DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte, Mark J.; Solocinski, Jason; Wang, Mian
A system capable of biocatalytic conversion of distributed sources of single carbon gases such as carbon monoxide into hydrocarbons can be highly beneficial for developing commercially viable biotechnology applications in alternative energy. Several anaerobic bacterial strains can be used for such conversion. The anaerobic carbon monoxide-fixing bacteria Clostridium ljungdahlii OTA1 is a model CO assimilating microorganism that currently requires cryogenic temperature for storage of the viable strains. If these organisms can be stabilized and concentrated in thin films in advanced porous materials, it will enable development of high gas fraction, biocomposite absorbers with elevated carbon monoxide (CO) mass transfer rate,more » that require minimal power input and liquid, and demonstrate elevated substrate consumption rate compared to conventional suspended cell bioreactors. We report development of a technique for dry-stabilization of C. ljungdahlii OTA1 on a paper biocomposite. Bacterial samples coated onto paper were desiccated in the presence of trehalose using convective drying and stored at 4°C. Optimal dryness was ~1g H 2O per gram of dry weight (g DW). CO uptake directly following biocomposite rehydration steadily increases over time indicating immediate cellular metabolic recovery. A high-resolution Raman microspectroscopic hyperspectral imaging technique was employed to spatially quantify the residual moisture content. We have demonstrated for the first time that convectively dried and stored C. ljungdahlii strains were stabilized in a desiccated state for over 38 days without a loss in CO absorbing reactivity. The Raman hyperspectral imaging technique described here is a non-invasive characterization tool to support development of dry-stabilization techniques for microorganisms on inexpensive porous support materials. In conclusion, the present study successfully extends and implements the principles of dry-stabilization for preservation of strictly anaerobic bacteria as an alternative to lyophilization or spray drying that could enable centralized biocomposite biocatalyst fabrication and decentralized bioprocessing of CO to liquid fuels or chemicals.« less
Schulte, Mark J.; Solocinski, Jason; Wang, Mian; ...
2017-07-05
A system capable of biocatalytic conversion of distributed sources of single carbon gases such as carbon monoxide into hydrocarbons can be highly beneficial for developing commercially viable biotechnology applications in alternative energy. Several anaerobic bacterial strains can be used for such conversion. The anaerobic carbon monoxide-fixing bacteria Clostridium ljungdahlii OTA1 is a model CO assimilating microorganism that currently requires cryogenic temperature for storage of the viable strains. If these organisms can be stabilized and concentrated in thin films in advanced porous materials, it will enable development of high gas fraction, biocomposite absorbers with elevated carbon monoxide (CO) mass transfer rate,more » that require minimal power input and liquid, and demonstrate elevated substrate consumption rate compared to conventional suspended cell bioreactors. We report development of a technique for dry-stabilization of C. ljungdahlii OTA1 on a paper biocomposite. Bacterial samples coated onto paper were desiccated in the presence of trehalose using convective drying and stored at 4°C. Optimal dryness was ~1g H 2O per gram of dry weight (g DW). CO uptake directly following biocomposite rehydration steadily increases over time indicating immediate cellular metabolic recovery. A high-resolution Raman microspectroscopic hyperspectral imaging technique was employed to spatially quantify the residual moisture content. We have demonstrated for the first time that convectively dried and stored C. ljungdahlii strains were stabilized in a desiccated state for over 38 days without a loss in CO absorbing reactivity. The Raman hyperspectral imaging technique described here is a non-invasive characterization tool to support development of dry-stabilization techniques for microorganisms on inexpensive porous support materials. In conclusion, the present study successfully extends and implements the principles of dry-stabilization for preservation of strictly anaerobic bacteria as an alternative to lyophilization or spray drying that could enable centralized biocomposite biocatalyst fabrication and decentralized bioprocessing of CO to liquid fuels or chemicals.« less
Hlaing, Mya M; Wood, Bayden R; McNaughton, Don; Ying, DanYang; Dumsday, Geoff; Augustin, Mary Ann
2017-03-01
Microencapsulation protects cells against environmental stress encountered during the production of probiotics, which are used as live microbial food ingredients. Freeze-drying and spray-drying are used in the preparation of powdered microencapsulated probiotics. This study examines the ability of Fourier transform infrared (FTIR) spectroscopy to detect differences in cells exposed to freeze-drying and spray-drying of encapsulated Lactobacillus rhamnosus GG cells. The FTIR analysis clearly demonstrated there were more significant molecular changes in lipid, fatty acid content, protein, and DNA conformation of nonencapsulated compared to encapsulated bacterial cells. The technique was also able to differentiate between spray-dried and freeze-dried cells. The results also revealed the extent of protection from a protein-carbohydrate-based encapsulant matrix on the cells depending on the type drying process. The extent of this protection to the dehydration stress was shown to be less in spray-dried cells than in freeze-dried cells. This suggests that FTIR could be used as a rapid, noninvasive, and real-time measurement technique to detect detrimental drying effects on cells.
Dong, Wenjiang; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Tan, Lehe
2017-11-01
This study investigated the effect of different drying techniques, namely, room-temperature drying (RTD), solar drying (SD), heat-pump drying (HPD), hot-air drying (HAD), and freeze drying (FD), on bioactive components, fatty acid composition, and the volatile compound profile of robusta coffee beans. The data showed that FD was an effective method to preserve fat, organic acids, and monounsaturated fatty acids. In contrast, HAD was ideal for retaining polyunsaturated fatty acids and amino acids. Sixty-two volatile compounds were identified in the differently dried coffee beans, representing 90% of the volatile compounds. HPD of the coffee beans produced the largest number of volatiles, whereas FD resulted in the highest volatile content. A principal component analysis demonstrated a close relationship between the HPD, SD, and RTD methods whereas the FD and HAD methods were significantly different. Overall, the results provide a basis for potential application to other similar thermal sensitive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advanced techniques to prepare seed to sow
Robert P. Karrfalt
2013-01-01
This paper reviews research on improving the basic technique of cold stratification for tree and shrub seeds. Advanced stratification techniques include long stratification, stratification re-dry, or multiple cycles of warm-cold stratification. Research demonstrates that careful regulation of moisture levels and lengthening the stratification period have produced a...
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1987-01-01
Describes two laboratory demonstrations in chemistry. One uses dry ice, freon, and freezer bags to demonstrate volume changes, vapor-liquid equilibrium, a simulation of a rain forest, and vaporization. The other uses the clock reaction technique to illustrate fast reactions and kinetic problems in releasing carbon dioxide during respiration. (TW)
Freeze-Dried Carbon Nanotube Aerogels for High-Frequency Absorber Applications.
Anoshkin, Ilya V; Campion, James; Lioubtchenko, Dmitri V; Oberhammer, Joachim
2018-06-13
A novel technique for millimeter wave absorber material embedded in a metal waveguide is proposed. The absorber material is a highly porous carbon nanotube (CNT) aerogel prepared by a freeze-drying technique. CNT aerogel structures are shown to be good absorbers with a low reflection coefficient, less than -12 dB at 95 GHz. The reflection coefficient of the novel absorber is 3-4 times lower than that of commercial absorbers with identical geometry. Samples prepared by freeze-drying at -25 °C demonstrate resonance behavior, while those prepared at liquid nitrogen temperature (-196 °C) exhibit a significant decrease in reflection coefficient, with no resonant behavior. CNT absorbers of identical volume based on wet-phase drying preparation show significantly worse performance than the CNT aerogel absorbers prepared by freeze-drying. Treatment of the freeze-dried CNT aerogel with n- and p-dopants (monoethanolamine and iodine vapors, respectively) shows remarkable improvement in the performance of the waveguide embedded absorbers, reducing the reflection coefficient by 2 dB across the band.
Sotiropoulos, A; Malamis, D; Michailidis, P; Krokida, M; Loizidou, M
2016-01-01
Domestic food waste drying foresees the significant reduction of household food waste mass through the hygienic removal of its moisture content at source. In this manuscript, a new approach for the development and optimization of an innovative household waste dryer for the effective dehydration of food waste at source is presented. Food waste samples were dehydrated with the use of the heated air-drying technique under different air-drying conditions, namely air temperature and air velocity, in order to investigate their drying kinetics. Different thin-layer drying models have been applied, in which the drying constant is a function of the process variables. The Midilli model demonstrated the best performance in fitting the experimental data in all tested samples, whereas it was found that food waste drying is greatly affected by temperature and to a smaller scale by air velocity. Due to the increased moisture content of food waste, an appropriate configuration of the drying process variables can lead to a total reduction of its mass by 87% w/w, thus achieving a sustainable residence time and energy consumption level. Thus, the development of a domestic waste dryer can be proved to be economically and environmentally viable in the future.
Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J; Marquet, Pierre
2009-01-01
Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.
Paul, Debjani; Saias, Laure; Pedinotti, Jean-Cedric; Chabert, Max; Magnifico, Sebastien; Pallandre, Antoine; De Lambert, Bertrand; Houdayer, Claude; Brugg, Bernard; Peyrin, Jean-Michel; Viovy, Jean-Louis
2011-01-01
A broad range of microfluidic applications, ranging from cell culture to protein crystallization, requires multilevel devices with different heights and feature sizes (from micrometers to millimeters). While state-of-the-art direct-writing techniques have been developed for creating complex three-dimensional shapes, replication molding from a multilevel template is still the preferred method for fast prototyping of microfluidic devices in the laboratory. Here, we report on a “dry and wet hybrid” technique to fabricate multilevel replication molds by combining SU-8 lithography with a dry film resist (Ordyl). We show that the two lithography protocols are chemically compatible with each other. Finally, we demonstrate the hybrid technique in two different microfluidic applications: (1) a neuron culture device with compartmentalization of different elements of a neuron and (2) a two-phase (gas-liquid) global micromixer for fast mixing of a small amount of a viscous liquid into a larger volume of a less viscous liquid. PMID:21559239
NASA Astrophysics Data System (ADS)
Hoffmann, Thomas; Dorrestein, Pieter C.
2015-11-01
Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique.
Use of macroinvertebrates to identify cultivated wetlands in the Prairie Pothole Region
Euliss, Ned H.; Mushet, David M.; Johnson, Douglas H.
2001-01-01
We evaluated the use of macroinvertebrates as a potential tool to identify dry and intensively farmed temporary and seasonal wetlands in the Prairie Pothole Region. The techniques we designed and evaluated used the dried remains of invertebrates or their egg banks in soils as indicators of wetlands. For both the dried remains of invertebrates and their egg banks, we weighted each taxon according to its affinity for wetlands or uplands. Our study clearly demonstrated that shells, exoskeletons, head capsules, eggs, and other remains of macroinvertebrates can be used to identify wetlands, even when they are dry, intensively farmed, and difficult to identify as wetlands using standard criteria (i.e., hydrology, hydrophytic vegetation, and hydric soils). Although both dried remains and egg banks identified wetlands, the combination was more useful, especially for identifying drained or filled wetlands. We also evaluated the use of coarse taxonomic groupings to stimulate use of the technique by nonspecialists and obtained satisfactory results in most situations.
Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin
2014-12-01
An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bordier, Betrand; Ornstein, Leonard; Wedeen, Richard P.
1970-01-01
Section freeze-dry radioautography has been used to examine the intrarenal distribution of a water-soluble organic acid (para-aminohippuric acid (PAH-3H)) under constant-infusion, steady-state conditions in mouse and rat kidney in vivo. The technique described here has the following advantages: (a) Sectioning and freeze-drying are accomplished in a closed cryostat at temperatures below -40°C; (b) Handling of the section is facilitated by mounting of the section-to-be on adhesive-coated Saran Wrap prior to cutting; (c) Unembedded freeze-dried sections are attached to photographic film at ambient temperature in the dark room; (d) Fixation follows completion of radioautographic exposure and precedes photographic development; (e) Permanent close contact is maintained between tissue and film. Morphologic preservation compared favorably with that obtained by optimal fixation techniques, which, however, permit diffusion. Cellular accumulation of PAH-3H during secretion was demonstrated in the proximal tubule under steady-state conditions in vivo. The cellular concentration of PAH-3H was uniform throughout the length of the proximal tubule in mouse and rat kidney. PMID:4349130
New approach for dry formulation techniques for rhizobacteria
NASA Astrophysics Data System (ADS)
Elchin, A. A.; Mashinistova, A. V.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Jorobekova, Sh. J.
2009-04-01
Two beneficial Pseudomonas isolates selected from rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski have been found to have biocontrol activity. An adequate biocontrol effect requires high yield and long stability of the bacterial preparation [1], which could be achieved by an effective and stable formulation. This study was aimed to test various approaches to dry formulation techniques for Pseudomonas- based preparations. To reach this goal, two drying formulation techniques have been tested: the first one, spray drying and the second, low-temperature contact-convective drying in fluidized bed. The optimal temperature parameters for each technique were estimated. Main merits of the selected approach to dry technique are high yield, moderate specific energy expenditures per 1 kg of evaporated moisture, minimal time of contact of the drying product with drying agent. The technological process for dry formulation included the following stages: the obtaining of cell liquids, the low-temperature concentrating and the subsequent drying of a concentrate. The preliminary technological stages consist in cultivation of the rhizobacteria cultures and concentrating the cell liquids. The following requirements for cultivation regime in laboratory conditions were proposed: optimal temperatures are 26-28°С in 3 days, concentration of viable cells in cell liquid makes 1010-1011 cell/g of absolutely dry substance (ADS). For concentrating the cell liquids the method of a vacuum evaporation, which preserves both rhizobacteria cells and the secondary metabolites of cell liquid, has been used. The process of concentrating was conducted at the minimum possible temperature, i.e. not above 30-33°С. In this case the concentration of viable cells has decreased up to 109-1010 cell/g of ADS. For spray drying the laboratory up-dated drier BUCHI 190, intended for the drying of thermolabile products, was used. The temperatures of an in- and outcoming air did not exceed 50°С and 38°С, respectively. To enrich of dry product yield, 20% of sodium humate [2] was used as filling agent. As a result, concentration of viable cells in yield makes 105-106 cell/g of ADS. Low-temperature contact-convective drying in fluidized bed with use of preliminarily dried heat-carrier was evaluated at 25-30°С. Granules of humic acids (d 3 mm) served as inert carrying agent. So, the concentration of viable cells in dry product makes 108-109 cell/g of ADS. The results presented demonstrated that fluidized bed drying technique applied on rhizobacteria-based BCA had higher beneficial effect in terms of high yield as compared to spray drying. Acknowledgement. This research was supported by the grant of ISTC KR-993.2. 1. Levenfors, J.R., et al. Biological control of snow mould (Microdochium nivale) in winter cereals by Pseudomonas brassicacearum MA250. Biocontrol 2007. 2. Orlov, D.S. (1990) Soil Humic Acids and General Theory of Humification, MSU Publisher, Moscow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocola, L. E.; Sampathkumar, V.; Kasthuri, N.
Here, we show that using infiltration of ZnO metal oxide can be useful for high resolution imaging of biological samples in electron and X-ray microscopy. This method is compatible with standard fixation techniques that leave the sample dry, such as finishing with super critical CO 2 drying, or simple vacuum drying at 95°C. We demonstrate this technique can be applied on tooth and brain tissue samples. We also show that high resolution X-ray tomography can be performed on biological systems using Zn K edge (1s) absorption to enhance internal structures, and obtained the first nanoscale 10 KeV X-ray absorption imagesmore » of the interior regions of a tooth.« less
Ocola, L. E.; Sampathkumar, V.; Kasthuri, N.; ...
2017-07-19
Here, we show that using infiltration of ZnO metal oxide can be useful for high resolution imaging of biological samples in electron and X-ray microscopy. This method is compatible with standard fixation techniques that leave the sample dry, such as finishing with super critical CO 2 drying, or simple vacuum drying at 95°C. We demonstrate this technique can be applied on tooth and brain tissue samples. We also show that high resolution X-ray tomography can be performed on biological systems using Zn K edge (1s) absorption to enhance internal structures, and obtained the first nanoscale 10 KeV X-ray absorption imagesmore » of the interior regions of a tooth.« less
Hoffmann, Thomas; Dorrestein, Pieter C
2015-11-01
Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique. Graphical Abstract ᅟ.
Ha, Eun-Sol; Baek, In-hwan; Cho, Wonkyung; Hwang, Sung-Joo; Kim, Min-Soo
2014-01-01
The aim of the present study was to investigate the effect of Soluplus® on the solubility of atorvastatin calcium and to develop a solid dispersion formulation that can improve the oral bioavailability of atorvastatin calcium. We demonstrated that Soluplus® increases the aqueous solubility of atorvastatin calcium. Several solid dispersion formulations of atorvastatin calcium with Soluplus® were prepared at various drug : carrier ratios by spray drying. Physicochemical analysis demonstrated that atorvastatin calcium is amorphous in each solid dispersion, and the 2 : 8 drug : carrier ratio provided the highest degree of sustained atorvastatin supersaturation. Pharmacokinetic analysis in rats revealed that the 2 : 8 dispersion significantly improved the oral bioavailability of atorvastatin. This study demonstrates that spray-dried Soluplus® solid dispersions can be an effective method for achieving higher atorvastatin plasma levels.
A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods.
Chen, Zhi-Gang; Guo, Xiao-Yu; Wu, Tao
2016-05-01
A novel drying technique using a combination of ultrasound and vacuum dehydration was developed to shorten the drying time and improve the quality of carrot slices. Carrot slices were dried with ultrasonic vacuum (USV) drying and vacuum drying at 65 °C and 75 °C. The drying rate was significantly influenced by the drying techniques and temperatures. Compared with vacuum drying, USV drying resulted in a 41-53% decrease in the drying time. The drying time for the USV and vacuum drying techniques at 75 °C was determined to be 140 and 340 min for carrot slices, respectively. The rehydration potential, nutritional value (retention of β-carotene and ascorbic acid), color, and textural properties of USV-dried carrot slices are predominately better compared to vacuum-dried carrot slices. Moreover, lower energy consumption was used in the USV technique. The drying data (time versus moisture ratio) were successfully fitted to Wang and Singh model. Copyright © 2015. Published by Elsevier B.V.
Sperm preservation by freeze-drying for the conservation of wild animals.
Kaneko, Takehito; Ito, Hideyuki; Sakamoto, Hidefusa; Onuma, Manabu; Inoue-Murayama, Miho
2014-01-01
Sperm preservation is a useful technique for the maintenance of biological resources in experimental and domestic animals, and in wild animals. A new preservation method has been developed that enables sperm to be stored for a long time in a refrigerator at 4 °C. Sperm are freeze-dried in a solution containing 10 mM Tris and 1 mM EDTA. Using this method, liquid nitrogen is not required for the storage and transportation of sperm. We demonstrate that chimpanzee, giraffe, jaguar, weasel and the long-haired rat sperm remain viable after freeze-drying. In all species, pronuclei were formed after the injection of freeze-dried sperm into the mouse oocytes. Although preliminary, these results may be useful for the future establishment of "freeze-drying zoo" to conserve wild animals.
Zheng, Xufeng; Fu, Nan; Huang, Song; Jeantet, Romain; Chen, Xiao Dong
2016-12-01
Protective carriers that encapsulate probiotics in spray drying could improve the survival ratio of dried cells through different mechanisms. Unveiling the protective mechanism of each carrier will contribute to a rational design of high performance carrier formulation. This study utilized single droplet drying (SDD) technique to investigate the effects of calcium cation in varied carrier formulation. Inactivation histories of Lactobacillus rhamnosus GG (LGG) in different carriers were compared, and cellular injury history of probiotics during droplet drying was studied for the first time. Adding 1mM CaCl 2 to lactose carrier protected cell viability, mitigated cellular injuries, and enhanced regrowth capability as drying progressed, demonstrating the positive effect of Ca 2+ with possible mechanism of stabilizing sub-cellular structures. At later drying stages, cell survival in Lac/Ca carrier was increased by 0.5-1.5 log on selective media compared to lactose carrier. Supplementing calcium-binding agents lowered the protective effect, shortening the initiation of rapid cell inactivation down to 120s of drying. Adding CaCl 2 to trehalose carrier barely improved cell survival, indicating that the protective effect could be influenced by carrier formulation. Pure trehalose carrier exerted excellent protection on LGG, supporting cells to regrow in liquid rich medium even after 180s of drying. The protection of trehalose may stem from stabilization of sub-cellular structures, which possibly overlap the effect of Ca 2+ . The findings suggested that high performance carrier formulation might be developed by combining carrier materials with different protective mechanisms, for maximizing the survival of active dry probiotics in industrial spray drying operation. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kachenko, Anthony G.; Siegele, Rainer; Bhatia, Naveen P.; Singh, Balwant; Ionescu, Mihail
2008-04-01
Hybanthus floribundus subsp. floribundus, a rare Australian Ni-hyperaccumulating shrub and Pityrogramma calomelanos var. austroamericana, an Australian naturalized As-hyperaccumulating fern are promising species for use in phytoremediation of contaminated sites. Micro-proton-induced X-ray emission (μ-PIXE) spectroscopy was used to map the elemental distribution of the accumulated metal(loid)s, Ca and K in leaf or pinnule tissues of the two plant species. Samples were prepared by two contrasting specimen preparation techniques: freeze-substitution in tetrahydrofuran (THF) and freeze-drying. The specimens were analysed to compare the suitability of each technique in preserving (i) the spatial elemental distribution and (ii) the tissue structure of the specimens. Further, the μ-PIXE results were compared with concentration of elements in the bulk tissue obtained by ICP-AES analysis. In H. floribundus subsp. floribundus, μ-PIXE analysis revealed Ni, Ca and K concentrations in freeze-dried leaf tissues were at par with bulk tissue concentrations. Elemental distribution maps illustrated that Ni was preferentially localised in the adaxial epidermal tissues (1% DW) and least concentration was found in spongy mesophyll tissues (0.53% DW). Conversely, elemental distribution maps of THF freeze-substituted tissues indicated significantly lower Ni, Ca and K concentrations than freeze-dried specimens and bulk tissue concentrations. Moreover, Ni concentrations were uniform across the whole specimen and no localisation was observed. In P. calomelanos var. austroamericana freeze-dried pinnule tissues, μ-PIXE revealed statistically similar As, Ca and K concentrations as compared to bulk tissue concentrations. Elemental distribution maps showed that As localisation was relatively uniform across the whole specimen. Once again, THF freeze-substituted tissues revealed a significant loss of As compared to freeze-dried specimens and the concentrations obtained by bulk tissue analysis. The results demonstrate that freeze-drying is a suitable sample preparation technique to study elemental distribution of ions in H. floribundus and P. calomelanos plant tissues using μ-PIXE spectroscopy. Furthermore, cellular structure was preserved in samples prepared using this technique.
