphorylation. Our data demonstrate the consistency of LPA effects across various sources of human NS/PCs, rendering hESCs and iPSCs valuable models for studying lysophospholipid signaling in human neural cells. Our data also highlight the importance of the Rho/ROCK pathway in human NS/PCs. As LPA levels are increased in the central nervous system (CNS) following injury, LPA-mediated effects on NS/PCs and early neurons could contribute to the poor neurogenesis observed in the CNS following injury.

  12. Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells.

    PubMed

    Wang, Huichao; Li, Chunbo; Li, Jianming; Zhu, Yingjie; Jia, Yudong; Zhang, Ying; Zhang, Xiaodong; Li, Wenlong; Cui, Lei; Li, Wuyin; Liu, Youwen

    2017-04-01

    Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Annexin V-FITC assay and MTT assay were used to measure the effect of naringin on cytotoxicity and proliferation of hBMSCs, respectively. Alkaline phosphatase activity analysis, Alizarin Red S staining, Western blotting, and real-time PCR assay were used to evaluate both the potential effect of naringin on osteogenic differentiation and the role of ERK signaling pathway in osteogenic differentiation. Our results showed that naringin had no obvious toxicity on hBMSCs, and could significantly promote the proliferation of hBMSCs. Naringin also enhanced the osteogenic differentiation of hBMSCs and increased the protein and mRNA expression levels of osteogenic markers such as Runx-2, OXS, OCN, and Col1 in a dose-dependent manner. In addition, we found that the enhancing effect of naringin on osteogenic differentiation was related to the activation of phosphor-ERK, with an increase in duration of activity from 30 min to 120 min. More importantly, both the enhancing effect of naringin on osteogenic differentiation and the activity effect of naringin on ERK signaling pathway were reversed by U0126 addition. Our findings demonstrated that naringin promoted proliferation and osteogenesis of hBMSCs by activating the ERK signaling pathway and it might be a potential therapeutic agent for treating or preventing osteoporosis.

  13. Niche astrocytes promote the survival, proliferation and neuronal differentiation of co-transplanted neural stem cells following ischemic stroke in rats

    PubMed Central

    Luo, Li; Guo, Kaihua; Fan, Wenguo; Lu, Yinghong; Chen, Lizhi; Wang, Yang; Shao, Yijia; Wu, Gongxiong; Xu, Jie; Lü, Lanhai

    2017-01-01

    Niche astrocytes have been reported to promote neuronal differentiation through juxtacrine signaling. However, the effects of astrocytes on neuronal differentiation following ischemic stroke are not fully understood. In the present study, transplanted astrocytes and neural stem cells (NSCs) were transplanted into the ischemic striatum of transient middle cerebral artery occlusion (MCAO) model rats 48 h following surgery. It was observed that the co-transplantation of astrocytes and NSCs resulted in a higher ratio of survival and proliferation of the transplanted NSCs, and neuronal differentiation, in MCAO rats compared with NSC transplantation alone. These results demonstrate that the co-administration of astrocytes promotes the survival and neuronal differentiation of NSCs in the ischemic brain. These results suggest that the co-transplantation of astrocytes and NSCs is more effective than NSCs alone in the production of neurons following ischemic stroke in rats. PMID:28352345

  14. Loss of lysophosphatidic acid receptor LPA1 alters oligodendrocyte differentiation and myelination in the mouse cerebral cortex.

    PubMed

    García-Díaz, Beatriz; Riquelme, Raquel; Varela-Nieto, Isabel; Jiménez, Antonio Jesús; de Diego, Isabel; Gómez-Conde, Ana Isabel; Matas-Rico, Elisa; Aguirre, José Ángel; Chun, Jerold; Pedraza, Carmen; Santín, Luis Javier; Fernández, Oscar; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo

    2015-11-01

    Lysophosphatidic acid (LPA) is an intercellular signaling lipid that regulates multiple cellular functions, acting through specific G-protein coupled receptors (LPA(1-6)). Our previous studies using viable Malaga variant maLPA1-null mice demonstrated the requirement of the LPA1 receptor for normal proliferation, differentiation, and survival of the neuronal precursors. In the cerebral cortex LPA1 is expressed extensively in differentiating oligodendrocytes, in parallel with myelination. Although exogenous LPA-induced effects have been investigated in myelinating cells, the in vivo contribution of LPA1 to normal myelination remains to be demonstrated. This study identified a relevant in vivo role for LPA1 as a regulator of cortical myelination. Immunochemical analysis in adult maLPA1-null mice demonstrated a reduction in the steady-state levels of the myelin proteins MBP, PLP/DM20, and CNPase in the cerebral cortex. The myelin defects were confirmed using magnetic resonance spectroscopy and electron microscopy. Stereological analysis limited the defects to adult differentiating oligodendrocytes, without variation in the NG2+ precursor cells. Finally, a possible mechanism involving oligodendrocyte survival was demonstrated by the impaired intracellular transport of the PLP/DM20 myelin protein which was accompanied by cellular loss, suggesting stress-induced apoptosis. These findings describe a previously uncharacterized in vivo functional role for LPA1 in the regulation of oligodendrocyte differentiation and myelination in the CNS, underlining the importance of the maLPA1-null mouse as a model for the study of demyelinating diseases.

  15. The Role of Political Skill in the Stressor-Outcome Relationship: Differential Predictions for Self- and Other-Reports of Political Skill

    ERIC Educational Resources Information Center

    Meurs, James A.; Gallagher, Vickie Coleman; Perrewe, Pamela L.

    2010-01-01

    The beneficial role of political skill in stress reactions and performance evaluations has been demonstrated in a substantial amount of empirical research. Most of the research, however, has focused on self-perceptions of political skill. This study examines the differential moderating effects of self- vs. other-rated political skill in the…

  16. Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study.

    PubMed

    Carlson, Christopher S; Matise, Tara C; North, Kari E; Haiman, Christopher A; Fesinmeyer, Megan D; Buyske, Steven; Schumacher, Fredrick R; Peters, Ulrike; Franceschini, Nora; Ritchie, Marylyn D; Duggan, David J; Spencer, Kylee L; Dumitrescu, Logan; Eaton, Charles B; Thomas, Fridtjof; Young, Alicia; Carty, Cara; Heiss, Gerardo; Le Marchand, Loic; Crawford, Dana C; Hindorff, Lucia A; Kooperberg, Charles L

    2013-09-01

    The vast majority of genome-wide association study (GWAS) findings reported to date are from populations with European Ancestry (EA), and it is not yet clear how broadly the genetic associations described will generalize to populations of diverse ancestry. The Population Architecture Using Genomics and Epidemiology (PAGE) study is a consortium of multi-ancestry, population-based studies formed with the objective of refining our understanding of the genetic architecture of common traits emerging from GWAS. In the present analysis of five common diseases and traits, including body mass index, type 2 diabetes, and lipid levels, we compare direction and magnitude of effects for GWAS-identified variants in multiple non-EA populations against EA findings. We demonstrate that, in all populations analyzed, a significant majority of GWAS-identified variants have allelic associations in the same direction as in EA, with none showing a statistically significant effect in the opposite direction, after adjustment for multiple testing. However, 25% of tagSNPs identified in EA GWAS have significantly different effect sizes in at least one non-EA population, and these differential effects were most frequent in African Americans where all differential effects were diluted toward the null. We demonstrate that differential LD between tagSNPs and functional variants within populations contributes significantly to dilute effect sizes in this population. Although most variants identified from GWAS in EA populations generalize to all non-EA populations assessed, genetic models derived from GWAS findings in EA may generate spurious results in non-EA populations due to differential effect sizes. Regardless of the origin of the differential effects, caution should be exercised in applying any genetic risk prediction model based on tagSNPs outside of the ancestry group in which it was derived. Models based directly on functional variation may generalize more robustly, but the identification of functional variants remains challenging.

  17. Generalization and Dilution of Association Results from European GWAS in Populations of Non-European Ancestry: The PAGE Study

    PubMed Central

    Carlson, Christopher S.; Matise, Tara C.; North, Kari E.; Haiman, Christopher A.; Fesinmeyer, Megan D.; Buyske, Steven; Schumacher, Fredrick R.; Peters, Ulrike; Franceschini, Nora; Ritchie, Marylyn D.; Duggan, David J.; Spencer, Kylee L.; Dumitrescu, Logan; Eaton, Charles B.; Thomas, Fridtjof; Young, Alicia; Carty, Cara; Heiss, Gerardo; Le Marchand, Loic; Crawford, Dana C.; Hindorff, Lucia A.; Kooperberg, Charles L.

    2013-01-01

    The vast majority of genome-wide association study (GWAS) findings reported to date are from populations with European Ancestry (EA), and it is not yet clear how broadly the genetic associations described will generalize to populations of diverse ancestry. The Population Architecture Using Genomics and Epidemiology (PAGE) study is a consortium of multi-ancestry, population-based studies formed with the objective of refining our understanding of the genetic architecture of common traits emerging from GWAS. In the present analysis of five common diseases and traits, including body mass index, type 2 diabetes, and lipid levels, we compare direction and magnitude of effects for GWAS-identified variants in multiple non-EA populations against EA findings. We demonstrate that, in all populations analyzed, a significant majority of GWAS-identified variants have allelic associations in the same direction as in EA, with none showing a statistically significant effect in the opposite direction, after adjustment for multiple testing. However, 25% of tagSNPs identified in EA GWAS have significantly different effect sizes in at least one non-EA population, and these differential effects were most frequent in African Americans where all differential effects were diluted toward the null. We demonstrate that differential LD between tagSNPs and functional variants within populations contributes significantly to dilute effect sizes in this population. Although most variants identified from GWAS in EA populations generalize to all non-EA populations assessed, genetic models derived from GWAS findings in EA may generate spurious results in non-EA populations due to differential effect sizes. Regardless of the origin of the differential effects, caution should be exercised in applying any genetic risk prediction model based on tagSNPs outside of the ancestry group in which it was derived. Models based directly on functional variation may generalize more robustly, but the identification of functional variants remains challenging. PMID:24068893

  18. Effects of ß-TCP scaffolds on neurogenic and osteogenic differentiation of human embryonic stem cells.

    PubMed

    Arpornmaeklong, Premjit; Pressler, Michael J

    2018-01-01

    Extracellular matrix (ECM) and adhesion molecules play crucial roles in regulating growth and differentiation of stem cells. The current study aimed to investigate the effects of beta-tricalcium phosphate (ß-TCP) scaffolds on differentiation and expression of ECM and adhesion molecules of human embryonic stem cells (hESCs). Undifferentiated hESCs were seeded on ß-TCP scaffolds and cell culture plates and cultured in growth and osteogenic medium for 21 days. Scanning electron microscopy (SEM) displayed adhesion and growth of hESCs on the porous ß-TCP scaffolds. Histological analysis, immunohistochemical staining and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) demonstrated that the scaffolds supported growth and differentiation of hESCs. Expression levels of neural crest related genes (AP2a, FoxD3, HNK1, P75, Sox1, Sox10) and osteoblast-related genes (Runx2, SPP1 and BGLA) on the scaffolds in osteogenic medium were significantly higher than on the scaffolds in growth and cell culture plates in osteogenic medium, respectively (p<0.05). Polymerase chain reaction array experiments demonstrated increased expression of ECM and adhesion molecule-related genes on the scaffolds. In conclusion, osteoconductive scaffolds such as ß-TCP scaffolds promoted differentiation of hESCs, particularly expression of genes related to neural crest stem cell and osteoblastic differentiations. Beta-TCP scaffolds could be an alternative cell culture substrate for neural crest and osteogenic differentiation of hESCs. Optimization of culture medium may be necessary to enhance lineage restriction of hESCs on the ß-TCP scaffolds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Disruption of Testis Cords by Cyclopamine or Forskolin Reveals Independent Cellular Pathways in Testis Organogenesis

    PubMed Central

    Yao, Humphrey Hung-Chang; Capel, Blanche

    2014-01-01

    Most studies to date indicate that the formation of testis cords is critical for proper Sertoli cell differentiation, inhibition of germ cell meiosis, and regulation of Leydig cell differentiation. However, the connections between these events are poorly understood. The objective of this study was to dissect the molecular and cellular relationships between these events in testis formation. We took advantage of the different effects of two hedgehog signaling inhibitors, cyclopamine and forskolin, on gonad explant cultures. Both hedgehog inhibitors phenocopied the disruptive effect of Dhh−/− on formation of testis cords without influencing Sertoli cell differentiation. However, they exhibited different effects on other cellular events during testis development. Treatment with cyclopamine did not affect inhibition of germ cell meiosis and mesonephric cell migration but caused defects in Leydig cell differentiation. In contrast, forskolin treatment induced germ cell meiosis, inhibited mesonephric cell migration, and had no effect on Leydig cell differentiation. By carefully contrasting the different effects of these two hedgehog inhibitors, we demonstrate that although formation of testis cords and development of other cell types normally take place in a tightly regulated sequence, each of these events can occur independent of the others. PMID:12051821

  20. Naïve-like conversion enhances the difference in innate in vitro differentiation capacity between rabbit ES cells and iPS cells

    PubMed Central

    HONSHO, Kimiko; HIROSE, Michiko; HATORI, Masanori; YASMIN, Lubna; IZU, Haruna; MATOBA, Shogo; TOGAYACHI, Sumie; MIYOSHI, Hiroyuki; SANKAI, Tadashi; OGURA, Atsuo; HONDA, Arata

    2014-01-01

    Quality evaluation of pluripotent stem cells using appropriate animal models needs to be improved for human regenerative medicine. Previously, we demonstrated that although the in vitro neural differentiating capacity of rabbit induced pluripotent stem cells (iPSCs) can be mitigated by improving their baseline level of pluripotency, i.e., by converting them into the so-called “naïve-like” state, the effect after such conversion of rabbit embryonic stem cells (ESCs) remains to be elucidated. Here we found that naïve-like conversion enhanced the differences in innate in vitro differentiation capacity between ESCs and iPSCs. Naïve-like rabbit ESCs exhibited several features indicating pluripotency, including the capacity for teratoma formation. They differentiated into mature oligodendrocytes much more effectively (3.3–7.2 times) than naïve-like iPSCs. This suggests an inherent variation in differentiation potential in vitro among PSC lines. When naïve-like ESCs were injected into preimplantation rabbit embryos, although they contributed efficiently to forming the inner cell mass of blastocysts, no chimeric pups were obtained. Thus, in vitro neural differentiation following naïve-like conversion is a promising option for determining the quality of PSCs without the need to demonstrate chimeric contribution. These results provide an opportunity to evaluate which pluripotent stem cells or treatments are best suited for therapeutic use. PMID:25345855

  1. Effects of canola proteins and hydrolysates on adipogenic differentiation of C3H10T/2 mesenchymal stem cells.

    PubMed

    Alashi, Adeola M; Blanchard, Christopher L; Mailer, Rodney J; Agboola, Samson O; Mawson, A John; Aluko, Rotimi E; Strappe, Padraig

    2015-10-15

    This study assessed the ability of canola protein isolate (CPI) and enzymatic hydrolysates (CPHs) to inhibit adipogenic differentiation of C3H10T1/2 murine mesenchymal stem cells in vitro. Cell viability was maintained at concentrations of 60 μg/ml of sample. Cells treated with Alcalase hydrolysate demonstrated a higher reduction in anti-adipogenic differentiation through quantitation by oil-red O staining. qPCR analysis showed that CPI and CPH-treated cells significantly inhibited PPARγ expression, a key transcription factor involved in adipocyte differentiation, as evident in an ∼ 60-80% fold reduction of PPARγ mRNA. Immunofluorescence staining for PPARγ protein also showed a reduced expression in some treated cells when compared to differentiated untreated cells. The 50% inhibition concentration (IC50) of CPI, CPHs and their membrane ultrafiltration fractions on pancreatic lipase (PL) activity ranged between 0.75 and 2.5 mg/ml, (p < 0.05) for the hydrolysed and unhydrolysed samples. These findings demonstrate that CPI and CPHs contain bioactive components which can modulate in vitro adipocyte differentiation. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Differential effects of atomoxetine on executive functioning and lexical decision in attention-deficit/hyperactivity disorder and reading disorder.

    PubMed

    de Jong, Christien G W; Van De Voorde, Séverine; Roeyers, Herbert; Raymaekers, Ruth; Allen, Albert J; Knijff, Simone; Verhelst, Helene; Temmink, Alfons H; Smit, Leo M E; Rodriques-Pereira, Rob; Vandenberghe, Dirk; van Welsen, Inge; ter Schuren, Liesbeth; Al-Hakim, Mazim; Amin, Azad; Vlasveld, Laurens; Oosterlaan, Jaap; Sergeant, Joseph A

    2009-12-01

    The effects of a promising pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD), atomoxetine, were studied on executive functions in both ADHD and reading disorder (RD) because earlier research demonstrated an overlap in executive functioning deficits in both disorders. In addition, the effects of atomoxetine were explored on lexical decision. Sixteen children with ADHD, 20 children with ADHD + RD, 21 children with RD, and 26 normal controls were enrolled in a randomized placebo-controlled crossover study. Children were measured on visuospatial working memory, inhibition, and lexical decision on the day of randomization and following two 28-day medication periods. Children with ADHD + RD showed improved visuospatial working memory performance and, to a lesser extent, improved inhibition following atomoxetine treatment compared to placebo. No differential effects of atomoxetine were found for lexical decision in comparison to placebo. In addition, no effects of atomoxetine were demonstrated in the ADHD and RD groups. Atomoxetine improved visuospatial working memory and to a lesser degree inhibition in children with ADHD + RD, which suggests differential developmental pathways for co-morbid ADHD + RD as compared to ADHD and RD alone. B4Z-MC-LYCK, NCT00191906; http://clinicaltrials.gov/ct2/show/NCT00191906.

  3. Adenosine A₂A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures.

    PubMed

    Coppi, Elisabetta; Cellai, Lucrezia; Maraula, Giovanna; Pugliese, Anna Maria; Pedata, Felicita

    2013-10-01

    Oligodendrocyte progenitor cells (OPCs) are a population of cycling cells which persist in the adult central nervous system (CNS) where, under opportune stimuli, they differentiate into mature myelinating oligodendrocytes. Adenosine A(2A) receptors are Gs-coupled P1 purinergic receptors which are widely distributed throughout the CNS. It has been demonstrated that OPCs express A(2A) receptors, but their functional role in these cells remains elusive. Oligodendrocytes express distinct voltage-gated ion channels depending on their maturation. Here, by electrophysiological recordings coupled with immunocytochemical labeling, we studied the effects of adenosine A(2A) receptors on membrane currents and differentiation of purified primary OPCs isolated from the rat cortex. We found that the selective A(2A) agonist, CGS21680, inhibits sustained, delayed rectifier, K(+) currents (I(K)) without modifying transient (I(A)) conductances. The effect was observed in all cells tested, independently from time in culture. CGS21680 inhibition of I(K) current was concentration-dependent (10-200 nM) and blocked in the presence of the selective A(2A) antagonist SCH58261 (100 nM). It is known that I(K) currents play an important role during OPC development since their block decreases cell proliferation and differentiation. In light of these data, our further aim was to investigate whether A(2A) receptors modulate these processes. CGS21680, applied at 100 nM in the culture medium of oligodendrocyte cultures, inhibits OPC differentiation (an effect prevented by SCH58261) without affecting cell proliferation. Data demonstrate that cultured OPCs express functional A(2A) receptors whose activation negatively modulate I(K) currents. We propose that, by this mechanism, A(2A) adenosine receptors inhibit OPC differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The differential effects of 2% oxygen preconditioning on the subsequent differentiation of mouse and human pluripotent stem cells.

    PubMed

    Fynes, Kate; Tostoes, Rui; Ruban, Ludmila; Weil, Ben; Mason, Christopher; Veraitch, Farlan S

    2014-08-15

    A major challenge facing the development of effective cell therapies is the efficient differentiation of pluripotent stem cells (PSCs) into pure populations. Lowering oxygen tension to physiological levels can affect both the expansion and differentiation stages. However, to date, there are no studies investigating the knock-on effect of culturing PSCs under low oxygen conditions on subsequent lineage commitment at ambient oxygen levels. PSCs were passaged three times at 2% O2 before allowing cells to spontaneously differentiate as embryoid bodies (EBs) in high oxygen (20% O2) conditions. Maintenance of mouse PSCs in low oxygen was associated with a significant increase in the expression of early differentiation markers FGF5 and Eomes, while conversely we observed decreased expression of these genes in human PSCs. Low oxygen preconditioning primed mouse PSCs for their subsequent differentiation into mesodermal and endodermal lineages, as confirmed by increased gene expression of Eomes, Goosecoid, Brachyury, AFP, Sox17, FoxA2, and protein expression of Brachyury, Eomes, Sox17, FoxA2, relative to high oxygen cultures. The effects extended to the subsequent formation of more mature mesodermal lineages. We observed significant upregulation of cardiomyocyte marker Nkx2.5, and critically a decrease in the number of contaminant pluripotent cells after 12 days using a directed cardiomyocyte protocol. However, the impact of low oxygen preconditioning was to prime human cells for ectodermal lineage commitment during subsequent EB differentiation, with significant upregulation of Nestin and β3-tubulin. Our research demonstrates the importance of oxygen tension control during cell maintenance on the subsequent differentiation of both mouse and human PSCs, and highlights the differential effects.

  5. DNA Demethylation Rescues the Impaired Osteogenic Differentiation Ability of Human Periodontal Ligament Stem Cells in High Glucose

    PubMed Central

    Liu, Zhi; Chen, Tian; Sun, Wenhua; Yuan, Zongyi; Yu, Mei; Chen, Guoqing; Guo, Weihua; Xiao, Jingang; Tian, Weidong

    2016-01-01

    Diabetes mellitus, characterized by abnormally high blood glucose levels, gives rise to impaired bone remodeling. In response to high glucose (HG), the attenuated osteogenic differentiation capacity of human periodontal ligament stem cells (hPDLSCs) is associated with the loss of alveolar bone. Recently, DNA methylation was reported to affect osteogenic differentiation of stem cells in pathological states. However, the intrinsic mechanism linking DNA methylation to osteogenic differentiation ability in the presence of HG is still unclear. In this study, we found that diabetic rats with increased DNA methylation levels in periodontal ligaments exhibited reduced bone mass and density. In vitro application of 5-aza-2′-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, to decrease DNA methylation levels in hPDLSCs, rescued the osteogenic differentiation capacity of hPDLSCs under HG conditions. Moreover, we demonstrated that the canonical Wnt signaling pathway was activated during this process and, under HG circumstances, the 5-aza-dC-rescued osteogenic differentiation capacity was blocked by Dickkopf-1, an effective antagonist of the canonical Wnt signaling pathway. Taken together, these results demonstrate for the first time that suppression of DNA methylation is able to facilitate the osteogenic differentiation capacity of hPDLSCs exposed to HG, through activation of the canonical Wnt signaling pathway. PMID:27273319

  6. Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation

    PubMed Central

    Wang, Xiaoqin; Omar, Omar; Vazirisani, Forugh; Thomsen, Peter

    2018-01-01

    Human mesenchymal stem cell (hMSC)-derived exosomes have shown regenerative effects, but their role in osteogenesis and the underlying mechanism are yet to be determined. In this study, we examined the time-course secretion of exosomes by hMSCs during the entire process of osteogenic differentiation. Exosomes derived from hMSCs in various stages of osteogenic differentiation committed homotypic cells to differentiate towards osteogenic lineage, but only exosomes from late stages of osteogenic differentiation induced extracellular matrix mineralisation. Exosomes from expansion and early and late stages of osteogenic differentiation were internalised by a subpopulation of hMSCs. MicroRNA profiling revealed a set of differentially expressed exosomal microRNAs from the late stage of osteogenic differentiation, which were osteogenesis related. Target prediction demonstrated that these microRNAs enriched pathways involved in regulation of osteogenic differentiation and general mechanisms how exosomes exert their functions, such as “Wnt signalling pathway” and “endocytosis”. Taken together, the results show that MSCs secrete exosomes with different biological properties depending on differentiation stage of their parent cells. The exosomal cargo transferred from MSCs in the late stage of differentiation induces osteogenic differentiation and mineralisation. Moreover, it is suggested that the regulatory effect on osteogenesis by exosomes is at least partly exerted by exosomal microRNA. PMID:29447276

  7. Pretreating mesenchymal stem cells with electrical stimulation causes sustained long-lasting pro-osteogenic effects.

    PubMed

    Eischen-Loges, Maria; Oliveira, Karla M C; Bhavsar, Mit B; Barker, John H; Leppik, Liudmila

    2018-01-01

    Electrical stimulation (ES) has a long history of successful use in the clinical treatment of refractory, non-healing bone fractures and has recently been proposed as an adjunct to bone tissue-engineering treatments to optimize their therapeutic potential. This idea emerged from ES's demonstrated positive effects on stem cell migration, proliferation, differentiation and adherence to scaffolds, all cell behaviors recognized to be advantageous in Bone Tissue Engineering (BTE). In previous in vitro experiments we demonstrated that direct current ES, administered daily, accelerates Mesenchymal Stem Cell (MSC) osteogenic differentiation. In the present study, we sought to define the optimal ES regimen for maximizing this pro-osteogenic effect. Rat bone marrow-derived MSC were exposed to 100 mV/mm, 1 hr/day for three, seven, and 14 days, then osteogenic differentiation was assessed at Day 14 of culture by measuring collagen production, calcium deposition, alkaline phosphatase activity and osteogenic marker gene expression. We found that exposing MSC to ES for three days had minimal effect, while seven and 14 days resulted in increased osteogenic differentiation, as indicated by significant increases in collagen and calcium deposits, and expression of osteogenic marker genes Col1a1 , Osteopontin , Osterix and Calmodulin . We also found that cells treated with ES for seven days, maintained this pro-osteogenic activity long (for at least seven days) after discontinuing ES exposure. This study showed that while three days of ES is insufficient to solicit pro-osteogenic effects, seven and 14 days significantly increases osteogenic differentiation. Importantly, we found that cells treated with ES for only seven days, maintained this pro-osteogenic activity long after discontinuing ES exposure. This sustained positive osteogenic effect is likely due to the enhanced expression of RunX2 and Calmodulin we observed. This prolonged positive osteogenic effect, long after discontinuing ES treatment, if incorporated into BTE treatment protocols, could potentially improve outcomes and in doing so help BTE achieve its full therapeutic potential.

  8. Defined culture medium for stem cell differentiation: applicability of serum-free conditions in the mouse embryonic stem cell test.

    PubMed

    Riebeling, Christian; Schlechter, Katharina; Buesen, Roland; Spielmann, Horst; Luch, Andreas; Seiler, Andrea

    2011-06-01

    The embryonic stem cell test (EST) is a validated method to assess the developmental toxicity potency of chemicals. It was developed to reduce animal use and allow faster testing for hazard assessment. The cells used in this method are maintained and differentiated in media containing foetal calf serum. This animal product is of considerable variation in quality, and individual batches require extensive testing for their applicability in the EST. Moreover, its production involves a large number of foetuses and possible animal suffering. We demonstrate the serum-free medium and feeder cell-free maintenance of the mouse embryonic stem cell line D3 and investigate the use of specific growth factors for induction of cardiac differentiation. Using a combination of bone morphogenetic protein-2, bone morphogenetic protein-4, activin A and ascorbic acid, embryoid bodies efficiently differentiated into contracting myocardium. Additionally, examining levels of intracellular marker proteins by flow cytometry not only confirmed differentiation into cardiomyocytes, but demonstrated significant differentiation into neuronal cells in the same time frame. Thus, this approach might allow for simultaneous detection of developmental effects on both early mesodermal and neuroectodermal differentiation. The serum-free conditions for maintenance and differentiation of D3 cells described here enhance the transferability and standardisation and hence the performance of the EST. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. In vitro toxicological effects of estrogenic mycotoxins on human placental cells: Structure activity relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prouillac, Caroline, E-mail: c.prouillac@vetagro-sup.fr; Koraichi, Farah; Videmann, Bernadette

    2012-03-15

    Zearalenone (ZEN) is a non-steroid estrogen mycotoxin produced by numerous strains of Fusarium which commonly contaminate cereals. After oral administration, ZEN is reduced via intestinal and hepatic metabolism to α- and β-zearalenol (αZEL and βZEL). These reduced metabolites possess estrogenic properties, αZEL showing the highest affinity for ERs. ZEN and reduced metabolites cause hormonal effects in animals, such as abnormalities in the development of the reproductive tract and mammary gland in female offspring, suggesting a fetal exposure to these contaminants. In our previous work, we have suggested the potential impact of ZEN on placental cells considering this organ as amore » potential target of xenobiotics. In this work, we first compared the in vitro effects of αZEL and βΖΕL on cell differentiation to their parental molecule on human trophoblast (BeWo cells). Secondly, we investigated their molecular mechanisms of action by investigating the expression of main differentiation biomarkers and the implication of nuclear receptor by docking prediction. Conversely to ZEN, reduced metabolites did not induce trophoblast differentiation. They also induced significant changes in ABC transporter expression by potential interaction with nuclear receptors (LXR, PXR, PR) that could modify the transport function of placental cells. Finally, the mechanism of ZEN differentiation induction seemed not to involve nuclear receptor commonly involved in the differentiation process (PPARγ). Our results demonstrated that in spite of structure similarities between ZEN, αZEL and βZEL, toxicological effects and toxicity mechanisms were significantly different for the three molecules. -- Highlights: ► ZEN and metabolites have differential effect on trophoblast differentiation. ► ZEN and metabolites have differential effect on ABC transporter expression. ► ZEN and metabolites effects involved nuclear receptors interaction.« less

  10. The effect of space and parabolic flight on macrophage hematopoiesis and function

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Gerren, R. A.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    We used weak electric fields to monitor macrophage spreading in microgravity. Using this technique, we demonstrated that bone marrow-derived macrophages responded to microgravity within 8 s. We also showed that microgravity differentially altered two processes associated with bone marrow-derived macrophage development. Spaceflight enhanced cellular proliferation and inhibited differentiation. These data indicate that the space/microgravity environment significantly affects macrophages.

  11. Cis- and trans-zeatin differentially modulate plant immunity.

    PubMed

    Großkinsky, Dominik K; Edelsbrunner, Kerstin; Pfeifhofer, Hartwig; van der Graaff, Eric; Roitsch, Thomas

    2013-07-01

    Phytohormones are essential regulators of various processes in plant growth and development. Several phytohormones are also known to regulate plant responses to environmental stress and pathogens. Only recently, cytokinins have been demonstrated to play an important role in plant immunity. Increased levels of cytokinins such as trans-zeatin, which are considered highly active, induced resistance against mainly (hemi)biotrophic pathogens in different plant species. In contrast, cis-zeatin is commonly regarded as a cytokinin exhibiting low or no activity. Here we comparatively study the impact of both zeatin isomers on the infection of Nicotiana tabacum by the (hemi)biotrophic microbial pathogen Pseudomonas syringae. We demonstrate a biological effect of cis-zeatin and a differential effect of the two zeatin isomers on symptom development, defense responses and bacterial multiplication.

  12. Sensitive Analysis of Protein Adsorption to Colloidal Gold by Differential Centrifugal Sedimentation

    PubMed Central

    2017-01-01

    It is demonstrated that the adsorption of bovine serum albumin (BSA) to aqueous gold colloids can be quantified with molecular resolution by differential centrifugal sedimentation (DCS). This method separates colloidal particles of comparable density by mass. When proteins adsorb to the nanoparticles, both their mass and their effective density change, which strongly affects the sedimentation time. A straightforward analysis allows quantification of the adsorbed layer. Most importantly, unlike many other methods, DCS can be used to detect chemisorbed proteins (“hard corona”) as well as physisorbed proteins (“soft corona”). The results for BSA on gold colloid nanoparticles can be modeled in terms of Langmuir-type adsorption isotherms (Hill model). The effects of surface modification with small thiol-PEG ligands on protein adsorption are also demonstrated. PMID:28513153

  13. Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue.

    PubMed

    Telenkov, Sergey A; Dave, Digant P; Sethuraman, Shriram; Akkin, Taner; Milner, Thomas E

    2004-01-07

    We describe a differential phase low-coherence interferometric probe for non-invasive, quantitative imaging of photothermal phenomena in biological materials. Our detection method utilizes principles of optical coherence tomography with differential phase measurement of interference fringe signals. A dual-channel optical low-coherence probe is used to analyse laser-induced thermoelastic and thermorefractive effects in tissue with micrometre axial resolution and nanometre sensitivity. We demonstrate an application of the technique using tissue phantoms and ex-vivo tissue specimens of rodent dorsal skin.

  14. mTOR complexes differentially orchestrates eosinophil development in allergy.

    PubMed

    Zhu, Chen; Xia, Lixia; Li, Fei; Zhou, Lingren; Weng, Qingyu; Li, Zhouyang; Wu, Yinfang; Mao, Yuanyuan; Zhang, Chao; Wu, Yanping; Li, Miao; Ying, Songmin; Chen, Zhihua; Shen, Huahao; Li, Wen

    2018-05-02

    Eosinophil infiltration is considered a hallmark in allergic airway inflammation, and the blockade of eosinophil differentiation may be an effective approach for treating eosinophil-related disorders. Mammalian target of rapamycin (mTOR) is a vital modulator in cell growth control and related diseases, and we have recently demonstrated that rapamycin can suppress eosinophil differentiation in allergic airway inflammation. Considering its critical role in haematopoiesis, we further investigated the role of mTOR in eosinophil differentiation in the context of asthmatic pathogenesis. Intriguingly, the inhibition of mTOR, either by genetic deletion or by another pharmacological inhibitor torin-1, accelerated the eosinophil development in the presence of IL-5. However, this was not observed to have any considerable effect on eosinophil apoptosis. The effect of mTOR in eosinophil differentiation was mediated by Erk signalling. Moreover, myeloid specific knockout of mTOR or Rheb further augmented allergic airway inflammation in mice after allergen exposure. Ablation of mTOR in myeloid cells also resulted in an increased number of eosinophil lineage-committed progenitors (Eops) in allergic mice. Collectively, our data uncovered the differential effects of mTOR in the regulation of eosinophil development, likely due to the distinct functions of mTOR complex 1 or 2, which thus exerts a pivotal implication in eosinophil-associated diseases.

  15. Effects of non-steroidal anti-inflammatory drugs on proliferation, differentiation and migration in equine mesenchymal stem cells.

    PubMed

    Müller, Maike; Raabe, Oksana; Addicks, Klaus; Wenisch, Sabine; Arnhold, Stefan

    2011-03-01

    In equine medicine, stem cell therapies for orthopaedic diseases are routinely accompanied by application of NSAIDs (non-steroidal anti-inflammatory drugs). Thus, it has to be analysed how NSAIDs actually affect the growth and differentiation potential of MSCs (mesenchymal stem cells) in vitro in order to predict the influence of NSAIDs such as phenylbutazone, meloxicam, celecoxib and flunixin on MSCs after grafting in vivo. The effects of NSAIDs were evaluated regarding cell viability and proliferation. Additionally, the multilineage differentiation capacity and cell migration was analysed. NSAIDs at lower concentrations (0.1-1 μM for celecoxib and meloxicam and 10-50 μM for flunixin) exert a positive effect on cell proliferation and migration, while at higher concentrations (10-200 μM for celecoxib and meloxicam and 100-1000 μM for flunixin and phenylbutazone), there is rather a negative influence. While there is hardly any influence on the adipogenic as well as on the chondrogenic MSC differentiation, the osteogenic differentiation potential, as demonstrated with the von Kossa staining, is significantly disturbed. Thus, it can be concluded that the effects of NSAIDs on MSCs are largely dependent on the concentrations used. Additionally, for some differentiation lineages, also the choice of NSAID is critical.

  16. Alcoholism risk moderation by a socio-religious dimension.

    PubMed

    Haber, Jon Randolph; Jacob, Theodore

    2007-11-01

    Religious affiliation is inversely associated with the development of alcohol-dependence symptoms in adolescents, but the mechanisms of this effect are unclear. The degree to which religious affiliations accommodate to or differentiate from cultural values may influence attitudes about alcohol use. We hypothesized that, given permissive cultural norms about alcohol in the United States, if a religious affiliation differentiates itself from cultural norms, then high-risk adolescents (those with parents having a history of alcoholism) would exhibit fewer alcohol-dependence symptoms compared with other affiliations and nonreligious adolescents. A sample of female adolescent offspring (N = 3,582) in Missouri was selected. Parental alcoholism and religious affiliation and their interaction were examined as predictors of offspring alcohol-dependence symptoms. Findings indicated that (1) parental alcohol history robustly predicted increased offspring alcohol-dependence symptoms, (2) religious rearing appeared protective (offspring exhibited fewer alcohol-dependence symptoms), (3) religious differentiation accounted for most of the protective effect, (4) other religious variables did not account for the differentiation effect, and (5) black religious adolescents were more frequently raised with differentiating affiliations and exhibited greater protective effects. Results demonstrate that religious differentiation accounts for most of the protective influence of religious affiliation. This may be because religious differences from cultural norms (that include permissive alcohol norms) counteract these social influences given alternative "higher" religious ideals.

  17. The Effectiveness of Problem-Based Instruction: A Comparative Study of Instructional Methods and Student Characteristics

    ERIC Educational Resources Information Center

    Mergendoller, John R.; Maxwell, Nan L.; Bellisimo, Yolanda

    2006-01-01

    This study compared the effectiveness of problem-based learning (PBL) and traditional instructional approaches in developing high-school students' macroeconomics knowledge and examined whether PBL was differentially effective with students demonstrating different levels of four aptitudes: verbal ability, interest in economics, preference for group…

  18. Role of alpha- and beta-adrenergic receptors in cardiomyocyte differentiation from murine-induced pluripotent stem cells.

    PubMed

    Li, Xiao-Li; Zeng, Di; Chen, Yan; Ding, Lu; Li, Wen-Ju; Wei, Ting; Ou, Dong-Bo; Yan, Song; Wang, Bin; Zheng, Qiang-Sun

    2017-02-01

    Induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a promising source of cells for regenerative heart disease therapies, but progress towards their use has been limited by their low differentiation efficiency and high cellular heterogeneity. Previous studies have demonstrated expression of adrenergic receptors (ARs) in stem cells after differentiation; however, roles of ARs in fate specification of stem cells, particularly in cardiomyocyte differentiation and development, have not been characterized. Murine-induced pluripotent stem cells (miPSCs) were cultured in hanging drops to form embryoid bodies, cells of which were then differentiated into cardiomyocytes. To determine whether ARs regulated miPSC differentiation into cardiac lineages, effects of the AR agonist, epinephrine (EPI), on miPSC differentiation and underlying signalling mechanisms, were evaluated. Treatment with EPI, robustly enhanced miPSC cardiac differentiation, as indicated by increased expression levels of cardiac-specific markers, GATA4, Nkx2.5 and Tnnt2. Although β-AR signalling is the foremost signalling pathway in cardiomyocytes, EPI-enhanced cardiac differentiation depended more on α-AR signalling than β-AR signalling. In addition, selective activation of α 1 -AR signalling with specific agonists induced vigorous cardiomyocyte differentiation, whereas selective activation of α 2 - or β-AR signalling induced no or less differentiation, respectively. EPI- and α 1 -AR-dependent cardiomyocyte differentiation from miPSCs occurred through specific promotion of CPC proliferation via the MEK-ERK1/2 pathway and regulation of miPS cell-cycle progression. These results demonstrate that activation of ARs, particularly of α 1 -ARs, promoted miPSC differentiation into cardiac lineages via MEK-ERK1/2 signalling. © 2016 John Wiley & Sons Ltd.

  19. Osthole Stimulates Osteoblast Differentiation and Bone Formation by Activation of β-Catenin–BMP Signaling

    PubMed Central

    Tang, De-Zhi; Hou, Wei; Zhou, Quan; Zhang, Minjie; Holz, Jonathan; Sheu, Tzong-Jen; Li, Tian-Fang; Cheng, Shao-Dan; Shi, Qi; Harris, Stephen E; Chen, Di; Wang, Yong-Jun

    2010-01-01

    Osteoporosis is defined as reduced bone mineral density with a high risk of fragile fracture. Current available treatment regimens include antiresorptive drugs such as estrogen receptor analogues and bisphosphates and anabolic agents such as parathyroid hormone (PTH). However, neither option is completely satisfactory because of adverse effects. It is thus highly desirable to identify novel anabolic agents to improve future osteoporosis treatment. Osthole, a coumarin-like derivative extracted from Chinese herbs, has been shown to stimulate osteoblast proliferation and differentiation, but its effect on bone formation in vivo and underlying mechanism remain unknown. In this study, we found that local injection of Osthole significantly increased new bone formation on the surface of mouse calvaria. Ovariectomy caused evident bone loss in rats, whereas Osthole largely prevented such loss, as shown by improved bone microarchitecture, histomorphometric parameters, and biomechanical properties. In vitro studies demonstrated that Osthole activated Wnt/β-catenin signaling, increased Bmp2 expression, and stimulated osteoblast differentiation. Targeted deletion of the β-catenin and Bmp2 genes abolished the stimulatory effect of Osthole on osteoblast differentiation. Since deletion of the Bmp2 gene did not affect Osthole-induced β-catenin expression and the deletion of the β-catenin gene inhibited Osthole-regulated Bmp2 expression in osteoblasts, we propose that Osthole acts through β-catenin–BMP signaling to promote osteoblast differentiation. Our findings demonstrate that Osthole could be a potential anabolic agent to stimulate bone formation and prevent estrogen deficiency–induced bone loss. © 2010 American Society for Bone and Mineral Research. PMID:20200936

  20. Effect of Microcystin-LR on human trophoblast differentiation in vitro

    EPA Science Inventory

    Background: Microcystin LR is a potent protein phosphatase 2a (PP2a) inhibitor and generates reactive oxygen species (ROS) believed to be an essential component of a toxic effect. Toxicological studies have demonstrated microcystin (MCYST) disruption of cytoskeletal function and...

  1. HDAC inhibitor LMK-235 promotes the odontoblast differentiation of dental pulp cells

    PubMed Central

    Liu, Zhao; Chen, Ting; Han, Qianqian; Chen, Ming; You, Jie; Fang, Fuchun; Peng, Ling; Wu, Buling

    2018-01-01

    The role of dental pulp cells (DPCs) in hard dental tissue regeneration had received increasing attention because DPCs can differentiate into odontoblasts and other tissue-specific cells. In recent years, epigenetic modifications had been identified to serve an important role in cell differentiation, and histone deacetylase (HDAC) inhibitors have been widely studied by many researchers. However, the effects of HDAC4 and HDAC5 on the differentiation of DPCs and the precise molecular mechanisms remain unclear. The present study demonstrated that LMK-235, a specific human HDAC4 and HDAC5 inhibitor, increased the expression of specific odontoblastic gene expression levels detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in dental pulp cells, and did not reduce cell proliferation tested by MTT assay after 3 days in culture at a low concentration. In addition, the mRNA and protein expression levels of dentin sialophosphoprotein, runt-related transcription factor 2, alkaline phosphatase (ALP) and osteocalcin were evaluated by RT-qPCR and western blotting, respectively. The increased gene and protein expression of specific markers demonstrated, indicating that LMK-235 promoted the odontoblast induction of DPCs. ALP activity and mineralised nodule formation were also enhanced due to the effect of LMK-235, detected by an ALP activity test and Alizarin Red S staining, respectively. Additionally, the vascular endothelial growth factor (VEGF)/RAC-gamma serine/threonine-protein kinase (AKT)/mechanistic target of rapamycin (mTOR) signalling pathway was tested to see if it takes part in the differentiation of DPCs treated with LMK-235, and it was demonstrated that the mRNA expression levels of VEGF, AKT and mTOR were upregulated. These findings indicated that LMK-235 may serve a key role in the proliferation and odontoblast differentiation of DPCs, and could be used to accelerate dental tissue regeneration. PMID:29138868

  2. Effects of retinoids on differentiation, lipid metabolism, epidermal growth factor, and low-density lipoprotein binding in squamous carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponec, M.; Weerheim, A.; Havekes, L.

    The relationship among keratinocyte differentiation capacity, lipid synthesis, low-density lipoprotein (LDL) metabolism, plasma membrane composition, and epidermal growth factor (EGF) binding has been studied in SCC-12F2 cells. The differentiation capacity of the cells, i.e., ionophore-induced cornified envelope formation, was inhibited by various retinoids and stimulated by hydrocortisone. Retinoids that caused a significant reduction of cornified envelope formation, i.e., retinoic acid and 13-cis-retinoic acid, caused only minor changes in lipid synthesis and plasma membrane composition. Arotinoid ethylsulfone, having a minor effect on cornified envelope formation, caused a drastic inhibition of cholesterol synthesis resulting in changes in the plasma membrane composition. Hydrocortisonemore » stimulated cornified envelope formation but had only minor effects on lipid synthesis and plasma membrane composition. Of all retinoids tested, only arotinoid ethylsulfone caused a drastic increase in EGF binding, while hydrocortisone had no effect. These results clearly demonstrate that the plasma membrane composition is not related to keratinocyte differentiation capacity, but most likely does determine EGF binding. Furthermore, EGF binding does not determine keratinocyte differentiation capacity.« less

  3. Distinguishing differential susceptibility from diathesis-stress: recommendations for evaluating interaction effects.

    PubMed

    Roisman, Glenn I; Newman, Daniel A; Fraley, R Chris; Haltigan, John D; Groh, Ashley M; Haydon, Katherine C

    2012-05-01

    This report describes the state of the art in distinguishing data generated by differential susceptibility from diathesis-stress models. We discuss several limitations of existing practices for probing interaction effects and offer solutions that are designed to better differentiate differential susceptibility from diathesis-stress models and quantify their corresponding implications. In addition, we demonstrate the utility of these methods by revisiting published evidence suggesting that temperamental difficulty serves as a marker of enhanced susceptibility to early maternal caregiving across a range of outcome domains in the NICHD Study of Early Child Care and Youth Development. We find that, with the exception of mother reports of psychopathology, there is consistent evidence in the Study of Early Child Care and Youth Development that the predictive significance of early sensitivity is moderated by difficult temperament over time. However, differential susceptibility effects emerged primarily for teacher reports of academic skills, social competence, and symptomatology. In contrast, effects more consistent with the diathesis-stress model were obtained for mother reports of social skills and objective tests of academic skills. We conclude by discussing the value of the application of this work to the next wave of Gene × Environment studies focused on early caregiving experiences.

  4. Cue competition effects in human causal learning.

    PubMed

    Vogel, Edgar H; Glynn, Jacqueline Y; Wagner, Allan R

    2015-01-01

    Five experiments involving human causal learning were conducted to compare the cue competition effects known as blocking and unovershadowing, in proactive and retroactive instantiations. Experiment 1 demonstrated reliable proactive blocking and unovershadowing but only retroactive unovershadowing. Experiment 2 replicated the same pattern and showed that the retroactive unovershadowing that was observed was interfered with by a secondary memory task that had no demonstrable effect on either proactive unovershadowing or blocking. Experiments 3a, 3b, and 3c demonstrated that retroactive unovershadowing was accompanied by an inflated memory effect not accompanying proactive unovershadowing. The differential pattern of proactive versus retroactive cue competition effects is discussed in relationship to amenable associative and inferential processing possibilities.

  5. Differential Canard deflection for generation of yawing moment on the X-31 with and without the vertical tail. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Whiting, Matthew Robert

    1996-01-01

    The feasibility of augmenting the available yaw control power on the X-31 through differential deflection of the canard surfaces was studied as well as the possibility of using differential canard control to stabilize the X-31 with its vertical tail removed. Wind-tunnel tests and the results of departure criteria and linear analysis showed the destabilizing effect of the reduction of the vertical tail on the X-31. Wind-tunnel testing also showed that differential canard deflection was capable of generating yawing moments of roughly the same magnitude as the thrust vectoring vanes currently in place on the X-31 in the post-stall regime. Analysis showed that the X-31 has sufficient aileron roll control power that with the addition of differential canard as a yaw controller, the wind-axis roll accelerations will remain limited by yaw control authority. It was demonstrated, however, that pitch authority may actually limit the maximum roll rate which can be sustained. A drop model flight test demonstrated that coordinated, wind axis rolls could be performed with roll rates as high as 50 deg/sec (full scale equivalent) at 50 deg angle of attack. Another drop model test was conducted to assess the effect of vertical tail reduction, and an analysis of using differential canard deflection to stabilize the tailless X-31 was performed. The results of six-degree-of-freedom, non-linear simulation tests were correlated with the drop model flights. Simulation studies then showed that the tailless X-31 could be controlled at angles of attack at or above 20 deg using differential canard as the only yaw controller.

  6. Effects and mechanisms of melatonin on the proliferation and neural differentiation of PC12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yumei; Zhang, Ziqiang; Lv, Qiongxia

    Melatonin, a lipophilic molecule that is mainly synthesized in the pineal gland, performs various neuroprotective functions. However, the detailed role and mechanisms of promoting neuronal differentiation remains limited. This study demonstrated that 10 μM melatonin led to significant increases in the proliferation and neurite outgrowth of PC12 cells. Increased expression of microtubule-associated protein 2 (MAP2, a neuron-specific protein) was also observed. However, luzindole (melatonin receptor antagonist) and PD98059 (MEK inhibitor) attenuated these increases. LY294002 (AKT inhibitor) inhibited melatonin-mediated proliferation in PC12 cells and did not affect melatonin-induced neural differentiation. The expression of p-ERK1/2/ERK1/2 was increased by melatonin treatment for 14 days in PC12 cells,more » whereas luzindole or PD98059 reduced the melatonin-induced increase. These results suggest that the activation of both the MEK/ERK and PI3K/AKT signaling pathways could potentially contribute to melatonin-mediated proliferation, but that only the MEK/ERK pathway participates in the melatonin-induced neural differentiation of PC12 cells. Altogether, our study demonstrates for the first time that melatonin may exert a positive effect on neural differentiation via melatonin receptor signalling and that the MEK/ERK1/2 signalling may act down stream from the melatonin pathway. - Highlights: • Melatonin improves the proliferation of PC12 cells. • Melatonin induces neural differentiation of PC12 cells. • Melatonin-mediated proliferation in PC12 cells relies on the ERK and AKT pathways. • Activation of ERK is essential for melatonin-induced neural differentiation of PC12.« less

  7. Tunable osteogenic differentiation of hMPCs in tubular perfusion system bioreactor.

    PubMed

    Nguyen, Bao-Ngoc B; Ko, Henry; Fisher, John P

    2016-08-01

    The use of bioreactors for bone tissue engineering has been widely investigated. While the benefits of shear stress on osteogenic differentiation are well known, the underlying effects of dynamic culture on subpopulations within a bioreactor are less evident. In this work, we explore the influence of applied flow in the tubular perfusion system (TPS) bioreactor on the osteogenic differentiation of human mesenchymal progenitor cells (hMPCs), specifically analyzing the effects of axial position along the growth chamber. TPS bioreactor experiments conducted with unidirectional flow demonstrated enhanced expression of osteogenic markers in cells cultured downstream from the inlet flow. We utilized computational fluid dynamic modeling to confirm uniform shear stress distribution on the surface of the scaffolds and along the length of the growth chamber. The concept of paracrine signaling between cell populations was validated with the use of alternating flow, which diminished the differences in osteogenic differentiation between cells cultured at the inlet and outlet of the growth chamber. After the addition of controlled release of bone morphogenic protein-2 (BMP-2) into the system, osteogenic differentiation among subpopulations along the growth chamber was augmented, yet remained homogenous. These results allow for greater understanding of axial bioreactor cultures, their microenvironment, and how well-established parameters of osteogenic differentiation affect bone tissue development. With this work, we have demonstrated the capability of tuning osteogenic differentiation of hMPCs through the application of fluid flow and the addition of exogenous growth factors. Such precise control allows for the culture of distinct subpopulation within one dynamic system for the use of complex engineered tissue constructs. Biotechnol. Bioeng. 2016;113: 1805-1813. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells

    PubMed Central

    Cao, Nan; Liu, Zumei; Chen, Zhongyan; Wang, Jia; Chen, Taotao; Zhao, Xiaoyang; Ma, Yu; Qin, Lianju; Kang, Jiuhong; Wei, Bin; Wang, Liu; Jin, Ying; Yang, Huang-Tian

    2012-01-01

    Generation of induced pluripotent stem cells (iPSCs) has opened new avenues for the investigation of heart diseases, drug screening and potential autologous cardiac regeneration. However, their application is hampered by inefficient cardiac differentiation, high interline variability, and poor maturation of iPSC-derived cardiomyocytes (iPS-CMs). To identify efficient inducers for cardiac differentiation and maturation of iPSCs and elucidate the mechanisms, we systematically screened sixteen cardiomyocyte inducers on various murine (m) iPSCs and found that only ascorbic acid (AA) consistently and robustly enhanced the cardiac differentiation of eleven lines including eight without spontaneous cardiogenic potential. We then optimized the treatment conditions and demonstrated that differentiation day 2-6, a period for the specification of cardiac progenitor cells (CPCs), was a critical time for AA to take effect. This was further confirmed by the fact that AA increased the expression of cardiovascular but not mesodermal markers. Noteworthily, AA treatment led to approximately 7.3-fold (miPSCs) and 30.2-fold (human iPSCs) augment in the yield of iPS-CMs. Such effect was attributed to a specific increase in the proliferation of CPCs via the MEK-ERK1/2 pathway by through promoting collagen synthesis. In addition, AA-induced cardiomyocytes showed better sarcomeric organization and enhanced responses of action potentials and calcium transients to β-adrenergic and muscarinic stimulations. These findings demonstrate that AA is a suitable cardiomyocyte inducer for iPSCs to improve cardiac differentiation and maturation simply, universally, and efficiently. These findings also highlight the importance of stimulating CPC proliferation by manipulating extracellular microenvironment in guiding cardiac differentiation of the pluripotent stem cells. PMID:22143566

  9. Selective Impairment of TH17-Differentiation and Protection against Autoimmune Arthritis after Overexpression of BCL2A1 in T Lymphocytes.

    PubMed

    Iglesias, Marcos; Augustin, Juan Jesús; Alvarez, Pilar; Santiuste, Inés; Postigo, Jorge; Merino, Jesús; Merino, Ramón

    2016-01-01

    The inhibition of apoptotic cell death in T cells through the dysregulated expression of BCL2 family members has been associated with the protection against the development of different autoimmune diseases. However, multiple mechanisms were proposed to be responsible for such protective effect. The purpose of this study was to explore the effect of the T-cell overexpression of BCL2A1, an anti-apoptotic BCL2 family member without an effect on cell cycle progression, in the development of collagen-induced arthritis. Our results demonstrated an attenuated development of arthritis in these transgenic mice. The protective effect was unrelated to the suppressive activity of regulatory T cells but it was associated with a defective activation of p38 mitogen-activated protein kinase in CD4+ cells after in vitro TCR stimulation. In addition, the in vitro and in vivo TH17 differentiation were impaired in BCL2A1 transgenic mice. Taken together, we demonstrated here a previously unknown role for BCL2A1 controlling the activation of CD4+ cells and their differentiation into pathogenic proinflammatory TH17 cells and identified BCL2A1 as a potential target in the control of autoimmune/inflammatory diseases.

  10. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    PubMed

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  11. CKIP-1 suppresses odontoblastic differentiation of dental pulp stem cells via BMP2 pathway and can interact with NRP1.

    PubMed

    Song, Yihua; Wang, Chenfei; Gu, Zhifeng; Cao, Peipei; Huang, Dan; Feng, Guijuan; Lian, Min; Zhang, Ye; Feng, Xingmei; Gao, Zhenran

    2018-05-31

    Casein kinase 2 interacting protein-1 (CKIP-1) is a recently discovered intracellular regulator of bone formation, muscle cell differentiation and tumor cell proliferation. Our study aims to identify the inhibition of BMP2-Smad1/5 signaling by CKIP-1 in odontoblastic differentiation of human dental pulp stem cells (DPSCs). DPSCs infected CKIP-1 siRNA or transfected CKIP-1 full-length plasmid were cultured in odontoblastic differentiation medium or added noggin (200 ng/mL) for 21 days. We examined the effects of CKIP-1 on odontoblastic differentiation, mineralized nodules formation and interaction by western blot, real-time polymerase chain reaction (RT-PCR), alkaline phosphatase (ALP) staining, alizarin red S staining and immunoprecipitation. Firstly, we have demonstrated that CKIP-1 expression markedly decreased time-dependently along with cell odontoblastic differentiation. Indeed, the silence of CKIP-1 up-regulated odontoblastic differentiation via BMP2-Smad1/5 signaling, while CKIP-1 over-expression had a negative effect on odontoblastic differentiation of DPSCs. Furthermore, CKIP-1 could interact with Neuropilin-1 (NRP1). This work provides data that it advocates a novel perception on odontoblastic differentiation of DPSCs. Therefore, inhibiting the expression of CKIP-1 may be of great significance to the development of dental caries.

  12. Forced expression of Hnf4a induces hepatic gene activation through directed differentiation.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Fathi, Fardin

    2016-08-05

    Embryonic stem (ES) cells are capable of unlimited self-renewal and have a diverse differentiation potential. These unique features make ES cells as an attractive source for developmental biology studies. Having the mature hepatocyte in the lab with functional activities is valuable in drug discovery studies. Overexpression of hepatocyte lineage-specific transcription factors (TFs) becomes a promising approach in pluripotent cell differentiation toward liver cells. Many studies generate transgenic ES cell lines to examine the effects of specific TFs overexpression in cell differentiation. In the present report, we have addressed whether a suspension or adherent model of differentiation is an appropriate way to study the role of Hnf4a overexpression. We generated ES cells that carried a doxycycline (Dox)-inducible Hnf4a using lentiviral vectors. The transduced cells were subjected to induced Hnf4a overexpression through both spontaneous and directed differentiation methods. Gene expression analysis showed substantially increased expression of hepatic gene markers, particularly Ttr and endogenous Hnf4a, in transduced cells differentiated by the directed approach. These results demonstrated that forced expression of TFs during directed differentiation would be an appropriate way to study relevant gene activation and the effects of overexpression in the context of hepatic differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effects of a history of differential reinforcement on preference for choice.

    PubMed

    Karsina, Allen; Thompson, Rachel H; Rodriguez, Nicole M

    2011-03-01

    The effects of a history of differential reinforcement for selecting a free-choice versus a restricted-choice stimulus arrangement on the subsequent responding of 7 undergraduates in a computer-based game of chance were examined using a concurrent-chains arrangement and a multiple-baseline-across-participants design. In the free-choice arrangement, participants selected three numbers, in any order, from an array of eight numbers presented on the computer screen. In the restricted-choice arrangement, participants selected the order of three numbers preselected from the array of eight by a computer program. In initial sessions, all participants demonstrated no consistent preference or preference for restricted choice. Differential reinforcement of free-choice selections resulted in increased preference for free choice immediately and in subsequent sessions in the absence of programmed differential outcomes. For 5 participants, changes in preference for choice were both robust and lasting, suggesting that a history of differential reinforcement for choice may affect preference for choice.

  14. Effects of a History of Differential Reinforcement on Preference for Choice

    PubMed Central

    Karsina, Allen; Thompson, Rachel H; Rodriguez, Nicole M

    2011-01-01

    The effects of a history of differential reinforcement for selecting a free-choice versus a restricted-choice stimulus arrangement on the subsequent responding of 7 undergraduates in a computer-based game of chance were examined using a concurrent-chains arrangement and a multiple-baseline-across-participants design. In the free-choice arrangement, participants selected three numbers, in any order, from an array of eight numbers presented on the computer screen. In the restricted-choice arrangement, participants selected the order of three numbers preselected from the array of eight by a computer program. In initial sessions, all participants demonstrated no consistent preference or preference for restricted choice. Differential reinforcement of free-choice selections resulted in increased preference for free choice immediately and in subsequent sessions in the absence of programmed differential outcomes. For 5 participants, changes in preference for choice were both robust and lasting, suggesting that a history of differential reinforcement for choice may affect preference for choice. PMID:21541125

  15. Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge

    PubMed Central

    Kuo, Zong-Keng; Lai, Po-Liang; Toh, Elsie Khai-Woon; Weng, Cheng-Hsi; Tseng, Hsiang-Wen; Chang, Pei-Zen; Chen, Chih-Chen; Cheng, Chao-Min

    2016-01-01

    Bone tissue engineering provides many advantages for repairing skeletal defects. Although many different kinds of biomaterials have been used for bone tissue engineering, safety issues must be considered when using them in a clinical setting. In this study, we examined the effects of using a common clinical item, a hemostatic gelatin sponge, as a scaffold for bone tissue engineering. The use of such a clinically acceptable item may hasten the translational lag from laboratory to clinical studies. We performed both degradation and biocompatibility studies on the hemostatic gelatin sponge, and cultured preosteoblasts within the sponge scaffold to demonstrate its osteogenic differentiation potential. In degradation assays, the gelatin sponge demonstrated good stability after being immersed in PBS for 8 weeks (losing only about 10% of its net weight and about 54% decrease of mechanical strength), but pepsin and collagenases readily biodegraded it. The gelatin sponge demonstrated good biocompatibility to preosteoblasts as demonstrated by MTT assay, confocal microscopy, and scanning electron microscopy. Furthermore, osteogenic differentiation and the migration of preosteoblasts, elevated alkaline phosphatase activity, and in vitro mineralization were observed within the scaffold structure. Each of these results indicates that the hemostatic gelatin sponge is a suitable scaffold for bone tissue engineering. PMID:27616161

  16. Perhexiline maleate enhances antitumor efficacy of cisplatin in neuroblastoma by inducing over-expression of NDM29 ncRNA

    PubMed Central

    Vella, Serena; Penna, Ilaria; Longo, Luca; Pioggia, Giulia; Garbati, Patrizia; Florio, Tullio; Rossi, Fabio; Pagano, Aldo

    2015-01-01

    High Risk Neuroblastoma (HR-NB) is a pediatric cancer characterized by high malignancy and remarkable cell heterogeneity within the tumour nodules. In a recent study, we demonstrated that in vitro and in vivo over-expression of the non-coding RNA NDM29 (neuroblastoma differentiation marker 29) induces NB cell differentiation, dramatically reducing their malignancy. Among gene expression changes, differentiated phenotype induced by NDM29 is characterized by decrease of the expression of ABC transporters responsible for anticancer drug resistance. Thus, the pharmacological induction of NDM29, in principle, might represent a possible novel strategy to increase cytotoxic drug responses. In this work, we identify a small molecule able to induce the expression of NDM29 in NB cells, conferring to malignant cells increased susceptibility to cisplatin cytotoxic effects. We demonstrate that the pharmacological induction of NDM29 expression in vivo enhances the antitumoral effects of chemotherapy specifically on tumour initiating/cancer stem cells sub-population, usually refractory to therapies and responsible for tumour relapse. In summary, we suggest a novel therapeutical approach possibly useful to treat very aggressive NB cases with poor prognosis. This novel pharmacological strategy aims to promote differentiation of “stem-like” cells to render them more susceptible to the killing action of cytotoxic anticancer drugs. PMID:26674674

  17. Perhexiline maleate enhances antitumor efficacy of cisplatin in neuroblastoma by inducing over-expression of NDM29 ncRNA.

    PubMed

    Vella, Serena; Penna, Ilaria; Longo, Luca; Pioggia, Giulia; Garbati, Patrizia; Florio, Tullio; Rossi, Fabio; Pagano, Aldo

    2015-12-17

    High Risk Neuroblastoma (HR-NB) is a pediatric cancer characterized by high malignancy and remarkable cell heterogeneity within the tumour nodules. In a recent study, we demonstrated that in vitro and in vivo over-expression of the non-coding RNA NDM29 (neuroblastoma differentiation marker 29) induces NB cell differentiation, dramatically reducing their malignancy. Among gene expression changes, differentiated phenotype induced by NDM29 is characterized by decrease of the expression of ABC transporters responsible for anticancer drug resistance. Thus, the pharmacological induction of NDM29, in principle, might represent a possible novel strategy to increase cytotoxic drug responses. In this work, we identify a small molecule able to induce the expression of NDM29 in NB cells, conferring to malignant cells increased susceptibility to cisplatin cytotoxic effects. We demonstrate that the pharmacological induction of NDM29 expression in vivo enhances the antitumoral effects of chemotherapy specifically on tumour initiating/cancer stem cells sub-population, usually refractory to therapies and responsible for tumour relapse. In summary, we suggest a novel therapeutical approach possibly useful to treat very aggressive NB cases with poor prognosis. This novel pharmacological strategy aims to promote differentiation of "stem-like" cells to render them more susceptible to the killing action of cytotoxic anticancer drugs.

  18. Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells.

    PubMed

    Amatngalim, Gimano D; Broekman, Winifred; Daniel, Nadia M; van der Vlugt, Luciën E P M; van Schadewijk, Annemarie; Taube, Christian; Hiemstra, Pieter S

    2016-01-01

    Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression.

  19. Frequency-Agile Differential Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Reed, Zachary; Hodges, Joseph

    2015-06-01

    The ultimate precision of highly sensitive cavity-enhanced spectroscopic measurements is often limited by interferences (etalons) caused by weak coupled-cavity effects. Differential measurements of ring-down decay constants have previously been demonstrated to largely cancel these effects, but the measurement acquisition rates were relatively low [1,2]. We have previously demonstrated the use of frequency agile rapid scanning cavity ring-down spectroscopy (FARS-CRDS) for acquisition of absorption spectra [3]. Here, the method of rapidly scanned, frequency-agile differential cavity ring-down spectroscopy (FADS-CRDS) is presented for reducing the effect of these interferences and other shot-to-shot statistical variations in measured decay times. To this end, an electro-optic phase modulator (EOM) with a bandwidth of 20 GHz is driven by a microwave source, generating pairs of sidebands on the probe laser. The optical resonator acts as a highly selective optical filter to all laser frequencies except for one tunable sideband. This sideband may be stepped arbitrarily from mode-to-mode of the ring-down cavity, at a rate limited only by the cavity buildup/decay time. The ability to probe any cavity mode across the EOM bandwidth enables a variety of methods for generating differential spectra. The differential mode spacing may be changed, and the effect of this method on suppressing the various coupled-cavity interactions present in the system is discussed. Alternatively, each mode may also be differentially referenced to a single point, providing immunity to temporal variations in the base losses of the cavity while allowing for conventional spectral fitting approaches. Differential measurements of absorption are acquired at 3.3 kHz and a minimum detectable absorption coefficient of 5 x10-12 cm-1 in 1 s averaging time is achieved. 1. J. Courtois, K. Bielska, and J.T Hodges J. Opt. Soc. Am. B, 30, 1486-1495, 2013 2. H.F. Huang and K.K. Lehmann App. Optics 49, 1378-1387, 2010 3. G.-W. Truong, K.O. Douglass, S.E. Maxwell, R.D. van Zee, D.F. Plusquellic, J.T. Hodges, and D.A. Long Nature Photonics, 7, 532-534, 2013

  20. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation.

    PubMed

    Martin, E C; Qureshi, A T; Llamas, C B; Burow, M E; King, A G; Lee, O C; Dasa, V; Freitas, M A; Forsberg, J A; Elster, E A; Davis, T A; Gimble, J M

    2018-02-07

    Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.

  1. Effect of Microenvironment on Differentiation of Human Umbilical Cord Mesenchymal Stem Cells into Hepatocytes In Vitro and In Vivo

    PubMed Central

    Xue, Gai; Han, Xiaolei; Ma, Xin; Wu, Honghai; Qin, Yabin; Liu, Jianfang; Hu, Yuqin; Hong, Yang; Hou, Yanning

    2016-01-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are considered to be an ideal cell source for cell therapy of many diseases. The aim of this study was to investigate the contribution of the microenvironment to the hepatic differentiation potential of hUCMSCs in vitro and in vivo and to explore their therapeutic use in acute liver injury in rats. We established a new model to simulate the liver tissue microenvironment in vivo using liver homogenate supernatant (LHS) in vitro. This induced environment could drive hUCMSCs to differentiate into hepatocyte-like cells within 7 days. The differentiated cells expressed hepatocyte-specific markers and demonstrated hepatocellular functions. We also injected hUCMSCs into rats with CCl4-induced acute hepatic injury. The hUCMSCs were detected in the livers of recipient rats and expressed the human hepatocyte-specific markers, suggesting that hUCMSCs could differentiate into hepatocyte-like cells in vivo in the liver tissue microenvironment. Levels of biochemistry markers improved significantly after transplantation of hUCMSCs compared with the nontransplantation group (P < 0.05). In conclusion, this study demonstrated that the liver tissue microenvironment may contribute to the differentiation of hUCMSCs into hepatocytes both in vitro and in vivo. PMID:27088093

  2. Osthole promotes neuronal differentiation and inhibits apoptosis via Wnt/β-catenin signaling in an Alzheimer's disease model.

    PubMed

    Yao, Yingjia; Gao, Zhong; Liang, Wenbo; Kong, Liang; Jiao, Yanan; Li, Shaoheng; Tao, Zhenyu; Yan, Yuhui; Yang, Jingxian

    2015-12-15

    Neurogenesis is the process by which neural stem cells (NSCs) proliferate and differentiate into neurons. This is diminished in several neurodegenerative disorders such as Alzheimer's disease (AD), which is characterized by the deposition of amyloid (A)β peptides and neuronal loss. Stimulating NSCs to replace lost neurons is therefore a promising approach for AD treatment. Our previous study demonstrated that osthole modulates NSC proliferation and differentiation, and may reduce Aβ protein expression in nerve cells. Here we investigated the mechanism underlying the effects of osthole on NSCs. We found that osthole enhances NSC proliferation and neuronal differentiation while suppressing apoptosis, effects that were exerted via activation of Wnt/β-catenin signaling. These results provide evidence that osthole can potentially be used as a therapeutic agent in the treatment of AD and other neurodegenerative disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Still the Favorite? Parents' Differential Treatment of Siblings Entering Young Adulthood.

    PubMed

    Siennick, Sonja E

    2013-08-01

    This study examined within-family stability in parents' differential treatment of siblings from adolescence to young adulthood and the effect of differential treatment in young adulthood on grown siblings' relationship quality. The author used longitudinal data on parent - child and sibling relations from the sibling sample of the National Longitudinal Study of Adolescent Health ( N = 1,470 sibling dyads). Within-dyad fixed effects regression models revealed that the adolescent sibling who was closer to parents went on to be the young adult sibling who was closer to and received more material support from parents. Results from an actor - partner interdependence model revealed that differential parental financial assistance of young adult siblings predicted worse sibling relationship quality. These findings demonstrate the lasting importance of affect between parents and offspring earlier in the family life course and the relevance of within-family inequalities for understanding family relations.

  4. Still the Favorite? Parents’ Differential Treatment of Siblings Entering Young Adulthood

    PubMed Central

    Siennick, Sonja E.

    2013-01-01

    This study examined within-family stability in parents’ differential treatment of siblings from adolescence to young adulthood and the effect of differential treatment in young adulthood on grown siblings’ relationship quality. The author used longitudinal data on parent – child and sibling relations from the sibling sample of the National Longitudinal Study of Adolescent Health (N = 1,470 sibling dyads). Within-dyad fixed effects regression models revealed that the adolescent sibling who was closer to parents went on to be the young adult sibling who was closer to and received more material support from parents. Results from an actor – partner interdependence model revealed that differential parental financial assistance of young adult siblings predicted worse sibling relationship quality. These findings demonstrate the lasting importance of affect between parents and offspring earlier in the family life course and the relevance of within-family inequalities for understanding family relations. PMID:24244050

  5. Aspects of decision support in water management--example Berlin and Potsdam (Germany) I--spatially differentiated evaluation.

    PubMed

    Simon, Ute; Brüggemann, Rainer; Pudenz, Stefan

    2004-04-01

    Decisions about sustainable development demand spatially differentiated evaluations. As an example, we demonstrate the evaluation of water management strategies in the cities of Berlin and Potsdam (Germany) with respect to their ecological effects in 14 sections of the surface water system. Two decision support systems were compared, namely PROMETHEE, which is designed to obtain a clear decision (linear ranking), and Hasse Diagram Technique (HDT), normally providing more than one favourable solution (partial order). By PROMETHEE, the spatial differentiation had unwanted effects on the result, negating the stakeholders determined weighting of indicators. Therefore, the stakeholder can barely benefit from the convenience of obtaining a clear decision (linear ranking). In contrast, the result obtained by HDT was not influenced by spatial differentiation. Furthermore, HDT provided helpful tools to analyse the evaluation result, such as the concept of antagonistic indicators to discover conflicts in the evaluation process.