Scalable Dry Printing Manufacturing to Enable Long-Life and High Energy Lithium-Ion Batteries
Liu, Jin; Ludwig, Brandon; Liu, Yangtao; ...
2017-08-22
Slurry casting method dominates the electrode manufacture of lithium-ion batteries. The entire procedure is similar to the newspaper printing that includes premixing of cast materials into solvents homogeneously, and continuously transferring and drying the slurry mixture onto the current collector. As a market approaching US $80 billion by 2024, the optimization of manufacture process is crucial and attractive. However, the organic solvent remains irreplaceable in the wet method for making slurries, even though it is capital-intensive and toxic. In this paper, an advanced powder printing technique is demonstrated that is completely solvent-free and dry. Through removing the solvent and relatedmore » procedures, this method is anticipated to statistically save 20% of the cost at a remarkably shortened production cycle (from hours to minutes). The dry printed electrodes outperform commercial slurry cast ones in 650 cycles (80% capacity retention in 500 cycles), and thick electrodes are successfully fabricated to increase the energy density. Furthermore, microscopy techniques are utilized to characterize the difference of electrode microstructure between dry and wet methods, and distinguish dry printing's advantages on controlling the microstructure. Finally, this study proves a practical fabrication method for lithium-ion electrodes with lowered cost and favorable performance, and allows more advanced electrode designs potentially.« less
Scalable Dry Printing Manufacturing to Enable Long-Life and High Energy Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jin; Ludwig, Brandon; Liu, Yangtao
Slurry casting method dominates the electrode manufacture of lithium-ion batteries. The entire procedure is similar to the newspaper printing that includes premixing of cast materials into solvents homogeneously, and continuously transferring and drying the slurry mixture onto the current collector. As a market approaching US $80 billion by 2024, the optimization of manufacture process is crucial and attractive. However, the organic solvent remains irreplaceable in the wet method for making slurries, even though it is capital-intensive and toxic. In this paper, an advanced powder printing technique is demonstrated that is completely solvent-free and dry. Through removing the solvent and relatedmore » procedures, this method is anticipated to statistically save 20% of the cost at a remarkably shortened production cycle (from hours to minutes). The dry printed electrodes outperform commercial slurry cast ones in 650 cycles (80% capacity retention in 500 cycles), and thick electrodes are successfully fabricated to increase the energy density. Furthermore, microscopy techniques are utilized to characterize the difference of electrode microstructure between dry and wet methods, and distinguish dry printing's advantages on controlling the microstructure. Finally, this study proves a practical fabrication method for lithium-ion electrodes with lowered cost and favorable performance, and allows more advanced electrode designs potentially.« less
Sperm Preservation by Freeze-Drying for the Conservation of Wild Animals
Kaneko, Takehito; Ito, Hideyuki; Sakamoto, Hidefusa; Onuma, Manabu; Inoue-Murayama, Miho
2014-01-01
Sperm preservation is a useful technique for the maintenance of biological resources in experimental and domestic animals, and in wild animals. A new preservation method has been developed that enables sperm to be stored for a long time in a refrigerator at 4°C. Sperm are freeze-dried in a solution containing 10 mM Tris and 1 mM EDTA. Using this method, liquid nitrogen is not required for the storage and transportation of sperm. We demonstrate that chimpanzee, giraffe, jaguar, weasel and the long-haired rat sperm remain viable after freeze-drying. In all species, pronuclei were formed after the injection of freeze-dried sperm into the mouse oocytes. Although preliminary, these results may be useful for the future establishment of “freeze-drying zoo” to conserve wild animals. PMID:25409172
Mandal, Jyotirmoy; Wang, Derek; Overvig, Adam C; Shi, Norman N; Paley, Daniel; Zangiabadi, Amirali; Cheng, Qian; Barmak, Katayun; Yu, Nanfang; Yang, Yuan
2017-11-01
A galvanic-displacement-reaction-based, room-temperature "dip-and-dry" technique is demonstrated for fabricating selectively solar-absorbing plasmonic-nanoparticle-coated foils (PNFs). The technique, which allows for facile tuning of the PNFs' spectral reflectance to suit different radiative and thermal environments, yields PNFs which exhibit excellent, wide-angle solar absorptance (0.96 at 15°, to 0.97 at 35°, to 0.79 at 80°), and low hemispherical thermal emittance (0.10) without the aid of antireflection coatings. The thermal emittance is on par with those of notable selective solar absorbers (SSAs) in the literature, while the wide-angle solar absorptance surpasses those of previously reported SSAs with comparable optical selectivities. In addition, the PNFs show promising mechanical and thermal stabilities at temperatures of up to 200 °C. Along with the performance of the PNFs, the simplicity, inexpensiveness, and environmental friendliness of the "dip-and-dry" technique makes it an appealing alternative to current methods for fabricating selective solar absorbers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gilbert, S; Gasperi, J; Rocher, V; Lorgeoux, C; Chebbo, G
2012-01-01
This paper investigates the occurrence of alkylphenols (APs) and polybromodiphenylethers (PBDEs) in raw wastewater during dry and wet-weather periods, and their removal by physico-chemical lamellar settling and biofiltration techniques. Due to in-sewer deposit erosion and, to a lesser extent, to external inputs, raw effluents exhibit from 1.5 to 5 times higher AP and PBDE concentrations during wet periods compared with dry ones. The lamellar settler obtains high removal of APs and PBDEs under both dry and wet-weather flows (>53% for Σ(6)AP and >89% for Σ(4)PBDE), confirming the insensitivity of this technique to varying influent conditions. Indeed, despite the higher pollutant concentrations observed in raw effluents under wet-weather flows, adjusting the addition of coagulant-flocculent allows for efficient removal. By combining physical and biological processes, the biofiltration unit treats nutrient pollution, as well as Σ(6)AP and Σ(4)PBDE contamination (58 ± 5% and 75 ± 6% respectively). Although the operating conditions of the biofiltration unit are modified during wet periods, the performance in nutrient pollution, APs and light PBDE congeners remains high. Nevertheless, lower efficiency has been noted in nitrogen pollution, i.e. no denitrification occurs, and BDE-209 (not removed during wet-weather periods). In conclusion, this study demonstrates that the combination of both techniques treats AP and PBDE pollution efficiently during dry periods, but that they are also suitable for stormwater treatment.
Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying.
Patel, Sajal M; Bhugra, Chandan; Pikal, Michael J
2009-01-01
A method to achieve controlled ice nucleation during the freeze-drying process using an ice fog technique was demonstrated in an earlier report. However, the time required for nucleation was about 5 min, even though only one shelf was used, which resulted in Ostwald ripening (annealing) in some of the vials that nucleated earlier than the others. As a result, the ice structure was not optimally uniform in all the vials. The objective of the present study is to introduce a simple variation of the ice fog method whereby a reduced pressure in the chamber is utilized to allow more rapid and uniform freezing which is also potentially easier to scale up. Experiments were conducted on a lab scale freeze dryer with sucrose as model compound at different concentration, product load, and fill volume. Product resistance during primary drying was measured using manometric temperature measurement. Specific surface area of the freeze-dried cake was also determined. No difference was observed either in average product resistance or specific surface area for the different experimental conditions studied, indicating that with use of the reduced pressure ice fog technique, the solutions nucleated at very nearly the same temperature (-10 degrees C). The striking feature of the "Reduced Pressure Ice Fog Technique" is the rapid ice nucleation (less than a minute) under conditions where the earlier procedure required about 5 min; hence, effects of variable Ostwald ripening were not an issue.
Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan
2009-02-25
The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying.
Ma, Nyuk Ling; Teh, Kit Yinn; Lam, Su Shiung; Kaben, Anne Marie; Cha, Thye San
2015-08-01
This study demonstrates the use of NMR techniques coupled with chemometric analysis as a high throughput data mining method to identify and examine the efficiency of different disruption techniques tested on microalgae (Chlorella variabilis, Scenedesmus regularis and Ankistrodesmus gracilis). The yield and chemical diversity from the disruptions together with the effects of pre-oven and pre-freeze drying prior to disruption techniques were discussed. HCl extraction showed the highest recovery of oil compounds from the disrupted microalgae (up to 90%). In contrast, NMR analysis showed the highest intensity of bioactive metabolites obtained for homogenized extracts pre-treated with freeze-drying, indicating that homogenizing is a more favorable approach to recover bioactive substances from the disrupted microalgae. The results show the potential of NMR as a useful metabolic fingerprinting tool for assessing compound diversity in complex microalgae extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Demonstration of no-VOC/no-HAP wood furniture coating system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, E.W.; Guan, R.; McCrillis, R.C.
1997-12-31
The United States Environmental Protection Agency has contracted with AeroVironment Environmental Services, Inc. and its subcontractor, Adhesive Coating Co., to develop and demonstrate a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system. The objectives of this project are to develop a new wood coating system that is sufficiently mature for demonstration and to develop a technology transfer plan to get the product into public use. The performance characteristics of this new coating system are excellent in terms of adhesion, drying times, gloss, hardness, mar resistance, level of solvents, and stain resistance. Workshops will be held to providemore » detailed information to wood furniture manufacturers on what is required to change to the new coating system. Topics such as spray gun selection, spray techniques, coating repair procedures, drying times and procedures, and spray equipment cleaning materials and techniques will be presented. A cost analysis, including costs of materials, capital outlay, and labor will be conducted comparing costs to finish furniture with the new system to systems currently used. Film performance, coating materials cost per unit production, productivity, manufacturing changes, and emission levels will be compared in the workshops, based on data gathered during the in-plant, full scale demonstrations.« less
A new approach in dry technology for non-degrading optical and EUV mask cleaning
NASA Astrophysics Data System (ADS)
Varghese, Ivin; Smith, Ben; Balooch, Mehdi; Bowers, Chuck
2012-11-01
The Eco-Snow Systems group of RAVE N.P., Inc. has developed a new cleaning technique to target several of the advanced and next generation mask clean challenges. This new technique, especially when combined with Eco-Snow Systems cryogenic CO2 cleaning technology, provides several advantages over existing methods because it: 1) is solely based on dry technique without requiring additional complementary aggressive wet chemistries that degrade the mask, 2) operates at atmospheric pressure and therefore avoids expensive and complicated equipment associated with vacuum systems, 3) generates ultra-clean reactants eliminating possible byproduct adders, 4) can be applied locally for site specific cleaning without exposing the rest of the mask or can be used to clean the entire mask, 5) removes organic as well as inorganic particulates and film contaminations, and 6) complements current techniques utilized for cleaning of advanced masks such as reduced chemistry wet cleans. In this paper, we shall present examples demonstrating the capability of this new technique for removal of pellicle glue residues and for critical removal of carbon contamination on EUV masks.
Minor Salivary Gland Transplantation for Severe Dry Eyes.
Wakamatsu, Tais Hitomi; SantʼAnna, Ana Estela Besteti Pires Ponce; Cristovam, Priscila Cardoso; Alves, Venâncio Avancini Ferreira; Wakamatsu, Alda; Gomes, José Alvaro Pereira
2017-11-01
Dry eye is a multifactorial disease comprising a wide spectrum of ocular surface alterations and symptoms of discomfort. In most patients with aqueous-deficient dry eye, pharmaceutical tear substitutes are used to control symptoms and prevent ocular surface damage. However, in severe dry eye conditions caused by cicatricial disorders, such as Stevens-Johnson syndrome and ocular cicatricial mucous membrane pemphigoid, noninvasive treatments are insufficient, and patients are at risk of developing complications that can lead to blindness. The use of salivary glands as a source of lubrication to treat severe cases of dry eye has been proposed by different authors. The first reports proposed parotid or submandibular gland duct transplantation into the conjunctival fornix. However, complications limited the functional outcomes. Minor salivary gland autotransplantation together with labial mucosa has been used as a complex graft to the conjunctival fornix in severe dry eye with a good outcome. Our group demonstrated significant improvements in best-corrected visual acuity, Schirmer I test score, corneal transparency, and neovascularization after using this technique. A symptoms questionnaire applied to these patients revealed improvements in foreign body sensation, photophobia, and pain. Similar to tears, saliva has a complex final composition comprising electrolytes, immunoglobulins, proteins, enzymes, and mucins. We demonstrated the viability of minor salivary glands transplanted into the fornix of patients with dry eye by performing immunohistochemistry on graft biopsies with antibodies against lactoferrin, lysozyme, MUC1, and MUC16. The findings revealed the presence of functional salivary gland units, indicating local production of proteins, enzymes, and mucins.
Molten Salt Techniques for Students: Attacking Hematite with Pyrosulfate.
ERIC Educational Resources Information Center
Atkinson, George F.
1986-01-01
Discusses materials needed, procedures used, and typical results obtained for an experiment involving a dry attack of ores with pyrosulfate flux. The experiment has been carried out by about 150 students a year with a demonstrator-to-student ratio of about 1:15 with no serious accidents. (JN)
The reports describe an exploratory development program to identify, evaluate, and demonstrate dry techniques for significantly reducing NOx from thermal and fuel-bound sources in stationary gas turbine engines. Volume 1 covers Phase I of the four-phase effort. In Phase I, duty c...
Incipient flocculation molding: A new ceramic-forming technique
NASA Astrophysics Data System (ADS)
Arrasmith, Steven Reade
Incipient Flocculation Molding (IFM) was conceived as a new near-net-shape forming technique for ceramic components. It was hypothesized that the development of a temperature-dependent deflocculant would result in a forming technique that is flexible, efficient, and capable of producing a superior microstructure with improved mechanical properties from highly reactive, submicron ceramic powders. IFM utilizes a concentrated, nonaqueous, sterically stabilized ceramic powder and/or colloidal suspension which is injected into a non-porous mold. The suspension is then flocculated by destabilizing the suspension by lowering the temperature. Flocculation is both rapid and reversible. Cooling to -20°C produces a green body with sufficient strength for removal from the mold. The solvent is removed from the green body by evaporation. The dried green body is subsequently sintered to form a dense ceramic monolith. This is the first ceramic forming method based upon the manipulation of a sterically-stabilized suspension. To demonstrate IFM, the process of grafting polyethylene glycol (PEG), with molecular weights from 600 to 8000, to alumina powders was investigated. The maximum grafted amounts were achieved by the technique of dispersing the alumina powders in molten polymer at 195°C. The ungrafted PEG was then removed by repeated centrifuging and redispersion in fresh distilled water. The rheological behavior of suspensions of the PEG-grafted powders in water, 2-propanol and 2-butanol were characterized. All of the aqueous suspensions were shear thinning. The PEG 4600-grafted alumina powder aqueous suspensions were the most fluid. Sample rods and bars were molded from 52 vol% PEG-grafted alumina suspensions in 2-butanol. The best results were obtained with a preheated aluminum mold lubricated with a fluorinated oil mold-release. The samples were dried, sintered, and their microstructure and density were compared with sintered samples dry pressed from the same alumina powder. Densities and microstructures were quite similar to those obtained by dry pressing and sintering these powders. Dried green samples with densities of ca. 57% of theoretical sintered to >96% of theoretical density. This research has demonstrated IFM as a viable ceramic forming process which has potential to be developed into an industrial process. Further research is needed to determine preferred molding parameters, other possible polymer-solvent systems, and investigate the use of other ceramic powders. The concepts developed for IFM may have potential applications in other ceramic forming processes, such as extrusion and rapid prototyping.
Figiel, Adam; Michalska, Anna
2016-12-30
The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.
Figiel, Adam; Michalska, Anna
2016-01-01
The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying. PMID:28042845
Localized analysis of paint-coat drying using dynamic speckle interferometry
NASA Astrophysics Data System (ADS)
Sierra-Sosa, Daniel; Tebaldi, Myrian; Grumel, Eduardo; Rabal, Hector; Elmaghraby, Adel
2018-07-01
The paint-coating is part of several industrial processes, including the automotive industry, architectural coatings, machinery and appliances. These paint-coatings must comply with high quality standards, for this reason evaluation techniques from paint-coatings are in constant development. One important factor from the paint-coating process is the drying, as it has influence on the quality of final results. In this work we present an assessment technique based on the optical dynamic speckle interferometry, this technique allows for the temporal activity evaluation of the paint-coating drying process, providing localized information from drying. This localized information is relevant in order to address the drying homogeneity, optimal drying, and quality control. The technique relies in the definition of a new temporal history of the speckle patterns to obtain the local activity; this information is then clustered to provide a convenient indicative of different drying process stages. The experimental results presented were validated using the gravimetric drying curves
Magnetic resonance imaging (MRI) and relaxation time mapping of concrete
NASA Astrophysics Data System (ADS)
Beyea, Steven Donald
2001-07-01
The use of Magnetic Resonance Imaging (MRI) of water in concrete is presented. This thesis will approach the problem of MR imaging of concrete by attempting to design new methods, suited to concrete materials, rather than attempting to force the material to suit the method. A number of techniques were developed, which allow the spatial observation of water in concrete in up to three dimensions, and permits the determination of space resolved moisture content, as well as local NMR relaxation times. These methods are all based on the Single-Point Imaging (SPI) method. The development of these new methods will be described, and the techniques validated using phantom studies. The study of one-dimensional moisture transport in drying concrete was performed using SPI. This work examined the effect of initial mixture proportions and hydration time on the drying behaviour of concrete, over a period of three months. Studies of drying concrete were also performed using spatial mapping of the spin-lattice (T1) and effective spin-spin (T2*) relaxation times, thereby permitting the observation of changes in the water occupied pore surface-to-volume ratio (S/V) as a function of drying. Results of this work demonstrated changes in the S/V due to drying, hydration and drying induced microcracking. Three-dimensional MRI of concrete was performed using SPRITE (Single-Point Ramped Imaging with T1 Enhancement) and turboSPI (turbo Single Point Imaging). While SPRITE allows for weighting of MR images using T 1 and T2*, turboSPI allows T2 weighting of the resulting images. Using relaxation weighting it was shown to be possible to discriminate between water contained within a hydrated cement matrix, and water in highly porous aggregates, used to produce low-density concrete. Three dimensional experiments performed using SPRITE and turboSPI examined the role of self-dessication, drying, initial aggregate saturation and initial mixture conditions on the transport of moisture between porous aggregates and the hydrated matrix. The results demonstrate that water is both added and removed from the aggregates, depending upon the physical conditions. The images also appear to show an influx of cement products into cracks in the solid aggregate. (Abstract shortened by UMI.)
Optimization of a method for preparing solid complexes of essential clove oil with β-cyclodextrins.
Hernández-Sánchez, Pilar; López-Miranda, Santiago; Guardiola, Lucía; Serrano-Martínez, Ana; Gabaldón, José Antonio; Nuñez-Delicado, Estrella
2017-01-01
Clove oil (CO) is an aromatic oily liquid used in the food, cosmetics and pharmaceutical industries for its functional properties. However, its disadvantages of pungent taste, volatility, light sensitivity and poor water solubility can be solved by applying microencapsulation or complexation techniques. Essential CO was successfully solubilized in aqueous solution by forming inclusion complexes with β-cyclodextrins (β-CDs). Moreover, phase solubility studies demonstrated that essential CO also forms insoluble complexes with β-CDs. Based on these results, essential CO-β-CD solid complexes were prepared by the novel approach of microwave irradiation (MWI), followed by three different drying methods: vacuum oven drying (VO), freeze-drying (FD) or spray-drying (SD). FD was the best option for drying the CO-β-CD solid complexes, followed by VO and SD. MWI can be used efficiently to prepare essential CO-β-CD complexes with good yield on an industrial scale. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Dry Preservation of Spermatozoa: Considerations for Different Species.
Patrick, Jennifer; Comizzoli, Pierre; Elliott, Gloria
2017-04-01
The current gold standard for sperm preservation is storage at cryogenic temperatures. Dry preservation is an attractive alternative, eliminating the need for ultralow temperatures, reducing storage maintenance costs, and providing logistical flexibility for shipping. Many seeds and anhydrobiotic organisms are able to survive extended periods in a dry state through the accumulation of intracellular sugars and other osmolytes and are capable of returning to normal physiology postrehydration. Using techniques inspired by nature's adaptations, attempts have been made to dehydrate and dry preserve spermatozoa from a variety of species. Most of the anhydrous preservation research performed to date has focused on mouse spermatozoa, with only a small number of studies in nonrodent mammalian species. There is a significant difference between sperm function in rodent and nonrodent mammalian species with respect to centrosomal inheritance. Studies focused on reproductive technologies have demonstrated that in nonrodent species, the centrosome must be preserved to maintain sperm function as the spermatozoon centrosome contributes the dominant nucleating seed, consisting of the proximal centriole surrounded by pericentriolar components, onto which the oocyte's centrosomal material is assembled. Preservation techniques used for mouse sperm may therefore not necessarily be applicable to nonrodent spermatozoa. The range of technologies used to dehydrate sperm and the effect of processing and storage conditions on fertilization and embryogenesis using dried sperm are reviewed in the context of reproductive physiology and cellular morphology in different species.
Dry Preservation of Spermatozoa: Considerations for Different Species
Patrick, Jennifer; Comizzoli, Pierre
2017-01-01
The current gold standard for sperm preservation is storage at cryogenic temperatures. Dry preservation is an attractive alternative, eliminating the need for ultralow temperatures, reducing storage maintenance costs, and providing logistical flexibility for shipping. Many seeds and anhydrobiotic organisms are able to survive extended periods in a dry state through the accumulation of intracellular sugars and other osmolytes and are capable of returning to normal physiology postrehydration. Using techniques inspired by nature's adaptations, attempts have been made to dehydrate and dry preserve spermatozoa from a variety of species. Most of the anhydrous preservation research performed to date has focused on mouse spermatozoa, with only a small number of studies in nonrodent mammalian species. There is a significant difference between sperm function in rodent and nonrodent mammalian species with respect to centrosomal inheritance. Studies focused on reproductive technologies have demonstrated that in nonrodent species, the centrosome must be preserved to maintain sperm function as the spermatozoon centrosome contributes the dominant nucleating seed, consisting of the proximal centriole surrounded by pericentriolar components, onto which the oocyte's centrosomal material is assembled. Preservation techniques used for mouse sperm may therefore not necessarily be applicable to nonrodent spermatozoa. The range of technologies used to dehydrate sperm and the effect of processing and storage conditions on fertilization and embryogenesis using dried sperm are reviewed in the context of reproductive physiology and cellular morphology in different species. PMID:28398834
Tracking liquid in drying colloidal fluids with polarized light microscopy
NASA Astrophysics Data System (ADS)
Cho, Kun; Park, Jung Soo; Kim, Joon Heon; Weon, Byung Mook
2014-11-01
When colloidal fluids dry, tracking liquid surfaces around colloids is difficult with conventional imaging techniques. Here we show that polarized light microscopy (PM) is very useful in tracking liquid surfaces during drying processes of colloidal fluids. In particular, the PM mode is not a new or difficult way but is able to visualize liquid films above colloids in real time. We demonstrate that when liquid films above colloidal particles are broken, the PM patterns appear clearly: this feature is useful to identify the moment of liquid film rupture above colloids in drying colloidal fluids. This result is helpful to improve relevant processes such as inkjet printing, painting, and nanoparticle patterning (K.C. and J.S.P. equally contributed). This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.