  6. Effect of intravenous administration of d-lysergic acid diethylamide on subsequent protein synthesis in a cell-free system derived from brain.

    PubMed

    Cosgrove, J W; Clark, B D; Brown, I R

    1981-03-01

    An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of d-lysergic acid diethylamide (LSD) to rabbits induced a transient inhibition of translation following a brief stimulatory period. Subfractionation of the brain cell-free system into postribosomal supernatant (PRS) and microsome fractions demonstrated that LSD in vivo induced alterations in both of these fractions. In addition to the overall inhibition of translation in the cell-free system, differential effects were noted, i.e., greater than average relative decreases in in vitro labeling of certain brain proteins and relative increases in others. The brain proteins of molecular weights 75K and 95K, which were increased in relative labeling under conditions of LSD-induced hyperthermia, are similar in molecular weight to two of the major "heat shock" proteins reported in tissue culture systems. Injection of LSD to rabbits at 4 degrees C prevented LSD-induced hyperthermia but behavioral effects of the drug were still apparent. The overall decrease in cell-free translation was still observed but the differential labeling effects were not. LSD appeared to influence cell-free translation in the brain at two dissociable levels: (a) an overall decrease in translation that was observed even in the absence of LSD-induced hyperthermia and (b) differential labeling effects on particular proteins that were dependent on LSD-induced hyperthermia.

  7. The Relevance of the Nature of Learned Associations for the Differentiation of Human Memory Systems

    ERIC Educational Resources Information Center

    Rose, Michael; Haider, Hilde; Weiller, Cornelius; Buchel, Christian

    2004-01-01

    In a previous functional magnetic resonance imaging (fMRI) study we demonstrated an involvement of the medial temporal lobe (MTL) during an implicit learning task. We concluded that the MTL was engaged because of the complex contingencies that were implicitly learned. In addition, the basal ganglia demonstrated effects of a paralleled…

  8. Effects of Growth Medium on Matrix-Assisted Laser Desorption–Ionization Time of Flight Mass Spectra: a Case Study of Acetic Acid Bacteria

    PubMed Central

    Wieme, Anneleen D.; Spitaels, Freek; Aerts, Maarten; De Bruyne, Katrien; Van Landschoot, Anita

    2014-01-01

    The effect of the growth medium used on the matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectra generated and its consequences for species and strain level differentiation of acetic acid bacteria (AAB) were determined by using a set of 25 strains. The strains were grown on five different culture media that yielded a total of more than 600 mass spectra, including technical and biological replicates. The results demonstrate that the culture medium can have a profound effect on the mass spectra of AAB as observed in the presence and varying signal intensities of peak classes, in particular when culture media do not sustain optimal growth. The observed growth medium effects do not disturb species level differentiation but strongly affect the potential for strain level differentiation. The data prove that a well-constructed and robust MALDI-TOF mass spectrometry identification database should comprise mass spectra of multiple reference strains per species grown on different culture media to facilitate species and strain level differentiation. PMID:24362425

  9. Human genomic regions with exceptionally high levels of population differentiation identified from 911 whole-genome sequences.

    PubMed

    Colonna, Vincenza; Ayub, Qasim; Chen, Yuan; Pagani, Luca; Luisi, Pierre; Pybus, Marc; Garrison, Erik; Xue, Yali; Tyler-Smith, Chris; Abecasis, Goncalo R; Auton, Adam; Brooks, Lisa D; DePristo, Mark A; Durbin, Richard M; Handsaker, Robert E; Kang, Hyun Min; Marth, Gabor T; McVean, Gil A

    2014-06-30

    Population differentiation has proved to be effective for identifying loci under geographically localized positive selection, and has the potential to identify loci subject to balancing selection. We have previously investigated the pattern of genetic differentiation among human populations at 36.8 million genomic variants to identify sites in the genome showing high frequency differences. Here, we extend this dataset to include additional variants, survey sites with low levels of differentiation, and evaluate the extent to which highly differentiated sites are likely to result from selective or other processes. We demonstrate that while sites with low differentiation represent sampling effects rather than balancing selection, sites showing extremely high population differentiation are enriched for positive selection events and that one half may be the result of classic selective sweeps. Among these, we rediscover known examples, where we actually identify the established functional SNP, and discover novel examples including the genes ABCA12, CALD1 and ZNF804, which we speculate may be linked to adaptations in skin, calcium metabolism and defense, respectively. We identify known and many novel candidate regions for geographically restricted positive selection, and suggest several directions for further research.

  10. Differential cardiac effects in rats exposed to atmospheric smog generated from isoprene versus toluene

    EPA Science Inventory

    The results of this study demonstrate that atmospheric smog generated from both isoprene and toluene cause cardiac effects in rats. In addition, it appears that smog from toluene is more toxic in terms of cardiac arrhythmogenicity. Smog, which is a comple...

  11. Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation.

    PubMed

    D'Aiuto, Leonardo; Zhi, Yun; Kumar Das, Dhanjit; Wilcox, Madeleine R; Johnson, Jon W; McClain, Lora; MacDonald, Matthew L; Di Maio, Roberto; Schurdak, Mark E; Piazza, Paolo; Viggiano, Luigi; Sweet, Robert; Kinchington, Paul R; Bhattacharjee, Ayantika G; Yolken, Robert; Nimgaonka, Vishwajit L; Nimgaonkar, Vishwajit L

    2014-01-01

    Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.

  12. Tuning the endothelial response: differential release of exocytic cargos from Weibel-Palade Bodies.

    PubMed

    Nightingale, Thomas D; McCormack, Jessica J; Grimes, William; Robinson, Christopher; Lopes da Silva, Mafalda; White, Ian J; Vaughan, Andrew; Cramer, Louise P; Cutler, Daniel F

    2018-06-28

    Endothelial cells harbour specialised storage organelles, Weibel-Palade Bodies (WPBs). Exocytosis of WPB content into the vascular lumen initiates primary haemostasis, mediated by Von Willebrands factor (VWF) and inflammation, mediated by several proteins including P-selectin. During full fusion, secretion of this large haemostatic protein and smaller pro-inflammatory proteins are thought to be inextricably linked. To determine if secretagogue-dependent differential release of WPB cargo occurs, and whether this is mediated by the formation of an actomyosin ring during exocytosis. We used VWF string analysis, leukocyte rolling assays, ELISA, spinning disk confocal microscopy, high-throughput confocal microscopy and inhibitor and siRNA treatments to demonstrate the existence of cellular machinery that allows differential release of WPB cargo proteins. Inhibition of the actomyosin ring differentially effects two processes regulated by WPB exocytosis; it perturbs VWF string formation but has no effect on leukocyte rolling. The efficiency of ring recruitment correlates with VWF release; the ratio of release of VWF to small cargoes decreases when ring recruitment is inhibited. The recruitment of the actin ring is time-dependent; fusion events occurring directly after stimulation are less likely to initiate haemostasis than later events, and is activated by PKC isoforms. Secretagogues differentially recruit the actomyosin ring, thus demonstrating one mechanism by which the pro-thrombotic effect of endothelial activation can be modulated. This potentially limits thrombosis whilst permitting a normal inflammatory response. These results have implications for the assessment of WPB fusion, cargo-content release and the treatment of patients with von Willebrand disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Differential scanning calorimetry of coal

    NASA Technical Reports Server (NTRS)

    Gold, P. I.

    1978-01-01

    Differential scanning calorimetry studies performed during the first year of this project demonstrated the occurrence of exothermic reactions associated with the production of volatile matter in or near the plastic region. The temperature and magnitude of the exothermic peak were observed to be strongly affected by the heating rate, sample mass and, to a lesser extent, by sample particle size. Thermal properties also were found to be influenced by oxidation of the coal sample due to weathering effects.

  14. Study of coupled nonlinear partial differential equations for finding exact analytical solutions.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H

    2015-07-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.

  15. Do UK Universities Communicate Their Brands Effectively through Their Websites?

    ERIC Educational Resources Information Center

    Chapleo, Chris; Duran, Maria Victoria Carrillo; Diaz, Ana Castillo

    2011-01-01

    This paper attempts to explore the effectiveness of UK universities' websites. The area of branding in higher education has received increasing academic investigation, but little work has researched how universities demonstrate their brand promises through their websites. The quest to differentiate through branding can be challenging in the…

  16. Differential Effects of Arousal in Positive and Negative Autobiographical Memories

    PubMed Central

    Ford, Jaclyn Hennessey; Addis, Donna Rose; Giovanello, Kelly S.

    2014-01-01

    Autobiographical memories are characterized by a range of emotions and emotional reactions. Recent research has demonstrated that differences in emotional valence (positive v. negative emotion) and arousal (the degree of emotional intensity) differentially influence the retrieved memory narrative. Although the mnemonic effects of valence and arousal have both been heavily studied, it is currently unclear whether the effects of emotional arousal are equivalent for positive and negative autobiographical events. In the current study, multilevel models were used to examine differential effects emotional valence and arousal on the richness of autobiographical memory retrieval both between and within subjects. Thirty-four young adults were asked to retrieve personal autobiographical memories associated with popular musical cues and to rate the valence, arousal, and richness of these events. The multilevel analyses identified independent influences of valence and intensity upon retrieval characteristics at the within and between subject levels. In addition, the within subject interactions between valence and arousal highlighted differential effects of arousal for positive and negative memories. These findings have important implications for future studies of emotion and memory, highlighting the importance of considering both valence and arousal when examining the role emotion plays in the richness of memory representation. PMID:22873402

  17. Differential effects of arousal in positive and negative autobiographical memories.

    PubMed

    Ford, Jaclyn Hennessey; Addis, Donna Rose; Giovanello, Kelly S

    2012-01-01

    Autobiographical memories are characterised by a range of emotions and emotional reactions. Recent research has demonstrated that differences in emotional valence (positive vs. negative emotion) and arousal (the degree of emotional intensity) differentially influence the retrieved memory narrative. Although the mnemonic effects of valence and arousal have both been heavily studied, it is currently unclear whether the effects of emotional arousal are equivalent for positive and negative autobiographical events. In the current study, multilevel models were used to examine differential effects of emotional valence and arousal on the richness of autobiographical memory retrieval both between and within subjects. Thirty-four young adults were asked to retrieve personal autobiographical memories associated with popular musical cues and to rate the valence, arousal and richness of these events. The multilevel analyses identified independent influences of valence and intensity upon retrieval characteristics at the within- and between-subject levels. In addition, the within-subject interactions between valence and arousal highlighted differential effects of arousal for positive and negative memories. These findings have important implications for future studies of emotion and memory, highlighting the importance of considering both valence and arousal when examining the role emotion plays in the richness of memory representation.

  18. Plasmonic computing of spatial differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Tengfeng; Zhou, Yihan; Lou, Yijie; Ye, Hui; Qiu, Min; Ruan, Zhichao; Fan, Shanhui

    2017-05-01

    Optical analog computing offers high-throughput low-power-consumption operation for specialized computational tasks. Traditionally, optical analog computing in the spatial domain uses a bulky system of lenses and filters. Recent developments in metamaterials enable the miniaturization of such computing elements down to a subwavelength scale. However, the required metamaterial consists of a complex array of meta-atoms, and direct demonstration of image processing is challenging. Here, we show that the interference effects associated with surface plasmon excitations at a single metal-dielectric interface can perform spatial differentiation. And we experimentally demonstrate edge detection of an image without any Fourier lens. This work points to a simple yet powerful mechanism for optical analog computing at the nanoscale.

  19. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner.

    PubMed

    Nabissi, Massimo; Morelli, Maria Beatrice; Amantini, Consuelo; Liberati, Sonia; Santoni, Matteo; Ricci-Vitiani, Lucia; Pallini, Roberto; Santoni, Giorgio

    2015-10-15

    Glioma stem-like cells (GSCs) correspond to a tumor cell subpopulation, involved in glioblastoma multiforme (GBM) tumor initiation and acquired chemoresistance. Currently, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population. Recently, the effect of cannabinoids (CBs) in promoting glial differentiation and inhibiting gliomagenesis has been evidenced. Herein, we demonstrated that cannabidiol (CBD) by activating transient receptor potential vanilloid-2 (TRPV2) triggers GSCs differentiation activating the autophagic process and inhibits GSCs proliferation and clonogenic capability. Above all, CBD and carmustine (BCNU) in combination overcome the high resistance of GSCs to BCNU treatment, by inducing apoptotic cell death. Acute myeloid leukemia (Aml-1) transcription factors play a pivotal role in GBM proliferation and differentiation and it is known that Aml-1 control the expression of several nociceptive receptors. So, we evaluated the expression levels of Aml-1 spliced variants (Aml-1a, b and c) in GSCs and during their differentiation. We found that Aml-1a is upregulated during GSCs differentiation, and its downregulation restores a stem cell phenotype in differentiated GSCs. Since it was demonstrated that CBD induces also TRPV2 expression and that TRPV2 is involved in GSCs differentiation, we evaluated if Aml-1a interacted directly with TRPV2 promoters. Herein, we found that Aml-1a binds TRPV2 promoters and that Aml-1a expression is upregulated by CBD treatment, in a TRPV2 and PI3K/AKT dependent manner. Altogether, these results support a novel mechanism by which CBD inducing TRPV2-dependent autophagic process stimulates Aml-1a-dependent GSCs differentiation, abrogating the BCNU chemoresistance in GSCs. © 2015 UICC.

  20. Rap1b Is an Effector of Axin2 Regulating Crosstalk of Signaling Pathways During Skeletal Development.

    PubMed

    Maruyama, Takamitsu; Jiang, Ming; Abbott, Alycia; Yu, H-M Ivy; Huang, Qirong; Chrzanowska-Wodnicka, Magdalena; Chen, Emily I; Hsu, Wei

    2017-09-01

    Recent identification and isolation of suture stem cells capable of long-term self-renewal, clonal expanding, and differentiating demonstrate their essential role in calvarial bone development, homeostasis, and injury repair. These bona fide stem cells express a high level of Axin2 and are able to mediate bone regeneration and repair in a cell autonomous fashion. The importance of Axin2 is further demonstrated by its genetic inactivation in mice causing skeletal deformities resembling craniosynostosis in humans. The fate determination and subsequent differentiation of Axin2+ stem cells are highly orchestrated by a variety of evolutionary conserved signaling pathways including Wnt, FGF, and BMP. These signals are often antagonistic of each other and possess differential effects on osteogenic and chondrogenic cell types. However, the mechanisms underlying the interplay of these signaling transductions remain largely elusive. Here we identify Rap1b acting downstream of Axin2 as a signaling interrogator for FGF and BMP. Genetic analysis reveals that Rap1b is essential for development of craniofacial and body skeletons. Axin2 regulates Rap1b through modulation of canonical BMP signaling. The BMP-mediated activation of Rap1b promotes chondrogenic fate and chondrogenesis. Furthermore, by inhibiting MAPK signaling, Rap1b mediates the antagonizing effect of BMP on FGF to repress osteoblast differentiation. Disruption of Rap1b in mice not only enhances osteoblast differentiation but also impairs chondrocyte differentiation during intramembranous and endochondral ossifications, respectively, leading to severe defects in craniofacial and body skeletons. Our findings reveal a dual role of Rap1b in development of the skeletogenic cell types. Rap1b is critical for balancing the signaling effects of BMP and FGF during skeletal development and disease. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  1. Persistent and plastic effects of temperature on DNA methylation across the genome of threespine stickleback (Gasterosteus aculeatus).

    PubMed

    Metzger, David C H; Schulte, Patricia M

    2017-10-11

    Epigenetic mechanisms such as changes in DNA methylation have the potential to affect the resilience of species to climate change, but little is known about the response of the methylome to changes in environmental temperature in animals. Using reduced representation bisulfite sequencing, we assessed the effects of development temperature and adult acclimation temperature on DNA methylation levels in threespine stickleback ( Gasterosteus aculeatus ). Across all treatments, we identified 2130 differentially methylated cytosines distributed across the genome. Both increases and decreases in temperature during development and with thermal acclimation in adults increased global DNA methylation levels. Approximately 25% of the differentially methylated regions (DMRs) responded to both developmental temperature and adult thermal acclimation, and 50 DMRs were common to all treatments, demonstrating a core response of the epigenome to thermal change at multiple time scales. We also identified differentially methylated loci that were specific to a particular developmental or adult thermal response, which could facilitate the accumulation of epigenetic variation between natural populations that experience different thermal regimes. These data demonstrate that thermal history can have long-lasting effects on the epigenome, highlighting the role of epigenetic modifications in the response to temperature change across multiple time scales. © 2017 The Author(s).

  2. Secreted Clusterin protein inhibits osteoblast differentiation of bone marrow mesenchymal stem cells by suppressing ERK1/2 signaling pathway.

    PubMed

    Abdallah, Basem M; Alzahrani, Abdullah M; Kassem, Moustapha

    2018-05-01

    Secreted Clusterin (sCLU, also known as Apolipoprotein J) is an anti-apoptotic glycoprotein involved in the regulation of cell proliferation, lipid transport, extracellular tissue remodeling and apoptosis. sCLU is expressed and secreted by mouse bone marrow-derived skeletal (stromal or mesenchymal) stem cells (mBMSCs), but its functional role in MSC biology is not known. In this study, we demonstrated that Clusterin mRNA expression and protein secretion in conditioned medium increased during adipocyte differentiation and decreased during osteoblast differentiation of mBMSCs. Treatment of mBMSC cultures with recombinant sCLU protein increased cell proliferation and exerted an inhibitory effect on the osteoblast differentiation while stimulated adipocyte differentiation in a dose-dependent manner. siRNA-mediated silencing of Clu expression in mBMSCs reduced adipocyte differentiation and stimulated osteoblast differentiation of mBMSCs. Furthermore, the inhibitory effect of sCLU on the osteoblast differentiation of mBMSCs was mediated by the suppression of extracellular signal-regulated kinase (ERK1/2) phosphorylation. In conclusion, we identified sCLU as a regulator of mBMSCs lineage commitment to osteoblasts versus adipocytes through a mechanism mediated by ERK1/2 signaling. Inhibiting sCLU is a possible therapeutic approach for enhancing osteoblast differentiation and consequently bone formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Understanding leptin-dependent regulation of skeletal homeostasis

    PubMed Central

    Motyl, Katherine J.; Rosen, Clifford J.

    2012-01-01

    Despite growing evidence for adipose tissue regulation of bone mass, the role of the adipokine leptin in bone remodeling remains controversial. The majority of in vitro studies suggest leptin enhances osteoblastic proliferation and differentiation while inhibiting adipogenic differentiation from marrow stromal cells. Alternatively, some evidence demonstrates either no effect or a pro-apoptotic action of leptin on stromal cells. Similarly, in vivo work has demonstrated both positive and negative effects of leptin on bone mass. Most of the literature supports the idea that leptin suppresses bone mass by acting in the brainstem to reduce serotonin-dependent sympathetic signaling from the ventromedial hypothalamus to bone. However, other studies have found partly or entirely contrasting actions of leptin. Recently one study found a significant effect of surgery alone with intracerebroventricular administration of leptin, a technique crucial for understanding centrally-mediated leptin regulation of bone. Thus, two mainstream hypotheses for the role of leptin on bone emerge: 1) direct regulation through increased osteoblast proliferation and differentiation and 2) indirect suppression of bone formation through a hypothalamic relay. At the present time, it remains unclear whether these effects are relevant in only extreme circumstances (i.e. models with complete deficiency) or play an important homeostatic role in the regulation of peak bone acquisition and skeletal remodeling. Ultimately, determining the actions of leptin on the skeleton will be critical for understanding how the obesity epidemic may be impacting the prevalence of osteoporosis. PMID:22534195

  4. Stem cell mobilization with G-CSF analogs: a rational approach to separate GVHD and GVL?

    PubMed

    Morris, Edward S; MacDonald, Kelli P A; Hill, Geoffrey R

    2006-05-01

    The separation of graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) remains the "holy grail" of allogeneic stem cell transplantation, and improvements are urgently needed to allow more effective therapy of malignant disease. The use of G-CSF-mobilized peripheral blood as a clinical stem cell source is associated with enhanced GVL effects without amplification of significant acute GVHD. Preclinical studies have demonstrated that G-CSF modulates donor T cell function before transplantation, promoting T(H)2 differentiation and regulatory T cell function. In addition, the expansion of immature antigen-presenting cells (APCs) and plasmacytoid dendritic cells (DCs) favors the maintenance of this pattern of T cell differentiation after transplantation. Although these patterns of T cell differentiation attenuate acute GVHD, they do not have an impact on the cytolytic pathways of the CD8(+) T cells that are critical for effective GVL. Recently, it has been demonstrated that modification of G-CSF, either by pegylation of the native cytokine or conjugation to Flt-3L, results in the expansion and activation of donor iNKT cells, which significantly augment CD8(+) T cell-mediated cytotoxicity and GVL effects after transplantation. Given that these cytokines also enhance the expansion of regulatory T cells and APCs, they further separate GVHD and GVL, offering potential clinical advantages for the transplant recipient.

  5. Differential analysis between somatic mutation and germline variation profiles reveals cancer-related genes.

    PubMed

    Przytycki, Pawel F; Singh, Mona

    2017-08-25

    A major aim of cancer genomics is to pinpoint which somatically mutated genes are involved in tumor initiation and progression. We introduce a new framework for uncovering cancer genes, differential mutation analysis, which compares the mutational profiles of genes across cancer genomes with their natural germline variation across healthy individuals. We present DiffMut, a fast and simple approach for differential mutational analysis, and demonstrate that it is more effective in discovering cancer genes than considerably more sophisticated approaches. We conclude that germline variation across healthy human genomes provides a powerful means for characterizing somatic mutation frequency and identifying cancer driver genes. DiffMut is available at https://github.com/Singh-Lab/Differential-Mutation-Analysis .

  6. Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes.

    PubMed

    Shafa, Mehdi; Krawetz, Roman; Zhang, Yuan; Rattner, Jerome B; Godollei, Anna; Duff, Henry J; Rancourt, Derrick E

    2011-12-14

    Embryonic stem cells (ESCs) can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs). However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. Murine D3-MHC-neo(r) ESCs formed embyroid bodies (EBs) and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin) was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC differentiation protocols within suspension bioreactors demands a more complete understanding of the impacts of shear forces on the regulation of pluripotency and differentiation in pluripotent stem cells.

  7. Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes

    PubMed Central

    2011-01-01

    Background Embryonic stem cells (ESCs) can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs). However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. Results Murine D3-MHC-neor ESCs formed embyroid bodies (EBs) and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin) was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. Conclusions This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC differentiation protocols within suspension bioreactors demands a more complete understanding of the impacts of shear forces on the regulation of pluripotency and differentiation in pluripotent stem cells. PMID:22168552

  8. Serum-free differentiation of murine embryonic stem cells into alveolar type II epithelial cells.

    PubMed

    Winkler, Monica E; Mauritz, Christina; Groos, Stephanie; Kispert, Andreas; Menke, Sandra; Hoffmann, Anika; Gruh, Ina; Schwanke, Kristin; Haverich, Axel; Martin, Ulrich

    2008-03-01

    Alveolar type II (AT2) epithelial cells have important functions including the production of surfactant and regeneration of lost alveolar type I epithelial cells. The ability of in vitro production of AT2 cells would offer new therapeutic options in treating pulmonary injuries and disorders including genetically based surfactant deficiencies. Aiming at the generation of AT2-like cells, the differentiation of murine embryonic stem cells (mESCs) toward mesendodermal progenitors (MEPs) was optimized using a "Brachyury-eGFP-knock in" mESC line. eGFP expression demonstrated generation of up to 65% MEPs at day 4 after formation of embryoid bodies (EBs) under serum-free conditions. Plated EBs were further differentiated into AT2-like cells for a total of 25 days in serum-free media resulting in the expression of endodermal marker genes (FoxA2, Sox17, TTR, TTF-1) and of markers for distal lung epithelium (surfactant proteins (SP-) A, B, C, and D, CCSP, aquaporin 5). Notably, expression of SP-C as the only known AT2 cell specific marker could be detected after serum-induction as well as under serum-free conditions. Cytoplasmic localization of SP-C was demonstrated by confocal microscopy. The presence of AT2-like cells was confirmed by electron microscopy providing evidence for polarized cells with apical microvilli and lamellar body-like structures. Our results demonstrate the differentiation of AT2-like cells from mESCs after serum-induction and under serum-free conditions. The established serum-free differentiation protocol will facilitate the identification of key differentiation factors leading to a more specific and effective generation of AT2-like cells from ESCs.

  9. Selective neuronal differentiation of neural stem cells induced by nanosecond microplasma agitation.

    PubMed

    Xiong, Z; Zhao, S; Mao, X; Lu, X; He, G; Yang, G; Chen, M; Ishaq, M; Ostrikov, K

    2014-03-01

    An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~150 ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. Published by Elsevier B.V.

  10. Voltage-Gated K+ Channel, Kv3.3 Is Involved in Hemin-Induced K562 Differentiation

    PubMed Central

    Song, Min Seok; Choi, Seon Young; Ryu, Pan Dong; Lee, So Yeong

    2016-01-01

    Voltage-gated K+ (Kv) channels are well known to be involved in cell proliferation. However, even though cell proliferation is closely related to cell differentiation, the relationship between Kv channels and cell differentiation remains poorly investigated. This study demonstrates that Kv3.3 is involved in K562 cell erythroid differentiation. Down-regulation of Kv3.3 using siRNA-Kv3.3 increased hemin-induced K562 erythroid differentiation through decreased activation of signal molecules such as p38, cAMP response element-binding protein, and c-fos. Down-regulation of Kv3.3 also enhanced cell adhesion by increasing integrin β3 and this effect was amplified when the cells were cultured with fibronectin. The Kv channels, or at least Kv3.3, appear to be associated with cell differentiation; therefore, understanding the mechanisms of Kv channel regulation of cell differentiation would provide important information regarding vital cellular processes. PMID:26849432

  11. Study of coupled nonlinear partial differential equations for finding exact analytical solutions

    PubMed Central

    Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.

    2015-01-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256

  12. Linear and nonlinear measures of fetal heart rate patterns evaluated on very short fetal magnetocardiograms.

    PubMed

    Moraes, Eder Rezende; Murta, Luiz Otavio; Baffa, Oswaldo; Wakai, Ronald T; Comani, Silvia

    2012-10-01

    We analyzed the effectiveness of linear short- and long-term variability time domain parameters, an index of sympatho-vagal balance (SDNN/RMSSD) and entropy in differentiating fetal heart rate patterns (fHRPs) on the fetal heart rate (fHR) series of 5, 3 and 2 min duration reconstructed from 46 fetal magnetocardiograms. Gestational age (GA) varied from 21 to 38 weeks. FHRPs were classified based on the fHR standard deviation. In sleep states, we observed that vagal influence increased with GA, and entropy significantly increased (decreased) with GA (SDNN/RMSSD), demonstrating that a prevalence of vagal activity with autonomous nervous system maturation may be associated with increased sleep state complexity. In active wakefulness, we observed a significant negative (positive) correlation of short-term (long-term) variability parameters with SDNN/RMSSD. ANOVA statistics demonstrated that long-term irregularity and standard deviation of normal-to-normal beat intervals (SDNN) best differentiated among fHRPs. Our results confirm that short- and long-term variability parameters are useful to differentiate between quiet and active states, and that entropy improves the characterization of sleep states. All measures differentiated fHRPs more effectively on very short HR series, as a result of the fMCG high temporal resolution and of the intrinsic timescales of the events that originate the different fHRPs.

  13. IFN-γ regulates human dental pulp stem cells behavior via NF-κB and MAPK signaling

    PubMed Central

    He, Xinyao; Jiang, Wenkai; Luo, Zhirong; Qu, Tiejun; Wang, Zhihua; Liu, Ningning; Zhang, Yaqing; Cooper, Paul R.; He, Wenxi

    2017-01-01

    During caries, dental pulp expresses a range of pro-inflammatory cytokines in response to the infectious challenge. Interferon gamma (IFN-γ) is a dimerized soluble cytokine, which is critical for immune responses. Previous study has demonstrated that IFN-γ at relative high concentration (100 ng/mL) treatment improved the impaired dentinogenic and immunosuppressive regulatory functions of disease-derived dental pulp stem cells (DPSCs). However, little is known about the regulatory effects of IFN-γ at relative low concentration on healthy DPSC behavior (including proliferation, migration, and multiple-potential differentiation). Here we demonstrate that IFN-γ at relatively low concentrations (0.5 ng/mL) promoted the proliferation and migration of DPSCs, but abrogated odonto/osteogenic differentiation. Additionally, we identified that NF-κB and MAPK signaling pathways are both involved in the process of IFN-γ-regulated odonto/osteogenic differentiation of DPSCs. DPSCs treated with IFN-γ and supplemented with pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) or SB203580 (a MAPK inhibitor) showed significantly improved potential for odonto/osteogenic differentiation of DPSCs both in vivo and in vitro. These data provide important insight into the regulatory effects of IFN-γ on the biological behavior of DPSCs and indicate a promising therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment. PMID:28098169

  14. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Dunham, E. W.; Wei, M. Z.; Robinson, L. B.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 105. Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  15. MIRK/DYRK1B MEDIATES SURVIVAL DURING THE DIFFERENTIATION OF C2C12 MYOBLASTS 1

    PubMed Central

    Mercer, Stephen E.; Ewton, Daina Z.; Deng, Xiaobing; Lim, Seunghwan; Mazur, Thomas R.; Friedman, Eileen

    2005-01-01

    The kinase Mirk/dyrk1B is essential for the differentiation of C2C12 myoblasts. Mirk reinforces the G0/G1 arrest state in which differentiation occurs by directly phosphorylating and stabilizing p27kip1 and destabilizing cyclin D1. We now demonstrate that Mirk is anti-apoptotic in myoblasts. Knockdown of endogenous Mirk by RNA interference activated caspase 3 and decreased myoblast survival by 75%, while transient overexpression of Mirk increased cell survival. Mirk exerts its anti-apoptotic effects during muscle differentiation at least in part through effects on the cell cycle inhibitor and pro-survival molecule p21cip1. Overexpression and RNA interference experiments demonstrated that Mirk phosphorylates p21 within its nuclear localization domain at Ser153 causing a portion of the typically nuclear p21 to localize in the cytoplasm. Phosphomimetic GFP-p21-S153D was pancellular in both cycling C2C12 myoblasts and NIH3T3 cells. Endogenous Mirk in myotubes, and overexpressed Mirk in NIH3T3 cells were able to cause the pancellular localization of wild-type GFP-p21, but not the non-phosphorylatable mutant GFP-p21-S153A. Translocation to the cytoplasm enables p21 to block apoptosis through inhibitory interaction with pro-apoptotic molecules. Phosphomimetic p21-S153D was more effective than wild-type p21 in blocking the activation of caspase 3. Transient expression of p21-S153D also increased myoblast viability in colony forming assays, while the p21-S153A mutant had no effect. This Mirk-dependent change in p21 intracellular localization is a natural part of myoblast differentiation. Endogenous p21 localized exclusively to the nuclei of proliferating myoblasts, but was also found in the cytoplasm of post-mitotic multinucleated myotubes and adult human skeletal myofibers. PMID:15851482

  16. Repeated whole cigarette smoke exposure alters cell differentiation and augments secretion of inflammatory mediators in air-liquid interface three-dimensional co-culture model of human bronchial tissue.

    PubMed

    Ishikawa, Shinkichi; Ito, Shigeaki

    2017-02-01

    In vitro models of human bronchial epithelium are useful for toxicological testing because of their resemblance to in vivo tissue. We constructed a model of human bronchial tissue which has a fibroblast layer embedded in a collagen matrix directly below a fully-differentiated epithelial cell layer. The model was applied to whole cigarette smoke (CS) exposure repeatedly from an air-liquid interface culture while bronchial epithelial cells were differentiating. The effects of CS exposure on differentiation were determined by histological and gene expression analyses on culture day 21. We found a decrease in ciliated cells and perturbation of goblet cell differentiation. We also analyzed the effects of CS exposure on the inflammatory response, and observed a significant increase in secretion of IL-8, GRO-α, IL-1β, and GM-CSF. Interestingly, secretion of these mediators was augmented with repetition of whole CS exposure. Our data demonstrate the usefulness of our bronchial tissue model for in vitro testing and the importance of exposure repetition in perturbing the differentiation and inflammation processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Testosterone regulates 3T3-L1 pre-adipocyte differentiation and epididymal fat accumulation in mice through modulating macrophage polarization.

    PubMed

    Ren, Xiaojiao; Fu, Xiaojian; Zhang, Xinhua; Chen, Shiqiang; Huang, Shuguang; Yao, Lun; Liu, Guoquan

    2017-09-15

    Low testosterone levels are strongly related to obesity in males. The balance between the classically M1 and alternatively M2 polarized macrophages also plays a critical role in obesity. It is not clear whether testosterone regulates macrophage polarization and then affects adipocyte differentiation. In this report, we demonstrate that testosterone strengthens interleukin (IL) -4-induced M2 polarization and inhibits lipopolysaccharide (LPS)-induced M1 polarization, but has no direct effect on adipocyte differentiation. Cellular signaling studies indicate that testosterone regulates macrophage polarization through the inhibitory regulative G-protein (Gαi) mainly, rather than via androgen receptors, and phosphorylation of Akt. Moreover, testosterone inhibits pre-adipocyte differentiation induced by M1 macrophage medium. Lowering of serum testosterone in mice by injecting a luteinizing hormone receptor (LHR) peptide increases epididymal white adipose tissue. Testosterone supplementation reverses this effect. Therefore, our findings indicate that testosterone inhibits pre-adipocyte differentiation by switching macrophages to M2 polarization through the Gαi and Akt signaling pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Developmental effects of tobacco smoke exposure during human embryonic stem cell differentiation are mediated through the transforming growth factor-β superfamily member, Nodal

    PubMed Central

    Liszewski, Walter; Ritner, Carissa; Aurigui, Julian; Wong, Sharon S. Y.; Hussain, Naveed; Krueger, Winfried; Oncken, Cheryl; Bernstein, Harold S.

    2012-01-01

    While the pathologies associated with in utero smoke exposure are well established, their underlying molecular mechanisms are incompletely understood. We differentiated human embryonic stem cells in the presence of physiological concentrations of tobacco smoke and nicotine. Using post hoc microarray analysis, quantitative PCR, and immunoblot analysis, we demonstrated that tobacco smoke has lineage- and stage-specific effects on human embryonic stem cell differentiation, through both nicotine-dependent and -independent pathways. We show that three major stem cell pluripotency/differentiation pathways, Notch, canonical Wnt, and transforming growth factor-β, are affected by smoke exposure, and that Nodal signaling through SMAD2 is specifically impacted by effects on Lefty1, Nodal, and FoxH1. These events are associated with upregulation of microRNA-302a, a post-transcriptional silencer of Lefty1. The described studies provide insight into the mechanisms by which tobacco smoke influences fetal development at the cellular level, and identify specific transcriptional, post-transcriptional, and signaling pathways by which this likely occurs. PMID:22381624

  19. Transforming growth factor-beta1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects.

    PubMed

    Marone, M; Scambia, G; Bonanno, G; Rutella, S; de Ritis, D; Guidi, F; Leone, G; Pierelli, L

    2002-01-01

    A number of cytokines modulate self-renewal and differentiation of hematopoietic elements. Among these is transforming growth factor beta1 (TGF-beta1), which regulates cell cycle and differentiation of hematopoietic cells, but has pleiotropic activities depending on the state of responsiveness of the target cells. It has been previously shown by us and other authors that TGF-beta1 maintains human CD34(+) hematopoietic progenitors in an undifferentiated state, independently of any cell cycle effects, and that depletion of TGF-beta1 triggers differentiation accompanied by a decrease in CD34 antigen expression. In the present work, we show that exogenous TGF-beta1 upregulates the human CD34 antigen in the CD34(+) cell lines TF-1 and KG-1a, but not in the more differentiated CD34(-) cell lines HL-60 and K-562. We further studied this effect in the pluripotent erythroleukemia cell line TF-1. Here, TGF-beta1 did not effect cell growth, but induced transcriptional activation of full-length CD34 and prevented differentiation induced by differentiating agents. This effect was associated with nuclear translocation of Smad-2, activation of TAK-1, and with a dramatic decrease in p38 phosphorylation. In other systems TGF-beta1 has been shown to activate a TGF-beta-activated kinase 1 (TAK1), which in turn, activates p38. The specific inhibitor of p38 phosphorylation, SB202190, also increased CD34 RNA expression, indicating the existence of a link between p-38 inhibition by TGF-beta1 and CD34 overexpression. Our data demonstrate that TGF-beta1 transcriptionally activates CD34 and prevents differentiation of TF-1 cells by acting independently through the Smad, TAK1 and p38 pathways, and thus provide important clues for the understanding of hematopoietic development and a potential tool to modify response of hematopoietic cells to mitogens or differentiating agents.

  20. The effect of nutritional status on myogenic satellite cell proliferation and differentiation.

    PubMed

    Powell, D J; McFarland, D C; Cowieson, A J; Muir, W I; Velleman, S G

    2013-08-01

    Early posthatch satellite cell (SC) mitotic activity is a critical component of muscle development and growth. Satellite cells are stem cells that can be induced by nutrition to follow other cellular developmental pathways. The objective of the current study was to determine the effect of restricting protein synthesis on the proliferation and differentiation of SC, using variable concentrations of Met and Cys to modulate protein synthesis. Broiler pectoralis major SC were cultured and treated with 1 of 6 different Met/Cys concentrations: 60/192, 30/96 (control), 7.5/24, 3/9.6, 1/3.2, or 0/0 mg/L. The effect of Met/Cys concentration on SC proliferation and differentiation was measured, and myonuclear accretion was measured by counting the number of nuclei per myotube during differentiation. The 30/96 mg/L Met/Cys treatment resulted in the highest rate of proliferation compared with all other treatments by 72 h of proliferation (P < 0.05). Differentiation was measured with Met/Cys treatments only during proliferation and the cultures receiving normal differentiation medium (R/N), normal proliferation medium and differentiation medium with variable Met/Cys (N/R), or both proliferation and differentiation receiving variable Met/Cys treatments (R/R). Differentiation responded in a dose-dependent manner to Met/Cys concentration under all 3 of these treatment regimens, with a degree of recovery in the R/N regimen cells following reinstatement of the control medium. Reductions in both proliferation and differentiation were more pronounced as Met/Cys concentrations were further reduced, whereas increased differentiation was observed under the increased Met/Cys concentration treatment when applied during differentiation in the N/R and R/R regimens. The number of nuclei per myotube was significantly decreased in the severely Met/Cys restricted treatments (P < 0.05). These data demonstrate the sensitivity of pectoralis major SC to nutritional availability and the importance of optimal nutrition during both proliferation and differentiation for maximizing SC activity, which will affect subsequent muscle mass accretion.

  1. Tridax procumbens flavonoids promote osteoblast differentiation and bone formation.

    PubMed

    Al Mamun, Md Abdullah; Hosen, Mohammad Jakir; Islam, Kamrul; Khatun, Amina; Alam, M Masihul; Al-Bari, Md Abdul Alim

    2015-11-18

    Tridax procumbens flavonoids (TPFs) are well known for their medicinal properties among local natives. Besides traditionally used for dropsy, anemia, arthritis, gout, asthma, ulcer, piles, and urinary problems, it is also used in treating gastric problems, body pain, and rheumatic pains of joints. TPFs have been reported to increase osteogenic functioning in mesenchymal stem cells. Our previous study showed that TPFs were significantly suppressed the RANKL-induced differentiation of osteoclasts and bone resorption. However, the effects of TPFs to promote osteoblasts differentiation and bone formation remain unclear. TPFs were isolated from Tridax procumbens and investigated for their effects on osteoblasts differentiation and bone formation by using primary mouse calvarial osteoblasts. TPFs promoted osteoblast differentiation in a dose-dependent manner demonstrated by up-regulation of alkaline phosphatase and osteocalcin. TPFs also upregulated osteoblast differentiation related genes, including osteocalcin, osterix, and Runx2 in primary osteoblasts. TPFs treated primary osteoblast cells showed significant upregulation of bone morphogenetic proteins (BMPs) including Bmp-2, Bmp-4, and Bmp-7. Addition of noggin, a BMP specific-antagonist, inhibited TPFs induced upregulation of the osteocalcin, osterix, and Runx2. Our findings point towards the induction of osteoblast differentiation by TPFs and suggested that TPFs could be a potential anabolic agent to treat patients with bone loss-associated diseases such as osteoporosis.

  2. Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Shin, Eunjin; Choi, Kyeong-Mi; Yoo, Hwan-Soo; Lee, Chong-Kil; Hwang, Bang Yeon; Lee, Mi Kyeong

    2010-01-01

    In the course of screening anti-adipogenic activity of natural products employing the preadipocyte cell line, 3T3-L1 as an in vitro assay system, the EtOAc fraction of the stem barks of Fraxinus rhynchophylla DENCE (Oleaceae) showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Activity-guided fractionation led to the isolation of six coumarins such as esculetin (1), scopoletin (2), fraxetin (3), fraxidin (4) esculin (5) and fraxin (6). Among the six coumarins isolated, esculetin (1) showed the most potent inhibitory activity on adipocyte differentiation, followed by fraxetin (3). Further studies with interval treatment demonstrated that esculetin (1) exerted inhibitory activity on adipocyte differentiation when treated within 2 d (days 0-2) after differentiation induction. We further investigated the effect of esculetin (1) on peroxisome proliferator activated receptor gamma (PPARgamma), one of the early adipogenic transcription factors. Esculetin (1) significantly blocked the induction of PPARgamma protein expression and inhibited adipocyte differentiation induced by troglitazone, a PPARgamma agonist. Taken together, these results suggest that esculetin (1), an active compound from F. rhynchophylla, inhibited early stage of adipogenic differentiation, in part, via inhibition of PPARgamma-dependent pathway.

  3. Spacing and lag effects in free recall of pure lists.

    PubMed

    Kahana, Michael J; Howard, Marc W

    2005-02-01

    Repeating list items leads to better recall when the repetitions are separated by several unique items than when they are presented successively; the spacing effect refers to improved recall for spaced versus successive repetition (lag > 0 vs. lag = 0); the lag effect refers to improved recall for long lags versus short lags. Previous demonstrations of the lag effect have utilized lists containing a mixture of items with varying degrees of spacing. Because differential rehearsal of items in mixed lists may exaggerate any effects of spacing, it is important to demonstrate these effects in pure lists. As in Toppino and Schneider (1999), we found an overall advantage for recall of spaced lists. We further report the first demonstration of a lag effect in pure lists, with significantly better recall for lists with widely spaced repetitions than for those with moderately spaced repetitions.

  4. Rapamycin promotes differentiation increasing βIII-tubulin, NeuN, and NeuroD while suppressing nestin expression in glioblastoma cells

    PubMed Central

    Lenzi, Paola; Gambardella, Stefano; Ferese, Rosangela; Calierno, Maria Teresa; Falleni, Alessandra; Grimaldi, Alfonso; Frati, Alessandro; Esposito, Vincenzo; Limatola, Cristina; Fornai, Francesco

    2017-01-01

    Glioblastoma cells feature mammalian target of rapamycin (mTOR) up-regulation which relates to a variety of effects such as: lower survival, higher infiltration, high stemness and radio- and chemo-resistance. Recently, it was demonstrated that mTOR may produce a gene shift leading to altered protein expression. Therefore, in the present study we administered different doses of the mTOR inhibitor rapamycin to explore whether the transcription of specific genes are modified. By using a variety of methods we demonstrate that rapamycin stimulates gene transcription related to neuronal differentiation while inhibiting stemness related genes such as nestin. In these experimental conditions, cell phenotype shifts towards a pyramidal neuron-like shape owing long branches. Rapamycin suppressed cell migration when exposed to fetal bovine serum (FBS) while increasing the cell adhesion protein phospho-FAK (pFAK). The present study improves our awareness of basic mechanisms which relate mTOR activity to the biology of glioblastoma cells. These findings apply to a variety of effects which can be induced by mTOR regulation in the brain. In fact, the ability to promote neuronal differentiation might be viewed as a novel therapeutic pathway to approach neuronal regeneration. PMID:28418837

  5. Rapamycin promotes differentiation increasing βIII-tubulin, NeuN, and NeuroD while suppressing nestin expression in glioblastoma cells.

    PubMed

    Ferrucci, Michela; Biagioni, Francesca; Lenzi, Paola; Gambardella, Stefano; Ferese, Rosangela; Calierno, Maria Teresa; Falleni, Alessandra; Grimaldi, Alfonso; Frati, Alessandro; Esposito, Vincenzo; Limatola, Cristina; Fornai, Francesco

    2017-05-02

    Glioblastoma cells feature mammalian target of rapamycin (mTOR) up-regulation which relates to a variety of effects such as: lower survival, higher infiltration, high stemness and radio- and chemo-resistance. Recently, it was demonstrated that mTOR may produce a gene shift leading to altered protein expression. Therefore, in the present study we administered different doses of the mTOR inhibitor rapamycin to explore whether the transcription of specific genes are modified. By using a variety of methods we demonstrate that rapamycin stimulates gene transcription related to neuronal differentiation while inhibiting stemness related genes such as nestin. In these experimental conditions, cell phenotype shifts towards a pyramidal neuron-like shape owing long branches. Rapamycin suppressed cell migration when exposed to fetal bovine serum (FBS) while increasing the cell adhesion protein phospho-FAK (pFAK). The present study improves our awareness of basic mechanisms which relate mTOR activity to the biology of glioblastoma cells. These findings apply to a variety of effects which can be induced by mTOR regulation in the brain. In fact, the ability to promote neuronal differentiation might be viewed as a novel therapeutic pathway to approach neuronal regeneration.

  6. An Exploration of Desktop Virtual Reality and Visual Processing Skills in a Technical Training Environment

    ERIC Educational Resources Information Center

    Ausburn, Lynna J.; Ausburn, Floyd B.; Kroutter, Paul

    2010-01-01

    Virtual reality (VR) technology has demonstrated effectiveness in a variety of technical learning situations, yet little is known about its differential effects on learners with different levels of visual processing skill. This small-scale exploratory study tested VR through quasi-experimental methodology and a theoretical/conceptual framework…

  7. PGE(2) inhibition of TGF-beta1-induced myofibroblast differentiation is Smad-independent but involves cell shape and adhesion-dependent signaling.

    PubMed

    Thomas, Peedikayil E; Peters-Golden, Marc; White, Eric S; Thannickal, Victor J; Moore, Bethany B

    2007-08-01

    Myofibroblasts are pathogenic in pulmonary fibrotic disease due to their exuberant production of matrix rich in collagen that interferes with gas exchange and the ability of these cells to contract and distort the alveolar space. Transforming growth factor-beta1 (TGF-beta1) is a well-known inducer of myofibroblast differentiation. TGF-beta1-induced transformation of fibroblasts to apoptosis-resistant myofibroblasts is adhesion-dependent and focal adhesion kinase (FAK)-mediated. Prostaglandin E(2) (PGE(2)) inhibits this differentiation via E prostanoid receptor 2 (EP2) signaling and cAMP elevation, but whether PGE(2) does so by interfering with TGF-beta1 signaling is unknown. Thus we examined the effects of PGE(2) in the presence and absence of TGF-beta1 stimulation on candidate signaling pathways in human lung fibroblasts. We now demonstrate that PGE(2) does not interfere with TGF-beta1-induced Smad phosphorylation or its translocation to the nucleus. Rather, PGE(2) has dramatic effects on cell shape and cytoskeletal architecture and disrupts the formation of appropriate focal adhesions. PGE(2) treatment diminishes TGF-beta1-induced phosphorylation of paxillin, STAT-3, and FAK and, in turn, limits activation of the protein kinase B (PKB/Akt) pathway. These alterations do not, however, result in increased apoptosis within the first 24 h of treatment. Interestingly, the effects of PGE(2) stimulation alone do not always mirror the effects of PGE(2) in the presence of TGF-beta1, indicating that the context for EP2 signaling is different in the presence of TGF-beta1. Taken together, our results demonstrate that PGE(2) has the potential to limit TGF-beta1-induced myofibroblast differentiation via adhesion-dependent, but Smad-independent, pathways.

  8. miR-30 Family Members Negatively Regulate Osteoblast Differentiation*

    PubMed Central

    Wu, Tingting; Zhou, Haibo; Hong, Yongfeng; Li, Jing; Jiang, Xinquan; Huang, Hui

    2012-01-01

    miRNAs are endogenously expressed 18- to 25-nucleotide RNAs that regulate gene expression through translational repression by binding to a target mRNA. Recently, it has been indicated that miRNAs are closely related to osteogenesis. Our previous data suggested that miR-30 family members might be important regulators during the biomineralization process. However, whether and how they modulate osteogenic differentiation have not been explored. In this study, we demonstrated that miR-30 family members negatively regulate BMP-2-induced osteoblast differentiation by targeting Smad1 and Runx2. Evidentially, overexpression of miR-30 family members led to a decrease of alkaline phosphatase activity, whereas knockdown of them increased the activity. Then bioinformatic analysis identified potential target sites of the miR-30 family located in the 3′ untranslated regions of Smad1 and Runx2. Western blot analysis and quantitative RT-PCR assays demonstrated that miR-30 family members inhibit Smad1 gene expression on the basis of repressing its translation. Furthermore, dual-luciferase reporter assays confirmed that Smad1 is a direct target of miR-30 family members. Rescue experiments that overexpress Smad1 and Runx2 significantly eliminated the inhibitory effect of miR-30 on osteogenic differentiation and provided strong evidence that miR-30 mediates the inhibition of osteogenesis by targeting Smad1 and Runx2. Also, the inhibitory effects of the miR-30 family were validated in mouse bone marrow mesenchymal stem cells. Therefore, our study uncovered that miR-30 family members are key negative regulators of BMP-2-mediated osteogenic differentiation. PMID:22253433

  9. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation

    PubMed Central

    Maul, Timothy M.; Chew, Douglas W.; Nieponice, Alejandro

    2011-01-01

    Mesenchymal stem cell (MSC) therapy has demonstrated applications in vascular regenerative medicine. Although blood vessels exist in a mechanically dynamic environment, there has been no rigorous, systematic analysis of mechanical stimulation on stem cell differentiation. We hypothesize that mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward smooth muscle (SMCs) and endothelial cells (ECs). This was tested using a unique experimental platform to differentially apply various mechanical stimuli in parallel. Three forces, cyclic stretch, cyclic pressure, and laminar shear stress, were applied independently to mimic several vascular physiologic conditions. Experiments were conducted using subconfluent MSCs for 5 days and demonstrated significant effects on morphology and proliferation depending upon the type, magnitude, frequency, and duration of applied stimulation. We have defined thresholds of cyclic stretch that potentiate SMC protein expression, but did not find EC protein expression under any condition tested. However, a second set of experiments performed at confluence and aimed to elicit the temporal gene expression response of a select magnitude of each stimulus revealed that EC gene expression can be increased with cyclic pressure and shear stress in a cell-contact-dependent manner. Further, these MSCs also appear to express genes from multiple lineages simultaneously which may warrant further investigation into post-transcriptional mechanisms for controlling protein expression. To our knowledge, this is the first systematic examination of the effects of mechanical stimulation on MSCs and has implications for the understanding of stem cell biology, as well as potential bioreactor designs for tissue engineering and cell therapy applications. PMID:21253809

  10. Thyroid hormone accelerates the differentiation of adult hippocampal progenitors.

    PubMed

    Kapoor, R; Desouza, L A; Nanavaty, I N; Kernie, S G; Vaidya, V A

    2012-09-01

    Disrupted thyroid hormone function evokes severe physiological consequences in the immature brain. In adulthood, although clinical reports document an effect of thyroid hormone status on mood and cognition, the molecular and cellular changes underlying these behavioural effects are poorly understood. More recently, the subtle effects of thyroid hormone on structural plasticity in the mature brain, in particular on adult hippocampal neurogenesis, have come to be appreciated. However, the specific stages of adult hippocampal progenitor development that are sensitive to thyroid hormone are not defined. Using nestin-green fluorescent protein reporter mice, we demonstrate that thyroid hormone mediates its effects on hippocampal neurogenesis by influencing Type 2b and Type 3 progenitors, although it does not alter proliferation of either the Type 1 quiescent progenitor or the Type 2a amplifying neural progenitor. Thyroid hormone increases the number of doublecortin (DCX)-positive Type 3 progenitors, and accelerates neuronal differentiation into both DCX-positive immature neurones and neuronal nuclei-positive granule cell neurones. Furthermore, we show that this increase in neuronal differentiation is accompanied by a significant induction of specific transcription factors involved in hippocampal progenitor differentiation. In vitro studies using the neurosphere assay support a direct effect of thyroid hormone on progenitor development because neurospheres treated with thyroid hormone are shifted to a more differentiated state. Taken together, our results indicate that thyroid hormone mediates its neurogenic effects via targeting Type 2b and Type 3 hippocampal progenitors, and suggests a role for proneural transcription factors in contributing to the effects of thyroid hormone on neuronal differentiation of adult hippocampal progenitors. © 2012 The Authors. Journal of Neuroendocrinology © 2012 British Society for Neuroendocrinology.

  11. Smad 1/5 and Smad 4 Expression Are Important for Osteoclast Differentiation

    PubMed Central

    Tasca, Amy; Stemig, Melissa; Broege, Aaron; Huang, Brandon; Davydova, Julia; Zwijsen, An; Umans, Lieve; Jensen, Eric D.; Gopalakrishnan, Raj; Mansky, Kim C.

    2015-01-01

    To investigate the necessity of the canonical BMP pathway during osteoclast differentiation, we created osteoclasts with a conditional gene deletion for Smad1 and Smad5 (SMAD1/5), or Smad4 using adenovirus expressing CRE recombinase (Ad-CRE). Reduction of either Smad4 or Smad1/5 expression resulted in fewer and smaller multinuclear cells compared to control cells. We also detected changes in osteoclast enriched genes, demonstrated by decreased Dc-stamp and cathepsin K expression in both Smad4 and Smad1/5 Ad-CRE osteoclasts, and changes in c-fos and Nfatc1 expression in only Smad4 Ad-CRE cells. Lastly we also detected a significant decrease in resorption pits and area resorbed in both the Smad4 and Smad1/5 Ad-CRE osteoclasts. Because we inhibited osteoclast differentiation with loss of either Smad4 or Smad1/5 expression, we assessed whether BMPs affected osteoclast activity in addition to BMP’s effects on differentiation. Therefore, we treated mature osteoclasts with BMP2 or with dorsomorphin, a chemical inhibitor that selectively suppresses canonical BMP signaling. We demonstrated that BMP2 stimulated resorption in mature osteoclasts whereas treatment with dorsomorphin blocks osteoclast resorption. These results indicate that the BMP canonical signaling pathway is important for osteoclast differentiation and activity. PMID:25711193

  12. The induction of monocytopoiesis in HL-60 promyelocytic leukemia cells is inhibited by hydroquinone, a toxic metabolite of benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, N.L.

    1992-01-01

    Chronic exposure of humans to benzene has been shown to have a cytotoxic effect on hematopoietic progenitor cells in intermediate stages of differentiation which can lead to aplastic anemia and acute myelogenous leukemia. This thesis examined the effect of hydroquinone, a toxic metabolite of benzene found in the bone marrow, on the human promyelocytic leukemia cell line (HL-60) which can be induced to differentiate to both monocyte and myeloid cells, and thus has been used as a surrogate for a granulocyte/macrophage progenitor cell. Exposure of HL-60 cells to noncytotoxic concentrations of hydroquinone for three hours prior to induction with 12-O-tetradecanoylmore » phorbol-13-acetate caused a dose-dependent inhibition of the acquisition of characteristics of monocytic differentiation. These included adherence, nonspecific esterase activity and phagocytosis. Hydroquinone had no effect on cell proliferation. Hydroquinone appeared to be affecting maturation beyond the monoblast/promonocyte stages. Hydroquinone also prevented differentiation induced by 1, 25-dihydroxy vitamin D[sub 3], however, the block occurred after the acquisition of adherence. Hydroquinone at concentrations that inhibited monocytic differentiation had no effect on differentiation to granulocytes, suggesting that the block in the differentiation of these bipotential cells is at a step unique to the monocytic pathway. Hydroquinone was unable to prevent differentiation induced by the macrophage-derived cytokine interleukin-1, a differentiation factor for cells of the monocytic lineage. These data demonstrate that treatment of Hl-60 cells with hydroquinone prior to induction of differentiation prevents the acquisition of the monocytic phenotype induced by TPA or 1, 25(OH)[sub 2]D[sub 3] by a mechanism which at present is unknown, but which appears to be specific for the monocytic pathway. These results are of considerable significance for benzene hematotoxicity.« less

  13. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Robinson, L. B.; Wei, M. Z.; Borucki, W. J.; Dunham, E. W.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 10(exp 5). Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  14. Differential toxic effects of azathioprine, 6-mercaptopurine and 6-thioguanine on human hepatocytes.

    PubMed

    Petit, Elise; Langouet, Sophie; Akhdar, Hanane; Nicolas-Nicolaz, Christophe; Guillouzo, André; Morel, Fabrice

    2008-04-01

    Thiopurines (azathioprine, 6-mercaptopurine and 6-thioguanine) are therapeutic compounds widely administered in the clinic for their multiple uses (autoimmune diseases, post-transplant immunosuppression and cancer). Despite these advantages, their therapeutic potential is limited by occasional adverse effects (myelotoxicity and hepatotoxicity) and by a relatively frequent lack of efficacy. Previous studies have demonstrated that azathioprine decreased the viability of rat hepatocytes. In order to investigate cytotoxic effects of thiopurines in human liver, we used primary human hepatocytes and a highly differentiated human hepatoma cell line, HepaRG, treated or not with azathioprine, 6-mercaptopurine and 6-thioguanine. In parallel, expression of the genes involved in the metabolism of thiopurines, glutathione synthesis and antioxidant defences was measured by quantitative PCR. We clearly demonstrate that human liver parenchymal cells were much less sensitive than rat hepatocytes to thiopurine treatments. The toxic effects appeared after 96 h of treatment while ATP depletion was observed after a 24 h incubation with azathioprine and 6-mercaptopurine. Toxic effects were more pronounced for azathioprine and 6-mercaptopurine, when compared to 6-thioguanine, and might explain glutathione synthesis and antioxidant enzyme induction only by these two drugs. Finally, we also demonstrate for the first time an up-regulation by azathioprine and 6-mercaptopurine of inosine monophosphate dehydrogenase which might have consequences on the de novo biosynthesis of guanine nucleotides and thiopurines metabolism.

  15. Regulation of adipocytokine secretion and adipocyte hypertrophy by polymethoxyflavonoids, nobiletin and tangeretin.

    PubMed

    Miyata, Yoshiki; Tanaka, Haruyuki; Shimada, Arata; Sato, Takashi; Ito, Akira; Yamanouchi, Toshikazu; Kosano, Hiroshi

    2011-03-28

    The polymethoxyflavonoids nobiletin and tangeretin possess several important biological properties such as neuroprotective, antimetastatic, anticancer, and anti-inflammatory properties. The present study was undertaken to examine whether nobiletin and tangeretin could modulate adipocytokine secretion and to evaluate the effects of these flavonoids on the hypertrophy of mature adipocytes. All experiments were performed on the murine preadipocyte cell line 3T3-L1. We studied the formation of intracellular lipid droplets in adipocytes and the apoptosis-inducing activity to evaluate the effects of polymethoxyflavonoids on adipocyte differentiation and hypertrophy, respectively. The secretion of adipocytokines was measured using ELISA. We demonstrated that the combined treatment of differentiation reagents with nobiletin or tangeretin differentiated 3T3-L1 preadipocytes into adipocytes possessing less intracellular triglyceride as compared to vehicle-treated differentiated 3T3-L1 adipocytes. Both flavonoids increased the secretion of an insulin-sensitizing factor, adiponectin, but concomitantly decreased the secretion of an insulin-resistance factor, MCP-1, in 3T3-L1 adipocytes. Furthermore, nobiletin was found to decrease the secretion of resistin, which serves as an insulin-resistance factor. In mature 3T3-L1 adipocytes, nobiletin induced apoptosis; tangeretin, in contrast, did not induce apoptosis, but suppressed further triglyceride accumulation. Our results suggest that nobiletin and tangeretin are promising therapeutic candidates for the prevention and treatment of insulin resistance by modulating the adipocytokine secretion balance. We also demonstrated the different effects of nobiletin and tangeretin on mature adipocytes. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Human milk and infant formula can induce in vitro adipocyte differentiation in murine 3T3-L1 preadipocytes.

    PubMed

    Lyle, R E; Corley, J D; McGehee, R E

    1998-11-01

    The potential of infant diet to influence fat cell development has largely been examined in clinical studies with conflicting results. In this study, the direct effects of two standard infant formulas, Enfamil and Similac, as well as human milk were examined using a well characterized model of adipocyte differentiation, the 3T3-L1 murine preadipocyte cell line. After exposure to a hormonal regimen of insulin, dexamethasone, and 1-methyl-3-isobutylmethylxanthine, these cells undergo a mitotic expansion phase followed by terminal differentiation. On d 4 of hormonal exposure, greater than 95% of 3T3-L1 cells exhibit the morphologic and biochemical characteristics of mature adipocytes. In this study, cells were exposed to control medium, or control medium supplemented with either 10% Enfamil, 10% Similac, 10% human milk (skim or whole), or the standard hormonal regimen. Oil Red O-detectable lipid accumulation, immunocytochemical cell proliferation assays, and activated expression of adipocyte differentiation-specific mRNAs by Northern blot analysis were used to assess the effects of treatment on adipocyte differentiation. Results from each level of assessment revealed that both Enfamil and human milk were as effective as the standard hormonal regimen at stimulating adipocyte differentiation. In contrast, results from treatment with Similac or human skim milk were indistinguishable from control unstimulated cells. This study, demonstrating that Enfamil and human milk are capable of independently inducing in vitro adipocyte differentiation, suggests that diet during infancy could influence body fat development.

  17. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function.

    PubMed

    Mendivil-Perez, Miguel; Soto-Mercado, Viviana; Guerra-Librero, Ana; Fernandez-Gil, Beatriz I; Florido, Javier; Shen, Ying-Qiang; Tejada, Miguel A; Capilla-Gonzalez, Vivian; Rusanova, Iryna; Garcia-Verdugo, José M; Acuña-Castroviejo, Darío; López, Luis Carlos; Velez-Pardo, Carlos; Jimenez-Del-Rio, Marlene; Ferrer, José M; Escames, Germaine

    2017-09-01

    Neural stem cells (NSCs) are regarded as a promising therapeutic approach to protecting and restoring damaged neurons in neurodegenerative diseases (NDs) such as Parkinson's disease and Alzheimer's disease (PD and AD, respectively). However, new research suggests that NSC differentiation is required to make this strategy effective. Several studies have demonstrated that melatonin increases mature neuronal markers, which reflects NSC differentiation into neurons. Nevertheless, the possible involvement of mitochondria in the effects of melatonin during NSC differentiation has not yet been fully established. We therefore tested the impact of melatonin on NSC proliferation and differentiation in an attempt to determine whether these actions depend on modulating mitochondrial activity. We measured proliferation and differentiation markers, mitochondrial structural and functional parameters as well as oxidative stress indicators and also evaluated cell transplant engraftment. This enabled us to show that melatonin (25 μM) induces NSC differentiation into oligodendrocytes and neurons. These effects depend on increased mitochondrial mass/DNA/complexes, mitochondrial respiration, and membrane potential as well as ATP synthesis in NSCs. It is also interesting to note that melatonin prevented oxidative stress caused by high levels of mitochondrial activity. Finally, we found that melatonin enriches NSC engraftment in the ND mouse model following transplantation. We concluded that a combined therapy involving transplantation of NSCs pretreated with pharmacological doses of melatonin could efficiently restore neuronal cell populations in PD and AD mouse models depending on mitochondrial activity promotion. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Cytotoxicity of Vitex agnus-castus fruit extract and its major component, casticin, correlates with differentiation status in leukemia cell lines.

    PubMed

    Kikuchi, Hidetomo; Yuan, Bo; Nishimura, Yoshio; Imai, Masahiko; Furutani, Ryota; Kamoi, Saki; Seno, Misako; Fukushima, Shin; Hazama, Shingo; Hirobe, Chieko; Ohyama, Kunio; Hu, Xiao-Mei; Takagi, Norio; Hirano, Toshihiko; Toyoda, Hiroo

    2013-12-01

    We have demonstrated that an extract from the ripe fruit of Vitex agnus-castus (Vitex) exhibits cytotoxic activities against various types of solid tumor cells, whereas its effects on leukemia cells has not been evaluated to date. In this study, the effects of Vitex and its major component, casticin, on leukemia cell lines, HL-60 and U-937, were investigated by focusing on proliferation, induction of apoptosis and differentiation. Identification and quantitation by NMR spectroscopy showed that casticin accounted for approximate 1% weight of Vitex. Dose-dependent cytotoxicity of Vitex and casticin was observed in both cell lines, and HL-60 cells were more sensitive to the cytotoxicity of Vitex/casticin compared to U-937 cells. Furthermore, compared to unstimulated HL-60 cells, phorbol 12-myristate 13-acetate (PMA)- and 1,25-dihydroxyvitamin D₃ (VD₃)-differentiated HL-60 cells acquired resistance to Vitex/casticin based on the results from cell viability and apoptosis induction analysis. Since the HL-60 cell line is more immature than the U-937 cell line, these results suggested that the levels of cytotoxicity of Vitex/casticin were largely attributed to the degree of differentiation of leukemia cells; that is, cell lines with less differentiated phenotype were more susceptible than the differentiated ones. RT-PCR analysis demonstrated that PMA upregulated the expression of intercellular adhesion molecule-1 (ICAM-1) in HL-60 cells, and that anti-ICAM-1 monoclonal antibody not only abrogated PMA-induced aggregation and adhesion of the cells but also restored its sensitivity to Vitex. These results suggested that ICAM-1 plays a crucial role in the acquired resistance in PMA-differentiated HL-60 cells by contributing to cell adhesion. These findings provide fundamental insights into the clinical application of Vitex/casticin for hematopoietic malignancy.

  19. Smurf1 plays a role in EGF inhibition of BMP2-induced osteogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hye-Lim; Park, Hyun-Jung; Kwon, Arang

    2014-05-01

    It has been demonstrated that epidermal growth factor (EGF) plays a role in supporting the proliferation of bone marrow stromal cells in bone but inhibits their osteogenic differentiation. However, the mechanism underlying EGF inhibition of osteoblast differentiation remains unclear. Smurf1 is an E3 ubiquitin ligase that targets Smad1/5 and Runx2, which are critical transcription factors for bone morphogenetic protein 2 (BMP2)-induced osteoblast differentiation. In this study, we investigated the effect of EGF on the expression of Smurf1, and the role of Smurf1 in EGF inhibition of osteogenic differentiation using C2C12 cells, a murine myoblast cell line. EGF increased Smurf1 expression,more » which was blocked by inhibiting the activity of either JNK or ERK. Chromatin immunoprecipitation and Smurf1 promoter assays demonstrated that c-Jun and Runx2 play roles in the EGF induction of Smurf1 transcription. EGF suppressed BMP2-induced expression of osteogenic marker genes, which were rescued by Smurf1 knockdown. EGF downregulated the protein levels of Runx2 and Smad1 in a proteasome-dependent manner. EGF decreased the transcriptional activity of Runx2 and Smurf1, which was partially rescued by Smurf1 silencing. Taken together, these results suggest that EGF increases Smurf1 expression via the activation of JNK and ERK and the subsequent binding of c-Jun and Runx2 to the Smurf1 promoter and that Smurf1 mediates the inhibitory effect of EGF on BMP2-induced osteoblast differentiation. - Highlights: • EGF increases the expression level of Smurf1 in mesenchymal precursor cells. • EGF reduces the protein levels and transcriptional activity of Runx2 and Smad1. • EGF suppresses BMP2-induced osteogenic differentiation, which is rescued by Smurf1 knockdown.« less

  20. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    PubMed

    Ma, Yun-Yun; Sun, Lin; Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  1. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    PubMed

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.

  2. The Aryl Hydrocarbon Receptor Ligand ITE Inhibits TGFβ1-Induced Human Myofibroblast Differentiation

    PubMed Central

    Lehmann, Geniece M.; Xi, Xia; Kulkarni, Ajit A.; Olsen, Keith C.; Pollock, Stephen J.; Baglole, Carolyn J.; Gupta, Shikha; Casey, Ann E.; Huxlin, Krystel R.; Sime, Patricia J.; Feldon, Steven E.; Phipps, Richard P.

    2011-01-01

    Fibrosis can occur in any human tissue when the normal wound healing response is amplified. Such amplification results in fibroblast proliferation, myofibroblast differentiation, and excessive extracellular matrix deposition. Occurrence of these sequelae in organs such as the eye or lung can result in severe consequences to health. Unfortunately, medical treatment of fibrosis is limited by a lack of safe and effective therapies. These therapies may be developed by identifying agents that inhibit critical steps in fibrotic progression; one such step is myofibroblast differentiation triggered by transforming growth factor-β1 (TGFβ1). In this study, we demonstrate that TGFβ1-induced myofibroblast differentiation is blocked in human fibroblasts by a candidate endogenous aryl hydrocarbon receptor (AhR) ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Our data show that ITE disrupts TGFβ1 signaling by inhibiting the nuclear translocation of Smad2/3/4. Although ITE functions as an AhR agonist, and biologically persistent AhR agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, cause severe toxic effects, ITE exhibits no toxicity. Interestingly, ITE effectively inhibits TGFβ1-driven myofibroblast differentiation in AhR−/− fibroblasts: Its ability to inhibit TGFβ1 signaling is AhR independent. As supported by the results of this study, the small molecule ITE inhibits myofibroblast differentiation and may be useful clinically as an antiscarring agent. PMID:21406171

  3. Complexity of tumor vasculature in clear cell renal cell carcinoma.

    PubMed

    Qian, Chao-Nan; Huang, Dan; Wondergem, Bill; Teh, Bin Tean

    2009-05-15

    Clear cell renal cell carcinoma (CCRCC) is a highly vascularized cancer resistant to conventional chemotherapy and radiotherapy. Antiangiogenic therapy has achieved some effectiveness against this unique malignancy. The complexity of the tumor vasculature in CCRCC has led to differences in correlating tumor microvessel density with patient prognosis. The authors' recent findings demonstrated that there were at least 2 major categories of tumor vessels in CCRCC-namely, undifferentiated and differentiated-correlating with patient prognosis in contrasting ways, with higher undifferentiated vessel density indicating poorer prognosis, and higher differentiated vessel density correlating with better prognosis. Furthermore, the presence of pericytes supporting the differentiated vessels varied in CCRCC. The distributions of pericyte coverage and differentiated vessels in CCRCC were uneven. The tumor margin had a higher pericyte coverage rate for differentiated vessels than did the inner tumor area. The uneven distributions of pericyte coverage and differentiated vessels in CCRCC prompted the authors to revisit the mechanism of tumor central necrosis, which was also known to be a prognostic indicator for CCRCC. The discrepancy of prognostic correlation between protein and messenger RNA levels of vascular endothelial growth factor in CCRCC was discussed. The complexity of the tumor vasculature in CCRCC also led the authors to begin to re-evaluate the therapeutic effects of antiangiogenic agents for each type of tumor vessel, which will in turn significantly broaden understanding of tumor angiogenesis and improve therapeutic effect. (c) 2009 American Cancer Society.

  4. Increasing morphological complexity in multiple parallel lineages of the Crustacea

    PubMed Central

    Adamowicz, Sarah J.; Purvis, Andy; Wills, Matthew A.

    2008-01-01

    The prospect of finding macroevolutionary trends and rules in the history of life is tremendously appealing, but very few pervasive trends have been found. Here, we demonstrate a parallel increase in the morphological complexity of most of the deep lineages within a major clade. We focus on the Crustacea, measuring the morphological differentiation of limbs. First, we show a clear trend of increasing complexity among 66 free-living, ordinal-level taxa from the Phanerozoic fossil record. We next demonstrate that this trend is pervasive, occurring in 10 or 11 of 12 matched-pair comparisons (across five morphological diversity indices) between extinct Paleozoic and related Recent taxa. This clearly differentiates the pattern from the effects of lineage sorting. Furthermore, newly appearing taxa tend to have had more types of limbs and a higher degree of limb differentiation than the contemporaneous average, whereas those going extinct showed higher-than-average limb redundancy. Patterns of contemporary species diversity partially reflect the paleontological trend. These results provide a rare demonstration of a large-scale and probably driven trend occurring across multiple independent lineages and influencing both the form and number of species through deep time and in the present day. PMID:18347335

  5. Role of Ox-PAPCs in the Differentiation of Mesenchymal Stem Cells (MSCs) and Runx2 and PPARγ2 Expression in MSCs-Like of Osteoporotic Patients

    PubMed Central

    Valenti, Maria Teresa; Garbin, Ulisse; Pasini, Andrea; Zanatta, Mirko; Stranieri, Chiara; Manfro, Stefania; Zucal, Chiara; Dalle Carbonare, Luca

    2011-01-01

    Background Mesenchymal stem cells (MSCs) can differentiate into osteoblasts and adipocytes and conditions causing bone loss may induce a switch from the osteoblast to adipocyte lineage. In addition, the expression of Runx2 and the PPARγ2 transcription factor genes is essential for cellular commitment to an osteogenic and adipogenic differentiation, respectively. Modified lipoproteins derived from the oxidation of arachidonate-containing phospholipids (ox-PAPCs: POVPC, PGPC and PEIPC) are considered important factors in atherogenesis. Methodology We investigated the effect of ox-PAPCs on osteogenesis and adipogenesis in human mesenchymal stem cells (hMSCs). In particular, we analyzed the transcription factor Runx2 and the PPARγ2 gene expression during osteogenic and adipogenic differentiation in absence and in presence of ox-PAPCs. We also analyzed gene expression level in a panel of osteoblastic and adipogenic differentiation markers. In addition, as circulating blood cells can be used as a “sentinel” that responds to changes in the macro- or micro-environment, we analyzed the Runx2 and the PPARγ2 gene expression in MSCs-like and ox-PAPC levels in serum of osteoporotic patients (OPs). Finally, we examined the effects of sera obtained from OPs in hMSCs comparing the results with age-matched normal donors (NDs). Principal findings Quantitative RT-PCR demonstrated that ox-PAPCs enhanced PPARγ2 and adipogenic gene expression and reduced Runx2 and osteoblast differentiation marker gene expression in differentiating hMSCs. In OPs, ox-PAPC levels and PPARγ2 expression were higher than in NDs, whereas Runx2 was lower than in ND circulant MSCs-like. Conclusions Ox-PAPCs affect the osteogenic differentiation by promoting adipogenic differentiation and this effect may appear involved in bone loss in OPs. PMID:21674037

  6. Edible Astronomy Demonstrations

    NASA Astrophysics Data System (ADS)

    Lubowich, D. A.

    2006-08-01

    By using astronomy demonstrations with edible ingredients, I have been able to increase student interest and knowledge of astronomical concepts. This approach has been successful with all age groups from elementary school through college students. I will present some of the edible demonstrations I have created including using popcorn to simulate radioactivity; using chocolate, nuts, and marshmallows to illustrate density and differentiation during the formation of the planets; and making big-bang brownies or chocolate chip-cookies to illustrate the expansion of the Universe. Sometimes the students eat the results of the astronomical demonstrations. These demonstrations are an effective teaching tool and the students remember these demonstrations after they are presented.

  7. Amniotic-Fluid Stem Cells: Growth Dynamics and Differentiation Potential after a CD-117-Based Selection Procedure

    PubMed Central

    Arnhold, S.; Glüer, S.; Hartmann, K.; Raabe, O.; Addicks, K.; Wenisch, S.; Hoopmann, M.

    2011-01-01

    Amniotic fluid (AF) has become an interesting source of fetal stem cells. However, AF contains heterogeneous and multiple, partially differentiated cell types. After isolation from the amniotic fluid, cells were characterized regarding their morphology and growth dynamics. They were sorted by magnetic associated cell sorting using the surface marker CD 117. In order to show stem cell characteristics such as pluripotency and to evaluate a possible therapeutic application of these cells, AF fluid-derived stem cells were differentiated along the adipogenic, osteogenic, and chondrogenic as well as the neuronal lineage under hypoxic conditions. Our findings reveal that magnetic associated cell sorting (MACS) does not markedly influence growth characteristics as demonstrated by the generation doubling time. There was, however, an effect regarding an altered adipogenic, osteogenic, and chondrogenic differentiation capacity in the selected cell fraction. In contrast, in the unselected cell population neuronal differentiation is enhanced. PMID:21437196

  8. SITE DEMONSTRATION CAPSULE --MATCON MODIFIED ASPHALT FOR WASTE CONTAINMENT

    EPA Science Inventory

    MatCon is a polymer modified asphalt material designed specifically for waste contaminment applications. The modifications to the material differentiate it from conventional paving asphalt by minimizing the damaging effects of environmental exposure that could detract from the d...

  9. ZINC-DEFICIENCY ENHANCES PRO-INFLAMMATORY RESPONSES AFTER OZONE EXPOSURE

    EPA Science Inventory

    Epidemiological and controlled exposure studies have demonstrated that humans are differentially susceptible to adverse health effects induced by exposure to ozone. Serum analysis of vitamins and trace elements have shown that the elderly (people >65 years) are deficient in sever...

  10. A novel glycogen synthase kinase-3 inhibitor optimized for acute myeloid leukemia differentiation activity

    PubMed Central

    Stetson, Lindsay; Ignatz-Hoover, James; Moreton, Stephen; Chakrabarti, Amit; Xia, Zhiqiang; Karan, Goutam; de Lima, Marcos; Agrawal, Mukesh K; Wald, David N

    2016-01-01

    Standard therapies used for the treatment of Acute Myeloid Leukemia (AML) are cytotoxic agents that target rapidly proliferating cells. Unfortunately, this therapeutic approach has limited efficacy and significant toxicity and the majority of AML patients still die of their disease. In contrast to the poor prognosis of most AML patients, most individuals with a rare subtype of AML, Acute Promyelocytic Leukemia (APL), can be cured by differentiation therapy using regimens containing all-trans retinoic acid. GSK3 has previously been identified as a therapeutic target in AML where its inhibition can lead to the differentiation and growth arrest of leukemic cells. Unfortunately, existing GSK3 inhibitors lead to suboptimal differentiation activity making them less useful as clinical AML differentiation agents. Here we describe the discovery of a novel GSK3 inhibitor, GS87. GS87 was discovered in efforts to optimize GSK3 inhibition for AML differentiation activity. Despite GS87's dramatic ability to induce AML differentiation, kinase profiling reveals its high specificity in targeting GSK3 as compared to other kinases. GS87 demonstrates high efficacy in a mouse AML model system and unlike current AML therapeutics, exhibits little effect on normal bone marrow cells. GS87 induces potent differentiation by more effectively activating GSK3-dependent signaling components including MAPK signaling as compared to other GSK3 inhibitors. GS87 is a novel GSK3 inhibitor with therapeutic potential as a differentiation agent for non-promyelocytic AML. PMID:27196775

  11. Impact of heat processing on the detection of the major shellfish allergen tropomyosin in crustaceans and molluscs using specific monoclonal antibodies.

    PubMed

    Kamath, Sandip D; Abdel Rahman, Anas M; Komoda, Toshikazu; Lopata, Andreas L

    2013-12-15

    The major heat-stable shellfish allergen, tropomyosin, demonstrates immunological cross-reactivity, making specific differentiation of crustaceans and molluscs for food labelling very difficult. The aim of this study was to evaluate the application of allergen-specific monoclonal antibodies in differential detection of shellfish-derived tropomyosin in 11 crustacean and 7 mollusc species, and to study the impact of heating on its detection. Cross-reactive tropomyosin was detected in all crustacean species, with partial detection in molluscs: mussels, scallops and snails but none in oyster, octopus and squid. Furthermore, we have demonstrated that heating of shellfish has a profound effect on tropomyosin detection. This was evident by the enhanced recognition of multiple tropomyosin variants in the analysed shellfish species. Specific monoclonal antibodies, targetting the N-terminal region of tropomyosin, must therefore be developed to differentiate tropomyosins in crustaceans and molluscs. This can help in correct food labelling practices and thus protection of consumers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Sirtuin 1-dependent resveratrol cytotoxicity and pro-differentiation activity on breast cancer cells.

    PubMed

    Deus, Cláudia M; Serafim, Teresa L; Magalhães-Novais, Silvia; Vilaça, Andreia; Moreira, Ana C; Sardão, Vilma A; Cardoso, Susana M; Oliveira, Paulo J

    2017-03-01

    Sirtuins regulate several processes associated with tumor development. Resveratrol was shown to stimulate sirtuin 1 and 3 (SIRT1/3) activities and to result in cytotoxicity for some tumor types. The relationship between modulation of sirtuin activities, cellular metabolic remodeling and resveratrol cytotoxicity mechanism on breast cancer cells is still an open question. Here, we evaluated whether sirtuin 1 and 3 are involved in resveratrol toxicity and whether resveratrol leads to a metabolic remodeling and cell differentiation. Results using the Extracellular Flux Analyzer indicated that resveratrol inhibits mitochondrial respiration in breast cancer cells. We also demonstrated here for the first time that resveratrol cytotoxic effects on breast cancer cells were modulated by SIRT1 and also involved mitochondrial complex I inhibition. Importantly, we also demonstrated that resveratrol reduced the pool of breast cancer cells with stemness markers through a SIRT1-dependent mechanism. Our data highlights the role of SIRT1 in regulating resveratrol induced differentiation and/or toxicity in breast cancer cells.

  13. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Pia; Department of Neurosurgery, University of Bern, CH-3010 Bern; Gramsbergen, Jan-Bert

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactivemore » (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.« less

  14. In Vitro Differentiation of Human Mesenchymal Stem Cells into Functional Cardiomyocyte-like Cells.

    PubMed

    Szaraz, Peter; Gratch, Yarden S; Iqbal, Farwah; Librach, Clifford L

    2017-08-09

    Myocardial infarction and the subsequent ischemic cascade result in the extensive loss of cardiomyocytes, leading to congestive heart failure, the leading cause of mortality worldwide. Mesenchymal stem cells (MSCs) are a promising option for cell-based therapies to replace current, invasive techniques. MSCs can differentiate into mesenchymal lineages, including cardiac cell types, but complete differentiation into functional cells has not yet been achieved. Previous methods of differentiation were based on pharmacological agents or growth factors. However, more physiologically relevant strategies can also enable MSCs to undergo cardiomyogenic transformation. Here, we present a differentiation method using MSC aggregates on cardiomyocyte feeder layers to produce cardiomyocyte-like contracting cells. Human umbilical cord perivascular cells (HUCPVCs) have been shown to have a greater differentiation potential than commonly investigated MSC types, such as bone marrow MSCs (BMSCs). As an ontogenetically younger source, we investigated the cardiomyogenic potential of first-trimester (FTM) HUCPVCs compared to older sources. FTM HUCPVCs are a novel, rich source of MSCs that retain their in utero immunoprivileged properties when cultured in vitro. Using this differentiation protocol, FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to BMSCs, as indicated by the increased expression of cardiomyocyte markers (i.e., myocyte enhancer factor 2C, cardiac troponin T, heavy chain cardiac myosin, signal regulatory protein α, and connexin 43). They also maintained significantly lower immunogenicity, as demonstrated by their lower HLA-A expression and higher HLA-G expression. Applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells clusters within 1 week of co-culture on cardiac feeder layers, becoming the first MSC type to do so. Our results demonstrate that this differentiation strategy can effectively harness the cardiomyogenic potential of young MSCs, such as FTM HUCPVCs, and suggests that in vitro pre-differentiation could be a potential strategy to increase their regenerative efficacy in vivo.

  15. Glucosamine Modulates T Cell Differentiation through Down-regulating N-Linked Glycosylation of CD25*

    PubMed Central

    Chien, Ming-Wei; Lin, Ming-Hong; Huang, Shing-Hwa; Fu, Shin-Huei; Hsu, Chao-Yuan; Yen, B. Lin-Ju; Chen, Jiann-Torng; Chang, Deh-Ming; Sytwu, Huey-Kang

    2015-01-01

    Glucosamine has immunomodulatory effects on autoimmune diseases. However, the mechanism(s) through which glucosamine modulates different T cell subsets and diseases remain unclear. We demonstrate that glucosamine impedes Th1, Th2, and iTreg but promotes Th17 differentiation through down-regulating N-linked glycosylation of CD25 and subsequently inhibiting its downstream Stat5 signaling in a dose-dependent manner. The effect of glucosamine on T helper cell differentiation was similar to that induced by anti-IL-2 treatment, further supporting an IL-2 signaling-dependent modulation. Interestingly, excess glucose rescued this glucosamine-mediated regulation, suggesting a functional competition between glucose and glucosamine. High-dose glucosamine significantly decreased Glut1 N-glycosylation in Th1-polarized cells. This finding suggests that both down-regulated IL-2 signaling and Glut1-dependent glycolytic metabolism contribute to the inhibition of Th1 differentiation by glucosamine. Finally, glucosamine treatment inhibited Th1 cells in vivo, prolonged the survival of islet grafts in diabetic recipients, and exacerbated the severity of EAE. Taken together, our results indicate that glucosamine interferes with N-glycosylation of CD25, and thereby attenuates IL-2 downstream signaling. These effects suggest that glucosamine may be an important modulator of T cell differentiation and immune homeostasis. PMID:26468284

  16. Water extract of the fruits of Alpinia oxyphylla inhibits osteoclast differentiation and bone loss.

    PubMed

    Ha, Hyunil; Shim, Ki-Shuk; Kim, Taesoo; Lee, Chung-Jo; Park, Ji Hyung; Kim, Han Sung; Ma, Jin Yeul

    2014-09-23

    Excessive bone resorption by osteoclasts causes pathological bone destruction, seen in various bone diseases. There is accumulating evidence that certain herbal extracts have beneficial effects on bone metabolism. The fruits of Alpinia oxyphylla has been traditionally used for the treatment of diarrhea and enuresis. In this study, we investigated the effects of water extract of the fruits of Alpinia oxyphylla (WEAO) on osteoclast differentiation and osteoclast-mediated bone destruction. For osteoclast differentiation assay, mouse bone marrow-derived macrophages (BMMs) were cultured in the presence of RANKL and M-CSF. RANKL signaling pathways and gene expression of transcription factors regulating osteoclast differentiation were investigated by real-time PCR and Western blotting. A constitutively active form of NFATc1 was retrovirally transduced into BMMs. Bone resorbing activity of mature osteoclast was examined on a plate coated with an inorganic crystalline calcium phosphate. The in vivo effect against bone destruction was assessed in a murine model of RANKL-induced osteoporosis by micro-computed tomography and bone metabolism marker analyses. WEAO dose-dependently inhibited RANKL-induced osteoclast differentiation from BMMs by targeting the early stages of osteoclast differentiation. WEAO inhibited RANKL-induced expression of NFATc1, the master regulator of osteoclast differentiation. Overexpression of a constitutively active form of NFATc1 blunted the inhibitory effect of WEAO on osteoclast differentiation, suggesting that NFATc1 is a critical target of the inhibitory action of WEAO. WEAO inhibited RANKL-induced expression of c-Fos, an upstream activator of NFATc1, by suppressing the classical NF-κB signaling pathway. WEAO also inhibited RANKL-induced down-regulation of Id2 and MafB, negative regulators of NFATc1. WEAO does not directly affect bone resorbing activity of mature osteoclasts. In accordance with the in vitro results, WEAO attenuated RANKL-induced bone destruction in mice by inhibiting osteoclast differentiation. This study demonstrates that WEAO exhibits a protective effect against bone loss by inhibiting RANKL-induced osteoclast differentiation. These findings suggest that WEAO might be useful for the prevention and treatment of bone diseases associated with excessive bone resorption.

  17. Cross-correlation photothermal optical coherence tomography with high effective resolution.

    PubMed

    Tang, Peijun; Liu, Shaojie; Chen, Junbo; Yuan, Zhiling; Xie, Bingkai; Zhou, Jianhua; Tang, Zhilie

    2017-12-01

    We developed a cross-correlation photothermal optical coherence tomography (CC-PTOCT) system for photothermal imaging with high lateral and axial resolution. The CC-PTOCT system consists of a phase-sensitive OCT system, a modulated pumping laser, and a digital cross-correlator. The pumping laser was used to induce the photothermal effect in the sample, causing a slight phase modulation of the OCT signals. A spatial phase differentiation method was employed to reduce phase accumulation. The noise brought by the phase differentiation method and the strong background noise were suppressed efficiently by the cross-correlator, which was utilized to extract the photothermal signals from the modulated signals. Combining the cross-correlation technique with spatial phase differentiation can improve both lateral and axial resolution of the PTOCT imaging system. Clear photothermal images of blood capillaries of a mouse ear in vivo were successfully obtained with high lateral and axial resolution. The experimental results demonstrated that this system can enhance the effective transverse resolution, effective depth resolution, and contrast of the PTOCT image effectively, aiding the ongoing development of the accurate 3D functional imaging.

  18. Cell Encapsulating Biomaterial Regulates Mesenchymal Stromal/Stem Cell Differentiation and Macrophage Immunophenotype

    PubMed Central

    Cantu, David Antonio; Hematti, Peiman

    2012-01-01

    Bone marrow mesenchymal stromal/stem cell (MSC) encapsulation within a biomatrix could improve cellular delivery and extend survival and residence time over conventional intravenous administration. Although MSCs modulate monocyte/macrophage (Mø) immunophenotypic properties, little is known about how such interactions are influenced when MSCs are entrapped within a biomaterial. Furthermore, the impact of the cell-encapsulating matrix on MSC multipotency and on Møs, which infiltrate biomaterials, remains poorly understood. Here we elucidate this three-way interaction. The Mø immunophenotype and MSC differentiation were examined with regard to established and experimental collagen-based biomaterials for MSC entrapment. Tumor necrosis factor-α secretion was acutely inhibited at 4 days. MSCs cocultured with Møs demonstrated attenuated chondrocyte differentiation, whereas osteoblast differentiation was enhanced. Adipocyte differentiation was considerably enhanced for MSCs entrapped within the gelatin/polyethylene glycol-based matrix. A better understanding of the effect of cell encapsulation on differentiation potency and immunomodulation of MSCs is essential for MSC-based, biomaterial-enabled therapies. PMID:23197666

  19. Hydroxyframoside B, a secoiridoid of Fraxinus rhynchophylla, inhibits adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Choi, Kyeong-Mi; Shin, Eunjin; Liu, Qing; Yoo, Hwan-Soo; Kim, Young Choong; Sung, Sang Hyun; Hwang, Bang Yeon; Lee, Mi Kyeong

    2011-07-01

    Fraxinus rhynchophylla showed significant inhibitory activity on adipocyte differentiation in the 3T3-L1 preadipocyte cell line as assessed by measuring fat accumulation using Oil Red O staining. Further fractionation led to the isolation of two secoiridoids, oleuropein and hydroxyframoside B. Hydroxyframoside B significantly reduced fat accumulation and triglyceride content in differentiated 3T3-L1 cells without affecting cell viability, whereas oleuropein showed little effect. Further studies with interval treatment demonstrated that hydroxyframoside B exerted inhibitory activity on adipocyte differentiation when treated within 2 days (days 0-2) after differentiation induction. In addition, hydroxyframoside B significantly blocked the induction of adipogenic transcription factors such as C/EBP α, C/EBP β, and PPAR γ. Taken together, these results suggest that hydroxyframoside B inhibited early/middle stage of adipogenic differentiation, in part, via inhibition of C/EBP α, C/EBP β, and PPAR γ-dependent pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Hakhamaneshi, Mohammad Saeed; Ebadifar, Asghar; Fathi, Fardin; Baharvand, Hossein

    2016-05-20

    Embryonic stem (ES) cell-derived hepatocytes have the potential to be used for basic research, regenerative medicine, and drug discovery. Recent reports demonstrated that in addition to conventional differentiation inducers such as chemical compounds and cytokines, overexpression of lineage-specific transcription factors could induce ES cells to differentiate to a hepatic fate. Here, we hypothesized that lentivirus-mediated inducible expression of hepatic lineage transcription factors could enhance mouse ES cells to hepatocyte-like cells. We screened the effects of candidate transcription factors Hnf1b, Hnf1a, Hnf4a, Foxa1, Foxa3 and Hex, and determined that the combination of Hnf1b/Foxa3 promoted expression of several hepatic lineage-specific markers and proteins, in addition to glycogen storage, ICG uptake, and secretion of albumin and urea. The differentiated cells were engraftable and expressed albumin when transplanted into a carbon tetrachloride-injured mouse model. These results demonstrated the crucial role of Hnf1b and Foxa3 in hepatogenesis in vitro and provided a valuable tool for the efficient differentiation of HLCs from ES cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Toward a Better Understanding of the Effects of Hindrance and Challenge Stressors on Work Behavior

    ERIC Educational Resources Information Center

    Webster, Jennica R.; Beehr, Terry A.; Christiansen, Neil D.

    2010-01-01

    This study investigated the processes whereby hindrance and challenge stressors may affect work behavior. Three mechanisms were examined to explain the differential effects these stressors have demonstrated: job satisfaction, strains, and work self-efficacy. A model is proposed in which both types of stressors will result in increases in strains,…

  2. Uses and Abuses of Progressive Relaxation and Biofeedback in Treating Effects of Stress: The Cognitive vs. Psychophysiological vs. Behavioral Distinction.

    ERIC Educational Resources Information Center

    Lehrer, Paul M.

    Experimental, clinical, and personal observations give some support to the notions that: (1) intensive live training with anxious subjects is required in order to demonstrate that perspective relaxation has physiological effects; (2) physiological, cognitive, and behavioral symptoms of anxiety are separable and may respond differentially to…

  3. Across-Task Priming Revisited: Response and Task Conflicts Disentangled Using Ex-Gaussian Distribution Analysis

    ERIC Educational Resources Information Center

    Moutsopoulou, Karolina; Waszak, Florian

    2012-01-01

    The differential effects of task and response conflict in priming paradigms where associations are strengthened between a stimulus, a task, and a response have been demonstrated in recent years with neuroimaging methods. However, such effects are not easily disentangled with only measurements of behavior, such as reaction times (RTs). Here, we…

  4. Do Pharmacological and Behavioral Interventions Differentially Affect Treatment Outcome for Children with Social Phobia?

    ERIC Educational Resources Information Center

    Scharfstein, Lindsay A.; Beidel, Deborah C.; Rendon Finnell, Laura; Distler, Aaron; Carter, Nathan T.

    2011-01-01

    In a randomized trial for children with social phobia (SP), Social Effectiveness Therapy for Children (SET-C; a treatment consisting of exposure and social skills training) and fluoxetine were more effective than pill placebo in reducing social distress and behavioral avoidance, but only SET-C demonstrated significantly improved overall social…

  5. Sub-toxic concentrations of nano-ZnO and nano-TiO2 suppress neurite outgrowth in differentiated PC12 cells.

    PubMed

    Irie, Tomohiko; Kawakami, Tsuyoshi; Sato, Kaoru; Usami, Makoto

    2017-01-01

    Nanomaterials have been extensively used in our daily life, and may also induce health effects and toxicity. Nanomaterials can translocate from the outside to internal organs, including the brain. For example, both nano-ZnO and nano-TiO 2 translocate into the brain via the olfactory pathway in rodents, possibly leading to toxic effects on the brain. Although the effects of nano-ZnO and nano-TiO 2 on neuronal viability or neuronal excitability have been studied, no work has focused on how these nanomaterials affect neuronal differentiation and development. In this study, we investigated the effects of nano-ZnO and nano-TiO 2 on neurite outgrowth of PC12 cells, a useful model system for neuronal differentiation. Surprisingly, the number, length, and branching of differentiated PC12 neurites were significantly suppressed by the 7-day exposure to nano-ZnO (in the range of 1.0 × 10 -4 to 1.0 × 10 -1 µg/mL), at which the cell viability was not affected. The number and length were also significantly inhibited by the 7-day exposure to nano-TiO 2 (1.0 × 10 -3 to 1.0 µg/mL), which did not have cytotoxic effects. These results demonstrate that the neurite outgrowth in differentiated PC12 cells was suppressed by sub-cytotoxic concentrations of nano-ZnO or nano-TiO 2 .

  6. Extracting Effective Higgs Couplings in the Golden Channel

    DOE PAGES

    Chen, Yi; Vega-Morales, Roberto

    2014-04-08

    Kinematic distributions in Higgs decays to four charged leptons, the so called ‘golden channel, are a powerful probe of the tensor structure of its couplings to neutral electroweak gauge bosons. In this study we construct the first part of a comprehensive analysis framework designed to maximize the information contained in this channel in order to perform direct extraction of the various possible Higgs couplings. We first complete an earlier analytic calculation of the leading order fully differential cross sections for the golden channel signal and background to include the 4e and 4μ final states with interference between identical final states.more » We also examine the relative fractions of the different possible combinations of scalar-tensor couplings by integrating the fully differential cross section over all kinematic variables as well as show various doubly differential spectra for both the signal and background. From these analytic expressions we then construct a ‘generator level’ analysis framework based on the maximum likelihood method. Then, we demonstrate the ability of our framework to perform multi-parameter extractions of all the possible effective couplings of a spin-0 scalar to pairs of neutral electroweak gauge bosons including any correlations. Furthermore, this framework provides a powerful method for study of these couplings and can be readily adapted to include the relevant detector and systematic effects which we demonstrate in an accompanying study to follow.« less

  7. Dual Role of Cyanidin-3-glucoside on the Differentiation of Bone Cells.

    PubMed

    Park, K H; Gu, D R; So, H S; Kim, K J; Lee, S H

    2015-12-01

    Cyanidin-3-glucoside (C3G) is one of the major components of anthocyanin, a water-soluble phytochemical. Recent studies demonstrated the chemopreventive and chemotherapeutic activities of C3G in various conditions, including cancer, although the precise effects of C3G on osteoclast and osteoblast differentiation remain unclear. Here, we investigated the role of C3G in the differentiation of bone-associated cells and its underlying mechanism. C3G inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated osteoclast differentiation and formation in a dose-dependent manner and downregulated the expression of osteoclast differentiation marker genes. Pretreatment with C3G considerably reduced the induction of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated kinases activation by RANKL in osteoclast precursor cells. Furthermore, C3G dramatically inhibited the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1, which are important transcription factors for osteoclast differentiation and activation. The formation of osteoclasts in coculture of bone marrow cells and calvaria-derived osteoblasts was also inhibited by C3G treatment, although the expression of macrophage colony-stimulating factor and RANKL (master factors for osteoclast differentiation and formation) and osteoprotegerin (a decoy receptor for RANKL) on osteoblasts was unaffected. The inhibitory effect of C3G on osteoclastogenesis is therefore targeted specifically to osteoclasts but not osteoblasts. Moreover, analysis of the expression levels of osteoblast differentiation marker genes and alizarin red staining showed that osteoblast differentiation and matrix formation increased after C3G treatment. Taken together, these results strongly suggest that C3G has a dual role in bone metabolism, as an effective inhibitor of osteoclast differentiation but also as an activator of osteoblast differentiation. Therefore, C3G may be used as a potent preventive or therapeutic agent for bone-related diseases, such as osteoporosis, rheumatoid arthritis, and periodontitis. © International & American Associations for Dental Research 2015.

  8. Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Li-Wu; Wu, Qiangen; Green, Bridgett

    2012-07-15

    Humans at all ages are continually exposed to triclosan (TCS), a widely used antimicrobial agent that can be found in many daily hygiene products, such as toothpastes and shampoos; however, the toxicological and biological effects of TCS in the human body after long-term and low-concentration exposure are far from being well understood. In the current study, we investigated the effects of TCS on the differentiation of human mesenchymal stem cells (hMSCs) by measuring the cytotoxicity, morphological changes, lipid accumulation, and the expression of adipocyte differentiation biomarkers during 21-day adipogenesis. Significant cytotoxicity was observed in un-induced hMSCs treated with high-concentration TCSmore » (≥ 5.0 μM TCS), but not with low-concentration treatments (≤ 2.5 μM TCS). TCS inhibited adipocyte differentiation of hMSCs in a concentration-dependent manner in the 0.156 to 2.5 μM range as indicated by morphological changes with Oil Red O staining, which is an index of lipid accumulation. The inhibitory effect was confirmed by a decrease in gene expression of specific adipocyte differentiation biomarkers including adipocyte protein 2, lipoprotein lipase, and adiponectin. Our study demonstrates that TCS inhibits adipocyte differentiation of hMSCs under concentrations that are not cytotoxic and in the range observed in human blood. -- Highlights: ► TCS is cytotoxic to un-induced hMSCs at concentrations ≥ 5.0 μM. ► TCS at concentrations ≤ 2.5 μM is not cytotoxic to induced hMSCs. ► TCS at non-cytotoxic concentrations inhibits lipid formation in induced hMSCs. ► TCS decreases the expression of specific biomarkers of adipocyte differentiation. ► TCS at concentrations observed in human blood inhibits adipogenesis of hMSCs.« less

  9. Effect of diosgenin on metabolic dysfunction: Role of ERβ in the regulation of PPARγ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin, E-mail: xinwang@fmmu.edu.cn; Liu, Jun; Long, Zi

    The present study was designed to investigate the effect of diosgenin (DSG) on metabolic dysfunction and to elucidate the possible molecular mechanisms. High fat (HF) diet-fed mice and 3T3-L1 preadipocytes was used to evaluate the effect of DSG. We showed that DSG attenuated metabolic dysfunction in HF diet-fed mice, as evidenced by reduction of blood glucose level and improvement of glucose and insulin intolerance. DSG ameliorated oxidative stress, reduced body weight, fat pads, and systematic lipid profiles and attenuated lipid accumulation. DSG inhibited 3T3-L1 adipocyte differentiation and reduced adipocyte size through regulating key factors. DSG inhibited PPARγ and its targetmore » gene expression both in differentiated 3T3-L1 adipocytes and fat tissues in HF diet-fed mice. Overexpression of PPARγ suppressed DSG-inhibited adipocyte differentiation. DSG significantly increased nuclear expression of ERβ. Inhibition of ERβ significantly suppressed DSG-exerted suppression of adipocyte differentiation and PPARγ expression. In response to DSG stimulation, ERβ bound with RXRα and dissociated RXRα from PPARγ, leading to the reduction of transcriptional activity of PPARγ. These data provide new insight into the mechanisms underlying the inhibitory effect of DSG on adipocyte differentiation and demonstrate that ERβ-exerted regulation of PPARγ expression and activity is critical for DSG-inhibited adipocyte differentiation. - Highlights: • Diosgenin (DSG) attenuated metabolic dysfunction in high fat (HF) diet-fed mice. • DSG reduced oxidative stress and lipid accumulation in HF diet-fed mice. • DSG inhibited 3T3-L1 adipocyte differentiation and reduced adipocyte size. • DSG induced the binding of ERβ with RXRα. • DSG-induced activation of ERβ dissociated RXRα from PPARγ and reduced PPARγ activity.« less

  10. Emergence of differentially regulated pathways associated with the development of regional specificity in chicken skin.

    PubMed

    Chang, Kai-Wei; Huang, Nancy A; Liu, I-Hsuan; Wang, Yi-Hui; Wu, Ping; Tseng, Yen-Tzu; Hughes, Michael W; Jiang, Ting Xin; Tsai, Mong-Hsun; Chen, Chien-Yu; Oyang, Yen-Jen; Lin, En-Chung; Chuong, Cheng-Ming; Lin, Shau-Ping

    2015-01-23

    Regional specificity allows different skin regions to exhibit different characteristics, enabling complementary functions to make effective use of the integumentary surface. Chickens exhibit a high degree of regional specificity in the skin and can serve as a good model for when and how these regional differences begin to emerge. We used developing feather and scale regions in embryonic chickens as a model to gauge the differences in their molecular pathways. We employed cosine similarity analysis to identify the differentially regulated and co-regulated genes. We applied low cell techniques for expression validation and chromatin immunoprecipitation (ChIP)-based enhancer identification to overcome limited cell availabilities from embryonic chicken skin. We identified a specific set of genes demonstrating a high correlation as being differentially expressed during feather and scale development and maturation. Some members of the WNT, TGF-beta/BMP, and Notch family known to be involved in feathering skin differentiation were found to be differentially regulated. Interestingly, we also found genes along calcium channel pathways that are differentially regulated. From the analysis of differentially regulated pathways, we used calcium signaling pathways as an example for further verification. Some voltage-gated calcium channel subunits, particularly CACNA1D, are expressed spatio-temporally in the skin epithelium. These calcium signaling pathway members may be involved in developmental decisions, morphogenesis, or epithelial maturation. We further characterized enhancers associated with histone modifications, including H3K4me1, H3K27ac, and H3K27me3, near calcium channel-related genes and identified signature intensive hotspots that may be correlated with certain voltage-gated calcium channel genes. We demonstrated the applicability of cosine similarity analysis for identifying novel regulatory pathways that are differentially regulated during development. Our study concerning the effects of signaling pathways and histone signatures on enhancers suggests that voltage-gated calcium signaling may be involved in early skin development. This work lays the foundation for studying the roles of these gene pathways and their genomic regulation during the establishment of skin regional specificity.

  11. Depolarization Alters Phenotype, Maintains Plasticity of Predifferentiated Mesenchymal Stem Cells

    PubMed Central

    Sundelacruz, Sarah; Levin, Michael

    2013-01-01

    Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the differentiated state, as it is a functional regulator of the differentiation process in various cells and tissues. In this study, we asked whether the mature phenotype of osteoblasts and adipocytes derived from human mesenchymal stem cells (hMSCs) could be altered by modulation of their membrane potential. hMSC-derived osteoblasts and adipocytes were depolarized by treatment with ouabain, a Na+/K+ ATPase inhibitor, or by treatment with high concentrations of extracellular K+. To characterize the effect of voltage modulation on the differentiated state, the depolarized cells were evaluated for (1) the loss of differentiation markers; (2) the up-regulation of stemness markers and stem properties; and (3) differences in gene expression profiles in response to voltage modulation. hMSC-derived osteoblasts and adipocytes exhibited significant down-regulation of bone and fat tissue markers in response to depolarization, despite the presence of differentiation-inducing soluble factors, suggesting that bioelectric signaling overrides biochemical signaling in the maintenance of cell state. Suppression of the osteoblast or adipocyte phenotype was not accompanied by up-regulation of genes associated with the stem state. Thus, depolarization does not activate the stem cell genetic signature and, therefore, does not induce a full reprogramming event. However, after transdifferentiating the depolarized cells to evaluate for multi-lineage potential, depolarized osteoblasts demonstrated improved ability to achieve correct adipocyte morphology compared with nondepolarized osteoblasts. The present study thus demonstrates that depolarization reduces the differentiated phenotype of hMSC-derived cells and improves their transdifferentiation capacity, but does not restore a stem-like genetic profile. Through global transcript profiling of depolarized osteoblasts, we identified pathways that may mediate the effects of voltage signaling on cell state, which will require a detailed mechanistic inquiry in future studies. PMID:23738690

  12. Characterization of keratinocyte differentiation induced by ascorbic acid: protein kinase C involvement and vitamin C homeostasis.

    PubMed

    Savini, Isabella; Catani, Maria Valeria; Rossi, Antonello; Duranti, Guglielmo; Melino, Gerry; Avigliano, Luciana

    2002-02-01

    Epidermal keratinocytes undergo differentiation in response to several stimuli to form the cornified envelope, a structure that contributes to the barrier function of skin. Although differentiation has been extensively analyzed, the precise role of vitamin C during this process is still not defined. Ascorbic acid, besides acting as a radical scavenger, has been shown to promote mesenchymal differentiation. In this study, we found that keratinocytes grown in ascorbate-supplemented medium developed a differentiated phenotype, as demonstrated by enhanced expression of marker genes and increase in cornified envelope content. The pro-differentiating effects of ascorbate were mediated by the protein-kinase-C-dependent induction of activating protein 1 DNA binding activity; indeed, down-modulation of protein kinase C activity abolished differentiation triggered by ascorbic acid. Although vitamin C appeared to regulate the same signaling pathway modulated by calcium, a classical in vitro inducer of epidermal differentiation, nonetheless terminally differentiated keratinocytes exhibited different ascorbate homeostasis and cellular antioxidant status. Indeed, we found that, unlike calcium, differentiation promoted by ascorbate was accompanied by (i) an enhanced ascorbate transport, due to overexpression of specific transporters, (ii) a great efficiency of dehydroascorbate uptake, and (iii) an increase in glutathione content with respect to proliferating cells. Ascorbic acid may be useful to promote epidermal differentiation, avoiding depletion of hydrophilic antioxidant stores.

  13. Dynamic Network-Based Relevance Score Reveals Essential Proteins and Functional Modules in Directed Differentiation

    PubMed Central

    Wu, Chia-Chou; Lin, Che

    2015-01-01

    The induction of stem cells toward a desired differentiation direction is required for the advancement of stem cell-based therapies. Despite successful demonstrations of the control of differentiation direction, the effective use of stem cell-based therapies suffers from a lack of systematic knowledge regarding the mechanisms underlying directed differentiation. Using dynamic modeling and the temporal microarray data of three differentiation stages, three dynamic protein-protein interaction networks were constructed. The interaction difference networks derived from the constructed networks systematically delineated the evolution of interaction variations and the underlying mechanisms. A proposed relevance score identified the essential components in the directed differentiation. Inspection of well-known proteins and functional modules in the directed differentiation showed the plausibility of the proposed relevance score, with the higher scores of several proteins and function modules indicating their essential roles in the directed differentiation. During the differentiation process, the proteins and functional modules with higher relevance scores also became more specific to the neuronal identity. Ultimately, the essential components revealed by the relevance scores may play a role in controlling the direction of differentiation. In addition, these components may serve as a starting point for understanding the systematic mechanisms of directed differentiation and for increasing the efficiency of stem cell-based therapies. PMID:25977693

  14. Molecular basis of differentiation therapy for soft tissue sarcomas

    PubMed Central

    Luther, Gaurav; Rames, Richard; Wagner, Eric R.; Zhu, Gaohui; Luo, Qing; Bi, Yang; Kim, Stephanie H.; Gao, Jian-Li; Huang, Enyi; Yang, Ke; Wang, Linyuan; Liu, Xing; Li, Mi; Hu, Ning; Su, Yuxi; Luo, Xiaoji; Chen, Liang; Luo, Jinyong; Haydon, Rex C.; Luu, Hue H.; Zhou, Lan; He, Tong-Chuan

    2015-01-01

    Stem cells are undifferentiated precursor cells with the capacity for proliferation or terminal differentiation. Progression down the differentiation cascade results in a loss of proliferative potential in exchange for the differentiated phenotype. This balance is tightly regulated in the physiologic state. Recent studies, however, have demonstrated that during tumorigenesis, disruptions preventing terminal differentiation allow cancer cells to maintain a proliferative, precursor cell phenotype. Current therapies (i.e., chemotherapy and radiation therapy) target the actively proliferating cells in tumor masses, which in many cases inevitably induce therapy-resistant cancer cells. It is conceivable that promising therapy regimens can be developed by treating human cancers by inducing terminal differentiation, thereby restoring the interrupted pathway and shifting the balance from proliferation to differentiation. For example, osteosarcoma (OS) is a primary bone cancer caused by differentiation defects in mesenchymal stem cells (MSCs) for which several differentiation therapies have shown great promise. In this review, we discuss the various differentiation therapies in the treatment of human sarcomas with a focus on OS. Such therapies hold great promise as they not only inhibit tumorigenesis, but also avoid the adverse effects associated with conventional chemotherapy regimens. Furthermore, it is conceivable that a combination of conventional therapies with differentiation therapy should significantly improve anticancer efficacy and reduce drug-resistance in the clinical management of human cancers, including sarcomas. PMID:26912947

  15. Mueller-matrix mapping of biological tissues in differential diagnosis of optical anisotropy mechanisms of protein networks

    NASA Astrophysics Data System (ADS)

    Ushenko, V. A.; Sidor, M. I.; Marchuk, Yu F.; Pashkovskaya, N. V.; Andreichuk, D. R.

    2015-03-01

    We report a model of Mueller-matrix description of optical anisotropy of protein networks in biological tissues with allowance for the linear birefringence and dichroism. The model is used to construct the reconstruction algorithms of coordinate distributions of phase shifts and the linear dichroism coefficient. In the statistical analysis of such distributions, we have found the objective criteria of differentiation between benign and malignant tissues of the female reproductive system. From the standpoint of evidence-based medicine, we have determined the operating characteristics (sensitivity, specificity and accuracy) of the Mueller-matrix reconstruction method of optical anisotropy parameters and demonstrated its effectiveness in the differentiation of benign and malignant tumours.

  16. Steroids, aromatase and sex differentiation of the newt Pleurodeles waltl.

    PubMed

    Kuntz, S; Chardard, D; Chesnel, A; Grillier-Vuissoz, I; Flament, S

    2003-01-01

    In the newt Pleurodeles waltl, genetic sex determination obeys female heterogamety (female ZW, male ZZ). In this species as in most of non-mammalian vertebrates, steroid hormones play a key role in sexual differentiation of gonads. In that context, male to female sex reversal can be obtained by treatment of ZZ larvae with estradiol. Male to female sex reversal has also been observed following treatment of ZZ larvae with testosterone, a phenomenon that was called the "paradoxical effect". Female to male sex reversal occurs when ZW larvae are reared at 32 degrees C during a thermosensitive period (TSP) that takes place from stage 42 to stage 54 of development. Since steroids play an important part in sex differentiation, we focussed our studies on the estrogen-producing enzyme aromatase during normal sex differentiation as well as in experimentally induced sex reversal situations. Our results based on treatment with non-aromatizable androgens, aromatase activity measurements and aromatase expression studies demonstrate that aromatase (i) is differentially active in ZZ and ZW larvae, (ii) is involved in the paradoxical effect and (iii) might be a target of temperature. Thus, the gene encoding aromatase might be one of the master genes in the process leading to the differentiation of the gonad in Pleurodeles waltl. Copyright 2003 S. Karger AG, Basel

  17. DiffNet: automatic differential functional summarization of dE-MAP networks.

    PubMed

    Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes

    2014-10-01

    The study of genetic interaction networks that respond to changing conditions is an emerging research problem. Recently, Bandyopadhyay et al. (2010) proposed a technique to construct a differential network (dE-MAPnetwork) from two static gene interaction networks in order to map the interaction differences between them under environment or condition change (e.g., DNA-damaging agent). This differential network is then manually analyzed to conclude that DNA repair is differentially effected by the condition change. Unfortunately, manual construction of differential functional summary from a dE-MAP network that summarizes all pertinent functional responses is time-consuming, laborious and error-prone, impeding large-scale analysis on it. To this end, we propose DiffNet, a novel data-driven algorithm that leverages Gene Ontology (go) annotations to automatically summarize a dE-MAP network to obtain a high-level map of functional responses due to condition change. We tested DiffNet on the dynamic interaction networks following MMS treatment and demonstrated the superiority of our approach in generating differential functional summaries compared to state-of-the-art graph clustering methods. We studied the effects of parameters in DiffNet in controlling the quality of the summary. We also performed a case study that illustrates its utility. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Promotion of Myogenic Maturation by Timely Application of Electric Field Along the Topographical Alignment.

    PubMed

    Ko, Ung Hyun; Park, Sukhee; Bang, Hyunseung; Kim, Mina; Shin, Hyunjun; Shin, Jennifer H

    2018-05-01

    Engineered muscular substitutes can restore the impaired muscle functions when integrated properly into the host tissue. To generate functional muscles with sufficient contractility at the site of transplant, the in vitro construction of fully differentiated muscle fibers would be desired. Many previous reports have identified either topographical alignment or electrical stimulation as an effective tool to promote myogenic differentiation. However, optimization of spatial and temporal arrangement of these two physical cues for better differentiation and maturation of skeletal muscles has not been investigated. In this article, we introduce a novel cell culture system that allows simultaneous application of these two independent directional cues at both orthogonal and parallel arrangements. We then show that the parallel arrangement of the aligned topography and the electric field synergistically facilitates better differentiation and maturation of C2C12, generating myotubes with more fused nuclei. Addition of the electric stimulation at the late stage of myogenic differentiation is found to further improve cell fusion to form multinucleate myotubes through a phosphatidylinositol-3-OH-kinase-dependent pathway. As such, we successfully demonstrated that the combined stimulation of topographical and electrical cues could effectively enhance both myogenic differentiation and maturation in a temporal and orientation-dependent manner, providing the basis for therapeutic strategies for regenerative tissue engineering.

  19. Arctigenin protects against neuronal hearing loss by promoting neural stem cell survival and differentiation.

    PubMed

    Huang, Xinghua; Chen, Mo; Ding, Yan; Wang, Qin

    2017-03-01

    Neuronal hearing loss has become a prevalent health problem. This study focused on the function of arctigenin (ARC) in promoting survival and neuronal differentiation of mouse cochlear neural stem cells (NSCs), and its protection against gentamicin (GMC) induced neuronal hearing loss. Mouse cochlea was used to isolate NSCs, which were subsequently cultured in vitro. The effects of ARC on NSC survival, neurosphere formation, differentiation of NSCs, neurite outgrowth, and neural excitability in neuronal network in vitro were examined. Mechanotransduction ability demonstrated by intact cochlea, auditory brainstem response (ABR), and distortion product optoacoustic emissions (DPOAE) amplitude in mice were measured to evaluate effects of ARC on GMC-induced neuronal hearing loss. ARC increased survival, neurosphere formation, neuron differentiation of NSCs in mouse cochlear in vitro. ARC also promoted the outgrowth of neurites, as well as neural excitability of the NSC-differentiated neuron culture. Additionally, ARC rescued mechanotransduction capacity, restored the threshold shifts of ABR and DPOAE in our GMC ototoxicity murine model. This study supports the potential therapeutic role of ARC in promoting both NSCs proliferation and differentiation in vitro to functional neurons, thus supporting its protective function in the therapeutic treatment of neuropathic hearing loss in vivo. © 2017 Wiley Periodicals, Inc.

  20. Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma.

    PubMed

    Wang, Yun; Huang, Nanxin; Li, Hongli; Liu, Shubao; Chen, Xianjun; Yu, Shichang; Wu, Nan; Bian, Xiu-Wu; Shen, Hai-Ying; Li, Chengren; Xiao, Lan

    2017-06-06

    As a major contributor of chemotherapy resistance and malignant recurrence, glioma stem cells (GSCs) have been proposed as a target for the treatment of gliomas. To evaluate the therapeutic potential of quetiapine (QUE), an atypical antipsychotic, for the treatment of malignant glioma, we established mouse models with GSCs-initiated orthotopic xenograft gliomas and subcutaneous xenograft tumors, using GSCs purified from glioblastoma cell line GL261. We investigated antitumor effects of QUE on xenograft gliomas and its underlying mechanisms on GSCs. Our data demonstrated that (i) QUE monotherapy can effectively suppress GSCs-initiated tumor growth; (ii) QUE has synergistic effects with temozolomide (TMZ) on glioma suppression, and importantly, QUE can effectively suppress TMZ-resistant (or -escaped) tumors generated from GSCs; (iii) mechanistically, the anti-glioma effect of QUE was due to its actions of promoting the differentiation of GSCs into oligodendrocyte (OL)-like cells and its inhibitory effect on the Wnt/β-catenin signaling pathway. Together, our findings suggest an effective approach for anti-gliomagenic treatment via targeting OL-oriented differentiation of GSCs. This also opens a door for repurposing QUE, an FDA approved drug, for the treatment of malignant glioma.

  1. Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma

    PubMed Central

    Li, Hongli; Liu, Shubao; Chen, Xianjun; Yu, Shichang; Wu, Nan; Bian, Xiu-Wu; Li, Chengren

    2017-01-01

    As a major contributor of chemotherapy resistance and malignant recurrence, glioma stem cells (GSCs) have been proposed as a target for the treatment of gliomas. To evaluate the therapeutic potential of quetiapine (QUE), an atypical antipsychotic, for the treatment of malignant glioma, we established mouse models with GSCs-initiated orthotopic xenograft gliomas and subcutaneous xenograft tumors, using GSCs purified from glioblastoma cell line GL261. We investigated antitumor effects of QUE on xenograft gliomas and its underlying mechanisms on GSCs. Our data demonstrated that (i) QUE monotherapy can effectively suppress GSCs-initiated tumor growth; (ii) QUE has synergistic effects with temozolomide (TMZ) on glioma suppression, and importantly, QUE can effectively suppress TMZ-resistant (or -escaped) tumors generated from GSCs; (iii) mechanistically, the anti-glioma effect of QUE was due to its actions of promoting the differentiation of GSCs into oligodendrocyte (OL)-like cells and its inhibitory effect on the Wnt/β-catenin signaling pathway. Together, our findings suggest an effective approach for anti-gliomagenic treatment via targeting OL-oriented differentiation of GSCs. This also opens a door for repurposing QUE, an FDA approved drug, for the treatment of malignant glioma. PMID:28415586

  2. Differential Drag Demonstration: A Post-Mission Experiment with the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Hull, Scott; Shelton, Amanda; Richardson, David

    2017-01-01

    Differential drag is a technique for altering the semi-major axis, velocity, and along-track position of a spacecraft in low Earth orbit. It involves varying the spacecrafts cross-sectional area relative to its velocity direction by temporarily changing attitude and solar array angles, thus varying the amount of atmospheric drag on the spacecraft. The technique has recently been proposed and used by at least three satellite systems for initial separation of constellation spacecraft after launch, stationkeeping during the mission, and potentially for conjunction avoidance. Similarly, differential drag has been proposed as a control strategy for rendezvous, removing the need for active propulsion. In theory, some operational missions that lack propulsion capability could use this approach for conjunction avoidance, though options are typically constrained for spacecraft that are already in orbit. Shortly before the spacecraft was decommissioned, an experiment was performed using NASAs EO-1 spacecraft in order to demonstrate differential drag on an operational spacecraft in orbit, and discover some of the effects differential drag might manifest. EO-1 was not designed to maintain off-nominal orientations for long periods, and as a result the team experienced unanticipated challenges during the experiment. This paper will discuss operations limitations identified before the experiment, as well as those discovered during the experiment. The effective displacement that resulted from increasing the drag area for 39 hours will be compared to predictions as well as the expected position if the spacecraft maintained nominal operations. A hypothetical scenario will also be examined, studying the relative risks of maintaining an operational spacecraft bus in order to maintain the near-maximum drag area orientation and hasten reentry.

  3. GC–MS-Based Metabonomic Profiling Displayed Differing Effects of Borna Disease Virus Natural Strain Hu-H1 and Laboratory Strain V Infection in Rat Cortical Neurons

    PubMed Central

    Liu, Siwen; Bode, Liv; Zhang, Lujun; He, Peng; Huang, Rongzhong; Sun, Lin; Chen, Shigang; Zhang, Hong; Guo, Yujie; Zhou, Jingjing; Fu, Yuying; Zhu, Dan; Xie, Peng

    2015-01-01

    Borna disease virus (BDV) persists in the central nervous systems of a wide variety of vertebrates and causes behavioral disorders. Previous studies have revealed that metabolic perturbations are associated with BDV infection. However, the pathophysiological effects of different viral strains remain largely unknown. Rat cortical neurons infected with human strain BDV Hu-H1, laboratory BDV Strain V, and non-infected control (CON) cells were cultured in vitro. At day 12 post-infection, a gas chromatography coupled with mass spectrometry (GC–MS) metabonomic approach was used to differentiate the metabonomic profiles of 35 independent intracellular samples from Hu-H1-infected cells (n = 12), Strain V-infected cells (n = 12), and CON cells (n = 11). Partial least squares discriminant analysis (PLS-DA) was performed to demonstrate discrimination between the three groups. Further statistical testing determined which individual metabolites displayed significant differences between groups. PLS-DA demonstrated that the whole metabolic pattern enabled statistical discrimination between groups. We identified 31 differential metabolites in the Hu-H1 and CON groups (21 decreased and 10 increased in Hu-H1 relative to CON), 35 differential metabolites in the Strain V and CON groups (30 decreased and 5 increased in Strain V relative to CON), and 21 differential metabolites in the Hu-H1 and Strain V groups (8 decreased and 13 increased in Hu-H1 relative to Strain V). Comparative metabonomic profiling revealed divergent perturbations in key energy and amino acid metabolites between natural strain Hu-H1 and laboratory Strain V of BDV. The two BDV strains differentially alter metabolic pathways of rat cortical neurons in vitro. Their systematic classification provides a valuable template for improved BDV strain definition in future studies. PMID:26287181

  4. Differential Drag Demonstration: A Post-Mission Experiment with the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Hull, Scott; Shelton, Amanda; Richardson, David

    2017-01-01

    Differential drag is a technique for altering the semimajor axis, velocity, and along-track position of a spacecraft in low Earth orbit. It involves varying the spacecraft's cross-sectional area relative to its velocity direction by temporarily changing attitude and solar array angles, thus varying the amount of atmospheric drag on the spacecraft. The technique has recently been proposed and used by at least three satellite systems for initial separation of constellation spacecraft after launch, stationkeeping during the mission, and potentially for conjunction avoidance. Similarly, differential drag has been proposed as a control strategy for rendezvous, removing the need for active propulsion. In theory, some operational missions that lack propulsion capability could use this approach for conjunction avoidance, though options are typically constrained for spacecraft that are already in orbit. Shortly before the spacecraft was decommissioned, an experiment was performed using NASA's EO-1 spacecraft in order to demonstrate differential drag on an operational spacecraft in orbit, and discover some of the effects differential drag might manifest. EO-1 was not designed to maintain off-nominal orientations for long periods, and as a result the team experienced unanticipated challenges during the experiment. This paper will discuss operations limitations identified before the experiment, as well as those discovered during the experiment. The effective displacement that resulted from increasing the drag area for 39 hours will be compared to predictions as well as the expected position if the spacecraft maintained nominal operations. A hypothetical scenario will also be examined, studying the relative risks of maintaining an operational spacecraft bus in order to maintain the near-maximum drag area orientation and hasten reentry.

  5. Influence of LOX/COX inhibitors on cell differentiation induced by all-trans retinoic acid in neuroblastoma cell lines.

    PubMed

    Redova, Martina; Chlapek, Petr; Loja, Tomas; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-02-01

    We investigated the possible modulation by LOX/ COX inhibitors of all-trans retinoic acid (ATRA)-induced cell differentiation in two established neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor of cyclooxygenase-2, were chosen for this study. The effects of the combined treatment with ATRA and LOX/COX inhibitors on neuroblastoma cells were studied using cell morphology assessment, detection of differentiation markers by immunoblotting, measurement of proliferation activity, and cell cycle analysis and apoptosis detection by flow cytometry. The results clearly demonstrated the potential of caffeic acid to enhance ATRA-induced cell differentiation, especially in the SK-N-BE(2) cell line, whereas application of celecoxib alone or with ATRA led predominantly to cytotoxic effects in both cell lines. Moreover, the higher sensitivity of the SK-N-BE(2) cell line to combined treatment with ATRA and LOX/COX inhibitors suggests that cancer stem cells are a main target for this therapeutic approach. Nevertheless, further detailed study of the phenomenon of enhanced cell differentiation by expression profiling is needed.

  6. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients.

    PubMed

    Tong, Jie; Sun, Lijun; Zhu, Bin; Fan, Yun; Ma, Xingfeng; Yu, Liyin; Zhang, Jianbao

    2017-10-01

    Pulsed electromagnetic fields (PEMF) can be used to treat bone-related diseases, but the underlying mechanism remains unclear, especially the process by which PEMFs initiate biological effects. In this study, we demonstrated the effects of PEMF on proliferation and differentiation of osteoblasts using the model of calcium transients induced by high extracellular calcium. Our results showed that PEMF can increase both the percentage of responding cells and amplitude of intracellular calcium transients induced by high extracellular calcium stimulation. Compared with corresponding extracellular calcium levels, PEMF stimulation increased proliferation and differentiation of osteoblasts and related gene expressions, such as insulin-like growth factor 1 (IGF-1), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), which can be completely abolished by BAPTA-AM. Moreover, PEMF did not affect proliferation and differentiation of osteoblasts if no intracellular calcium transient was present in osteoblasts during PEMF exposure. Our results revealed that PEMF affects osteoblast proliferation and differentiation through enhanced intracellular calcium transients, which provided a cue to treat bone-related diseases with PEMF. Bioelectromagnetics. 38:541-549, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Neural differentiation promoted by truncated trkC receptors in collaboration with p75(NTR).

    PubMed

    Hapner, S J; Boeshore, K L; Large, T H; Lefcort, F

    1998-09-01

    trkC receptors, which serve critical functions during the development of the nervous system, are alternatively spliced to yield isoforms containing the catalytic tyrosine kinase domain (TK+) and truncated isoforms which lack this domain (TK-). To test for potential differences in their roles during early stages of neural development, TK+ and TK- isoforms were ectopically expressed in cultures of neural crest, the stem cell population that gives rise to the vast majority of the peripheral nervous system. NT-3 activation of ectopically expressed trkC TK+ receptors promoted both proliferation of neural crest cells and neuronal differentiation. Strikingly, the trkC TK- isoform was significantly more effective at promoting neuronal differentiation, but had no effect on proliferation. Furthermore, the trkC TK- response was dependent on a conserved receptor cytoplasmic domain and required the participation of the p75(NTR) neurotrophin receptor. Antibody-mediated receptor dimerization of TK+ receptors, but not TK- receptors, was sufficient to stimulate differentiation. These data identify a phenotypic response to activation of the trkC TK- receptor and demonstrate a functional interaction with p75(NTR), indicating there may be multiple trkC receptor-mediated systems guiding neuronal differentiation. Copyright 1998 Academic Press.

  8. Novel Method for Differentiating Histological Types of Gastric Adenocarcinoma by Using Confocal Raman Microspectroscopy

    PubMed Central

    Hsu, Chih-Wei; Huang, Chia-Chi; Sheu, Jeng-Horng; Lin, Chia-Wen; Lin, Lien-Fu; Jin, Jong-Shiaw; Chau, Lai-Kwan; Chen, Wenlung

    2016-01-01

    Gastric adenocarcinoma, a single heterogeneous disease with multiple epidemiological and histopathological characteristics, accounts for approximately 10% of cancers worldwide. It is categorized into four histological types: papillary adenocarcinoma (PAC), tubular adenocarcinoma (TAC), mucinous adenocarcinoma (MAC), and signet ring cell adenocarcinoma (SRC). Effective differentiation of the four types of adenocarcinoma will greatly improve the treatment of gastric adenocarcinoma to increase its five-year survival rate. We reported here the differentiation of the four histological types of gastric adenocarcinoma from the molecularly structural viewpoint of confocal Raman microspectroscopy. In total, 79 patients underwent laparoscopic or open radical gastrectomy during 2008–2011: 21 for signet ring cell carcinoma, 21 for tubular adenocarcinoma, 14 for papillary adenocarcinoma, 6 for mucinous carcinoma, and 17 for normal gastric mucosas obtained from patients underwent operation for other benign lesions. Clinical data were retrospectively reviewed from medical charts, and Raman data were processed and analyzed by using principal component analysis (PCA) and linear discriminant analysis (LDA). Two-dimensional plots of PCA and LDA clearly demonstrated that the four histological types of gastric adenocarcinoma could be differentiated, and confocal Raman microspectroscopy provides potentially a rapid and effective method for differentiating SRC and MAC from TAC or PAC. PMID:27472385

  9. P(VDF-TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH-SY5Y Neuroblastoma Cells.

    PubMed

    Genchi, Giada Graziana; Ceseracciu, Luca; Marino, Attilio; Labardi, Massimiliano; Marras, Sergio; Pignatelli, Francesca; Bruschini, Luca; Mattoli, Virgilio; Ciofani, Gianni

    2016-07-01

    Poly(vinylidene fluoride-trifluoroethylene, P(VDF-TrFE)) and P(VDF-TrFE)/barium titanate nanoparticle (BTNP) films are prepared and tested as substrates for neuronal stimulation through direct piezoelectric effect. Films are characterized in terms of surface, mechanical, and piezoelectric features before in vitro testing on SH-SY5Y cells. In particular, BTNPs significantly improve piezoelectric properties of the films (4.5-fold increased d31 ). Both kinds of films support good SH-SY5Y viability and differentiation. Ultrasound (US) stimulation is proven to elicit Ca(2+) transients and to enhance differentiation in cells grown on the piezoelectric substrates. For the first time in the literature, this study demonstrates the suitability of polymer/ceramic composite films and US for neuronal stimulation through direct piezoelectric effect. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Prolyl Hydroxylase EGLN3 Regulates Skeletal Myoblast Differentiation through an NF-κB-dependent Pathway

    PubMed Central

    Fu, Jian; Taubman, Mark B.

    2010-01-01

    The egg-laying abnormal-9 (EGLN) prolyl hydroxylases have been shown to regulate the stability and thereby the activity of the α subunits of hypoxia-inducible factor (HIF) through its ability to catalyze their hydroxylation. We have previously shown that EGLN3 promotes differentiation of C2C12 skeletal myoblasts. However, the mechanism underlying this effect remains to be fully elucidated. Here, we report that exposure of C2C12 cells to dimethyl oxalylglycine (DMOG), desferrioxamine, and hypoxia, all inhibitors of prolyl hydroxylase activity, led to repression of C2C12 myogenic differentiation. Inactivation of HIF by expression of a HIF dominant-negative mutant or deletion of HIF-1α by RNA interference did not affect the inhibitory effect of DMOG, suggesting that the effect of DMOG is HIF-independent. Pharmacologic inactivation of EGLN3 hydroxylase resulted in activation of the canonical NF-κB pathway. The inhibitory effect of DMOG on myogenic differentiation was markedly impaired in C2C12 cells expressing a dominant-negative mutant of IκBα. Exogenous expression of wild-type EGLN3, but not its catalytically inactive mutant, significantly inhibited NF-κB activation induced by overexpressed TRAF2 or IκB kinase 2. In contrast, deletion of EGLN3 by small interfering RNAs led to activation of NF-κB. These data suggest that EGLN3 is a negative regulator of NF-κB, and its prolyl hydroxylase activity is required for this effect. Furthermore, wild-type EGLN3, but not its catalytically inactive mutant, potentiated myogenic differentiation. This study demonstrates a novel role for EGLN3 in the regulation of NF-κB and suggests that it is involved in mediating myogenic differentiation, which is HIF-independent. PMID:20089853

  11. The lipid fraction of human milk initiates adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Fujisawa, Yasuko; Yamaguchi, Rie; Nagata, Eiko; Satake, Eiichiro; Sano, Shinichiro; Matsushita, Rie; Kitsuta, Kazunobu; Nakashima, Shinichi; Nakanishi, Toshiki; Nakagawa, Yuichi; Ogata, Tsutomu

    2013-09-01

    The prevalence of childhood obesity has increased worldwide over the past decade. Despite evidence that human milk lowers the risk of childhood obesity, the mechanism is not fully understood. We investigated the direct effect of human milk on differentiation of 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were treated with donated human milk only or the combination of the standard hormone mixture; insulin, dexamethasone (DEX), and 3-isobututyl-1-methylxanthine (IBMX). Furthermore, the induction of preadipocyte differentiation by extracted lipids from human milk was tested in comparison to the cells treated with lipid extracts from infant formula. Adipocyte differentiation, specific genes as well as formation of lipid droplets were examined. We clearly show that lipids present in human milk initiate 3T3-L1 preadipocyte differentiation. In contrast, this effect was not observed in response to lipids present in infant formula. The initiation of preadipocyte differentiation by human milk was enhanced by adding the adipogenic hormone, DEX or insulin. The expression of late adipocyte markers in Day 7 adipocytes that have been induced into differentiation with human milk lipid extracts was comparable to those in control cells initiated by a standard adipogenic hormone cocktail. These results demonstrate that human milk contains bioactive lipids that can initiate preadipocyte differentiation in the absence of the standard adipogenic compounds via a unique pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Alcohol exposure differentially effects anti-tumor immunity in females by altering dendritic cell function.

    PubMed

    Thompson, Matthew G; Navarro, Flor; Chitsike, Lennox; Ramirez, Luis; Kovacs, Elizabeth J; Watkins, Stephanie K

    2016-12-01

    Dendritic cells (DCs) are a critical component of anti-tumor immunity due to their ability to induce a robust immune response to antigen (Ag). Alcohol was previously shown to reduce DC ability to present foreign Ag and promote pro-inflammatory responses in situations of infection and trauma. However the impact of alcohol exposure on generation of an anti-tumor response, especially in the context of generation of an immune vaccine has not been examined. In the clinic, DC vaccines are typically generated from autologous blood, therefore prior exposure to substances such as alcohol may be a critical factor to consider regarding the effectiveness in generating an immune response. In this study, we demonstrate for the first time that ethanol differentially affects DC and tumor Ag-specific T cell responses depending on sex. Signaling pathways were found to be differentially regulated in DC in females compared to males and these differences were exacerbated by ethanol treatment. DC from female mice treated with ethanol were unable to activate Ag-specific cytotoxic T cells (CTL) as shown by reduced expression of CD44, CD69, and decreased production of granzyme B and IFNγ. Furthermore, although FOXO3, an immune suppressive mediator of DC function, was found to be upregulated in DC from female mice, ethanol related suppression was independent of FOXO3. These findings demonstrate for the first time differential impacts of alcohol on the immune system of females compared to males and may be a critical consideration for determining the effectiveness of an immune based therapy for cancer in patients that consume alcohol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro.

    PubMed

    Xiao, Li; Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-08-11

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro.

  14. Growth factors mediated differentiation of mesenchymal stem cells to cardiac polymicrotissue using hanging drop and bioreactor.

    PubMed

    Konstantinou, Dimitrios; Lei, Ming; Xia, Zhidao; Kanamarlapudi, Venkateswarlu

    2015-04-01

    Heart disease is the major leading cause of death worldwide and the use of stem cells promises new ways for its treatment. The relatively easy and quick acquisition of human umbilical cord matrix mesenchymal stem cells (HUMSCs) and their properties make them useful for the treatment of cardiac diseases. Therefore, the main aim of this investigation was to create cardiac polymicrotissue from HUMSCs using a combination of growth factors [sphingosine-1-phosphate (S1P) and suramin] and techniques (hanging drop and bioreactor). Using designated culture conditions of the growth factors (100 nM S1P and 500 µM suramin), cardiomyocyte differentiation medium (CDM), hanging drop, bioreactor and differentiation for 7 days, a potential specific cardiac polymicrotissue was derived from HUMSCs. The effectiveness of growth factors alone or in combination in differentiation of HUMSCs to cardiac polymicrotissue was analysed by assessing the presence of cardiac markers by immunocytochemistry. This analysis demonstrated the importance of those growth factors for the differentiation. This study for the first time demonstrated the formation of a cardiac polymicrotissue under specific culture conditions. The polymicrotissue thus obtained may be used in future as a 'patch' to cover the injured cardiac region and would thereby be useful for the treatment of heart diseases. © 2014 International Federation for Cell Biology.

  15. Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts

    PubMed Central

    Costamagna, Domiziana; Quattrocelli, Mattia; van Tienen, Florence; Umans, Lieve; de Coo, Irineus F. M.; Zwijsen, An; Huylebroeck, Danny; Sampaolesi, Maurilio

    2016-01-01

    Mesoangioblasts (MABs) are vessel-associated stem cells that express pericyte marker genes and participate in skeletal muscle regeneration. Molecular circuits that regulate the myogenic commitment of MABs are still poorly characterized. The critical role of bone morphogenetic protein (BMP) signalling during proliferation and differentiation of adult myogenic precursors, such as satellite cells, has recently been established. We evaluated whether BMP signalling impacts on the myogenic potential of embryonic and adult MABs both in vitro and in vivo. Addition of BMP inhibited MAB myogenic differentiation, whereas interference with the interactions between BMPs and receptor complexes induced differentiation. Similarly, siRNA-mediated knockdown of Smad8 in Smad1/5-null MABs or inhibition of SMAD1/5/8 phosphorylation with Dorsomorphin (DM) also improved myogenic differentiation, demonstrating a novel role of SMAD8. Moreover, using a transgenic mouse model of Smad8 deletion, we demonstrated that the absence of SMAD8 protein improved MAB myogenic differentiation. Furthermore, once injected into α-Sarcoglycan (Sgca)-null muscles, DM-treated MABs were more efficacious to restore α-sarcoglycan (αSG) protein levels and re-establish functional muscle properties. Similarly, in acute muscle damage, DM-treated MABs displayed a better myogenic potential compared with BMP-treated and untreated cells. Finally, SMADs also control the myogenic commitment of human MABs (hMABs). BMP signalling antagonists are therefore novel candidates to improve the therapeutic effects of hMABs. PMID:26450990

  16. Human umbilical cord blood serum promotes growth, proliferation, as well as differentiation of human bone marrow-derived progenitor cells.

    PubMed

    Phadnis, Smruti M; Joglekar, Mugdha V; Venkateshan, Vijayalakshmi; Ghaskadbi, Surendra M; Hardikar, Anandwardhan A; Bhonde, Ramesh R

    2006-01-01

    Fetal calf serum (FCS) is conventionally used for animal cell cultures due to its inherent growth-promoting activities. However animal welfare issues and stringent requirements for human transplantation studies demand a suitable alternative for FCS. With this view, we studied the effect of FCS, human AB serum (ABS), and human umbilical cord blood serum (UCBS) on murine islets of Langerhans and human bone marrow-derived mesenchymal-like cells (hBMCs). We found that there was no difference in morphology and functionality of mouse islets cultured in any of these three different serum supplements as indicated by insulin immunostaining. A comparative analysis of hBMCs maintained in each of these three different serum supplements demonstrated that UCBS supplemented media better supported proliferation of hBMCs. Moreover, a modification of adipogenic differentiation protocol using UCBS indicates that it can be used as a supplement to support differentiation of hBMCs into adipocytes. Our results demonstrate that UCBS not only is suitable for maintenance of murine pancreatic islets, but also supports attachment, propagation, and differentiation of hBMCs in vitro. We conclude that UCBS can serve as a better serum supplement for growth, maintenance, and differentiation of hBMCs, making it a more suitable supplement in cell systems that have therapeutic potential in human transplantation programs.

  17. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro

    PubMed Central

    Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-01-01

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro. PMID:28800076

  18. Differential equation models for sharp threshold dynamics.

    PubMed

    Schramm, Harrison C; Dimitrov, Nedialko B

    2014-01-01

    We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. Published by Elsevier Inc.

  19. (N+1)-dimensional fractional reduced differential transform method for fractional order partial differential equations

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Lu, Dianchen; Wang, Jun

    2017-07-01

    In this paper, we pursue the general form of the fractional reduced differential transform method (DTM) to (N+1)-dimensional case, so that fractional order partial differential equations (PDEs) can be resolved effectively. The most distinct aspect of this method is that no prescribed assumptions are required, and the huge computational exertion is reduced and round-off errors are also evaded. We utilize the proposed scheme on some initial value problems and approximate numerical solutions of linear and nonlinear time fractional PDEs are obtained, which shows that the method is highly accurate and simple to apply. The proposed technique is thus an influential technique for solving the fractional PDEs and fractional order problems occurring in the field of engineering, physics etc. Numerical results are obtained for verification and demonstration purpose by using Mathematica software.

  20. SELENIUM-DEFICIENCY MODIFIES INFLUENZA INFECTION OF DIFFERENTIATED HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    The nutritional status of the host is important in the defense against invading pathogens. Many studies regarding the effects of host nutritional status on the immune response have demonstrated that suboptimal host nutrition results in impaired host immunity and increased suscept...