A coherent detection technique via optically biased field for broadband terahertz radiation.
Du, Hai-Wei; Dong, Jia-Meng; Liu, Yi; Shi, Chang-Cheng; Wu, Jing-Wei; Peng, Xiao-Yu
2017-09-01
We demonstrate theoretically and experimentally a coherent terahertz detection technique based on an optically biased field functioning as a local oscillator and a second harmonic induced by the terahertz electric field in the air sensor working in free space. After optimizing the polarization angle and the energy of the probe pulse, and filling the system with dry nitrogen, the terahertz radiation generated from a two-color-femtosecond-laser-pulses induced plasma filament is measured by this technique with a bandwidth of 0.1-10 THz and a signal-to-noise ratio of 48 dB. Our technique provides an alternative simple method for coherent broadband terahertz detection.
The impact of atomization on the surface composition of spray-dried milk droplets.
Foerster, Martin; Gengenbach, Thomas; Woo, Meng Wai; Selomulya, Cordelia
2016-04-01
The dominant presence of fat at the surface of spray-dried milk powders has been widely reported in the literature and described as resulting in unfavourable powder properties. The mechanism(s) causing this phenomenon are yet to be clearly identified. A systematic investigation of the component distribution in atomized droplets and spray-dried particles consisting of model milk systems with different fat contents demonstrated that atomization strongly influences the final surface composition. Cryogenic flash-freezing of uniform droplets from a microfluidic jet nozzle directly after atomization helped to distinguish the influence of the atomization stage from the drying stage. It was confirmed that the overrepresentation of fat on the surface is independent of the atomization technique, including a pressure-swirl single-fluid spray nozzle and a pilot-scale rotary disk spray dryer commonly used in industry. It is proposed that during the atomization stage a disintegration mechanism along the oil-water interface of the fat globules causes the surface predominance of fat. X-ray photoelectron spectroscopic measurements detected the outermost fat layer and some adjacent protein present on both atomized droplets and spray-dried particles. Confocal laser scanning microscopy gave a qualitative insight into the protein and fat distribution throughout the cross-sections, and confirmed the presence of a fat film along the particle surface. The film remained on the surface in the subsequent drying stage, while protein accumulated underneath, driven by diffusion. The results demonstrated that atomization induces component segregation and fat-rich surfaces in spray-dried milk powders, and thus these cannot be prevented by adjusting the spray drying conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Fast, reagentless and reliable screening of "white powders" during the bioterrorism hoaxes.
Włodarski, Maksymilian; Kaliszewski, Miron; Trafny, Elżbieta Anna; Szpakowska, Małgorzata; Lewandowski, Rafał; Bombalska, Aneta; Kwaśny, Mirosław; Kopczyński, Krzysztof; Mularczyk-Oliwa, Monika
2015-03-01
The classification of dry powder samples is an important step in managing the consequences of terrorist incidents. Fluorescence decays of these samples (vegetative bacteria, bacterial endospores, fungi, albumins and several flours) were measured with stroboscopic technique using an EasyLife LS system PTI. Three pulsed nanosecond LED sources, generating 280, 340 and 460nm were employed for samples excitation. The usefulness of a new 460nm light source for fluorescence measurements of dry microbial cells has been demonstrated. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) have been used for classification of dry biological samples. It showed that the single excitation wavelength was not sufficient for differentiation of biological samples of diverse origin. However, merging fluorescence decays from two or three excitation wavelengths allowed classification of these samples. An experimental setup allowing the practical implementation of this method for the real time fluorescence decay measurement was designed. It consisted of the LED emitting nanosecond pulses at 280nm and two fast photomultiplier tubes (PMTs) for signal detection in two fluorescence bands simultaneously. The positive results of the dry powder samples measurements confirmed that the fluorescence decay-based technique could be a useful tool for fast classification of the suspected "white powders" performed by the first responders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
FORMULATION AND EVALUATION OF MICROSPHERES CONTAINING LOSARTAN POTASSIUM BY SPRAY-DRYING TECHNIQUE.
Balwierz, Radoslaw; Jankowski, Andrzej; Jasinska, Agata; Marciniak, Dominik; Pluta, Janusz
2016-09-01
Despite numerous applications of microspheres, few works devoted to the preparation of microspheres containing cardiac medications have been published. This study presents the potential of receiving microspheres containing losartan potassium, based on a matrix containing Eudragit L30D55. The study focuses on the possibilities of controlled release of losartan potassium from microspheres in order to reduce the dosage frequency, and also provides information on the effect of the addition of excipients to the quality of the microspheres. Microspheres are monolithic, porous or smooth microparticles ranging from 1 to 500 microns in size. For the preparation of microspheres containing losartan potassium, the spray-drying method was used. The performed study confirmed that the spray-drying technology used to obtain microspheres meets the criteria of size and morphology of the microparticles. The assessment of the kinetics of losartan potassium release from the examined microspheres demonstrated that the release profile followed the first- and/or zero-order kinetics. The use of spray-drying techniques as well as Eudragit L30D55 polymer matrix to obtain the microspheres containing losartan potassium makes it possible to obtain a product with the required particle morphology and particle size ensuring the release of the active substance up to 12 h.
Leung, Sharon S.Y.; Parumasivam, Thaigarajan; Gao, Fiona G.; Carrigy, Nicholas B.; Vehring, Reinhard; Finlay, Warren H.; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim
2016-01-01
Purpose The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. Method A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. Results A significant titer loss (~ 2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 104 pfu and SD-F2 = 11.0 ± 1.4 × 104 pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 104 pfu and SFD-F2 = 2.1 ± 0.3 × 104 pfu). Conclusion Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2. PMID:26928668
Design of Solar Heat Sheet for Air Heaters
NASA Astrophysics Data System (ADS)
Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.
2011-12-01
The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.
Recent advances in drying and dehydration of fruits and vegetables: a review.
Sagar, V R; Suresh Kumar, P
2010-01-01
Fruits and vegetables are dried to enhance storage stability, minimize packaging requirement and reduce transport weight. Preservation of fruits and vegetables through drying based on sun and solar drying techniques which cause poor quality and product contamination. Energy consumption and quality of dried products are critical parameters in the selection of drying process. An optimum drying system for the preparation of quality dehydrated products is cost effective as it shortens the drying time and cause minimum damage to the product. To reduce the energy utilization and operational cost new dimensions came up in drying techniques. Among the technologies osmotic dehydration, vacuum drying, freeze drying, superheated steam drying, heat pump drying and spray drying have great scope for the production of quality dried products and powders.
[Transplantation of labial salivary glands for severe dry eye treatment].
Soares, Eduardo Jorge Carneiro; França, Valênio Perez
2005-01-01
To study the clinical effects of the secretion of transplanted labial glands used as ocular lubricant to treat severe dry-eye cases, to evaluate the duration of the results and to simplify the surgical technique. Thirty-seven surgeries were performed in twenty-one patients during the period of July 2000 to January 2004. The graft, consisting of labial mucosa and underlying salivary glands, was transplanted to the previously prepared area in the conjunctival fornix. All procedures were recommended in severe dry-eye cases, that is, eyes with total or nearly total xerophthalmia. The preoperative and postoperative protocols are presented emphasizing the items which were used in the comparative analysis of the results as well as the technical description of the surgical procedure. The graft survival and integration into the host tissues were observed in 97.2% of the cases. The clinical improvement, demonstrated by the disappearance of the symptoms, better biomicroscopic aspect of the ocular surface, better vision and disuse of lubricant drops, was observed in 91.9% of the cases. The follow-up showed not only persistence but also stability of the results. Infection represented one case and ptosis represented three cases of the only four observed complications. The improvement of severe dry-eye cases detected after the transplantation of labial salivary glands is significant. It demonstrates that the lubricant ocular surface produced by the salivary secretion is efficient and well-tolerated. The follow-up shows that the result persists in the long term from which it is concluded that the production of the secretion is permanent. The surgical technique of transplanting the labial salivary gland to the conjunctival fornix is very simple and easily accessible to any ophthalmic surgeon.
USDA-ARS?s Scientific Manuscript database
Foot-and-mouth disease (FMD) is a highly contagious livestock disease of high economic impact. Early detection of FMD virus (FMDV) is fundamental for rapid outbreak control. Air sampling collection has been demonstrated as a useful technique for detection of FMDV RNA in infected animals, related to ...
Si, Xu; Chen, Qinqin; Bi, Jinfeng; Wu, Xinye; Yi, Jianyong; Zhou, Linyan; Li, Zhaolu
2016-04-01
Dehydration has been considered as one of the traditional but most effective techniques for perishable fruits. Raspberry powders obtained after dehydration can be added as ingredients into food formulations such as bakery and dairy products. In this study, raspberry powders obtained by hot air drying (HAD), infrared radiation drying (IRD), hot air and explosion puffing drying (HA-EPD), infrared radiation and microwave vacuum drying (IR-MVD) and freeze drying (FD) were compared on physical properties, bioactive compounds and antioxidant activity. Drying techniques affected the physical properties, bioactive compounds and antioxidant activity of raspberry powders greatly. FD led to significantly higher (P < 0.05) values of water solubility (45.26%), soluble solid (63.46%), hygroscopicity (18.06%), color parameters and anthocyanin retention (60.70%) of raspberry powder compared with other drying methods. However, thermal drying techniques, especially combined drying methods, were superior to FD in final total polyphenol content, total flavonoid content and antioxidant activity. The combined drying methods, especially IR-MVD, showed the highest total polyphenol content (123.22 g GAE kg(-1) dw) and total flavonoid content (0.30 g CAE kg(-1) dw). Additionally, IR-MVD performed better in antioxidant activity retention. Overall, combined drying methods, especially IR-MVD, were found to result in better quality of raspberry powders among the thermal drying techniques. IR-MVD could be recommended for use in the drying industry because of its advantages in time saving and nutrient retention. © 2015 Society of Chemical Industry.
Cook, Isobel A; Ward, Kevin R
2011-01-01
Regulatory authorities require proof that lyophilization (freeze drying) cycles have been developed logically and demonstrate uniformity. One measure of uniformity can be consistency of residual water content throughout a batch. In primary drying, heat transfer is effected by gaseous convection and conduction as well as the degree of shelf contact and evenness of heat applied; therefore residual water can be affected by container location, degree of container/tray/shelf contact, radiative heating, packing density, product formulation, and the cycle conditions themselves. In this study we have used frequency modulation spectroscopy (FMS) to create a map of headspace moisture (HSM) for 100% of vials within a number of freeze-dried batches. Karl Fischer (KF)/HSM correlations were investigated in parallel with the moisture mapping studies. A clear, linear relationship was observed between HSM and KF values for vials containing freeze-dried sucrose, implying a relatively straightforward interaction between water and the lyophilized cake for this material. Mannitol demonstrated a more complex correlation, with the interaction of different crystalline forms giving important information on the uniformity of the material produced. It was observed that annealing had a significant impact on the importance of heat transfer by conduction for vials in direct and non-direct contact with the shelf. Moisture mapping of all vials within the freeze dryer enabled further information to be obtained on the relationship of the formulation, process conditions, and equipment geometry on the intra-batch variability in HSM level. The ability of FMS to allow 100% inspection could mean that this method could play an important part in process validation and quality assurance. Lyophilization, also known as freeze drying, is a relatively old technique that has been used in its most basic form for thousands of years (e.g., preservation of fish and meat products). In its more advanced form it is used to preserve many medical products; for example, many vaccines are not stable in solution and therefore need to be dried to allow long-term storage. In order to produce a freeze-dried vaccine, a complex understanding of the processes and critical temperatures is required. Once these have been understood, the material is dried to give relatively low moisture content (e.g., 2% w/w.) This low moisture content is critical for the long-term stability of the product, allowing doctors/chemists to store these goods on site for use when required. This research paper provides further information on a technique called frequency modulation spectroscopy (FMS) that has been used to map the moisture variation across samples within a freeze dryer, enabling us to increase our understanding of the role various processing conditions play on the relationship between the product and water. It has demonstrated its potential application for 100% batch monitoring and the validation of a system or assessment of changes made. This method could assist in improving quality assurance and ultimately the final product that reaches the consumer.
Utilizing commercial microwave for rapid and effective immunostaining.
Owens, Katrina; Park, Ji H; Kristian, Tibor
2013-09-30
There is an accumulating literature demonstrating the application of microwaves across a wide spectrum of histological techniques. Although exposure to microwaves for short periods resulted in substantial acceleration of all procedures this technique still is not adopted widely. In part, this may be due to concerns over solutions that will avoid induction of thermal damage to the tissue when using standard microwave. Here, we offer a cooling setup that can be used with conventional microwave ovens. We utilized dry ice for effective cooling during microwave irradiation of tissue samples. To prevent overheating, the cups with tissue during exposure to microwaves were surrounded with powdered dry ice. Since the dry ice does not touch the walls of the cups, freezing is prevented. Overheating is avoided by alternating the microwave treatment with 1-2 min time periods when the cups are cooled outside of the microwave oven. This technique was used on mouse brain sections that were immunostained with microglia-specific CD68 antiserum and astrocyte labeling GFAP antibody. Both standard and microwave-assisted immonolabeling gave comparable results visualizing cells with fine processes and low background signal. Short incubation time in the microwave requires high concentrations of antibody for tissue immunostaining. We show that by prolonging the microwaving procedure we were able to reduce the antibody concentration to the levels used in standard immunostaining protocol. In summary, our technique gives a possibility to use a conventional microwave for rapid and effective immunolabeling resulting in reduced amount of antibody required for satisfactory immunostaining. Published by Elsevier B.V.
Oxidation of High-temperature Alloy Wires in Dry Oxygen and Water Vapor
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Lorincz, Jonathan A.; DeMange, Jeffrey J.
2004-01-01
Small diameter wires (150 to 250 microns) of the high temperature alloys Haynes 188, Haynes 230, Haynes 230, Haynes 214, Kanthal Al and PM2000 were oxidized at 1204 C in dry oxygen or 50% H2O /50% O2 for 70 Hours. The oxidation kinetics were monitored using a thermogravimetric technique. Oxide phase composition and morphology of the oxidized wires were determined by X-ray diffraction,field emission scanning electron microscopy, and energy dispersive spectroscopy. The alumina-forming alloys, Kanthal Al and PM2000, out-performed the chromia-forming alloys under this conditions. PM2000 was recommended as the most promising candidate for advanced hybrid seal applications for space reentry control surface seals or hypersonic propulsion system seals. This study also demonstrated that thermogravimetric analysis of small diameter wires is a powerful technique for the study of oxide volatility, oxide adherence, and breakaway oxidation.
Dry Socket Etiology, Diagnosis, and Clinical Treatment Techniques.
Mamoun, John
2018-04-01
Dry socket, also termed fibrinolytic osteitis or alveolar osteitis, is a complication of tooth exodontia. A dry socket lesion is a post-extraction socket that exhibits exposed bone that is not covered by a blood clot or healing epithelium and exists inside or around the perimeter of the socket or alveolus for days after the extraction procedure. This article describes dry socket lesions; reviews the basic clinical techniques of treating different manifestations of dry socket lesions; and shows how microscope level loupe magnification of 6× to 8× or greater, combined with co-axial illumination or a dental operating microscope, facilitate more precise treatment of dry socket lesions. The author examines the scientific validity of the proposed causes of dry socket lesions (such as bacteria, inflammation, fibrinolysis, or traumatic extractions) and the scientific validity of different terminologies used to describe dry socket lesions. This article also presents an alternative model of what causes dry socket lesions, based on evidence from dental literature. Although the clinical techniques for treating dry socket lesions seem empirically correct, more evidence is required to determine the causes of dry socket lesions.
Dry Socket Etiology, Diagnosis, and Clinical Treatment Techniques
2018-01-01
Dry socket, also termed fibrinolytic osteitis or alveolar osteitis, is a complication of tooth exodontia. A dry socket lesion is a post-extraction socket that exhibits exposed bone that is not covered by a blood clot or healing epithelium and exists inside or around the perimeter of the socket or alveolus for days after the extraction procedure. This article describes dry socket lesions; reviews the basic clinical techniques of treating different manifestations of dry socket lesions; and shows how microscope level loupe magnification of 6× to 8× or greater, combined with co-axial illumination or a dental operating microscope, facilitate more precise treatment of dry socket lesions. The author examines the scientific validity of the proposed causes of dry socket lesions (such as bacteria, inflammation, fibrinolysis, or traumatic extractions) and the scientific validity of different terminologies used to describe dry socket lesions. This article also presents an alternative model of what causes dry socket lesions, based on evidence from dental literature. Although the clinical techniques for treating dry socket lesions seem empirically correct, more evidence is required to determine the causes of dry socket lesions. PMID:29732309
Ammari, Maha Al; Sultana, Khizra; Yunus, Faisal; Ghobain, Mohammed Al; Halwan, Shatha M. Al
2016-01-01
Objectives: To assess the proportion of critical errors committed while demonstrating the inhaler technique in hospitalized patients diagnosed with asthma and chronic obstructive pulmonary disease (COPD). Methods: This cross-sectional observational study was conducted in 47 asthmatic and COPD patients using inhaler devices. The study took place at King Abdulaziz Medical City, Riyadh, Saudi Arabia between September and December 2013. Two pharmacists independently assessed inhaler technique with a validated checklist. Results: Seventy percent of patients made at least one critical error while demonstrating their inhaler technique, and the mean number of critical errors per patient was 1.6. Most patients used metered dose inhaler (MDI), and 73% of MDI users and 92% of dry powder inhaler users committed at least one critical error. Conclusion: Inhaler technique in hospitalized Saudi patients was inadequate. Health care professionals should understand the importance of reassessing and educating patients on a regular basis for inhaler technique, recommend the use of a spacer when needed, and regularly assess and update their own inhaler technique skills. PMID:27146622
Epifluorescent direct-write photolithography for microfluidic applications
NASA Astrophysics Data System (ADS)
Higgins, MacCallister; Geiger, Emil J.
2015-01-01
We present a technique for fabricating soft-lithography molds created using an epifluorescent microscope. By focusing the UV light emitted from a Hg arc lamp, we demonstrate the ability to direct-write photoresist features with a minimum resolution of 45 μm. This resolution is satisfactory for many microfluidic applications. A major advantage of this technique is its low cost, both in terms of capital investment and on-going expenditures. Furthermore, by using a motorized stage, we can quickly fabricate a design on demand, eliminating the need, cost, and lead-time required for a photomask. With the addition of an electronic shutter, complicated separate structures can be imaged and utilized to make a wide range of microfluidic devices. We demonstrate this technique using dry-film resist due to its low cost, ease of application, and less stringent safety protocols.
One-step sub-10 μm patterning of carbon-nanotube thin films for transparent conductor applications.
Fukaya, Norihiro; Kim, Dong Young; Kishimoto, Shigeru; Noda, Suguru; Ohno, Yutaka
2014-04-22
We propose a technique for one-step micropatterning of as-grown carbon-nanotube films on a plastic substrate with sub-10 μm resolution on the basis of the dry transfer process. By utilizing this technique, we demonstrated the novel high-performance flexible carbon-nanotube transparent conductive film with a microgrid structure, which enabled improvement of the performance over the trade-off between the sheet resistance and transmittance of a conventional uniform carbon-nanotube film. The sheet resistance was reduced by 46% at its maximum by adding the microgrid, leading to a value of 53 Ω/sq at a transmittance of 80%. We also demonstrated easy fabrication of multitouch projected capacitive sensors with 12 × 12 electrodes. The technique is quite promising for energy-saving production of transparent conductor devices with 100% material utilization.
Kanimozhi, K; Basha, S Khaleel; Kumari, V Sugantha; Kaviyarasu, K
2018-07-01
Freeze drying and salt leaching methods were applied to fabricate Chitosan/Poly(vinyl alcohol)/Carboxymethyl cellulose (CPCMC) biomimetic porous scaffolds for soft tissue engineering. The properties of these scaffolds were investigated and compared to those by freeze drying and salt leaching methods respectively. The salt-leached CS/PVA/CMC scaffolds were easily formed into desired shapes with a uniformly distributed and interconnected pore structure with an average pore size. The mechanical strength of the scaffolds increased with the porosity, and were easily modulated by the addition of carboxymethyl cellulose. The morphology of the porous scaffolds observed using a SEM exhibited good porosity and interconnectivity of pores. MTT assay using L929 fibroblast cells demonstrated that the cell viability of the porous scaffold was good. Scaffolds prepared by salt leached method show larger swelling capacity, and mechanical strength, potent antibacterial activity and more cell viability than freeze dried method. It is found that salt leaching method has distinguished characteristics of simple, efficient, feasible and less economic than freeze dried scaffolds.
Injection molding ceramics to high green densities
NASA Technical Reports Server (NTRS)
Mangels, J. A.; Williams, R. M.
1983-01-01
The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.