  1. Physalis angulata induces in vitro differentiation of murine bone marrow cells into macrophages.

    PubMed

    da Silva, Bruno José Martins; Rodrigues, Ana Paula D; Farias, Luis Henrique S; Hage, Amanda Anastácia P; Do Nascimento, Jose Luiz M; Silva, Edilene O

    2014-10-03

    The bone marrow is a hematopoietic tissue that, in the presence of cytokines and growth factors, generates all of the circulating blood cells. These cells are important for protecting the organism against pathogens and for establishing an effective immune response. Previous studies have shown immunomodulatory effects of different products isolated from plant extracts. This study aimed to evaluate the immunomodulatory properties of aqueous Physalis angulata (AEPa) extract on the differentiation of bone marrow cells. Increased cellular area, higher spreading ability and several cytoplasmatic projections were observed in the treated cells, using optical microscopy, suggesting cell differentiation. Furthermore, AEPa did not promote the proliferation of lymphocytes and polymorphonuclear leukocytes, however promotes increased the number of macrophages in the culture. The ultrastructural analysis by Transmission Electron Microscopy of treated cells showed spreading ability, high number of cytoplasmatic projections and increase of autophagic vacuoles. Moreover, a high level of LC3b expression by treated cells was detected by flow cytometry, suggesting an autophagic process. Cell surface expression of F4/80 and CD11b also indicated that AEPa may stimulate differentiation of bone marrow cells mainly into macrophages. In addition, AEPa did not differentiate cells into dendritic cells, as assessed by CD11c analysis. Furthermore, no cytotoxic effects were observed in the cells treated with AEPa. Results demonstrate that AEPa promotes the differentiation of bone marrow cells, particularly into macrophages and may hold promise as an immunomodulating agent.

  2. Physalis angulata induces in vitro differentiation of murine bone marrow cells into macrophages

    PubMed Central

    2014-01-01

    Background The bone marrow is a hematopoietic tissue that, in the presence of cytokines and growth factors, generates all of the circulating blood cells. These cells are important for protecting the organism against pathogens and for establishing an effective immune response. Previous studies have shown immunomodulatory effects of different products isolated from plant extracts. This study aimed to evaluate the immunomodulatory properties of aqueous Physalis angulata (AEPa) extract on the differentiation of bone marrow cells. Results Increased cellular area, higher spreading ability and several cytoplasmatic projections were observed in the treated cells, using optical microscopy, suggesting cell differentiation. Furthermore, AEPa did not promote the proliferation of lymphocytes and polymorphonuclear leukocytes, however promotes increased the number of macrophages in the culture. The ultrastructural analysis by Transmission Electron Microscopy of treated cells showed spreading ability, high number of cytoplasmatic projections and increase of autophagic vacuoles. Moreover, a high level of LC3b expression by treated cells was detected by flow cytometry, suggesting an autophagic process. Cell surface expression of F4/80 and CD11b also indicated that AEPa may stimulate differentiation of bone marrow cells mainly into macrophages. In addition, AEPa did not differentiate cells into dendritic cells, as assessed by CD11c analysis. Furthermore, no cytotoxic effects were observed in the cells treated with AEPa. Conclusion Results demonstrate that AEPa promotes the differentiation of bone marrow cells, particularly into macrophages and may hold promise as an immunomodulating agent. PMID:25281406

  3. The aryl hydrocarbon receptor ligand ITE inhibits TGFβ1-induced human myofibroblast differentiation.

    PubMed

    Lehmann, Geniece M; Xi, Xia; Kulkarni, Ajit A; Olsen, Keith C; Pollock, Stephen J; Baglole, Carolyn J; Gupta, Shikha; Casey, Ann E; Huxlin, Krystel R; Sime, Patricia J; Feldon, Steven E; Phipps, Richard P

    2011-04-01

    Fibrosis can occur in any human tissue when the normal wound healing response is amplified. Such amplification results in fibroblast proliferation, myofibroblast differentiation, and excessive extracellular matrix deposition. Occurrence of these sequelae in organs such as the eye or lung can result in severe consequences to health. Unfortunately, medical treatment of fibrosis is limited by a lack of safe and effective therapies. These therapies may be developed by identifying agents that inhibit critical steps in fibrotic progression; one such step is myofibroblast differentiation triggered by transforming growth factor-β1 (TGFβ1). In this study, we demonstrate that TGFβ1-induced myofibroblast differentiation is blocked in human fibroblasts by a candidate endogenous aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Our data show that ITE disrupts TGFβ1 signaling by inhibiting the nuclear translocation of Smad2/3/4. Although ITE functions as an AhR agonist, and biologically persistent AhR agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, cause severe toxic effects, ITE exhibits no toxicity. Interestingly, ITE effectively inhibits TGFβ1-driven myofibroblast differentiation in AhR(-/-) fibroblasts: Its ability to inhibit TGFβ1 signaling is AhR independent. As supported by the results of this study, the small molecule ITE inhibits myofibroblast differentiation and may be useful clinically as an antiscarring agent. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Microstructural Changes to the Brain of Mice after Methamphetamine Exposure as Identified with Diffusion Tensor Imaging

    PubMed Central

    McKenna, Benjamin S.; Brown, Gregory G.; Archibald, Sarah; Scadeng, Miriam; Bussell, Robert; Kesby, James P.; Markou, Athina; Soontornniyomkij, Virawudh; Achim, Cristian; Semenova, Svetlana

    2016-01-01

    Methamphetamine (METH) is an addictive psychostimulant inducing neurotoxicity. Human magnetic resonance imaging and diffusion tensor imaging (DTI) of METH-dependent participants find various structural abnormities. Animal studies demonstrate immunohistochemical changes in multiple cellular pathways after METH exposure. Here, we characterized the long-term effects of METH on brain microstructure in mice exposed to an escalating METH binge regimen using in vivo DTI, a methodology directly translatable across species. Results revealed four patterns of differential fractional anisotropy (FA) and mean diffusivity (MD) response when comparing METH-exposed (n=14) to saline-treated mice (n=13). Compared to the saline group, METH-exposed mice demonstrated: 1) decreased FA with no change in MD [corpus callosum (posterior forceps), internal capsule (left), thalamus (medial aspects), midbrain], 2) increased MD with no change in FA [posterior isocortical regions, caudate-putamen, hypothalamus, cerebral peduncle, internal capsule (right)], 3) increased FA with decreased MD [frontal isocortex, corpus callosum (genu)], and 4) increased FA with no change or increased MD [hippocampi, amygdala, lateral thalamus]. MD was negatively associated with calbindin-1 in hippocampi and positively with dopamine transporter in caudate-putamen. These findings highlight distributed and differential METH effects within the brain suggesting several distinct mechanisms. Such mechanisms likely change brain tissue differentially dependent upon neural location. PMID:27000304

  5. Psychometric Evaluation of the Substance Use Risk Profile Scale (SURPS) in an Inpatient Sample of Substance Users Using Cue-Reactivity Methodology

    PubMed Central

    Schlauch, Robert C.; Crane, Cory A.; Houston, Rebecca J.; Molnar, Danielle S.; Schlienz, Nicolas J.; Lang, Alan R.

    2015-01-01

    The current project sought to examine the psychometric properties of a personality based measure (Substance Use Risk Profile Scale; SURPS: introversion-hopelessness, anxiety sensitivity, impulsivity, and sensation seeking) designed to differentially predict substance use preferences and patterns by matching primary personality-based motives for use to the specific effects of various psychoactive substances. Specifically, we sought to validate the SURPS in a clinical sample of substance users using cue reactivity methodology to assess current inclinations to consume a wide range of psychoactive substances. Using confirmatory factor analysis and correlational analyses, the SURPS demonstrated good psychometric properties and construct validity. Further, impulsivity and sensation-seeking were associated with use of multiple substances but could be differentiated by motives for use and susceptibility to the reinforcing effects of stimulants (i.e., impulsivity) and alcohol (i.e. sensation-seeking). In contrast, introversion-hopelessness and anxiety sensitivity demonstrated a pattern of use more focused on reducing negative affect, but were not differentiated based on specific patterns of use. Taken together, results suggests that among those receiving inpatient treatment for substance use disorders, the SURPS is a valid instrument for measuring four distinct personality dimensions that may be sensitive to motivational susceptibilities to specific patterns of alcohol and drug use. PMID:26052180

  6. Attention tasks as skills performance measures of drug effects.

    PubMed

    Moskowitz, H

    1984-01-01

    Both empirical epidemiological data on the causes of traffic accidents and conceptual models of skilled human performance stress the central role of perception and cognition. This paper examines the effects of drugs on two major components of cognitive perceptual performance, namely, concentrated attention or vigilance and divided attention. It is demonstrated that these two types of attention tasks are differentially affected by various drugs, so that sometimes one and sometimes another of these tasks is impaired. Various experimental paradigms to investigate these two attention functions are presented. It is demonstrated that attention tasks are frequently highly sensitive to drug effects, suggesting the importance of examining these functions when investigating the effects of drugs on skills performance.

  7. Integrated Kerr comb-based reconfigurable transversal differentiator for microwave photonic signal processing

    NASA Astrophysics Data System (ADS)

    Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2018-01-01

    An arbitrary-order intensity differentiator for high-order microwave signal differentiation is proposed and experimentally demonstrated on a versatile transversal microwave photonic signal processing platform based on integrated Kerr combs. With a CMOS-compatible nonlinear micro-ring resonator, high quality Kerr combs with broad bandwidth and large frequency spacings are generated, enabling a larger number of taps and an increased Nyquist zone. By programming and shaping individual comb lines' power, calculated tap weights are realized, thus achieving a versatile microwave photonic signal processing platform. Arbitrary-order intensity differentiation is demonstrated on the platform. The RF responses are experimentally characterized, and systems demonstrations for Gaussian input signals are also performed.

  8. Is Biology Destiny? Birth Weight and Differential Parental Treatment

    PubMed Central

    Hsin, Amy

    2016-01-01

    Time diaries of sibling pairs from the PSID-CDS are used to determine whether maternal time investments compensate for or reinforce birth-weight differences among children. The findings demonstrate that the direction and degree of differential treatment vary by mother's education. Less-educated mothers devote more total time and more educationally oriented time to heavier-birth-weight children, whereas better-educated mothers devote more total and more educationally oriented time to lower-birth-weight children. The compensating effects observed among highly educated mothers are substantially larger than the reinforcing effects among the least-educated mothers. The findings show that families redistribute resources in ways that both compensate for and exacerbate early-life disadvantages. PMID:22865101

  9. Identifying Jets Using Artifical Neural Networks

    NASA Astrophysics Data System (ADS)

    Rosand, Benjamin; Caines, Helen; Checa, Sofia

    2017-09-01

    We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.

  10. Getting the most out of RNA-seq data analysis.

    PubMed

    Khang, Tsung Fei; Lau, Ching Yee

    2015-01-01

    Background. A common research goal in transcriptome projects is to find genes that are differentially expressed in different phenotype classes. Biologists might wish to validate such gene candidates experimentally, or use them for downstream systems biology analysis. Producing a coherent differential gene expression analysis from RNA-seq count data requires an understanding of how numerous sources of variation such as the replicate size, the hypothesized biological effect size, and the specific method for making differential expression calls interact. We believe an explicit demonstration of such interactions in real RNA-seq data sets is of practical interest to biologists. Results. Using two large public RNA-seq data sets-one representing strong, and another mild, biological effect size-we simulated different replicate size scenarios, and tested the performance of several commonly-used methods for calling differentially expressed genes in each of them. We found that, when biological effect size was mild, RNA-seq experiments should focus on experimental validation of differentially expressed gene candidates. Importantly, at least triplicates must be used, and the differentially expressed genes should be called using methods with high positive predictive value (PPV), such as NOISeq or GFOLD. In contrast, when biological effect size was strong, differentially expressed genes mined from unreplicated experiments using NOISeq, ASC and GFOLD had between 30 to 50% mean PPV, an increase of more than 30-fold compared to the cases of mild biological effect size. Among methods with good PPV performance, having triplicates or more substantially improved mean PPV to over 90% for GFOLD, 60% for DESeq2, 50% for NOISeq, and 30% for edgeR. At a replicate size of six, we found DESeq2 and edgeR to be reasonable methods for calling differentially expressed genes at systems level analysis, as their PPV and sensitivity trade-off were superior to the other methods'. Conclusion. When biological effect size is weak, systems level investigation is not possible using RNAseq data, and no meaningful result can be obtained in unreplicated experiments. Nonetheless, NOISeq or GFOLD may yield limited numbers of gene candidates with good validation potential, when triplicates or more are available. When biological effect size is strong, NOISeq and GFOLD are effective tools for detecting differentially expressed genes in unreplicated RNA-seq experiments for qPCR validation. When triplicates or more are available, GFOLD is a sharp tool for identifying high confidence differentially expressed genes for targeted qPCR validation; for downstream systems level analysis, combined results from DESeq2 and edgeR are useful.

  11. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis.more » Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by inducing necrosis ► Arsenite (0.1 to 0.5 μM) slightly reduces endocytotic activity of immature DCs ► Arsenite (0.1 to 0.5 μM) represses expression of IL-12p70 and IL-23 in activated DCs ► Arsenite (0.1 to 0.5 μM) reduces the ability of DCs to activate human T lymphocytes.« less

  12. miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β-catenin signaling

    PubMed Central

    Cao, Fengdi; Zhan, Jialin; Chen, Xufeng; Zhang, Kai; Lai, Renfa; Feng, Zhiqiang

    2017-01-01

    The canonical Wnt/β-catenin signaling is important in the differentiation of human mesenchymal stem cells into osteoblasts. Accumulating evidence suggests that the expression of β-catenin is, in part, regulated by specific microRNAs (miRNAs). The aim of the present study was to investigate the putative roles of miRNAs in osteoblast differentiation. Polymerase chain reaction (PCR) arrays were used to identify miRNAs that were differentially expressed between differentiated and non-differentiated periodontal ligament stem cells (PDLSCs), and reverse transcription-quantitative PCR (RT-qPCR) was used for validation. Since miR-214 was revealed to be significantly downregulated during PDLSC differentiation, its function was further investigated via silencing and overexpression. In addition, osteogenic differentiation of PDLSCs was evaluated at 10 and 21 days following induction, using Alizarin red staining and RT-qPCR analysis for mRNA expression levels of the osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin and bone sialoprotein. Furthermore, the potential target genes of miR-214 were investigated using a dual-luciferase reporter assay, RT-qPCR and western blot analysis, whereas a TOPflash/FOPflash reporter plasmid system followed by a luciferase assay was used to examine the effects of miR-214 on Wnt/β-catenin signaling. The present results demonstrated that miR-214 was significantly downregulated during the osteoblastic differentiation of PDLSCs. Notably, its overexpression inhibited PDLSC differentiation, whereas its knockdown promoted PDLSC differentiation, as revealed by alterations in mRNA expression of osteoblast-specific genes and ALP. In addition, miR-214 was demonstrated to directly interact with the 3′-untranslated region of the β-catenin gene CTNNB1, and suppressed Wnt/β-catenin signaling through the inhibition of β-catenin. The results of the present study suggested that miR-214 may participate in the regulation of the Wnt/β-catenin signaling pathway, and may have potential as a candidate target for the development of preventive or therapeutic agents for the treatment of patients with osteogenic disorders. PMID:29152645

  13. miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β‑catenin signaling.

    PubMed

    Cao, Fengdi; Zhan, Jialin; Chen, Xufeng; Zhang, Kai; Lai, Renfa; Feng, Zhiqiang

    2017-12-01

    The canonical Wnt/β‑catenin signaling is important in the differentiation of human mesenchymal stem cells into osteoblasts. Accumulating evidence suggests that the expression of β‑catenin is, in part, regulated by specific microRNAs (miRNAs). The aim of the present study was to investigate the putative roles of miRNAs in osteoblast differentiation. Polymerase chain reaction (PCR) arrays were used to identify miRNAs that were differentially expressed between differentiated and non‑differentiated periodontal ligament stem cells (PDLSCs), and reverse transcription‑quantitative PCR (RT‑qPCR) was used for validation. Since miR‑214 was revealed to be significantly downregulated during PDLSC differentiation, its function was further investigated via silencing and overexpression. In addition, osteogenic differentiation of PDLSCs was evaluated at 10 and 21 days following induction, using Alizarin red staining and RT‑qPCR analysis for mRNA expression levels of the osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin and bone sialoprotein. Furthermore, the potential target genes of miR‑214 were investigated using a dual‑luciferase reporter assay, RT‑qPCR and western blot analysis, whereas a TOPflash/FOPflash reporter plasmid system followed by a luciferase assay was used to examine the effects of miR‑214 on Wnt/β‑catenin signaling. The present results demonstrated that miR‑214 was significantly downregulated during the osteoblastic differentiation of PDLSCs. Notably, its overexpression inhibited PDLSC differentiation, whereas its knockdown promoted PDLSC differentiation, as revealed by alterations in mRNA expression of osteoblast‑specific genes and ALP. In addition, miR‑214 was demonstrated to directly interact with the 3'‑untranslated region of the β‑catenin gene CTNNB1, and suppressed Wnt/β‑catenin signaling through the inhibition of β‑catenin. The results of the present study suggested that miR‑214 may participate in the regulation of the Wnt/β‑catenin signaling pathway, and may have potential as a candidate target for the development of preventive or therapeutic agents for the treatment of patients with osteogenic disorders.

  14. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055

  15. Induction of polyploidization in leukemic cell lines and primary bone marrow by Src kinase inhibitor SU6656

    PubMed Central

    Lannutti, Brian J.; Blake, Noel; Gandhi, Manish J.; Reems, Jo Anna; Drachman, Jonathan G.

    2005-01-01

    Megakaryocytes (MKs) undergo successive rounds of endomitosis during differentiation, resulting in polyploidy (typically, 16-64N). Previous studies have demonstrated that this occurs through an interruption of normal cell cycle progression during anaphase. However, the molecular mechanism(s) controlling this unique process is undefined. In the present report, we examine the effect of an Src kinase inhibitor, SU6656, on thrombopoietin (TPO)-induced growth and differentiation. Remarkably, when SU6656 (2.5 μM) was added to a megakaryocytic cell line, UT-7/TPO, the cells ceased cell division but continued to accumulate DNA by endomitosis. During this interval, CD41 and CD61 expression on the cell surface increased. Similar effects on polyploidization and MK differentiation were seen with expanded primary MKs, bone marrow from 2 patients with myelodysplastic syndrome, and other cell lines with MK potential. Our data suggest that SU6656 might be useful as a differentiation-inducing agent for MKs and is an important tool for understanding the molecular basis of MK endomitosis. PMID:15677565

  16. Estrogens enhance myoblast differentiation in facioscapulohumeral muscular dystrophy by antagonizing DUX4 activity

    PubMed Central

    Teveroni, Emanuela; Sacconi, Sabrina; Calandra, Patrizia; Cascino, Isabella; Puma, Angela; Garibaldi, Matteo; Morosetti, Roberta; Ricci, Enzo; Trevisan, Carlo Pietro; Galluzzi, Giuliana; Pontecorvi, Alfredo; Deidda, Giancarlo

    2017-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder that is characterized by extreme variability in symptoms, with females being less severely affected than males and presenting a higher proportion of asymptomatic carriers. The sex-related factors involved in the disease are not known. Here, we have utilized myoblasts isolated from FSHD patients (FSHD myoblasts) to investigate the effect of estrogens on muscle properties. Our results demonstrated that estrogens counteract the differentiation impairment of FSHD myoblasts without affecting cell proliferation or survival. Estrogen effects are mediated by estrogen receptor β (ERβ), which reduces chromatin occupancy and transcriptional activity of double homeobox 4 (DUX4), a protein whose aberrant expression has been implicated in FSHD pathogenesis. During myoblast differentiation, we observed that the levels and activity of DUX4 increased progressively and were associated with its enhanced recruitment in the nucleus. ERβ interfered with this recruitment by relocalizing DUX4 in the cytoplasm. This work identifies estrogens as a potential disease modifier that underlie sex-related differences in FSHD by protecting against myoblast differentiation impairments in this disease. PMID:28263188

  17. Galangin inhibits human osteosarcoma cells growth by inducing transforming growth factor-β1-dependent osteogenic differentiation.

    PubMed

    Liu, Chunhong; Ma, Mingming; Zhang, Junde; Gui, Shaoliu; Zhang, Xiaohai; Xue, Shuangtao

    2017-05-01

    Osteosarcoma is the most common primary malignancy of the musculoskeletal system, and is associated with excessive proliferation and poor differentiation of osteoblasts. Currently, despite the use of traditional chemotherapy and radiotherapy, no satisfactory and effective agent has been developed to treat the disease. Herein, we found that a flavonoid natural product, galangin, could significantly attenuate human osteosarcoma cells proliferation, without causing obvious cell apoptosis. Moreover, galangin enhanced the expression of osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin and osteopontin) remarkably and elevated the alkaline phosphatase activity in human osteosarcoma cells. And galangin could also attenuated osteosarcoma growth in vivo. These bioactivities of galangin resulted from its selective activation of the transforming growth factor (TGF)-β1/Smad2/3 signaling pathway, which was demonstrated by pathway blocking experiments. These findings suggested that galangin could be a promising agent to treat osteosarcoma. In addition, targeting TGF-β1 to induce osteogenic differentiation might represent a novel therapeutic strategy to treat osteosarcoma with minimal side effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Collagen-derived dipeptide prolyl-hydroxyproline promotes differentiation of MC3T3-E1 osteoblastic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimira, Yoshifumi, E-mail: kimira@josai.ac.jp; Ogura, Kana; Taniuchi, Yuri

    Highlights: • Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization. • Pro-Hyp significantly increased alkaline phosphatase activity. • Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. - Abstract: Prolyl-hydroxyproline (Pro-Hyp) is one of the major constituents of collagen-derived dipeptides. The objective of this study was to investigate the effects of Pro-Hyp on the proliferation and differentiation of MC3T3-E1 osteoblastic cells. Addition of Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization but alkaline phosphatase activity was significantly increased. Furthermore, cells treated with Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. These results indicatemore » that Pro-Hyp promotes osteoblast differentiation. This study demonstrates for the first time that Pro-Hyp has a positive effect on osteoblast differentiation with upregulation of Runx2, Osterix, and Collα1 gene expression.« less

  19. Estimating mean QALYs in trial-based cost-effectiveness analysis: the importance of controlling for baseline utility.

    PubMed

    Manca, Andrea; Hawkins, Neil; Sculpher, Mark J

    2005-05-01

    In trial-based cost-effectiveness analysis baseline mean utility values are invariably imbalanced between treatment arms. A patient's baseline utility is likely to be highly correlated with their quality-adjusted life-years (QALYs) over the follow-up period, not least because it typically contributes to the QALY calculation. Therefore, imbalance in baseline utility needs to be accounted for in the estimation of mean differential QALYs, and failure to control for this imbalance can result in a misleading incremental cost-effectiveness ratio. This paper discusses the approaches that have been used in the cost-effectiveness literature to estimate absolute and differential mean QALYs alongside randomised trials, and illustrates the implications of baseline mean utility imbalance for QALY calculation. Using data from a recently conducted trial-based cost-effectiveness study and a micro-simulation exercise, the relative performance of alternative estimators is compared, showing that widely used methods to calculate differential QALYs provide incorrect results in the presence of baseline mean utility imbalance regardless of whether these differences are formally statistically significant. It is demonstrated that multiple regression methods can be usefully applied to generate appropriate estimates of differential mean QALYs and an associated measure of sampling variability, while controlling for differences in baseline mean utility between treatment arms in the trial. Copyright 2004 John Wiley & Sons, Ltd

  20. Taurine suppresses osteoblastic differentiation of aortic valve interstitial cells induced by beta-glycerophosphate disodium, dexamethasone and ascorbic acid via the ERK pathway.

    PubMed

    Feng, Xiang; Li, Jian-ming; Liao, Xiao-bo; Hu, Ye-rong; Shang, Bao-peng; Zhang, Zhi-yuan; Yuan, Ling-qing; Xie, Hui; Sheng, Zhi-feng; Tang, Hao; Zhang, Wei; Gu, Lu; Zhou, Xin-min

    2012-10-01

    Aortic valve calcification (AVC) is an active process characterized by osteoblastic differentiation of the aortic valve interstitial cells (AVICs). Taurine is a free β-amino acid and plays important physiological roles including protective effect of cardiovascular events. To evaluate the possible role of taurine in AVC, we isolated human AVICs from patients with type A dissection without leaflet disease. We demonstrated that the cultured AVICs express SM α-actin, vimentin and taurine transporter (TAUT), but not CD31, SM-myosin or desmin. We also established the osteoblastic differentiation model of the AVICs induced by pro-calcific medium (PCM) containing β-glycerophosphate disodium, dexamethasone and ascorbic acid in vitro. The results showed that taurine attenuated the PCM-induced osteoblastic differentiation of AVICs by decreasing the alkaline phosphate (ALP) activity/expression and the expression of the core binding factor α1 (Cbfα1) in a dose-dependent manner (reaching the maximum protective effect at 10 mM), and taurine (10 mM) inhibited the mineralization level of AVICs in the form of calcium content significantly. Furthermore, taurine activated the extracellular signal-regulated protein kinase (ERK) pathway via TAUT, and the inhibitor of ERK (PD98059) abolished the effect of taurine on both ALP activity/expression and Cbfα1 expression. These results suggested that taurine could inhibit osteoblastic differentiation of AVIC via the ERK pathway.

  1. A candidate anti-HIV reservoir compound, auranofin, exerts a selective ‘anti-memory' effect by exploiting the baseline oxidative status of lymphocytes

    PubMed Central

    Chirullo, B; Sgarbanti, R; Limongi, D; Shytaj, I L; Alvarez, D; Das, B; Boe, A; DaFonseca, S; Chomont, N; Liotta, L; III Petricoin, E; Norelli, S; Pelosi, E; Garaci, E; Savarino, A; Palamara, A T

    2013-01-01

    Central memory (TCM) and transitional memory (TTM) CD4+ T cells are known to be the major cellular reservoirs for HIV, as these cells can harbor a transcriptionally silent form of viral DNA that is not targeted by either the immune system or current antiretroviral drug regimens. In the present study, we explored the molecular bases of the anti-HIV reservoir effects of auranofin (AF), a pro-oxidant gold-based drug and a candidate compound for a cure of AIDS. We here show that TCM and TTM lymphocytes have lower baseline antioxidant defenses as compared with their naive counterpart. These differences are mirrored by the effects exerted by AF on T-lymphocytes: AF was able to exert a pro-differentiating and pro-apoptotic effect, which was more pronounced in the memory subsets. AF induced an early activation of the p38 mitogen-activated protein kinase (p38 MAPK) followed by mitochondrial depolarization and a final burst in intracellular peroxides. The pro-differentiating effect was characterized by a downregulation of the CD27 marker expression. Interestingly, AF-induced apoptosis was inhibited by pyruvate, a well-known peroxide scavenger, but pyruvate did not inhibit the pro-differentiating effect of AF, indicating that the pro-apoptotic and pro-differentiating effects involve different pathways. In conclusion, our results demonstrate that AF selectively targets the TCM/TTM lymphocyte subsets, which encompass the HIV reservoir, by affecting redox-sensitive cell death pathways. PMID:24309931

  2. Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells.

    PubMed

    Soto-Cerrato, Vanessa; Manuel-Manresa, Pilar; Hernando, Elsa; Calabuig-Fariñas, Silvia; Martínez-Romero, Alicia; Fernández-Dueñas, Víctor; Sahlholm, Kristoffer; Knöpfel, Thomas; García-Valverde, María; Rodilla, Ananda M; Jantus-Lewintre, Eloisa; Farràs, Rosa; Ciruela, Francisco; Pérez-Tomás, Ricardo; Quesada, Roberto

    2015-12-23

    Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against cancer stem cells (CSCs). Hyperpolarization of cell membrane induces cell differentiation and loss of stemness of CSCs leading to effective elimination of this cancer cell subpopulation.

  3. Analysis of differential secondary effects of novel rexinoids: select rexinoid X receptor ligands demonstrate differentiated side effect profiles

    PubMed Central

    Marshall, Pamela A; Jurutka, Peter W; Wagner, Carl E; van der Vaart, Arjan; Kaneko, Ichiro; Chavez, Pedro I; Ma, Ning; Bhogal, Jaskaran S; Shahani, Pritika; Swierski, Johnathon C; MacNeill, Mairi

    2015-01-01

    In order to determine the feasibility of utilizing novel rexinoids for chemotherapeutics and as potential treatments for neurological conditions, we undertook an assessment of the side effect profile of select rexinoid X receptor (RXR) analogs that we reported previously. We assessed pharmacokinetic profiles, lipid and thyroid-stimulating hormone (TSH) levels in rats, and cell culture activity of rexinoids in sterol regulatory element-binding protein (SREBP) induction and thyroid hormone inhibition assays. We also performed RNA sequencing of the brain tissues of rats that had been dosed with the compounds. We show here for the first time that potent rexinoid activity can be uncoupled from drastic lipid changes and thyroid axis variations, and we propose that rexinoids can be developed with improved side effect profiles than the parent compound, bexarotene (1). PMID:26038698

  4. A Microfluidic-Based Multi-Shear Device for Investigating the Effects of Low Fluid-Induced Stresses on Osteoblasts

    PubMed Central

    Yu, Weiliang; Qu, Hong; Hu, Guoqing; Zhang, Qian; Song, Kui; Guan, Haijie; Liu, Tingjiao; Qin, Jianhua

    2014-01-01

    Interstitial fluid flow (IFF) within the extracellular matrix (ECM) produces low magnitude shear stresses on cells. Fluid flow-induced stress (FSS) plays an important role during tissue morphogenesis. To investigate the effect of low FSS generated by IFF on cells, we developed a microfluidic-based cell culture device that can generate multiple low shear stresses. By changing the length and width of the flow-in channels, different continuous low level shear stresses could be generated in individual cell culture chambers. Numerical calculations demonstrate uniform shear stress distributions of the major cell culture area of each chamber. This calculation is further confirmed by the wall shear stress curves. The effects of low FSS on MC3T3-E1 proliferation and differentiation were studied using this device. It was found that FSS ranging from 1.5 to 52.6 µPa promoted MC3T3-E1 proliferation and differentiation, but FSS over 412 µPa inhibited the proliferation and differentiation of MC3T3-E1 cells. FSS ranging from 1.5 to 52.6 µPa also increased the expression of Runx2, a key transcription factor regulating osteoblast differentiation. It is suggested that Runx2 might be an important regulator in low FSS-induced MC3T3-E1 differentiation. This device allows for detailed study of the effect of low FSS on the behaviors of cells; thus, it would be a useful tool for analysis of the effects of IFF-induced shear stresses on cells. PMID:24587156

  5. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L.

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found thatmore » TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and activity.« less

  6. Droplet Microarray Based on Patterned Superhydrophobic Surfaces Prevents Stem Cell Differentiation and Enables High-Throughput Stem Cell Screening.

    PubMed

    Tronser, Tina; Popova, Anna A; Jaggy, Mona; Bastmeyer, Martin; Levkin, Pavel A

    2017-12-01

    Over the past decades, stem cells have attracted growing interest in fundamental biological and biomedical research as well as in regenerative medicine, due to their unique ability to self-renew and differentiate into various cell types. Long-term maintenance of the self-renewal ability and inhibition of spontaneous differentiation, however, still remain challenging and are not fully understood. Uncontrolled spontaneous differentiation of stem cells makes high-throughput screening of stem cells also difficult. This further hinders investigation of the underlying mechanisms of stem cell differentiation and the factors that might affect it. In this work, a dual functionality of nanoporous superhydrophobic-hydrophilic micropatterns is demonstrated in their ability to inhibit differentiation of mouse embryonic stem cells (mESCs) and at the same time enable formation of arrays of microdroplets (droplet microarray) via the effect of discontinuous dewetting. Such combination makes high-throughput screening of undifferentiated mouse embryonic stem cells possible. The droplet microarray is used to investigate the development, differentiation, and maintenance of stemness of mESC, revealing the dependence of stem cell behavior on droplet volume in nano- and microliter scale. The inhibition of spontaneous differentiation of mESCs cultured on the droplet microarray for up to 72 h is observed. In addition, up to fourfold increased cell growth rate of mESCs cultured on our platform has been observed. The difference in the behavior of mESCs is attributed to the porosity and roughness of the polymer surface. This work demonstrates that the droplet microarray possesses the potential for the screening of mESCs under conditions of prolonged inhibition of stem cells' spontaneous differentiation. Such a platform can be useful for applications in the field of stem cell research, pharmacological testing of drug efficacy and toxicity, biomedical research as well as in the field of regenerative medicine and tissue engineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. MiR-132 regulates osteogenic differentiation via downregulating Sirtuin1 in a peroxisome proliferator-activated receptor β/δ–dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Kai; Qu, Bo; Liao, Dongfa

    MicroRNAs (miRNAs) play significant roles in multiple diseases by regulating the expression of their target genes. Type 2 diabetes mellitus (T2DM) is a chronic endocrine and metabolic disease with complex mechanisms. T2DM can result in diabetic osteoporosis (DO), which is characterized by bone loss, decreased bone mineral density and increased bone fractures. The promotion of osteogenic differentiation of osteoblasts is an effective way to treat osteoporosis. In the present study, high glucose (HG) and free fatty acids (FFA) were employed to mimic T2DM in MC3T3-E1 cells. To induce osteogenic differentiation, MC3T3-E1 cells were cultured in osteogenic medium. The results showedmore » that osteogenic differentiation was significantly suppressed by HG and FFA. We found that miR-132 expression was significantly upregulated and much higher in HG-FFA–induced cells than other selected miRNAs, indicating that miR-132 might play an important role in DO. Furthermore, overexpression of miR-132 markedly inhibited the expression of key markers of osteogenic differentiation and alkaline phosphatase (ALP) activity. Reciprocally, inhibition of miR-132 restored osteogenic differentiation, even under treatment with HG-FFA. We also showed that Sirtuin 1 (Sirt1) was one of the target genes of miR-132, whose expression was controlled by miR-132. Ectopic expression of Sirt1 reversed the decrease in osteogenic differentiation caused by miR-132 and HG-FFA. These results demonstrated the direct role of miR-132 in suppressing osteogenic differentiation through downregulating Sirt1. Moreover, we demonstrated that peroxisome proliferator-activated receptor β/δ (PPARβ/δ) was a downstream molecule of Sirt1, and its knockout by PPARβ/δ siRNA significantly abolished the promotive effects of Sirt1 on osteogenic differentiation, indicating that Sirt1 functioned in a PPARβ/δ–dependent manner. Taken together, we provide crucial evidence that miR-132 plays a key role in regulating osteogenic differentiation through Sirt1 in a PPARβ/δ–dependent manner, indicating that miR-132 and Sirt1-PPARβ/δ may act as potential therapeutic targets for T2DM–induced osteoporosis. - Highlights: • MiR-132 participates in regulating osteogenic differentiation of MC3T3-E1 cells. • Sirt1 is a target gene of miR-132. • Sirt1 is the effector of miR-132 in regulating osteogenic differentiation. • MiR-132-Sirt1 regulates osteogenic differentiation in a PPARβ/δ–dependent manner.« less

  8. Dynamical response of the Galileo Galilei on the ground rotor to test the equivalence principle: Theory, simulation, and experiment. II. The rejection of common mode forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comandi, G.L.; Toncelli, R.; Chiofalo, M.L.

    'Galileo Galilei on the ground' (GGG) is a fast rotating differential accelerometer designed to test the equivalence principle (EP). Its sensitivity to differential effects, such as the effect of an EP violation, depends crucially on the capability of the accelerometer to reject all effects acting in common mode. By applying the theoretical and simulation methods reported in Part I of this work, and tested therein against experimental data, we predict the occurrence of an enhanced common mode rejection of the GGG accelerometer. We demonstrate that the best rejection of common mode disturbances can be tuned in a controlled way bymore » varying the spin frequency of the GGG rotor.« less

  9. Acetyl-11-Keto-β-Boswellic Acid Promotes Osteoblast Differentiation by Inhibiting Tumor Necrosis Factor-α and Nuclear Factor-κB Activity.

    PubMed

    Bai, Fan; Chen, Xuewu; Yang, Hui; Xu, Hong-Guang

    2018-06-20

    Tumor necrosis factor (TNF) -α plays a crucial role in rheumatoid arthritis (RA)-related bone loss disease. The main mechanism of action of RA induced bone loss is the significant inhibitory effect of TNF-α on osteoblast differentiation. TNF-α inhibits osteoblast differentiation mainly by activating nuclear factor (NF) -κB signaling pathway. Owing to the crucial role of TNF-α and NF-κB in the inhibition of osteoblast differentiation, they are considered as targets for the development of therapeutic drugs. In the present study, we evaluated the NF-κB inhibitor Boswellic acid (BA) and its derivatives in the regulation of osteoblast differentiation and the molecular mechanism. Based on the cell model of TNF-α induced inhibition of osteoblast differentiation of MC3T3-E1, the regulatory role of BAs was studied. The result of MTT assay indicated that bone morphogenetic protein (BMP) -2, TNF-α, or acetyl-11-keto-β-BA (AKBA) impact no significant effect for cell viability of MC3T3-E1. The results of alkaline phosphatase (ALP activity assay and real-time polymerase chain reaction indicated that AKBA blocked TNF-α-induced inhibition of the expression of osteoblast markers, suggesting that AKBA rescued osteoblast differentiation from TNF-α-induced inhibition. Additionally, AKBA stimulated the BMP-2-induced expression of osteoblast markers, suggesting that AKBA promotes osteoblast differentiation directly. The results of western blotting and luciferase assay indicated that N-κB signaling was activated by TNF-α. The overexpression of NF-κB component p65 in MC3T3-E1 was found to attenuate the positive effect of AKBA in osteoblast differentiation, suggesting that AKBA potentiates osteoblast differentiation by inhibiting NF-κB signaling. Collectively, AKBA promotes osteoblast differentiation by inhibiting TNF-α and NF-κB. Our study revealed a new discovery of AKBA in regulating osteoblast differentiation, and demonstrated that AKBA may be a potential anabolic agent in the treatment of RA-derived bone loss disease.

  10. Effect of concentrated growth factors on beagle periodontal ligament stem cells in vitro.

    PubMed

    Yu, Bohan; Wang, Zuolin

    2014-01-01

    Identifying a reliable and effective cytokine or growth factor group has been the focus of stem cell osteogenic induction studies. Concentrated growth factors (CGFs) as the novel generation of platelet concentrate products, appear to exhibit a superior clinical and biotechnological application potential, however, there are few studies that have demonstrated this effect. This study investigated the proliferation and differentiation of periodontal ligament stem cells (PDLSCs) co‑cultured with CGFs. The rate of proliferation was analyzed by cell counting and an MTT assay. Mineralization nodule counts, alkaline phosphatase activity detection, qPCR, western blot analysis and immunohistochemistry were used to analyze mineralization effects. The results showed that CGF significantly promoted the proliferation of PDLSCs, and exhibited a dose‑dependent effect on the activation and differentiation of the stem cells. The application of CGF on PDLSC proliferation and osteoinduction may offer numerous clinical and biotechnological application strategies.

  11. Goal direction and effectiveness, emotional maturity, and nuclear family functioning.

    PubMed

    Klever, Phillip

    2009-07-01

    Differentiation of self, a cornerstone concept in Bowen theory, has a profound influence over time on the functioning of the individual and his or her family unit. This 5-year longitudinal study tested this hypothesis with 50 developing nuclear families. The dimensions of differentiation of self that were examined were goal direction and effectiveness and emotional maturity. A qualitative analysis of participants' goals demonstrated that couples with higher functioning developing nuclear families, when compared with couples with lower functioning families, placed more emphasis on family goals, had more balance between family and personal goals, and pursued more goals over the 5 years. The quantitative analysis supported the hypothesis that goal effectiveness and emotional maturity influenced variation in nuclear family functioning. In addition, couple goal effectiveness and emotional maturity were associated with nuclear family functioning more strongly than individual goal effectiveness and emotional maturity were associated with individual functioning.

  12. Holistic processing is finely tuned for faces of one's own race.

    PubMed

    Michel, Caroline; Rossion, Bruno; Han, Jaehyun; Chung, Chan-Sup; Caldara, Roberto

    2006-07-01

    Recognizing individual faces outside one's race poses difficulty, a phenomenon known as the other-race effect. Most researchers agree that this effect results from differential experience with same-race (SR) and other-race (OR) faces. However, the specific processes that develop with visual experience and underlie the other-race effect remain to be clarified. We tested whether the integration of facial features into a whole representation-holistic processing-was larger for SR than OR faces in Caucasians and Asians without life experience with OR faces. For both classes of participants, recognition of the upper half of a composite-face stimulus was more disrupted by the bottom half (the composite-face effect) for SR than OR faces, demonstrating that SR faces are processed more holistically than OR faces. This differential holistic processing for faces of different races, probably a by-product of visual experience, may be a critical factor in the other-race effect.

  13. Multidimensional nanomaterials for the control of stem cell fate

    NASA Astrophysics Data System (ADS)

    Chueng, Sy-Tsong Dean; Yang, Letao; Zhang, Yixiao; Lee, Ki-Bum

    2016-09-01

    Current stem cell therapy suffers low efficiency in giving rise to differentiated cell lineages, which can replace the original damaged cells. Nanomaterials, on the other hand, provide unique physical size, surface chemistry, conductivity, and topographical microenvironment to regulate stem cell differentiation through multidimensional approaches to facilitate gene delivery, cell-cell, and cell-ECM interactions. In this review, nanomaterials are demonstrated to work both alone and synergistically to guide selective stem cell differentiation. From three different nanotechnology families, three approaches are shown: (1) soluble microenvironmental factors; (2) insoluble physical microenvironment; and (3) nano-topographical features. As regenerative medicine is heavily invested in effective stem cell therapy, this review is inspired to generate discussions in the potential clinical applications of multi-dimensional nanomaterials.

  14. Evidence for heterogeneity of astrocyte de-differentiation in vitro: astrocytes transform into intermediate precursor cells following induction of ACM from scratch-insulted astrocytes.

    PubMed

    Yang, Hao; Qian, Xin-Hong; Cong, Rui; Li, Jing-wen; Yao, Qin; Jiao, Xi-Ying; Ju, Gong; You, Si-Wei

    2010-04-01

    Our previous study definitely demonstrated that the mature astrocytes could undergo a de-differentiation process and further transform into pluripotential neural stem cells (NSCs), which might well arise from the effect of diffusible factors released from scratch-insulted astrocytes. However, these neurospheres passaged from one neurosphere-derived from de-differentiated astrocytes possessed a completely distinct characteristic in the differentiation behavior, namely heterogeneity of differentiation. The heterogeneity in cell differentiation has become a crucial but elusive issue. In this study, we show that purified astrocytes could de-differentiate into intermediate precursor cells (IPCs) with addition of scratch-insulted astrocyte-conditioned medium (ACM) to the culture, which can express NG2 and A2B5, the IPCs markers. Apart from the number of NG2(+) and A2B5(+) cells, the percentage of proliferative cells as labeled with BrdU progressively increased with prolonged culture period ranging from 1 to 10 days. Meanwhile, the protein level of A2B5 in cells also increased significantly. These results revealed that not all astrocytes could de-differentiate fully into NSCs directly when induced by ACM, rather they generated intermediate or more restricted precursor cells that might undergo progressive de-differentiation to generate NSCs.

  15. Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells.

    PubMed

    Lu, Shun; Wang, Jing; Ye, Jixing; Zou, Yulong; Zhu, Yunxiao; Wei, Qiang; Wang, Xin; Tang, Shengli; Liu, Hao; Fan, Jiaming; Zhang, Fugui; Farina, Evan M; Mohammed, Maryam M; Song, Dongzhe; Liao, Junyi; Huang, Jiayi; Guo, Dan; Lu, Minpeng; Liu, Feng; Liu, Jianxiang; Li, Li; Ma, Chao; Hu, Xue; Lee, Michael J; Reid, Russell R; Ameer, Guillermo A; Zhou, Dongsheng; He, Tongchuan

    2016-01-01

    Regenerative medicine and bone tissue engineering using mesenchymal stem cells (MSCs) hold great promise as an effective approach to bone and skeletal reconstruction. While adipose tissue harbors MSC-like progenitors, or multipotent adipose-derived cells (MADs), it is important to identify and characterize potential biological factors that can effectively induce osteogenic differentiation of MADs. To overcome the time-consuming and technically challenging process of isolating and culturing primary MADs, here we establish and characterize the reversibly immortalized mouse multipotent adipose-derived cells (iMADs). The isolated mouse primary inguinal MAD cells are reversibly immortalized via the retrovirus-mediated expression of SV40 T antigen flanked with FRT sites. The iMADs are shown to express most common MSC markers. FLP-mediated removal of SV40 T antigen effectively reduces the proliferative activity and cell survival of iMADs, indicating the immortalization is reversible. Using the highly osteogenic BMP9, we find that the iMADs are highly responsive to BMP9 stimulation, express multiple lineage regulators, and undergo osteogenic differentiation in vitro upon BMP9 stimulation. Furthermore, we demonstrate that BMP9-stimulated iMADs form robust ectopic bone with a thermoresponsive biodegradable scaffold material. Collectively, our results demonstrate that the reversibly immortalized iMADs exhibit the characteristics of multipotent MSCs and are highly responsive to BMP9-induced osteogenic differentiation. Thus, the iMADs should provide a valuable resource for the study of MAD biology, which would ultimately enable us to develop novel and efficacious strategies for MAD-based bone tissue engineering.

  16. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse

    PubMed Central

    Ou, Xuan; Chae, Hee-Don; Wang, Rui-Hong; Shelley, William C.; Cooper, Scott; Taylor, Tammi; Kim, Young-June; Deng, Chu-Xia; Yoder, Mervin C.

    2011-01-01

    SIRT1 is a founding member of a sirtuin family of 7 proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1−/− mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1−/− mouse embryonic stem cells (ESCs) in vitro, and hematopoietic progenitors in SIRT1+/++/−, and −/− mice. SIRT1−/− ESCs formed fewer mature blast cell colonies. Replated SIRT1−/− blast colony-forming cells demonstrated defective hematopoietic potential. Endothelial cell production was unaltered, but there were defects in formation of a primitive vascular network from SIRT1−/−-derived embryoid bodies. Development of primitive and definitive progenitors derived from SIRT1−/− ESCs were also delayed and/or defective. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5 expression, decreased β-H1 globin, β-major globin, and Scl gene expression, and reduced activation of Erk1/2. Ectopic expression of SIRT1 rescued SIRT1−/− ESC differentiation deficiencies. SIRT1−/− yolk sacs manifested fewer primitive erythroid precursors. SIRT1−/− and SIRT1+/− adult marrow had decreased numbers and cycling of hematopoietic progenitors, effects more apparent at 5%, than at 20%, oxygen tension, and these progenitors survived less well in vitro under conditions of delayed growth factor addition. This suggests a role for SIRT1 in ESC differentiation and mouse hematopoiesis. PMID:20966168

  17. Glycosylation status of bone sialoprotein and its role in mineralization.

    PubMed

    Xu, Lan; Zhang, Zhenqing; Sun, Xue; Wang, Jingjing; Xu, Wei; Shi, Lv; Lu, Jiaojiao; Tang, Juan; Liu, Jingjing; Su, Xiong

    2017-11-15

    The highly glycosylated bone sialoprotein (BSP) is an abundant non-collagenous phosphoprotein in bone which enhances osteoblast differentiation and new bone deposition in vitro and in vivo. However, the structural details of its different glycosylation linkages have not been well studied and their functions in bone homeostasis are not clear. Previous studies suggested that the O-glycans, but not the N-glycans on BSP, are highly sialylated. Herein, we employed tandem mass spectrometry (MS/MS) to demonstrate that the N-glycanson the recombinant human integrin binding sialoprotein (rhiBSP) are also enriched in sialic acids (SAs) at their termini. We also identified multiple novel sites of N-glycan modification. Treatment of rhiBSP enhances osteoblast differentiation and mineralization of MC3T3-E1 cells and this effect could be partially reversed by efficient enzymatic removal of its N-glycans. Removal of all terminal SAs has a greater effect in reversing the effect of rhiBSP on osteogenesis, especially on mineralization, suggesting that sialylation at the termini of both N-glycans and O-glycans plays an important role in this regulation. Moreover, BSP-conjugated SAs may affect mineralization via ERK activation of VDR expression. Collectively, our results identified novel N-glycans enriched in SAs on the rhiBSP and demonstrated that SAs at both N- and O-glycans are important for BSP regulation of osteoblast differentiation and mineralization in vitro. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells.

    PubMed

    Maniwa, Yasuhisa; Kasukabe, Takashi; Kumakura, Shunichi

    2015-08-01

    Although all-trans retinoic acid (ATRA) is a standard and effective drug used for differentiation therapy in acute promyelocytic leukemia, ATRA-resistant leukemia cells ultimately emerge during this treatment. Therefore, the development of new drugs or effective combination therapy is urgently needed. We demonstrate that the combined treatment of vitamin K2 and cotylenin A synergistically induced monocytic differentiation in HL-60 cells. This combined treatment also synergistically induced NBT-reducing activity and non-specific esterase-positive cells as well as morphological changes to monocyte/macrophage-like cells. Vitamin K2 and cotylenin A cooperatively inhibited the proliferation of HL-60 cells in short-term and long-term cultures. This treatment also induced growth arrest at the G1 phase. Although 5 µg/ml cotylenin A or 5 µM vitamin K2 alone reduced c-MYC gene expression in HL-60 cells to approximately 45% or 80% that of control cells, respectively, the combined treatment almost completely suppressed c-MYC gene expression. We also demonstrated that the combined treatment of vitamin K2 and cotylenin A synergistically induced the expression of cyclin G2, which had a positive effect on the promotion and maintenance of cell cycle arrest. These results suggest that the combination of vitamin K2 and cotylenin A has therapeutic value in the treatment of acute myeloid leukemia.

  19. Differential growth factor control of bone formation through osteoprogenitor differentiation.

    PubMed

    Chaudhary, L R; Hofmeister, A M; Hruska, K A

    2004-03-01

    The osteogenic factors bone morphogenetic protein (BMP-7), platelet-derived growth factor (PDGF)-BB, and fibroblast growth factor (FGF-2) regulate the recruitment of osteoprogenitor cells and their proliferation and differentiation into mature osteoblasts. However, their mechanisms of action on osteoprogenitor cell growth, differentiation, and bone mineralization remain unclear. Here, we tested the hypothesis that these osteogenic agents were capable of regulating osteoblast differentiation and bone formation in vitro. Normal human bone marrow stromal (HBMS) cells were treated with BMP-7 (40 ng ml(-1)), PDGF-BB (20 ng ml(-1)), FGF-2 (20 ng ml(-1)), or FGF-2 plus BMP-7 for 28 days in a serum-containing medium with 10 mM beta-glycerophosphate and 50 microg ml(-1) ascorbic acid. BMP-7 stimulated a morphological change to cuboidal-shaped cells, increased alkaline phosphatase (ALKP) activity, bone sialoprotein (BSP) gene expression, and alizarin red S positive nodule formation. Hydroxyapatite (HA) crystal deposition in the nodules was demonstrated by Fourier transform infrared (FTIR) spectroscopy only in BMP-7- and dexamethasone (DEX)-treated cells. DEX-treated cells appeared elongated and fibroblast-like compared to BMP-7-treated cells. FGF-2 did not stimulate ALKP, and cell morphology was dystrophic. PDGF-BB had little or no effect on ALKP activity and biomineralization. Alizarin Red S staining of cells and calcium assay indicated that BMP-7, DEX, and FGF-2 enhanced calcium mineral deposition, but FTIR spectroscopic analysis demonstrated no formation of HA similar to human bone in control, PDGF-BB-, and FGF-2-treated samples. Thus, FGF-2 stimulated amorphous octacalcium phosphate mineral deposition that failed to mature into HA. Interestingly, FGF-2 abrogated BMP-7-induced ALKP activity and HA formation. Results demonstrate that BMP-7 was competent as a sole factor in the differentiation of human bone marrow stromal cells to bone-forming osteoblasts confirmed by FTIR examination of mineralized matrix. Other growth factors, PDGF, and FGF-2 were incompetent as sole factors, and FGF-2 inhibited BMP-7-stimulated osteoblast differentiation.

  20. Probing Mechanoregulation of Neuronal Differentiation by Plasma Lithography Patterned Elastomeric Substrates

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Jamilpour, Nima; Mfoumou, Etienne; Wang, Fei-Yue; Zhang, Donna D.; Wong, Pak Kin

    2014-11-01

    Cells sense and interpret mechanical cues, including cell-cell and cell-substrate interactions, in the microenvironment to collectively regulate various physiological functions. Understanding the influences of these mechanical factors on cell behavior is critical for fundamental cell biology and for the development of novel strategies in regenerative medicine. Here, we demonstrate plasma lithography patterning on elastomeric substrates for elucidating the influences of mechanical cues on neuronal differentiation and neuritogenesis. The neuroblastoma cells form neuronal spheres on plasma-treated regions, which geometrically confine the cells over two weeks. The elastic modulus of the elastomer is controlled simultaneously by the crosslinker concentration. The cell-substrate mechanical interactions are also investigated by controlling the size of neuronal spheres with different cell seeding densities. These physical cues are shown to modulate with the formation of focal adhesions, neurite outgrowth, and the morphology of neuroblastoma. By systematic adjustment of these cues, along with computational biomechanical analysis, we demonstrate the interrelated mechanoregulatory effects of substrate elasticity and cell size. Taken together, our results reveal that the neuronal differentiation and neuritogenesis of neuroblastoma cells are collectively regulated via the cell-substrate mechanical interactions.

  1. Severe Malaria Infections Impair Germinal Center Responses by Inhibiting T Follicular Helper Cell Differentiation.

    PubMed

    Ryg-Cornejo, Victoria; Ioannidis, Lisa Julia; Ly, Ann; Chiu, Chris Yu; Tellier, Julie; Hill, Danika Lea; Preston, Simon Peter; Pellegrini, Marc; Yu, Di; Nutt, Stephen Laurence; Kallies, Axel; Hansen, Diana Silvia

    2016-01-05

    Naturally acquired immunity to malaria develops only after years of repeated exposure to Plasmodium parasites. Despite the key role antibodies play in protection, the cellular processes underlying the slow acquisition of immunity remain unknown. Using mouse models, we show that severe malaria infection inhibits the establishment of germinal centers (GCs) in the spleen. We demonstrate that infection induces high frequencies of T follicular helper (Tfh) cell precursors but results in impaired Tfh cell differentiation. Despite high expression of Bcl-6 and IL-21, precursor Tfh cells induced during infection displayed low levels of PD-1 and CXCR5 and co-expressed Th1-associated molecules such as T-bet and CXCR3. Blockade of the inflammatory cytokines TNF and IFN-γ or T-bet deletion restored Tfh cell differentiation and GC responses to infection. Thus, this study demonstrates that the same pro-inflammatory mediators that drive severe malaria pathology have detrimental effects on the induction of protective B cell responses. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Combinatorial programming of human neuronal progenitors using magnetically-guided stoichiometric mRNA delivery.

    PubMed

    Azimi, Sayyed M; Sheridan, Steven D; Ghannad-Rezaie, Mostafa; Eimon, Peter M; Yanik, Mehmet Fatih

    2018-05-01

    Identification of optimal transcription-factor expression patterns to direct cellular differentiation along a desired pathway presents significant challenges. We demonstrate massively combinatorial screening of temporally-varying mRNA transcription factors to direct differentiation of neural progenitor cells using a dynamically-reconfigurable magnetically-guided spotting technology for localizing mRNA, enabling experiments on millimetre size spots. In addition, we present a time-interleaved delivery method that dramatically reduces fluctuations in the delivered transcription-factor copy-numbers per cell. We screened combinatorial and temporal delivery of a pool of midbrain-specific transcription factors to augment the generation of dopaminergic neurons. We show that the combinatorial delivery of LMX1A, FOXA2 and PITX3 is highly effective in generating dopaminergic neurons from midbrain progenitors. We show that LMX1A significantly increases TH -expression levels when delivered to neural progenitor cells either during proliferation or after induction of neural differentiation, while FOXA2 and PITX3 increase expression only when delivered prior to induction, demonstrating temporal dependence of factor addition. © 2018, Azimi et al.

  3. Lead exposure delays the differentiation of oligodendroglial progenitors in vitro.

    PubMed

    Deng, W; McKinnon, R D; Poretz, R D

    2001-08-01

    Lead (Pb) is an environmental neurotoxicant that can cause hypo- and demyelination. Oligodendrocytes (OLs), the myelin-forming cells in the central nervous system, may be a possible target for Pb toxicity. The present study describes the effect of Pb on the maturation of rat OL progenitor (OP) cells and the developmental expression of myelin-specific galactolipids. Dose-response studies showed that OP cultures were more sensitive to Pb than mature OLs. Pb delayed the differentiation of OL progenitors, as demonstrated by cell morphology and immunostaining with a panel of stage-specific differentiation markers. Pb given prior to and during differentiation caused a decrease in the biosynthesis of galactolipids in both undifferentiated and differentiated OLs, as detected by metabolic radiolabeling with 3H-D-galactose. While the ratios of galacto/gluco-cerebrosides, hydroxy fatty acid/nonhydroxy fatty acid galactolipids, and galactocerebrosides/sulfatides increased in control cultures during cell differentiation, Pb treatment prevented these changes. The results suggest that chronic Pb exposure may impact brain development by interfering with the timely developmental maturation of OL progenitors. Copyright 2001 Academic Press.

  4. The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Ming; Wang, Yongchun; Yang, Min

    Data from human and rodent studies have demonstrated that microgravity induces observed bone loss in real spaceflight or simulated experiments. The decrease of bone formation and block of maturation may play important roles in bone loss induced by microgravity. The aim of this study was to investigate the changes of proliferation and differentiation in bone marrow mesenchymal stem cells (BMSCs) induced by simulated microgravity and the mechanisms underlying it. We report here that clinorotation, a simulated model of microgravity, decreased proliferation and differentiation in BMSCs after exposure to 48 h simulated microgravity. The inhibited proliferation are related with blocking the cellmore » cycle in G2/M and enhancing the apoptosis. While alterations of the osteoblast differentiation due to the decreased SATB2 expression induced by simulated microgravity in BMSCs. - Highlights: • Simulated microgravity inhibited proliferation and differentiation in BMSCs. • The decreased proliferation due to blocked cell cycle and enhanced the apoptosis. • The inhibited differentiation accounts for alteration of SATB2, Hoxa2 and Cbfa1.« less

  5. Silk ionomers for encapsulation and differentiation of human MSCs

    PubMed Central

    Calabrese, Rossella; Kaplan, David L.

    2012-01-01

    The response of human bone marrow derived human mesenchymal stem cells (hMSCs) encapsulated in silk ionomer hydrogels was studied. Silk aqueous solutions with silk-poly-L-lysine or silk-poly-L-glutamate were formed into hydrogels via ultrasonication in situ with different net charges. hMSCs were encapsulated within the hydrogels and the impact of matrix charge was assessed over weeks in osteogenic, adipogenic and maintenance growth media. These modified silk charged polymers supported cell viability and proliferative potential, and the hMSCs were able to differentiate toward osteogenic or adipogenic lineages in the corresponding differentiation media. The silk/silk-poly-L-lysine hydrogels exhibited a positive effect on selective osteogenesis of hMSCs, inducing differentiation toward an osteogenic lineage even in the absence of osteogenic supplements, while also inhibiting adipogenesis. In contrast, silk/silk fibroin-poly-L-glutamate hydrogels supported both osteogenic and adipogenic differentiation of hMSCs when cultured under induction conditions. The results demonstrate the potential utility of silk-based ionomers in gel formats for hMSCs encapsulation and for directing hMSCs long term functional differentiation toward specific lineages. PMID:22824008

  6. MiR-144-3p regulates osteogenic differentiation and proliferation of murine mesenchymal stem cells by specifically targeting Smad4.

    PubMed

    Huang, Cong; Geng, Junnan; Wei, Xiajie; Zhang, Ruirui; Jiang, Siwen

    2016-03-01

    Despite extensive research on osteoblast differentiation and proliferation in mesenchymal stem cells (MSCs), the accurate mechanism remains to be further elucidated. MicroRNAs have been reported to be key regulators of osteoblast differentiation and proliferation. Here, we found that miR-144-3p is down-regulated during osteoblast differentiation of C3H10T1/2 cells. Overexpression of miR-144-3p inhibited osteogenic differentiation, whereas inhibition of miR-144-3p reversed this process. Furthermore, miR-144-3p inhibited the proliferation of C3H10T1/2 cells by arresting cells at the G0/G1 phase. Results from bioinformatics analysis, luciferase assay and western blotting demonstrated that miR-144-3p directly targeted Smad4. Additionally, Smad4 knockdown blocks the effects of miR-144-3p inhibitor. Therefore, we conclude that miR-144-3p negatively regulates osteogenic differentiation and proliferation of C3H10T1/2 cells by targeting Smad4. © 2016 Federation of European Biochemical Societies.

  7. Differential Susceptibility in Spillover Between Interparental Conflict and Maternal Parenting Practices: Evidence for OXTR and 5-HTT Genes

    PubMed Central

    Sturge-Apple, Melissa L.; Cicchetti, Dante; Davies, Patrick T.; Suor, Jennifer H.

    2012-01-01

    Guided by the affective spillover hypothesis and the differential susceptibility to environmental influence frameworks, the present study examined how associations between interparental conflict and mothers’ parenting practices were moderated by serotonin transporter (5-HTT) and oxytocin receptor (OXTR) genes. A sample of 201 mothers and their two-year old child participated in a laboratory-based research assessment. Results supported differential susceptibility hypotheses within spillover frameworks. With respect to OXTR rs53576, mothers with the GG genotype showed greater differential maternal sensitivity across varying levels of interparental conflict. Mothers with one or two copies of the 5-HTTLPR S allele demonstrated differential susceptibility for both sensitive and harsh/punitive caregiving behaviors. Finally, analyses examined whether maternal depressive symptoms and emotional closeness to their child mediated the moderating effects. Findings suggest that maternal emotional closeness with their child indirectly linked OXTR with maternal sensitivity. The results highlight how molecular genetics may explain heterogeneity in spillover models with differential implications for specific parenting behaviors. Implications for clinicians and therapists working with maritally distressed parents are discussed. PMID:22563705

  8. Genome-wide Analysis of the H3K4 Histone Demethylase RBP2 Reveals a Transcriptional Program Controlling Differentiation

    PubMed Central

    Lopez-Bigas, Nuria; Kisiel, Tomasz A.; DeWaal, Dannielle C.; Holmes, Katie B.; Volkert, Tom L.; Gupta, Sumeet; Love, Jennifer; Murray, Heather L.; Young, Richard A.; Benevolenskaya, Elizaveta V.

    2010-01-01

    SUMMARY Retinoblastoma protein (pRB) mediates cell-cycle withdrawal and differentiation by interacting with a variety of proteins. RB-Binding Protein 2 (RBP2) has been shown to be a key effector. We sought to determine transcriptional regulation by RBP2 genome-wide by using location analysis and gene expression profiling experiments. We describe that RBP2 shows high correlation with the presence of H3K4me3 and its target genes are separated into two functionally distinct classes: differentiation-independent and differentiation-dependent genes. The former class is enriched by genes that encode mitochondrial proteins, while the latter is represented by cell-cycle genes. We demonstrate the role of RBP2 in mitochondrial biogenesis, which involves regulation of H3K4me3-modified nucleosomes. Analysis of expression changes upon RBP2 depletion depicted genes with a signature of differentiation control, analogous to the changes seen upon reintroduction of pRB. We conclude that, during differentiation, RBP2 exerts inhibitory effects on multiple genes through direct interaction with their promoters. PMID:18722178

  9. Real-time differential GPS/GLONASS trials in Europe using all-in-view 20-channel receivers

    NASA Astrophysics Data System (ADS)

    Capaccio, S.; Lowe, D.; Walsh, D. M. A.; Daly, P.

    Following the initial development of 20-channel, all-in-view Global Navigation Satellite System (GNSS), GPS/GLONASS/Inmarsat-3, receivers at the Institute of Satellite Navigation (ISN), University of Leeds, a modification programme has been undertaken to allow real-time differential corrections to be sent from one 20-channel receiver to another identical receiver using a serial link between them. The differential correction software incorporates the RTCM SC-104 and RTCA DO-217 format developed specifically for GPS and adjusted by the ISN to allow simultaneous GLONASS operation.After successful laboratory testing, real-time differential GNSS tests were successfully completed in static mode between Aberdeen and Leeds via the SkyFix differential data-link, and in dynamic mode at DTEO Boscombe Down using a C-band data-link between the ground and a receiver on board the DRA BAC 1-11 aircraft. The aims of the tests were, (i) to demonstrate real-time differential GNSS position-fixing, (ii) to establish the accuracy improvements brought about, and (iii) to examine the effects of data-link latency and satellite PDOP on the solution accuracy.

  10. Selection for niche differentiation in plant communities increases biodiversity effects.

    PubMed

    Zuppinger-Dingley, Debra; Schmid, Bernhard; Petermann, Jana S; Yadav, Varuna; De Deyn, Gerlinde B; Flynn, Dan F B

    2014-11-06

    In experimental plant communities, relationships between biodiversity and ecosystem functioning have been found to strengthen over time, a fact often attributed to increased resource complementarity between species in mixtures and negative plant-soil feedbacks in monocultures. Here we show that selection for niche differentiation between species can drive this increasing biodiversity effect. Growing 12 grassland species in test monocultures and mixtures, we found character displacement between species and increased biodiversity effects when plants had been selected over 8 years in species mixtures rather than in monocultures. When grown in mixtures, relative differences in height and specific leaf area between plant species selected in mixtures (mixture types) were greater than between species selected in monocultures (monoculture types). Furthermore, net biodiversity and complementarity effects were greater in mixtures of mixture types than in mixtures of monoculture types. Our study demonstrates a novel mechanism for the increase in biodiversity effects: selection for increased niche differentiation through character displacement. Selection in diverse mixtures may therefore increase species coexistence and ecosystem functioning in natural communities and may also allow increased mixture yields in agriculture or forestry. However, loss of biodiversity and prolonged selection of crops in monoculture may compromise this potential for selection in the longer term.

  11. In vitro analysis of equine, bone marrow-derived mesenchymal stem cells demonstrates differences within age- and gender-matched horses.

    PubMed

    Carter-Arnold, J L; Neilsen, N L; Amelse, L L; Odoi, A; Dhar, M S

    2014-09-01

    Stem cell therapies are used routinely in equine practice. Most published reports characterise stem cells derived from younger horses; however, middle-aged horses are often in athletic performance, and experience degenerative medical conditions. Thus, mesenchymal stem cells (MSCs) from this group should be investigated. To describe differences in in vitro adherence, proliferation and potential for differentiation of equine bone marrow-derived MSCs (equine BMMSCs) harvested from middle-aged (10-13 years old) female donors. Descriptive study of stem cell characteristics. Equine BMMSCs from 6 horses were cultured in vitro and evaluated for viability, proliferation, osteogenesis, chondrogenesis, adipogenesis, cluster-of-differentiation markers and gene expression. Equine BMMSCs from all 6 donors demonstrated fibroblastic, cellular morphology, adherence to plastic and expression of cluster-of-differentiation markers. They varied in their rate of proliferation and trilineage differentiation. The equine BMMSCs of one of 6 donors demonstrated a higher rate of proliferation, enhanced ability for cell passaging and a more robust in vitro differentiation. Comparatively, equine BMMSCs from 2 donors demonstrated a lower rate of proliferation and lack of osteogenic and chondrogenic differentiation. The results of this study confirm that donor-to-donor variation in equine BMMSCs exists and this variation can be documented using in vitro assays. Subjective assessment suggests that the rate of proliferation tends to correlate with differentiation potential. © 2013 EVJ Ltd.

  12. Ectopic Hard Tissue Formation by Odonto/Osteogenically In Vitro Differentiated Human Deciduous Teeth Pulp Stem Cells.

    PubMed

    Kim, Seunghye; Song, Je Seon; Jeon, Mijeong; Shin, Dong Min; Kim, Seong-Oh; Lee, Jae Ho

    2015-07-01

    There have been many attempts to use the pulp tissue from human deciduous teeth for dentin or bone regeneration. The objective of this study was to determine the effects of odonto/osteogenic in vitro differentiation of deciduous teeth pulp stem cells (DTSCs) on their in vivo hard tissue-forming potential. DTSCs were isolated from extracted deciduous teeth using the outgrowth method. These cells were exposed to odonto/osteogenic stimuli for 4 and 8 days (Day 4 and Day 8 groups, respectively), while cells in the control group were cultured in normal medium. The in vitro differentiated DTSCs and the control DTSCs were transplanted subcutaneously into immunocompromised mice with macroporous biphasic calcium phosphate and sacrificed at 8 weeks post-implantation. The effect of odonto/osteogenic in vitro differentiation was evaluated using alkaline phosphatase (ALP) staining and quantitative reverse transcription polymerase chain reaction (RT-PCR). The in vivo effect was evaluated by qualitative RT-PCR, assessment of ALP activity, histologic analysis, and immunohistochemical staining. The amount of hard tissue was greater in Day 4 group than Day 8 group (p = 0.014). However, Day 8 group generated lamellar bone-like structure, which was immunonegative to anti-human dentin sialoprotein with significantly low expression level of DSPP compared with the control group (p = 0.008). This study demonstrates that odonto/osteogenic in vitro differentiation of DTSCs enhances the formation of bone-like tissue, instead of dentin-like tissue, when transplanted subcutaneously using MBCP as a carrier. The odonto/osteogenic in vitro differentiation of DTSCs may be an effective modification that enhances in vivo bone formation by DTSCs.

  13. Effect of silver nanoparticles on human mesenchymal stem cell differentiation

    PubMed Central

    Diendorf, Jörg; Epple, Matthias; Schildhauer, Thomas A; Köller, Manfred

    2014-01-01

    Summary Background: Silver nanoparticles (Ag-NP) are one of the fastest growing products in nano-medicine due to their enhanced antibacterial activity at the nanoscale level. In biomedicine, hundreds of products have been coated with Ag-NP. For example, various medical devices include silver, such as surgical instruments, bone implants and wound dressings. After the degradation of these materials, or depending on the coating technique, silver in nanoparticle or ion form can be released and may come into close contact with tissues and cells. Despite incorporation of Ag-NP as an antibacterial agent in different products, the toxicological and biological effects of silver in the human body after long-term and low-concentration exposure are not well understood. In the current study, we investigated the effects of both ionic and nanoparticulate silver on the differentiation of human mesenchymal stem cells (hMSCs) into adipogenic, osteogenic and chondrogenic lineages and on the secretion of the respective differentiation markers adiponectin, osteocalcin and aggrecan. Results: As shown through laser scanning microscopy, Ag-NP with a size of 80 nm (hydrodynamic diameter) were taken up into hMSCs as nanoparticulate material. After 24 h of incubation, these Ag-NP were mainly found in the endo-lysosomal cell compartment as agglomerated material. Cytotoxicity was observed for differentiated or undifferentiated hMSCs treated with high silver concentrations (≥20 µg·mL−1 Ag-NP; ≥1.5 µg·mL−1 Ag+ ions) but not with low-concentration treatments (≤10 µg·mL−1 Ag-NP; ≤1.0 µg·mL−1 Ag+ ions). Subtoxic concentrations of Ag-NP and Ag+ ions impaired the adipogenic and osteogenic differentiation of hMSCs in a concentration-dependent manner, whereas chondrogenic differentiation was unaffected after 21 d of incubation. In contrast to aggrecan, the inhibitory effect of adipogenic and osteogenic differentiation was confirmed by a decrease in the secretion of specific biomarkers, including adiponectin (adipocytes) and osteocalcin (osteoblasts). Conclusion: Aside from the well-studied antibacterial effect of silver, little is known about the influence of nano-silver on cell differentiation processes. Our results demonstrate that ionic or nanoparticulate silver attenuates the adipogenic and osteogenic differentiation of hMSCs even at non-toxic concentrations. Therefore, more studies are needed to investigate the effects of silver species on cells at low concentrations during long-term treatment. PMID:25551033

  14. The effect of nutritional status and myogenic satellite cell age on turkey satellite cell proliferation, differentiation, and expression of myogenic transcriptional regulatory factors and heparan sulfate proteoglycans syndecan-4 and glypican-1.

    PubMed

    Harthan, Laura B; McFarland, Douglas C; Velleman, Sandra G

    2014-01-01

    Posthatch satellite cell mitotic activity is a critical component of muscle development and growth. Satellite cells are myogenic stem cells that can be induced by nutrition to follow other cellular developmental pathways, and whose mitotic activity declines with age. The objective of the current study was to determine the effect of restricting protein synthesis on the proliferation and differentiation, expression of myogenic transcriptional regulatory factors myogenic determination factor 1, myogenin, and myogenic regulatory factor 4, and expression of the heparan sulfate proteoglycans syndecan-4 and glypican-1 in satellite cells isolated from 1-d-, 7-wk-, and 16-wk-old turkey pectoralis major muscle (1 d, 7 wk, and 16 wk cells, respectively) by using variable concentrations of Met and Cys. Four Met concentrations-30 (control), 7.5, 3, or 0 mg/L with 3.2 mg/L of Cys per 1 mg/L of Met-were used for culture of satellite cells to determine the effect of nutrition and age on satellite cell behavior during proliferation and differentiation. Proliferation was reduced by lower Met and Cys concentrations in all ages at 96 h of proliferation. Differentiation was increased in the 1 d Met-restricted cells, whereas the 7 wk cells treated with 3 mg/L of Met had decreased differentiation. Reduced Met and Cys levels from the control did not significantly affect the 16 wk cells at 72 h of differentiation. However, medium with no Met or Cys suppressed differentiation at all ages. The expression of myogenic determination factor 1, myogenin, myogenic regulatory factor 4, syndecan-4, and glypican-1 was differentially affected by age and Met or Cys treatment. These data demonstrate the age-specific manner in which turkey pectoralis major muscle satellite cells respond to nutritional availability and the importance of defining optimal nutrition to maximize satellite cell proliferation and differentiation for subsequent muscle mass accretion.

  15. The Relations between Number Property Strategies, Working Memory, and Multiplication in Elementary Students

    ERIC Educational Resources Information Center

    Liu, Ru-De; Ding, Yi; Gao, Bing-Cheng; Zhang, Dake

    2015-01-01

    This study aimed to examine the relations among property strategies, working memory, and multiplication tasks with 101 Chinese fourth-grade students. Two multiplication property strategies (associative and distributive) were compared with no strategy and demonstrated differentiated effects on students' accuracy and reaction time. Associative…

  16. Setting Them Free: Students as Co-Producers of Honors Education

    ERIC Educational Resources Information Center

    van Gorp, Bouke; Wolfensberger, Marca V. C.; de Jong, Nelleke

    2012-01-01

    While the attractions and advantages of freedom that differentiates honors education from regular teaching are both theoretically and practically significant, the authors' experience at Utrecht University in the Netherlands has demonstrated drawbacks that need to be addressed and resolved in creating effective honors education. Freedom poses…

  17. Power in the hypnotic relationship: therapeutic or abusive?

    PubMed

    Walling, D P; Levine, R E

    1997-01-01

    The unique relationship between hypnotist and subject has been theorized as one explanation for the effectiveness of hypnosis. This relationship carries a power differential, present in most therapeutic relationships, but accentuated by hypnosis. The power differential is sometimes perceived as the ability of the hypnotist to control the subject. Perceptions of hypnosis offered by stage hypnotists, the popular media, and some clinicians perpetuate the notion that the hypnotist has the ability to exert undue influence upon the client. The present article examines the relationship between hypnotist and subject focusing on issues of power and control. The authors examine the unique dynamics accompanying the use of hypnosis and their impact on the therapeutic dyad. Evidence is offered demonstrating the power differential, and how this differential can serve as either a positive or negative agent of change. Therapists should be aware of the dynamics created by using hypnosis. Implications for training therapists in the use of hypnosis are suggested.

  18. Evaluation of ultraviolet radiation, ozone and aerosol interactions in the troposphere using automatic differentiation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, G.R.; Potra, F.

    1998-10-06

    A major goal of this research was to quantify the interactions between UVR, ozone and aerosols. One method of quantification was to calculate sensitivity coefficients. A novel aspect of this work was the use of Automatic Differentiation software to calculate the sensitivities. The authors demonstrated the use of ADIFOR for the first time in a dimensional framework. Automatic Differentiation was used to calculate such quantities as: sensitivities of UV-B fluxes to changes in ozone and aerosols in the stratosphere and the troposphere; changes in ozone production/destruction rates to changes in UV-B flux; aerosol properties including loading, scattering properties (including relativemore » humidity effects), and composition (mineral dust, soot, and sulfate aerosol, etc.). The combined radiation/chemistry model offers an important test of the utility of Automatic Differentiation as a tool in atmospheric modeling.« less

  19. Stem cells from human exfoliated deciduous teeth differentiate toward neural cells in a medium dynamically cultured with Schwann cells in a series of polydimethylsiloxanes scaffolds

    NASA Astrophysics Data System (ADS)

    Su, Wen-Ta; Pan, Yu-Jing

    2016-08-01

    Objective. Schwann cells (SCs) are primary structural and functional cells in the peripheral nervous system. These cells play a crucial role in peripheral nerve regeneration by releasing neurotrophic factors. This study evaluated the neural differentiation potential effects of stem cells from human exfoliated deciduous teeth (SHEDs) in a rat Schwann cell (RSC) culture medium. Approach. SHEDs and RSCs were individually cultured on a polydimethylsiloxane (PDMS) scaffold, and the effects of the RSC medium on the SHEDs differentiation between static and dynamic cultures were compared. Main results. Results demonstrated that the SHED cells differentiated by the RSC cultured medium in the static culture formed neurospheres after 7 days at the earliest, and SHED cells formed neurospheres within 3 days in the dynamic culture. These results confirm that the RSC culture medium can induce neurospheres formation, the speed of formation and the number of neurospheres (19.16 folds high) in a dynamic culture was superior to the static culture for 3 days culture. The SHED-derived spheres were further incubated in the RSCs culture medium, these neurospheres continuously differentiated into neurons and neuroglial cells. Immunofluorescent staining and RT-PCR revealed nestin, β-III tubulin, GFAP, and γ-enolase of neural markers on the differentiated cells. Significance. These results indicated that the RSC culture medium can induce the neural differentiation of SHED cells, and can be used as a new therapeutic tool to repair nerve damage.

  20. Effect of Uniaxial Tensile Cyclic Loading Regimes on Matrix Organization and Tenogenic Differentiation of Adipose-Derived Stem Cells Encapsulated within 3D Collagen Scaffolds

    PubMed Central

    Stasuk, Alexander

    2017-01-01

    Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment. PMID:29375625

  1. Toll like Receptor 2 engagement on CD4+ T cells promotes TH9 differentiation and function.

    PubMed

    Karim, Ahmad Faisal; Reba, Scott M; Li, Qing; Boom, W Henry; Rojas, Roxana E

    2017-09-01

    We have recently demonstrated that mycobacterial ligands engage Toll like receptor 2 (TLR2) on CD4 + T cells and up-regulate T-cell receptor (TCR) triggered Th1 responses in vitro and in vivo. To better understand the role of T-cell expressed TLR2 on CD4 + T-cell differentiation and function, we conducted a gene expression analysis of murine naïve CD4 + T-cells stimulated in the presence or absence of TLR2 co-stimulation. Unexpectedly, naïve CD4 + T-cells co-stimulated via TLR2 showed a significant up-regulation of Il9 mRNA compared to cells co-stimulated via CD28. Under TH9 differentiation, we observed up-regulation of TH9 differentiation, evidenced by increases in both percent of IL-9 secreting cells and IL-9 in culture supernatants in the presence of TLR2 agonist both in polyclonal and Ag85B cognate peptide specific stimulations. Under non-polarizing conditions, TLR2 engagement on CD4 + T-cells had minimal effect on IL-9 secretion and TH9 differentiation, likely due to a prominent effect of TLR2 signaling on IFN-γ secretion and TH1 differentiation. We also report that, TLR2 signaling in CD4 + T cells increased expression of transcription factors BATF and PU.1, known to positively regulate TH9 differentiation. These results reveal a novel role of T-cell expressed TLR2 in enhancing the differentiation and function of TH9 T cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reciprocal actions of microRNA-9 and TLX in the proliferation and differentiation of retinal progenitor cells.

    PubMed

    Hu, Yamin; Luo, Min; Ni, Ni; Den, Yuan; Xia, Jing; Chen, Junzhao; Ji, Jing; Zhou, Xiaojian; Fan, Xianqun; Gu, Ping

    2014-11-15

    Recent research has demonstrated critical roles of a number of microRNAs (miRNAs) in stem cell proliferation and differentiation. miRNA-9 (miR-9) is a brain-enriched miRNA. Whether miR-9 has a role in retinal progenitor cell (RPC) proliferation and differentiation remains unknown. In this study, we show that miR-9 plays an important role in RPC fate determination. The expression of miR-9 was inversely correlated with that of the nuclear receptor TLX, which is an essential regulator of neural stem cell self-renewal. Overexpression of miR-9 downregulated the TLX levels in RPCs, leading to reduced RPC proliferation and increased neuronal and glial differentiation, and the effect of miR-9 overexpression on RPC proliferation and differentiation was inhibited by the TLX overexpression; knockdown of miR-9 resulted in increased TLX expression as well as enhanced proliferation of RPCs. Furthermore, inhibition of endogenous TLX by small interfering RNA suppressed RPC proliferation and promoted RPCs to differentiate into retinal neuronal and glial cells. These results suggest that miR-9 and TLX form a feedback regulatory loop to coordinate the proliferation and differentiation of retinal progenitors.

  3. Basic fibroblast growth factor (bFGF) facilitates differentiation of adult dorsal root ganglia-derived neural stem cells toward Schwann cells by binding to FGFR-1 through MAPK/ERK activation.

    PubMed

    Gu, Yun; Xue, Chenbin; Zhu, Jianbin; Sun, Hualin; Ding, Fei; Cao, Zheng; Gu, Xiaosong

    2014-04-01

    Considerable research has been devoted to unraveling the regulation of neural stem cell (NSC) differentiation. The responses of NSCs to various differentiation-inducing stimuli, however, are still difficult to estimate. In this study, we aimed to search for a potent growth factor that was able to effectively induce differentiation of NSCs toward Schwann cells. NSCs were isolated from dorsal root ganglia (DRGs) of adult rats and identified by immunostaining. Three different growth factors were used to stimulate the differentiation of DRG-derived NSCs (DRG-NSCs). We found that among these three growth factors, bFGF was the strongest inducer for the glial differentiation of DRG-NSCs, and bFGF induced the generation of an increased number of Schwann cell-like cells as compared to nerve growth factor (NGF) and neuregulin1-β (NRG). These Schwann cell-like cells demonstrated the same characteristics as those of primary Schwann cells. Furthermore, we noted that bFGF-induced differentiation of DRG-NSCs toward Schwann cells might be mediated by binding to fibroblast growth factor receptor-1 (FGFR-1) through activation of MAPK/ERK signal pathway.

  4. Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Halloran, B. P.; Morey-Holton, E. R.; Bikle, D. D.

    1997-01-01

    Loss of weight bearing in the growing rat decreases bone formation, osteoblast numbers, and bone maturation in unloaded bones. These responses suggest an impairment of osteoblast proliferation and differentiation. To test this assumption, we assessed the effects of skeletal unloading using an in vitro model of osteoprogenitor cell differentiation. Rats were hindlimb elevated for 0 (control), 2, or 5 days, after which their tibial bone marrow stromal cells (BMSCs) were harvested and cultured. Five days of hindlimb elevation led to significant decreases in proliferation, alkaline phosphatase (AP) enzyme activity, and mineralization of BMSC cultures. Differentiation of BMSCs was analyzed by quantitative competitive polymerase chain reaction of cDNA after 10, 15, 20, and 28 days of culture. cDNA pools were analyzed for the expression of c-fos (an index of proliferation), AP (an index of early osteoblast differentiation), and osteocalcin (a marker of late differentiation). BMSCs from 5-day unloaded rats expressed 50% less c-fos, 61% more AP, and 35% less osteocalcin mRNA compared with controls. These data demonstrate that cultured osteoprogenitor cells retain a memory of their in vivo loading history and indicate that skeletal unloading inhibits proliferation and differentiation of osteoprogenitor cells in vitro.

  5. Deciphering the Role of Sulfonated Unit in Heparin-Mimicking Polymer to Promote Neural Differentiation of Embryonic Stem Cells.

    PubMed

    Lei, Jiehua; Yuan, Yuqi; Lyu, Zhonglin; Wang, Mengmeng; Liu, Qi; Wang, Hongwei; Yuan, Lin; Chen, Hong

    2017-08-30

    Glycosaminoglycans (GAGs), especially heparin and heparan sulfate (HS), hold great potential for inducing the neural differentiation of embryonic stem cells (ESCs) and have brought new hope for the treatment of neurological diseases. However, the disadvantages of natural heparin/HS, such as difficulty in isolating them with a sufficient amount, highly heterogeneous structure, and the risk of immune responses, have limited their further therapeutic applications. Thus, there is a great demand for stable, controllable, and well-defined synthetic alternatives of heparin/HS with more effective biological functions. In this study, based upon a previously proposed unit-recombination strategy, several heparin-mimicking polymers were synthesized by integrating glucosamine-like 2-methacrylamido glucopyranose monomers (MAG) with three sulfonated units in different structural forms, and their effects on cell proliferation, the pluripotency, and the differentiation of ESCs were carefully studied. The results showed that all the copolymers had good cytocompatibility and displayed much better bioactivity in promoting the neural differentiation of ESCs as compared to natural heparin; copolymers with different sulfonated units exhibited different levels of promoting ability; among them, copolymer with 3-sulfopropyl acrylate (SPA) as a sulfonated unit was the most potent in promoting the neural differentiation of ESCs; the promoting effect is dependent on the molecular weight and concentration of P(MAG-co-SPA), with the highest levels occurring at the intermediate molecular weight and concentration. These results clearly demonstrated that the sulfonated unit in the copolymers played an important role in determining the promoting effect on ESCs' neural differentiation; SPA was identified as the most potent sulfonated unit for copolymer with the strongest promoting ability. The possible reason for sulfonated unit structure as a vital factor influencing the ability of the copolymers may be attributed to the difference in electrostatic and steric hindrance effect. The synthetic heparin-mimicking polymers obtained here can offer an effective alternative to heparin/HS and have great therapeutic potential for nervous system diseases.

  6. Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile.

    PubMed

    Joules, R; Doyle, O M; Schwarz, A J; O'Daly, O G; Brammer, M; Williams, S C; Mehta, M A

    2015-11-01

    Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been studied in relation to the glutamate hypothesis of schizophrenia and increases dissociation, positive and negative symptom ratings. Ketamine effects brain function through changes in brain activity; these activity patterns can be modulated by pre-treatment of compounds known to attenuate the effects of ketamine on glutamate release. Ketamine also has marked effects on brain connectivity; we predicted that these changes would also be modulated by compounds known to attenuate glutamate release. Here, we perform task-free pharmacological magnetic resonance imaging (phMRI) to investigate the functional connectivity effects of ketamine in the brain and the potential modulation of these effects by pre-treatment of the compounds lamotrigine and risperidone, compounds hypothesised to differentially modulate glutamate release. Connectivity patterns were assessed by combining windowing, graph theory and multivariate Gaussian process classification. We demonstrate that ketamine has a robust effect on the functional connectivity of the human brain compared to saline (87.5 % accuracy). Ketamine produced a shift from a cortically centred, to a subcortically centred pattern of connections. This effect is strongly modulated by pre-treatment with risperidone (81.25 %) but not lamotrigine (43.75 %). Based on the differential effect of these compounds on ketamine response, we suggest the observed connectivity effects are primarily due to NMDAR blockade rather than downstream glutamatergic effects. The connectivity changes contrast with amplitude of response for which no differential effect between pre-treatments was detected, highlighting the necessity of these techniques in forming an informed view of the mechanistic effects of pharmacological compounds in the human brain.

  7. Methoprene and Temperature Effects on Caste Differentiation and Protein Composition in the Formosan Subterranean Termite, Coptotermes formosanus

    PubMed Central

    Tarver, Matthew R.; Florane, Christopher B.; Zhang, Dunhua; Grimm, Casey; Lax, Alan R.

    2012-01-01

    The utilization of multiple castes is a shared feature of social insects. In termites, multiple extrinsic factors have been shown to impact caste differentiation; for example, increased temperature has been shown to increase soldier production. Also, application of exogenous methoprene has also been demonstrated to increase soldier production. The objective of this investigation was to examine and correlate the effects of temperature variation and methoprene treatments on termite caste differentiation, and identify the resulting changes in protein levels. Our results indicate that worker—to—soldier differentiation is modulated by temperature, where a greater number of soldiers developed at a higher rate at higher temperatures compared to lower temperatures. We analyzed total protein by sodium dodecyl sulfate Polyacrylamide gel electrophoresis and N-terminal sequencing and found several changes. Specifically, four proteins affected by temperature change were identified: Hexamerin-1, Hexamerin-2, Endo-beta 1,4 glucanase, and myosin. These proteins were further examined for their response to temperature, assay length (time), and exposure to the juvenile hormone analog methoprene. Hexamerin-1 protein showed a temperature—and assay length—dependent effect, while Hexamerin-2, Endo-beta 1, 4 glucanase, and myosin protein levels were all affected by temperature, assay length, and exposure to methoprene. Our analysis allows the correlation of temperature, assay length, and presence of methoprene with specific changes in protein levels that occur during caste differentiation. These results can be directly applied to better understand the complex developmental factors that control termite differentiation and guide the use of juvenile hormone analogs to maximize efficiency of termite eradication in the field. PMID:22943185

  8. CUDC-907 Promotes Bone Marrow Adipocytic Differentiation Through Inhibition of Histone Deacetylase and Regulation of Cell Cycle.

    PubMed

    Ali, Dalia; Alshammari, Hassan; Vishnubalaji, Radhakrishnan; Chalisserry, Elna Paul; Hamam, Rimi; Alfayez, Musaad; Kassem, Moustapha; Aldahmash, Abdullah; Alajez, Nehad M

    2017-03-01

    The role of bone marrow adipocytes (BMAs) in overall energy metabolism and their effects on bone mass are currently areas of intensive investigation. BMAs differentiate from bone marrow stromal cells (BMSCs); however, the molecular mechanisms regulating BMA differentiation are not fully understood. In this study, we investigated the effect of CUDC-907, identified by screening an epigenetic small-molecule library, on adipocytic differentiation of human BMSCs (hBMSCs) and determined its molecular mechanism of action. Human bone marrow stromal cells exposed to CUDC-907 (500 nM) exhibited enhanced adipocytic differentiation (∼2.9-fold increase, P < 0.005) compared with that of control cells. Global gene expression and signaling pathway analyses of differentially expressed genes revealed a strong enrichment of genes involved in adipogenesis, cell cycle, and DNA replication. Chromatin immune precipitation combined with quantitative polymerase chain reaction showed significant increase in H3K9ac epigenetic marker in the promoter regions of AdipoQ, FABP4, PPARγ, KLF15, and CEBPA in CUDC-907-treated hBMSCs. Follow-up experiments corroborated that the inhibition of histone deacetylase (HDAC) activity enhanced adipocytic differentiation, while the inhibition of PI3K decreased adipocytic differentiation. In addition, CUDC-907 arrested hBMSCs in the G0-G1 phase of the cell cycle and reduced the number of S-phase cells. Our data reveal that HDAC, PI3K, and cell cycle genes are important regulators of BMA formation and demonstrate that adipocyte differentiation of hBMSCs is associated with complex changes in a number of epigenetic and genetic pathways, which can be targeted to regulate BMA formation.

  9. Nrf2 promotes neuronal cell differentiation.

    PubMed

    Zhao, Fei; Wu, Tongde; Lau, Alexandria; Jiang, Tao; Huang, Zheping; Wang, Xiao-Jun; Chen, Weimin; Wong, Pak Kin; Zhang, Donna D

    2009-09-15

    The transcription factor Nrf2 has emerged as a master regulator of the endogenous antioxidant response, which is critical in defending cells against environmental insults and in maintaining intracellular redox balance. However, whether Nrf2 has any role in neuronal cell differentiation is largely unknown. In this report, we have examined the effects of Nrf2 on cell differentiation using a neuroblastoma cell line, SH-SY5Y. Retinoic acid (RA) and 12-O-tetradecanoylphorbol 13-acetate, two well-studied inducers of neuronal differentiation, are able to induce Nrf2 and its target gene NAD(P)H quinone oxidoreductase 1 in a dose- and time-dependent manner. RA-induced Nrf2 up-regulation is accompanied by neurite outgrowth and an induction of two neuronal differentiation markers, neurofilament-M and microtubule-associated protein 2. Overexpression of Nrf2 in SH-SY5Y cells promotes neuronal differentiation, whereas inhibition of endogenous Nrf2 expression inhibited neuronal differentiation. More remarkably, the positive role of Nrf2 in neuronal differentiation was verified ex vivo in primary neuron culture. Primary neurons isolated from Nrf2-null mice showed a retarded progress in differentiation, compared to those from wild-type mice. Collectively, our data demonstrate a novel role for Nrf2 in promoting neuronal cell differentiation, which will open new perspectives for therapeutic uses of Nrf2 activators in patients with neurodegenerative diseases.

  10. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation.

    PubMed

    Wallace, Marita A; Della Gatta, Paul A; Ahmad Mir, Bilal; Kowalski, Greg M; Kloehn, Joachim; McConville, Malcom J; Russell, Aaron P; Lamon, Séverine

    2016-01-01

    Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. These findings position STARS as an important regulator of skeletal muscle growth and regeneration.

  11. Vitamin K2 promotes mesenchymal stem cell differentiation by inhibiting miR‑133a expression.

    PubMed

    Zhang, Yuelei; Weng, Shiyang; Yin, Junhui; Ding, Hao; Zhang, Changqing; Gao, Youshui

    2017-05-01

    Vitamin K2 has been demonstrated to promote the osteogenic differentiation of mesenchymal stem cells; however, the mechanisms underlying this effect remain unclear. As microRNA (miR)‑133a has been identified as a negative regulator of osteogenic differentiation, the present study hypothesized that vitamin K2 promoted osteogenesis by inhibiting miR‑133a. Using human bone marrow stromal cells (hBMSCs) overexpressing miR‑133a, or a control, the expression levels of osteogenesis‑associated proteins, including runt‑related transcription factor 2, alkaline phosphatase and osteocalcin, were analyzed. miR‑133a significantly suppressed the osteogenic differentiation of hBMSCs. To determine the effect of vitamin K2 on miR‑133a expression and osteogenesis, hBMSCs were treated with vitamin K2. Vitamin K2 inhibited miR‑133a expression, which was accompanied by enhanced osteogenic differentiation. Furthermore, the expression levels of vitamin K epoxide reductase complex subunit 1, the key protein in γ‑carboxylation, were downregulated by miR‑133a overexpression and upregulated by vitamin K2 treatment, indicating a positive feedback on γ‑carboxylation. The results of the present study suggested that vitamin K2 targets miR‑133a to regulate osteogenesis.

  12. Diverse effects of lead nitrate on the proliferation, differentiation, and gene expression of stem cells isolated from a dental origin.

    PubMed

    Abdullah, Mariam; Rahman, Fazliny Abd; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Abu Kasim, Noor Hayaty; Musa, Sabri

    2014-01-01

    Lead (Pb(2+)) exposure continues to be a significant public health problem. Therefore, it is vital to have a continuous epidemiological dataset for a better understanding of Pb(2+) toxicity. In the present study, we have exposed stem cells isolated from deciduous and permanent teeth, periodontal ligament, and bone marrow to five different types of Pb(2+) concentrations (160, 80, 40, 20, and 10 µM) for 24 hours to identify the adverse effects of Pb(2+) on the proliferation, differentiation, and gene expression on these cell lines. We found that Pb(2+) treatment altered the morphology and adhesion of the cells in a dose-dependent manner. There were no significant changes in terms of cell surface phenotypes. Cells exposed to Pb(2+) continued to differentiate into chondrogenesis and adipogenesis, and a severe downregulation was observed in osteogenesis. Gene expression studies revealed a constant expression of key markers associated with stemness (Oct 4, Rex 1) and DNA repair enzyme markers, but downregulation occurred with some ectoderm and endoderm markers, demonstrating an irregular and untimely differentiation trail. Our study revealed for the first time that Pb(2+) exposure not only affects the phenotypic characteristics but also induces significant alteration in the differentiation and gene expression in the cells.

  13. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    PubMed

    Vanrell, María Cristina; Losinno, Antonella Denisse; Cueto, Juan Agustín; Balcazar, Darío; Fraccaroli, Laura Virginia; Carrillo, Carolina; Romano, Patricia Silvia

    2017-11-01

    Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients) to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  14. In vivo hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells: Therapeutic effect on liver fibrosis/cirrhosis.

    PubMed

    Zhang, Guo-Zun; Sun, Hui-Cong; Zheng, Li-Bo; Guo, Jin-Bo; Zhang, Xiao-Lan

    2017-12-14

    To investigate the hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and to evaluate their therapeutic effect on liver fibrosis/cirrhosis. A CCl 4 -induced liver fibrotic/cirrhotic rat model was used to assess the effect of hUC-MSCs. Histopathology was assessed by hematoxylin and eosin (H&E), Masson trichrome and Sirius red staining. The liver biochemical profile was measured using a Beckman Coulter analyzer. Expression analysis was performed using immunofluorescent staining, immunohistochemistry, Western blot, and real-time PCR. We demonstrated that the infused hUC-MSCs could differentiate into hepatocytes in vivo . Functionally, the transplantation of hUC-MSCs to CCl 4 -treated rats improved liver transaminases and synthetic function, reduced liver histopathology and reversed hepatobiliary fibrosis. The reversal of hepatobiliary fibrosis was likely due to the reduced activation state of hepatic stellate cells, decreased collagen deposition, and enhanced extracellular matrix remodeling via the up-regulation of MMP-13 and down-regulation of TIMP-1. Transplanted hUC-MSCs could differentiate into functional hepatocytes that improved both the biochemical and histopathologic changes in a CCl 4 -induced rat liver fibrosis model. hUC-MSCs may offer therapeutic opportunities for treating hepatobiliary diseases, including cirrhosis.

  15. In vivo hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells: Therapeutic effect on liver fibrosis/cirrhosis

    PubMed Central

    Zhang, Guo-Zun; Sun, Hui-Cong; Zheng, Li-Bo; Guo, Jin-Bo; Zhang, Xiao-Lan

    2017-01-01

    AIM To investigate the hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and to evaluate their therapeutic effect on liver fibrosis/cirrhosis. METHODS A CCl4-induced liver fibrotic/cirrhotic rat model was used to assess the effect of hUC-MSCs. Histopathology was assessed by hematoxylin and eosin (H&E), Masson trichrome and Sirius red staining. The liver biochemical profile was measured using a Beckman Coulter analyzer. Expression analysis was performed using immunofluorescent staining, immunohistochemistry, Western blot, and real-time PCR. RESULTS We demonstrated that the infused hUC-MSCs could differentiate into hepatocytes in vivo. Functionally, the transplantation of hUC-MSCs to CCl4-treated rats improved liver transaminases and synthetic function, reduced liver histopathology and reversed hepatobiliary fibrosis. The reversal of hepatobiliary fibrosis was likely due to the reduced activation state of hepatic stellate cells, decreased collagen deposition, and enhanced extracellular matrix remodeling via the up-regulation of MMP-13 and down-regulation of TIMP-1. CONCLUSION Transplanted hUC-MSCs could differentiate into functional hepatocytes that improved both the biochemical and histopathologic changes in a CCl4-induced rat liver fibrosis model. hUC-MSCs may offer therapeutic opportunities for treating hepatobiliary diseases, including cirrhosis. PMID:29290652

  16. Morphogen and community effects determine cell fates in response to BMP4 signaling in human embryonic stem cells.

    PubMed

    Nemashkalo, Anastasiia; Ruzo, Albert; Heemskerk, Idse; Warmflash, Aryeh

    2017-09-01

    Paracrine signals maintain developmental states and create cell fate patterns in vivo and influence differentiation outcomes in human embryonic stem cells (hESCs) in vitro Systematic investigation of morphogen signaling is hampered by the difficulty of disentangling endogenous signaling from experimentally applied ligands. Here, we grow hESCs in micropatterned colonies of 1-8 cells ('µColonies') to quantitatively investigate paracrine signaling and the response to external stimuli. We examine BMP4-mediated differentiation in µColonies and standard culture conditions and find that in µColonies, above a threshold concentration, BMP4 gives rise to only a single cell fate, contrary to its role as a morphogen in other developmental systems. Under standard culture conditions BMP4 acts as a morphogen but this requires secondary signals and particular cell densities. We find that a 'community effect' enforces a common fate within µColonies, both in the state of pluripotency and when cells are differentiated, and that this effect allows a more precise response to external signals. Using live cell imaging to correlate signaling histories with cell fates, we demonstrate that interactions between neighbors result in sustained, homogenous signaling necessary for differentiation. © 2017. Published by The Company of Biologists Ltd.

  17. Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages.

    PubMed

    Izzi, Valerio; Chiurchiù, Valerio; D'Aquilio, Fabiola; Palumbo, Camilla; Tresoldi, Ilaria; Modesti, Andrea; Baldini, Patrizia M

    2009-02-01

    Malignant mesothelioma (MM) is a highly fatal tumor arising from inner body membranes, whose extensive growth is facilitated by its week immunogenicity and by its ability to blunt the immune response which should arise from the huge mass of leukocytes typically infiltrating this tumor. It has been reported that the inflammatory infiltrate found in MM tissues is characterized by a high prevalence of macrophages. Thus, in this work we evaluated the ability of human MM cells to modulate the inflammatory phenotype of human THP-1 monocytes and macrophages, a widely used in vitro model of monocyte/macrophage differentiation. Furthermore, we tested the hypothesis that the exposure to MM cells could alter the differentiation of THP-1 monocytes favoring the development of alternatively activated, tumor-supporting macrophages. Our data prove for the first time that MM cells can polarize monocytes towards an altered inflammatory phenotype and macrophages towards an immunosuppressive phenotype. Moreover, we demonstrate that monocytes cocultivated with MM cells 'keep a memory' of their encounter with the tumor which influences their differentiation to macrophages. On the whole, we provide evidence that MM cells exert distinct, cell-specific effects on monocytes and macrophages. The thorough characterization of such effects may be of a crucial importance for the rational design of new immunotherapeutic protocols.

  18. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells

    NASA Astrophysics Data System (ADS)

    Kung, Mei-Lang; Hsieh, Shu-Ling; Wu, Chih-Chung; Chu, Tian-Huei; Lin, Yu-Chun; Yeh, Bi-Wen; Hsieh, Shuchen

    2015-01-01

    Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity.Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05843g

  19. Effects of halobenzoquinone and haloacetic acid water disinfection byproducts on human neural stem cells.

    PubMed

    Fu, Katherine Z; Li, Jinhua; Vemula, Sai; Moe, Birget; Li, Xing-Fang

    2017-08-01

    Human neural stem cells (hNSCs) are a useful tool to assess the developmental effects of various environmental contaminants; however, the application of hNSCs to evaluate water disinfection byproducts (DBPs) is scarce. Comprehensive toxicological results are essential to the prioritization of DBPs for further testing and regulation. Therefore, this study examines the effects of DBPs on the proliferation and differentiation of hNSCs. Prior to DBP treatment, characteristic protein markers of hNSCs from passages 3 to 6 were carefully examined and it was determined that hNSCs passaged 3 or 4 times maintained stem cell characteristics and can be used for DBP analysis. Two regulated DBPs, monobromoacetic acid (BAA) and monochloroacetic acid (CAA), and two emerging DBPs, 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ) and 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), were chosen for hNSC treatment. Both 2,6-DBBQ and 2,6-DCBQ induced cell cycle arrest at S-phase at concentrations up to 1μmol/L. Comparatively, BAA and CAA at 0.5μmol/L affected neural differentiation. These results suggest DBP-dependent effects on hNSC proliferation and differentiation. The DBP-induced cell cycle arrest and inhibition of normal hNSC differentiation demonstrate the need to assess the developmental neurotoxicity of DBPs. Copyright © 2017. Published by Elsevier B.V.

  20. Propylthiouracil, independent of its antithyroid effect, promotes vascular smooth muscle cells differentiation via PTEN induction.

    PubMed

    Chen, Wei-Jan; Pang, Jong-Hwei S; Lin, Kwang-Huei; Lee, Dany-Young; Hsu, Lung-An; Kuo, Chi-Tai

    2010-01-01

    Propylthiouracil (PTU), independent of its antithyroid effect, is recently found to have an antiatherosclerotic effect. The aim of this study is to determine the impact of PTU on phenotypic modulation of vascular smooth muscle cells (VSMCs), as phenotypic modulation may contribute to the growth of atherosclerotic lesions and neointimal formation after arterial injury. Propylthiouracil reduced neointimal formation in balloon-injured rat carotid arteries. In vitro, PTU may convert VSMCs from a serum-induced dedifferentiation state to a differentiated state, as indicated by a spindle-shaped morphology and an increase in the expression of SMC differentiation marker contractile proteins, including calponin and smooth muscle (SM)-myosin heavy chain (SM-MHC). Transient transfection studies in VSMCs demonstrated that PTU induced the activity of SMC marker genes (calponin and SM-MHC) promoters, indicating that PTU up-regulates these genes expression predominantly at the transcriptional level. Furthermore, PTU enhanced the expression of PTEN and inhibition of PTEN by siRNA knockdown blocked PTU-induced activation of contractile proteins expression and promoter activity. In the rat carotid injury model, PTU reversed the down-regulation of contractile proteins and up-regulated PTEN in the neointima induced by balloon injury. Propylthiouracil promotes VSMC differentiation, at lest in part, via induction of the PTEN-mediated pathway. These findings suggest a possible mechanism by which PTU may contribute to its beneficial effects on atherogenesis and neointimal formation after arterial injury.

  1. miR-195 inhibited abnormal activation of osteoblast differentiation in MC3T3-E1 cells via targeting RAF-1.

    PubMed

    Chao, Chen; Li, Feng; Tan, Zhiping; Zhang, Weizhi; Yang, Yifeng; Luo, Cheng

    2018-01-15

    Recent reports have demonstrated that RAF-1 L613V (a mutant of RAF-1) mutant mice show bone deformities similar to Noonan syndrome. It has been suggested that RAF-1 L613V might abnormally activate osteoblast differentiation of MC3T3-E1 cells. To demonstrate that RAF-1 is associated with bone deformity and that RAF-1 L613V dependent bone deformity could be inhibited by microRNA-195 (miR-195), we first investigated the amplifying influence of wild-type RAF-1 (WT) or RAF-1 L613V (L613V) on the viability and differentiation of MC3T3-E1 cells induced by bone morphogenetic protein-2 (BMP-2) via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. Subsequently, we investigated the blocking effect and its mechanism of miR-195 for abnormal activation of osteoblast differentiation of MC3T3-E1 cells via targeting RAF-1. RAF-1, especially RAF-1 L613V , abnormally activates osteoblast differentiation of MC3T3-E1 cells induced by BMP-2. Meanwhile, miR-195 could inhibit the cell viability and differentiation of MC3T3-E1 cells. Transfection of miR-195 largely suppressed the L613V-induced viability and osteoblast differentiation of MC3T3-E1 cells and attenuated the accelerative effect of L613V on runt-related transcription factor-2 (Runx2), Osterix (OSX), alkaline phosphatase (ALP), osteocalcin (OCN), and distal-less homeobox 5 (DLX5) osteogenic gene expressions. In addition, miR-195 decreased the expression of RAF-1 mRNA and protein by directly targeting the 3'-untranslated regions (3'-UTR) of RAF-1 mRNA in MC3T3-E1 cells. Our findings indicated that miR-195 inhibited WT and L613V RAF-1 induced hyperactive osteoblast differentiation in MC3T3-E1 cells by targeting RAF-1. miR-195 might be a novel therapeutic agent for the treatment of L613V-induced bone deformity in Noonan syndrome. Copyright © 2017. Published by Elsevier Inc.

  2. Differential effect of denervation on free radical scavenging enzymes in slow and fast muscle of rat

    NASA Technical Reports Server (NTRS)

    Asayama, K.; Dettbarn, W. D.; Burr, I. M.

    1985-01-01

    To determine the effect of denervation on the free radical scavenging systems in relation to the mitochondrial oxidative metabolism in the slow twitch soleus and fast twitch extensor digitorum longus (EDL) muscles, the sciatic nerve of the rat was crushed in the mid-thigh region and the muscle tissue levels of 5 enzymes were studied 2 and 5 weeks following crush. Radioimmunoassays were utilized for the selective measurement of cuprozinc (cytosolic) and mangano (mitochondrial) superoxide dismutases. These data represent the first systematic report of free radical scavening systems in slow and fast muscles in response to denervation. Selective modification of cuprozinc and manganosuperoxide dismutases and differential regulation of GSH-peroxidase was demonstrated in slow and fast muscle.

  3. Spatial training promotes short-term survival and neuron-like differentiation of newborn cells in Aβ1-42-injected rats.

    PubMed

    Zeng, Juan; Jiang, Xia; Hu, Xian-Feng; Ma, Rong-Hong; Chai, Gao-Shang; Sun, Dong-Sheng; Xu, Zhi-Peng; Li, Li; Bao, Jian; Feng, Qiong; Hu, Yu; Chu, Jiang; Chai, Da-Min; Hong, Xiao-Yue; Wang, Jian-Zhi; Liu, Gong-Ping

    2016-09-01

    Neurogenesis plays a role in hippocampus-dependent learning and impaired neurogenesis may correlate with cognitive deficits in Alzheimer's disease. Spatial training influences the production and fate of newborn cells in hippocampus of normal animals, whereas the effects on neurogenesis in Alzheimer-like animal are not reported until now. Here, for the first time, we investigated the effect of Morris water maze training on proliferation, survival, apoptosis, migration, and differentiation of newborn cells in β-amyloid-treated Alzheimer-like rats. We found that spatial training could preserve a short-term survival of newborn cells generated before training, during the early phase, and the late phase of training. However, the training had no effect on the long-term survival of mature newborn cells generated at previously mentioned 3 different phases. We also demonstrated that spatial training promoted newborn cell differentiation preferentially to the neuron direction. These findings suggest a time-independent neurogenesis induced by spatial training, which may be indicative for the cognitive stimulation in Alzheimer's disease therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Differential tolerance to biological and subjective effects of four closely spaced doses of N,N-dimethyltryptamine in humans.

    PubMed

    Strassman, R J; Qualls, C R; Berg, L M

    1996-05-01

    Tolerance of the behavioral effects of the short-acting, endogenous hallucinogen, N,N-dimethyltryptamine (DMT) is seen inconsistently in animals, and has not been produced in humans. The nature and time course of responses to repetitive, closely spaced administrations of an hallucinogenic dose of DMT were characterized. Thirteen experienced hallucinogen users received intravenous 0.3 mg/kg DMT fumarate, or saline placebo, four times, at 30 min intervals, on 2 separate days, in a randomized, double-blind, design. Tolerance to "psychedelic" subjective effects did not occur according to either clinical interview or Hallucinogen Rating Scale scores. Adrenocorticotropic hormone (ACTH), prolactin, cortisol, and heart rate responses decreased with repeated DMT administration, although blood pressure did not. These data demonstrate the unique properties of DMT relative to other hallucinogens and underscore the differential regulation of the multiple processes mediating the effects of DMT.

  5. Thrombospondin-4 Promotes Neuronal Differentiation of NG2 Cells via the ERK/MAPK Pathway.

    PubMed

    Yang, Hai Jie; Ma, Shuang Ping; Ju, Fei; Zhang, Ya Ping; Li, Zhi Chao; Zhang, Bin Bin; Lian, Jun Jiang; Wang, Lei; Cheng, Bin Feng; Wang, Mian; Feng, Zhi Wei

    2016-12-01

    NG2-expressing neural progenitors can produce neurons in the central nervous system, providing a potential cell resource of therapy for neurological disorders. However, the mechanism underlying neuronal differentiation of NG2 cells remains largely unknown. In this report, we found that a thrombospondin (TSP) family member, TSP4, is involved in the neuronal differentiation of NG2 cells. When TSP4 was overexpressed, NG2 cells underwent spontaneous neuronal differentiation, as demonstrated by the induction of various neuronal differentiation markers such as NeuN, Tuj1, and NF200, at the messenger RNA and protein levels. In contrast, TSP4 silencing had an opposite effect on the expression of neuronal differentiation markers in NG2 cells. Next, the signaling pathway responsible for TSP4-mediated NG2 cell differentiation was investigated. We found that ERK but not p38 and AKT signaling was affected by TSP4 overexpression. Furthermore, when ERK signaling was blocked by the inhibitor U0126, the neuronal marker expression of NG2 cells was substantially increased. Together, these findings suggested that TSP4 promoted neuronal differentiation of NG2 cells by inhibiting ERK/MAPK signaling, revealing a novel role of TSP4 in cell fate specification of NG2 cells.

  6. Interleukin-32 induces the differentiation of monocytes into macrophage-like cells.

    PubMed

    Netea, Mihai G; Lewis, Eli C; Azam, Tania; Joosten, Leo A B; Jaekal, Jun; Bae, Su-Young; Dinarello, Charles A; Kim, Soo-Hyun

    2008-03-04

    After emigration from the bone marrow to the peripheral blood, monocytes enter tissues and differentiate into macrophages, the prototype scavenger of the immune system. By ingesting and killing microorganisms and removing cellular debris, macrophages also process antigens as a first step in mounting a specific immune response. IL-32 is a cytokine inducing proinflammatory cytokines and chemokines via p38-MAPK and NF-kappaB. In the present study, we demonstrate that IL-32 induces differentiation of human blood monocytes as well as THP-1 leukemic cells into macrophage-like cells with functional phagocytic activity for live bacteria. Muramyl dipepide (MDP), the ligand for the intracellular nuclear oligomerization domain (NOD) 2 receptor, has no effect on differentiation alone but augments the monocyte-to-macrophage differentiation by IL-32. Unexpectedly, IL-32 reversed GM-CSF/IL-4-induced dendritic cell differentiation to macrophage-like cells. Whereas the induction of TNFalpha, IL-1beta, and IL-6 by IL-32 is mediated by p38-MAPK, IL-32-induced monocyte-to-macrophage differentiation is mediated through nonapoptotic, caspase-3-dependent mechanisms. Thus, IL-32 not only contributes to host responses through the induction of proinflammatory cytokines but also directly affects specific immunity by differentiating monocytes into macrophage-like cells.

  7. Endothelium trans differentiated from Wharton's jelly mesenchymal cells promote tissue regeneration: potential role of soluble pro-angiogenic factors.

    PubMed

    Aguilera, Valeria; Briceño, Luis; Contreras, Hector; Lamperti, Liliana; Sepúlveda, Esperanza; Díaz-Perez, Francisca; León, Marcelo; Veas, Carlos; Maura, Rafael; Toledo, Jorge Roberto; Fernández, Paulina; Covarrubias, Ambart; Zuñiga, Felipe Andrés; Radojkovic, Claudia; Escudero, Carlos; Aguayo, Claudio

    2014-01-01

    Mesenchymal stem cells have a high capacity for trans-differentiation toward many adult cell types, including endothelial cells. Feto-placental tissue, such as Wharton's jelly is a potential source of mesenchymal stem cells with low immunogenic capacity; make them an excellent source of progenitor cells with a potential use for tissue repair. We evaluated whether administration of endothelial cells derived from mesenchymal stem cells isolated from Wharton's jelly (hWMSCs) can accelerate tissue repair in vivo. Mesenchymal stem cells were isolated from human Wharton's jelly by digestion with collagenase type I. Endothelial trans-differentiation was induced for 14 (hWMSC-End14d) and 30 (hWMSC-End30d) days. Cell phenotyping was performed using mesenchymal (CD90, CD73, CD105) and endothelial (Tie-2, KDR, eNOS, ICAM-1) markers. Endothelial trans-differentiation was demonstrated by the expression of endothelial markers and their ability to synthesize nitric oxide (NO). hWMSCs can be differentiated into adipocytes, osteocytes, chondrocytes and endothelial cells. Moreover, these cells show high expression of CD73, CD90 and CD105 but low expression of endothelial markers prior to differentiation. hWMSCs-End express high levels of endothelial markers at 14 and 30 days of culture, and also they can synthesize NO. Injection of hWMSC-End30d in a mouse model of skin injury significantly accelerated wound healing compared with animals injected with undifferentiated hWMSC or injected with vehicle alone. These effects were also observed in animals that received conditioned media from hWMSC-End30d cultures. These results demonstrate that mesenchymal stem cells isolated from Wharton's jelly can be cultured in vitro and trans-differentiated into endothelial cells. Differentiated hWMSC-End may promote neovascularization and tissue repair in vivo through the secretion of soluble pro-angiogenic factors.

  8. Effects of Leucine Supplementation and Serum Withdrawal on Branched-Chain Amino Acid Pathway Gene and Protein Expression in Mouse Adipocytes

    PubMed Central

    Vivar, Juan C.; Knight, Megan S.; Pointer, Mildred A.; Gwathmey, Judith K.; Ghosh, Sujoy

    2014-01-01

    The essential branched-chain amino acids (BCAA), leucine, valine and isoleucine, are traditionally associated with skeletal muscle growth and maintenance, energy production, and generation of neurotransmitter and gluconeogenic precursors. Recent evidence from human and animal model studies has established an additional link between BCAA levels and obesity. However, details of the mechanism of regulation of BCAA metabolism during adipogenesis are largely unknown. We interrogated whether the expression of genes and proteins involved in BCAA metabolism are sensitive to the adipocyte differentiation process, and responsive to nutrient stress from starvation or BCAA excess. Murine 3T3-L1 preadipocytes were differentiated to adipocytes under control conditions and under conditions of L-leucine supplementation or serum withdrawal. RNA and proteins were isolated at days 0, 4 and 10 of differentiation to represent pre-differentiation, early differentiation and late differentiation stages. Expression of 16 BCAA metabolism genes was quantified by quantitative real-time PCR. Expression of the protein levels of branched-chain amino acid transaminase 2 (Bcat2) and branched-chain alpha keto acid dehydrogenase (Bckdha) was quantified by immunoblotting. Under control conditions, all genes displayed induction of gene expression during early adipogenesis (Day 4) compared to Day 0. Leucine supplementation resulted in an induction of Bcat2 and Bckdha genes during early and late differentiation. Western blot analysis demonstrated condition-specific concordance between gene and protein expression. Serum withdrawal resulted in undetectable Bcat2 and Bckdha protein levels at all timepoints. These results demonstrate that the expression of genes related to BCAA metabolism are regulated during adipocyte differentiation and influenced by nutrient levels. These results provide additional insights on how BCAA metabolism is associated with adipose tissue function and extends our understanding of the transcriptomic response of this pathway to variations in nutrient availability. PMID:25050624

  9. Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway.

    PubMed

    Wu, Xin; Dou, Yannong; Yang, Yan; Bian, Difei; Luo, Jinque; Tong, Bei; Xia, Yufeng; Dai, Yue

    2015-08-15

    Arctigenin, the main effective constituent of Arctium lappa L. fruit, has previously been proven to dramatically attenuate dextran sulfate sodium (DSS)-induced colitis in mice, a frequently used animal model of inflammatory bowel disease (IBD). As Th1 and Th17 cells play a crucial role in the pathogenesis of IBD, the present study addressed whether and how arctigenin exerted anti-colitis efficacy by interfering with the differentiation and activation of Th1/Th17 cells. In vitro, arctigenin was shown to markedly inhibit the differentiation of Th17 cells from naïve T cells, and moderately inhibit the differentiation of Th1 cells, which was accompanied by lowered phosphorylation of STAT3 and STAT4, respectively. In contrast, arctigenin was lack of marked effect on the differentiation of either Th2 or regulatory T cells. Furthermore, arctigenin was shown to suppress the mammalian target of rapamycin complex 1 (mTORC1) pathway in T cells as demonstrated by down-regulated phosphorylation of the downstream target genes p70S6K and RPS6, and it functioned independent of two well-known upstream kinases PI3K/AKT and ERK. Arctigenin was also able to inhibit the activity of mTORC1 by dissociating raptor from mTOR. Interestingly, the inhibitory effect of arctigenin on T cell differentiation disappeared under a status of mTORC1 overactivation via knockdown of tuberous sclerosis complex 2 (TSC2, a negative regulator of mTORC1) or pretreatment of leucine (an agonist of mTOR). In DSS-induced mice, the inhibition of Th1/Th17 responses and anti-colitis effect of arctigenin were abrogated by leucine treatment. In conclusion, arctigenin ameliorates colitis through down-regulating the differentiation of Th1 and Th17 cells via mTORC1 pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Icaritin induces MC3T3-E1 subclone14 cell differentiation through estrogen receptor-mediated ERK1/2 and p38 signaling activation.

    PubMed

    Wu, Zhidi; Ou, Ling; Wang, Chaopeng; Yang, Li; Wang, Panpan; Liu, Hengrui; Xiong, Yingquan; Sun, Kehuan; Zhang, Ronghua; Zhu, Xiaofeng

    2017-10-01

    Icaritin (ICT), a hydrolytic product of icariin from the genus Epimedium, has many indicated pharmacological and biological activities. Several studies have shown that ICT has potential osteoprotective effects, including stimulation of osteoblast differentiation and inhibition of osteoclast differentiation. However, the molecular mechanism for this anabolic action of ICT remains largely unknown. Here, we found that ICT could enhance MC3T3-E1 subclone 14 preosteoblastic cell differentiation associated with increased mRNA levels and protein expression of the differentiation markers alkaline phosphatase (ALP), type 1 collagen (COL1), osteocalcin (OC), osteoponin (OPN) and runt-related transcription factor 2 (RUNX2), and improved mineralization, confirmed by bone nodule formation and collagen synthesis. To characterize the underlying mechanisms, we examined the effect of ICT on estrogen receptor (ER) and mitogen-activated protein kinase (MAPK) signaling. ICT treatment induced p38 kinase and extracellular signal-regulated kinase 1/2 (ERK1/2) activation, but it demonstrated at the same time point no effect on activation of c-Jun N-terminal kinase (JNK). ER antagonist ICI182780, p38 antagonist SB203580 and ERK1/2 antagonist PD98059 markedly inhibited the ICT-induced the mRNA expression of ALP, COL1, OC and OPN. ICI182780 attenuated the ICT-induced phosphorylation of p38 and ERK1/2. These observations indicate a potential mechanism of osteogenic effects of ICT involving the ERK1/2 and p38 pathway activation through the ER. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells.

    PubMed

    Luciani, Paola; Deledda, Cristiana; Benvenuti, Susanna; Squecco, Roberta; Cellai, Ilaria; Fibbi, Benedetta; Marone, Ilaria Maddalena; Giuliani, Corinna; Modi, Giulia; Francini, Fabio; Vannelli, Gabriella Barbara; Peri, Alessandro

    2013-01-01

    Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R), thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i) the evaluation of neurite-like protrusions in 3D cell cultures, ii) the analysis of the expression of neuronal markers and iii) electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties.

  12. Prostaglandin reductase-3 negatively modulates adipogenesis through regulation of PPARγ activity[S

    PubMed Central

    Yu, Yu-Hsiang; Chang, Yi-Cheng; Su, Tseng-Hsiung; Nong, Jiun-Yi; Li, Chao-Chin; Chuang, Lee-Ming

    2013-01-01

    Adipocyte differentiation is a multistep program under regulation by several factors. Peroxisome proliferator-activated receptor γ (PPARγ) serves as a master regulator of adipogenesis. However, the endogenous ligand for PPARγ remained elusive until 15-keto-PGE2 was identified recently as an endogenous PPARγ ligand. In this study, we demonstrate that zinc-containing alcohol dehydrogenase 2 (ZADH2; here termed prostaglandin reductase-3, PTGR-3) is a new member of prostaglandin reductase family that converts 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. Adipogenesis is accelerated when endogenous PTGR-3 is silenced in 3T3-L1 preadipocytes, whereas forced expression of PTGR-3 significantly decreases adipogenesis. PTGR-3 expression decreased during adipocyte differentiation, accompanied by an increased level of 15-keto-PGE2. 15-keto-PGE2 exerts a potent proadipogenic effect by enhancing PPARγ activity, whereas overexpression of PTGR-3 in 3T3-L1 preadipocytes markedly suppressed the proadipogenic effect of 15-keto-PGE2 by repressing PPARγ activity. Taken together, these findings demonstrate for the first time that PTGR-3 is a novel 15-oxoprostaglandin-Δ13-reductase and plays a critical role in modulation of normal adipocyte differentiation via regulation of PPARγ activity. Thus, modulation of PTGR-3 might provide a novel avenue for treating obesity and related metabolic disorders. PMID:23821743

  13. Microstructural changes to the brain of mice after methamphetamine exposure as identified with diffusion tensor imaging.

    PubMed

    McKenna, Benjamin S; Brown, Gregory G; Archibald, Sarah; Scadeng, Miriam; Bussell, Robert; Kesby, James P; Markou, Athina; Soontornniyomkij, Virawudh; Achim, Cristian; Semenova, Svetlana

    2016-03-30

    Methamphetamine (METH) is an addictive psychostimulant inducing neurotoxicity. Human magnetic resonance imaging and diffusion tensor imaging (DTI) of METH-dependent participants find various structural abnormities. Animal studies demonstrate immunohistochemical changes in multiple cellular pathways after METH exposure. Here, we characterized the long-term effects of METH on brain microstructure in mice exposed to an escalating METH binge regimen using in vivo DTI, a methodology directly translatable across species. Results revealed four patterns of differential fractional anisotropy (FA) and mean diffusivity (MD) response when comparing METH-exposed (n=14) to saline-treated mice (n=13). Compared to the saline group, METH-exposed mice demonstrated: 1) decreased FA with no change in MD [corpus callosum (posterior forceps), internal capsule (left), thalamus (medial aspects), midbrain], 2) increased MD with no change in FA [posterior isocortical regions, caudate-putamen, hypothalamus, cerebral peduncle, internal capsule (right)], 3) increased FA with decreased MD [frontal isocortex, corpus callosum (genu)], and 4) increased FA with no change or increased MD [hippocampi, amygdala, lateral thalamus]. MD was negatively associated with calbindin-1 in hippocampi and positively with dopamine transporter in caudate-putamen. These findings highlight distributed and differential METH effects within the brain suggesting several distinct mechanisms. Such mechanisms likely change brain tissue differentially dependent upon neural location. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Astrocytes reverted to a neural progenitor-like state with transforming growth factor alpha are sensitized to cancerous transformation

    PubMed Central

    Dufour, Christelle; Cadusseau, Josette; Varlet, Pascale; Surena, Anne-Laure; De Faria, Giselle P; Dias-Morais, Amelie; Auger, Nathalie; Léonard, Nadine; Daudigeos, Estelle; Dantas-Barbosa, Carmela; Grill, Jacques; Lazar, Vladimir; Dessen, Philippe; Vassal, Gilles; Prevot, Vincent; Sharif, Ariane; Chneiweiss, Hervé; Junier, Marie-Pierre

    2009-01-01

    Gliomas, the most frequent primitive CNS tumors, have been suggested to originate from astrocytes or from neural progenitors/stem cells. However, the precise identity of the cells at the origin of gliomas remains a matter of debate because no pre-neoplastic state has been yet identified. TGFα, an EGF family member, is frequently over-expressed in the early stages of glioma progression. We previously demonstrated that prolonged exposure of astrocytes to TGFα is sufficient to trigger their reversion to a neural progenitor-like state. To determine whether TGFα de-differentiating effects are associated with cancerous transforming effects, we grafted intra-cerebrally de-differentiated astrocytes. We show that these cells had the same cytogenomic profile as astrocytes, survived in vivo and did not give birth to tumors. When astrocytes de-differentiated with TGFα were submitted to oncogenic stress using gamma irradiation, they acquired cancerous properties: they were immortalized, showed cytogenomic abnormalities, and formed high-grade glioma-like tumors after brain grafting. In contrast, irradiation did not modify the lifespan of astrocytes cultivated in serum-free medium. Addition of TGFα after irradiation did not promote their transformation but decreased their lifespan. These results demonstrate that reversion of mature astrocytes to an embryonic state without genomic manipulation is sufficient to sensitize them to oncogenic stress. PMID:19544474

  15. Effect of Different Titanium Surfaces on Maturation of Murine Bone Marrow-Derived Dendritic Cells

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaofei; Zhou, Fengjuan; Gu, Yifei; Duan, Xiaobo; Mo, Anchun

    2017-02-01

    Dendritic cells (DCs) play a pivotal role in the host response to implanted biomaterials. Osseointegration of titanium (Ti) implant is an immunological and inflammatory-driven process. However, the role of DCs in this complex process is largely unknown. This study aimed to investigate the effect of different Ti surfaces on DC maturation, and evaluate its subsequent potential on osteogenic differentiation of preosteoblasts. Murine bone marrow-derived DCs were seeded on Ti disks with different surface treatments, including pretreatment (PT), sandblasted/acid-etched (SLA) and modified SLA (modSLA) surface. Compared with DCs cultured on PT and SLA surfaces, the cells seeded on modSLA surface demonstrated a more round morphology with lower expression of CD86 and MHC-II, the DC maturation markers. Those cells also secreted high levels of anti-inflammatory cytokine IL-10 and TGF-β. Notably, addition of conditioned medium (CM) from modSLA-induced DCs significantly increased the mRNA expression of Runx2 and ALP as well as ALP activity by murine preosteoblast MC3T3-E1 cells. Our data demonstrated that Ti disks with different surfaces lead to differential DCs responses. PT and SLA surfaces induce DCs mature, while DCs seeded on modSLA-Ti surface maintain an immature phenotype and exhibit a potential of promoting osteogenic differentiation of MC3T3-E1 cells.

  16. Comparative Phytochemical Analysis of Essential Oils from Different Biological Parts of Artemisia herba alba and Their Cytotoxic Effect on Cancer Cells.

    PubMed

    Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid

    2015-01-01

    Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Essential oils were studied by gas chromatography coupled to mass spectrometry (GC-MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used.

  17. Kepler Mission: End-to-End System Demonstration

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, D.; Dunham, E.; Jenkins, J.; Witteborn, F.; Updike, T.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A test facility has been constructed to demonstrate the capability of differential ensemble photometry to detect transits of Earth-size planets orbiting solar-like stars. The main objective is to determine the effects of various noise sources on the capability of a CCD photometer to maintain a system relative precision of 1 x $10^(-5)$ for mv = 12 stars in the presence of system-induced noise sources. The facility includes a simulated star field, fast optics to simulate the telescope, a thinned back-illuminated CCD similar to those to be used on the spacecraft and computers to perform the onboard control, data processing and extraction. The test structure is thermally and mechanically isolated so that each source of noise can be introduced in a controlled fashion and evaluated for its contribution to the total noise budget. The effects of pointing errors or a changing thermal environment are imposed by piezo-electric devices. Transits are injected by heating small wires crossing apertures in the star plate. Signals as small as those from terrestrial-size transits of solar-like stars are introduced to demonstrate that such planets can be detected under realistic noise conditions. Examples of imposing several noise sources and the resulting detectabilities are presented. These show that a differential ensemble photometric approach CCD photometer can readily detect signals associated with Earth-size transits.

  18. Differential activation of Fyn kinase distinguishes saturated and unsaturated fats in mouse macrophages.

    PubMed

    Tarabra, Elena; An Lee, Ting-Wen; Zammit, Victor A; Vatish, Manu; Yamada, Eijiro; Pessin, Jeffrey E; Bastie, Claire C

    2017-10-17

    Diet-induced obesity is associated with increased adipose tissue activated macrophages. Yet, how macrophages integrate fatty acid (FA) signals remains unclear. We previously demonstrated that Fyn deficiency ( fynKO ) protects against high fat diet-induced adipose tissue macrophage accumulation. Herein, we show that inflammatory markers and reactive oxygen species are not induced in fynKO bone marrow-derived macrophages exposed to the saturated FA palmitate, suggesting that Fyn regulates macrophage function in response to FA signals. Palmitate activates Fyn and re-localizes Fyn into the nucleus of RAW264.7, J774 and wild-type bone marrow-derived macrophages. Similarly, Fyn activity is increased in cells of adipose tissue stromal vascular fraction of high fat-fed control mice, with Fyn protein being located in the nucleus of these cells. We demonstrate that Fyn modulates palmitate-dependent oxidative stress in macrophages. Moreover, Fyn catalytic activity is necessary for its nuclear re-localization and downstream effects, as Fyn pharmacological inhibition abolishes palmitate-induced Fyn nuclear redistribution and palmitate-dependent increase of oxidative stress markers. Importantly, mono-or polyunsaturated FAs do not activate Fyn, and fail to re-localize Fyn to the nucleus. Together these data demonstrate that macrophages integrate nutritional FA signals via a differential activation of Fyn that distinguishes, at least partly, the effects of saturated versus unsaturated fats.

  19. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells

    PubMed Central

    KIM, JAE-HYUN; KIM, EUN-YOUNG; LEE, BINA; MIN, JU-HEE; SONG, DEA-UK; LIM, JEONG-MIN; EOM, JI WHAN; YEOM, MIJUNG; JUNG, HYUK-SANG; SOHN, YOUNGJOO

    2016-01-01

    Post-menopausal osteoporosis is a serious age-related disease. After the menopause, estrogen deficiency is common, and excessive osteoclast activity causes osteoporosis. Osteoclasts are multinucleated cells generated from the differentiation of monocyte/macrophage precursor cells such as RAW 264.7 cells. The water extract of Lycii Radicis Cortex (LRC) is made from the dried root bark of Lycium chinense Mill. and is termed 'Jigolpi' in Korea. Its effects on osteoclastogenesis and post-menopausal osteoporosis had not previously been tested. In the present study, the effect of LRC on receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation was demonstrated using a tartrate-resistant acid phosphatase (TRAP) assay and pit formation assay. Moreover, in order to analyze molecular mechanisms, we studied osteoclastogenesis-related markers such as nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, receptor activator of NF-κB (RANK), TRAP, cathepsin K (CTK), matrix metallopeptidase-9 (MMP-9), calcitonin receptor (CTR) and carbonic anhydrase II (CAII) using RT-qPCR and western blot analysis. Additionally, we also determined the effect of LRC on an ovariectomized (OVX) rat model. We noted that LRC inhibited RANKL-induced osteoclast differentiation via suppressing osteoclastogenesis-related markers. It also inhibited osteoporosis in the OVX rat model by decreasing loss of bone density and trabecular area. These results suggest that LRC exerts a positive effect on menopausal osteoporosis. PMID:26848104

  20. Effect of pirfenidone on proliferation, TGF-β-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts.

    PubMed

    Conte, Enrico; Gili, Elisa; Fagone, Evelina; Fruciano, Mary; Iemmolo, Maria; Vancheri, Carlo

    2014-07-16

    Pirfenidone is an orally active small molecule that has been shown to inhibit the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis. Although pirfenidone exhibits well documented antifibrotic and antiinflammatory activities, in vitro and in vivo, its molecular targets and mechanisms of action have not been elucidated. In this study, we investigated the effects of pirfenidone on proliferation, TGF-β-induced differentiation and fibrogenic activity of primary human lung fibroblasts (HLFs). Pirfenidone reduced fibroblast proliferation and attenuated TGF-β-induced α-smooth muscle actin (SMA) and pro-collagen (Col)-I mRNA and protein levels. Importantly, pirfenidone inhibited TGF-β-induced phosphorylation of Smad3, p38, and Akt, key factors in the TGF-β pathway. Together, these results demonstrate that pirfenidone modulates HLF proliferation and TGF-β-mediated differentiation into myofibroblasts by attenuating key TGF-β-induced signaling pathways. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Direct effects of mitochondrial dysfunction on poor bone health in Leigh syndrome.

    PubMed

    Kato, Hiroki; Han, Xu; Yamaza, Haruyoshi; Masuda, Keiji; Hirofuji, Yuta; Sato, Hiroshi; Pham, Thanh Thi Mai; Taguchi, Tomoaki; Nonaka, Kazuaki

    2017-11-04

    Mitochondrial diseases are the result of aberrant mitochondrial function caused by mutations in either nuclear or mitochondrial DNA. Poor bone health has recently been suggested as a symptom of mitochondrial diseases; however, a direct link between decreased mitochondrial function and poor bone health in mitochondrial disease has not been demonstrated. In this study, stem cells from human exfoliated deciduous teeth (SHED) were isolated from a child with Leigh syndrome (LS), a mitochondrial disease, and the effects of decreased mitochondrial function on poor bone health were analyzed. Compared with control SHED, LS SHED displayed decreased osteoblastic differentiation and calcium mineralization. The intracellular and mitochondrial calcium levels were lower in LS SHED than in control SHED. Furthermore, the mitochondrial activity of LS SHED was decreased compared with control SHED both with and without osteoblastic differentiation. Our results indicate that decreased osteoblast differentiation potential and osteoblast function contribute to poor bone health in mitochondrial diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effects of keratinocyte growth factor on skin epithelial differentiation of human amnion epithelial cells.

    PubMed

    Fatimah, Simat Siti; Tan, Geok Chin; Chua, Kienhui; Tan, Ay Eeng; Nur Azurah, Abdul Ghani; Hayati, Abdul Rahman

    2013-08-01

    The aim of the present study was to determine the effects of KGF on the differentiation of cultured human amnion epithelial cells (HAECs) towards skin keratinocyte. HAECs at passage 1 were cultured in medium HAM's F12: Dulbecco's Modified Eagles Medium (1:1) supplemented with different concentrations of KGF (0, 5, 10, 20, 30 and 50 ng/ml KGF). Dose-response of KGF on HAECs was determined by morphological assessment; growth kinetic evaluation; immunocytochemical analysis; stemness and epithelial gene expression quantification with two step real time RT-PCR. KGF promotes the proliferation of HAECs with maximal effect observed at 10 ng/ml KGF. However, KGF decreased the stemness genes expression: Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4, FZD-9 and BST-1. KGF also down-regulates epithelial genes expression: CK3, CK18, CK19, Integrin-β1, p63 and involucrin in cultured HAECs. No significant difference on the gene expression was detected for each Nestin, ABCG-2, CK1 and CK14 in KGF-treated HAECs. Immunocytochemical analysis for both control and KGF-treated HAECs demonstrated positive staining against CK14 and CK18 but negative staining against involucrin. The results suggested that KGF stimulates an early differentiation of HAECs towards epidermal cells. Differentiation of KGF-treated HAECs to corneal lineage is unfavourable. Therefore, further studies are needed to elucidate the roles of KGF in the differentiation of HAECs towards skin keratinocytes. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  3. Effect of essential amino acids on enteroids: Methionine deprivation suppresses proliferation and affects differentiation in enteroid stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Yuki; Iwatsuki, Ken; Hanyu, Hikaru

    We investigated the effects of essential amino acids on intestinal stem cell proliferation and differentiation using murine small intestinal organoids (enteroids) from the jejunum. By selectively removing individual essential amino acids from culture medium, we found that 24 h of methionine (Met) deprivation markedly suppressed cell proliferation in enteroids. This effect was rescued when enteroids cultured in Met deprivation media for 12 h were transferred to complete medium, suggesting that Met plays an important role in enteroid cell proliferation. In addition, mRNA levels of the stem cell marker leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) decreased in enteroids grown in Met deprivationmore » conditions. Consistent with this observation, Met deprivation also attenuated Lgr5-EGFP fluorescence intensity in enteroids. In contrast, Met deprivation enhanced mRNA levels of the enteroendocrine cell marker chromogranin A (ChgA) and markers of K cells, enterochromaffin cells, goblet cells, and Paneth cells. Immunofluorescence experiments demonstrated that Met deprivation led to an increase in the number of ChgA-positive cells. These results suggest that Met deprivation suppresses stem cell proliferation, thereby promoting differentiation. In conclusion, Met is an important nutrient in the maintenance of intestinal stem cells and Met deprivation potentially affects cell differentiation. - Highlights: • Met influences the proliferation of enteroids. • Met plays a crucial role in the maintenance of stem cells. • Met deprivation potentially promotes differentiation into secretory cells.« less

  4. Field Effect Flow Control in a Polymer T-Intersection Microfluidic Network

    NASA Technical Reports Server (NTRS)

    Sniadecki, Nathan J.; Chang, Richard; Beamesderfer, Mike; Lee, Cheng S.; DeVoe, Don L.

    2003-01-01

    We present a study of induced pressure pumping in a polymer microchannel due to differential electroosmotic flow @OF) rates via field-effect flow control (FEFC). The experimental results demonstrate that the induced pressure pumping is dependent on the distance of the FEFC gate from the cathodic gate. A proposed flow model based on a linearly-decaying zeta potential profile is found to successfully predict experimental trends.

  5. Bidirectional negative differential thermal resistance in three-segment Frenkel-Kontorova lattices.

    PubMed

    Ou, Ya-Li; Lu, Shi-Cai; Hu, Cai-Tian; Ai, Bao-Quan

    2016-12-14

    By coupling three nonlinear 1D lattice segments, we demonstrate a thermal insulator model, where the system acts like an insulator for large temperature bias and a conductor for very small temperature bias. We numerically investigate the parameter range of the thermal insulator and find that the nonlinear response (the role of on-site potential), the weakly coupling interaction between each segment, and the small system size collectively contribute to the appearance of bidirectional negative differential thermal resistance (BNDTR). The corresponding exhibition of BNDTR can be explained in terms of effective phonon-band shifts. Our results can provide a new perspective for understanding the microscopic mechanism of negative differential thermal resistance and also would be conducive to further developments in designing and fabricating thermal devices and functional materials.

  6. Teaching a Child with Autism to Mand for Information Using "How"

    ERIC Educational Resources Information Center

    Shillingsburg, M. Alice; Valentino, Amber L.

    2011-01-01

    Children with autism often do not learn to mand for information without structured teaching. Studies have demonstrated that manipulation of establishing operations (EOs), prompts, prompt fading, and differential reinforcement are effective in teaching children with autism to ask "wh" questions such as "what," "who," and "where." To date, no…

  7. Comparison of fetal testosterone production in various tissues of the male sprague dawley rat dosed in utero with dipentyl phthalate during the critical window of sexual differentiation

    EPA Science Inventory

    Phthalate esters are high-production volume chemicals used in the manufacture of numerous plastics and consumer products, which generates major concern for potential human exposure and environmental contamination. Several studies have demonstrated adverse effects associated with ...

  8. Predicting Differential Response to EMG Biofeedback and Relaxation Training: The Role of Cognitive Structure.

    ERIC Educational Resources Information Center

    Hart, James D.

    1984-01-01

    Analyzed treatment outcome data for 102 headache patients who had been assigned randomly to receive either EMG biofeedback (N=70) or relaxation training (N=32). Analysis demonstrated that relaxation training was significantly more effective than biofeedback and that mixed headache patients improved significantly less than either migraine or…

  9. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: Differentiation by vineyard management

    USDA-ARS?s Scientific Manuscript database

    Here, we demonstrate how vineyard management practices influence shifts in soil resources, which in turn affects shifts in soil-borne bacterial communities. The objective is to determine the hierarchical effects of management practices, soil attributes and location factors on the structure of soil-b...

  10. In vitro screening of silver nanoparticles and ionic silver using neural networks yields differential effects on spontaneous activity and pharmacological responses.

    EPA Science Inventory

    Silver nanoparticles (AgNPs) are used in a wide range of consumer and medical products because of their antimicrobial and antifungal properties. Numerous studies have demonstrated that silver can translocate to distal organs following exposure to AgNPs. Therefore, it is essential...

  11. Presence of estrogen receptors in human myeloid monocytic cells (THP-1 cell line).

    PubMed

    Cutolo, M; Villaggio, B; Bisso, A; Sulli, A; Coviello, D; Dayer, J M

    2001-01-01

    To test THP-1 cells for the presence of estrogen receptors (ER) since studies have demonstrated in vivo and in vitro, the influence of estrogens on cells involved in immune response (i.e. macrophages), and since it has been demonstrated that human myeloid monocytic THP-1 cells acquire phenotypic and functional macrophage-like features after incubation with several cytokines or pharmacological agents. Stimulation of THP-1 cells with phorbol myristate acetate (PMA) to prompt their differentiation into macrophage-like cells and evaluation of the possible induction of ER. The expression of ER was analyzed by immunocytochemical assay, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. After stimulation by PMA, the human myeloid monocytic THP-1 cells showed the presence of ER, together with markers of monocytic cell differentiation such as CD68, CD54 and HLA-DR. Estrogen effects may be exerted directly through ER on monocytes/macrophages. PMA-treated THP-1 cells may constitute a useful in vitro model to determine the effects of estrogens on macrophage-like cells and their implications in the inflammatory and immune processes.