Jensen, Ditte Krohn; Jensen, Linda Boye; Koocheki, Saeid; Bengtson, Lasse; Cun, Dongmei; Nielsen, Hanne Mørck; Foged, Camilla
2012-01-10
Matrix systems based on biocompatible and biodegradable polymers like the United States Food and Drug Administration (FDA)-approved polymer poly(DL-lactide-co-glycolide acid) (PLGA) are promising for the delivery of small interfering RNA (siRNA) due to favorable safety profiles, sustained release properties and improved colloidal stability, as compared to polyplexes. The purpose of this study was to design a dry powder formulation based on cationic lipid-modified PLGA nanoparticles intended for treatment of severe lung diseases by pulmonary delivery of siRNA. The cationic lipid dioleoyltrimethylammoniumpropane (DOTAP) was incorporated into the PLGA matrix to potentiate the gene silencing efficiency. The gene knock-down level in vitro was positively correlated to the weight ratio of DOTAP in the particles, and 73% silencing was achieved in the presence of 10% (v/v) serum at 25% (w/w) DOTAP. Optimal properties were found for nanoparticles modified with 15% (w/w) DOTAP, which reduced the gene expression with 54%. This formulation was spray-dried with mannitol into nanocomposite microparticles of an aerodynamic size appropriate for lung deposition. The spray-drying process did not affect the physicochemical properties of the readily re-dispersible nanoparticles, and most importantly, the in vitro gene silencing activity was preserved during spray-drying. The siRNA content in the powder was similar to the theoretical loading and the siRNA was intact, suggesting that the siRNA is preserved during the spray-drying process. Finally, X-ray powder diffraction analysis demonstrated that mannitol remained in a crystalline state upon spray-drying with PLGA nanoparticles suggesting that the sugar excipient might exert its stabilizing effect by sterical inhibition of the interactions between adjacent nanoparticles. This study demonstrates that spray-drying is an excellent technique for engineering dry powder formulations of siRNA nanoparticles, which might enable the local delivery of biologically active siRNA directly to the lung tissue. Copyright © 2011 Elsevier B.V. All rights reserved.
2013-01-01
Background A natural carbohydrate biopolymer was extracted from the agricultural biomass waste (durian seed). Subsequently, the crude biopolymer was purified by using the saturated barium hydroxide to minimize the impurities. Finally, the effect of different drying techniques on the flow characteristics and functional properties of the purified biopolymer was investigated. The present study elucidated the main functional characteristics such as flow characteristics, water- and oil-holding capacity, solubility, and foaming capacity. Results In most cases except for oven drying, the bulk density decreased, thus increasing the porosity. This might be attributed to the increase in the inter-particle voids of smaller sized particles with larger contact surface areas per unit volume. The current study revealed that oven-dried gum and freeze-dried gum had the highest and lowest compressibility index, thus indicating the weakest and strongest flowability among all samples. In the present work, the freeze-dried gum showed the lowest angle of repose, bulk, tapped and true density. This indicates the highest porosity degree of freeze dried gum among dried seed gums. It also exhibited the highest solubility, and foaming capacity thus providing the most desirable functional properties and flow characteristics among all drying techniques. Conclusion The present study revealed that freeze drying among all drying techniques provided the most desirable functional properties and flow characteristics for durian seed gum. PMID:23289739
Freeze-dried spermatozoa: A future tool?
Olaciregui, M; Gil, L
2017-04-01
Cryopreservation has been routinely used to preserve sperm of human and different animal species. However, frozen sperm storage for a long time brings many inconveniences because of liquid nitrogen. Many attempts have been made to overcome the disadvantages of the current cryopreservation method. Freeze-drying has been proposed as alternative method for sperm preservation to achieve the ability to store sperm doses indefinitely at ambient temperature or in ordinary refrigerators. At present, it has been reported successfully sperm freeze-drying on many animal species including canine and feline. It is well known that during freeze-drying process, sperm DNA could be damaged, but if suitable protection is provided, the sperm nucleus could preserve the ability to activate the oocyte and embryos could be generated by intracytoplasmic sperm injection (ICSI). Many factors influence the freeze-drying efficacy, so current researches have been conducted to find strategies to control these factors to maintain the sperm DNA integrity. This review describes the latest method of sperm freeze-drying for practical application in preserving and transporting genetic resources. In addition, the approaches to improve the efficiency of the technique were studied. We demonstrated that the DNA integrity of freeze-dried dog sperm is affected by the composition of the freeze-drying solution as well as the temperature and period of storage. Further studies are necessary to refine freeze-drying protocol in order to protect the DNA and maintain the sperm functionality and obtain offspring from freeze-dried sperm. © 2016 Blackwell Verlag GmbH.
High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air
NASA Astrophysics Data System (ADS)
Rella, C. W.; Chen, H.; Andrews, A. E.; Filges, A.; Gerbig, C.; Hatakka, J.; Karion, A.; Miles, N. L.; Richardson, S. J.; Steinbacher, M.; Sweeney, C.; Wastine, B.; Zellweger, C.
2012-08-01
Traditional techniques for measuring the mole fractions of greenhouse gas in the well-mixed atmosphere have required extremely dry sample gas streams (dew point < -25 °C) to achieve the inter-laboratory compatibility goals set forth by the Global Atmospheric Watch program of the World Meteorological Organization (WMO/GAW) for carbon dioxide (±0.1 ppm) and methane (±2 ppb). Drying the sample gas to low levels of water vapor can be expensive, time-consuming, and/or problematic, especially at remote sites where access is difficult. Recent advances in optical measurement techniques, in particular Cavity Ring Down Spectroscopy (CRDS), have led to the development of highly stable and precise greenhouse gas analyzers capable of highly accurate measurements of carbon dioxide, methane, and water vapor. Unlike many older technologies, which can suffer from significant uncorrected interference from water vapor, these instruments permit for the first time accurate and precise greenhouse gas measurements that can meet the WMO/GAW inter-laboratory compatibility goals without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapor correction factors, and we summarize a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterized dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to at least 1% water vapor. By determining the correction factors for individual instruments once at the start of life, this range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended above 4%.
Wang, Lei; Qiang, Wei; Li, Ying; Cheng, Zeneng; Xie, Mengmeng
2017-09-01
Plasma samples were conventionally stored at freezing conditions until the time of detection. Such a technique, when carried out over an extended period, is energy consuming; in addition, preparation and transportation of stored samples is inconvenient. In this study, a freeze-dried storage and preparation method was proposed to determine the presence of mycophenolic acid (MPA) in plasma. Fresh plasma samples were freeze-dried using a device, and then stored at ambient temperature. After the stored samples were soaked with methanol spiked with the internal standard, high-performance liquid chromatography was conducted to detect MPA. The proposed method was demonstrated to be precise and accurate over the linear range of 0.5-50 μg mL -1 , with both intra- and inter-day precision being <7% and biases <10%. The freeze-dried samples were stable at ambient temperature for at least 40 days. This method was also successfully applied to the pharmacokinetic study of MPA in healthy volunteers. Pharmacokinetic parameters, such as maximum plasma concentration, time point of maximum plasma concentration and elimination half-life, among others, were consistent with the results in the published study. This proposed technique was proved to be simple, reproducible and energy saving. This approach could also simplify the storage and analysis of samples in clinical and scientific drug research. Copyright © 2017 John Wiley & Sons, Ltd.
Freeze-drying process monitoring using a cold plasma ionization device.
Mayeresse, Y; Veillon, R; Sibille, P H; Nomine, C
2007-01-01
A cold plasma ionization device has been designed to monitor freeze-drying processes in situ by monitoring lyophilization chamber moisture content. This plasma device, which consists of a probe that can be mounted directly on the lyophilization chamber, depends upon the ionization of nitrogen and water molecules using a radiofrequency generator and spectrometric signal collection. The study performed on this probe shows that it is steam sterilizable, simple to integrate, reproducible, and sensitive. The limitations include suitable positioning in the lyophilization chamber, calibration, and signal integration. Sensitivity was evaluated in relation to the quantity of vials and the probe positioning, and correlation with existing methods, such as microbalance, was established. These tests verified signal reproducibility through three freeze-drying cycles. Scaling-up studies demonstrated a similar product signature for the same product using pilot-scale and larger-scale equipment. On an industrial scale, the method efficiently monitored the freeze-drying cycle, but in a larger industrial freeze-dryer the signal was slightly modified. This was mainly due to the positioning of the plasma device, in relation to the vapor flow pathway, which is not necessarily homogeneous within the freeze-drying chamber. The plasma tool is a relevant method for monitoring freeze-drying processes and may in the future allow the verification of current thermodynamic freeze-drying models. This plasma technique may ultimately represent a process analytical technology (PAT) approach for the freeze-drying process.
Stem cell therapies for age-related macular degeneration: the past, present, and future.
Dang, Yalong; Zhang, Chun; Zhu, Yu
2015-01-01
In the developed world, age-related macular degeneration (AMD) is one of the major causes of irreversible blindness in the elderly. Although management of neovascular AMD (wet AMD) has dramatically progressed, there is still no effective treatment for nonneovascular AMD (dry AMD), which is characterized by retinal pigment epithelial (RPE) cell death (or dysfunction) and microenvironmental disruption in the retina. Therefore, RPE replacement and microenvironmental regulation represent viable treatments for dry AMD. Recent advances in cell biology have demonstrated that RPE cells can be easily generated from several cell types (pluripotent stem cells, multipotent stem cells, or even somatic cells) by spontaneous differentiation, coculturing, defined factors or cell reprogramming, respectively. Additionally, in vivo studies also showed that the restoration of visual function could be obtained by transplanting functional RPE cells into the subretinal space of recipient. More importantly, clinical trials approved by the US government have shown promising prospects in RPE transplantation. However, key issues such as implantation techniques, immune rejection, and xeno-free techniques are still needed to be further investigated. This review will summarize recent advances in cell transplantation for dry AMD. The obstacles and prospects in this field will also be discussed.
Applications of two- and three-dimensional microstructures formed by soft lithographic techniques
NASA Astrophysics Data System (ADS)
Jackman, Rebecca Jane
This thesis describes the development of several soft lithographic techniques. Each of these techniques has applications in two- and three-dimensional microfabrication or in the design of microreactor systems. All soft lithographic techniques make use of an elastomeric element that is formed by casting and curing a prepolymer against a planar substrate having three-dimensional (3D) relief. Chapters 1--3 (and Appendices I--VII) describe the use of a soft lithographic technique, microcontact printing (muCP), to produce patterns with micron-scale resolution on both planar and non-planar substrates. Electrodeposition transforms patterns produced by muCP into functional, 3D structures. It is an additive method that: (i) strengthens the metallic patterns; (ii) increases the conductivity of the structures; (iii) enables high-strain deformations to be performed on the structures; and (iv) welds non-connected structures. Applications for cylindrical microstructures, formed by the combination of muCP and electroplating, are presented. Some important classes of materials---biological macromolecules, gels, sol-gels, some polymers, low molecular weight organic and organometallic species---are often incompatible with conventional patterning techniques. Chapters 4 and 5 describe the use of elastomeric membranes as dry resists or as masks in dry lift-off to produce simple features as small as 5 mum from these and other materials on both planar and non-planar surfaces. These procedures are "dry" because the membranes conformed and sealed reversibly to surfaces without the use of solvents. This technique, for example, produced a simple electroluminescent device. By using two membranes simultaneously, multicolored, photoluminescent patterns of organic materials were created. Membranes were also used in sequential, dry-lift off steps to produce patterns with greater complexity. Chapter 6 (and Appendix XII) demonstrates that the ability to mold elastomers enables the fabrication of large (≤45 cm2) arrays of microwells (volumes ≥3 fL/well; densities ≤107 wells/cm2 ). These microwells can function as vessels for performing chemical reactions---"microreactors". Discontinuous dewetting is a technique that takes advantage of the interfacial properties of the elastomer and allows wells to be filled rapidly (typically ˜104 wells/second) and uniformly with a wide range of liquids. Several rudimentary strategies for addressing microwells are investigated including electroosmotic pumping and diffusion of gases.
NASA Astrophysics Data System (ADS)
Evans, Aaron H.
Thermal remote sensing is a powerful tool for measuring the spatial variability of evapotranspiration due to the cooling effect of vaporization. The residual method is a popular technique which calculates evapotranspiration by subtracting sensible heat from available energy. Estimating sensible heat requires aerodynamic surface temperature which is difficult to retrieve accurately. Methods such as SEBAL/METRIC correct for this problem by calibrating the relationship between sensible heat and retrieved surface temperature. Disadvantage of these calibrations are 1) user must manually identify extremely dry and wet pixels in image 2) each calibration is only applicable over limited spatial extent. Producing larger maps is operationally limited due to time required to manually calibrate multiple spatial extents over multiple days. This dissertation develops techniques which automatically detect dry and wet pixels. LANDSAT imagery is used because it resolves dry pixels. Calibrations using 1) only dry pixels and 2) including wet pixels are developed. Snapshots of retrieved evaporative fraction and actual evapotranspiration are compared to eddy covariance measurements for five study areas in Florida: 1) Big Cypress 2) Disney Wilderness 3) Everglades 4) near Gainesville, FL. 5) Kennedy Space Center. The sensitivity of evaporative fraction to temperature, available energy, roughness length and wind speed is tested. A technique for temporally interpolating evapotranspiration by fusing LANDSAT and MODIS is developed and tested. The automated algorithm is successful at detecting wet and dry pixels (if they exist). Including wet pixels in calibration and assuming constant atmospheric conductance significantly improved results for all but Big Cypress and Gainesville. Evaporative fraction is not very sensitive to instantaneous available energy but it is sensitive to temperature when wet pixels are included because temperature is required for estimating wet pixel evapotranspiration. Data fusion techniques only slightly outperformed linear interpolation. Eddy covariance comparison and temporal interpolation produced acceptable bias error for most cases suggesting automated calibration and interpolation could be used to predict monthly or annual ET. Maps demonstrating spatial patterns of evapotranspiration at field scale were successfully produced, but only for limited spatial extents. A framework has been established for producing larger maps by creating a mosaic of smaller individual maps.
Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households.
Murto, Marika; Björnsson, Lovisa; Rosqvist, Håkan; Bohn, Irene
2013-05-01
At the waste handling company NSR, Helsingborg, Sweden, the food waste fraction of source separated municipal solid waste is pretreated to obtain a liquid fraction, which is used for biogas production, and a dry fraction, which is at present incinerated. This pretreatment and separation is performed to remove impurities, however also some of the organic material is removed. The possibility of realising the methane potential of the dry fraction through batch-wise dry anaerobic digestion was investigated. The anaerobic digestion technique used was a two-stage process consisting of a static leach bed reactor and a methane reactor. Treatment of the dry fraction alone and in a mixture with structural material was tested to investigate the effect on the porosity of the leach bed. A tracer experiment was carried out to investigate the liquid flow through the leach beds, and this method proved useful in demonstrating a more homogenous flow through the leach bed when structural material was added. Addition of structural material to the dry fraction was needed to achieve a functional digestion process. A methane yield of 98 m3/ton was obtained from the dry fraction mixed with structural material after 76 days of digestion. This was in the same range as obtained in the laboratory scale biochemical methane potential test, showing that it was possible to extract the organic content in the dry fraction in this type of dry digestion system for the production of methane. Copyright © 2013 Elsevier Ltd. All rights reserved.
DeLacy, Brendan G; Bandy, Alan R
2008-01-01
An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying.
Dry needling: a literature review with implications for clinical practice guidelines1
Dunning, James; Butts, Raymond; Mourad, Firas; Young, Ian; Flannagan, Sean; Perreault, Thomas
2014-01-01
Background: Wet needling uses hollow-bore needles to deliver corticosteroids, anesthetics, sclerosants, botulinum toxins, or other agents. In contrast, dry needling requires the insertion of thin monofilament needles, as used in the practice of acupuncture, without the use of injectate into muscles, ligaments, tendons, subcutaneous fascia, and scar tissue. Dry needles may also be inserted in the vicinity of peripheral nerves and/or neurovascular bundles in order to manage a variety of neuromusculoskeletal pain syndromes. Nevertheless, some position statements by several US State Boards of Physical Therapy have narrowly defined dry needling as an ‘intramuscular’ procedure involving the isolated treatment of ‘myofascial trigger points’ (MTrPs). Objectives: To operationalize an appropriate definition for dry needling based on the existing literature and to further investigate the optimal frequency, duration, and intensity of dry needling for both spinal and extremity neuromusculoskeletal conditions. Major findings: According to recent findings in the literature, the needle tip touches, taps, or pricks tiny nerve endings or neural tissue (i.e. ‘sensitive loci’ or ‘nociceptors’) when it is inserted into a MTrP. To date, there is a paucity of high-quality evidence to underpin the use of direct dry needling into MTrPs for the purpose of short and long-term pain and disability reduction in patients with musculoskeletal pain syndromes. Furthermore, there is a lack of robust evidence validating the clinical diagnostic criteria for trigger point identification or diagnosis. High-quality studies have also demonstrated that manual examination for the identification and localization of a trigger point is neither valid nor reliable between-examiners. Conclusions: Several studies have demonstrated immediate or short-term improvements in pain and/or disability by targeting trigger points (TrPs) using in-and-out techniques such as ‘pistoning’ or ‘sparrow pecking’; however, to date, no high-quality, long-term trials supporting in-and-out needling techniques at exclusively muscular TrPs exist, and the practice should therefore be questioned. The insertion of dry needles into asymptomatic body areas proximal and/or distal to the primary source of pain is supported by the myofascial pain syndrome literature. Physical therapists should not ignore the findings of the Western or biomedical ‘acupuncture’ literature that have used the very same ‘dry needles’ to treat patients with a variety of neuromusculoskeletal conditions in numerous, large scale randomized controlled trials. Although the optimal frequency, duration, and intensity of dry needling has yet to be determined for many neuromusculoskeletal conditions, the vast majority of dry needling randomized controlled trials have manually stimulated the needles and left them in situ for between 10 and 30 minute durations. Position statements and clinical practice guidelines for dry needling should be based on the best available literature, not a single paradigm or school of thought; therefore, physical therapy associations and state boards of physical therapy should consider broadening the definition of dry needling to encompass the stimulation of neural, muscular, and connective tissues, not just ‘TrPs’. PMID:25143704
Investigating a Drop-on-Demand Microdispenser for Standardized Sample Preparation
2011-09-01
including the printing of photodiodes , polymer and protein arrays , and in electronics manufacturing (4–7). These applications benefit from the wide...photograph of an array of microdroplets demonstrates a more even sample dispersion when sample is dispensed with a DOD microdispenser... threats encountered. A variety of techniques that offer temporary alternatives have been employed, including drop-and-dry (dropcasting) and spray
Mosharraf, Mitra
2004-05-01
When determining the degree of disorder of a lyophilized cake of a protein, it is important to use an appropriate analytical technique. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) are the most commonly used thermoanalytical techniques for characterizing freeze-dried protein formulations. Unfortunately, these methods are unable to detect solid-state disorder at levels < 10%. Also, interpretation of DSC results for freeze-dried protein formulations can be difficult, as a result of the more complex thermal events occurring with this technique. For example, proteins can inhibit the thermally induced recrystallization of the lyophilized cake, resulting in potential misinterpretation of DSC degree of disorder results. The aim of this investigation was to study the use of isothermal microcalorimetry (IMC) in the assessment of degree of solid-state disorder (amorphicity) of lyophilized formulations of proteins. For this purpose, two formulations of growth hormone were prepared by lyophilization. These formulations consisted of the same amounts of protein, mannitol, glycine, and phosphate buffer, but differed in the freeze-drying procedure. After lyophilization, the recrystallization of the samples was studied using IMC at 25 degrees C under different relative humidities (58-75%). The effect of available surface area was studied by determining the heat of recrystallization (Q) of the samples before and after disintegration of the cakes. The results showed that, in contrast to DSC, IMC allowed detection of the recrystallization event in the formulations. Although both formulations were completely disordered and indistinguishable according to XRPD method, IMC revealed that formulation B had a different solid-sate structure than formulation A. This difference was the result of differences in the freeze-drying parameters, demonstrating the importance of choosing appropriate analytical methodology.
High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane
Al-Doghachi, Faris A. J.; Islam, Aminul; Zainal, Zulkarnain; Saiman, Mohd Izham; Embong, Zaidi; Taufiq-Yap, Yun Hin
2016-01-01
A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50–80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions. PMID:26745623
Leung, Sharon S Y; Parumasivam, Thaigarajan; Gao, Fiona G; Carrigy, Nicholas B; Vehring, Reinhard; Finlay, Warren H; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim
2016-06-01
The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. A significant titer loss (~2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 10(4) pfu and SD-F2 = 11.0 ± 1.4 × 10(4) pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 10(4) pfu and SFD-F2 = 2.1 ± 0.3 × 10(4) pfu). Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2.
Lenaerts, S; Van Der Borght, M; Callens, A; Van Campenhout, L
2018-07-15
Freeze drying represents the current practice to stabilize mealworms, even though it is an energy demanding technique. Therefore, it was examined in the present study whether microwave drying could be a proper alternative. To this end, the impact of both drying techniques on the proximate composition, vitamin B 12 content, fatty acid profile, oxidation status and colour parameters of mealworms was investigated. Furthermore, the influence of the application of vacuum during microwave drying was studied. The different drying technologies resulted in small differences in the proximate composition, while the vitamin B 12 content was only reduced by microwave drying. The fat fraction of freeze dried mealworms showed a higher oxidation status than the fat of microwave dried mealworms. Application of a vacuum during the microwave drying process did not appear to offer advantages. This research shows that for mealworms microwave drying can be a proper alternative to freeze drying. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hassan, Afifa Afifi
1982-01-01
The gas evolution and the strontium carbonate precipitation techniques to extract dissolved inorganic carbon (DIC) for stable carbon isotope analysis were investigated. Theoretical considerations, involving thermodynamic calculations and computer simulation pointed out several possible sources of error in delta carbon-13 measurements of the DIC and demonstrated the need for experimental evaluation of the magnitude of the error. An alternative analytical technique, equilibration with out-gassed vapor phase, is proposed. The experimental studies revealed that delta carbon-13 of the DIC extracted from a 0.01 molar NaHC03 solution by both techniques agreed within 0.1 per mil with the delta carbon-13 of the DIC extracted by the precipitation technique, and an increase of only 0.27 per mil in that extracted by the gas evolution technique. The efficiency of extraction of DIC decreased with sulfate concentration in the precipitation technique but was independent of sulfate concentration in the gas evolution technique. Both the precipitation and gas evolution technique were found to be satisfactory for extraction of DIC from different kinds of natural water for stable carbon isotope analysis, provided appropriate precautions are observed in handling the samples. For example, it was found that diffusion of atmospheric carbon dioxide does alter the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the precipitation technique; hot manganese dioxide purification changes the delta carbon-13 of carbon dioxide. (USGS)
Processing of polarimetric SAR data for soil moisture estimation over Mahantango watershed area
NASA Technical Reports Server (NTRS)
Rao, K. S.; Teng, W. L.; Wang, J. R.