  12. Genetic sensitivity to the caregiving context: The influence of 5httlpr and BDNF val66met on indiscriminate social behavior

    PubMed Central

    Drury, Stacy S; Gleason, Mary Margaret; Theall, Katherine; Smyke, Anna T; Nelson, Charles A; Fox, Nathan A; Zeanah, Charles H

    2014-01-01

    Evidence that gene x environment interactions can reflect differential sensitivity to the environmental context, rather than risk or resilience, is increasing. To test this model, we examined the genetic contribution to indiscriminate social behavior, in the setting of a randomized controlled trial of foster care compared to institutional rearing. Children enrolled in the Bucharest Early Intervention Project (BEIP) were assessed comprehensively before the age of 30 months and subsequently randomized to either care as usual (CAUG) or high quality foster care (FCG). Indiscriminate social behavior was assessed at four time points, baseline, 30 months, 42 months and 54 months of age, using caregiver report with the Disturbances of Attachment Interview (DAI). General linear mixed-effects models were used to examine the effect of the interaction between group status and functional polymorphisms in Brain Derived Neurotrophic Factor (BDNF) and the Serotonin Transporter (5htt) on levels of indiscriminate behavior over time. Differential susceptibility, relative to levels of indiscriminate behavior, was demonstrated in children with either the s/s 5httlpr genotype or met 66 BDNF allele carriers. Specifically children with either the s/s 5httlpr genotype or met66 carriers in BDNF demonstrated the lowest levels of indiscriminate behavior in the FCG and the highest levels in the CAUG. Children with either the long allele of the 5httlpr or val/val genotype of BDNF demonstrated little difference in levels of indiscriminate behaviors over time and no group x genotype interaction. Children with both plasticity genotypes had the most signs of indiscriminate behavior at 54 months if they were randomized to the CAUG in the institution, while those with both plasticity genotypes randomized to the FCG intervention had the fewest signs at 54 months. Strikingly children with no plasticity alleles demonstrated no intervention effect on levels of indiscriminate behavior at 54 months. These findings represent the first genetic associations reported with Indiscriminate social behavior, replicate previous gene x gene x environment findings with these polymorphisms, and add to the growing body of literature supporting a differential susceptibility model of gene x environment interactions in developmental psychopathology. PMID:22133521

  13. Cancer: A Problem of Developmental Biology; Scientific Evidence for Reprogramming and Differentiation Therapy.

    PubMed

    Sell, Stewart; Nicolini, Andrea; Ferrari, Paola; Biava, Pier M

    2016-01-01

    Current medical literature acknowledges that embryonic micro-environment is able to suppress tumor development. Administering carcinogenic substances during organogenesis in fact leads to embryonic malformations, but not to offspring tumor growth. Once organogenesis has ended, administration of carcinogenic substances causes a rise in offspring tumor development. These data indicate that cancer can be considered a deviation in normal development, which can be regulated by factors of the embryonic microenvironment. Furthermore, it has been demonstrated that teratoma differentiates into normal tissues once it is implanted in the embryo. Recently, it has been shown that implanting a melanoma in Zebrafish embryo did not result in a tumor development; however, it did in the adult specimen. This demonstrates that cancer cells can differentiate into normal tissues when implanted in the embryo. In addition, it was demonstrated that other tumors can revert into a normal phenotype and/or differentiate into normal tissue when implanted in the embryo. These studies led some authors to define cancer as a problem of developmental biology and to predict the present concept of "cancer stem cells theory". In this review, we record the most important researches about the reprogramming and differentiation treatments of cancer cells to better clarify how the substances taken from developing embryo or other biological substances can induce differentiation of malignant cells. Lastly, a model of cancer has been proposed here, conceived by one of us, which is consistent with the reality, as demonstrated by a great number of researches. This model integrates the theory of the "maturation arrest" of cancer cells as conceived by B. Pierce with the theory which describes cancer as a process of deterministic chaos determined by genetic and/or epigenetic alterations in differentiated cells, which leads a normal cell to become cancerous. All the researches here described demonstrated that cancer can be considered a problem of developmental biology and that one of the most important hallmarks of cancer is the loss of differentiation as already described by us in other articles.

  14. Reactive oxygen species activate differentiation gene transcription of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    PubMed

    Lam, Chung Fan; Yeung, Hoi Ting; Lam, Yuk Man; Ng, Ray Kit

    2018-05-01

    Reactive oxygen species (ROS) and altered cellular redox status are associated with many malignancies. Acute myeloid leukemia (AML) cells are maintained at immature state by differentiation blockade, which involves deregulation of transcription factors in myeloid differentiation. AML cells can be induced to differentiate by phorbol-12-myristate-13-acetate (PMA), which possesses pro-oxidative activity. However, the signaling events mediated by ROS in the activation of transcriptional program during AML differentiation has not been fully elucidated. Here, we investigated AML cell differentiation by treatment with PMA and ROS scavenger N-acetyl-l-cysteine (NAC). We observed elevation of intracellular ROS level in the PMA-treated AML cells, which correlated with differentiated cell morphology and increased CD11b + mature cell population. The effect of PMA can be abolished by NAC co-treatment, supporting the involvement of ROS in the process. Moreover, we demonstrated that short ROS elevation mediated cell cycle arrest, but failed to activate myeloid gene transcription; whereas prolonged ROS elevation activated JNK/c-JUN signaling pathway. Inhibition of JNK suppressed the expression of key myeloid transcriptional regulators c-JUN, SPI-1 and MAFB, and prevented AML cells from undergoing terminal differentiation. These findings provide new insights into the crucial role of JNK/c-Jun signaling pathway in the activation of transcriptional program during ROS-mediated AML differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Chih-Chuan; Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan; Institute of Basic Medicine Science, National Cheng Kung University, Tainan, Taiwan

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone), the major active agent of the alkaloid derivative, has been demonstrated to exert anticancer effects. Herein, we present an investigation focused on the identification of the target(s) of CIL-102's action and the mechanism of its action in apoptotic and anti-invasive pathways. Proteomic approaches were used to purify and identify the protein substrates using 2D difference gel electrophoresis (2D SDS-PAGE) to assess changes in the expression of relevant protein treatment with CIL-102 that resulted in the inhibition of viability and invasion. Our results demonstrate that CIL-102 treatment of U87 cells decreased cell proliferation and invasiveness. CIL-102 dose-dependent induction ofmore » apoptosis and inhibitory invasiveness were accompanied by sustained phosphorylation of JNK1/2 and p70S6K as well as generation of the reactive oxygen species. In addition, differential proteins displayed between CIL-102-treated and untreated U87 were determined and validated. There were 11 differentially expressed proteins between the CIL-102-treated and untreated groups. Furthermore, we demonstrated that CIL-102 inhibited cancer cell proliferation and reduced anti-invasion properties by up-regulating the levels of FUMH (Fumarate hydratase). The investigation demonstrated that there was an increase in the cellular levels of FUMH in the CIL-102 reduction in viability and invasion via the activation of JNK1/2 and mTOR signaling modules. NAC administration and shRNA FUMH conferred resistance to CIL-102-inhibited HIF1α and MMP-2 levels via inhibition of JNK1/2 and mTOR activation. We concluded that CIL-102-induced an apoptosis cascade and decreased aggressiveness in astrocytoma cells by modulation of mitochondria function, providing a new mechanism for CIL-102 treatment. - Highlights: • We found the effect of CIL-102 on neuroblastoma cells. • Fumarate hydratase as a CIL-102's target by proteomic differential displays. • CIL-102 regulated-FUMH stimulates apoptosis-related protein and inactivation HIF1.« less

  16. Integrity of the LXXLL motif in Stat6 is required for the inhibition of breast cancer cell growth and enhancement of differentiation in the context of progesterone

    PubMed Central

    2014-01-01

    Background Progesterone is essential for the proliferation and differentiation of mammary gland epithelium. Studies of breast cancer cells have demonstrated a biphasic progesterone response consisting of an initial proliferative burst followed by sustained growth arrest. However, the transcriptional factors acting with the progesterone receptor (PR) to mediate the effects of progesterone on mammary cell growth and differentiation remain to be determined. Recently, it was demonstrated that signal transducer and activator of transcription 6 (Stat6) is a cell growth suppressor. Similar to progesterone-bound PR, Stat6 acts by inducing the expression of the G1 cyclin-dependent kinase inhibitors p21 and p27. The possible interaction between Stat6 and progesterone pathways in mammary cells was therefore investigated in the present study. Methods ChIP and luciferase were assayed to determine whether Stat6 induces p21 and p27 expression by recruitment at the proximal Sp1-binding sites of the gene promoters. Immunoprecipitation and Western blotting were performed to investigate the interaction between Stat6 and PR-B. The cellular DNA content and cell cycle distribution in breast cancer cells were analyzed by FACS. Results We found that Stat6 interacts with progesterone-activated PR in T47D cells. Stat6 synergizes with progesterone-bound PR to transactivate the p21 and p27 gene promoters at the proximal Sp1-binding sites. Moreover, Stat6 overexpression and knockdown, respectively, increased or prevented the induction of p21 and p27 gene expression by progesterone. Stat6 knockdown also abolished the inhibitory effects of progesterone on pRB phosphorylation, G1/S cell cycle progression, and cell proliferation. In addition, knockdown of Stat6 expression prevented the induction of breast cell differentiation markers, previously identified as progesterone target genes. Finally, Stat6 gene expression levels increased following progesterone treatment, indicating a positive auto-regulatory loop between PR and Stat6. Conclusions Taken together, these data identify Stat6 as a coactivator of PR mediating the growth-inhibitory and differentiation effects of progesterone on breast cancer cells. PMID:24401087

  17. Methylmercury causes neuronal cell death through the suppression of the TrkA pathway: In vitro and in vivo effects of TrkA pathway activators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako

    Methylmercury (MeHg) is an environmental toxin which induces cell death specific for the nervous systems. Here we show that MeHg causes neuronal cell death through the suppression of the tropomyosin receptor kinase A (TrkA) pathway, and that compounds activating the TrkA pathway prevent MeHg-induced nerve damage in vitro and in vivo. We first investigated the mechanism of MeHg-induced neurotoxicity in differentiating neurons using PC12 cells. Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. Further, MeHg-induced apoptosis was preceded by inhibition of neurite extension, as determined by ELISA analyses of the neurite-specific protein neurofilament tripletmore » H protein (NF-H). To determine the mechanism of MeHg-induced apoptosis, we evaluated the effects of MeHg on the TrkA pathway, which is known to regulate neuronal differentiation and viability. Western blot analysis demonstrated that, like the TrkA phosphorylation inhibitor K252a, MeHg inhibited phosphorylation of TrkA and its downstream effectors. Furthermore, GM1 ganglioside and its analog MCC-257, which enhance TrkA phosphorylation, overcame the effect of MeHg in neurons, supporting the involvement of the TrkA pathway in MeHg-induced nerve damage. Finally, we demonstrated that MCC-257 rescued the clinical sign and pathological changes in MeHg-exposed rats. These findings indicate that MeHg-induced apoptosis in neuron is triggered by inhibition of the TrkA pathway, and that GM1 ganglioside and MCC-257 effectively prevent MeHg-induced nerve damage. - Highlights: • Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. • Inhibition of neurite extension was involved in MeHg-induced apoptosis. • Like the TrkA phosphorylation inhibitor, MeHg inhibited phosphorylation of TrkA. • GM1 ganglioside and its analog effectively prevented MeHg-induced nerve damage.« less

  18. The effect of epidermal growth factor on neonatal incisor differentiation in the mouse.

    PubMed

    Topham, R T; Chiego, D J; Gattone, V H; Hinton, D A; Klein, R M

    1987-12-01

    The effect of epidermal growth factor (EGF) on cellular differentiation of the neonatal mouse mandibular incisor was examined autoradiographically using tritiated thymidine ([3H]TDR) and tritiated proline ([3H]PRO). On days 0 (day of birth), 1, and 2, EGF was administered (3 micrograms/g body wt) sc to neonates. Mice were killed on Days 1, 4, 7, 10, and 13 after birth and were injected with either [3H]TDR or [3H]PRO 1 hr before death. [3H]TDR was used to analyze cell proliferation in eight cell types in the developing mouse incisor including upper (lingual) and lower (buccal) pulpal fibroblasts, preodontoblasts, inner and outer enamel epithelial cells (IEE and OEE), stratum intermedium (SI), stellate reticulum (SR), and periodontal ligament (PDL) fibroblasts. [3H]PRO was used to analyze protein synthesis in ameloblasts, and their secretion products (enamel and dentin), as well as PDL fibroblasts. The selected EGF injection scheme elicited acceleration of incisor eruption with minimal growth retardation. At Day 1, the upper and lower pulp, preodontoblasts, SI, and SR showed a significant decrease in labeling index (LI) 24 hr after a single EGF injection. After multiple injections (Days 0, 1, 2), two LI patterns were observed. In lower pulp, preodontoblasts, IEE, SI, SR, and OEE, a posteruptive change in LI was observed. In contrast, the upper pulp and PDL regions demonstrated a direct temporal relationship with eruption. Autoradiographic analysis with [3H]PRO indicated that EGF treatment caused significant increases in grain counts per unit area in ameloblast, odontoblast, and PDL regions studied. Significant differences were found in all four regions studied (ameloblasts, enamel, odontoblasts, dentin) at the 45-microns-tall ameloblast level as well as ameloblasts and odontoblasts at the 30-microns level at 13 days of age. The PDL demonstrated significant differences at all locations studied (base, 30 microns, 45 microns,) in 4-, 7-, and 13-day-old mice. Morphologically, EGF-treated groups demonstrated premature differentiation of ameloblasts and odontoblasts at the light microscopic level. The data indicate that EGF alters DNA and protein synthesis as well as differentiation patterns during the eruption process. While EGF affects both DNA and protein synthesis, the alteration of differentiation may be secondary to mitogenic effects on proliferative compartments. In order to determine the cellular target for EGF within the newborn mouse incisor, in vivo 125I-EGF binding was analyzed autoradiographically.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. TLR10 suppresses the activation and differentiation of monocytes with effects on DC-mediated adaptive immune responses

    PubMed Central

    Hess, Nicholas J.; Felicelli, Christopher; Grage, Jennifer; Tapping, Richard I.

    2017-01-01

    TLRs are important pattern-recognition receptors involved in the activation of innate immune responses against foreign pathogens. TLR10 is the only TLR family member without a known ligand, signaling pathway, or clear cellular function. Previous work has shown that TLR10 suppresses proinflammatory cytokine production in response to TLR agonists in a mixed human mononuclear cell population. We report that TLR10 is preferentially expressed on monocytes and suppresses proinflammatory cytokine production resulting from either TLR or CD40 stimulation. TLR10 engagement affects both the MAPK and Akt signaling pathways, leading to changes in the transcriptome of isolated human monocytes. Differentiation of monocytes into dendritic cells in the presence of an αTLR10 mAb reduced the expression of maturation markers and the induction of proinflammatory cytokines, again in response to either TLR or CD40 stimulation. Finally, in coculture experiments, TLR10 differentiated dendritic cells exhibited a decreased capacity to activate T cells as measured by IL-2 and IFN-γ production. These data demonstrate that TLR10 is a novel regulator of innate immune responses and of the differentiation of primary human monocytes into effective dendritic cells. PMID:28235773

  20. Differentiating gastrointestinal stromal tumors from gastric adenocarcinomas and normal mucosae using confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Wei; Huang, Chia-Chi; Sheu, Jeng-Horng; Lin, Chia-Wen; Lin, Lien-Fu; Jin, Jong-Shiaw; Chen, Wenlung

    2016-07-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract, and gastric adenocarcinomas are a common cancer worldwide. To differentiate GISTs from adenocarcinomas is important because the surgical processes for both are different; the former excises the tumor with negative margins, while the latter requires radical gastrectomy with lymph node dissection. Endoscopy with biopsy is used to distinguish GISTs from adenocarcinomas; however, it may cause tumor bleeding in GISTs. We reported here the confocal Raman microspectroscopy as an effective tool to differentiate GISTs, adenocarcinomas, and normal mucosae. Of 119 patients enrolled in this study, 102 patients underwent gastrectomy (40 GISTs and 62 adenocarcinomas), and 17 patients with benign lesions were obtained as normal mucosae. Raman signals were integrated for 100 s for each spot on the specimen, and 5 to 10 spots, depending on the sample size, were chosen for each specimen. There were significant differences among those tissues as evidenced by different Raman signal responding to phospholipids and protein structures. The spectral data were further processed and analyzed by using principal component analysis. A two-dimensional plot demonstrated that GISTs, adenocarcinomas, and normal gastric mucosae could be effectively differentiated from each other.

  1. Curcumin suppresses transforming growth factor-β1-induced cardiac fibroblast differentiation via inhibition of Smad-2 and p38 MAPK signaling pathways

    PubMed Central

    LIU, HUZI; LIU, AIJUN; SHI, CHUNLI; LI, BAO

    2016-01-01

    The differentiation of cardiac fibroblasts (CFs) into myofibroblasts and the subsequent deposition of the extracellular matrix is associated with myocardial fibrosis following various types of myocardial injury. In the present study, the effect of curcumin, which is a pharmacologically-safe natural compound from the Curcuma longa herb, on transforming growth factor (TGF)-β1-induced CFs was investigated, and the underlying molecular mechanisms were examined. The expression levels of α-smooth muscle actin (SMA) stress fibers were investigated using western blotting and immunofluorescence in cultured neonatal rat CFs. Protein and mRNA expression levels of α-SMA and collagen type I (ColI) were determined by western blotting and reverse transcription-quantitative polymerase chain reaction. In addition, the activation of Smad2 and p38 was examined using western blotting. Curcumin, SB431542 (a TGF-βR-Smad2 inhibitor) and SB203580 (a p38 inhibitor) were used to inhibit the stimulation by TGF-β1. The results demonstrated that the TGF-β1-induced expression of α-SMA and ColI was suppressed by curcumin at the mRNA and protein levels, while SB431542 and SB203580 induced similar effects. Furthermore, phosphorylated Smad-2 and p38 were upregulated in TGF-β1-induced CFs, and these effects were substantially inhibited by curcumin administration. In conclusion, the results of the present study demonstrated that treatment with curcumin effectively suppresses TGF-β1-induced CF differentiation via Smad-2 and p38 signaling pathways. Thus, curcumin may be a potential therapeutic agent for the treatment of cardiac fibrosis. PMID:26998027

  2. Use of a 15 k gene microarray to determine gene expression changes in response to acute and chronic methylmercury exposure in the fathead minnow Pimephales promelas Rafinesque

    USGS Publications Warehouse

    Klaper, R.; Carter, Barbara J.; Richter, C.A.; Drevnick, P.E.; Sandheinrich, M.B.; Tillitt, D.E.

    2008-01-01

    This study describes the use of a 15 000 gene microarray developed for the toxicological model species, Pimephales promelas, in investigating the impact of acute and chronic methylmercury exposures in male gonad and liver tissues. The results show significant differences in the individual genes that were differentially expressed in response to each treatment. In liver, a total of 650 genes exhibited significantly (P < 0.05) altered expression with greater than two-fold differences from the controls in response to acute exposure and a total of 267 genes were differentially expressed in response to chronic exposure. A majority of these genes were downregulated rather than upregulated. Fewer genes were altered in gonad than in liver at both timepoints. A total of 212 genes were differentially expressed in response to acute exposure and 155 genes were altered in response to chronic exposure. Despite the differences in individual genes expressed across treatments, the functional categories that altered genes were associated with showed some similarities. Of interest in light of other studies involving the effects of methylmercury on fish, several genes associated with apoptosis were upregulated in response to both acute and chronic exposures. Induction of apoptosis has been associated with effects on reproduction seen in the previous studies. This study demonstrates the utility of microarray analysis for investigations of the physiological effects of toxicants as well as the time-course of effects that may take place. In addition, it is the first publication to demonstrate the use of this new 15 000 gene microarray for fish biology and toxicology. ?? 2008 The Authors.

  3. Magnesium and zinc borate enhance osteoblastic differentiation of stem cells from human exfoliated deciduous teeth in vitro.

    PubMed

    Liu, Yao-Jen; Su, Wen-Ta; Chen, Po-Hung

    2018-01-01

    Various biocompatible and biodegradable scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in hard tissue engineering regeneration. We evaluated the distinct effects of magnesium borate, zinc borate, and boric acid blended into chitosan scaffold for osteogenic differentiation of stem cells from exfoliated deciduous teeth. Stem cells from exfoliated deciduous teeth cells are a potential source of functional osteoblasts for applications in bone tissue engineering, but the efficiency of osteoblastic differentiation is low, thereby significantly limiting their clinical applications. Divalent metal borates have potential function in bone remodeling because they can simulate bone formation and decrease bone resorption. These magnesium, zinc, and B ions can gradually be released into the culture medium from the scaffold and induce advanced osteoblastic differentiation from stem cells from exfoliated deciduous teeth. Stem cells from exfoliated deciduous teeth with magnesium borate or zinc borate as inducer demonstrated more osteoblastic differentiation after 21 days of culture. Differentiated cells exhibited activity of alkaline phosphatase, bone-related gene expression of collagen type I, runt-related transcription factor 2, osteopontin, osteocalcin, vascular endothelial growth factor, and angiopoietin-1, as noted via real-time polymerase chain reaction analysis, as well as significant deposits of calcium minerals. Divalent mental magnesium and zinc and nonmetal boron can be an effective inducer of osteogenesis for stem cells from exfoliated deciduous teeth. This experiment might provide useful inducers for osteoblastic differentiation of stem cells from exfoliated deciduous teeth for tissue engineering and bone repair.

  4. Osteogenic differentiation of stem cells derived from human periodontal ligaments and pulp of human exfoliated deciduous teeth.

    PubMed

    Chadipiralla, Kiranmai; Yochim, Ji Min; Bahuleyan, Bindu; Huang, Chun-Yuh Charles; Garcia-Godoy, Franklin; Murray, Peter E; Stelnicki, Eric J

    2010-05-01

    Multipotent stem cells derived from periodontal ligaments (PDLSC) and pulp of human exfoliated deciduous teeth (SHED) represent promising cell sources for bone regeneration. Recent studies have demonstrated that retinoic acid (RA) and dexamethasone (Dex) induce osteogenesis of postnatal stem cells. The objective of this study was to examine the effects of RA and Dex on the proliferation and osteogenic differentiation of SHED and PDLSC and to compare the osteogenic characteristics of SHED and PDLSC under RA treatment. SHED and PDLSC were treated with serum-free medium either alone or supplemented with RA or Dex for 21 days. The proliferation of SHED and PDLSC was significantly inhibited by both RA and Dex. RA significantly upregulated gene expression and the activity of alkaline phosphatase in SHED and PDLSC. Positive Alizarin red and von Kossa staining of calcium deposition was seen on the RA-treated SHED and PDLSC after 21 days of culture. The influences of RA on the osteogenic differentiation of SHED and PDLSC were significantly stronger than with Dex. Supplementation with insulin enhanced RA-induced osteogenic differentiation of SHED. Thus, RA is an effective inducer of osteogenic differentiation of SHED and PDLSC, whereas RA treatment in combination with insulin supplementation might be a better option for inducing osteogenic differentiation. Significantly higher cell proliferation of PDLSC results in greater calcium deposition after 3-week culture, suggesting that PDLSC is a better osteogenic stem cell source. This study provides valuable information for efficiently producing osteogenically differentiated SHED or PDLSC for in vivo bone regeneration.

  5. Differential Learning as a Key Training Approach to Improve Creative and Tactical Behavior in Soccer.

    PubMed

    Santos, Sara; Coutinho, Diogo; Gonçalves, Bruno; Schöllhorn, Wolfgang; Sampaio, Jaime; Leite, Nuno

    2018-03-01

    The aim of this study was to identify the effects of a differential-learning program, embedded in small-sided games, on the creative and tactical behavior of youth soccer players. Forty players from under-13 (U13) and under-15 (U15) were allocated into control and experimental groups and were tested using a randomized pretest to posttest design using small-sided games situations. The experimental group participated in a 5-month differential-learning program embodied in small-sided games situations, while the control group participated in a typical small-sided games training program. In-game creativity was assessed through notational analyses of the creative components, and the players' positional data were used to compute tactical-derived variables. The findings suggested that differential learning facilitated the development of creative components, mainly concerning attempts (U13, small; U15, small), versatility (U13, moderate; U15, small), and originality (U13, unclear; U15, small) of players' actions. Likewise, the differential-learning approach provided a decrease in fails during the game in both experimental groups (moderate). Moreover, differential learning seemed to favor regularity in pitch-positioning behavior for the distance between players' dyads (U13, small; U15, small), the distance to the team target (U13, moderate; U15, small), and the distance to the opponent target (U13, moderate; U15, small). The differential-learning program stressed creative and positional behavior in both age groups with a distinct magnitude of effects, with the U13 players demonstrating higher improvements over the U15 players. Overall, these findings confirmed that the technical variability promoted by differential learning nurtures regularity of positioning behavior.

  6. Synthetic Glycopolymers for Highly Efficient Differentiation of Embryonic Stem Cells into Neurons: Lipo- or Not?

    PubMed

    Liu, Qi; Lyu, Zhonglin; Yu, You; Zhao, Zhen-Ao; Hu, Shijun; Yuan, Lin; Chen, Gaojian; Chen, Hong

    2017-04-05

    To realize the potential application of embryonic stem cells (ESCs) for the treatment of neurodegenerative diseases, it is a prerequisite to develop an effective strategy for the neural differentiation of ESCs so as to obtain adequate amount of neurons. Considering the efficacy of glycosaminoglycans (GAG) and their disadvantages (e.g., structure heterogeneity and impurity), GAG-mimicking glycopolymers (designed polymers containing functional units similar to natural GAG) with or without phospholipid groups were synthesized in the present work and their ability to promote neural differentiation of mouse ESCs (mESCs) was investigated. It was found that the lipid-anchored GAG-mimicking glycopolymers (lipo-pSGF) retained on the membrane of mESCs rather than being internalized by cells after 1 h of incubation. Besides, lipo-pSGF showed better activity in promoting neural differentiation. The expression of the neural-specific maker β3-tubulin in lipo-pSGF-treated cells was ∼3.8- and ∼1.9-fold higher compared to natural heparin- and pSGF-treated cells at day 14. The likely mechanism involved in lipo-pSGF-mediated neural differentiation was further investigated by analyzing its effect on fibroblast growth factor 2 (FGF2)-mediated extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway which is important for neural differentiation of ESCs. Lipo-pSGF was found to efficiently bind FGF2 and enhance the phosphorylation of ERK1/2, thus promoting neural differentiation. These findings demonstrated that engineering of cell surface glycan using our synthetic lipo-glycopolymer is a highly efficient approach for neural differentiation of ESCs and this strategy can be applied for the regulation of other cellular activities mediated by cell membrane receptors.

  7. Differentiation of monkey embryonic stem cells to hepatocytes by feeder-free dispersion culture and expression analyses of cytochrome p450 enzymes responsible for drug metabolism.

    PubMed

    Maruyama, Junya; Matsunaga, Tamihide; Yamaori, Satoshi; Sakamoto, Sakae; Kamada, Noboru; Nakamura, Katsunori; Kikuchi, Shinji; Ohmori, Shigeru

    2013-01-01

    We reported previously that monkey embryonic stem cells (ESCs) were differentiated into hepatocytes by formation of embryoid bodies (EBs). However, this EB formation method is not always efficient for assays using a large number of samples simultaneously. A dispersion culture system, one of the differentiation methods without EB formation, is able to more efficiently provide a large number of feeder-free undifferentiated cells. A previous study demonstrated the effectiveness of the Rho-associated kinase inhibitor Y-27632 for feeder-free dispersion culture and induction of differentiation of monkey ESCs into neural cells. In the present study, the induction of differentiation of cynomolgus monkey ESCs (cmESCs) into hepatocytes was performed by the dispersion culture method, and the expression and drug inducibility of cytochrome P450 (CYP) enzymes in these hepatocytes were examined. The cmESCs were successfully differentiated into hepatocytes under feeder-free dispersion culture conditions supplemented with Y-27632. The hepatocytes differentiated from cmESCs expressed the mRNAs for three hepatocyte marker genes (α-fetoprotein, albumin, CYP7A1) and several CYP enzymes, as measured by real-time polymerase chain reaction. In particular, the basal expression of cmCYP3A4 (3A8) in these hepatocytes was detected at mRNA and enzyme activity (testosterone 6β-hydroxylation) levels. Furthermore, the expression and activity of cmCYP3A4 (3A8) were significantly upregulated by rifampicin. These results indicated the effectiveness of Y-27632 supplementation for feeder-free dispersed culture and induction of differentiation into hepatocytes, and the expression of functional CYP enzyme(s) in cmESC-derived hepatic cells.

  8. Differentiating the effects of status and power: a justice perspective.

    PubMed

    Blader, Steven L; Chen, Ya-Ru

    2012-05-01

    Few empirical efforts have been devoted to differentiating status and power, and thus significant questions remain about differences in how status and power impact social encounters. We conducted 5 studies to address this gap. In particular, these studies tested the prediction that status and power would have opposing effects on justice enacted toward others. In the first 3 studies, we directly compared the effects of status and power on people's enactment of distributive (Study 1) and procedural (Studies 2 and 3) justice. In the last 2 studies, we orthogonally manipulated status and power and examined their main and interactive effects on people's enactment of distributive (Study 4) and procedural (Study 5) justice. As predicted, all 5 studies showed consistent evidence that status is positively associated with justice toward others, while power is negatively associated with justice toward others. The effects of power are moderated, however, by an individual's other orientation (Studies 2, 3, 4, and 5), and the effects of status are moderated by an individual's dispositional concern about status (Study 5). Furthermore, Studies 4 and 5 also demonstrated that status and power interact, such that the positive effect of status on justice emerges when power is low and not when power is high, providing further evidence for differential effects between power and status. Theoretical implications for the literatures on status, power, and distributive/procedural justice are discussed.

  9. Thiazide diuretics directly induce osteoblast differentiation and mineralized nodule formation by targeting a NaCl cotransporter in bone

    PubMed Central

    Dvorak, Melita M; De Joussineau, Cyrille; Carter, D Howard; Pisitkun, Trairak; Knepper, Mark A; Gamba, Gerardo; Kemp, Paul J; Riccardi, Daniela

    2008-01-01

    Thiazide diuretics are used, worldwide, as the first-choice drug for patients with uncomplicated hypertension. In addition to their anti-hypertensive actions, they increase bone mineral density and reduce the prevalence of fractures, indicating that thiazides may have a role in the management of postmenopausal osteoporosis. Traditionally, the bone-protective effects of thiazides have been attributed to an increase in renal calcium reabsorption, secondary to the inhibition of the sodium chloride cotransporter, NCC, expressed in the kidney distal tubule. Whether thiazides exert a direct osteoanabolic effect independently of their renal action is controversial. Here we demonstrate that freshly frozen sections of human and rat bone express NCC, principally in bone-forming cells, the osteoblasts. In primary and established culture models of osteoblasts, fetal rat calvarial (FRC) and human MG63 cells, NCC protein is virtually absent in proliferating cells while its expression is dramatically increased during differentiation. Thiazides directly stimulate the production of osteoblast markers, runt-related transcription factor 2 (runx2) and osteopontin, in the absence of a proliferative effect. Using overexpression/knockdown studies in FRC cells, we show that thiazides, but not loop diuretics, increase mineralized nodule formation acting on NCC. Overall, our study demonstrates that thiazides stimulate osteoblast differentiation and bone mineral formation independently of their renal actions. In addition to their use as part of a therapeutic treatment plan for elderly, hypertensive individuals, our discovery opens up the possibility that bone-specific drug targeting by thiazides may be developed for the prevention and treatment of osteoporosis in the patient population as a whole. PMID:17656470

  10. Acute Phosphate Restriction Leads to Impaired Fracture Healing and Resistance to BMP-2

    PubMed Central

    Wigner, Nathan A; Luderer, Hilary F; Cox, Megan K; Sooy, Karen; Gerstenfeld, Louis C; Demay, Marie B

    2010-01-01

    Hypophosphatemia leads to rickets and osteomalacia, the latter of which results in decreased biomechanical integrity of bones, accompanied by poor fracture healing. Impaired phosphate-dependent apoptosis of hypertrophic chondrocytes is the molecular basis for rickets. However, the underlying pathophysiology of impaired fracture healing has not been characterized previously. To address the role of phosphate in fracture repair, mice were placed on a phosphate-restricted diet 2 days prior to or 3 days after induction of a mid-diaphyseal femoral fracture to assess the effects of phosphate deficiency on the initial recruitment of mesenchymal stem cells and their subsequent differentiation. Histologic and micro-computed tomographic (µCT) analyses demonstrated that both phosphate restriction models dramatically impaired fracture healing primarily owing to a defect in differentiation along the chondrogenic lineage. Based on Sox9 and Sox5 mRNA levels, neither the initial recruitment of cells to the callus nor their lineage commitment was effected by hypophosphatemia. However, differentiation of these cells was impaired in association with impaired bone morphogenetic protein (BMP) signaling. In vivo ectopic bone-formation assays and in vitro investigations in ST2 stromal cells confirmed that phosphate restriction leads to BMP-2 resistance. Marrow ablation studies demonstrate that hypophosphatemia has different effects on injury-induced intramembranous bone formation compared with endochondral bone formation. Thus phosphate plays an important role in the skeleton that extends beyond mineralized matrix formation and growth plate maturation and is critical for endochondral bone repair. © 2010 American Society for Bone and Mineral Research. PMID:19839770

  11. The differential susceptibilities of MCF-7 and MDA-MB-231 cells to the cytotoxic effects of curcumin are associated with the PI3K/Akt-SKP2-Cip/Kips pathway.

    PubMed

    Jia, Tao; Zhang, Li; Duan, Yale; Zhang, Min; Wang, Gang; Zhang, Jun; Zhao, Zheng

    2014-01-01

    The mechanism underlying the differential cytotoxicity of curcumin in various cancer types, however, remains largely unclear. The aims of this study is to examine the concentration- and time-related effects of curcumin on two different breast cancer cells, MCF-7 and MDA-MB-231, and investigated the functional changes induced by curcumin treatment, as well as their relationship to the PI3K/Akt-SKP2-Cip/Kips pathway. First, WST-1 and clonogenic assay were performed to determine the cytotoxicity of curcumin in MCF-7 and MDA-MB-231 cells. Then, the expression of CDK interacting protein/Kinase inhibitory protein (Cip/Kips) members (p27, p21 and p57) and S-phase kinase-associated protein-2 (SKP2) was investigated by QRT PCR and Western Blotting. Curcumin's effect on PI3K (phosphatidylinositol 3-kinase) /Akt and its substrates Foxo1 and Foxo3a were then studied by Western Blotting. Small interfering RNAs (siRNAs) targeting SKP2 was used to explore the relationship between SKP2 and Cip/Kips members. Finally, WST-1 assay was tested to explore the concomitant treatment with curcumin and the inhibition of PKB or SKP2 signaling on curcumin sensitivity in MCF-7 and MDA-MB-231 cells. We demonstrated MCF-7 and MDA-MB-231 cells exhibited differential responses to curcumin by WST-1 and clonogenic assay (MDA-MB-231 cells was sensitive, and MCF-7 cells was resistant), which were found to be related to the differential curcumin-mediated regulation of SKP2-Cip/Kips (p21 and p27 but not p57) signaling. The differential cellular responses were further linked to the converse effects of curcumin on PI3K/Akt and its substrates Foxo1 and Foxo3a. Importantly, PI3K inhibitor wortmannin could counteract both curcumin-induced phosphorylation of Akt and up-regulation of SKP2 in MCF-7 cells. Subsequent WST-1 assay demonstrated concomitant treatment with curcumin and wortmannin or SKP2 siRNA not only further augmented curcumin sensitivity in MDA-MB-231 cells but also overcame curcumin resistance in MCF-7 cells. Our study established PI3K/Akt-SKP2-Cip/Kips signaling pathway is involved in the mechanism of action of curcumin and revealed that the discrepant modulation of this pathway by curcumin is responsible for the differential susceptibilities of these two cell types to curcumin.

  12. Differentiate or Die: 3-Bromopyruvate and Pluripotency in Mouse Embryonic Stem Cells

    PubMed Central

    Rodrigues, Ana Sofia; Pereira, Sandro L.; Correia, Marcelo; Gomes, Andreia; Perestrelo, Tânia; Ramalho-Santos, João

    2015-01-01

    Background Pluripotent embryonic stem cells grown under standard conditions (ESC) have a markedly glycolytic profile, which is shared with many different types of cancer cells. Thus, some therapeutic strategies suggest that pharmacologically shifting cancer cells towards an oxidative phenotype, using glycolysis inhibitors, may reduce cancer aggressiveness. Given the metabolic parallels between cancer and stemness would chemotherapeutical agents have an effect on pluripotency, and could a strategy involving these agents be envisioned to modulate stem cell fate in an accessible manner? In this manuscript we attempted to determine the effects of 3-bromopyruvate (3BrP) in pluripotency. Although it has other intracellular targets, this compound is a potent inhibitor of glycolysis enzymes thought to be important to maintain a glycolytic profile. The goal was also to determine if we could contribute towards a pharmacologically accessible metabolic strategy to influence cell differentiation. Methodology/Principal Findings Mouse embryonic stem cells (mESC) grown under standard pluripotency conditions (in the presence of Leukemia Inducing Factor- LIF) were treated with 3BrP. As a positive control for differentiation other mESCs were grown without LIF. Overall our results demonstrate that 3BrP negatively affects pluripotency, forcing cells to become less glycolytic and with more active mitochondria. These changes in metabolism are correlated with increased differentiation, even under pluripotency conditions (i.e. in the presence of LIF). However, 3BrP also significantly impaired cell function, and may have other roles besides affecting the metabolic profile of mESCs. Conclusions/Findings Treatment of mESCs with 3BrP triggered a metabolic switch and loss of pluripotency, even in the presence of LIF. Interestingly, the positive control for differentiation allowed for a distinction between 3BrP effects and changes associated with spontaneous differentiation/loss of pluripotency in the absence of LIF. Additionally, there was a slight differentiation bias towards mesoderm in the presence of 3BrP. However, the side effects on cellular function suggest that the use of this drug is probably not adequate to efficiently push cells towards specific differentiation fates. PMID:26266544

  13. Differentiate or Die: 3-Bromopyruvate and Pluripotency in Mouse Embryonic Stem Cells.

    PubMed

    Rodrigues, Ana Sofia; Pereira, Sandro L; Correia, Marcelo; Gomes, Andreia; Perestrelo, Tânia; Ramalho-Santos, João

    2015-01-01

    Pluripotent embryonic stem cells grown under standard conditions (ESC) have a markedly glycolytic profile, which is shared with many different types of cancer cells. Thus, some therapeutic strategies suggest that pharmacologically shifting cancer cells towards an oxidative phenotype, using glycolysis inhibitors, may reduce cancer aggressiveness. Given the metabolic parallels between cancer and stemness would chemotherapeutical agents have an effect on pluripotency, and could a strategy involving these agents be envisioned to modulate stem cell fate in an accessible manner? In this manuscript we attempted to determine the effects of 3-bromopyruvate (3BrP) in pluripotency. Although it has other intracellular targets, this compound is a potent inhibitor of glycolysis enzymes thought to be important to maintain a glycolytic profile. The goal was also to determine if we could contribute towards a pharmacologically accessible metabolic strategy to influence cell differentiation. Mouse embryonic stem cells (mESC) grown under standard pluripotency conditions (in the presence of Leukemia Inducing Factor- LIF) were treated with 3BrP. As a positive control for differentiation other mESCs were grown without LIF. Overall our results demonstrate that 3BrP negatively affects pluripotency, forcing cells to become less glycolytic and with more active mitochondria. These changes in metabolism are correlated with increased differentiation, even under pluripotency conditions (i.e. in the presence of LIF). However, 3BrP also significantly impaired cell function, and may have other roles besides affecting the metabolic profile of mESCs. Treatment of mESCs with 3BrP triggered a metabolic switch and loss of pluripotency, even in the presence of LIF. Interestingly, the positive control for differentiation allowed for a distinction between 3BrP effects and changes associated with spontaneous differentiation/loss of pluripotency in the absence of LIF. Additionally, there was a slight differentiation bias towards mesoderm in the presence of 3BrP. However, the side effects on cellular function suggest that the use of this drug is probably not adequate to efficiently push cells towards specific differentiation fates.

  14. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.

    PubMed

    Martins, Ana M; Pham, Quynh P; Malafaya, Patrícia B; Raphael, Robert M; Kasper, F Kurtis; Reis, Rui L; Mikos, Antonios G

    2009-08-01

    This work proposes the use of nonporous, smart, and stimulus responsive chitosan-based scaffolds for bone tissue engineering applications. The overall vision is to use biodegradable scaffolds based on chitosan and starch that present properties that will be regulated by bone regeneration, with the capability of gradual in situ pore formation. Biomimetic calcium phosphate (CaP) coatings were used as a strategy to incorporate lysozyme at the surface of chitosan-based materials with the main objective of controlling and tailoring their degradation profile as a function of immersion time. To confirm the concept, degradation tests with a lysozyme concentration similar to that incorporated into CaP chitosan-based scaffolds were used to study the degradation of the scaffolds and the formation of pores as a function of immersion time. Degradation studies with lysozyme (1.5 g/L) showed the formation of pores, indicating an increase of porosity ( approximately 5-55% up to 21 days) resulting in porous three-dimensional structures with interconnected pores. Additional studies investigated the influence of a CaP biomimetic coating on osteogenic differentiation of rat marrow stromal cells (MSCs) and showed enhanced differentiation of rat MSCs seeded on the CaP-coated chitosan-based scaffolds with lysozyme incorporated. At all culture times, CaP-coated chitosan-based scaffolds with incorporated lysozyme demonstrated greater osteogenic differentiation of MSCs, bone matrix production, and mineralization as demonstrated by calcium deposition measurements, compared with controls (uncoated scaffolds). The ability of these CaP-coated chitosan-based scaffolds with incorporated lysozyme to create an interconnected pore network in situ coupled with the demonstrated positive effect of these scaffolds upon osteogenic differentiation of MSCs and mineralized matrix production illustrates the strong potential of these scaffolds for application in bone tissue engineering strategies.

  15. Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth.

    PubMed

    Tajan, Mylène; Pernin-Grandjean, Julie; Beton, Nicolas; Gennero, Isabelle; Capilla, Florence; Neel, Benjamin G; Araki, Toshiyuki; Valet, Philippe; Tauber, Maithé; Salles, Jean-Pierre; Yart, Armelle; Edouard, Thomas

    2018-04-12

    Growth retardation is a constant feature of Noonan syndrome (NS) but its physiopathology remains poorly understood. We previously reported that hyperactive NS-causing SHP2 mutants impair the systemic production of insulin-like growth factor 1 (IGF1) through hyperactivation of the RAS/extracellular signal-regulated kinases (ERK) signalling pathway. Besides endocrine defects, a direct effect of these mutants on growth plate has not been explored, although recent studies have revealed an important physiological role for SHP2 in endochondral bone growth. We demonstrated that growth plate length was reduced in NS mice, mostly due to a shortening of the hypertrophic zone and to a lesser extent of the proliferating zone. These histological features were correlated with decreased expression of early chondrocyte differentiation markers, and with reduced alkaline phosphatase staining and activity, in NS murine primary chondrocytes. Although IGF1 treatment improved growth of NS mice, it did not fully reverse growth plate abnormalities, notably the decreased hypertrophic zone. In contrast, we documented a role of RAS/ERK hyperactivation at the growth plate level since 1) NS-causing SHP2 mutants enhance RAS/ERK activation in chondrocytes in vivo (NS mice) and in vitro (ATDC5 cells) and 2) inhibition of RAS/ERK hyperactivation by U0126 treatment alleviated growth plate abnormalities and enhanced chondrocyte differentiation. Similar effects were obtained by chronic treatment of NS mice with statins.In conclusion, we demonstrated that hyperactive NS-causing SHP2 mutants impair chondrocyte differentiation during endochondral bone growth through a local hyperactivation of the RAS/ERK signalling pathway, and that statin treatment may be a possible therapeutic approach in NS.

  16. The role of osteoblast cells in the pathogenesis of unicameral bone cysts.

    PubMed

    Aarvold, Alexander; Smith, James O; Tayton, Edward R; Edwards, Caroline J; Fowler, Darren J; Gent, Edward D; Oreffo, Richard O C

    2012-08-01

    The pathogenesis of unicameral bone cysts (UBCs) remains largely unknown. Osteoclasts have been implicated, but the role of osteoblastic cells has, to date, not been explored. This study investigated the pathophysiology of UBCs by examining the interactions between the cyst fluid and human bone marrow stromal cells (hBMSCs) and the effect of the fluid on osteogenesis. Fluid was aspirated from two UBCs and analysed for protein, electrolyte and cytokine levels. Graded concentrations of the fluid were used as culture media for hBMSCs to determine the effects of the fluid on hBMSC proliferation and osteogenic differentiation. The fibrocellular lining was analysed histologically and by electron microscopy. Alkaline phosphatase (ALP) staining of hBMSCs that were cultured in cyst fluid demonstrated increased cell proliferation and osteogenic differentiation compared to basal media controls. Biochemical analysis of these hBMSCs compared to basal controls confirmed a marked increase in DNA content (as a marker of proliferation) and ALP activity (as a marker of osteogenic differentiation) which was highly significant (p < 0.001). Osteoclasts were demonstrated in abundance in the cyst lining. The cyst fluid cytokine profile revealed levels of the pro-osteoclast cytokines IL-6, MIP-1α and MCP-1 that were 19×, 31× and 35× greater than those in reference serum. Cyst fluid promoted osteoblastic growth and differentiation. Despite appearing paradoxical that the cyst fluid promoted osteogenesis, osteoblastic cells are required for osteoclastogenesis through RANKL signalling. Three key cytokines in this pathway (IL-6, MIP-1α, MCP-1) were highly elevated in cyst fluid. These findings may hold the key to the pathogenesis of UBCs, with implications for treatment methods.

  17. Disability differentials in educational attainment in England: primary and secondary effects.

    PubMed

    Chatzitheochari, Stella; Platt, Lucinda

    2018-04-17

    Childhood disability has been largely overlooked in social stratification and life course research. As a result, we know remarkably little about mechanisms behind well-documented disability differentials in educational outcomes. This study investigates educational transitions of disabled youth using data from the Longitudinal Study of Young People in England. We draw on social stratification literature on primary and secondary effects as well as that on stigma and labelling in order to explain disabled young people's educational outcomes. We find that disability differentials in transition rates to full-time academic upper secondary education and to university are largely the result of primary effects, reflected in differences in school performance between disabled and non-disabled young people. However, we also find evidence for secondary effects, with similarly achieving disabled young people less likely to pursue full-time academic upper secondary education compared to their non-disabled peers. We examine the extent to which these effects can be explained by disabled youth's suppressed educational expectations as well as their experiences of being bullied at school, which we link to the stigma experienced by disabled young people and their families. We find that educational expectations play an important role at crucial transitions in the English school system, while the effect of bullying is considerably smaller. By drawing attention to different social processes contributing to disability differentials in attainment, our study moves beyond medical models that implicitly assume a naturalized association of disability with poor educational outcomes, and demonstrates the parallels of disability with other ascriptive inequalities. © London School of Economics and Political Science 2018.

  18. The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds.

    PubMed

    Han, Pingping; Wu, Chengtie; Chang, Jiang; Xiao, Yin

    2012-09-01

    Lithium (Li) has been widely used as a long-term mood stabilizer in the treatment of bipolar and depressive disorders. Li(+) ions are thought to enhance the remyelination of peripheral nerves and also stimulate the proliferation of neural progenitor cells and retinoblastoma cells via activation of the Wnt/β-catenin signalling pathway. Until now there have been no studies reporting the biological effects of released Li(+) in bioactive scaffolds on cemetogenesis in periodontal tissue engineering applications. In this study, we incorporated parts of Li(+) ions into the mesoporous bioactive glass (MBG) scaffolds and showed that this approach yielded scaffolds with a favourable composition, microstructure and mesopore properties for cell attachment, proliferation, and cementogenic differentiation of human periodontal ligament-derived cells (hPDLCs). We went on to investigate the biological effects of Li(+) ions themselves on cell proliferation and cementogenic differentiation. The results showed that 5% Li(+) ions incorporated into MBG scaffolds enhanced the proliferation and cementogenic differentiation of hPDLCs on scaffolds, most likely via activation of Wnt/β-catenin signalling pathway. Further study demonstrated that Li(+) ions by themselves significantly enhanced the proliferation, differentiation and cementogenic gene expression of PDLCs. Our results indicate that incorporation of Li(+) ions into bioactive scaffolds is a viable means of enhancing the Wnt canonical signalling pathway to stimulate cementogenic differentiation of PDLCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Expression and purification recombinant human dentin sialoprotein in Escherichia coli and its effects on human dental pulp cells.

    PubMed

    Yun, Ye-Rang; Kim, Hae-Won; Kang, Wonmo; Jeon, Eunyi; Lee, Sujin; Lee, Hye-Young; Kim, Cheol-Hwan; Jang, Jun-Hyeog

    2012-05-01

    Dentin sialoprotein (DSP) is cleaved from dentin sialophosphoprotein (DSPP) and most abundant dentinal non-collagenous proteins in dentin. DSP is believed to participate in differentiation and mineralization of cells. In this study, we first constructed recombinant human DSP (rhDSP) in Escherichia coli (E. coli) and investigated its odontoblastic differentiation effects on human dental pulp cells (hDPCs). Cell adhesion activity was measured by crystal violet assay and cell proliferation activity was measured by MTT assay. To assess mineralization activity of rhDSP, Alizarin Red S staining was performed. In addition, the mRNA levels of collagen type І (Col І), alkaline phosphatase (ALP), and osteocalcin (OCN) were measured due to their use as mineralization markers for odontoblast-/osteoblast-like differentiation of hDPCs. The obtained rhDSP in E. coli was approximately identified by SDS-PAGE and Western blot. Initially, rhDSP significantly enhanced hDPCs adhesion activity and proliferation (p<0.05). In Alizarin Red S staining, stained hDPCs increased in a time-dependent manner. This odontoblastic differentiation activity was also verified through mRNA levels of odontoblast-related markers. Here, we first demonstrated that rhDSP may be an important regulatory ECM in determining the hDPCs fate including cell adhesion, proliferation, and odontoblastic differentiation activity. These findings indicate that rhDSP can induce growth and differentiation on hDPCs, leading to improve tooth repair and regeneration. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez-Fuentes, Nayeli; Rodríguez-Hernández, Ana G.; Enríquez-Jiménez, Juana

    Highlights: •Nukbone showed to be a good scaffold for adhesion, proliferation and differentiation of stem cells. •Nukbone induced osteoblastic differentiation of human mesenchymal stem cells. •Results showed that Nukbone offer an excellent option for bone tissue regeneration due to properties. -- Abstract: Bovine bone matrix Nukbone® (NKB) is an osseous tissue-engineering biomaterial that retains its mineral and organic phases and its natural bone topography and has been used as a xenoimplant for bone regeneration in clinics. There are not studies regarding its influence of the NKB in the behavior of cells during the repairing processes. The aim of this researchmore » is to demonstrate that NKB has an osteoinductive effect in human mesenchymal stem cells from amniotic membrane (AM-hMSCs). Results indicated that NKB favors the AM-hMSCs adhesion and proliferation up to 7 days in culture as shown by the scanning electron microscopy and proliferation measures using an alamarBlue assay. Furthermore, as demonstrated by reverse transcriptase polymerase chain reaction, it was detected that two gene expression markers of osteoblastic differentiation: the core binding factor and osteocalcin were higher for AM-hMSCs co-cultured with NKB in comparison with cultivated cells in absence of the biomaterial. As the results indicate, NKB possess the capability for inducing successfully the osteoblastic differentiation of AM-hMSC, so that, NKB is an excellent xenoimplant option for repairing bone tissue defects.« less

  1. Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium.

    PubMed

    Wagner, Diane R; Lindsey, Derek P; Li, Kelvin W; Tummala, Padmaja; Chandran, Sheena E; Smith, R Lane; Longaker, Michael T; Carter, Dennis R; Beaupre, Gary S

    2008-05-01

    This study demonstrated the chondrogenic effect of hydrostatic pressure on human bone marrow stromal cells (MSCs) cultured in a mixed medium containing osteogenic and chondrogenic factors. MSCs seeded in type I collagen sponges were exposed to 1 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for 4 h per day for 10 days, or remained in identical culture conditions but without exposure to pressure. Afterwards, we compared the proteoglycan content of loaded and control cell/scaffold constructs with Alcian blue staining. We also used real-time PCR to evaluate the change in mRNA expression of selected genes associated with chondrogenic and osteogenic differentiation (aggrecan, type I collagen, type II collagen, Runx2 (Cbfa-1), Sox9, and TGF-beta1). With the hydrostatic pressure loading regime, proteoglycan staining increased markedly. Correspondingly, the mRNA expression of chondrogenic genes such as aggrecan, type II collagen, and Sox9 increased significantly. We also saw a significant increase in the mRNA expression of type I collagen, but no change in the expression of Runx2 or TGF-beta1 mRNA. This study demonstrated that hydrostatic pressure enhanced differentiation of MSCs in the presence of multipotent differentiation factors in vitro, and suggests the critical role that this loading regime may play during cartilage development and regeneration in vivo.

  2. A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells

    PubMed Central

    2014-01-01

    Introduction The optimization of an organic scaffold for specific types of applications and cells is vital to successful tissue engineering. In this study, we investigated the effects of a new fibrin sealant derived from snake venom as a scaffold for mesenchymal stem cells, to demonstrate the ability of cells to affect and detect the biological microenvironment. Methods The characterization of CD34, CD44 and CD90 expression on mesenchymal stem cells was performed by flow cytometry. In vitro growth and cell viability were evaluated by light and electron microscopy. Differentiation into osteogenic, adipogenic and chondrogenic lineages was induced. Results The fibrin sealant did not affect cell adhesion, proliferation or differentiation and allowed the adherence and growth of mesenchymal stem cells on its surface. Hoechst 33342 and propidium iodide staining demonstrated the viability of mesenchymal stem cells in contact with the fibrin sealant and the ability of the biomaterial to maintain cell survival. Conclusions The new fibrin sealant is a three-dimensional scaffolding candidate that is capable of maintaining cell survival without interfering with differentiation, and might also be useful in drug delivery. Fibrin sealant has a low production cost, does not transmit infectious diseases from human blood and has properties of a suitable scaffold for stem cells because it permits the preparation of differentiated scaffolds that are suitable for every need. PMID:24916098

  3. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism.

    PubMed

    Mei, Yu-Qin; Pan, Zong-Fu; Chen, Wen-Teng; Xu, Min-Hua; Zhu, Dan-Yan; Yu, Yong-Ping; Lou, Yi-Jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a.

  4. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism

    PubMed Central

    Mei, Yu-qin; Pan, Zong-fu; Chen, Wen-teng; Xu, Min-hua; Zhu, Dan-yan; Yu, Yong-ping; Lou, Yi-jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a. PMID:27315062

  5. Differential susceptibility in spillover between interparental conflict and maternal parenting practices: evidence for OXTR and 5-HTT genes.

    PubMed

    Sturge-Apple, Melissa L; Cicchetti, Dante; Davies, Patrick T; Suor, Jennifer H

    2012-06-01

    Guided by the affective spillover hypothesis and the differential susceptibility to environmental influence frameworks, the present study examined how associations between interparental conflict and mothers' parenting practices were moderated by serotonin transporter (5-HTT) and oxytocin receptor (OXTR) genes. A sample of 201 mothers and their 2-year old child participated in a laboratory-based research assessment. Results supported differential susceptibility hypotheses within spillover frameworks. With respect to OXTR rs53576, mothers with the GG genotype showed greater differential maternal sensitivity across varying levels of interparental conflict. Mothers with one or two copies of the 5-HTTLPR S allele demonstrated differential susceptibility for both sensitive and harsh/punitive caregiving behaviors. Finally, analyses examined whether maternal depressive symptoms and emotional closeness to their child mediated the moderating effects. Findings suggest that maternal emotional closeness with their child indirectly linked OXTR with maternal sensitivity. The results highlight how molecular genetics may explain heterogeneity in spillover models with differential implications for specific parenting behaviors. Implications for clinicians and therapists working with maritally distressed parents are discussed. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  6. Loss of Anterior Gradient 2 (Agr2) Expression Results in Hyperplasia and Defective Lineage Maturation in the Murine Stomach*

    PubMed Central

    Gupta, Aparna; Wodziak, Dariusz; Tun, May; Bouley, Donna M.; Lowe, Anson W.

    2013-01-01

    Recent studies of epithelial tissues have revealed the presence of tissue-specific stem cells that are able to establish multiple cell lineages within an organ. The stem cells give rise to progenitors that replicate before differentiating into specific cell lineages. The mechanism by which homeostasis is established between proliferating stem or progenitor cells and terminally differentiated cells is unclear. This study demonstrates that Agr2 expression by mucous neck cells in the stomach promotes the differentiation of multiple cell lineages while also inhibiting the proliferation of stem or progenitor cells. When Agr2 expression is absent, gastric mucous neck cells increased in number as does the number of proliferating cells. Agr2 expression loss also resulted in the decline of terminally differentiated cells, which was supplanted by cells that exhibited nuclear SOX9 labeling. Sox9 expression has been associated with progenitor and stem cells. Similar effects of the Agr2 null on cell proliferation in the intestine were also observed. Agr2 consequently serves to maintain the balance between proliferating and differentiated epithelial cells. PMID:23209296

  7. Finite-horizon differential games for missile-target interception system using adaptive dynamic programming with input constraints

    NASA Astrophysics Data System (ADS)

    Sun, Jingliang; Liu, Chunsheng

    2018-01-01

    In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.

  8. Adrenaline inhibits osteogenesis via repressing miR-21 expression.

    PubMed

    Chen, Danying; Wang, Zuolin

    2017-01-01

    Sympathetic signaling is involved in bone homeostasis; however, the cellular and molecular mechanisms remain unknown. In this study, we found that the psychological stress mediator adrenaline inhibited osteogenic differentiation of human bone marrow-derived stem cells (hMSC) by reducing microRNA-21 (miR-21) expression. Briefly, adrenaline significantly inhibited the osteogenic differentiation of hMSCs, as observed with both Alizarin red staining and maker gene expression (RUNX2, OSX, OCN, and OPN). During this process, miR-21 was suppressed by adrenaline via inhibition of histone acetylation, as verified by H3K9Ac chromatin immunoprecipitation (ChIP) assay. MiR-21 was confirmed to promote hMSC osteogenic differentiation, and overexpression of miR-21 reversed the impeditive effect of adrenaline on hMSC osteogenic differentiation. Our results demonstrate that down-regulation of miR-21 is responsible for the adrenaline-mediated inhibition of hMSC osteogenic differentiation. These findings indicate a regulation of bone metabolism by psychological stress and also provide a molecular basis for psychological stress-associated bone diseases. © 2016 International Federation for Cell Biology.

  9. A Comparison of Two-Stage Approaches for Fitting Nonlinear Ordinary Differential Equation (ODE) Models with Mixed Effects

    PubMed Central

    Chow, Sy-Miin; Bendezú, Jason J.; Cole, Pamela M.; Ram, Nilam

    2016-01-01

    Several approaches currently exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA), generalized local linear approximation (GLLA), and generalized orthogonal local derivative approximation (GOLD). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children’s self-regulation. PMID:27391255

  10. A Comparison of Two-Stage Approaches for Fitting Nonlinear Ordinary Differential Equation Models with Mixed Effects.

    PubMed

    Chow, Sy-Miin; Bendezú, Jason J; Cole, Pamela M; Ram, Nilam

    2016-01-01

    Several approaches exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA; Ramsay & Silverman, 2005 ), generalized local linear approximation (GLLA; Boker, Deboeck, Edler, & Peel, 2010 ), and generalized orthogonal local derivative approximation (GOLD; Deboeck, 2010 ). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo (MC) study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children's self-regulation.

  11. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    PubMed

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and fiber assembly. Gene expression and protein synthesis analyses coupled with histological and immunofluorescence staining revealed that elastin-containing vascular tissues were fabricated. More importantly, co-localization and co-immunoprecipitation experiments demonstrated that elastin and fibrillin-1 were abundant throughout the cross-section of the tissue constructs suggesting a process of elastin protein crosslinking. This study paves a way forward to engineer elastin-containing functional vascular substitutes from multipotent progenitor cells in a bioreactor. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Effects of the Endocrine-Disrupting Chemical DDT on Self-Renewal and Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Strong, Amy L.; Shi, Zhenzhen; Strong, Michael J.; Miller, David F.B.; Rusch, Douglas B.; Buechlein, Aaron M.; Flemington, Erik K.; McLachlan, John A.; Nephew, Kenneth P.

    2014-01-01

    Background: Although the global use of the endocrine-disrupting chemical DDT has decreased, its persistence in the environment has resulted in continued human exposure. Accumulating evidence suggests that DDT exposure has long-term adverse effects on development, yet the impact on growth and differentiation of adult stem cells remains unclear. Objectives: Human mesenchymal stem cells (MSCs) exposed to DDT were used to evaluate the impact on stem cell biology. Methods: We assessed DDT-treated MSCs for self-renewal, proliferation, and differentiation potential. Whole genome RNA sequencing was performed to assess gene expression in DDT-treated MSCs. Results: MSCs exposed to DDT formed fewer colonies, suggesting a reduction in self-renewal potential. DDT enhanced both adipogenic and osteogenic differentiation, which was confirmed by increased mRNA expression of glucose transporter type 4 (GLUT4), lipoprotein lipase (LpL), peroxisome proliferator-activated receptor gamma (PPARγ), leptin, osteonectin, core binding factor 1 (CBFA1), and FBJ murine osteosarcoma viral oncogene homolog (c-Fos). Expression of factors in DDT-treated cells was similar to that in estrogen-treated MSCs, suggesting that DDT may function via the estrogen receptor (ER)-mediated pathway. The coadministration of ICI 182,780 blocked the effects of DDT. RNA sequencing revealed 121 genes and noncoding RNAs to be differentially expressed in DDT-treated MSCs compared with controls cells. Conclusion: Human MSCs provide a powerful biological system to investigate and identify the molecular mechanisms underlying the effects of environmental agents on stem cells and human health. MSCs exposed to DDT demonstrated profound alterations in self-renewal, proliferation, differentiation, and gene expression, which may partially explain the homeostatic imbalance and increased cancer incidence among those exposed to long-term EDCs. Citation: Strong AL, Shi Z, Strong MJ, Miller DF, Rusch DB, Buechlein AM, Flemington EK, McLachlan JA, Nephew KP, Burow ME, Bunnell BA. 2015. Effects of the endocrine-disrupting chemical DDT on self-renewal and differentiation of human mesenchymal stem cells. Environ Health Perspect 123:42–48; http://dx.doi.org/10.1289/ehp.1408188 PMID:25014179

  13. Inhibition of the NAD-Dependent Protein Deacetylase SIRT2 Induces Granulocytic Differentiation in Human Leukemia Cells

    PubMed Central

    Sunami, Yoshitaka; Araki, Marito; Hironaka, Yumi; Morishita, Soji; Kobayashi, Masaki; Liew, Ei Leen; Edahiro, Yoko; Tsutsui, Miyuki; Ohsaka, Akimichi; Komatsu, Norio

    2013-01-01

    Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL) cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia–retinoic acid receptor α (PML-RAR-α) stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation. PMID:23460888

  14. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Henry F., E-mail: Hal.Duncan@dental.tcd.ie; Smith, Anthony J.; Fleming, Garry J.P.

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increasedmore » by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2.« less

  15. The effect of cyclic phosphatidic acid on the proliferation and differentiation of mouse cerebellar granule precursor cells during cerebellar development.

    PubMed

    Konakazawa, Misa; Gotoh, Mari; Murakami-Murofushi, Kimiko; Hamano, Ayana; Miyamoto, Yasunori

    2015-07-21

    The proliferation and differentiation of cerebellar granule cell precursors (GCPs) are highly regulated spatiotemporally during development. We focused on cyclic phosphatidic acid (cPA) as a lipid mediator with a cyclic phosphate group as a regulatory factor of GCPs. While its structure is similar to that of lysophosphatidic acid (LPA), its function is very unique. cPA is known to be present in the cerebellum at high levels, but its function has not been fully elucidated. In this study, we examined the role of cPA on the proliferation and differentiation of GCPs. A cell cycle analysis of GCPs revealed that cPA reduced the number of phospho-histone H3 (Phh3)-positive cells and bromodeoxy uridine (BrdU)-incorporated cells and increased an index of the cell cycle exit. We next analyzed the effect of cPA on GCP differentiation using Tuj1 as a neuronal marker of final differentiation. The results show that cPA increased the number of Tuj1-positive cells. Further analysis of the proliferation of GCPs showed that cPA suppressed Sonic hedgehog (Shh)-dependent proliferation, but did not suppress insulin-like growth factor-1 (IGF-1)-dependent proliferation. P2Y5 (LPA6), an LPA receptor, is highly expressed in GCPs. The knockdown of P2Y5 suppressed the inhibitory effect of cPA on the proliferation of GCPs, suggesting that P2Y5 is a candidate receptor for cPA. Thus, cPA suppresses the Shh-dependent proliferation of GCPs and promotes the differentiation of GCPs through P2Y5. These results demonstrate that cPA plays a critical role in the development of GCPs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair.

    PubMed

    Kim, Beom-Su; Yang, Sun-Sik; You, Hyung-Keun; Shin, Hong-In; Lee, Jun

    2018-03-01

    Osteogenesis and angiogenesis, including cell-cell communication between blood vessel cells and bone cells, are essential for bone repair. Fucoidan is a chemical compound that has a variety of biological activities. It stimulates osteoblast differentiation in human mesenchymal stem cells (MSCs), which in turn induces angiogenesis. However, the mechanism by which this communication between osteoblasts and endothelial cells is mediated remains unclear. Thus, the aim of this study was to clarify the relationship between fucoidan-induced osteoblastic differentiation in MSCs and angiogenesis in endothelial cells. First, the effect was confirmed of fucoidan on osteoblast differentiation in MSCs and obtained conditioned media from these cells (Fucoidan-MSC-CM). Next, the angiogenic activity of Fucoidan-MSC-CM was investigated and it was found that it stimulated angiogenesis, demonstrated by proliferation, tube formation, migration and sprout capillary formation in human umbilical vein endothelial cells. Messenger ribonucleic acid expression and protein secretion of vascular endothelial growth factor (VEGF) were dramatically increased during fucoidan-induced osteoblast differentiation and that its angiogenic activities were reduced by a VEGF/VEGF receptor-specific binding inhibitor. Furthermore, Fucoidan-MSC-CM increased the phosphorylation of mitogen-activated protein kinase and PI3K/AKT/eNOS signalling pathway, and that its angiogenic effects were markedly suppressed by SB203580 and AKT 1/2 inhibitor. Finally, an in vivo study was conducted and it was found that fucoidan accelerated new blood vessel formation and partially promoted bone formation in a rabbit model of a calvarial bone defect. This is the first study to investigate the angiogenic effect of fucoidan-induced osteoblastic differentiation through VEGF secretion, suggesting the therapeutic potential of fucoidan for enhancing bone repair. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Macrophage Phenotype Modulation by CXCL4 in Atherosclerosis.

    PubMed

    Gleissner, Christian A

    2012-01-01

    During atherogenesis, blood monocytes transmigrate into the subendothelial space and differentiate toward macrophages and foam cells. The major driver of monocyte-macrophage differentiation is macrophage colony-stimulating factor (M-CSF). M-CSF-induced macrophages are important promoters of atherogenesis as demonstrated in M-CSF and M-CSF receptor knock out mice. However, M-CSF is not the only relevant promoter of macrophage differentiation. The platelet chemokine CXCL4 also prevents monocyte apoptosis and promotes macrophage differentiation in vitro. It is secreted from activated platelets and has effects on various cell types relevant in atherogenesis. Knocking out the Pf4 gene coding for CXCL4 in Apoe(-/-) mice leads to reduced atherogenesis. Thus, it seems likely that CXC4-induced macrophages may have specific pro-atherogenic capacities. We have studied CXC4-induced differentiation of human macrophages using gene chips, systems biology, and functional in vitro and ex vivo experiments. Our data indicate that CXCL4-induced macrophages are distinct from both their M-CSF-induced counterparts and other known macrophage polarizations like M1 macrophages (induced by lipopolysaccharide and interferon-gamma) or M2 macrophages (induced by interleukin-4). CXCL4-induced macrophages have distinct phenotypic and functional characteristics, e.g., the complete loss of the hemoglobin-haptoglobin (Hb-Hp) scavenger receptor CD163 which is necessary for effective hemoglobin clearance after plaque hemorrhage. Lack of CD163 is accompanied by the inability to upregulate the atheroprotective enzyme heme oxygenase-1 in response to Hb-Hp complexes. This review covers the current knowledge about CXCL4-induced macrophages. Based on their unique properties, we have suggested to call these macrophages "M4." CXCL4 may represent an important orchestrator of macrophage heterogeneity within atherosclerotic lesions. Further dissecting its effects on macrophage differentiation may help to identify novel therapeutic targets in atherogenesis.

  18. Cellular Effects of Perfluorinated Fatty Acids (PFDA).

    DTIC Science & Technology

    This is a proposal to investigate the effects of perfluorinated decanoic acid ( PFDA ) on the cell surface of liver cells and tissue. The major method...summarized as follows: (a) differentiated liver tissue culture cells in vitro do have the membrane fluidity affected by PFDA whereas undifferentiated, non...d) the effect on mobility occurs within 24 hours of exposure without further increase with time of exposure; (e) scanning EM demonstrates no gross structural abnormality of the surface as a result of the non-toxic levels of PFDA .

  19. Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells.

    PubMed

    Jia, Qian; Jiang, Wenkai; Ni, Longxing

    2015-02-01

    Our studies aimed to figure out how anti-differentiation noncoding RNA (ANCR) regulates the proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). In this study, we used lentivirus infection to down-regulate the expression of ANCR in PDLSCs. Then we compared the proliferation of control cells and PDLSC/ANCR-RNAi cells by Cell Counting Kit-8. And the osteogenic differentiation of control cells and PDLSC/ANCR-RNAi cells were evaluated by Alkaline phosphatase (ALP) activity quantification and Alizarin red staining. WNT inhibitor was used to analyze the relationship between ANCR and canonical WNT signalling pathway. The expression of osteogenic differentiation marker mRNAs, DKK1, GSK3-β and β-catenin were evaluated by qRT-PCR. The results showed that down-regulated ANCR promoted proliferation of PDLSCs. Down-regulated ANCR also promoted osteogenic differentiation of PDLSCs by up-regulating osteogenic differentiation marker genes. After the inhibition of canonical WNT signalling pathway, the osteogenic differentiation of PDLSC/ANCR-RNAi cells was inhibited too. qRT-PCR results also demonstrated that canonical WNT signalling pathway was activated for ANCR-RNAi on PDLSCs during the procedure of proliferation and osteogenic induction. These results indicated that ANCR was a key regulator of the proliferation and osteogenic differentiation of PDLSCs, and its regulating effects was associated with the canonical WNT signalling pathway, thus offering a new target for oral stem cell differentiation studies that could also facilitate oral tissue engineering. Copyright © 2014. Published by Elsevier Ltd.

  20. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells.

    PubMed

    Abasi, M; Massumi, M; Riazi, G; Amini, H

    2012-10-11

    Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. Therefore, many investigators have focused on using the pluripotent stem cells to generate DAergic neurons. This study is aimed first to establish a mouse embryonic stem (mES) cell line that can stably co-express Nurr1 (Nuclear receptor subfamily 4, group A, member 2) transcription factor in order to efficiently generate DAergic neurons, and glutathione peroxidase-1 (GPX-1) to protect the differentiated DAergic-like cells against oxidative stress. In addition to genetic engineering of ES cells, the effect of Beta-boswellic acid (BBA) on DAergic differentiation course of mES cells was sought in the present study. To that end, the feeder-independent CGR8 mouse embryonic stem cells were transduced by Nurr1- and GPX-1-harboring Lentiviruses and the generated Nurr1/GPX-1-expresssing ES clones were characterized and verified. Gene expression analyses demonstrated that BBA treatment and overexpression of Nurr1 has a synergistic effect on derivation of DAergic neurons from Nurr1/GPX-1-expressing ES cells. The differentiated cells could exclusively synthesize and secrete dopamine in response to stimuli. Overexpression of GPX-1 in genetically engineered Nurr1/GPX-1-ES cells increased the viability of these cells during their differentiation into CNS stem cells. In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1 overexpression in Nurr1/GPX-1-ES cells increases the viability of differentiated CNS stem-like cells. The result of this study may have impact on future stem cell therapy of PD. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers.

    PubMed

    Wingate, K; Bonani, W; Tan, Y; Bryant, S J; Tan, W

    2012-04-01

    The importance of mesenchymal stem cells (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. Electrospinning and photopolymerization techniques were used to fabricate a three-dimensional (3-D) polyethylene glycol dimethacrylate nanofiber hydrogel matrix with tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus of the hydrated 3-D matrices ranged from 2 to 15 kPa, similar to the in vivo elasticity of the intima basement membrane and media layer. MSC seeded on rigid matrices (8-15 kPa) showed an increase in cell area compared with those seeded on soft matrices (2-5 kPa). Furthermore, the matrix elasticity guided the cells to express different vascular-specific phenotypes with high differentiation efficiency. Around 95% of MSC seeded on the 3-D matrices with an elasticity of 3 kPa showed Flk-1 endothelial markers within 24h, while only 20% of MSC seeded on the matrices with elasticity >8 kPa demonstrated Flk-1 marker. In contrast, ∼80% of MSC seeded on 3-D matrices with elasticity >8 kPa demonstrated smooth muscle α-actin marker within 24h, while fewer than 10% of MSC seeded on 3-D matrices with elasticity <5 kPa showed α-actin markers. The ability to control MSC differentiation into either endothelial or smooth muscle-like cells based purely on the local elasticity of the substrate could be a powerful tool for vascular tissue regeneration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Gene expression profile in human induced pluripotent stem cells: Chondrogenic differentiation in vitro, part A

    PubMed Central

    Suchorska, Wiktoria Maria; Augustyniak, Ewelina; Richter, Magdalena; Trzeciak, Tomasz

    2017-01-01

    Human induced pluripotent stem cells (hiPSCs) offer promise in regenerative medicine, however more data are required to improve understanding of key aspects of the cell differentiation process, including how specific chondrogenic processes affect the gene expression profile of chondrocyte-like cells and the relative value of cell differentiation markers. The main aims of the present study were as follows: To determine the gene expression profile of chondrogenic-like cells derived from hiPSCs cultured in mediums conditioned with HC-402-05a cells or supplemented with transforming growth factor β3 (TGF-β3), and to assess the relative utility of the most commonly used chondrogenic markers as indicators of cell differentiation. These issues are relevant with regard to the use of human fibroblasts in the reprogramming process to obtain hiPSCs. Human fibroblasts are derived from the mesoderm and thus share a wide range of properties with chondrocytes, which also originate from the mesenchyme. Thus, the exclusion of dedifferentiation instead of chondrogenic differentiation is crucial. The hiPSCs were obtained from human primary dermal fibroblasts during a reprogramming process. Two methods, both involving embryoid bodies (EB), were used to obtain chondrocytes from the hiPSCs: EBs formed in a chondrogenic medium supplemented with TGF-β3 (10 ng/ml) and EBs formed in a medium conditioned with growth factors from HC-402-05a cells. Based on immunofluorescence and reverse transcription-quantiative polymerase chain reaction analysis, the results indicated that hiPSCs have the capacity for effective chondrogenic differentiation, in particular cells differentiated in the HC-402-05a-conditioned medium, which present morphological features and markers that are characteristic of mature human chondrocytes. By contrast, cells differentiated in the presence of TGF-β3 may demonstrate hypertrophic characteristics. Several genes [paired box 9, sex determining region Y-box (SOX) 5, SOX6, SOX9 and cartilage oligomeric matrix protein] were demonstrated to be good markers of early hiPSC chondrogenic differentiation: Insulin-like growth factor 1, Tenascin-C, and β-catenin were less valuable. These observations provide valuable data on the use of hiPSCs in cartilage tissue regeneration. PMID:28447755

  3. Increased cyclooxygenase-2 and thromboxane synthase expression is implicated in diosgenin-induced megakaryocytic differentiation in human erythroleukemia cells.

    PubMed

    Cailleteau, C; Liagre, B; Battu, S; Jayat-Vignoles, C; Beneytout, J L

    2008-09-01

    Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 microM, diosgenin induced megakaryocytic differentiation, in contrast to 40 microM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation.

  4. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation ofmore » [{sup 3}H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [{sup 3}H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-{kappa}B, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.« less

  5. Development of a model system to analyze chondrogenic differentiation of mesenchymal stem cells

    PubMed Central

    Ruedel, Anke; Hofmeister, Simone; Bosserhoff, Anja-Katrin

    2013-01-01

    High-density cell culture is widely used for the analysis of cartilage development of human mesenchymal stem cells (HMSCs) in vitro. Several cell culture systems, as micromass, pellet culture and alginate culture, are applied by groups in the field to induce chondrogenic differentiation of HMSCs. A draw back of all model systems is the high amount of cells necessary for the experiments. Further, handling of large experimental approaches is difficult due to culturing e.g. in 15 ml tubes. Therefore, we aimed to develop a new model system based on “hanging drop” cultures using 10 to 100 fold less cells. Here, we demonstrate that differentiation of chondrogenic cells was induced as previously shown in other model systems. Real time RT-PCR analysis demonstrated that Collagen type II and MIA/CD-RAP were upregulated during culturing whereas for induction of hypertrophic markers like Collagen type X and AP-2 epsilon treatment with TGF beta was needed. To further test the system, siRNA against Sox9 was used and effects on chondrogenic gene expression were evaluated. In summary, the hanging drop culture system was determined to be a promising tool for in vitro chondrogenic studies. PMID:24294400

  6. Three-terminal graphene negative differential resistance devices.

    PubMed

    Wu, Yanqing; Farmer, Damon B; Zhu, Wenjuan; Han, Shu-Jen; Dimitrakopoulos, Christos D; Bol, Ageeth A; Avouris, Phaedon; Lin, Yu-Ming

    2012-03-27

    A new mechanism for negative differential resistance (NDR) is discovered in three-terminal graphene devices based on a field-effect transistor configuration. This NDR effect is a universal phenomenon for graphene and is demonstrated in devices fabricated with different types of graphene materials and gate dielectrics. Operation of conventional NDR devices is usually based on quantum tunneling or intervalley carrier transfer, whereas the NDR behavior observed here is unique to the ambipolar behavior of zero-bandgap graphene and is associated with the competition between electron and hole conduction as the drain bias increases. These three terminal graphene NDR devices offer more operation flexibility than conventional two-terminal devices based on tunnel diodes, Gunn diodes, or molecular devices, and open up new opportunities for graphene in microwave to terahertz applications. © 2012 American Chemical Society

  7. Understanding and Exploiting the Effects of Loading on Ultrasonic Sensing Systems for Structural Health Monitoring

    DTIC Science & Technology

    2012-02-01

    method to image fatigue cracks without requiring damage-free baseline measurements. Load-differential imaging maps changes in ultrasonic signals...caused by a small increase in applied load to an image, which enables detecting and locating fatigue cracks that open under load and thus distinguishing...them from other load-dependent effects. This method was successfully demonstrated in the laboratory during fatigue tests on a variety of aluminum

  8. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation

    PubMed Central

    Price, Nathan L.; Holtrup, Brandon; Kwei, Stephanie L.; Wabitsch, Martin; Rodeheffer, Matthew; Bianchini, Laurence; Suárez, Yajaira

    2016-01-01

    White adipose tissue (WAT) is essential for maintaining metabolic function, especially during obesity. The intronic microRNAs miR-33a and miR-33b, located within the genes encoding sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1, respectively, are transcribed in concert with their host genes and function alongside them to regulate cholesterol, fatty acid, and glucose metabolism. SREBP-1 is highly expressed in mature WAT and plays a critical role in promoting in vitro adipocyte differentiation. It is unknown whether miR-33b is induced during or involved in adipogenesis. This is in part due to loss of miR-33b in rodents, precluding in vivo assessment of the impact of miR-33b using standard mouse models. This work demonstrates that miR-33b is highly induced upon differentiation of human preadipocytes, along with SREBP-1. We further report that miR-33b is an important regulator of adipogenesis, as inhibition of miR-33b enhanced lipid droplet accumulation. Conversely, overexpression of miR-33b impaired preadipocyte proliferation and reduced lipid droplet formation and the induction of peroxisome proliferator-activated receptor γ (PPARγ) target genes during differentiation. These effects may be mediated by targeting of HMGA2, cyclin-dependent kinase 6 (CDK6), and other predicted miR-33b targets. Together, these findings demonstrate a novel role of miR-33b in the regulation of adipocyte differentiation, with important implications for the development of obesity and metabolic disease. PMID:26830228

  9. Fibromodulin modulates myoblast differentiation by controlling calcium channel.

    PubMed

    Lee, Eun Ju; Nam, Joo Hyun; Choi, Inho

    2018-06-16

    Fibromodulin (FMOD) is a proteoglycan present in extracellular matrix (ECM). Based on our previous findings that FMOD controls myoblast differentiation by regulating the gene expressions of collagen type I alpha 1 (COL1α1) and integral membrane protein 2 A (Itm2a), we undertook this study to investigate relationships between FMOD and calcium channels and to understand further the mechanism by which they control myoblast differentiation. Gene expression studies and luciferase reporter assays showed FMOD affected calcium channel gene expressions by regulating calcium channel gene promoter, and patch-clamp experiments showed both L- and T-type calcium channel currents were almost undetectable in FMOD knocked down cells. In addition, gene knock-down studies demonstrated the COL1α1 and Itm2a genes both regulate the expressions of calcium channel genes. Studies using a cardiotoxin-induced mouse muscle injury model demonstrated calcium channels play important roles in the regeneration of muscle tissue, possibly by promoting the differentiation of muscle stem cells (MSCs). Summarizing, the study demonstrates ECM components secreted by myoblasts during differentiation provide an essential environment for muscle differentiation and regeneration. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Glycosaminoglycan-Mimetic Signals Direct the Osteo/Chondrogenic Differentiation of Mesenchymal Stem Cells in a Three-Dimensional Peptide Nanofiber Extracellular Matrix Mimetic Environment.

    PubMed

    Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2016-04-11

    Recent efforts in bioactive scaffold development focus strongly on the elucidation of complex cellular responses through the use of synthetic systems. Designing synthetic extracellular matrix (ECM) materials must be based on understanding of cellular behaviors upon interaction with natural and artificial scaffolds. Hence, due to their ability to mimic both the biochemical and mechanical properties of the native tissue environment, supramolecular assemblies of bioactive peptide nanostructures are especially promising for development of bioactive ECM-mimetic scaffolds. In this study, we used glycosaminoglycan (GAG) mimetic peptide nanofiber gel as a three-dimensional (3D) platform to investigate how cell lineage commitment is altered by external factors. We observed that amount of fetal bovine serum (FBS) presented in the cell media had synergistic effects on the ability of GAG-mimetic nanofiber gel to mediate the differentiation of mesenchymal stem cells into osteogenic and chondrogenic lineages. In particular, lower FBS concentration in the culture medium was observed to enhance osteogenic differentiation while higher amount FBS promotes chondrogenic differentiation in tandem with the effects of the GAG-mimetic 3D peptide nanofiber network, even in the absence of externally administered growth factors. We therefore demonstrate that mesenchymal stem cell differentiation can be specifically controlled by the combined influence of growth medium components and a 3D peptide nanofiber environment.

  11. Comparison of various molecular methods for rapid differentiation of intestinal bifidobacteria at the species, subspecies and strain level.

    PubMed

    Jarocki, Piotr; Podleśny, Marcin; Komoń-Janczara, Elwira; Kucharska, Jagoda; Glibowska, Agnieszka; Targoński, Zdzisław

    2016-07-22

    Members of the genus Bifidobacterium are anaerobic Gram-positive Actinobacteria, which are natural inhabitants of human and animal gastrointestinal tract. Certain bifidobacteria are frequently used as food additives and probiotic pharmaceuticals, because of their various health-promoting properties. Due to the enormous demand on probiotic bacteria, manufacture of high-quality products containing living microorganisms requires rapid and accurate identification of specific bacteria. Additionally, isolation of new industrial bacteria from various environments may lead to multiple isolations of the same strain, therefore, it is important to apply rapid, low-cost and effective procedures differentiating bifidobacteria at the intra-species level. The identification of new isolates using microbiological and biochemical methods is difficult, but the accurate characterization of isolated strains may be achieved using a polyphasic approach that includes classical phenotypic methods and molecular procedures. However, some of these procedures are time-consuming and cumbersome, particularly when a large group of new isolates is typed, while some other approaches may have too low discriminatory power to distinguish closely related isolates obtained from similar sources. This work presents the evaluation of the discriminatory power of four molecular methods (ARDRA, RAPD-PCR, rep-PCR and SDS-PAGE fingerprinting) that are extensively used for fast differentiation of bifidobacteria up to the strain level. Our experiments included 17 reference strains and showed that in comparison to ARDRA, genotypic fingerprinting procedures (RAPD and rep-PCR) seemed to be less reproducible, however, they allowed to differentiate the tested microorganisms even at the intra-species level. In general, RAPD and rep-PCR have similar discriminatory power, though, in some instances more than one oligonucleotide needs to be used in random amplified polymorphic DNA analysis. Moreover, the results also demonstrated a high discriminatory power of SDS-PAGE fingerprinting of whole-cell proteins. On the other hand, the protein profiles obtained were rather complex, and therefore, difficult to analyze. Among the tested procedures, rep-PCR proved to be the most effective and reliable method allowing rapid differentiation of Bifidobacterium strains. Additionally, the use of the BOXA1R primer in the differentiation of 21 Bifidobacterium strains, newly isolated from infant feces, demonstrated slightly better discriminatory power in comparison to PCR reactions with the (GTG)5 oligonucleotide. Thus, BOX-PCR turned out to be the most appropriate and convenient molecular technique in differentiating Bifidobacterium strains at all taxonomic levels.

  12. Differential effect of combined lipase deficiency (cld/cld) on human hepatic lipase and lipoprotein lipase secretion.

    PubMed

    Boedeker, J C; Doolittle, M H; White, A L

    2001-11-01

    Combined lipase deficiency (cld) is a recessively inherited disorder in mice associated with a deficiency of LPL and hepatic lipase (HL) activity. LPL is synthesized in cld tissues but is retained in the endoplasmic reticulum (ER), whereas mouse HL (mHL) is secreted but inactive. In this study we investigated the effect of cld on the secretion of human HL (hHL) protein mass and activity. Differentiated liver cell lines were derived from cld mice and their normal heterozygous (het) littermates by transformation of hepatocytes with SV40 large T antigen. After transient transfection with lipase expression constructs, secretion of hLPL activity from cld cells was only 12% of that from het cells. In contrast, the rate of secretion of hHL activity and protein mass per unit of expressed hHL mRNA was identical for the two cell lines. An intermediate effect was observed for mHL, with a 46% reduction in secretion of activity from cld cells. The ER glucosidase inhibitor, castanospermine, decreased secretion of both hLPL and hHL from het cells by approximately 70%, but by only approximately 45% from cld cells. This is consistent with data suggesting that cld may result from a reduced concentration of the ER chaperone calnexin. In conclusion, our results demonstrate a differential effect of cld on hLPL, mHL, and hHL secretion, suggesting differential requirements for activation and exit of the enzymes from the ER.

  13. Effects of Blue Light Emitting Diode Irradiation On the Proliferation, Apoptosis and Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Yuan, Ye; Yan, Gege; Gong, Rui; Zhang, Lai; Liu, Tianyi; Feng, Chao; Du, Weijie; Wang, Ying; Yang, Fan; Li, Yuan; Guo, Shuyuan; Ding, Fengzhi; Ma, Wenya; Idiiatullina, Elina; Pavlov, Valentin; Han, Zhenbo; Cai, Benzhi; Yang, Lei

    2017-01-01

    Blue light emitting diodes (LEDs) have been proven to affect the growth of several types of cells. The effects of blue LEDs have not been tested on bone marrow-derived mesenchymal stem cells (BMSCs), which are important for cell-based therapy in various medical fields. Therefore, the aim of this study was to determine the effects of blue LED on the proliferation, apoptosis and osteogenic differentiation of BMSCs. BMSCs were irradiated with a blue LED light at 470 nm for 1 min, 5 min, 10 min, 30 min and 60 min or not irradiated. Cell proliferation was measured by performing cell counting and EdU staining assays. Cell apoptosis was detected by TUNEL staining. Osteogenic differentiation was evaluated by ALP and ARS staining. DCFH-DA staining and γ-H2A.X immunostaining were used to measure intracellular levels of ROS production and DNA damage. Both cell counting and EdU staining assays showed that cell proliferation of BMSCs was significantly reduced upon blue LED irradiation. Furthermore, treatment of BMSCs with LED irradiation was followed by a remarkable increase in apoptosis, indicating that blue LED light induced toxic effects on BMSCs. Likewise, BMSC osteogenic differentiation was inhibited after exposure to blue LED irradiation. Further, blue LED irradiation was followed by the accumulation of ROS production and DNA damage. Taken together, our study demonstrated that blue LED light inhibited cell proliferation, inhibited osteogenic differentiation, and induced apoptosis in BMSCs, which are associated with increased ROS production and DNA damage. These findings may provide important insights for the application of LEDs in future BMSC-based therapies. © 2017 The Author(s). Published by S. Karger AG, Basel.

  14. Application of the differentiation process into the correlation-based leak detection in urban pipeline networks

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Liu, Yuyou; Ma, Yifan; Cheng, Xiaobin; Yang, Jun

    2018-11-01

    One major challenge currently facing pipeline networks across the world is the improvement of leak detection technologies in urban environments. There is an imperative to locate accurately leaks in buried water pipes to avoid serious environmental, social and economic consequences. Much attention has been paid to time delay estimation (TDE) in determining the position of a leak by utilising cross-correlation, which has been proven to be effective with varying degrees of success over the past half century. Previous research in published literature has demonstrated the effectiveness of the pre-whitening process for accentuating the peak in the cross-correlation associated with the time delay. This paper is concerned with the implementation of the differentiation process for TDE, with particular focus on the problem of determining a leak in pipelines by means of pipe pressure measurements. Rather than the pre-whitening operation, the proposed cross-correlation via the differentiation process, termed here DIF, changes the characteristics of the pipe system so that the pipe effectively acts as a band-pass filter. This method has the potential to eliminate some ambiguity caused by the interference at low frequencies and to allow more high frequency information to pass. Given an appropriate differentiation order, a more pronounced and reliable peak is obtained in the cross-correlation result. The use of differentiation process may provide a viable cross-correlation method suited to water leak detection. Its performance in relation to leak detection is further compared to the basic cross-correlation and pre-whitening methods for TDE in detecting a leak from actual PVC water pipes. Experimental results are presented to show an additional property of the DIF compensating for the resonance effects that may exist in cross-spectral density measurements, and hence better performance for TDE.

  15. Proteomic and metabolomic responses in hepatopancreas of Mytilus galloprovincialis challenged by Micrococcus luteus and Vibrio anguillarum.

    PubMed

    Wu, Huifeng; Ji, Chenglong; Wei, Lei; Zhao, Jianmin; Lu, Hongjian

    2013-12-06

    The outbreak of pathogens can induce diseases and lead to massive mortalities of aquaculture animals including fish, mollusk and shrimp. In this work, the responses induced by Micrococcus luteus and Vibrio anguillarum were investigated in hepatopancreas of mussel Mytilus galloprovincialis using proteomics and metabolomics. Metabolic biomarkers demonstrated that M. luteus and V. anguillarum injections could induce osmotic stress and disturbance in energy metabolism. And the uniquely and more markedly altered metabolic biomarkers (glutamine, succinate, aspartate, glucose, ATP, homarine and tyrosine) indicated that V. anguillarum could cause more severe disturbances in osmotic regulation and energy metabolism. The differentially altered proteins meant that M. luteus and V. anguillarum induced different effects in mussels. However, the common proteomic biomarkers, arginine kinase and small heat shock protein, demonstrated that these two bacteria induced similar effects including oxidative stress and disturbance in energy metabolism in M. galloprovincialis. In addition, some metabolic biomarkers, ATP and glutamine, were confirmed by related proteins including arginine kinase, ATP synthase, nucleoside diphosphate kinase and glutamine synthetase in bacteria-challenged mussels. This study demonstrated that proteomics and metabolomics could provide an insightful view into the effects of environmental pathogens to the marine mussel M. galloprovincialis. The outbreak of pathogens can lead to diseases and massive mortalities of aquaculture animals including fish, mollusk and shrimp. The mussel M. galloprovincialis distributes widely along the Bohai coast and is popularly consumed as delicious seafood by local residents. This bivalve has become one of the important species in marine aquaculture industry in China. Therefore a study on pathogen-induced effects is necessary. In the present study, an integrated metabolomic and proteomic approach was used to elucidate the differential effects induced by the representative Gram-positive (M. luteus) and Gram-negative (V. anguillarum) bacteria in M. galloprovincialis. © 2013.

  16. Dexamethasone induces dysferlin in myoblasts and enhances their myogenic differentiation

    PubMed Central

    Belanto, Joseph J.; Diaz-Perez, Silvia V.; Magyar, Clara E.; Maxwell, Michele M.; Yilmaz, Yasemin; Topp, Kasey; Boso, Guney; Jamieson, Catriona H.; Cacalano, Nicholas A.; Jamieson, Christina A.M.

    2010-01-01

    Glucocorticoids are beneficial in many muscular dystrophies but they are ineffective in treating dysferlinopathy, a rare muscular dystrophy caused by loss of dysferlin. We sought to understand the molecular basis for this disparity by studying the effects of a glucocorticoid on differentiation of the myoblast cell line, C2C12, and dysferlin-deficient C2C12s. We found that pharmacologic doses of dexamethasone enhanced the myogenic fusion efficiency of C2C12s and increased the induction of dysferlin, along with specific myogenic transcription factors, sarcolemmal and structural proteins. In contrast, the dysferlin-deficient C2C12 cell line demonstrated a reduction in long myotubes and early induction of particular muscle differentiation proteins, most notably, myosin heavy chain. Dexamethasone partially reversed the defect in myogenic fusion in the dysferlin-deficient C2C12 cells. We hypothesize that a key therapeutic benefit of glucocorticoids may be the up-regulation of dysferlin as an important component of glucocorticoid-enhanced myogenic differentiation. PMID:20080405

  17. IL-21 Promotes Late Activator APC-Mediated T Follicular Helper Cell Differentiation in Experimental Pulmonary Virus Infection

    PubMed Central

    Yoo, Jae-Kwang; Braciale, Thomas J.

    2014-01-01

    IL-21 is a type-I cytokine that has pleiotropic immuno-modulatory effects. Primarily produced by activated T cells including NKT and TFH cells, IL-21 plays a pivotal role in promoting TFH differentiation through poorly understood cellular and molecular mechanisms. Here, employing a mouse model of influenza A virus (IAV) infection, we demonstrate that IL-21, initially produced by NKT cells, promotes TFH differentiation by promoting the migration of late activator antigen presenting cell (LAPC), a recently identified TFH inducer, from the infected lungs into the draining lymph nodes (dLN). LAPC migration from IAV-infected lung into the dLN is CXCR3-CXCL9 dependent. IL-21-induced TNF-α production by conventional T cells is critical to stimulate CXCL9 expression by DCs in the dLN, which supports LAPC migration into the dLN and ultimately facilitates TFH differentiation. Our results reveal a previously unappreciated mechanism for IL-21 modulation of TFH responses during respiratory virus infection. PMID:25251568

  18. CBX7 gene expression plays a negative role in adipocyte cell growth and differentiation

    PubMed Central

    Forzati, Floriana; Federico, Antonella; Pallante, Pierlorenzo; Colamaio, Marianna; Esposito, Francesco; Sepe, Romina; Gargiulo, Sara; Luciano, Antonio; Arra, Claudio; Palma, Giuseppe; Bon, Giulia; Bucher, Stefania; Falcioni, Rita; Brunetti, Arturo; Battista, Sabrina; Fedele, Monica; Fusco, Alfredo

    2014-01-01

    ABSTRACT We have recently generated knockout mice for the Cbx7 gene, coding for a polycomb group protein that is downregulated in human malignant neoplasias. These mice develop liver and lung adenomas and carcinomas, which confirms a tumour suppressor role for CBX7. The CBX7 ability to downregulate CCNE1 expression likely accounts for the phenotype of the Cbx7-null mice. Unexpectedly, Cbx7-knockout mice had a higher fat tissue mass than wild-type, suggesting a role of CBX7 in adipogenesis. Consistently, we demonstrate that Cbx7-null mouse embryonic fibroblasts go towards adipocyte differentiation more efficiently than their wild-type counterparts, and this effect is Cbx7 dose-dependent. Similar results were obtained when Cbx7-null embryonic stem cells were induced to differentiate into adipocytes. Conversely, mouse embryonic fibroblasts and human adipose-derived stem cells overexpressing CBX7 show an opposite behaviour. These findings support a negative role of CBX7 in the control of adipocyte cell growth and differentiation. PMID:25190058

  19. Concomitant inhibition of prolyl hydroxylases and ROCK initiates differentiation of mesenchymal stem cells and PC12 towards the neuronal lineage.

    PubMed

    Pacary, Emilie; Petit, Edwige; Bernaudin, Myriam

    2008-12-12

    This study demonstrates that a prolyl hydroxylase inhibitor, FG-0041, is able, in combination with the ROCK inhibitor, Y-27632, to initiate differentiation of mesenchymal stem cells (MSCs) into neuron-like cells. FG-0041/Y-27632 co-treatment provokes morphological changes into neuron-like cells, increases neuronal marker expression and provokes modifications of cell cycle-related gene expression consistent with a cell cycle arrest of MSC, three events showing the engagement of MSC towards the neuronal lineage. Moreover, as we observed in our previous studies with cobalt chloride and desferroxamine, the activation of HIF-1 by this prolyl hydroxylase inhibitor is potentiated by Y-27632 which could explain at least in part the effect of this co-treatment on MSC neuronal differentiation. In addition, we show that this co-treatment enhances neurite outgrowth and tyrosine hydroxylase expression in PC12 cells. Altogether, these results evidence that concomitant inhibition of prolyl hydroxylases and ROCK represents a relevant protocol to initiate neuronal differentiation.

  20. Comparison of Fetal Testosterone Production in Various Tissues of the Male Sprague Dawley Rat dosed In Utero with Dipentyl Phthalate during the Critical Window of Sexual Differentiation###

    EPA Science Inventory

    Phthalate esters are high-production volume chemicals used in the manufacture of numerci plastics and consumer products, which generates major concern for potential human exposure and environmental contamination. Several studies have demonstrated adverse effects associated with p...

  1. The Impact of a Three-Year Teacher Professional Development Course on Quality of Teaching: Strengths and Limitations of the Dynamic Approach

    ERIC Educational Resources Information Center

    Kyriakides, L.; Christoforidou, M.; Panayiotou, A.; Creemers, B. P. M.

    2017-01-01

    The dynamic approach (DA) suggests that professional development should be differentiated to meet teachers' individual needs while engaging participants into systematic and guided critical reflection. Previous experimental studies demonstrated that one-year interventions based on the DA have a positive impact on teacher effectiveness. The study…

  2. Eicosapentaenoic and docosahexaenoic acid ethyl esters differentially enhance B-cell activity in murine obesity[S

    PubMed Central

    Teague, Heather; Harris, Mitchel; Fenton, Jenifer; Lallemand, Perrine; Shewchuk, Brian M.; Shaikh, Saame Raza

    2014-01-01

    EPA and DHA are not biologically equivalent; however, their individual activity on B cells is unknown. We previously reported fish oil enhanced murine B-cell activity in obesity. To distinguish between the effects of EPA and DHA, we studied the ethyl esters of EPA and DHA on murine B-cell function as a function of time. We first demonstrate that EPA and DHA maintained the obese phenotype, with no improvements in fat mass, adipose inflammatory cytokines, fasting insulin, or glucose clearance. We then tested the hypothesis that EPA and DHA would increase the frequency of splenic B cells. EPA and DHA differentially enhanced the frequency and/or percentage of select B-cell subsets, correlating with increased natural serum IgM and cecal IgA. We next determined the activities of EPA and DHA on ex vivo production of cytokines upon lipopolysaccharide stimulation of B cells. EPA and DHA, in a time-dependent manner, enhanced B-cell cytokines with DHA notably increasing IL-10. At the molecular level, EPA and DHA differentially enhanced the formation of ordered microdomains but had no effect on Toll-like receptor 4 mobility. Overall, the results establish differential effects of EPA and DHA in a time-dependent manner on B-cell activity in obesity, which has implications for future clinical studies. PMID:24837990

  3. Turbomachinery Airfoil Design Optimization Using Differential Evolution

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.

  4. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    PubMed

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  5. Attempts at a numerical realisation of stochastic differential equations containing Preisach operator

    NASA Astrophysics Data System (ADS)

    McCarthy, S.; Rachinskii, D.

    2011-01-01

    We describe two Euler type numerical schemes obtained by discretisation of a stochastic differential equation which contains the Preisach memory operator. Equations of this type are of interest in areas such as macroeconomics and terrestrial hydrology where deterministic models containing the Preisach operator have been developed but do not fully encapsulate stochastic aspects of the area. A simple price dynamics model is presented as one motivating example for our studies. Some numerical evidence is given that the two numerical schemes converge to the same limit as the time step decreases. We show that the Preisach term introduces a damping effect which increases on the parts of the trajectory demonstrating a stronger upwards or downwards trend. The results are preliminary to a broader programme of research of stochastic differential equations with the Preisach hysteresis operator.

  6. SOCS3: an essential regulator of LIF receptor signaling in trophoblast giant cell differentiation

    PubMed Central

    Takahashi, Yutaka; Carpino, Nick; Cross, James C.; Torres, Miguel; Parganas, Evan; Ihle, James N.

    2003-01-01

    Suppressor of cytokine signaling 3 (SOCS3) binds cytokine receptors and thereby suppresses cytokine signaling. Deletion of SOCS3 causes an embryonic lethality that is rescued by a tetraploid rescue approach, demonstrating an essential role in placental development and a non-essential role in embryo development. Rescued SOCS3-deficient mice show a perinatal lethality with cardiac hypertrophy. SOCS3-deficient placentas have reduced spongiotrophoblasts and increased trophoblast secondary giant cells. Enforced expression of SOCS3 in a trophoblast stem cell line (Rcho-1) suppresses giant cell differentiation. Conversely, SOCS3-deficient trophoblast stem cells differentiate more readily to giant cells in culture, demonstrating that SOCS3 negatively regulates trophoblast giant cell differentiation. Leukemia inhibitory factor (LIF) promotes giant cell differentiation in vitro, and LIF receptor (LIFR) deficiency results in loss of giant cell differentiation in vivo. Finally, LIFR deficiency rescues the SOCS3-deficient placental defect and embryonic lethality. The results establish SOCS3 as an essential regulator of LIFR signaling in trophoblast differentiation. PMID:12554639

  7. Influence of gravitation on the propagation of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.

    1975-01-01

    The existence of a general helicity-rotation coupling is demonstrated for electromagnetic waves propagating in the field of a slowly rotating body and in the Goedel universe. This coupling leads to differential focusing of circularly polarized radiation by a gravitational field which is detectable for a rapidly rotating collapsed body. The electromagnetic perturbations and their frequency spectrum are given for the Goedel universe. The spectrum of frequencies is bounded from below by the characteristic rotation frequency of the Goedel universe. If the universe were rotating, the differential focusing effect would be extremely small due to the present upper limit on the anisotropy of the microwave background radiation.

  8. Acoustic streaming related to minor loss phenomenon in differentially heated elements of thermoacoustic devices

    NASA Astrophysics Data System (ADS)

    Mironov, Mikhail; Gusev, Vitalyi; Auregan, Yves; Lotton, Pierrick; Bruneau, Michel; Piatakov, Pavel

    2002-08-01

    It is demonstrated that the differentially heated stack, the heart of all thermoacoustic devices, provides a source of streaming additional to those associated with Reynolds stresses in quasi-unidirectional gas flow. This source of streaming is related to temperature-induced asymmetry in the generation of vortices and turbulence near the stack ends. The asymmetry of the hydrodynamic effects in an otherwise geometrically symmetric stack is due to the temperature difference between stack ends. The proposed mechanism of streaming excitation in annular thermoacoustic devices operates even in the absence of thermo-viscous interaction of sound waves with resonator walls. copyright 2002 Acoustical Society of America.

  9. Involvement of Semaphorin (Sema4D) in T-Dependent Activation of B Cells.

    PubMed

    Kuklina, Е М; Nekrasova, I V; Valieva, Yu V

    2017-08-01

    The involvement of endogenous semaphorin (Sema4D) into the key stage of T-dependent differentiation of B cells, formation of plasmoblasts, was demonstrated in vitro in T/B cell co-culture under conditions of polyclonal activation of T cells. The effect of semaphorin was not associated with activation of high-affinity Sema4D receptor plexin B1, but involves lowaffinity receptor CD72. These data indicate that Sema4D-dependent signal regulates not only the initial stage of B-cell activation, proliferative response to the antigen, but also further differentiation of B cells into plasma cells.

  10. Multiobjective Aerodynamic Shape Optimization Using Pareto Differential Evolution and Generalized Response Surface Metamodels

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. The DE algorithm has been recently extended to multiobjective optimization problem by using a Pareto-based approach. In this paper, a Pareto DE algorithm is applied to multiobjective aerodynamic shape optimization problems that are characterized by computationally expensive objective function evaluations. To improve computational expensive the algorithm is coupled with generalized response surface meta-models based on artificial neural networks. Results are presented for some test optimization problems from the literature to demonstrate the capabilities of the method.

  11. Strain-induced negative differential resistance in ultrasmall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Fang, Hui; Zhang, Fei-Peng; Ruan, Xing-Xiang; Huang, Can-Sheng; Jiang, Zhi-Nian; Peng, Jin-Yun; Wang, Ru-Zhi

    2017-08-01

    The transport properties in ultrasmall single-wall carbon nanotubes (SWCNTs) under tensile strain have been theoretically investigated. The regular negative differential resistance (NDR) induced by the strain undergoes a process from enhancement to weakening in the zigzag (3,0) SWCNT. The NDR achieves maximum with applying 4% tensile strain. Compared to the case of (3,0) SWCNT, that NDR cannot be manipulated by applying strain clearly in (4,0) and (5,0) ultrasmall SWCNTs with tensile strain lower than 10%. It proposes this strain-induced NDR effect to demonstrate the possibility of finding potential applications in SWCNT-based NDR nanodevices such as in memory devices, oscillators and fast switching devices.

  12. [The mechanism of vasculogenesis: the critical role of transforming growth factor-beta 1 in the formation of vessel-like structures during the differentiation in vitro of murine embryonic stem cells].

    PubMed

    Tsung, H C; Yao, Z

    1996-09-01

    When ES-5 cells were transfected with an exogenous porcine TGF-beta 1 gene, one can obtain clones of genetically modified ES cells with over-expression of the transfected gene. We called the genetically modified ES-5 cells as ES-T cells. When ES-T cells were used to study their differentiation in vitro by all trans-retinoic acid (RA), it was soon noticed that embryoid bodies of ES-T cells can exclusively differentiate into endothelial cells and vessel-like structures, but not in their parent ES-5 cells. The above result is the first indication that the differentiation of tubular structures in embryoid bodies of ES-T cells may somehow be related to TGF-beta 1. To demonstrate further the role of TGF-beta 1 in the formation of vessel-like structures, the cultured ES-5 cells in the presence of added rhTGF-beta 1 were closely followed in the course of their differentiation. We have, thus, demonstrated the promoting effects of exogenous rhTGF-beta 1 in the formation of vessel-like structures, morphologically similar to those structures derived from ES-T6 cells, during the differentiation of ES-5 cells, both in monolayer culture, in three dimensional collagen gel and in embryoid bodies cultured on gelatin-coated tissue culture wells. Addition of suitable amount of anti-TGF-beta 1 monoclonal antibody IgG (TB21) to the culture medium of embryoid bodies of ES-T6 cells could effectively abolish the formation of vessel-like structures induced by retinoic acid. The percentage of the inhibition was very high, giving a figure comparable to that of atypical vessel-like structures formed in the control embryoid bodies from their parent ES-5 cells. The flat epithelial-like cells and round cells differentiated from embryoid bodies of ES-T6 cells were stained rather strongly for laminin and type IV collagen by immunofluorescent procedure. The above results indicate clearly that TGF-beta 1 is a crucial factor in organizing the differentiated derivatives (endothelial-like cells and their immediate progenitor cells) from ES-T6 cells to form vessel-like structures, and that the role of TGF-beta 1 in vasculogenesis might be performed, in part, through the modulation of the composition and organization of the extracellular matrix. In addition, the enhanced expression of bFGF mRNA in derivatives differentiated from both ES-5 cells treated with rhTGF-beta 1 and ES-T6 cells were detected by Northern blot analysis. Thus, aside from its effects on extracellular matrix, TGF-beta 1 might also modulate the bioactivity of bFGF in relation to the growth of vascular endothelial cells in the present system.

  13. CTCF-Mediated and Pax6-Associated Gene Expression in Corneal Epithelial Cell-Specific Differentiation

    PubMed Central

    Tsui, Shanli; Wang, Jie; Wang, Ling; Dai, Wei; Lu, Luo

    2016-01-01

    Background The purpose of the study is to elicit the epigenetic mechanism involving CCCTC binding factor (CTCF)-mediated chromatin remodeling that regulates PAX6 gene interaction with differentiation-associated genes to control corneal epithelial differentiation. Methods Cell cycle progression and specific keratin expressions were measured to monitor changes of differentiation-induced primary human limbal stem/progenitor (HLS/P), human corneal epithelial (HCE) and human telomerase-immortalized corneal epithelial (HTCE) cells. PAX6-interactive and differentiation-associated genes in chromatin remodeling mediated by the epigenetic factor CTCF were detected by circular chromosome conformation capture (4C) and ChIP (Chromatin immunoprecipitation)-on-chip approaches, and verified by FISH (Fluorescent in situ hybridization). Furthermore, CTCF activities were altered by CTCF-shRNA to study the effect of CTCF on mediating interaction of Pax6 and differentiation-associated genes in corneal epithelial cell fate. Results Our results demonstrated that differentiation-induced human corneal epithelial cells expressed typical corneal epithelial characteristics including morphological changes, increased keratin12 expression and G0/G1 accumulations. Expressions of CTCF and PAX6 were suppressed and elevated following the process of differentiation, respectively. During corneal epithelial cell differentiation, differentiation-induced RCN1 and ADAM17 were found interacting with PAX6 in the process of CTCF-mediated chromatin remodeling detected by 4C and verified by ChIP-on-chip and FISH. Diminished CTCF mRNA with CTCF-shRNA in HTCE cells weakened the interaction of PAX6 gene in controlling RCN1/ADAM17 and enhanced early onset of the genes in cell differentiation. Conclusion Our results explain how epigenetic factor CTCF-mediated chromatin remodeling regulates interactions between eye-specific PAX6 and those genes that are induced/associated with cell differentiation to modulate corneal epithelial cell-specific differentiation. PMID:27583466

  14. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System

    PubMed Central

    Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James

    2013-01-01

    In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy. PMID:24516722

  15. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System.

    PubMed

    Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James

    2014-01-01

    In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy.

  16. Effects of arecoline on adipogenesis, lipolysis, and glucose uptake of adipocytes-A possible role of betel-quid chewing in metabolic syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Hsin-Fen; Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.t; Chao, How-Ran

    To investigate the possible involvement of betel-quid chewing in adipocyte dysfunction, we determined the effects of arecoline, a major alkaloid in areca nuts, on adipogenic differentiation (adipogenesis), lipolysis, and glucose uptake by fat cells. Using mouse 3T3-L1 preadipocytes, we showed that arecoline inhibited adipogenesis as determined by oil droplet formation and adipogenic marker gene expression. The effects of arecoline on lipolysis of differentiated 3T3-L1 adipocytes were determined by the glycerol release assay, indicating that arecoline induced lipolysis in an adenylyl cyclase-dependent manner. The diabetogenic effects of arecoline on differentiated 3T3-L1 adipocytes were evaluated by the glucose uptake assay, revealing thatmore » {>=} 300 {mu}M arecoline significantly attenuated insulin-induced glucose uptake; however, no marked effect on basal glucose uptake was detected. Moreover, using 94 subjects that were randomly selected from a health check-up, we determined the association of betel-quid chewing with hyperlipidemia and its related risk factors. Hyperlipidemia frequency and serum triglyceride levels of betel-quid chewers were significantly higher than those of non-betel-quid chewers. In this study, we demonstrated that arecoline inhibits adipogenic differentiation, induces adenylyl cyclase-dependent lipolysis, and interferes with insulin-induced glucose uptake. Arecoline-induced fat cell dysfunction may lead to hyperlipidemia and hyperglycemia/insulin-resistance. These findings provide the first in vitro evidence of betel-quid chewing modulation of adipose cell metabolism that could contribute to the explanation of the association of this habit with metabolic syndrome disorders.« less

  17. Interaction between bone marrow stromal cells and neuroblastoma cells leads to a VEGFA-mediated osteoblastogenesis

    PubMed Central

    HaDuong, Josephine H.; Blavier, Laurence; Baniwal, Sanjeev K.; Frenkel, Baruch; Malvar, Jemily; Punj, Vasu; Sposto, Richard; DeClerck, Yves A.

    2017-01-01

    The potential role of osteoblasts in bone and bone marrow (BM) metastases in neuroblastoma (NBL) remains unclear. In this study, we examined the effect of NBL cells on the osteoblastic differentiation of bone marrow-derived mesenchymal stromal cells (BMMSC). We show that the presence of NBL cells enhanced the osteoblastic differentiation of BMMSC driven by bone morphogenetic protein (BMP)-4, in the absence of any effect on NBL cell proliferation. Expression profiles of BMMSC driven towards osteoblastic differentiation revealed an increase in vascular endothelial growth factor A (Vegfa) expression in the presence of NBL cells. We demonstrated that NBL cells increased BMMSC-derived VEGFA mRNA and protein and that this was enhanced by BMP-4. However, in similar conditions, neither the addition of an mVEGFA blocking antibody nor exogenous recombinant (r) mVEGFA affected osteoblastic differentiation. In contrast, siRNA-mediated knock-down of VEGFA in BMMSC prevented osteoblastic differentiation in BMP-4-treated co-cultures, an effect that was not reversed in the presence of rmVEGFA. An analysis of murine bones injected with hNBL cells revealed an increase of mVEGFA producing cells near tumor cells concomitantly with an increase in Vegfa and Runx2 mRNA. This coincided with an increase in osteoclasts, in Rankl/Opg mRNA ratio and with the formation of osteolytic lesions. Thus NBL cells promote osteoblastogenesis in the BM by increasing VEGFA expression in BMMSC. Our study provides a new insight into the role of VEGFA in NBL metastases by pointing to the role of stroma-derived intracrine VEGFA in osteoblastogenesis. PMID:25648303

  18. Interaction between bone marrow stromal cells and neuroblastoma cells leads to a VEGFA-mediated osteoblastogenesis.

    PubMed

    HaDuong, Josephine H; Blavier, Laurence; Baniwal, Sanjeev K; Frenkel, Baruch; Malvar, Jemily; Punj, Vasu; Sposto, Richard; DeClerck, Yves A

    2015-08-15

    The potential role of osteoblasts in bone and bone marrow (BM) metastases in neuroblastoma (NBL) remains unclear. In this study, we examined the effect of NBL cells on the osteoblastic differentiation of BM-derived mesenchymal stromal cells (BMMSC). We show that the presence of NBL cells enhanced the osteoblastic differentiation of BMMSC driven by bone morphogenetic protein (BMP)-4, in the absence of any effect on NBL cell proliferation. Expression profiles of BMMSC driven toward osteoblastic differentiation revealed an increase in vascular endothelial growth factor A (Vegfa) expression in the presence of NBL cells. We demonstrated that NBL cells increased BMMSC-derived VEGFA mRNA and protein and that this was enhanced by BMP-4. However, in similar conditions, neither the addition of an mVEGFA blocking antibody nor exogenous recombinant (r) mVEGFA affected osteoblastic differentiation. In contrast, siRNA- mediated knock-down of VEGFA in BMMSC prevented osteoblastic differentiation in BMP-4-treated cocultures, an effect that was not reversed in the presence of rmVEGFA. An analysis of murine bones injected with hNBL cells revealed an increase of mVEGFA producing cells near tumor cells concomitantly with an increase in Vegfa and Runx2 mRNA. This coincided with an increase in osteoclasts, in Rankl/Opg mRNA ratio and with the formation of osteolytic lesions. Thus NBL cells promote osteoblastogenesis in the BM by increasing VEGFA expression in BMMSC. Our study provides a new insight into the role of VEGFA in NBL metastases by pointing to the role of stroma-derived intracrine VEGFA in osteoblastogenesis. © 2015 UICC.

  19. Antipsychotics promote GABAergic interneuron genesis in the adult rat brain: Role of heat-shock protein production.

    PubMed

    Kaneta, Hiroo; Ukai, Wataru; Tsujino, Hanako; Furuse, Kengo; Kigawa, Yoshiyasu; Tayama, Masaya; Ishii, Takao; Hashimoto, Eri; Kawanishi, Chiaki

    2017-09-01

    Current antipsychotics reduce positive symptoms and reverse negative symptoms in conjunction with cognitive behavioral issues with the goal of restoring impaired occupational and social functioning. However, limited information is available on their influence on gliogenesis or their neurogenic properties in adult schizophrenia brains, particularly on GABAergic interneuron production. In the present study, we used young adult subventricular zone (SVZ)-derived progenitor cells expressing proteoglycan NG2 cultures to examine the oligodendrocyte and GABAergic interneuron genesis effects of several kinds of antipsychotics on changes in differentiation function induced by exposure to the NMDA receptor antagonist MK-801. We herein demonstrated that antipsychotics promoted or restored changes in the oligodendrocyte/GABAergic interneuron differentiation functions of NG2(+) cells induced by the exposure to MK-801, which was considered to be one of the drug-induced schizophrenia model. We also demonstrated that antipsychotics restored heat-shock protein (HSP) production in NG2(+) cells with differentiation impairment. The antipsychotics olanzapine, aripiprazole, and blonanserin, but not haloperidol increased HSP90 levels, which were reduced by the exposure to MK-801. Our results showed that antipsychotics, particularly those recently synthesized, exerted similar GABAergic interneuron genesis effects on NG2(+) neuronal/glial progenitor cells in the adult rat brain by increasing cellular HSP production, and also suggest that HSP90 may play a crucial role in the pathophysiology of schizophrenia and is a key target for next drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frampton, Gabriel; Coufal, Monique; Li, Huang

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the {gamma}-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-{gamma}-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfectionmore » of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the {gamma}-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.« less

  1. Comparative Phytochemical Analysis of Essential Oils from Different Biological Parts of Artemisia herba alba and Their Cytotoxic Effect on Cancer Cells

    PubMed Central

    Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid

    2015-01-01

    Purpose Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Methods Essential oils were studied by gas chromatography coupled to mass spectrometry (GC–MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Results Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Conclusion Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used. PMID:26196123

  2. The effect of polarized light on the organization of collagen secreted by fibroblasts.

    PubMed

    Akilbekova, Dana; Boddupalli, Anuraag; Bratlie, Kaitlin M

    2018-04-01

    Recent studies have demonstrated the beneficial effect of low-power lasers and polarized light on wound healing, inflammation, and the treatment of rheumatologic and neurologic disorders. The overall effect of laser irradiation treatment is still controversial due to the lack of studies on the biochemical mechanisms and the optimal parameters for the incident light that should be chosen for particular applications. Here, we study how NIH/3T3 fibroblasts respond to irradiation with linearly polarized light at different polarization angles. In particular, we examined vascular endothelial growth factor (VEGF) secretion, differentiation to myofibroblasts, and collagen organization in response to 800 nm polarized light at 0°, 45°, 90°, and 135° with a power density of 40 mW/cm 2 for 6 min every day for 6 days. Additional experiments were conducted in which the polarization angle of the incident was changed every day to induce an isotropic distribution of collagen. The data presented here shows that polarized light can upregulate VEGF production, myofibroblast differentiation, and induce different collagen organization in response to different polarization angles of the incident beam. These results are encouraging and demonstrate possible methods for controlling cell response through the polarization angle of the laser light, which has potential for the treatment of wounds.

  3. Differential Effects of AAV.BDNF and AAV.Ntf3 in the Deafened Adult Guinea Pig Ear

    PubMed Central

    Budenz, Cameron L.; Wong, Hiu Tung; Swiderski, Donald L.; Shibata, Seiji B.; Pfingst, Bryan E.; Raphael, Yehoash

    2015-01-01

    Cochlear hair cell loss results in secondary regression of peripheral auditory fibers (PAFs) and loss of spiral ganglion neurons (SGNs). The performance of cochlear implants (CI) in rehabilitating hearing depends on survival of SGNs. Here we compare the effects of adeno-associated virus vectors with neurotrophin gene inserts, AAV.BDNF and AAV.Ntf3, on guinea pig ears deafened systemically (kanamycin and furosemide) or locally (neomycin). AAV.BDNF or AAV.Ntf3 was delivered to the guinea pig cochlea one week following deafening and ears were assessed morphologically 3 months later. At that time, neurotrophins levels were not significantly elevated in the cochlear fluids, even though in vitro and shorter term in vivo experiments demonstrate robust elevation of neurotrophins with these viral vectors. Nevertheless, animals receiving these vectors exhibited considerable re-growth of PAFs in the basilar membrane area. In systemically deafened animals there was a negative correlation between the presence of differentiated supporting cells and PAFs, suggesting that supporting cells influence the outcome of neurotrophin over-expression aimed at enhancing the cochlear neural substrate. Counts of SGN in Rosenthal's canal indicate that BDNF was more effective than NT-3 in preserving SGNs. The results demonstrate that a transient elevation in neurotrophin levels can sustain the cochlear neural substrate in the long term. PMID:25726967

  4. Differential activation of Fyn kinase distinguishes saturated and unsaturated fats in mouse macrophages

    PubMed Central

    Tarabra, Elena; An Lee, Ting-Wen; Zammit, Victor A.; Vatish, Manu; Yamada, Eijiro; Pessin, Jeffrey E.; Bastie, Claire C.

    2017-01-01

    Diet-induced obesity is associated with increased adipose tissue activated macrophages. Yet, how macrophages integrate fatty acid (FA) signals remains unclear. We previously demonstrated that Fyn deficiency (fynKO) protects against high fat diet-induced adipose tissue macrophage accumulation. Herein, we show that inflammatory markers and reactive oxygen species are not induced in fynKO bone marrow-derived macrophages exposed to the saturated FA palmitate, suggesting that Fyn regulates macrophage function in response to FA signals. Palmitate activates Fyn and re-localizes Fyn into the nucleus of RAW264.7, J774 and wild-type bone marrow-derived macrophages. Similarly, Fyn activity is increased in cells of adipose tissue stromal vascular fraction of high fat-fed control mice, with Fyn protein being located in the nucleus of these cells. We demonstrate that Fyn modulates palmitate-dependent oxidative stress in macrophages. Moreover, Fyn catalytic activity is necessary for its nuclear re-localization and downstream effects, as Fyn pharmacological inhibition abolishes palmitate-induced Fyn nuclear redistribution and palmitate-dependent increase of oxidative stress markers. Importantly, mono-or polyunsaturated FAs do not activate Fyn, and fail to re-localize Fyn to the nucleus. Together these data demonstrate that macrophages integrate nutritional FA signals via a differential activation of Fyn that distinguishes, at least partly, the effects of saturated versus unsaturated fats. PMID:29156823

  5. Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model.

    PubMed

    He, Ya; Zhang, Peng-Zhi; Sun, Dong; Mi, Wen-Juan; Zhang, Xin-Yi; Cui, Yong; Jiang, Xing-Wang; Mao, Xiao-Bo; Qiu, Jian-Hua

    2014-04-01

    Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted NSCs.

  6. Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Zhao, Zhenqiang; Ma, Yanlin; Chen, Zhibin; Liu, Qian; Li, Qi; Kong, Deyan; Yuan, Kunxiong; Hu, Lan; Wang, Tan; Chen, Xiaowu; Peng, Yanan; Jiang, Weimin; Yu, Yanhong; Liu, Xinfeng

    2016-01-01

    Mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (HFFs) are used for the culture of human embryonic stem cells (hESCs). MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation, two hESCs lines were cultured on mixed feeder cells (MFCs, MEFs: HFFs = 1:1) and HFFs feeder, respectively, and then were differentiated into dopaminergic (DA) neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry, quantitative fluorescent real-time PCR, transmission and scanning electron microscopy, and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However, compared to hESCs line on MFCs feeder, hESCs line on HFFs feeder had a higher proportion of tyrosine hydroxylase (TH) positive cells and expressed higher levels of FOXA2, PITX3, NURR1, and TH genes. In addition, the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion, HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons, but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore, feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines, but also electrophysiological properties of hESCs-derived DA neurons. PMID:28066186

  7. Role of diabetes- and obesity-related protein in the regulation of osteoblast differentiation

    PubMed Central

    Linares, Gabriel R.; Xing, Weirong; Burghardt, Hans; Baumgartner, Bernhard; Chen, Shin-Tai; Ricart, Wifredo; Fernández-Real, José Manuel; Zorzano, Antonio

    2011-01-01

    Although thyroid hormone (TH) is known to exert important effects on the skeleton, the nuclear factors constituting the TH receptor coactivator complex and the molecular pathways by which TH mediates its effects on target gene expression in osteoblasts remain poorly understood. A recent study demonstrated that the actions of TH on myoblast differentiation are dependent on diabetes- and obesity-related protein (DOR). However, the role of DOR in osteoblast differentiation is unknown. We found DOR expression increased during in vitro differentiation of bone marrow stromal cells into osteoblasts and also in MC3T3-E1 cells treated with TH. However, DOR expression decreased during cellular proliferation. To determine whether DOR acts as a modulator of TH action during osteoblast differentiation, we examined whether overexpression or knockdown of DOR in MC3T3-E1 cells affects the ability of TH to induce osteoblast differentiation by evaluating alkaline phosphatase (ALP) activity. ALP activity was markedly increased in DOR-overexpressing cells treated with TH. In contrast, loss of DOR dramatically reduced TH stimulation of ALP activity in MC3T3-E1 cells and primary calvaria osteoblasts transduced with lentiviral DOR shRNA. Consistent with reduced ALP activity, mRNA levels of osteocalcin, ALP, and Runx2 were decreased significantly in DOR shRNA cells. In addition, a common single nucleotide polymorphism (SNP), DOR1 found on the promoter of human DOR gene, was associated with circulating osteocalcin levels in nondiabetic subjects. Based on these data, we conclude that DOR plays an important role in TH-mediated osteoblast differentiation, and a DOR SNP associates with plasma osteocalcin in men. PMID:21467300

  8. Three-dimensional neural differentiation of embryonic stem cells with ACM induction in microfibrous matrices in bioreactors.

    PubMed

    Liu, Ning; Ouyang, Anli; Li, Yan; Yang, Shang-Tian

    2013-01-01

    The clinical use of pluripotent stem cell (PSC)-derived neural cells requires an efficient differentiation process for mass production in a bioreactor. Toward this goal, neural differentiation of murine embryonic stem cells (ESCs) in three-dimensional (3D) polyethylene terephthalate microfibrous matrices was investigated in this study. To streamline the process and provide a platform for process integration, the neural differentiation of ESCs was induced with astrocyte-conditioned medium without the formation of embryoid bodies, starting from undifferentiated ESC aggregates expanded in a suspension bioreactor. The 3D neural differentiation was able to generate a complex neural network in the matrices. When compared to 2D differentiation, 3D differentiation in microfibrous matrices resulted in a higher percentage of nestin-positive cells (68% vs. 54%) and upregulated gene expressions of nestin, Nurr1, and tyrosine hydroxylase. High purity of neural differentiation in 3D microfibrous matrix was also demonstrated in a spinner bioreactor with 74% nestin + cells. This study demonstrated the feasibility of a scalable process based on 3D differentiation in microfibrous matrices for the production of ESC-derived neural cells. © 2013 American Institute of Chemical Engineers.

  9. Corridors cause differential seed predation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrock, John L.; Damschen, Ellen I.

    2005-06-01

    Orrock, John, L., and Ellen I. Damschen. 2005. Corridors cause differential seed predation. Ecol. Apps. 15(3):793-798. Abstract. Corridors that connect disjunct populations are heavily debated in conservation, largely because the effects of corridors have rarely been evaluated by replicated, large-scale studies. Using large-scale experimental landscapes, we found that, in addition to documented positive effects, corridors also have negative impacts on bird-dispersed plants by affecting seed predation, and that overall predation is a function of the seeds primary consumer (rodents or arthropods). Both large-seeded Prunus serotina and small-seeded Rubus allegheniensis experienced greater predation in connected patches. However, P. serotina experienced significantlymore » less seed predation compared to R. allegheniensis in unconnected patches, due to decreased impacts of rodent seed predators on this large-seeded species. Viewed in light of previous evidence that corridors have beneficial impacts by increasing pollination and seed dispersal, this work demonstrates that corridors may have both positive and negative effects for the same plant species at different life stages. Moreover, these effects may differentially affect plant species within the same community: seeds primarily consumed by rodents suffer less predation in unconnected patches. By shifting the impact of rodent and arthropod seed predators, corridors constructed for plant conservation could lead to shifts in the seed bank.« less

  10. Effect of Adipose Tissue-Derived Osteogenic and Endothelial Cells on Bone Allograft Osteogenesis and Vascularization in Critical-Sized Calvarial Defects

    DTIC Science & Technology

    2012-05-10

    1% peni - cillin/streptomycin, and 50 ng/mL recombinant rat VEGF-C (Promocell, Heidelberg, Germany). The media were changed every other day for 8...various animal models that have demonstrated an enhanced osteogenic effect after treating bone allografts with adipose tissue or bone marrow-derived... enhanced 1560 CORNEJO ET AL. performance of bone allografts using osteogenic differentiated adipose derived mesenchymal stem cells. Biomaterials 32, 8880

  11. Soluble Tumor Necrosis Factor Receptor 1 Released by Skin-Derived Mesenchymal Stem Cells Is Critical for Inhibiting Th17 Cell Differentiation

    PubMed Central

    Ke, Fang; Zhang, Lingyun; Liu, Zhaoyuan; Yan, Sha; Xu, Zhenyao; Bai, Jing; Zhu, Huiyuan; Lou, Fangzhou; Cai, Wei; Sun, Yang; Gao, Yuanyuan; Wang, Hong

    2016-01-01

    T helper 17 (Th17) cells play an important role in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Th17 cell differentiation from naïve T cells can be induced in vitro by the cytokines transforming growth factor β1 and interleukin-6. However, it remains unclear whether other regulatory factors control the differentiation of Th17 cells. Mesenchymal stem cells (MSCs) have emerged as a promising candidate for inhibiting Th17 cell differentiation and autoimmune diseases. Despite the fact that several molecules have been linked to the immunomodulatory function of MSCs, many other key MSC-secreted regulators that are involved in inhibiting Th17 cell polarization are ill-defined. In this study, we demonstrated that the intraperitoneal administration of skin-derived MSCs (S-MSCs) substantially ameliorated the development of EAE in mice. We found that the proinflammatory cytokine tumor necrosis factor (TNF)-α, a key mediator in the pathophysiology of MS and EAE, was capable of promoting Th17 cell differentiation. Moreover, under inflammatory conditions, we demonstrated that S-MSCs produced high amounts of soluble TNF receptor 1 (sTNFR1), which binds TNF-α and antagonizes its function. Knockdown of sTNFR1 in S-MSCs decreased their inhibitory effect on Th17 cell differentiation ex vivo and in vivo. Thus, our data identified sTNFR1 and its target TNF-α as critical regulators for Th17 cell differentiation, suggesting a previously unrecognized mechanism for MSC therapy in Th17-mediated autoimmune diseases. Significance This study showed that administration of skin-derived mesenchymal stem cells (S-MSCs) was able to alleviate the clinical score of experimental autoimmune encephalomyelitis by inhibiting the differentiation of T helper 17 (Th17) cells. Tumor necrosis factor (TNF)-α is a critical cytokine for promoting Th17 cell differentiation. It was discovered that activated S-MSCs produced high amount of soluble TNF receptor 1 (sTNFR1), which neutralized TNF-α and inhibited Th17 cell polarization. The data identified S-MSC-secreted sTNFR1 and its target TNF-α as essential regulators for Th17 cell differentiation and revealed a novel mechanism underlying MSC-mediated immunomodulatory function in autoimmunity. PMID:26819253

  12. Inhibitory effect 6-gingerol on adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes.

    PubMed

    Li, Chunbo; Zhou, Lin

    2015-12-25

    6-Gingerol has been reported to inhibit adipogenesis and lipid content accumulation. However, the mechanism of its anti-adipogenic effect remains unclear. Our aim is to investigate the molecular mechanism of the anti-adipogenic effect of 6-gingerol. The lipid content in adipocytes was measured by Oil Red O staining and cell viability was analyzed by MTT assay. The extent of suppression of differentiation by 6-gingerol was characterized by measuring the triglyceride content and GPDH activity. The regulation of adipogenic markers and the components of the Wnt/β-catenin pathway were analyzed by real-time PCR and Western blotting. The nuclear location of β-catenin was identified using immunofluorescence assay. Small interfering RNA transfection was conducted to elucidate the crucial role of β-catenin in anti-adipogenic effect of 6-gingerol. Our results showed that 6-gingerol inhibited the adipogenesis and lowered the mRNA expression levels of transcription factors and the key lipogenic enzymes in 3T3-L1 cells. The effect of 6-gingerol on adipogenic differentiation was accompanied by stimulating the activation of the Wnt/β-catenin signaling. In addition, we found that 6-gingerol induced phosphorylations of glycogen synthase kinase-3β(GSK-3β), and promoted the nuclear accumulation of β-catenin. Importantly, the inhibitory effect of 6-gingerol on adipogenic differentiation was reversed after the siRNA knockdown of β-catenin was added. Our findings demonstrated that 6-gingerol inhibits the adipogenic differentiation of 3T3-L1 cells through activating the Wnt/β-catenin signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells

    PubMed Central

    2013-01-01

    Background The naphthoquinone pigment, shikonin, is a major component of Lithospermum erythrorhizon and has been shown to have various biological functions, including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we investigated the effect of shikonin on adipocyte differentiation and its mechanism of action in 3T3-L1 cells. Methods To investigate the effects of shikonin on adipocyte differentiation, 3T3-L1 cells were induced to differentiate using 3-isobutyl-1-methylzanthine, dexamethasone, and insulin (MDI) for 8 days in the presence of 0–2 μM shikonin. Oil Red O staining was performed to determine the lipid accumulation in 3T3-L1 cells. To elucidate the anti-adipogenic mechanism of shikonin, adipogenic transcription factors, the phosphorylation levels of ERK, and adipogenic gene expression were analyzed by Western blotting and quantitative real-time PCR. To further confirm that shikonin inhibits adipogenic differentiation through downregulation of ERK 1/2 activity, 3T3-L1 cells were treated with shikonin in the presence of FGF-2, an activator, or PD98059, an inhibitor, of the ERK1/2 signaling pathway. Results Shikonin effectively suppressed adipogenesis and downregulated the protein levels of 2 major transcription factors, PPARγ and C/EBPα, as well as the adipocyte specific gene aP2 in a dose-dependent manner. qRT-PCR analysis revealed that shikonin inhibited mRNA expression of adipogenesis-related genes, such as PPARγ, C/EBPα, and aP2. Adipocyte differentiation was mediated by ERK 1/2 phosphorylation, which was confirmed by pretreatment with PD98059 (an ERK 1/2 inhibitor) or FGF-2 (an ERK 1/2 activator). The phosphorylation of ERK1/2 during the early stages of adipogenesis in 3T3-L1 cells was inhibited by shikonin. We also confirmed that FGF-2-stimulated ERK 1/2 activity was attenuated by shikonin. Conclusions These results demonstrate that shikonin inhibits adipogenic differentiation via suppression of the ERK signaling pathway during the early stages of adipogenesis. PMID:23919458

  14. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Gwon, So Young; Ahn, Ji Yun; Jung, Chang Hwa; Moon, Bo Kyung; Ha, Tae Youl

    2013-08-06

    The naphthoquinone pigment, shikonin, is a major component of Lithospermum erythrorhizon and has been shown to have various biological functions, including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we investigated the effect of shikonin on adipocyte differentiation and its mechanism of action in 3T3-L1 cells. To investigate the effects of shikonin on adipocyte differentiation, 3T3-L1 cells were induced to differentiate using 3-isobutyl-1-methylzanthine, dexamethasone, and insulin (MDI) for 8 days in the presence of 0-2 μM shikonin. Oil Red O staining was performed to determine the lipid accumulation in 3T3-L1 cells. To elucidate the anti-adipogenic mechanism of shikonin, adipogenic transcription factors, the phosphorylation levels of ERK, and adipogenic gene expression were analyzed by Western blotting and quantitative real-time PCR. To further confirm that shikonin inhibits adipogenic differentiation through downregulation of ERK 1/2 activity, 3T3-L1 cells were treated with shikonin in the presence of FGF-2, an activator, or PD98059, an inhibitor, of the ERK1/2 signaling pathway. Shikonin effectively suppressed adipogenesis and downregulated the protein levels of 2 major transcription factors, PPARγ and C/EBPα, as well as the adipocyte specific gene aP2 in a dose-dependent manner. qRT-PCR analysis revealed that shikonin inhibited mRNA expression of adipogenesis-related genes, such as PPARγ, C/EBPα, and aP2. Adipocyte differentiation was mediated by ERK 1/2 phosphorylation, which was confirmed by pretreatment with PD98059 (an ERK 1/2 inhibitor) or FGF-2 (an ERK 1/2 activator). The phosphorylation of ERK1/2 during the early stages of adipogenesis in 3T3-L1 cells was inhibited by shikonin. We also confirmed that FGF-2-stimulated ERK 1/2 activity was attenuated by shikonin. These results demonstrate that shikonin inhibits adipogenic differentiation via suppression of the ERK signaling pathway during the early stages of adipogenesis.

  15. Low-voltage differentially-signaled modulators.

    PubMed

    Zortman, William A; Lentine, Anthony L; Trotter, Douglas C; Watts, Michael R

    2011-12-19

    For exascale computing applications, viable optical solutions will need to operate using low voltage signaling and with low power consumption. In this work, the first differentially signaled silicon resonator is demonstrated which can provide a 5dB extinction ratio using 3fJ/bit and 500mV signal amplitude at 10Gbps. Modulation with asymmetric voltage amplitudes as low as 150mV with 3dB extinction are demonstrated at 10Gbps as well. Differentially signaled resonators simplify and expand the design space for modulator implementation and require no special drivers.

  16. Modeling the functional genomics of autism using human neurons.

    PubMed

    Konopka, G; Wexler, E; Rosen, E; Mukamel, Z; Osborn, G E; Chen, L; Lu, D; Gao, F; Gao, K; Lowe, J K; Geschwind, D H

    2012-02-01

    Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD.

  17. Macrophage differentiation induced by PMA is mediated by activation of RhoA/ROCK signaling.

    PubMed

    Yang, Lifeng; Dai, Fan; Tang, Lian; Le, Yulan; Yao, Wenjuan

    2017-01-01

    In order to investigate the effects of RhoA/ROCK signaling in macrophage differentiation, we used 100 ng/mL PMA to induce macrophage differentiation from U937 cells in vitro. The observation of cell morphology and the expression of CD68 and SR-A were performed to confirm the differentiation induced by PMA. Western blot analysis showed that the expression of ROCK1 and ROCK2 and the phosphorylation of MYPT1 were significantly increased after PMA treatment. Pulldown assay showed that the activation of RhoA was obviously enhanced when U937 cells were treated with PMA. In order to further demonstrate whether RhoA/ROCK signaling could mediate the macrophage differentiation induced by PMA, we successfully suppressed the expression of RhoA, ROCK1 and ROCK2 by performing siRNA technology in U937 cells, respectively. The macrophage differentiation and the expression of CD68 and SR-A were significantly inhibited by the suppression of RhoA, ROCK1 or ROCK2 in PMA-induced U937 cells, indicating that the macrophage differentiation induced by PMA is associated with RhoA/ROCK signaling pathway. In addition, we pretreated U937 cells with Y27632 (ROCK inhibitor, 20 μM) for 30 min and then observed the macrophage differentiation induced by PMA. The result illustrated that Y27632 pretreatment obviously inhibited PMA-induced differentiation and the expression of CD68 and SR-A. In conclusion, the activation of RhoA/ROCK signaling is responsible for the macrophage differentiation induced by PMA.

  18. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Details three demonstrations for use in chemistry classrooms. Includes: "A Demonstration of Corrosion by Differential Aeration"; "A Simple Demonstration of the Activation Energy Concept"; and "A Boiling Demonstration at Room Temperature." Each description includes equipment, materials, and methods. (CW)

  19. Microfluidic devices for stem-cell cultivation, differentiation and toxicity testing

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hansen-Hagge, Thomas; Kurtz, Andreas; Mrowka, Ralf; Wölfl, Stefan; Gärtner, Claudia

    2017-02-01

    The development of new drugs is time-consuming, extremely expensive and often promising drug candidates fail in late stages of the development process due to the lack of suitable tools to either predict toxicological effects or to test drug candidates in physiologically relevant environments prior to clinical tests. We therefore try to develop diagnostic multiorgan microfluidic chips based on patient specific induced pluripotent stem cell (iPS) technology to explore liver dependent toxic effects of drugs on individual human tissues such as liver or kidney cells. Based initially on standardized microfluidic modules for cell culture, we have developed integrated microfluidic devices which contain different chambers for cell/tissue cultivation. The devices are manufactured using injection molding of thermoplastic polymers such as polystyrene or cyclo-olefin polymer. In the project, suitable surface modification methods of the used materials had to be explored. We have been able to successfully demonstrate the seeding, cultivation and further differentiation of modified iPS, as shown by the use of differentiation markers, thus providing a suitable platform for toxicity testing and potential tissue-tissue interactions.

  20. Conformity expectations: Differential effects on IVF twins and singletons' parent-child relationships and adjustment.

    PubMed

    Anderson, Kayla N; Rueter, Martha A; Connor, Jennifer J; Chen, Muzi; Damario, Mark

    2015-08-01

    Increased utilization of in vitro fertilization (IVF) to treat infertility has resulted in a growing twin birthrate. Despite early childhood risks, twins have fewer psychosocial problems in middle childhood than singleton children. This study proposes that parents' conformity expectations for children have differential effects on parent-child relationships for twin and singleton children, which indirectly explains twins' more optimum psychosocial adjustment. Parental conformity expectations, parent-child relationship satisfaction, and children's emotional, behavioral, and attention problems were assessed in a sample of 288 6- to 12-year-old IVF-conceived twins and singletons. Overall, parents of twins had higher expectations for child conformity to parent rules than singleton parents. Path models demonstrate that twin status and parental expectations for child conformity interact to influence parent-child relationships, and this interaction indirectly accounted for differences in twins' and singletons' psychosocial adjustment. Findings suggest parenting constructs have differential influences on the association between twin status and parent-child relationships. Parenting research, predominantly conducted with singletons, should be reexamined before applying existing research to twin children and their families. (c) 2015 APA, all rights reserved).

  1. Role of physiological levels of 4-hydroxynonenal on adipocyte biology: implications for obesity and metabolic syndrome.

    PubMed

    Dasuri, Kalavathi; Ebenezer, Philip; Fernandez-Kim, Sun Ok; Zhang, Le; Gao, Zhanguo; Bruce-Keller, Annadora J; Freeman, Linnea R; Keller, Jeffrey N

    2013-01-01

    Lipid peroxidation products such as 4-hydroxynonenal (HNE) are known to be increased in response to oxidative stress, and are known to cause dysfunction and pathology in a variety of tissues during periods of oxidative stress. The aim of the current study was to determine the chronic (repeated HNE exposure) and acute effects of physiological concentrations of HNE toward multiple aspects of adipocyte biology using differentiated 3T3-L1 adipocytes. Our studies demonstrate that acute and repeated exposure of adipocytes to physiological concentrations of HNE is sufficient to promote subsequent oxidative stress, impaired adipogenesis, alter the expression of adipokines, and increase lipolytic gene expression and subsequent increase in free fatty acid (FFA) release. These results provide an insight in to the role of HNE-induced oxidative stress in regulation of adipocyte differentiation and adipose dysfunction. Taken together, these data indicate a potential role for HNE promoting diverse effects toward adipocyte homeostasis and adipocyte differentiation, which may be important to the pathogenesis observed in obesity and metabolic syndrome.