1992-01-01
Microwave remote sensing technique has a high potential for measuring soil moisture due to the large contrast in dielectric constant of dry and wet soils. Recent work by Pults et al. demonstrated the use of X/C-band data for quantitative surface soil moisture extraction from Airborne Synthetic Aperture Radar (SAR) system. Similar technique was adopted using polarimetric SAR data acquired with the JPL-AIRSAR system over the Mahantango watershed area in central Pennsylvania during July 1990. The data sets reported include C-, L-, and P-bands of 10, 13, 15, and 17 July 1990.
Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching
NASA Astrophysics Data System (ADS)
Debnath, Kapil; Khokhar, Ali; Boden, Stuart; Arimoto, Hideo; Oo, Swe; Chong, Harold; Reed, Graham; Saito, Shinichi
2016-11-01
We demonstrate low-loss slot waveguides on silicon-on-insulator (SOI) platform. Waveguides oriented along the (11-2) direction on the Si (110) plane were first fabricated by a standard e-beam lithography and dry etching process. A TMAH based anisotropic wet etching technique was then used to remove any residual side wall roughness. Using this fabrication technique propagation loss as low as 3.7dB/cm was realized in silicon slot waveguide for wavelengths near 1550nm. We also realized low propagation loss of 1dB/cm for silicon strip waveguides.
Ga Lithography in Sputtered Niobium for Superconductive Micro and Nanowires.
Henry, Michael David; Lewis, Rupert M.; Wolfley, Steven L.; ...
2014-08-18
This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic techniquemore » is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.« less
Production and properties of electrosprayed sericin nanopowder
NASA Astrophysics Data System (ADS)
Hazeri, Najmeh; Tavanai, Hossein; Moradi, Ali Reza
2012-06-01
Sericin is a proteinous substrate that envelops fibroin (silk) fiber, and its recovery provides significant economical and social benefits. Sericin is an antibacterial agent that resists oxidation and absorbs moisture and UV light. In powder form, sericin has a wide range of applications in food, cosmetics and drug delivery. Asides from other techniques of producing powder, such as precipitation and spray drying, electrospraying can yield solid nanoparticles, particularly in the submicron range. Here, we report the production of sericin nanopowder by electrospraying. Sericin sponge was recovered from Bombyx mori cocoons through a high-temperature, high-pressure process, followed by centrifugation and freeze drying of the sericin solution. The electrospraying solution was prepared by dissolving the sericin sponge in dimethyl sulfoxide. We demonstrate that electrospraying is capable of producing sericin nanopowder with an average particle size of 25 nm, which is by far smaller than the particles produced by other techniques. The electrosprayed sericin nanopowder consists of small crystallites and exhibits a high moisture absorbance.
Yang, Cui; Zhao, Jinhua; Wang, Juan; Yu, Hongling; Piao, Xiangfan; Li, Donghao
2013-07-26
A novel organic solvent-free mode of gas purge microsyringe extraction, termed water-based gas purge microsyringe extraction, was developed. This technique can directly extract target compounds in wet samples without any drying process. Parameters affecting the extraction efficiency were investigated. Under optimal extraction conditions, the recoveries of alkylphenols were between 87.6 and 105.8%, and reproducibility was between 5.2 and 12.1%. The technique was also used to determine six kinds of alkylphenols (APs) from samples of Laminaria japonica Aresh. The OP and NP were detected in all the samples, and concentrations ranged from 26.0 to 54.5ngg(-1) and 45.0-180.4ngg(-1), respectively. The 4-n-butylphenol was detected in only one sample and its concentration was very low. Other APs were not detected in L. japonica Aresh samples. The experimental results demonstrated that the technique is fast, simple, non-polluting, allows for quantitative extraction, and a drying process was not required for wet samples. Since only aqueous solution and a conventional microsyringe were used, this technique proved affordable, efficient, and convenient for the extraction of volatile and semivolatile ionizable compounds. Copyright © 2013 Elsevier B.V. All rights reserved.
Impact of drying on pore structures in ettringite-rich cements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, I., E-mail: isabelgalan@abdn.ac.uk; Beltagui, H.; García-Maté, M.
Drying techniques affect the properties of cement pastes to varying extents. The effect of different drying techniques on calcium sulfoaluminate-based (C$A) cements and their constituent phases is reported for a range of simulated and commercial C$A pastes which are benchmarked against an OPC paste. The recommended methodologies used to dry samples were identified from the literature and include D-drying and solvent exchange. These methods were used in conjunction with mercury intrusion porosimetry (MIP) and X-ray powder diffraction (XRPD) measurements to assess the changes in pore structure and the damage to crystalline phases, respectively. D-drying and isopropanol exchange are the mostmore » satisfactory and least damaging methods for drying C$A based pastes.« less
NASA Astrophysics Data System (ADS)
Marchena, Miriam; Wagner, Frederic; Arliguie, Therese; Zhu, Bin; Johnson, Benedict; Fernández, Manuel; Lai Chen, Tong; Chang, Theresa; Lee, Robert; Pruneri, Valerio; Mazumder, Prantik
2018-07-01
We demonstrate the direct transfer of graphene from Cu foil to rigid and flexible substrates, such as glass and PET, using as an intermediate layer a thin film of polyimide (PI) mixed with an aminosilane (3-aminopropyltrimethoxysilane) or only PI, respectively. While the dry removal of graphene by an adhesive has been previously demonstrated—being removed from graphite by scotch tape or from a Cu foil by thick epoxy (~20 µm) on Si—our work is the first step towards making a substrate ready for device fabrication using the polymer-free technique. Our approach leads to an article that is transparent, thermally stable—up to 350 °C—and free of polymer residues on the device side of the graphene, which is contrary to the case of the standard wet-transfer process using PMMA. Also, in addition to previous novelty, our technique is fast and easier by using current industrial technology—a hot press and a laminator—with Cu recycling by its mechanical peel-off; it provides high interfacial stability in aqueous media and it is not restricted to a specific material—polyimide and polyamic acids can be used. All the previous reasons demonstrate a feasible process that enables device fabrication.
Formulation and evaluation of dried yeast tablets using different techniques.
Al-Mohizea, Abdullah M; Ahmed, Mahrous O; Al-jenoobi, Fahad I; Mahrous, Gamal M; Abdel-Rahman, Aly A
2007-08-01
The aim of this study was to prepare and evaluate dried yeast tablets using both direct compression and dry granulation techniques in comparison with the conventional wet granulation as well as commercial product. Wet granulation technique is not favorable for producing the yeast tablets due to the problems of color darkening and the reduction of the fermentation power of the yeast as a result of the early start of the fermentation process due to the presence of moisture. Twenty six formulae of dried yeast tablets were prepared and evaluated. Certain directly compressible vehicles were employed for preparing these tablets. The quality control tests (weight uniformity, friability, disintegration time and hardness) of the prepared dried yeast tablets were performed according to B.P. 1998 limits. All batches of the prepared tablets complied with the B.P. limits of weight uniformity. Moreover, small values of friability % (1% or less) were obtained for all batches of dried yeast tablets with acceptable hardness values, indicating good mechanical properties which can withstand handling. On the other hand, not all batches complied with the limit of disintegration test which may be attributed to various formulation component variables. Therefore, four disintegrating agents were investigated for their disintegrating effect. It was found that the method of preparation, whether it is direct compression, dry granulation or wet granulation, has an effect on disintegration time of these dried yeast tablets and short disintegration times were obtained for some of the formulae. The shortest disintegration time was obtained with those tablets prepared by direct compression among the other techniques. Therefore, the direct compression is considered the best technique for preparation of dried yeast tablets and the best formula (which showed shorter disintegration time and better organoleptic properties than the available commercial yeast tablets) was chosen. Drug content for dried yeast granular powder, and the chosen best prepared formula, was determined by gas chromatography (GC). It was found that this formula gave the same alcohol content produced by an equal amount of the dried yeast granular powder. This result in conjunction with weight uniformity indicated drug content uniformity of the prepared dried yeast tablets.
Rainville, Paul D; Simeone, Jennifer L; Root, Dan S; Mallet, Claude R; Wilson, Ian D; Plumb, Robert S
2015-03-21
The emergence of micro sampling techniques holds great potential to improve pharmacokinetic data quality, reduce animal usage, and save costs in safety assessment studies. The analysis of these samples presents new challenges for bioanalytical scientists, both in terms of sample processing and analytical sensitivity. The use of two dimensional LC/MS with, at-column-dilution for the direct analysis of highly organic extracts prepared from biological fluids such as dried blood spots and plasma is demonstrated. This technique negated the need to dry down and reconstitute, or dilute samples with water/aqueous buffer solutions, prior to injection onto a reversed-phase LC system. A mixture of model drugs, including bromhexine, triprolidine, enrofloxacin, and procaine were used to test the feasibility of the method. Finally an LC/MS assay for the probe pharmaceutical rosuvastatin was developed from dried blood spots and protein-precipitated plasma. The assays showed acceptable recovery, accuracy and precision according to US FDA guidelines. The resulting analytical method showed an increase in assay sensitivity of up to forty fold as compared to conventional methods by maximizing the amount loaded onto the system and the MS response for the probe pharmaceutical rosuvastatin from small volume samples.
Development of pH sensitive microparticles of Karaya gum: By response surface methodology.
Raizaday, Abhay; Yadav, Hemant K S; Kumar, S Hemanth; Kasina, Susmitha; Navya, M; Tashi, C
2015-12-10
The objective of the proposed work was to prepare pH sensitive microparticles (MP) of Karaya gum using distilled water as a solvent by spray drying technique. Different formulations were designed, prepared and evaluated by employing response surface methodology and optimal design of experiment technique using Design Expert(®) ver 8.0.1 software. SEM photographs showed that MP were roughly spherical in shape and free from cracks. The particle size and encapsulation efficiency for optimized MP was found to be between 3.89 and 6.5 μm and 81-94% respectively with good flow properties. At the end of the 12th hour the in vitro drug release was found to be 96.9% for the optimized formulation in pH 5.6 phosphate buffer. Low prediction errors were observed for Cmax and AUC0-∞ which demonstrated that the Frusemide IVIVC model was valid. Hence it can be concluded that pH sensitive MP of Karaya gum were effectively prepared by spray drying technique using aqueous solvents and can be used for treating various diseases like chronic hypertension, Ulcerative Colitis and Diverticulitis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ultrafine polybenzimidazole (PBI) fibers. [separators for alkaline batteries and dfuel cells
NASA Technical Reports Server (NTRS)
Chenevey, E. C.
1979-01-01
Mats were made from ultrafine polybenzimidazole (PBI) fibers to provide an alternate to the use of asbestos as separators in fuel cells and alkaline batteries. To minimize distortion during mat drying, a process to provide a dry fibrid was developed. Two fibrid types were developed: one coarse, making mats for battery separators; the other fine, making low permeability matrices for fuel cells. Eventually, it was demonstrated that suitable mat fabrication techniques yielded fuel cell separators from the coarser alkaline battery fibrids. The stability of PBI mats to 45% KOH at 123 C can be increased by heat treatment at high temperatures. Weight loss data to 1000 hours exposure show the alkali resistance of the mats to be superior to that of asbestos.
A new nanospray drying method for the preparation of nicergoline pure nanoparticles
NASA Astrophysics Data System (ADS)
Martena, Valentina; Censi, Roberta; Hoti, Ela; Malaj, Ledjan; Di Martino, Piera
2012-06-01
Three different batches of pure nanoparticles (NPs) of nicergoline (NIC) were prepared by spray drying a water:ethanol solution by a new Nano Spray Dryer Büchi B-90. Spherical pure NPs were obtained, and several analytical techniques such as differential scanning calorimetry and X-ray powder diffractometry permitted to assess their amorphous character. A comparison of the solubility, intrinsic dissolution, and drug release of original particles and pure amorphous NPs were determined, revealing an interesting improvement of biopharmaceutical properties of amorphous NPs, due to both amorphous properties and nanosize dimensions. Since in a previous work, the high-thermodynamic stability of amorphous NIC was demonstrated, this study is addressed toward the formulation of NIC as pure amorphous NPs.
Validation of a Dry Model for Assessing the Performance of Arthroscopic Hip Labral Repair.
Phillips, Lisa; Cheung, Jeffrey J H; Whelan, Daniel B; Murnaghan, Michael Lucas; Chahal, Jas; Theodoropoulos, John; Ogilvie-Harris, Darrell; Macniven, Ian; Dwyer, Tim
2017-07-01
Arthroscopic hip labral repair is a technically challenging and demanding surgical technique with a steep learning curve. Arthroscopic simulation allows trainees to develop these skills in a safe environment. The purpose of this study was to evaluate the use of a combination of assessment ratings for the performance of arthroscopic hip labral repair on a dry model. Cross-sectional study; Level of evidence, 3. A total of 47 participants including orthopaedic surgery residents (n = 37), sports medicine fellows (n = 5), and staff surgeons (n = 5) performed arthroscopic hip labral repair on a dry model. Prior arthroscopic experience was noted. Participants were evaluated by 2 orthopaedic surgeons using a task-specific checklist, the Arthroscopic Surgical Skill Evaluation Tool (ASSET), task completion time, and a final global rating scale. All procedures were video-recorded and scored by an orthopaedic fellow blinded to the level of training of each participant. The internal consistency/reliability (Cronbach alpha) using the total ASSET score for the procedure was high (intraclass correlation coefficient > 0.9). One-way analysis of variance for the total ASSET score demonstrated a difference between participants based on the level of training ( F 3,43 = 27.8, P < .001). A good correlation was seen between the ASSET score and previous exposure to arthroscopic procedures ( r = 0.52-0.73, P < .001). The interrater reliability for the ASSET score was excellent (>0.9). The results of this study demonstrate that the use of dry models to assess the performance of arthroscopic hip labral repair by trainees is both valid and reliable. Further research will be required to demonstrate a correlation with performance on cadaveric specimens or in the operating room.
Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin
2014-01-01
In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin. PMID:24729702
Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin
2014-01-01
In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin.
Hundre, Swetank Y; Karthik, P; Anandharamakrishnan, C
2015-05-01
Vanillin flavour is highly volatile in nature and due to that application in food incorporation is limited; hence microencapsulation of vanillin is an ideal technique to increase its stability and functionality. In this study, vanillin was microencapsulated for the first time by non-thermal spray-freeze-drying (SFD) technique and its stability was compared with other conventional techniques such as spray drying (SD) and freeze-drying (FD). Different wall materials like β-cyclodextrin (β-cyd), whey protein isolate (WPI) and combinations of these wall materials (β-cyd + WPI) were used to encapsulate vanillin. SFD microencapsulated vanillin with WPI showed spherical shape with numerous fine pores on the surface, which in turn exhibited good rehydration ability. On the other hand, SD powder depicted spherical shape without pores and FD encapsulated powder yielded larger particle sizes with flaky structure. FTIR analysis confirmed that there was no interaction between vanillin and wall materials. Moreover, spray-freeze-dried vanillin + WPI sample exhibited better thermal stability than spray dried and freeze-dried microencapsulated samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Characterisation of Aronia powders obtained by different drying processes.
Horszwald, Anna; Julien, Heritier; Andlauer, Wilfried
2013-12-01
Nowadays, food industry is facing challenges connected with the preservation of the highest possible quality of fruit products obtained after processing. Attention has been drawn to Aronia fruits due to numerous health promoting properties of their products. However, processing of Aronia, like other berries, leads to difficulties that stem from the preparation process, as well as changes in the composition of bioactive compounds. Consequently, in this study, Aronia commercial juice was subjected to different drying techniques: spray drying, freeze drying and vacuum drying with the temperature range of 40-80 °C. All powders obtained had a high content of total polyphenols. Powders gained by spray drying had the highest values which corresponded to a high content of total flavonoids, total monomeric anthocyanins, cyaniding-3-glucoside and total proanthocyanidins. Analysis of the results exhibited a correlation between selected bioactive compounds and their antioxidant capacity. In conclusion, drying techniques have an impact on selected quality parameters, and different drying techniques cause changes in the content of bioactives analysed. Spray drying can be recommended for preservation of bioactives in Aronia products. Powder quality depends mainly on the process applied and parameters chosen. Therefore, Aronia powders production should be adapted to the requirements and design of the final product. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aknoun, Sherazade; Savatier, Julien; Bon, Pierre; Galland, Frédéric; Abdeladim, Lamiae; Wattellier, Benoit; Monneret, Serge
2015-01-01
Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.
High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air
NASA Astrophysics Data System (ADS)
Rella, C. W.; Chen, H.; Andrews, A. E.; Filges, A.; Gerbig, C.; Hatakka, J.; Karion, A.; Miles, N. L.; Richardson, S. J.; Steinbacher, M.; Sweeney, C.; Wastine, B.; Zellweger, C.
2013-03-01
Traditional techniques for measuring the mole fractions of greenhouse gases in the well-mixed atmosphere have required dry sample gas streams (dew point < -25 °C) to achieve the inter-laboratory compatibility goals set forth by the Global Atmosphere Watch programme of the World Meteorological Organisation (WMO/GAW) for carbon dioxide (±0.1 ppm in the Northern Hemisphere and ±0.05 ppm in the Southern Hemisphere) and methane (±2 ppb). Drying the sample gas to low levels of water vapour can be expensive, time-consuming, and/or problematic, especially at remote sites where access is difficult. Recent advances in optical measurement techniques, in particular cavity ring down spectroscopy, have led to the development of greenhouse gas analysers capable of simultaneous measurements of carbon dioxide, methane and water vapour. Unlike many older technologies, which can suffer from significant uncorrected interference from water vapour, these instruments permit accurate and precise greenhouse gas measurements that can meet the WMO/GAW inter-laboratory compatibility goals (WMO, 2011a) without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapour correction factors, and we summarise a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterised dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to a water vapour concentration of at least 1%. By determining the correction factors for individual instruments once at the start of life, this water vapour concentration range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended up to and even above 4% water vapour concentrations.
Elzoghby, Ahmed O; Helmy, Maged W; Samy, Wael M; Elgindy, Nazik A
2013-08-01
Novel casein (CAS)-based micelles loaded with the poorly soluble anti-cancer drug, flutamide (FLT), were successfully developed in a powdered form via spray-drying technique. Genipin (GNP) was used to crosslink CAS micelles as demonstrated by color variation of the micelles. Drug solubilization was enhanced by incorporation within the hydrophobic micellar core which was confirmed by solubility study and UV spectra. Spherical core-shell micelles were obtained with a particle size below 100 nm and zeta potential around -30 mV. At low drug loading, FLT was totally incorporated within micellar core as revealed by thermal analysis. However, at higher loading, excess non-incorporated drug at micelle surface caused a significant reduction in the surface charge density. Turbidity measurements demonstrated the high physical stability of micelles for 2 weeks dependent on GNP-crosslinking degree. In a dry powdered form, the micelles were stable for 6 months with no significant changes in drug content or particle size. A sustained drug release from CAS micelles up to 5 days was observed. After i.v. administration into rats, CAS micelles exhibited a prolonged plasma circulation of FLT compared to drug solution. Furthermore, a more prolonged drug systemic circulation was observed for GNP-crosslinked micelles. Overall, this study reports the application of spray-dried natural protein-based micelles for i.v. delivery of hydrophobic anti-cancer drugs such as FLT. Copyright © 2013 Elsevier B.V. All rights reserved.
Technology Demonstration Plan. Evaluation of Explosives Field Analytical Techniques
1999-08-01
threatening. Some symptoms of heat-related injuries are pale clammy skin , sweating, headache, weakness, dizziness, and nausea. Signs of heat stroke...include dry, hot, red skin , chills, and confusion. In the case of a suspected heat-related injury , try to cool the person down and contact medical...during the day. 9.8.6 Insect and Other Animal Stings and Bites A potential for insect (e.g., honey bees , wasps, yellow jackets), snake (e.g
Caballero, Daniel; Antequera, Teresa; Caro, Andrés; Ávila, María Del Mar; G Rodríguez, Pablo; Perez-Palacios, Trinidad
2017-07-01
Magnetic resonance imaging (MRI) combined with computer vision techniques have been proposed as an alternative or complementary technique to determine the quality parameters of food in a non-destructive way. The aim of this work was to analyze the sensory attributes of dry-cured loins using this technique. For that, different MRI acquisition sequences (spin echo, gradient echo and turbo 3D), algorithms for MRI analysis (GLCM, NGLDM, GLRLM and GLCM-NGLDM-GLRLM) and predictive data mining techniques (multiple linear regression and isotonic regression) were tested. The correlation coefficient (R) and mean absolute error (MAE) were used to validate the prediction results. The combination of spin echo, GLCM and isotonic regression produced the most accurate results. In addition, the MRI data from dry-cured loins seems to be more suitable than the data from fresh loins. The application of predictive data mining techniques on computational texture features from the MRI data of loins enables the determination of the sensory traits of dry-cured loins in a non-destructive way. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs
Brahana, J.V.; Hollyday, E.F.
1988-01-01
In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.
Select polyphenolic fractions from dried plum enhance osteoblast activity through BMP-2 signaling.
Graef, Jennifer L; Rendina-Ruedy, Elizabeth; Crockett, Erica K; Ouyang, Ping; King, Jarrod B; Cichewicz, Robert H; Lucas, Edralin A; Smith, Brenda J
2018-05-01
Dried plum supplementation has been shown to enhance bone formation while suppressing bone resorption. Evidence from previous studies has demonstrated that these responses can be attributed in part to the fruit's polyphenolic compounds. The purpose of this study was to identify the most bioactive polyphenolic fractions of dried plum with a focus on their osteogenic activity and to investigate their mechanisms of action under normal and inflammatory conditions. Utilizing chromatographic techniques, six fractions of polyphenolic compounds were prepared from a crude extract of dried plum. Initial screening assays revealed that two fractions (DP-FrA and DP-FrB) had the greatest osteogenic potential. Subsequent experiments using primary bone-marrow-derived osteoblast cultures demonstrated these two fractions enhanced extracellular alkaline phosphatase (ALP), an indicator of osteoblast activity, and mineralized nodule formation under normal conditions. Both fractions enhanced bone morphogenetic protein (BMP) signaling, as indicated by increased Bmp2 and Runx2 gene expression and protein levels of phosphorylated Smad1/5. DP-FrB was most effective at up-regulating Tak1 and Smad1, as well as protein levels of phospho-p38. Under inflammatory conditions, TNF-α suppressed ALP and tended to decrease nodule formation (P=.0674). This response coincided with suppressed gene expression of Bmp2 and the up-regulation of Smad6, an inhibitor of BMP signaling. DP-FrA and DP-FrB partially normalized these responses. Our results show that certain fractions of polyphenolic compounds in dried plum up-regulate osteoblast activity by enhancing BMP signaling, and when this pathway is inhibited by TNF-α, the osteogenic response is attenuated. Copyright © 2017 Elsevier Inc. All rights reserved.
Phadnis, Joideep; Bain, Gregory
2015-08-01
Dry arthroscopy is attractive because it affords an unsurpassed clarity of view and minimizes swelling. The elbow is a challenging joint to assess arthroscopically; however, dry arthroscopy has some particular benefits in the elbow. The primary benefit is the quality of the tissue definition, but dry arthroscopy also increases the working time for surgery by reducing swelling and results in less postoperative discomfort for the patient. With dry arthroscopy, all joint surfaces are covered in synovial fluid, which reflects light, to provide a clearer image of the joint surfaces and depth of field. The air-fluid interface provides an uninterrupted appreciation of the synovial recesses and tissue perfusion. This article describes the technique and indications for dry elbow arthroscopy, which will allow other surgeons to reap the benefits of dry arthroscopy without the need for special equipment or changes in their basic technique.
Phadnis, Joideep; Bain, Gregory
2015-01-01
Dry arthroscopy is attractive because it affords an unsurpassed clarity of view and minimizes swelling. The elbow is a challenging joint to assess arthroscopically; however, dry arthroscopy has some particular benefits in the elbow. The primary benefit is the quality of the tissue definition, but dry arthroscopy also increases the working time for surgery by reducing swelling and results in less postoperative discomfort for the patient. With dry arthroscopy, all joint surfaces are covered in synovial fluid, which reflects light, to provide a clearer image of the joint surfaces and depth of field. The air-fluid interface provides an uninterrupted appreciation of the synovial recesses and tissue perfusion. This article describes the technique and indications for dry elbow arthroscopy, which will allow other surgeons to reap the benefits of dry arthroscopy without the need for special equipment or changes in their basic technique. PMID:26759772
NASA Astrophysics Data System (ADS)
Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.
2017-07-01
This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.
Onwude, Daniel I; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan
2018-03-01
Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Webster, Elizabeth T.
Sol-gel methods for fabricating ceramic membranes on porous supports include dip coating, evaporative drying, and sintering. The ceramic membranes of interest in the present research were prepared from aqueous sols of silica, titania, or iron oxide nano-particles which were deposited on porous alumina supports. Physisorption measurements indicate that the diameters of the pores in the resulting membranes are 20 A or smaller. Defect formation during fabrication is particularly problematic for ceramic membranes with pore diameters in the nanometer range. Solutions to these problems would greatly enhance the commercial potential of nano-filtration membranes for gas-phase separations. Cracks are debilitating defects which originate during the drying and firing phases of fabrication. As water evaporates during drying, the sol-gel film is subjected to large capillary forces. Unchecked, these tensile forces result in catastrophic cracking across the membrane. A novel technique called internal deposition can be employed to deposit the sol particles within the pores of the support rather than on its surface. Internal deposition obstructs the propagation of cracks, thereby reducing the impact of crack-type defects. A patent for demonstration of proof of concept of the internal deposition technique has been received. Experimental difficulties associated with the nonuniform morphology of the tubular alumina support hindered further development of the internal deposition protocol. The final phase of the research incorporated a support containing uniform capillaries (Anotec(TM) disks). Two-level factorial experiments were conducted to determine the effects of various deposition and drying conditions (viz., speed and method of deposition, surface charge, humidity, and drying rate) on membrane performance. Membrane performance was characterized in terms of the permeabilities of nitrogen and helium in the resulting membranes. The permeability and pressure data were incorporated in a transport model to characterize the mechanisms of fluid flow and the morphologies of the membranes. Electron microscopy was employed to evaluate membrane coverage and to identify defects in the membranes. The results of the factorial experiments indicate that membrane performance is strongly affected by humidity during deposition and drying. These results underscore the importance of controlling process humidity during fabrication of ceramic membranes.
Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations
NASA Astrophysics Data System (ADS)
Warburton, Jamie Lee
To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining UV-Visible spectra gathered in real time, the objective is to detect the conversion from the UREX process, which does not separate Pu, to the PUREX process, which yields a purified Pu product. The change in process chemistry can be detected in the feed solution, aqueous product or in the raffinate stream by identifying the acid concentration, metal distribution and the presence or absence of AHA. A fiber optic dip probe for UV-Visible spectroscopy was integrated into a bank of three counter-current centrifugal contactors to demonstrate the online process monitoring concept. Nd, Fe and Zr were added to the uranyl nitrate system to explore spectroscopic interferences and identify additional species as candidates for online monitoring. This milestone is a demonstration of the potential of this technique, which lies in the ability to simultaneously and directly monitor the chemical process conditions in a reprocessing plant, providing inspectors with another tool to detect nuclear material diversion attempts. Lastly, dry processing of used nuclear fuel is often used as a head-end step before solvent extraction-based separations such as UREX or TRUEX. A non-aqueous process, used fuel treatment by dry processing generally includes chopping of used fuel rods followed by repeated oxidation-reduction cycles and physical separation of the used fuel from the cladding. Thus, dry processing techniques are investigated and opportunities for online monitoring are proposed for continuation of this work in future studies.
How to use hand-held computers to evaluate wood drying.
Howard N. Rosen; Darrell S. Martin
1985-01-01
Techniques have been developed to evaluate end generate wood drying curves with hand-held computers (3-5K memory). Predictions of time to dry to a specific moisture content, drying rates, and other characteristics of wood drying curves can be made. The paper describes the development of programs and illustrates their use.
Localization of wood floor structure by infrared thermography
NASA Astrophysics Data System (ADS)
Cochior Plescanu, C.; Klein, M.; Ibarra-Castanedo, C.; Bendada, A.; Maldague, X.
2008-03-01
One of our industrial partners, Assek Technologie, is interested in developing a technique that would improve the drying process of wood floor in basements after flooding. In order to optimize the procedure, the floor structure and the damaged (wet) area extent must first be determined with minimum intrusion (minimum or no dismantling). The present study presents the use of infrared thermography to reveal the structure of (flooded) wood floors. The procedure involves opening holes in the floor. Injecting some hot air through those holes reveals the framing structure even if the floor is covered by vinyl or ceramic tiles. This study indicates that thermal imaging can also be used as a tool to validate the decontamination process after drying. Thermal images were obtained on small-scale models and in a demonstration room.
Ancient pathogens in museal dry bone specimens: analysis of paleocytology and aDNA.
Gaul, Johanna Sophia; Winter, Eduard; Grossschmidt, Karl
2015-04-01
Bone samples investigated in this study derive from the pathologic-anatomical collection of the Natural History Museum of Vienna. In order to explore the survival of treponemes and treponemal ancient DNA in museal dry bone specimens, we analyzed three individuals known to have been infected with Treponema pallidum pallidum. No reproducible evidence of surviving pathogen's ancient DNA (aDNA) was obtained, despite the highly sensitive extraction and amplification techniques (TPP15 and arp). Additionally, decalcification fluid of bone sections was smear stained with May-Gruenwald-Giemsa. The slides were examined using direct light microscope and dark field illumination. Remnants of spirochetal structures were detectable in every smear. Our results demonstrate that aDNA is unlikely to survive, but spirochetal remains are stainable and thus detectable.
Eddy Current for Sizing Cracks in Canisters for Dry Storage of Used Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Ryan M.; Jones, Anthony M.; Pardini, Allan F.
2014-01-01
The storage of used nuclear fuel (UNF) in dry canister storage systems (DCSSs) at Independent Spent Fuel Storage Installations (ISFSI) sites is a temporary measure to accommodate UNF inventory until it can be reprocessed or transferred to a repository for permanent disposal. Policy uncertainty surrounding the long-term management of UNF indicates that DCSSs will need to store UNF for much longer periods than originally envisioned. Meanwhile, the structural and leak-tight integrity of DCSSs must not be compromised. The eddy current technique is presented as a potential tool for inspecting the outer surfaces of DCSS canisters for degradation, particularly atmospheric stressmore » corrosion cracking (SCC). Results are presented that demonstrate that eddy current can detect flaws that cannot be detected reliably using standard visual techniques. In addition, simulations are performed to explore the best parameters of a pancake coil probe for sizing of SCC flaws in DCSS canisters and to identify features in frequency sweep curves that may potentially be useful for facilitating accurate depth sizing of atmospheric SCC flaws from eddy current measurements.« less
In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P
2012-09-25
We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.
Aprea, Eugenio; Romano, Andrea; Betta, Emanuela; Biasioli, Franco; Cappellin, Luca; Fanti, Marco; Gasperi, Flavia
2015-01-01
Drying process is commonly used to allow long time storage of valuable porcini mushrooms (Boletus edulis). Although considered a stable product dried porcini flavour changes during storage. Monitoring of volatile compounds during shelf life may help to understand the nature of the observed changes. In the present work two mass spectrometric techniques were used to monitor the evolution of volatile compounds during commercial shelf life of dried porcini. Solid phase microextraction (SPME) coupled to gas chromatography - mass spectrometry (GC-MS) allowed the identification of 66 volatile compounds, 36 of which reported for the first time, monitored during the commercial shelf life of dried porcini. Proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS) , a direct injection mass spectrometric technique, was shown to be a fast and sensitive instrument for the general monitoring of volatile compound evolution during storage of dried porcini. Furthermore, PTR-ToF-MS grants access to compounds whose determination would otherwise require lengthy pre-concentration and/or derivatization steps such as ammonia and small volatile amines. The two techniques, both used for the first time to study dried porcini, provided detailed description of time evolution of volatile compounds during shelf life. Alcohols, aldehydes, ketones and monoterpenes diminish during the storage while carboxylic acids, pyrazines, lactones and amines increase. The storage temperature modifies the rate of the observed changes influencing the final quality of the dried porcini. We showed the advantages of both techniques, suggesting a strategy to be adopted to follow time evolution of volatile compounds in food products during shelf life, based on the identification of compounds by GC-MS and the rapid time monitoring by PTR-ToF-MS measurements in order to maximize the advantages of both techniques. Copyright © 2015 John Wiley & Sons, Ltd.
Supercritical fluid processing: a new dry technique for photoresist developing
NASA Astrophysics Data System (ADS)
Gallagher-Wetmore, Paula M.; Wallraff, Gregory M.; Allen, Robert D.
1995-06-01
Supercritical fluid (SCF) technology is investigated as a dry technique for photoresist developing. Because of their unique combination of gaseous and liquid-like properties, these fluids offer comparative or improved efficiencies over liquid developers and, particularly carbon dioxide, would have tremendous beneficial impact on the environment and on worker safety. Additionally, SCF technology offers the potential for processing advanced resist systems which are currently under investigation as well as those that may have been abandoned due to problems associated with conventional developers. An investigation of various negative and positive photoresist systems is ongoing. Initially, supercritical carbon dioxide (SC CO2) as a developer for polysilane resists was explored because the exposure products, polysiloxanes, are generally soluble in this fluid. These initial studies demonstrated the viability of the SCF technique with both single layer and bilayer systems. Subsequently, the investigation focused on using SC CO2 to produce negative images with polymers that would typically be considered positive resists. Polymers such as styrenes and methacrylates were chemically modified by fluorination and/or copolymerization to render them soluble in SC CO2. Siloxane copolymers and siloxane-modified methacrylates were examined as well. The preliminary findings reported here indicate the feasibility of using SC CO2 for photoresist developing.
Brogden, Nicole K.; Ghosh, Priyanka; Hardi, Lucia; Crofford, Leslie J.; Stinchcomb, Audra L.
2013-01-01
Microneedles provide a minimally invasive means to enhance skin permeability by creating micron-scale channels (micropores) that provide a drug delivery pathway. Adequate formation of the micropores is critical to the success of this unique drug delivery technique. The objective of these studies was to develop sensitive and reproducible impedance spectroscopy techniques to monitor micropore formation in animal models and human subjects. Hairless guinea pigs, a Yucatan miniature pig, and human volunteers were treated with 100 microneedle insertions per site following an overnight pre-hydration period. Repeated measurements were made pre- and post-microneedle treatment using dry and gel Ag/AgCl electrodes applied with light vs. direct pressure to hold the electrode to the skin surface. Impedance measurements dropped significantly post-microneedle application at all sites (p < 0.05, irrespective of electrode type or gel application), confirming micropore formation. In the Yucatan pig and human subjects, gel electrodes with direct pressure yielded the lowest variability (demonstrated by lower %RSD), whereas dry electrodes with direct pressure were superior in the guinea pigs. These studies confirm that impedance measurements are suitable for use in both clinical and animal research environments to monitor formation of new micropores that will allow for drug delivery through the impermeable skin layers. PMID:23589356
Brogden, Nicole K; Ghosh, Priyanka; Hardi, Lucia; Crofford, Leslie J; Stinchcomb, Audra L
2013-06-01
Microneedles (MNs) provide a minimally invasive means to enhance skin permeability by creating micron-scale channels (micropores) that provide a drug delivery pathway. Adequate formation of the micropores is critical to the success of this unique drug delivery technique. The objective of the current work was to develop sensitive and reproducible impedance spectroscopy techniques to monitor micropore formation in animal models and human subjects. Hairless guinea pigs, a Yucatan miniature pig, and human volunteers were treated with 100 MN insertions per site following an overnight prehydration period. Repeated measurements were made pre- and post-MN treatment using dry and gel Ag/AgCl electrodes applied with light verses direct pressure to hold the electrode to the skin surface. Impedance measurements dropped significantly post-MN application at all sites (p < 0.05, irrespective of electrode type or gel application), confirming micropore formation. In the Yucatan pig and human subjects, gel electrodes with direct pressure yielded the lowest variability (demonstrated by lower %relative standard deviation), whereas dry electrodes with direct pressure were superior in the guinea pigs. These studies confirm that impedance measurements are suitable for use in both clinical and animal research environments to monitor the formation of new micropores that will allow for drug delivery through the impermeable skin layers. Copyright © 2013 Wiley Periodicals, Inc.
Xue, Ally L; Downie, Laura E; Ormonde, Susan E; Craig, Jennifer P
2017-03-01
The aim of this cross-sectional survey was to evaluate the self-reported clinical practices of New Zealand optometrists and ophthalmologists with respect to the diagnosis and management of dry eye disease. It also sought to compare these behaviours with the current research evidence base. An anonymous survey was distributed electronically to New Zealand eye care clinicians (optometrists n = 614, ophthalmologists n = 113) to determine practitioner interest in dry eye disease, practice experience, practice modality, preferred diagnostic and management strategies, and information used to guide patient care. Respondents from both professions (response rates, optometrists: 26%, ophthalmologists: 26%) demonstrated similarly strong knowledge of tear film assessment. Ninety percent of respondents ranked patient symptoms and meibomian gland evaluation as the most valuable and common diagnostic approaches. Conversely, standardised grading scales and validated dry eye questionnaires were infrequently adopted. Both professions tailored dry eye management according to severity, indicating eyelid hygiene and non-preserved lubricants as mainstay therapies. Ophthalmologists prescribed systemic tetracyclines significantly more often than optometrists for moderate (48% vs 11%) and severe (72% vs 32%) dry eye (p < 0.05). Continuing education conferences were acknowledged as the primary information source used to guide dry eye management practices by both professions. Consistent with evidence-based guidelines, New Zealand eye care professionals combine subjective and objective techniques to diagnose and stratify dry eye management according to disease severity. There is potential to improve dissemination of research evidence into clinical practice, with continuing education via professional conferences the favoured mode of delivery. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Ballesteros, Daniel; Walters, Christina
2011-11-01
Slow movement of molecules in glassy matrices controls the kinetics of chemical and physical reactions in dry seeds. Variation in physiological activity among seeds suggests that there are differences in mobility among seed glasses. Testing this hypothesis is difficult because few tools are available to measure molecular mobility within dry seeds. Here, motional properties within dry pea cotyledons were assessed using dynamic mechanical analysis. The technique detected several molecular relaxations between -80 and +80°C and gave a more detailed description of water content-temperature effects on molecular motion than previously understood from studies of glass formation in seeds at glass transition (Tg). Diffusive movement is delimited by the α relaxation, which appears to be analogous to Tg. β and γ relaxations were also detected at temperatures lower than α relaxations, clearly demonstrating intramolecular motion within the glassy matrix of the pea cotyledon. Glass transitions, or the mechanical counterpart α relaxation, appear to be less relevant to seed aging during dry storage than previously thought. On the other hand, β relaxation occurs at temperature and moisture conditions typically used for seed storage and has established importance for physical aging of synthetic polymer glasses. Our data show that the nature and extent of molecular motion varies considerably with moisture and temperature, and that the hydrated conditions used for accelerated aging experiments and ultra-dry conditions sometimes recommended for seed storage give greater molecular mobility than more standard seed storage practices. We believe characterization of molecular mobility is critical for evaluating how dry seeds respond to the environment and persist through time. Published 2011. This article is a US Government work and is in the public domain in the USA.
Fiber Bragg grating sensor to monitor stress kinetics in drying process of commercial latex paints.
de Lourenço, Ivo; Possetti, Gustavo R C; Muller, Marcia; Fabris, José L
2010-01-01
In this paper, we report a study about the application of packaged fiber Bragg gratings used as strain sensors to monitor the stress kinetics during the drying process of commercial latex paints. Three stages of drying with distinct mechanical deformation and temporal behaviors were identified for the samples, with mechanical deformation from 15 μm to 21 μm in the longitudinal film dimension on time intervals from 370 to 600 minutes. Drying time tests based on human sense technique described by the Brazilian Technical Standards NBR 9558 were also done. The results obtained shows that human sense technique has a limited perception of the drying process and that the optical measurement system proposed can be used to characterize correctly the dry-through stage of paint. The influence of solvent (water) addition in the drying process was also investigated. The paint was diluted with four parts paint and one part water (80% paint), and one part paint and one part water (50% paint). It was observed that the increase of the water ratio mixed into the paint decreases both the mechanical deformation magnitude and the paint dry-through time. Contraction of 5.2 μm and 10.4 μm were measured for concentrations of 50% and 80% of paint in the mixture, respectively. For both diluted paints the dry-through time was approximately 170 minutes less than undiluted paint. The optical technique proposed in this work can contribute to the development of new standards to specify the drying time of paint coatings.
Fiber Bragg Grating Sensor to Monitor Stress Kinetics in Drying Process of Commercial Latex Paints
de Lourenço, Ivo; Possetti, Gustavo R. C.; Muller, Marcia; Fabris, José L.
2010-01-01
In this paper, we report a study about the application of packaged fiber Bragg gratings used as strain sensors to monitor the stress kinetics during the drying process of commercial latex paints. Three stages of drying with distinct mechanical deformation and temporal behaviors were identified for the samples, with mechanical deformation from 15 μm to 21 μm in the longitudinal film dimension on time intervals from 370 to 600 minutes. Drying time tests based on human sense technique described by the Brazilian Technical Standards NBR 9558 were also done. The results obtained shows that human sense technique has a limited perception of the drying process and that the optical measurement system proposed can be used to characterize correctly the dry-through stage of paint. The influence of solvent (water) addition in the drying process was also investigated. The paint was diluted with four parts paint and one part water (80% paint), and one part paint and one part water (50% paint). It was observed that the increase of the water ratio mixed into the paint decreases both the mechanical deformation magnitude and the paint dry-through time. Contraction of 5.2 μm and 10.4 μm were measured for concentrations of 50% and 80% of paint in the mixture, respectively. For both diluted paints the dry-through time was approximately 170 minutes less than undiluted paint. The optical technique proposed in this work can contribute to the development of new standards to specify the drying time of paint coatings. PMID:22399906
Fu, Nan; Zhou, Zihao; Jones, Tyson Byrne; Tan, Timothy T Y; Wu, Winston Duo; Lin, Sean Xuqi; Chen, Xiao Dong; Chan, Peggy P Y
2011-07-15
Epigallocatechin gallate (EGCG) originated from green tea is well-known for its pharmaceutical potential and antiproliferating effect on carcinoma cells. For drug delivery, EGCG in a micro-/nanoparticle form is desirable for their optimized chemopreventive effect. In this study, first time reports that EGCG microparticles produced by low temperature spray drying can maintain high antioxidant activity. A monodisperse droplet generation system was used to realize the production of EGCG microparticles. EGCG microparticles were obtained with narrow size distribution and diameter of 30.24 ± 1.88 μM and 43.39 ± 0.69 μM for pure EGCG and lactose-added EGCG, respectively. The EC50 value (the amount of EGCG necessary to scavenge 50% of free radical in the medium) of spray dried pure EGCG particles obtained from different temperature is in the range of 3.029-3.075 μM compared to untreated EGCG with EC50 value of 3.028 μM. Varying the drying temperatures from 70°C and 130°C showed little detrimental effect on EGCG antioxidant activity. NMR spectrum demonstrated the EGCG did not undergo chemical structural change after spray drying. The major protective mechanism was considered to be: (1) the use of low temperature and (2) the heat loss from water evaporation that kept the particle temperature at low level. With further drier optimization, this monodisperse spray drying technique can be used as an efficient and economic approach to produce EGCG micro-/nanoparticles. Published by Elsevier B.V.
Energy-saving drying and its application
NASA Astrophysics Data System (ADS)
Kovbasyuk, V. I.
2015-09-01
Superheated steam is efficiently applied as a coolant for the intensification of drying, which is an important component of many up-to-date technologies. However, traditional drying is extremely energy consuming, and many drying apparatus are environmentally unfriendly. Thus, it is important to implement the proposed drying technique using superheated steam under pressure significantly higher than the atmospheric one with subsequent steam transfer for use in a turbine for electric power generation as a compensation of energy costs for drying. This paper includes a brief thermodynamic analysis of such a technique, its environmental advantages, and possible benefits of the use of wet wastes and obtaining high-quality fuels from wet raw materials. A scheme is developed for the turbine protection from impurities that can occur in the steam at drying. Potential advantage of the technique are also the absence of heating surfaces that are in contact with wet media, the absence of the emissions to the atmosphere, and the use of low potential heat for desalination and the purification of water. The new drying technique can play an extremely important part in the implementation in the field of thermal destruction of anthropogenic wastes. In spite of the promotion of waste sorting to obtain valuable secondary raw materials, the main problem of big cities is nonutilizable waste, which makes not less than 85% of the starting quantity of waste. This can only be totally solved by combustion, which even more relates to the sewage sludge utilization. The wastes can be safely and efficiently combusted only provided that they are free of moisture. Combustion temperature optimization makes possible full destruction of dioxins and their toxic analogues.