  2. Adhesion, Vitality and Osteogenic Differentiation Capacity of Adipose Derived Stem Cells Seeded on Nitinol Nanoparticle Coatings

    PubMed Central

    Strauß, Sarah; Neumeister, Anne; Barcikowski, Stephan; Kracht, Dietmar; Kuhbier, Jörn W.; Radtke, Christine; Reimers, Kerstin; Vogt, Peter M.

    2013-01-01

    Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs) offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells. PMID:23308190

  3. Effect of restriction vegan diet's on muscle mass, oxidative status, and myocytes differentiation: A pilot study.

    PubMed

    Vanacore, Daniela; Messina, Giovanni; Lama, Stefania; Bitti, Giuseppe; Ambrosio, Pasqualina; Tenore, Giancarlo; Messina, Antonietta; Monda, Vincenzo; Zappavigna, Silvia; Boccellino, Mariarosaria; Novellino, Ettore; Monda, Marcellino; Stiuso, Paola

    2018-01-10

    This study was conceived to evaluate the effects of three different diets on body composition, metabolic parameters, and serum oxidative status. We enrolled three groups of healthy men (omnivores, vegetarians, and vegans) with similar age, weight and BMI, and we observed a significant decrease in muscle mass index and lean body mass in vegan compared to vegetarian and omnivore groups, and higher serum homocysteine levels in vegetarians and vegans compared to omnivores. We studied whether serum from omnivore, vegetarian, and vegan subjects affected oxidative stress, growth and differentiation of both cardiomyoblast cell line H9c2 and H-H9c2 (H9c2 treated with H 2 O 2 to induce oxidative damage). We demonstrated that vegan sera treatment of both H9c2 and H-H9c2 cells induced an increase of TBARS values and cell death and a decrease of free NO 2- compared to vegetarian and omnivorous sera. Afterwards, we investigated the protective effects of vegan, vegetarian, and omnivore sera on the morphological changes induced by H 2 O 2 in H9c2 cell line. We showed that the omnivorous sera had major antioxidant and differentiation properties compared to vegetarian and vegan sera. Finally, we evaluated the influence of the three different groups of sera on MAPKs pathway and our data suggested that ERK expression increased in H-H9c2 cells treated with vegetarian and vegan sera and could promote cell death. The results obtained in this study demonstrated that restrictive vegan diet could not prevent the onset of metabolic and cardiovascular diseases nor protect by oxidative damage. © 2018 Wiley Periodicals, Inc.

  4. The Effect of 3D Hydrogel Scaffold Modulus on Osteoblast Differentiation and Mineralization Revealed by Combinatorial Screening

    PubMed Central

    Chatterjee, Kaushik; Lin-Gibson, Sheng; Wallace, William E.; Parekh, Sapun H.; Lee, Young J.; Cicerone, Marcus T.; Young, Marian F.; Simon, Carl G.

    2011-01-01

    Cells are known to sense and respond to the physical properties of their environment and those of tissue scaffolds. Optimizing these cell-material interactions is critical in tissue engineering. In this work, a simple and inexpensive combinatorial platform was developed to rapidly screen three-dimensional (3D) tissue scaffolds and was applied to screen the effect of scaffold properties for tissue engineering of bone. Differentiation of osteoblasts was examined in poly(ethylene glycol) hydrogel gradients spanning a 30-fold range in compressive modulus (≈ 10 kPa to ≈ 300 kPa). Results demonstrate that material properties (gel stiffness) of scaffolds can be leveraged to induce cell differentiation in 3D culture as an alternative to biochemical cues such as soluble supplements, immobilized biomolecules and vectors, which are often expensive, labile and potentially carcinogenic. Gel moduli of ≈ 225 kPa and higher enhanced osteogenesis. Furthermore, it is proposed that material-induced cell differentiation can be modulated to engineer seamless tissue interfaces between mineralized bone tissue and softer tissues such as ligaments and tendons. This work presents a combinatorial method to screen biological response to 3D hydrogel scaffolds that more closely mimics the 3D environment experienced by cells in vivo. PMID:20378163

  5. Accounting for cell lineage and sex effects in the identification of cell-specific DNA methylation using a Bayesian model selection algorithm.

    PubMed

    White, Nicole; Benton, Miles; Kennedy, Daniel; Fox, Andrew; Griffiths, Lyn; Lea, Rodney; Mengersen, Kerrie

    2017-01-01

    Cell- and sex-specific differences in DNA methylation are major sources of epigenetic variation in whole blood. Heterogeneity attributable to cell type has motivated the identification of cell-specific methylation at the CpG level, however statistical methods for this purpose have been limited to pairwise comparisons between cell types or between the cell type of interest and whole blood. We developed a Bayesian model selection algorithm for the identification of cell-specific methylation profiles that incorporates knowledge of shared cell lineage and allows for the identification of differential methylation profiles in one or more cell types simultaneously. Under the proposed methodology, sex-specific differences in methylation by cell type are also assessed. Using publicly available, cell-sorted methylation data, we show that 51.3% of female CpG markers and 61.4% of male CpG markers identified were associated with differential methylation in more than one cell type. The impact of cell lineage on differential methylation was also highlighted. An evaluation of sex-specific differences revealed differences in CD56+NK methylation, within both single and multi- cell dependent methylation patterns. Our findings demonstrate the need to account for cell lineage in studies of differential methylation and associated sex effects.

  6. Osthole improves function of periodontitis periodontal ligament stem cells via epigenetic modification in cell sheets engineering.

    PubMed

    Sun, Jin; Dong, Zhiwei; Zhang, Yang; He, Xiaoning; Fei, Dongdong; Jin, Fang; Yuan, Lin; Li, Bei; Jin, Yan

    2017-07-12

    Inflammatory microenvironment causes the change of epigenetic modification in periodontal ligament stem cells derived from periodontitis tissues (P-PDLSCs), which results in defective osteogenic differentiation compared to cells from healthy tissues. It's urgent to explore therapeutic strategies aimed at epigenetic targets associated with the regenerative ability of PDLSCs. Osthole, a small-molecule compound extracted from Chinese herbs, has been documented to promote osteogenesis and cell sheets formation of healthy PDLSCs. However, whether osthole shows same effect on P-PDLSCs and the mechanism of promotive effect is still unknown. The purpose of this study was to determine whether Osthole could restore defective osteogenic differentiation of P-PDLSCs via epigenetic modification. We demonstrated that 10 -7  Mol/L of Osthole was the best concentration for osteogenic differentiation and proliferation of P-PDLSCs. Mechanistically, we also found that Osthole upregulated MOZ and MORF, histone acetylases that specifically catalyze acetylation of Histone3 lisine9 (H3K9) and Histone3 lisine14 (H3K14), which are key regulators in osteogenic differentiation of P-PDLSCs. Furthermore, Osthole treatment improved cell sheet formation and enhanced the bone formation of PDLSC sheets in animal models of periodontitis. Our study suggests that Osthole is a promising drug to cure periodontitis via regulating epigenetic modification in cell sheets engineering.

  7. TGF-β but not BMP signaling induces prechondrogenic condensation through ATP oscillations during chondrogenesis.

    PubMed

    Kwon, Hyuck Joon

    2012-08-10

    Although both TGF-β and BMP signaling enhance expression of adhesion molecules during chondrogenesis, TGF-β but not BMP signaling can initiate condensation of uncondensed mesenchymal cells. However, it remains unclear what causes the differential effects between TGF-β and BMP signaling on prechondrogenic condensation. Our previous report demonstrated that ATP oscillations play a critical role in prechondrogenic condensation. Thus, the current study examined whether ATP oscillations are associated with the differential actions of TGF-β and BMP signaling on prechondrogenic condensation. The result revealed that while both TGF-β1 and BMP2 stimulated chondrogenic differentiation, TGF-β1 but not BMP2 induced prechondrogenic condensation. It was also found that TGF-β1 but not BMP2 induced ATP oscillations and inhibition of TGF-β but not BMP signaling prevented insulin-induced ATP oscillations. Moreover, blockage of ATP oscillations inhibited TGF-β1-induced prechondrogenic condensation. In addition, TGF-β1-driven ATP oscillations and prechondrogenic condensation depended on Ca(2+) influx via voltage-dependent calcium channels. This study suggests that Ca(2+)-driven ATP oscillations mediate TGF-β-induced the initiation step of prechondrogenic condensation and determine the differential effects between TGF-β and BMP signaling on chondrogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Treatment with at Homeopathic Complex Medication Modulates Mononuclear Bone Marrow Cell Differentiation

    PubMed Central

    Cesar, Beatriz; Abud, Ana Paula R.; de Oliveira, Carolina C.; Cardoso, Francolino; Bernardi, Raffaello Popa Di; Guimarães, Fernando S. F.; Gabardo, Juarez; de Freitas Buchi, Dorly

    2011-01-01

    A homeopathic complex medication (HCM), with immunomodulatory properties, is recommended for patients with depressed immune systems. Previous studies demonstrated that the medication induces an increase in leukocyte number. The bone marrow microenvironment is composed of growth factors, stromal cells, an extracellular matrix and progenitor cells that differentiate into mature blood cells. Mice were our biological model used in this research. We now report in vivo immunophenotyping of total bone marrow cells and ex vivo effects of the medication on mononuclear cell differentiation at different times. Cells were examined by light microscopy and cytokine levels were measured in vitro. After in vivo treatment with HCM, a pool of cells from the new marrow microenvironment was analyzed by flow cytometry to detect any trend in cell alteration. The results showed decreases, mainly, in CD11b and TER-119 markers compared with controls. Mononuclear cells were used to analyze the effects of ex vivo HCM treatment and the number of cells showing ring nuclei, niche cells and activated macrophages increased in culture, even in the absence of macrophage colony-stimulating factor. Cytokines favoring stromal cell survival and differentiation in culture were induced in vitro. Thus, we observe that HCM is immunomodulatory, either alone or in association with other products. PMID:19736221

  9. Laser bioprinting of human induced pluripotent stem cells-the effect of printing and biomaterials on cell survival, pluripotency, and differentiation.

    PubMed

    Koch, Lothar; Deiwick, Andrea; Franke, Annika; Schwanke, Kristin; Haverich, Axel; Zweigerdt, Robert; Chichkov, Boris

    2018-04-25

    Research on human induced pluripotent stem cells (hiPSCs) is one of the fastest growing fields in biomedicine. Generated from patient's own somatic cells, hiPSCs can be differentiated towards all functional cell types and returned to the patient without immunological concerns. 3D printing of hiPSCs could enable the generation of functional organs for replacement therapies or realization of organ-on-chip systems for individualized medicine. Printing of living cells was demonstrated with immortalized cell lines, primary cells, and adult stem cells with different printing technologies and biomaterials. However, hiPSCs are more sensitive to handling procedures, in particular, when dissociated into single cells. Both pluripotency and directed differentiation are influenced by numerous environmental factors including culture media, biomaterials, and cell density. Notably, existing literature on the effect of applied biomaterials on pluripotency is rather ambiguous. In this study, laser bioprinting of undifferentiated hiPSCs in combination with different biomaterials was performed and the impact on cells' behavior, pluripotency, and differentiation was investigated. Our findings suggest that hiPSCs are indeed more sensitive to the applied biomaterials, but not to laser printing itself. With appropriate biomaterials, such as the hyaluronic acid based solutions applied in this study, hiPSCs can be successfully laser printed without losing their pluripotency.

  10. Effect of phenolic extracts from different extra-virgin olive oil varieties on osteoblast-like cells.

    PubMed

    Melguizo-Rodríguez, Lucía; Ramos-Torrecillas, Javier; Manzano-Moreno, Francisco Javier; Illescas-Montes, Rebeca; Rivas, Ana; Ruiz, Concepción; De Luna-Bertos, Elvira; García-Martínez, Olga

    2018-01-01

    The reported incidence of osteoporosis is lower in countries in which the Mediterranean diet predominates, and this apparent relationship may be mediated by the phenolic compounds present in olive oil. The objective of this study was to determine the effect of phenolic extracts from different varieties of extra-virgin olive oil (Picual, Arbequina, Picudo, and Hojiblanca) on the differentiation, antigenic expression, and phagocytic capacity of osteoblast-like MG-63 cells. At 24 h of treatment a significant increase in phosphatase alkaline activity and significant reductions in CD54, CD80, and HLA-DR expression and in phagocytic activity were observed in comparison to untreated controls. The in vitro study performed has demonstrated that phenolic compounds from different extra virgin olive oil varieties can modulate different parameters related to osteoblast differentiation and function.

  11. Negative differential transconductance in silicon quantum well metal-oxide-semiconductor field effect/bipolar hybrid transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naquin, Clint; Lee, Mark; Edwards, Hal

    2014-11-24

    Introducing explicit quantum transport into Si transistors in a manner amenable to industrial fabrication has proven challenging. Hybrid field-effect/bipolar Si transistors fabricated on an industrial 45 nm process line are shown to demonstrate explicit quantum transport signatures. These transistors incorporate a lateral ion implantation-defined quantum well (QW) whose potential depth is controlled by a gate voltage (V{sub G}). Quantum transport in the form of negative differential transconductance (NDTC) is observed to temperatures >200 K. The NDTC is tied to a non-monotonic dependence of bipolar current gain on V{sub G} that reduces drain-source current through the QW. These devices establish the feasibility ofmore » exploiting quantum transport to transform the performance horizons of Si devices fabricated in an industrially scalable manner.« less

  12. Receptive Vocabulary, Cognitive Flexibility, and Inhibitory Control Differentially Predict Older and Younger Adults' Success Perceiving Speech by Talkers with Dysarthria

    ERIC Educational Resources Information Center

    Ingvalson, Erin M.; Lansford, Kaitlin L.; Fedorova, Valeriya; Fernandez, Gabriel

    2017-01-01

    Purpose: Previous research has demonstrated equivocal findings related to the effect of listener age on intelligibility ratings of dysarthric speech. The aim of the present study was to investigate the mechanisms that support younger and older adults' perception of speech by talkers with dysarthria. Method: Younger and older adults identified…

  13. Differential Cytotoxic Activity of Essential Oil of Lippia citriodora from Different Regions in Morocco.

    PubMed

    Oukerrou, Moulay Ali; Tilaoui, Mounir; Mouse, Hassan Ait; Bouchmaa, Najat; Zyad, Abdelmajid

    2017-07-01

    The aim of this work was to investigate the cytotoxic effect of the essential oil of dried leaves of Lippia citriodora (H.B. & K.) harvested in different regions of Morocco. This effect was evaluated against the P815 murine mastocytoma cell line using the MTT assay. Interestingly, this work demonstrated for the first time that these essential oils exhibited a strong cytotoxic activity against the P815 cell line, with IC 50 values ranging from 7.75 to 13.25 μg/ml. This cytotoxicity began early and increased in a dose- and time-dependent manner. The chemical profile of these essential oils was analyzed by gas chromatography coupled to mass spectrometry. Importantly, the difference in terms of major components' contents was not significant suggesting probably that the differential cytotoxicity between these essential oils could be attributed to the difference in the content of these essential oils in minor compounds, which could interact with each other or with the main molecules. Finally, this study demonstrated for the first time that essential oils of L. citriodora from different regions in Morocco induced apoptosis against P815 tumor cell line. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  14. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Y., E-mail: yuta-n@mech.kumamoto-u.ac.jp; Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611; Tsusu, K.

    2014-06-15

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film wasmore » controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.« less

  15. Enhanced photothermal effect in reduced graphene oxide in solid-state

    NASA Astrophysics Data System (ADS)

    Sahadev, Nishaina; Anappara, Aji A.

    2017-11-01

    We report on a giant photothermal effect in few-layer Reduced Graphene Oxide (RGO) in powder form. Graphite oxide synthesized following modified Hummer's method was thermally exfoliated and reduced to obtain RGO consisting of ˜8-10 layers. Upon irradiation with an incoherent, broad-band light source (wavelengths ranging from 250 to 450 nm), an enormous photothermal effect was observed. The heat generated by RGO determined from the isothermal differential photocalorimetric technique is as high as ˜319 W/g resulting from the dominant non-radiative de-excitation of photoexcited electrons due to the absence of a radiative pathway. A practical applicability was demonstrated using a commercial thermoelectric generator wherein upon illumination from a solar-simulator, an open voltage in the mV range was developed, giving a direct proof of the exothermic effect in powder RGO upon light illumination. Herewith, we have demonstrated a proof-of-concept of photothermal effects in solid-state RGO.

  16. Serial position effects in semantic memory: reconstructing the order of verses of hymns.

    PubMed

    Maylor, Elizabeth A

    2002-12-01

    Serial position effects (primacy and recency) have been consistently demonstrated in both short- and long-term episodic memory tasks. The search for corresponding effects in semantic memory tasks (e.g., reconstructing the order of U.S. presidents) has been confounded by factors such as differential exposure to stimuli. In the present study, the stimuli were six-verse hymns that would have been sung from the first to the last verse by churchgoers on numerous occasions. Participants were presented with the verses of each hymn in random order and were required to reconstruct the correct order. Primacy and recency effects were significantly more evident for churchgoers than for nonchurchgoers. Moreover, error gradients were steeper than chance for churchgoers but not for nonchurchgoers; in other words, churchgoers' errors were more likely to be close to the correct position than further away. These findings provide the first unequivocal demonstration of serial position effects in semantic memory.

  17. FGFR3 induces degradation of BMP type I receptor to regulate skeletal development.

    PubMed

    Qi, Huabing; Jin, Min; Duan, Yaqi; Du, Xiaolan; Zhang, Yuanquan; Ren, Fangli; Wang, Yinyin; Tian, Qingyun; Wang, Xiaofeng; Wang, Quan; Zhu, Ying; Xie, Yangli; Liu, Chuanju; Cao, Xu; Mishina, Yuji; Chen, Di; Deng, Chu-xia; Chang, Zhijie; Chen, Lin

    2014-07-01

    Fibroblast growth factors (FGFs) and their receptors (FGFRs) play significant roles in vertebrate organogenesis and morphogenesis. FGFR3 is a negative regulator of chondrogenesis and multiple mutations with constitutive activity of FGFR3 result in achondroplasia, one of the most common dwarfisms in humans, but the molecular mechanism remains elusive. In this study, we found that chondrocyte-specific deletion of BMP type I receptor a (Bmpr1a) rescued the bone overgrowth phenotype observed in Fgfr3 deficient mice by reducing chondrocyte differentiation. Consistently, using in vitro chondrogenic differentiation assay system, we demonstrated that FGFR3 inhibited BMPR1a-mediated chondrogenic differentiation. Furthermore, we showed that FGFR3 hyper-activation resulted in impaired BMP signaling in chondrocytes of mouse growth plates. We also found that FGFR3 inhibited BMP-2- or constitutively activated BMPR1-induced phosphorylation of Smads through a mechanism independent of its tyrosine kinase activity. We found that FGFR3 facilitates BMPR1a to degradation through Smurf1-mediated ubiquitination pathway. We demonstrated that down-regulation of BMP signaling by BMPR1 inhibitor dorsomorphin led to the retardation of chondrogenic differentiation, which mimics the effect of FGF-2 on chondrocytes and BMP-2 treatment partially rescued the retarded growth of cultured bone rudiments from thanatophoric dysplasia type II mice. Our findings reveal that FGFR3 promotes the degradation of BMPR1a, which plays an important role in the pathogenesis of FGFR3-related skeletal dysplasia. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Differentially Coexpressed Disease Gene Identification Based on Gene Coexpression Network.

    PubMed

    Jiang, Xue; Zhang, Han; Quan, Xiongwen

    2016-01-01

    Screening disease-related genes by analyzing gene expression data has become a popular theme. Traditional disease-related gene selection methods always focus on identifying differentially expressed gene between case samples and a control group. These traditional methods may not fully consider the changes of interactions between genes at different cell states and the dynamic processes of gene expression levels during the disease progression. However, in order to understand the mechanism of disease, it is important to explore the dynamic changes of interactions between genes in biological networks at different cell states. In this study, we designed a novel framework to identify disease-related genes and developed a differentially coexpressed disease-related gene identification method based on gene coexpression network (DCGN) to screen differentially coexpressed genes. We firstly constructed phase-specific gene coexpression network using time-series gene expression data and defined the conception of differential coexpression of genes in coexpression network. Then, we designed two metrics to measure the value of gene differential coexpression according to the change of local topological structures between different phase-specific networks. Finally, we conducted meta-analysis of gene differential coexpression based on the rank-product method. Experimental results demonstrated the feasibility and effectiveness of DCGN and the superior performance of DCGN over other popular disease-related gene selection methods through real-world gene expression data sets.

  19. A paired comparison between glioblastoma "stem cells" and differentiated cells.

    PubMed

    Schneider, Matthias; Ströbele, Stephanie; Nonnenmacher, Lisa; Siegelin, Markus D; Tepper, Melanie; Stroh, Sebastien; Hasslacher, Sebastian; Enzenmüller, Stefanie; Strauss, Gudrun; Baumann, Bernd; Karpel-Massler, Georg; Westhoff, Mike-Andrew; Debatin, Klaus-Michael; Halatsch, Marc-Eric

    2016-04-01

    Cancer stem cells (CSC) have been postulated to be responsible for the key features of a malignancy and its maintenances, as well as therapy resistance, while differentiated cells are believed to make up the rapidly growing tumour bulk. It is therefore important to understand the characteristics of those two distinct cell populations in order to devise treatment strategies which effectively target both cohorts, in particular with respect to cancers, such as glioblastoma. Glioblastoma is the most common primary brain tumour in adults, with a mean patient survival of 12-15 months. Importantly, therapeutic improvements have not been forthcoming in the last decade. In this study we compare key features of three pairs of glioblastoma cell populations, each pair consisting of stem cell-like and differentiated cells derived from an individual patient. Our data suggest that while growth rates and expression of key survival- and apoptosis-mediating proteins are more similar according to differentiation status than genetic similarity, we found no intrinsic differences in response to standard therapeutic interventions, namely exposure to radiation or the alkylating agent temozolomide. Interestingly, we could demonstrate that both stem cell-like and differentiated cells possess the ability to form stem cell-containing tumours in immunocompromised mice and that differentiated cells could potentially be dedifferentiated to potential stem cells. Taken together our data suggest that the differences between tumour stem cell and differentiated cell are particular fluent in glioblastoma. © 2015 UICC.

  20. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133(+) Hematopoietic Stem Cells to Osteoclasts.

    PubMed

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. In this experimental study, CD133(+) hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargreaves, L. R.; Colyer, C.; Stevenson, M. A.

    A number of previous studies have suggested the possibility of two-center interference effects in the single ionization of diatomic molecules such as H{sub 2} and N{sub 2}. While interference effects have been successfully observed in the ionization of H{sub 2}, to date evidence for interference in N{sub 2} ionization has yet to be conclusively demonstrated. This study presents triply differential cross sections for electron impact ionization of N{sub 2}, measured using the (e,2e) technique. The data are probed for signatures of two-center interference effects. Evidence for interference manifesting in the cross sections is observed.

  2. The effect of dimethyl sulfoxide on hepatic differentiation of mesenchymal stem cells.

    PubMed

    Alizadeh, Effat; Zarghami, Nosratollah; Eslaminejad, Mohamadreza Baghaban; Akbarzadeh, Abolfazl; Barzegar, Abolfazl; Mohammadi, Seyed Abolghasem

    2016-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are suitable choices in autologous stem cell treatment of liver-associated diseases due to their hepatic differentiation potential. Dimethyl sulfoxide (DMSO) is an amphipathic molecule with potential of delivering both lipophilic and hydrophilic agents into cells, also a common cryoprotectant for freezing of the cells. DMSO was used in some protocols for induction of AT-MSCs towards hepatocyte like cells. However, the effect of DMSO on hepatogenic differentiation of AT-MSCs were not surveyed, previously. In the present study, we aimed at evaluation of the effect of DMSO on differentiation of AT-MSCs into hepatic lineage. We isolated mesenchymal stem cells (MSCs) from adipose tissue, and then verifies multi-potency and surface markers of AT-MSCs . Isolated AT-MSCs randomly dispensed in four groups including Group 1: HGF treated, 2: HGF+ DMSO treated, 3: HGF+ DMSO+ OSM treated, and group control for a period of 3 weeks in the expansion medium without serum; EGF and bFGF were also included in the first days of inductions. The morphologic changes during induction period was observed with microscopy. The secretion of albumin (ALB) of the differentiating MSCs was investigated using ELISA, and urea production was evaluated using colorimetric assay. The qRT-PCR was performed for quantitation of hepatocyte marker genes including AFP, ALB, CK18, HNF4a, and HNF6. The glycogen storage of differentiated cells was visualized by periodic-acid Schiff‘s staining. The results demonstrate that DMSO speeds up hepatic differentiation of AT-MSCs characterized by rapid changes in morphology; higher expression of hepatic marker gene (ALB) in both mRNA and protein level (P < 0.05); also increased transcriptional levels of other liver genes including CK18, HNF4a, and HNF6 (P < 0.01); and moreover, greater percentage of glycogen storage(p < 0.05) in DMSO-treated groups. DMSO catalyzes hepatic differentiation; therefore, using DMSO for acceleration of the hepatogenic protocols of AT-MSCs appears advantageous.

  3. Mode of sexual differentiation and its influence on the relative sensitivity of the fathead minnow and zebrafish in the fish sexual development test.

    PubMed

    Thorpe, Karen L; Pereira, Maria L a Marca; Schiffer, Heidi; Burkhardt-Holm, Patricia; Weber, Klaus; Wheeler, James R

    2011-10-01

    Exogenous treatment of fish with natural sex hormones and their mimics has been shown to influence gonadal differentiation resulting in biased phenotypic sex-ratios. This has lead to the development of the Fish Sexual Development Test (FSDT) as a method for the detection of endocrine active chemicals. Proposed test organisms include the medaka, zebrafish (ZF) and stickleback, although the guideline also allows for inclusion of species such as the fathead minnow (FHM), provided the test duration allows for sufficient sexual differentiation. However, although the processes underlying sexual differentiation are known to differ for each of these species, it is not known how, or if, these differences would influence the results of the FSDT. In the experiments reported here, responses of the ZF and FHM to prochloraz, a sterol biosynthesis inhibitor and androgen antagonist, were characterized and compared. Exposure to 320 μg/L of prochloraz, from embryo until 60 (ZF) or 95-125 (FHM) days post hatch inhibited somatic growth of both species, but while a negative impact on ZF larval survival was observed (LOEC 32 μg/L) there was no evidence for an effect on FHM larval survival. Prochloraz influenced sexual differentiation in both species by decreasing the proportion of females (LOEC 100 μg/L (ZF), 320 μg/L (FHM)) and delaying completion of sexual differentiation; manifest as an increased incidence of ovotestis in the ZF (LOEC 100 μg/L) and as an increased number of fish with undifferentiated gonads in the FHM (LOEC 320 μg/L). However, while exposure to 320 μg/L prochloraz delayed maturation of the differentiated FHM testis, there was no such effect in the ZF. These results demonstrate that the different strategy of sexual differentiation in the ZF and FHM influences the profile of responses of their gonads to the masculinising effects of prochloraz, but does not affect their overall sensitivity. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Distinct Histopathologic and Molecular Alterations in Inflammatory Bowel Disease-Associated Intestinal Adenocarcinoma: c-MYC Amplification is Common and Associated with Mucinous/Signet Ring Cell Differentiation.

    PubMed

    Hartman, Douglas J; Binion, David G; Regueiro, Miguel D; Miller, Caitlyn; Herbst, Cameron; Pai, Reetesh K

    2018-05-17

    Chronic idiopathic inflammatory bowel disease (IBD) is a significant risk factor for the development of intestinal adenocarcinoma. The underlying molecular alterations in IBD-associated intestinal adenocarcinoma remain largely unknown. We compared the clinicopathologic and molecular features of 35 patients with 47 IBD-associated intestinal adenocarcinomas with a consecutive series of 451 patients with sporadic colorectal carcinoma identified at our institution and published data on sporadic colorectal carcinoma. c-MYC amplification was the most frequent molecular alteration identified in 33% of IBD-associated intestinal adenocarcinoma that is a significantly higher frequency than in sporadic colorectal carcinoma (8%) (P = 0.0001). Compared to sporadic colorectal carcinoma, IBD-associated intestinal adenocarcinomas more frequently demonstrated mucinous differentiation (60% vs 25%, P < 0.001) and signet ring cell differentiation (28% vs 4%, P < 0.001). Mucinous and signet ring cell differentiation were significantly associated with the presence of c-MYC amplification (both with P < 0.05). HER2 positivity (11%), KRAS exon 2 or 3 mutation (10%), and IDH1 mutation (7%) were less commonly observed in IBD-associated intestinal adenocarcinoma. There was an association between poor survival and HER2 status with 3 of 4 patients having HER2-positive adenocarcinoma dead of disease at last clinical follow-up; however, no statistically significant survival effect was identified for any of the molecular alterations identified. We demonstrate that IBD-associated intestinal adenocarcinomas have a high frequency of c-MYC amplification that is associated with mucinous and signet ring cell differentiation. Many of the identified molecular alterations have potential therapeutic relevance, including HER2 amplification, IDH1 mutation, and low frequency KRAS mutation.

  5. Human adipose derived mesenchymal stromal cells transduced with GFP lentiviral vectors: assessment of immunophenotype and differentiation capacity in vitro.

    PubMed

    van Vollenstee, Fiona A; Jackson, Carlo; Hoffmann, Danie; Potgieter, Marnie; Durandt, Chrisna; Pepper, Michael S

    2016-10-01

    Adipose derived mesenchymal stromal/stem cells (ASCs) are a heterogeneous population characterized by (a) their ability to adhere to plastic; (b) immunophenotypic expression of certain cell surface markers, while lacking others; and (c) the capacity to differentiate into lineages of mesodermal origin including osteocytes, chondrocytes and adipocytes. The long-term goal is to utilize these cells for clinical translation into cell-based therapies. However, preclinical safety and efficacy need to be demonstrated in animal models. ASCs can also be utilized as biological vehicles for vector-based gene delivery systems, since they are believed to home to sites of inflammation and infection in vivo. These factors motivated the development of a labelling system for ASCs using lentiviral vector-based green fluorescent protein (GFP) transduction. Human ASCs were transduced with GFP-expressing lentiviral vectors. A titration study determined the viral titer required to transduce the maximum number of ASCs. The effect of the transduced GFP lentiviral vector on ASC immunophenotypic expression of surface markers as well as their ability to differentiate into osteocytes and adipocytes were assessed in vitro. A transduction efficiency in ASC cultures of approximately 80 % was observed with an MOI of ~118. No significant immunophenotypic differences were observed between transduced and non-transduced cells and both cell types successfully differentiated into adipocytes and osteocytes in vitro. We obtained >80 % transduction of ASCs using GFP lentiviral vectors. Transduced ASCs maintained plastic adherence, demonstrated ASC immunophenotype and the ability to differentiate into cells of the mesodermal lineage. This GFP-ASC transduction technique offers a potential tracking system for future pre-clinical studies.

  6. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    PubMed

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalifa, Shaden A.M., E-mail: shaden.khalifa@ki.se; Medina, Philippe de; INSERM UMR 1037, Team “Sterol Metabolism and Therapeutic Innovations in Oncology”, Cancer Research Center of Toulouse, F-31052 Toulouse

    2014-04-11

    Highlights: • Dendrogenin A and B are new aminoalkyl oxysterols. • Dendrogenins stimulated neural stem cells proliferation. • Dendrogenins induce neuronal outgrowth from neurospheres. • Dendrogenins provide new therapeutic options for neurodegenerative disorders. - Abstract: Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation.more » Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.« less

  8. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate

    NASA Astrophysics Data System (ADS)

    von Erlach, Thomas C.; Bertazzo, Sergio; Wozniak, Michele A.; Horejs, Christine-Maria; Maynard, Stephanie A.; Attwood, Simon; Robinson, Benjamin K.; Autefage, Hélène; Kallepitis, Charalambos; del Río Hernández, Armando; Chen, Christopher S.; Goldoni, Silvia; Stevens, Molly M.

    2018-03-01

    Cell size and shape affect cellular processes such as cell survival, growth and differentiation1-4, thus establishing cell geometry as a fundamental regulator of cell physiology. The contributions of the cytoskeleton, specifically actomyosin tension, to these effects have been described, but the exact biophysical mechanisms that translate changes in cell geometry to changes in cell behaviour remain mostly unresolved. Using a variety of innovative materials techniques, we demonstrate that the nanostructure and lipid assembly within the cell plasma membrane are regulated by cell geometry in a ligand-independent manner. These biophysical changes trigger signalling events involving the serine/threonine kinase Akt/protein kinase B (PKB) that direct cell-geometry-dependent mesenchymal stem cell differentiation. Our study defines a central regulatory role by plasma membrane ordered lipid raft microdomains in modulating stem cell differentiation with potential translational applications.

  9. The active principle region of Buyang Huanwu decoction induced differentiation of bone marrow-derived mesenchymal stem cells into neural-like cells

    PubMed Central

    Zheng, Jinghui; Wan, Yi; Chi, Jianhuai; Shen, Dekai; Wu, Tingting; Li, Weimin; Du, Pengcheng

    2012-01-01

    The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils, and effective components of Buyang Huanwu decoction (active principle region of decoction for invigorating yang for recuperation). After 28 days, nestin and neuron-specific enolase were expressed in the cytoplasm. Reverse transcription-PCR and western blot analyses showed that nestin and neuron-specific enolase mRNA and protein expression was greater in the active principle region group compared with the original formula group. Results demonstrated that the active principle region of Buyang Huanwu decoction induced greater differentiation of rat bone marrow-derived mesenchymal stem cells into neural-like cells in vitro than the original Buyang Huanwu decoction formula. PMID:25806066

  10. Converting differential-equation models of biological systems to membrane computing.

    PubMed

    Muniyandi, Ravie Chandren; Zin, Abdullah Mohd; Sanders, J W

    2013-12-01

    This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand-receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. The Mars Observer differential one-way range demonstration

    NASA Technical Reports Server (NTRS)

    Kroger, P. M.; Border, J. S.; Nandi, S.

    1994-01-01

    Current methods of angular spacecraft positioning using station differenced range data require an additional observation of an extragalactic radio source (quasar) to estimate the timing offset between the reference clocks at the two Deep Space Stations. The quasar observation is also used to reduce the effects of instrumental and media delays on the radio metric observable by forming a difference with the spacecraft observation (delta differential one-way range, delta DOR). An experiment has been completed using data from the Global Positioning System satellites to estimate the station clock offset, eliminating the need for the quasar observation. The requirements for direct measurement of the instrumental delays that must be made in the absence of a quasar observation are assessed. Finally, the results of the 'quasar-free' differential one-way range, or DOR, measurements of the Mars Observer spacecraft are compared with those of simultaneous conventional delta DOR measurements.

  12. Erythroid differentiation ability of butyric acid analogues: identification of basal chemical structures of new inducers of foetal haemoglobin.

    PubMed

    Bianchi, Nicoletta; Chiarabelli, Cristiano; Zuccato, Cristina; Lampronti, Ilaria; Borgatti, Monica; Amari, Gabriele; Delcanale, Maurizio; Chiavilli, Francesco; Prus, Eugenia; Fibach, Eitan; Gambari, Roberto

    2015-04-05

    Several investigations have demonstrated a mild clinical status in patients with β-globin disorders and congenital high persistence of foetal haemoglobin. This can be mimicked by a pharmacological increase of foetal γ-globin genes expression and foetal haemoglobin production. Our goal was to apply a multistep assay including few screening methods (benzidine staining, RT-PCR and HPLC analyses) and erythroid cellular model systems (the K562 cell line and erythroid precursors collected from peripheral blood) to select erythroid differentiation agents with foetal haemoglobin inducing potential. With this methodology, we have identified a butyric acid derivative, namely the 4174 cyclopropanecarboxylic acid compound, able to induce erythroid differentiation without antiproliferative effect in K562 cells and increase of γ-globin gene expression in erythroid precursor cells. The results are relevant for pharmacological treatments of haemoglobinopathies, including β-thalassaemia and sickle cell anaemia. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Raman spectroscopy of blood serum for Alzheimer's disease diagnostics: specificity relative to other types of dementia

    PubMed Central

    Ryzhikova, Elena; Kazakov, Oleksandr; Halamkova, Lenka; Celmins, Dzintra; Malone, Paula; Molho, Eric; Zimmerman, Earl A.; Lednev, Igor K.

    2015-01-01

    The key moment for efficiently and accurately diagnosing dementia occurs during the early stages. This is particularly true for Alzheimer's disease (AD). In this proof-of-concept study, we applied near infrared (NIR) Raman microspectroscopy of blood serum together with advanced multivariate statistics for the selective identification of AD. We analyzed data from 20 AD patients, 18 patients with other neurodegenerative dementias (OD) and 10 healthy control (HC) subjects. NIR Raman microspectroscopy differentiated patients with more than 95% sensitivity and specificity. We demonstrated the high discriminative power of artificial neural network (ANN) classification models, thus revealing the high potential of this developed methodology for the differential diagnosis of AD. Raman spectroscopic, blood-based tests may aid clinical assessments for the effective and accurate differential diagnosis of AD, decrease the labor, time and cost of diagnosis, and be useful for screening patient populations for AD development and progression. PMID:25256347

  14. PML–RARA-RXR Oligomers Mediate Retinoid and Rexinoid/cAMP Cross-Talk in Acute Promyelocytic Leukemia Cell Differentiation

    PubMed Central

    Kamashev, Dmitrii; Vitoux, Dominique; de Thé, Hugues

    2004-01-01

    PML–RARA was proposed to initiate acute promyelocytic leukemia (APL) through PML–RARA homodimer–triggered repression. Here, we examined the nature of the PML–RARA protein complex and of its DNA targets in APL cells. Using a selection/amplification approach, we demonstrate that PML–RARA targets consist of two AGGTCA elements in an astonishing variety of orientations and spacings, pointing to highly relaxed structural constrains for DNA binding and identifying a major gain of function of this oncogene. PML–RARA-specific response elements were identified, which all conveyed a major transcriptional response to RA only in APL cells. In these cells, we demonstrate that PML–RARA oligomers are complexed to RXR. Directly probing PML–RARA function in APL cells, we found that the differentiation enhancer cyclic AMP (cAMP) boosted transcriptional activation by RA. cAMP also reversed the normal silencing (subordination) of the transactivating function of RXR when bound to RARA or PML–RARA, demonstrating that the alternate rexinoid/cAMP-triggered APL differentiation pathway also activates PML–RARA targets. Finally, cAMP restored both RA-triggered differentiation and PML–RARA transcriptional activation in mutant RA-resistant APL cells. Collectively, our findings directly demonstrate that APL cell differentiation parallels transcriptional activation through PML–RARA-RXR oligomers and that those are functionally targeted by cAMP, identifying this agent as another oncogene-targeted therapy. PMID:15096541

  15. Differentiation of Swine iPSC into Rod Photoreceptors and Their Integration into the Retina

    PubMed Central

    Zhou, Liang; Wang, Wei; Liu, Yongqing; de Castro, Juan Fernandez; Ezashi, Toshihiko; Telugu, Bhanu Prakash V.L.; Roberts, R. Michael; Kaplan, Henry J.; Dean, Douglas C.

    2014-01-01

    Absence of a regenerative pathway for damaged retina following injury or disease has led to experiments utilizing stem cell transplantation for retinal repair, and encouraging results have been obtained in rodents. The swine eye is a closer anatomical and physiological match to the human eye, but embryonic stem cells have not been isolated from pig, and photoreceptor differentiation has not been demonstrated with swine induced pluripotent stem cells (iPSC). Here, we subjected swine iPSC to a rod photoreceptor differentiation protocol consisting of floating culture as embryoid bodies followed by differentiation in adherent culture. Real time PCR and immunostaining of differentiated cells demonstrated loss of expression of the pluripotent genes POU5F1, NANOG and SOX2 and induction of rod photoreceptor genes RCVRN, NRL, RHO and ROM1. While these differentiated cells displayed neuronal morphology, culturing on a Matrigel substratum triggered a further morphological change resulting in concentration of RHO and ROM1 in outer segment-like projections resembling those on primary cultures of rod photoreceptors. The differentiated cells were transplanted into the subretinal space of pigs treated with iodoacetic acid to eliminate rod photoreceptors. Three weeks after transplantation, engrafted RHO+ cells were evident in the outer nuclear layer where photoreceptors normally reside. A portion of these transplanted cells had generated projections resembling outer segments. These results demonstrate that swine iPSC can differentiate into photoreceptors in culture and these cells can integrate into the damaged swine neural retina thus laying a foundation for future studies using the pig as a model for retinal stem cell transplantation. PMID:21491544

  16. Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro

    PubMed Central

    HUANG, XIN; HUANG, SHILONG; GUO, FENGJIN; XU, FEI; CHENG, PENG; YE, YAPING; DONG, YONGHUI; XIANG, WEI; CHEN, ANMIN

    2016-01-01

    Zoledronic acid (ZA), which is one of the most potent and efficacious bisphosphonates, has been commonly used in clinical practice for the treatment of various bone disorders. The extensive use of ZA has been associated with increasing occurrence of jaw complications, now known as bisphosphonate-associated osteonecrosis of the jaw (BRONJ). However, the mechanism underlying BRONJ remains to be fully elucidated. The aim of the present study was to investigate the effects of different concentrations of ZA on the MC3T3-E1 murine preosteoblast cell line cells and examine the possible pathogenesis of BRONJ. In the present study, the effect of ZA on the viability, apoptosis, differentiation and maturation of MC3T3-E1 cells, as well as its relevant molecular mechanism, were examined The results of a Cell Counting Kit 8 assay, a flow cytometric Annexin-V/propidium iodide assay and western blot analysis demonstrated that ZA exhibited a significant inhibition of cell viability and induction of apoptosis at concentrations >10 µM. Subsequently, the effect of ZA on cell differentiation at concentrations <1 µM were investigated. In this condition, ZA inhibited bone nodule formation and decreased the activity of alkaline phosphatase. The results of reverse transcription-quantitative polymerase chain reaction and western blot analyses indicated that ZA downregulated the expression levels of the marker genes and proteins associated with osteogenic differentiation. Further investigation revealed that the suppression of differentiation by ZA was associated with decreased expression of bone morphogenetic protein-2 (BMP-2) and downregulation of the phosphorylation levels in the downstream extracellular signal-regulated kinase 1/2 and p38 pathways. These adverse effects of ZA were observed to be concentration-dependent. The results from the present study suggested that ZA at higher concentrations induces cytotoxicity towards osteoblasts, and ZA at lower concentrations suppresses osteoblast differentiation by downregulation of BMP-2. These results assist in further understanding the mechanisms of BRONJ. PMID:26648136

  17. Salidroside Inhibits Myogenesis by Modulating p-Smad3-Induced Myf5 Transcription

    PubMed Central

    Zhang, Peng; Li, Wenjiong; Wang, Lu; Liu, Hongju; Gong, Jing; Wang, Fei; Chen, Xiaoping

    2018-01-01

    Aim: Salidroside is an active compound extracted from Rhodiola rosea which is used to alleviate fatigue and enhance endurance in high altitude regions. Some studies have demonstrated that salidroside can affect precursor cell differentiation in hematopoietic stem cells, erythrocytes, and osteoblasts. The aim of this study was to investigate the effect of salidroside on myoblast differentiation and to explore the underlying molecular mechanisms of this effect. Methods: C2C12 myoblast cells were treated with different concentrations of salidroside in differentiation media. Real-time PCR, Western blotting, and immunofluorescence assay were employed to evaluate the effects of salidroside on C2C12 differentiation. RNA interference was used to reveal the important role of Myf5 in myogenesis inhibited by salidroside. Chromatin Immunoprecipitation and dual-luciferase reporter assay were utilized to explore the underlying mechanisms of salidroside-induced upregulation of Myf5. Results: We found that salidroside inhibits myogenesis by downregulating MyoD and myogenin, preserves undifferentiated reserve cell pools by upregulating Myf5. Knocking down Myf5 expression significantly rescued the myogenesis inhibited by salidroside. The effect of salidroside on myogenesis was associated with increased phosphorylated Smad3 (p-Smad3). Both SIS3 (Specific inhibitor of p-Smad3) and dominant negative Smad3 plasmid (DN-Smad3) attenuated the inhibitory effect of salidroside on C2C12 differentiation. Moreover, the induction of Myf5 transcription by salidroside was dependent on a Smad-binding site in the promoter region of Myf5 gene. Conclusion and Implications: Our findings identify a novel role and mechanism for salidroside in regulating myogenesis through p-Smad3-induced Myf5 transcription, which may have implications for its further application in combating degenerative muscular diseases caused by depletion of muscle stem cells, such as Duchenne muscular dystrophy or sarcopenia. PMID:29593538

  18. Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Hyun; Jang, Hae-Dong, E-mail: haedong@hnu.kr

    Scoparone, one of the bioactive components of Artemisia capillaris Thunb, has various biological properties including immunosuppressive, hepatoprotective, anti-allergic, anti-inflammatory, and antioxidant effects. This study aims at evaluating the anti-osteoporotic effect of scoparone and its underlying mechanism in vitro. Scoparone demonstrated potent cellular antioxidant capacity. It was also found that scoparone inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and suppressed cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression via c-jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)/p38-mediated c-Fos–nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway. During osteoclast differentiation, the production of general reactive oxygen speciesmore » (ROS) and superoxide anions was dose-dependently attenuated by scoparone. In addition, scoparone diminished NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) expression and activation via the tumor necrosis factor receptor-associated factor 6 (TRAF6)–cSrc–phosphatidylinositol 3-kinase (PI3k) signaling pathway and prevented the disruption of mitochondrial electron transport chain system. Furthermore, scoparone augmented the expression of superoxide dismutase 1 (SOD1) and catalase (CAT). The overall results indicate that the inhibitory effect of scoparone on RANKL-induced osteoclast differentiation is attributed to the suppressive effect on ROS and superoxide anion production by inhibiting Nox1 expression and activation and protecting the mitochondrial electron transport chain system and the scavenging effect of ROS resulting from elevated SOD1 and CAT expression. - Highlights: • Scoparone dose-dependently inhibited RANKL-induced osteoclast differentiation. • Scoparone diminished general ROS and superoxide anions in a dose-dependent manner. • Scoparone inhibited Nox1 expression and activation. • Scoparone prevented the disruption of mitochondrial electron transport chain system. • Scoparone augmented superoxide dismutase and catalase expression.« less

  19. Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro.

    PubMed

    Huang, Xin; Huang, Shilong; Guo, Fengjin; Xu, Fei; Cheng, Peng; Ye, Yaping; Dong, Yonghui; Xiang, Wei; Chen, Anmin

    2016-01-01

    Zoledronic acid (ZA), which is one of the most potent and efficacious bisphosphonates, has been commonly used in clinical practice for the treatment of various bone disorders. The extensive use of ZA has been associated with increasing occurrence of jaw complications, now known as bisphosphonate‑associated osteonecrosis of the jaw (BRONJ). However, the mechanism underlying BRONJ remains to be fully elucidated. The aim of the present study was to investigate the effects of different concentrations of ZA on the MC3T3‑E1 murine preosteoblast cell line cells and examine the possible pathogenesis of BRONJ. In the present study, the effect of ZA on the viability, apoptosis, differentiation and maturation of MC3T3‑E1 cells, as well as its relevant molecular mechanism, were examined The results of a Cell Counting Kit 8 assay, a flow cytometric Annexin‑V/propidium iodide assay and western blot analysis demonstrated that ZA exhibited a significant inhibition of cell viability and induction of apoptosis at concentrations >10 µM. Subsequently, the effect of ZA on cell differentiation at concentrations <1 µM were investigated. In this condition, ZA inhibited bone nodule formation and decreased the activity of alkaline phosphatase. The results of reverse transcription-quantitative polymerase chain reaction and western blot analyses indicated that ZA downregulated the expression levels of the marker genes and proteins associated with osteogenic differentiation. Further investigation revealed that the suppression of differentiation by ZA was associated with decreased expression of bone morphogenetic protein‑2 (BMP‑2) and downregulation of the phosphorylation levels in the downstream extracellular signal‑regulated kinase 1/2 and p38 pathways. These adverse effects of ZA were observed to be concentration‑dependent. The results from the present study suggested that ZA at higher concentrations induces cytotoxicity towards osteoblasts, and ZA at lower concentrations suppresses osteoblast differentiation by downregulation of BMP-2. These results assist in further understanding the mechanisms of BRONJ.

  20. Osthole promotes neuronal differentiation and inhibits apoptosis via Wnt/β-catenin signaling in an Alzheimer's disease model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yingjia; Gao, Zhong; Liang, Wenbo

    Neurogenesis is the process by which neural stem cells (NSCs) proliferate and differentiate into neurons. This is diminished in several neurodegenerative disorders such as Alzheimer's disease (AD), which is characterized by the deposition of amyloid (A)β peptides and neuronal loss. Stimulating NSCs to replace lost neurons is therefore a promising approach for AD treatment. Our previous study demonstrated that osthole modulates NSC proliferation and differentiation, and may reduce Aβ protein expression in nerve cells. Here we investigated the mechanism underlying the effects of osthole on NSCs. We found that osthole enhances NSC proliferation and neuronal differentiation while suppressing apoptosis, effectsmore » that were exerted via activation of Wnt/β-catenin signaling. These results provide evidence that osthole can potentially be used as a therapeutic agent in the treatment of AD and other neurodegenerative disorders. - Highlights: • An Alzheimer's disease model was successfully established by transfecting APP gene into neural stem cells in vitro. • Roles of osthole in experimental AD cells were studied. • Osthole promotes proliferation and differentiation into neurons and inhibits accumulation of Aβ{sub 1–42} peptide and apoptosis. • Osthole exerts protection via Wnt/β-catenin signaling pathway.« less

  1. miR-101a targeting EZH2 promotes the differentiation of goat skeletal muscle satellite cells.

    PubMed

    Li, Jun-Tao; Zhao, Wei; Li, Dan-Dan; Feng, Jing; Ba, Gui; Song, Tian-Zeng; Zhang, Hong-Ping

    2017-09-20

    miR-101a promotes the differentiation of goat skeletal muscle satellite cells (SMSCs), as we previously reported, but the underpinning mechanism remains to be illuminated. In this study, we predicted the target gene of miR-101a by employing online softwares PicTar, TargetScan and miRanda, and found that enhancer of zeste homologue 2 (EZH2) was targeted by miR-101a. Further we identified that EZH2 contained miR-101a binding sites at its 3'UTR by using the dual-luciferase reporter assay system. In addition, we showed that during SMSC differentiation, the downregulated levels of EZH2 mRNA and protein were accompanied by increasing miR-101a expression via qRT-PCR and Western blot. Additionally, the expression of EZH2 significantly increased (P<0.01) when miR-101a was suppressed, whereas overexpressing miR-101a almost had no effect on EZH2 expression (P>0.05). These data demonstrated that miR-101a promotes SMSC differentiation directly through EZH2, which provides a theoretical reference for further elucidating the mechanism of miR-101a in SMSC differentiation.

  2. BJ-3105, a 6-Alkoxypyridin-3-ol Analog, Impairs T Cell Differentiation and Prevents Experimental Autoimmune Encephalomyelitis Disease Progression

    PubMed Central

    Timilshina, Maheshwor; Kang, Youra; Dahal, Ishmit; You, Zhiwei; Nam, Tae-gyu; Kim, Keuk-Jun

    2017-01-01

    CD4+ T cells are essential in inflammation and autoimmune diseases. Interferon-γ (IFN-γ) secreting T helper (Th1) and IL-17 secreting T helper (Th17) cells are critical for several autoimmune diseases. To assess the inhibitory effect of a given compound on autoimmune disease, we screened many compounds with an in vitro Th differentiation assay. BJ-3105, a 6-alkoxypyridin-3-ol analog, inhibited IFN-γ and IL-17 production from polyclonal CD4+ T cells and ovalbumin (OVA)-specific CD4+ T cells which were activated by T cell receptor (TCR) engagement. BJ-3105 ameliorated the experimental autoimmune encephalomyelitis (EAE) model by reducing Th1 and Th17 generation. Notably, Th cell differentiation was significantly suppressed by BJ-3105 treatment without inhibiting in vitro proliferation of T cells or inducing programmed cell death. Mechanistically, BJ-3105 inhibited the phosphorylation of JAK and its downstream signal transducer and activator of transcription (STAT) that is critical for Th differentiation. These results demonstrated that BJ-3105 inhibits the phosphorylation of STAT in response to cytokine signals and subsequently suppressed the differentiation of Th cell responses. PMID:28095433

  3. Papillary fibroblasts differentiate into reticular fibroblasts after prolonged in vitro culture.

    PubMed

    Janson, David; Saintigny, Gaëlle; Mahé, Christian; El Ghalbzouri, Abdoelwaheb

    2013-01-01

    The dermis can be divided into two morphologically different layers: the papillary and reticular dermis. Fibroblasts isolated from these layers behave differently when cultured in vitro. During skin ageing, the papillary dermis decreases in volume. Based on the functional differences in vitro, it is hypothesized that the loss of papillary fibroblasts contributes to skin ageing. In this study, we aimed to mimic certain aspects of skin ageing by using high-passage cultures of reticular and papillary fibroblasts and investigated the effect of these cells on skin morphogenesis in reconstructed human skin equivalents. Skin equivalents generated with reticular fibroblasts showed a reduced terminal differentiation and fewer proliferating basal keratinocytes. Aged in vitro papillary fibroblasts had increased expression of biomarkers specific to reticular fibroblasts. The phenotype and morphology of skin equivalents generated with high-passage papillary fibroblasts resembled that of reticular fibroblasts. This demonstrates that papillary fibroblasts can differentiate into reticular fibroblasts in vitro. Therefore, we hypothesize that papillary fibroblasts represent an undifferentiated phenotype, while reticular fibroblasts represent a more differentiated population. The differentiation process could be a new target for anti-skin-ageing strategies. © 2013 John Wiley & Sons A/S.

  4. Platelet-derived chemokines in atherogenesis: what's new?

    PubMed

    Gleissner, Christian A

    2012-09-01

    Over the past decade, platelets have been demonstrated to have various functions beyond their role in hemostasis. Platelets possess a rich repertoire of chemokines that are stored in their alpha granules and can be released upon activation. The pro-atherogenic effects of activated platelets are most likely mediated by release of these pro-inflammatory mediators that promote recruitment, activation or differentiation of other cell types including endothelial cells and leukocytes. These effects have been excellently reviewed in the past by various authors. The current review will therefore focus on novel findings. A specific focus will be put on CXCL4, on which a lot of new data have been published since 2008. Thus, the effects of CXCL4 on macrophage differentiation have been studied in detail revealing that CXCL4 induces a specific macrophage phenotype. Furthermore, novel data on CXCL4L1, a protein similar to CXCL4 that is probably transcribed from a duplication of the PF4 gene coding for CXCL4, will be discussed. A very interesting study has recently demonstrated that the inhibition of heterophilic chemokine interactions using a specifically designed small molecule can inhibit atherogenesis in Apoe-/- mice, thereby demonstrating the clinical potential of tackling platelet chemokines as therapeutic targets in atherosclerosis. Finally, novel data on CXCL1 and CCL5 will be discussed. Overall, while our understanding of the role of platelet chemokines in atherogenesis has significantly improved over the past years, it seems that there may still be many buried treasures in this field that could improve disease prevention or lead to novel clinical therapies.

  5. The critical role of myostatin in differentiation of sheep myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chenxi; Xinjiang Laboratory of Animal Biotechnology, Urumqi; Li, Wenrong

    Highlights: Black-Right-Pointing-Pointer Identification of the effective and specific shRNA to knockdown MSTN. Black-Right-Pointing-Pointer Overexpression of MSTN reversibly suppressed myogenic differentiation. Black-Right-Pointing-Pointer shRNA knockdown of endogenous MSTN promoted ovine myoblast differentiation. Black-Right-Pointing-Pointer MSTN inhibits myogenic differentiation through down-regulation of MyoD and Myogenin and up-regulation of Smad3. Black-Right-Pointing-Pointer Provides a promise for the generation of transgenic sheep to improve meat productivity. -- Abstract: Myostatin [MSTN, also known as growth differentiation factor 8 (GDF8)], is an inhibitor of skeletal muscle growth. Blockade of MSTN function has been reported to result in increased muscle mass in mice. However, its role in myoblast differentiation inmore » farm animals has not been determined. In the present study, we sought to determine the role of MSTN in the differentiation of primary sheep myoblasts. We found that ectopic overexpression of MSTN resulted in lower fusion index in sheep myoblasts, which indicated the repression of myoblast differentiation. This phenotypic change was reversed by shRNA knockdown of the ectopically expressed MSTN in the cells. In contrast, shRNA knockdown of the endogenous MSTN resulted in induction of myogenic differentiation. Additional studies revealed that the induction of differentiation by knocking down the ectopically or endogenously expressed MSTN was accompanied by up-regulation of MyoD and myogenin, and down-regulation of Smad3. Our results demonstrate that MSTN plays critical role in myoblast differentiation in sheep, analogous to that in mice. This study also suggests that shRNA knockdown of MSTN could be a potentially promising approach to improve sheep muscle growth, so as to increase meat productivity.« less

  6. Productive Struggle for All: Differentiated Instruction

    ERIC Educational Resources Information Center

    Lynch, Sararose D.; Hunt, Jessica H.; Lewis, Katherine E.

    2018-01-01

    This article demonstrates how to consider differentiating instruction for diverse learners while maintaining the cognitive demand of a mathematics task. The authors present scenarios involving hypothetical cases of students in inclusive classrooms who engaged in productive struggle within the differentiated task. The authors specifically focus on…

  7. Application of the Sumudu Transform to Discrete Dynamic Systems

    ERIC Educational Resources Information Center

    Asiru, Muniru Aderemi

    2003-01-01

    The Sumudu transform is an integral transform introduced to solve differential equations and control engineering problems. The transform possesses many interesting properties that make visualization easier and application has been demonstrated in the solution of partial differential equations, integral equations, integro-differential equations and…

  8. Perceptions of Missouri Elementary Principals to Lead Differentiated Instruction Initiatives

    ERIC Educational Resources Information Center

    Eftink, Adrian

    2014-01-01

    The following document represents a Problem Based Learning Project (PBL) around the central theme of differentiated instruction leadership. "As demonstrated through literature the emerging problem was elementary school principals lack the necessary understanding and needed preparation in differentiated instruction (DI) leadership to support…

  9. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic

    NASA Astrophysics Data System (ADS)

    Shim, Jaewoo; Oh, Seyong; Kang, Dong-Ho; Jo, Seo-Hyeon; Ali, Muhammad Hasnain; Choi, Woo-Young; Heo, Keun; Jeon, Jaeho; Lee, Sungjoo; Kim, Minwoo; Song, Young Jae; Park, Jin-Hong

    2016-11-01

    Recently, negative differential resistance devices have attracted considerable attention due to their folded current-voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research.

  10. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic

    PubMed Central

    Shim, Jaewoo; Oh, Seyong; Kang, Dong-Ho; Jo, Seo-Hyeon; Ali, Muhammad Hasnain; Choi, Woo-Young; Heo, Keun; Jeon, Jaeho; Lee, Sungjoo; Kim, Minwoo; Song, Young Jae; Park, Jin-Hong

    2016-01-01

    Recently, negative differential resistance devices have attracted considerable attention due to their folded current–voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research. PMID:27819264

  11. Effect of hydrocortisone on radiosensitivity of hemopoietic stem cells. [. gamma. rays; mice; bone marrow; spleen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvets, V.N.

    Studies were made of the direction of differentiation and radiosensitivity of CFU (colony-forming units) of bone marrow and spleen for 1 month after single injection of 5 mg hydrocortisone (HC) per mouse. It was found that there was a sharp change in direction of differentiation of CFU from different sources. Bone marrow CFU enhanced erythropoiesis and CFU of the spleen enhanced myelopoiesis, which is not inherent in the same CFU of normal mice. Determination of radiosensitivity of CFU from different sources according to the spleen colony test failed to demonstrate any differences in value of D/sub 0/ and extrapolation number,more » whereas substantial changes in radiosensitivity were demonstrated in the bone marrow colony test. Radiosensitivity of marrow CFU diminished while that of the spleen increased, as compared to the control. It is assumed that these phenomena are due to redistribution of T lymphocytes in response to HC.« less

  12. Susceptibility weighted imaging: differentiating between calcification and hemosiderin*

    PubMed Central

    Barbosa, Jeam Haroldo Oliveira; Santos, Antonio Carlos; Salmon, Carlos Ernesto Garrido

    2015-01-01

    Objective To present a detailed explanation on the processing of magnetic susceptibility weighted imaging (SWI), demonstrating the effects of echo time and sensitive mask on the differentiation between calcification and hemosiderin. Materials and Methods Computed tomography and magnetic resonance (magnitude and phase) images of six patients (age range 41– 54 years; four men) were retrospectively selected. The SWI images processing was performed using the Matlab’s own routine. Results Four out of the six patients showed calcifications at computed tomography images and their SWI images demonstrated hyperintense signal at the calcification regions. The other patients did not show any calcifications at computed tomography, and SWI revealed the presence of hemosiderin deposits with hypointense signal. Conclusion The selection of echo time and of the mask may change all the information on SWI images, and compromise the diagnostic reliability. Amongst the possible masks, the authors highlight that the sigmoid mask allows for contrasting calcifications and hemosiderin on a single SWI image. PMID:25987750

  13. When to use your head and when to use your heart: the differential value of perspective-taking versus empathy in competitive interactions.

    PubMed

    Gilin, Debra; Maddux, William W; Carpenter, Jordan; Galinsky, Adam D

    2013-01-01

    Four studies explored whether perspective-taking and empathy would be differentially effective in mixed-motive competitions depending on whether the critical skills for success were more cognitively or emotionally based. Study 1 demonstrated that individual differences in perspective-taking, but not empathy, predicted increased distributive and integrative performance in a multiple-round war game that required a clear understanding of an opponent's strategic intentions. Conversely, both measures and manipulations of empathy proved more advantageous than perspective-taking in a relationship-based coalition game that required identifying the strength of interpersonal connections (Studies 2-3). Study 4 established a key process: perspective-takers were more accurate in cognitive understanding of others, whereas empathy produced stronger accuracy in emotional understanding. Perspective-taking and empathy were each useful but in different types of competitive, mixed-motive situations-their success depended on the task-competency match. These results demonstrate when to use your head versus your heart to achieve the best outcomes for oneself.

  14. Gene expression analysis uncovers novel Hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells

    PubMed Central

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.

    2013-01-01

    Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001

  15. Role of tempo entrainment in psychophysiological differentiation of happy and sad music?

    PubMed

    Khalfa, Stéphanie; Roy, Mathieu; Rainville, Pierre; Dalla Bella, Simone; Peretz, Isabelle

    2008-04-01

    Respiration rate allows to differentiate between happy and sad excerpts which may be attributable to entrainment of respiration to the rhythm or the tempo rather than to emotions [Etzel, J.A., Johnsen, E.L., Dickerson, J., Tranel, D., Adolphs, R., 2006. Cardiovascular and respiratory responses during musical mood induction. Int. J. Psychophysiol. 61(1), 57-69]. In order to test for this hypothesis, this study intended to verify whether fast and slow rhythm, and/or tempo alone are sufficient to induce differential physiological effects. Psychophysiological responses (electrodermal responses, facial muscles activity, blood pressure, heart and respiration rate) were then measured in fifty young adults listening to fast/happy and slow/sad music, and to two control versions of these excerpts created by removing pitch variations (rhythmic version) and both pitch and temporal variations (beat-alone). The results indicate that happy and sad music are significantly differentiated (happy>sad) by diastolic blood pressure, electrodermal activity, and zygomatic activity, while the fast and slow rhythmic and tempo control versions did not elicit such differentiations. In contrast, respiration rate was faster with stimuli presented at fast tempi relative to slow stimuli in the beat-alone condition. It was thus demonstrated that the psychophysiological happy/sad distinction requires the tonal variations and cannot be explained solely by entrainment to tempo and rhythm. The tempo entrainment exists in the tempo alone condition but our results suggest this effect may disappear when embedded in music or with rhythm.

  16. High Glucose Concentrations Suppress the Proliferation of Human Periodontal Ligament Stem Cells and Their Differentiation Into Osteoblasts.

    PubMed

    Kato, Hirohito; Taguchi, Yoichiro; Tominaga, Kazuya; Kimura, Daisuke; Yamawaki, Isao; Noguchi, Masahiro; Yamauchi, Nobuhiro; Tamura, Isao; Tanaka, Akio; Umeda, Makoto

    2016-04-01

    Diabetes mellitus (DM) is a major risk factor for periodontal disease and affects various cellular functions. Periodontal ligament stem cells (PDLSCs) play an important role in periodontal tissue regeneration; however, the effect of hyperglycemia on PDLSCs is unclear. The aim of this study is to investigate whether hyperglycemia affects periodontal tissue regeneration, using human PDLSCs and high-glucose medium as a model of DM. PDLSCs were obtained from healthy adult human mandibular third molars. Cell proliferation, osteoblastic differentiation, and proinflammatory cytokine expression were investigated by culturing PDLSCs in media supplemented with four different glucose concentrations representative of control patients (5.5 mM), patients with postprandial or controlled DM (8.0 mM), and patients with uncontrolled DM (12.0 and 24.0 mM). The molecular effects of hyperglycemia on PDLSC physiology were examined with a focus on the nuclear factor (NF)-(κB signaling pathway. The involvement of NF-κB was investigated with a specific NF-κB inhibitor in PDLSCs under hyperglycemic conditions. High glucose levels inhibited PDLSC proliferation and differentiation into osteoblasts but induced NF-κB activation and subsequent interleukin (IL)-6 and IL-8 expression. Treatment with an NF-κB inhibitor rescued the defects in cell proliferation and osteoblastic differentiation and inhibited the IL-6 expression caused by the high-glucose environment. The results of this study demonstrate that hyperglycemia inhibits human PDLSC proliferation and osteoblastic differentiation.

  17. Genome-wide methylation and gene expression changes in newborn rats following maternal protein restriction and reversal by folic acid.

    PubMed

    Altobelli, Gioia; Bogdarina, Irina G; Stupka, Elia; Clark, Adrian J L; Langley-Evans, Simon

    2013-01-01

    A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of newborn rats exposed to maternal protein restriction. On day one postnatally, there were 618 differentially expressed genes and 1183 differentially methylated regions (FDR 5%). The functional analysis of differentially expressed genes indicated a significant effect on DNA repair/cycle/maintenance functions and of lipid, amino acid metabolism and circadian functions. Enrichment for known biological functions was found to be associated with differentially methylated regions. Moreover, these epigenetically altered regions overlapped genetic loci associated with metabolic and cardiovascular diseases. Both expression changes and DNA methylation changes were largely reversed by supplementing the protein restricted diet with folic acid. Although the epigenetic and gene expression signatures appeared to underpin largely different biological processes, the gene expression profile of DNA methyl transferases was altered, providing a potential link between the two molecular signatures. The data showed that maternal protein restriction is associated with widespread differential gene expression and DNA methylation across the genome, and that folic acid is able to reset both molecular signatures.

  18. Classifying Measures of Biological Variation

    PubMed Central

    Gregorius, Hans-Rolf; Gillet, Elizabeth M.

    2015-01-01

    Biological variation is commonly measured at two basic levels: variation within individual communities, and the distribution of variation over communities or within a metacommunity. We develop a classification for the measurement of biological variation on both levels: Within communities into the categories of dispersion and diversity, and within metacommunities into the categories of compositional differentiation and partitioning of variation. There are essentially two approaches to characterizing the distribution of trait variation over communities in that individuals with the same trait state or type tend to occur in the same community (describes differentiation tendencies), and individuals with different types tend to occur in different communities (describes apportionment tendencies). Both approaches can be viewed from the dual perspectives of trait variation distributed over communities (CT perspective) and community membership distributed over trait states (TC perspective). This classification covers most of the relevant descriptors (qualified measures) of biological variation, as is demonstrated with the help of major families of descriptors. Moreover, the classification is shown to open ways to develop new descriptors that meet current needs. Yet the classification also reveals the misclassification of some prominent and widely applied descriptors: Dispersion is often misclassified as diversity, particularly in cases where dispersion descriptor allow for the computation of effective numbers; the descriptor GST of population genetics is commonly misclassified as compositional differentiation and confused with partitioning-oriented differentiation, whereas it actually measures partitioning-oriented apportionment; descriptors of β-diversity are ambiguous about the differentiation effects they are supposed to represent and therefore require conceptual reconsideration. PMID:25807558

  19. Bergamottin Promotes Adipocyte Differentiation and Inhibits Tumor Necrosis Factor-α-induced Inflammatory Cytokines Induction in 3T3-L1 Cells.

    PubMed

    Mizuno, Hideya; Hatano, Tomoko; Taketomi, Ayako; Kawabata, Mami; Nakabayashi, Toshikatsu

    2017-01-01

    Nowadays, a lot of food ingredients are marketed as dietary supplements for health. Because the effectiveness and mechanisms of these compounds have not been fully characterized, they might have unknown functions. Therefore, we investigated the effect of several food ingredients (Bergamottin, Chrysin, L-Citrulline and β-Carotene) known as health foods on adipocyte differentiation by using 3T3-L1 preadipocytes. In this study, we found that Bergamottin, a furanocoumarin isolated from grapefruit juice, promotes adipocyte differentiation. In addition, Bergamottin increases the expression of adiponectin, an anti-inflammatory adipokine, and peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor regulating adipocyte differentiation. Furthermore, the anti-inflammatory activity of Bergamottin was demonstrated by its inhibition of the activation of nuclear factor-κB (NF-κB), an inflammatory transcription factor. Stimulation of mature 3T3-L1 adipocytes by tumor necrosis factor-α (TNF-α) decreased the expression of the endogeneous NF-κB inhibitor, IκBα. Treatment with Bergamottin further decreased the TNF-α-induced change in IκBα expression, suggesting that Bergamottin mediated the inhibition of NF-κB activation. In addition, Bergamottin decreased the TNF-α-induced increase in the mRNA levels of pro-inflammatory adipokines, monocyte chemoattractant protein-1 and interleukin-6. Taken together, our results show that Bergamottin treatment could inhibit inflammatory activity through promoting adipocyte differentiation, which in turn suggests that Bergamottin has the potential to minimize the risk factors of metabolic syndrome.

  20. Overexpressed Calponin3 by Subsonic Vibration Induces Neural Differentiation of hUC-MSCs by Regulating the Ionotropic Glutamate Receptor.

    PubMed

    Kim, Hyun-Jung; Kim, Jin-Hee; Song, Yeo-Ju; Seo, Young-Kwon; Park, Jung-Keug; Kim, Chan-Wha

    2015-09-01

    In this study, we used proteomics to investigate the effects of sonic vibration (SV) on mesenchymal stem cells derived from human umbilical cords (hUC-MSCs) during neural differentiation to understand how SV enhances neural differentiation of hUC-MSCs. We investigated the levels of gene and protein related to neural differentiation after 3 or 5 days in a group treated with 40-Hz SV. In addition, protein expression patterns were compared between the control and the 40-Hz SV-treated hUC-MSC groups via a proteomic approach. Among these proteins, calponin3 (CNN3) was confirmed to have 299 % higher expression in the 40-Hz SV stimulated hUC-MSCs group than that in the control by Western blotting. Notably, overexpression of CNN3-GFP in Chinese hamster ovary (CHO)-K1 cells had positive effects on the stability and reorganization of F-actin compared with that in GFP-transfected cells. Moreover, CNN3 changed the morphology of the cells by making a neurite-like form. After being subjected to SV, messenger RNA (mRNA) levels of glutamate receptors such as PSD95, GluR1, and NR1 as well as intracellular calcium levels were upregulated. These results suggest that the activity of glutamate receptors increased because of CNN3 characteristics. Taken together, these results demonstrate that overexpressed CNN3 during SV increases expression of glutamate receptors and promotes functional neural differentiation of hUC-MSCs.

Top