Invisible Security Printing on Photoresist Polymer Readable by Terahertz Spectroscopy.
Shin, Hee Jun; Lim, Min-Cheol; Park, Kisang; Kim, Sae-Hyung; Choi, Sung-Wook; Ok, Gyeongsik
2017-12-06
We experimentally modulate the refractive index and the absorption coefficient of an SU-8 dry film in the terahertz region by UV light (362 nm) exposure with time dependency. Consequently, the refractive index of SU-8 film is increased by approximately 6% after UV light exposure. Moreover, the absorption coefficient also changes significantly. Using the reflective terahertz imaging technique, in addition, we can read security information printed by UV treatment on an SU-8 film that is transparent in the visible spectrum. From these results, we successfully demonstrate security printing and reading by using photoresist materials and the terahertz technique. This investigation would provide a new insight into anti-counterfeiting applications in fields that need security.
Augmented Dried versus Cryopreserved Amniotic Membrane as an Ocular Surface Dressing
Allen, Claire L.; Clare, Gerry; Stewart, Elizabeth A.; Branch, Matthew J.; McIntosh, Owen D.; Dadhwal, Megha; Dua, Harminder S.; Hopkinson, Andrew
2013-01-01
Purpose Dried amniotic membrane (AM) can be a useful therapeutic adjunct in ophthalmic surgery and possesses logistical advantages over cryopreserved AM. Differences in preservation techniques can significantly influence the biochemical composition and physical properties of AM, potentially affecting clinical efficacy. This study was established to investigate the biochemical and structural effects of drying AM in the absence and presence of saccharide lyoprotectants and its biocompatibility compared to cryopreserved material. Methods AM was cryopreserved or dried with and without pre-treatment with trehalose or raffinose and the antioxidant epigallocatechin (EGCG). Structural and visual comparisons were assessed using electron microscopy. Localisation, expression and release of AM biological factors were determined using immunoassays and immunofluorescence. The biocompatibility of the AM preparations co-cultured with corneal epithelial cell (CEC) or keratocyte monolayers were assessed using cell proliferation, cytotoxicity, apoptosis and migration assays. Results Drying devitalised AM epithelium, but less than cryopreservation and cellular damage was reduced in dried AM pre-treated with trehalose or raffinose. Dried AM alone, and with trehalose or raffinose showed greater factor retention efficiencies and bioavailability compared to cryopreserved AM and demonstrated a more sustained biochemical factor time release in vitro. Cellular health assays showed that dried AM with trehalose or raffinose are compatible and superior substrates compared to cryopreserved AM for primary CEC expansion, with increased proliferation and reduced LDH and caspase-3 levels. This concept was supported by improved wound healing in an immortalised human CEC line (hiCEC) co-cultured with dried and trehalose or raffinose membranes, compared to cryopreserved and fresh AM. Conclusions Our modified preservation process and our resultant optimised dried AM has enhanced structural properties and biochemical stability and is a superior substrate to conventional cryopreserved AM. In addition this product is stable and easily transportable allowing it to be globally wide reaching for use in clinical and military sectors. PMID:24205233
Colloidal transport phenomena of milk components during convective droplet drying.
Fu, Nan; Woo, Meng Wai; Chen, Xiao Dong
2011-10-15
Material segregation has been reported for industrial spray-dried milk powders, which indicates potential material migration during drying process. The relevant colloidal transport phenomenon and the underlying mechanism are still under debate. This study extended the glass-filament single droplet drying technique to observe not only the drying behaviour but also the dissolution behaviour of the correspondingly dried single particle. At progressively longer drying stage, a solvent droplet (water or ethanol) was attached to the semi-dried milk particle and the interaction between the solvent and the particle was video-recorded. Based on the different dissolution and wetting behaviours observed, material migration during milk drying was studied. Fresh skim milk and fresh whole milk were investigated using water and ethanol as solvents. Fat started to accumulate on the surface as soon as drying was started. At the initial stage of drying, the fat layer remained thin and the solubility of the semi-dried milk particle was much affected by lactose and protein present underneath the fat layer. Fat kept accumulating at the surface as drying progressed and the accumulation was completed by the middle stage of drying. The results from drying of model milk materials (pure sodium caseinate solution and lactose/sodium caseinate mixed solution) supported the colloidal transport phenomena observed for the milk drying. When mixed with lactose, sodium caseinate did not form an apparent solvent-resistant protein shell during drying. The extended technique of glass-filament single droplet approach provides a powerful tool in examining the solubility of individual particle after drying. Copyright © 2011 Elsevier B.V. All rights reserved.
Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer.
Prajakta, Dandekar; Ratnesh, Jain; Chandan, Kumar; Suresh, Subramanian; Grace, Samuel; Meera, Venkatesh; Vandana, Patravale
2009-10-01
The investigation was aimed at designing pH-sensitive, polymeric nanoparticles of curcumin, a natural anti-cancer agent, for the treatment of colon cancer. The objective was to enhance the bioavailability of curcumin, simultaneously reducing the required dose through selective targeting to colon. Eudragit S100 was chosen to aid targeting since the polymer dissolves at colonic pH to result in selective colonic release of the entrapped drug. Solvent emulsion-evaporation technique was employed to formulate the nanoparticles. Various process parameters were optimized and the optimized formulation was evaluated for particle size distribution and encapsulation efficiency before subjecting to freeze-drying. The freeze dried product was characterized for particle size, drug content, DSC studies, particle morphology. Anti-cancer potential of the formulation was demonstrated by MTT assay in HT-29 cell line. Nanometric, homogeneous, spherical particles were obtained with encapsulation efficiency of 72%. Freeze-dried nanoparticles exhibited a negative surface charge, drug content of > 99% and presence of drug in amorphous form which may result in possible enhanced absorption. MTT assay demonstrated almost double inhibition of the cancerous cells by nanoparticles, as compared to curcumin alone, at the concentrations tested. Enhanced action may be attributed to size influenced improved cellular uptake, and may result in reduction of overall dose requirement. Results indicate the potential for in vivo studies to establish the clinical application of the formulation.
Image Analysis, Microscopic, and Spectrochemical Study of the PVC Dry Blending Process,
The dry blending process used in the production of electrical grade pvc formulations has been studies using a combination of image analysis , microscopic...by image analysis techniques. Optical and scanning electron microscopy were used to assess morphological differences. Spectrochemical techniques were used to indicate chemical changes.
Spray drying formulation of amorphous solid dispersions.
Singh, Abhishek; Van den Mooter, Guy
2016-05-01
Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. Copyright © 2015 Elsevier B.V. All rights reserved.
Heyde, Mieke; Partridge, Kris A; Howdle, Steven M; Oreffo, Richard O C; Garnett, Martin C; Shakesheff, Kevin M
2007-10-15
Polyamidoamine polymers (PAA) comprising methylene-bisacrylamide/dimethylethylene-diamine monomers were synthesized, complexed with DNA and incorporated into porous P(DL)LA scaffolds by using a supercritical CO(2) (scCO(2)) technique. Scaffolds were made in a dry state consequently there was a need to lyophilize the complexes. A statistically significant reduction of the transfection efficiency was observed in the absence of trehalose when compared to the original complex after freeze-drying. Increasing concentrations (0-10% w/v) of trehalose were added to the complex prior to freeze-drying. Structure dependent differences in DNA binding were evaluated by gel electrophoresis and thermal transition analysis. TEM and PCS showed aggregate formation after freeze-drying without trehalose. Scaffolds were characterized by pore sizes of 173 +/- 73 microm and a porosity of 71%. The transfection potential of the released DNA was investigated by seeding scaffolds with A549 cells and following firefly luciferase as a marker gene after 48 h exposure. Low but continuous levels of transfection were observed for PAA complexes during a 60-day study. Complexes made with Lipofectaminetrade mark gave initially higher levels of DNA release but no further expression was seen after 40 days. Uncomplexed DNA showed background levels of transfection. Culturing cells on 3D scaffolds showed a benefit in retention of transfection activity with time compared to 2D controls. Transfection levels could be increased when cells were grown in OptiMEM. This study demonstrated that PAA/DNA complexes incorporated into a P(DL)LA scaffold made by using scCO(2) processing exhibited a slow release and extended gene expression profile. Copyright 2007 Wiley Periodicals, Inc.
Development of Friction Stir Processing for Repair of Nuclear Dry Cask Storage System Canisters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Kenneth A.; Sutton, Ben; Grant, Glenn J.
The Nuclear Regulatory Commission has identified chloride-induced stress corrosion cracking (CISCC) of austenitic stainless steel dry cask storage systems (DCSS) as an area of great concern. Friction Stir Processing (FSP) was used to repair laboratory-generated stress corrosion cracking (SCC) in representative stainless steel 304 coupons. Results of this study show FSP is a viable method for repair and mitigation CISCC. This paper highlights lessons learned and developed techniques relative to FSP development for crack repair in sensitized thick section stainless steel 304. These include: development of process parameters, welding at low spindle speed, use of weld power and temperature controlmore » and optimization of these controls. NDE and destructive analysis are also presented to demonstrate effectiveness of the developed methods for SCC crack repair.« less
NASA Astrophysics Data System (ADS)
Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun
2014-05-01
Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.
Real-Time DNA Sequencing in the Antarctic Dry Valleys Using the Oxford Nanopore Sequencer
Johnson, Sarah S.; Zaikova, Elena; Goerlitz, David S.; Bai, Yu; Tighe, Scott W.
2017-01-01
The ability to sequence DNA outside of the laboratory setting has enabled novel research questions to be addressed in the field in diverse areas, ranging from environmental microbiology to viral epidemics. Here, we demonstrate the application of offline DNA sequencing of environmental samples using a hand-held nanopore sequencer in a remote field location: the McMurdo Dry Valleys, Antarctica. Sequencing was performed using a MK1B MinION sequencer from Oxford Nanopore Technologies (ONT; Oxford, United Kingdom) that was equipped with software to operate without internet connectivity. One-direction (1D) genomic libraries were prepared using portable field techniques on DNA isolated from desiccated microbial mats. By adequately insulating the sequencer and laptop, it was possible to run the sequencing protocol for up to 2½ h under arduous conditions. PMID:28337073
Techniques for drying thick southern pine veneer
Peter Koch
1964-01-01
Thick veneers cut from southern pine are relatively easy to dry, but they are not easy to dry free of distortion. The research reported here was undertaken to compare five drying systems. Factors evaluated included rate of water loss, degree of distortion, and the effect on strength. Effects on gluability were also briefly studied.
Emerging Trends in Microwave Processing of Spices and Herbs.
Rahath Kubra, Ismail; Kumar, Devender; Jagan Mohan Rao, Lingamallu
2016-10-02
Today, spices are integral part of our food as they provide sensory attributes such as aroma, color, flavour and taste to food. Further their antimicrobial, antioxidant, pharmaceutical and nutritional properties are also well known. Since spices are seasonal so their availability can be extended year round by adopting different preservation techniques. Drying and extraction are most important methods for preservation and value addition to spices. There are different techniques for drying of spices with their own advantages and limitations. A novel, non-conventional technique for drying of spices is use of microwave radiation. This technique proved to be very rapid, and also provide a good quality product. Similarly, there are a number of non-conventional extraction methods in use that are all, in principle, solid-liquid extractions but which introduce some form of additional energy to the process in order to facilitate the transfer of analytes from sample to solvent. This paper reviews latest advances in the use of microwave energy for drying of spices and herbs. Also, the review describes the potential application of microwave energy for extraction of essential oil/bioactive components from spices and herbs and the advantages of microwave-assisted process over the other extraction processes generally employed for extraction. It also showcases some recent research results on microwave drying/extraction from spices and herbs.
DDR process and materials for novel tone reverse technique
NASA Astrophysics Data System (ADS)
Shigaki, Shuhei; Shibayama, Wataru; Takeda, Satoshi; Tamura, Mamoru; Nakajima, Makoto; Sakamoto, Rikimaru
2018-03-01
We developed the novel process and material which can be created reverse-tone pattern without any collapse. The process was Dry Development Rinse (DDR) process, and the material used in this process was DDR material. DDR material was containing siloxane polymer which could be replaced the space area of the photo resist pattern. And finally, the reverse-tone pattern could be obtained by dry etching process without any pattern collapse issue. DDR process could be achieved fine line and space patterning below hp14nm without any pattern collapse by combination of PTD or NTD photo resist. DDR materials were demonstrated with latest coater track at imec. DDR process was fully automated and good CD uniformity was achieved after dry development. Detailed evaluation could be achieved with whole wafer such a study of CD uniformity (CDU). CDU of DDR pattern was compared to pre-pattern's CDU. Lower CDU was achieved and CDU healing was observed with special DDR material. By further evaluation, special DDR material showed relatively small E-slope compared to another DDR material. This small E-slope caused CDU improvement.
Inhaler technique maintenance: gaining an understanding from the patient's perspective.
Ovchinikova, Ludmila; Smith, Lorraine; Bosnic-Anticevich, Sinthia
2011-08-01
The aim of this study was to determine the patient-, education-, and device-related factors that predict inhaler technique maintenance. Thirty-one community pharmacists were trained to deliver inhaler technique education to people with asthma. Pharmacists evaluated (based on published checklists), and where appropriate, delivered inhaler technique education to patients (participants) in the community pharmacy at baseline (Visit 1) and 1 month later (Visit 2). Data were collected on participant demographics, asthma history, current asthma control, history of inhaler technique education, and a range of psychosocial aspects of disease management (including adherence to medication, motivation for correct technique, beliefs regarding the importance of maintaining correct technique, and necessity and concern beliefs regarding preventer therapy). Stepwise backward logistic regression was used to identify the predictors of inhaler technique maintenance at 1 month. In total 145 and 127 participants completed Visits 1 and 2, respectively. At baseline, 17% of patients (n = 24) demonstrated correct technique (score 11/11) which increased to 100% (n = 139) after remedial education by pharmacists. At follow-up, 61% (n = 77) of patients demonstrated correct technique. The predictors of inhaler technique maintenance based on the logistic regression model (X(2) (3, N = 125) = 16.22, p = .001) were use of a dry powder inhaler over a pressurized metered-dose inhaler (OR 2.6), having better asthma control at baseline (OR 2.3), and being more motivated to practice correct inhaler technique (OR 1.2). Contrary to what is typically recommended in previous research, correct inhaler technique maintenance may involve more than repetition of instructions. This study found that past technique education factors had no bearing on technique maintenance, whereas patient psychosocial factors (motivation) did.
Dry coating of solid dosage forms: an overview of processes and applications.
Foppoli, Anastasia Anna; Maroni, Alessandra; Cerea, Matteo; Zema, Lucia; Gazzaniga, Andrea
2017-12-01
Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous coating systems can be overcome, such as toxicological, environmental, and safety-related issues on the one hand as well as costly drying phases and impaired product stability on the other. The considerable advantages related to solventless coating has been prompting a strong research interest in this field of pharmaceutics. In the article, processes and applications relevant to techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-melt coating and coating by photocuring, while the latter encompass press coating and powder coating. Moreover, solventless techniques, such as injection molding and three-dimensional printing by fused deposition modeling, which are not purposely conceived for coating, are also discussed in that they would open new perspectives in the manufacturing of coated-like dosage forms.
Sotiropoulos, A; Vourka, I; Erotokritou, A; Novakovic, J; Panaretou, V; Vakalis, S; Thanos, T; Moustakas, K; Malamis, D
2016-06-01
The results of the demonstration of an innovative household biowaste management and treatment scheme established in two Greek Municipalities for the production of lignocellulosic ethanol using dehydrated household biowaste as a substrate, are presented within this research. This is the first time that biowaste drying was tested at a decentralized level for the production of ethanol using the Simultaneous Saccharification and Fermentation (SSF) process, at a pilot scale in Greece. The decentralized biowaste drying method proved that the household biowaste mass and volume reduction may reach 80% through the dehydration process used. The chemical characteristics related to lignocellulosic ethanol production have proved to differ substantially between seasons thus; special attention should be given to the process applied for ethanol production mainly regarding the enzyme quality and quantity used during the pretreatment stage. The maximum ethanol production achieved was 29.12g/L, approximately 60% of the maximum theoretical yield based on the substrate's sugar content. The use of the decentralized waste drying as an alternative approach for household biowaste minimization and the production of second generation ethanol is considered to be a promising approach for efficient biowaste management and treatment in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Carlesi, Serena; Ricci, Marilena; Cucci, Costanza; La Nasa, Jacopo; Lofrumento, Cristiana; Picollo, Marcello; Becucci, Maurizio
2015-07-01
This work explores the application of chemometric techniques to the analysis of lipidic paint binders (i.e., drying oils) by means of Raman and near-infrared spectroscopy. These binders have been widely used by artists throughout history, both individually and in mixtures. We prepared various model samples of the pure binders (linseed, poppy seed, and walnut oils) obtained from different manufacturers. These model samples were left to dry and then characterized by Raman and reflectance near-infrared spectroscopy. Multivariate analysis was performed by applying principal component analysis (PCA) on the first derivative of the corresponding Raman spectra (1800-750 cm(-1)), near-infrared spectra (6000-3900 cm(-1)), and their combination to test whether spectral differences could enable samples to be distinguished on the basis of their composition. The vibrational bands we found most useful to discriminate between the different products we studied are the fundamental ν(C=C) stretching and methylenic stretching and bending combination bands. The results of the multivariate analysis demonstrated the potential of chemometric approaches for characterizing and identifying drying oils, and also for gaining a deeper insight into the aging process. Comparison with high-performance liquid chromatography data was conducted to check the PCA results.
Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes.
Hu, Shihao; Xia, Zhenhai; Dai, Liming
2013-01-21
Geckos can run freely on vertical walls and even ceilings. Recent studies have discovered that gecko's extraordinary climbing ability comes from a remarkable design of nature with nanoscale beta-keratin elastic hairs on their feet and toes, which collectively generate sufficiently strong van der Waals force to hold the animal onto an opposing surface while at the same time disengaging at will. Vertically aligned carbon nanotube (VA-CNT) arrays, resembling gecko's adhesive foot hairs with additional superior mechanical, chemical and electrical properties, have been demonstrated to be a promising candidate for advanced fibrillar dry adhesives. The VA-CNT arrays with tailor-made hierarchical structures can be patterned and/or transferred onto various flexible substrates, including responsive polymers. This, together with recent advances in nanofabrication techniques, could offer 'smart' dry adhesives for various potential applications, even where traditional adhesives cannot be used. A detailed understanding of the underlying mechanisms governing the material properties and adhesion performances is critical to the design and fabrication of gecko inspired CNT dry adhesives of practical significance. In this feature article, we present an overview of recent progress in both fundamental and applied frontiers for the development of CNT-based adhesives by summarizing important studies in this exciting field, including our own work.
Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes
NASA Astrophysics Data System (ADS)
Hu, Shihao; Xia, Zhenhai; Dai, Liming
2012-12-01
Geckos can run freely on vertical walls and even ceilings. Recent studies have discovered that gecko's extraordinary climbing ability comes from a remarkable design of nature with nanoscale beta-keratin elastic hairs on their feet and toes, which collectively generate sufficiently strong van der Waals force to hold the animal onto an opposing surface while at the same time disengaging at will. Vertically aligned carbon nanotube (VA-CNT) arrays, resembling gecko's adhesive foot hairs with additional superior mechanical, chemical and electrical properties, have been demonstrated to be a promising candidate for advanced fibrillar dry adhesives. The VA-CNT arrays with tailor-made hierarchical structures can be patterned and/or transferred onto various flexible substrates, including responsive polymers. This, together with recent advances in nanofabrication techniques, could offer `smart' dry adhesives for various potential applications, even where traditional adhesives cannot be used. A detailed understanding of the underlying mechanisms governing the material properties and adhesion performances is critical to the design and fabrication of gecko inspired CNT dry adhesives of practical significance. In this feature article, we present an overview of recent progress in both fundamental and applied frontiers for the development of CNT-based adhesives by summarizing important studies in this exciting field, including our own work.
Accelerating the kiln drying of oak
William T. Simpson
1980-01-01
Reducing kiln-drying time for oak lumber can reduce energy requirements as well as reduce lumber inventories. In this work, l-inch northern red oak and white oak were kiln dried from green by a combination of individual accelerating techniquesâ presurfacing, presteaming, accelerated and smooth schedule, and high-temperature drying below 18 percent moisture content....
40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operate a dry rotary dryer, you must demonstrate that your dryer processes furnish with an inlet moisture.... You must record the inlet furnish moisture content (dry basis) and inlet dryer operating temperature... highest recorded 24-hour average inlet furnish moisture content and the highest recorded 24-hour average...
40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operate a dry rotary dryer, you must demonstrate that your dryer processes furnish with an inlet moisture.... You must record the inlet furnish moisture content (dry basis) and inlet dryer operating temperature... highest recorded 24-hour average inlet furnish moisture content and the highest recorded 24-hour average...
Corrigan, Damion K; Salton, Neale A; Preston, Chris; Piletsky, Sergey
2010-09-01
Cleaning verification is a scientific and economic problem for the pharmaceutical industry. A large amount of potential manufacturing time is lost to the process of cleaning verification. This involves the analysis of residues on spoiled manufacturing equipment, with high-performance liquid chromatography (HPLC) being the predominantly employed analytical technique. The aim of this study was to develop a portable cleaning verification system for nelarabine using surface enhanced Raman spectroscopy (SERS). SERS was conducted using a portable Raman spectrometer and a commercially available SERS substrate to develop a rapid and portable cleaning verification system for nelarabine. Samples of standard solutions and swab extracts were deposited onto the SERS active surfaces, allowed to dry and then subjected to spectroscopic analysis. Nelarabine was amenable to analysis by SERS and the necessary levels of sensitivity were achievable. It is possible to use this technology for a semi-quantitative limits test. Replicate precision, however, was poor due to the heterogeneous drying pattern of nelarabine on the SERS active surface. Understanding and improving the drying process in order to produce a consistent SERS signal for quantitative analysis is desirable. This work shows the potential application of SERS for cleaning verification analysis. SERS may not replace HPLC as the definitive analytical technique, but it could be used in conjunction with HPLC so that swabbing is only carried out once the portable SERS equipment has demonstrated that the manufacturing equipment is below the threshold contamination level.
Photometric imaging in particle size measurement and surface visualization.
Sandler, Niklas
2011-09-30
The aim of this paper is to give an insight into photometric particle sizing approaches, which differ from the typical particle size measurement of dispersed particles. These approaches can often be advantageous especially for samples that are moist or cohesive, when dispersion of particles is difficult or sometimes impossible. The main focus of this paper is in the use of photometric stereo imaging. The technique allows the reconstruction of three-dimensional images of objects using multiple light sources in illumination. The use of photometric techniques is demonstrated in at-line measurement of granules and on-line measurement during granulation and dry milling. Also, surface visualization and roughness measurements are briefly discussed. Copyright © 2010 Elsevier B.V. All rights reserved.
Are the evidences of forensic entomology preserved in ethanol suitable for SEM studies?
López-Esclapez, Raquel; García, María-Dolores; Arnaldos, María-Isabel; Presa, Juan José; Ubero-Pascal, Nicolás
2014-07-01
In forensic practice, the use of arthropod evidences to estimate the postmortem interval is a very good approach when the elapsed time from death is long, but it requires the correct identification of the specimens. This is a crucial step, not always easy to achieve, in particular when dealing with immature specimens. In this case, scanning electronic microscopy (SEM) can be useful, but the techniques used to preserve specimens in forensic practice are usually different from those used to prepare specimens for SEM studies. To determine whether forensic evidences preserving techniques are also compatible with SEM analysis, we have compared specimens of all the immature stages of Calliphora vicina Robineau-Desvoidy, 1830 (Diptera, Calliphoridae) preserved in 70% ethanol, with others prepared with aldehydic fixative techniques that are more appropriate for SEM studies. At the same time, two drying techniques have also been compared with both fixative techniques, the critical point drying and air-drying following with hexamethyldisilizane treatment (HMDS). Our results indicate that there are not basis against recommending the use of ethanol to preserve forensic entomological evidences and that both drying methods appear to offer good results for second and third instar larvae, although HMDS behaves better with eggs and pupae. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wu, Qifang; Xie, Lijuan; Xu, Huirong
2018-06-30
Nuts and dried fruits contain rich nutrients and are thus highly vulnerable to contamination with toxigenic fungi and aflatoxins because of poor weather, processing and storage conditions. Imaging and spectroscopic techniques have proven to be potential alternative tools to wet chemistry methods for efficient and non-destructive determination of contamination with fungi and toxins. Thus, this review provides an overview of the current developments and applications in frequently used food safety testing techniques, including near infrared spectroscopy (NIRS), mid-infrared spectroscopy (MIRS), conventional imaging techniques (colour imaging (CI) and hyperspectral imaging (HSI)), and fluorescence spectroscopy and imaging (FS/FI). Interesting classification and determination results can be found in both static and on/in-line real-time detection for contaminated nuts and dried fruits. Although these techniques offer many benefits over conventional methods, challenges remain in terms of heterogeneous distribution of toxins, background constituent interference, model robustness, detection limits, sorting efficiency, as well as instrument development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, J.H.; Michelotti, M.D.; Riemer, N.
2016-10-01
Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removalmore » rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.« less
Surgical treatment of dry eye syndrome: conjunctival graft of the minor salivary gland.
Güerrissi, Jorge Orlando; Belmonte, Javier
2004-01-01
Despite the availability of efficient tear substitutes, many patients with dry eye syndrome experience severe corneal injuries and a subsequent loss of vision. Surgical techniques using mayor salivary glands to provide a substitute for tears have been reported; with this technique the drainage of saliva goes into the conjunctival fornix, permitting corneal and conjunctival humidification. The authors describe a new surgical approach in which minor salivary glands are autotransplanted into the conjunctival fornix by means of a graft of the intraoral mucosa-transporting salivary glands. This approach was used in a 56-year-old woman with a 2-year history of refractory and pharmacologically untreatable dry eye syndrome caused by Sjögren's syndrome. The right eye had more severe corneal and conjunctival lesions than did the contralateral one, so the treatment was planned in the right eye only. A weekly follow-up during the first 6 months confirmed the significant improvement of dry eye symptoms in the surgically treated eye. Three months after surgery, a biopsy was performed in the minor salivary gland graft, and the histologic findings revealed the presence of glandular acinus, duct with mucin content, and lymphocyte infiltration. The significant improvement obtained in this patient suggests that the secretion from the grafted salivary minor glands was better in promoting homeostasis of the ocular surface than are artificial tears. This may be explained by: (1) The lacrimal and salivary secretions contain biologically active constituents that may protect from infection and promote normal growth epithelium; (2) The secreted mucin is thought to coat the epithelial surface, reducing the high surface tension of the eye wetted by aqueous tears; (3) The thick secretions of the minor gland might act in reducing the evaporation of the underlying tear layer and form a hydrophobic barrier along the lid margin that can retain the lid margin tear string and prevent its flow onto the skin. Minor gland salivary autotransplant is a new surgical technique with effectiveness demonstrated in one patient, but the scientific explanation is not clear; additional experience with more cases could confirm the initial success.
A technique for estimating dry deposition velocities based on similarity with latent heat flux
NASA Astrophysics Data System (ADS)
Pleim, Jonathan E.; Finkelstein, Peter L.; Clarke, John F.; Ellestad, Thomas G.
Field measurements of chemical dry deposition are needed to assess impacts and trends of airborne contaminants on the exposure of crops and unmanaged ecosystems as well as for the development and evaluation of air quality models. However, accurate measurements of dry deposition velocities require expensive eddy correlation measurements and can only be practically made for a few chemical species such as O 3 and CO 2. On the other hand, operational dry deposition measurements such as those used in large area networks involve relatively inexpensive standard meteorological and chemical measurements but rely on less accurate deposition velocity models. This paper describes an intermediate technique which can give accurate estimates of dry deposition velocity for chemical species which are dominated by stomatal uptake such as O 3 and SO 2. This method can give results that are nearly the quality of eddy correlation measurements of trace gas fluxes at much lower cost. The concept is that bulk stomatal conductance can be accurately estimated from measurements of latent heat flux combined with standard meteorological measurements of humidity, temperature, and wind speed. The technique is tested using data from a field experiment where high quality eddy correlation measurements were made over soybeans. Over a four month period, which covered the entire growth cycle, this technique showed very good agreement with eddy correlation measurements for O 3 deposition velocity.
Digital Reconstruction of 3D Polydisperse Dry Foam
NASA Astrophysics Data System (ADS)
Chieco, A.; Feitosa, K.; Roth, A. E.; Korda, P. T.; Durian, D. J.
2012-02-01
Dry foam is a disordered packing of bubbles that distort into familiar polyhedral shapes. We have implemented a method that uses optical axial tomography to reconstruct the internal structure of a dry foam in three dimensions. The technique consists of taking a series of photographs of the dry foam against a uniformly illuminated background at successive angles. By summing the projections we create images of the foam cross section. Image analysis of the cross sections allows us to locate Plateau borders and vertices. The vertices are then connected according to Plateau's rules to reconstruct the internal structure of the foam. Using this technique we are able to visualize a large number of bubbles of real 3D foams and obtain statistics of faces and edges.
Heavy metals in atmospheric surrogate dry deposition
Morselli; Cecchini; Grandi; Iannuccilli; Barilli; Olivieri
1999-02-01
This paper describes a methodological approach for the assessment of the amount of surrogate dry deposition of several toxic heavy metals (Cd, Cr, Cu, Ni, Pb, V, Zn) associated with atmospheric particulate matter at ground level. The objectives of the study were twofold: i) the evaluation of several techniques for the digestion of dry deposition samples for trace metal analysis; ii) the comparison of the results from two samplers with different collecting surfaces. A dry solid surface sampler (DRY sampler, Andersen--USA) and a water layer surface sampler (DAS sampler--MTX Italy) were employed. The samples were collected over a one-year period in an urban site of Bologna (northern Italy). A description is given of the complete procedure, from sampling to data elaboration, including sample storage, digestion and analytical methods. According to the results obtained with three different digestion techniques (Teflon bomb, microwave digester and Teflon flask with vapour cooling system), the highest recovery rate was achieved by the Teflon bomb procedure employing an NBS 1648 Standard Reference Material; 90-95% of the elements considered were recovered by dissolution in a pressurized Teflon bomb with an HNO3-HF mixture. Given these results, the technique was adopted for dry deposition sample digestion. On the basis of the amount of heavy metals measured as monthly deposition fluxes (microg/m2), the collecting efficiency of the DAS sampler for a number of elements was found to be as much as two to three times greater than that of the DRY sampler.
A cost-effective device for the rapid transfer of gel-separated proteins onto membranes.
Tam, Hann W; Huang, Yu-Chen; Tam, Ming F
2009-03-01
We describe here the fabrication of a cost-effective semi-dry blotting apparatus for the transfer of proteins onto membranes. Graphite sheets were used as electrodes. Protein mixtures were separated on NuPAGE 4% to 12% polyacrylamide gradient gels. With a Tris-bicine buffer, we demonstrated that close to 80% of the proteins with apparent molecular mass of 80kDa or less were removed from the gels after 8min of blotting. The process is much faster than the techniques reported previously in the literature.
Cubic GaN quantum dots embedded in zinc-blende AlN microdisks
NASA Astrophysics Data System (ADS)
Bürger, M.; Kemper, R. M.; Bader, C. A.; Ruth, M.; Declair, S.; Meier, C.; Förstner, J.; As, D. J.
2013-09-01
Microresonators containing quantum dots find application in devices like single photon emitters for quantum information technology as well as low threshold laser devices. We demonstrate the fabrication of 60 nm thin zinc-blende AlN microdisks including cubic GaN quantum dots using dry chemical etching techniques. Scanning electron microscopy analysis reveals the morphology with smooth surfaces of the microdisks. Micro-photoluminescence measurements exhibit optically active quantum dots. Furthermore this is the first report of resonator modes in the emission spectrum of a cubic AlN microdisk.
Nweke, Mauryn C; Turmaine, Mark; McCartney, R Graham; Bracewell, Daniel G
2017-03-01
The drying of chromatography resins prior to scanning electron microscopy is critical to image resolution and hence understanding of the bead structure at sub-micron level. Achieving suitable drying conditions is especially important with agarose-based chromatography resins, as over-drying may cause artefact formation, bead damage and alterations to ultrastructural properties; and under-drying does not provide sufficient resolution for visualization under SEM. This paper compares and contrasts the effects of two drying techniques, critical point drying and freeze drying, on the morphology of two agarose based resins (MabSelect™/d w ≈85 µm and Capto™ Adhere/d w ≈75 µm) and provides a complete method for both. The results show that critical point drying provides better drying and subsequently clearer ultrastructural visualization of both resins under SEM. Under this protocol both the polymer fibers (thickness ≈20 nm) and the pore sizes (diameter ≈100 nm) are clearly visible. Freeze drying is shown to cause bead damage to both resins, but to different extents. MabSelect resin encounters extensive bead fragmentation, whilst Capto Adhere resin undergoes partial bead disintegration, corresponding with the greater extent of agarose crosslinking and strength of this resin. While freeze drying appears to be the less favorable option for ultrastructural visualization of chromatography resin, it should be noted that the extent of fracturing caused by the freeze drying process may provide some insight into the mechanical properties of agarose-based chromatography media. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Krishnakumar, Gopal Shankar; Gostynska, Natalia; Campodoni, Elisabetta; Dapporto, Massimiliano; Montesi, Monica; Panseri, Silvia; Tampieri, Anna; Kon, Elizaveta; Marcacci, Maurilio; Sprio, Simone; Sandri, Monica
2017-08-01
This study explores for the first time the application of ribose as a highly biocompatible agent for the crosslinking of hybrid mineralized constructs, obtained by bio-inspired mineralization of self-assembling Type I collagen matrix with magnesium-doped-hydroxyapatite nanophase, towards a biomimetic mineralized 3D scaffolds (MgHA/Coll) with excellent compositional and structural mimicry of bone tissue. To this aim, two different crosslinking mechanisms in terms of pre-ribose glycation (before freeze drying) and post-ribose glycation (after freeze drying) were investigated. The obtained results explicate that with controlled freeze-drying, highly anisotropic porous structures with opportune macro-micro porosity are obtained. The physical-chemical features of the scaffolds characterized by XRD, FTIR, ICP and TGA demonstrated structural mimicry analogous to the native bone. The influence of ribose greatly assisted in decreasing solubility and increased enzymatic resistivity of the scaffolds. In addition, enhanced mechanical behaviour in response to compressive forces was achieved. Preliminary cell culture experiments reported good cytocompatibility with extensive cell adhesion, proliferation and colonization. Overall, scaffolds developed by pre-ribose glycation process are preferred, as the related crosslinking technique is more facile and robust to obtain functional scaffolds. As a proof of concept, we have demonstrated that ribose crosslinking is cost-effective, safe and functionally effective. This study also offers new insights and opportunities in developing promising scaffolds for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
One-step flame synthesis of silver nanoparticles for roll-to-roll production of antibacterial paper
NASA Astrophysics Data System (ADS)
Brobbey, Kofi J.; Haapanen, Janne; Gunell, Marianne; Mäkelä, Jyrki M.; Eerola, Erkki; Toivakka, Martti; Saarinen, Jarkko J.
2017-10-01
Nanoparticles are used in several applications due to the unique properties they possess compared to bulk materials. Production techniques have continuously evolved over the years. Recently, there has been emphasis on environmentally friendly manufacturing processes. Substrate properties often limit the possible production techniques and, for example; until recently, it has been difficult to incorporate nanoparticles into paper. Chemical reduction of a precursor in the presence of paper changes the bulk properties of paper, which may limit intended end-use. In this study, we present a novel technique for incorporating silver nanoparticles into paper surface using a flame pyrolysis procedure known as Liquid Flame Spray. Papers precoated with mineral pigments and plastic are used as substrates. Silver nanoparticles were analyzed using SEM and XPS measurements. Results show a homogeneous monolayer of silver nanoparticles on the surface of paper, which demonstrated antibacterial properties against E. coli. Paper precoated with plastic showed more nanoparticles on the surface compared to pigment coated paper samples except for polyethylene-precoated paper. The results demonstrate a dry synthesis approach for depositing silver nanoparticles directly onto paper surface in a process which produces no effluents. The production technique used herein is up scalable for industrial production of antibacterial paper.
Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murto, Marika, E-mail: marika.murto@biotek.lu.se; Björnsson, Lovisa, E-mail: lovisa.bjornsson@miljo.lth.se; Environmental and Energy Systems Studies, Lund University, P.O. Box 118, SE-221 00 Lund
2013-05-15
Highlights: ► A novel approach for biogas production from a waste fraction that today is incinerated. ► Biogas production is possible in spite of the impurities of the waste. ► Tracer studies are applied in a novel way. ► Structural material is needed to improve the flow pattern of the waste. ► We provide a solution to biological treatment for the complex waste fraction. - Abstract: At the waste handling company NSR, Helsingborg, Sweden, the food waste fraction of source separated municipal solid waste is pretreated to obtain a liquid fraction, which is used for biogas production, and a drymore » fraction, which is at present incinerated. This pretreatment and separation is performed to remove impurities, however also some of the organic material is removed. The possibility of realising the methane potential of the dry fraction through batch-wise dry anaerobic digestion was investigated. The anaerobic digestion technique used was a two-stage process consisting of a static leach bed reactor and a methane reactor. Treatment of the dry fraction alone and in a mixture with structural material was tested to investigate the effect on the porosity of the leach bed. A tracer experiment was carried out to investigate the liquid flow through the leach beds, and this method proved useful in demonstrating a more homogenous flow through the leach bed when structural material was added. Addition of structural material to the dry fraction was needed to achieve a functional digestion process. A methane yield of 98 m{sup 3}/ton was obtained from the dry fraction mixed with structural material after 76 days of digestion. This was in the same range as obtained in the laboratory scale biochemical methane potential test, showing that it was possible to extract the organic content in the dry fraction in this type of dry digestion system for the production of methane.« less
Roth, C; Winter, G; Lee, G
2001-09-01
The use of a novel microbalance (Christ) technique to monitor continuously the weight loss of a vial standing on a shelf of a freeze-dryer has been investigated. The drying rates of the following aqueous solutions were measured during the primary drying phase of a complete freeze-drying cycle: sucrose (75 mg/mL, 2.5-mL fill volume), sucrose and phenylalanine (1:0.2 by weight, 75 mg/mL, 2.5-mL fill volume), and mannitol (75mg/mL, 2.5-mL fill volume). The microbalance yields the cumulative water loss, m(cu) in grams, and the momentary drying rate, Deltam(cu)/Deltat in mg/10 min, of the frozen cake. The momentary drying rate curves were especially useful for examining how Deltam(cu)/Deltat changes with time during primary drying. Initially, Deltam(cu)/Deltat rises to a sharp maximum and then decreases in a fashion depending on shelf temperature, chamber pressure, and the nature of the substance being dried. Different drying behavior was observed for the sucrose and sucrose/phenylalanine systems, which was attributed to the presence of crystalline phenylalanine in the amorphous sucrose. At low shelf-temperature (-24 degrees C) the crystalline mannitol showed lower Deltam(cu)/Deltat than with either sucrose or sucrose/phenylalanine. The balance could also detect differences in Deltam(cu)/Deltat when using different freezing protocols. "Slow" and "moderate" freezing protocols gave similar drying behavior, but "rapid" freezing in liquid nitrogen produced greatly altered drying rate and internal cake morphology. The balance also could be used to detect the endpoint of primary drying. Different endpoint criteria and their influence on final dried cake properties were examined. Copyright 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association
Ferreira, Rosana Gomes; Monteiro, Mychelle Alves; Pereira, Mararlene Ulberg; da Costa, Rafaela Pinto; Spisso, Bernardete Ferraz; Calado, Veronica
2016-08-01
The aim of this work was to study the feasibility of producing an egg matrix candidate reference material for salinomycin. Preservation techniques investigated were freeze-drying and spray drying dehydration. Homogeneity and stability studies of the produced batches were conducted according to ISO Guides 34 and 35. The results showed that all produced batches were homogeneous and both freeze-drying and spray drying techniques were suitable for matrix dehydrating, ensuring the material stability. In order to preserve the material integrity, it must be transported within the temperature range of -20 up to 25°C. The results constitute an important step towards the development of an egg matrix reference material for salinomycin is possible. Copyright © 2016 Elsevier B.V. All rights reserved.
Determination of plutonium in spent nuclear fuel using high resolution X-ray
McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.
2015-05-30
Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.
Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less
The simulation of the half-dry stroke based on the force feedback technology
NASA Astrophysics Data System (ADS)
Guo, Chao; Hou, Zeng-xuan; Zheng, Shuan-zhu; Yang, Guang-qing
2017-02-01
A novel stroke simulation method of the Half-dry style of Chinese calligraphy based on the force feedback technology is proposed for the virtual painting. Firstly, according to the deformation of the brush when the force is exerted on it, the brush footprint between the brush and paper is calculated. The complete brush stroke is obtained by superimposing brush footprints along the painting direction, and the dynamic painting of the brush stroke is implemented. Then, we establish the half-dry texture databases and propose the concept of half-dry value by researching the main factors that affect the effects of the half-dry stroke. In the virtual painting, the half-dry texture is mapped into the stroke in real time according to the half-dry value and painting technique. A technique of texture blending based on the KM model is applied to avoid the seams while texture mapping. The proposed method has been successfully applied to the virtual painting system based on the force feedback technology. In this system, users can implement the painting in real time with a Phantom Desktop haptic device, which can effectively enhance reality to users.
Repository Drift Backfilling Demonstrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Londe, I.; Dubois, J.Ph.; Bauer, C.
2008-07-01
The 'Backfilling Demonstrator' is one of the technological demonstrators developed by ANDRA in the framework of the feasibility studies for a geological repository for high-level long-lived (HL-LL waste) within a clay formation. The demonstrator concerns the standard and supporting backfills as defined in Andra's 2005 design. The standard backfill is intended to fill up almost all drifts of the underground repository in order to limit any deformation of the rock after the degradation of the drift lining. The supporting backfill only concerns a small portion of the volume to be backfilled in order to counter the swelling pressure of themore » swelling clay contained in the sealing structures. The first objective of the demonstrator was to show the possibility of manufacturing a satisfactory backfill, in spite of the exiguity of the underground structures, and of reusing as much as possible the argillite muck. For the purpose of this experiment, the argillite muck was collected on Andra's work-site for the implementation of an underground research laboratory. Still ongoing, the second objective is to follow up the long-term evolution of the backfill. Approximately 200 m{sup 3} of compacted backfill material have been gathered in a large concrete tube simulating a repository drift. The standard backfill was manufactured exclusively with argillite. The supporting backfill was made by forming a mixture of argillite and sand. Operations were carried out mostly at Richwiller, close to Mulhouse, France. The objectives of the demonstrator were met: an application method was tested and proven satisfactory. The resulting dry densities are relatively high, although the moduli of deformation do not always reach the set goal. The selected objective for the demonstrator was a dry density corresponding to a relatively high compaction level (95% of the standard Proctor optimum [SPO]), for both pure argillite and the argillite-sand mixture. The plate-percussion compaction technique was used and proved satisfactory. The measured dry densities are higher than the 95%-SPO objective. The implementation rates remain very low due to the experimental conditions involved. The metal supply mode would need to be revised before any industrial application is contemplated. The Demonstrator Program started in August 2004 and is followed up today over the long term. With that objective in mind, sensors and a water-saturation system have been installed. (author)« less
ERIC Educational Resources Information Center
Flynn, Susan; Duell, Kelly; Dehaven, Carole; Heidorn, Brent
2017-01-01
The Kick, Stroke and Swim (KSS) program can be used to engage students in swimming-skill acquisition and fitness training using a variety of modalities, strategies and techniques on dry land. Practicing swim strokes and techniques on land gives all levels of swimmers--from beginner to competitive--a kinesthetic awareness of the individual…
Recent developments in high-quality drying of vegetables, fruits, and aquatic products.
Zhang, Min; Chen, Huizhi; Mujumdar, Arun S; Tang, Juming; Miao, Song; Wang, Yuchuan
2017-04-13
Fresh foods like vegetables, fruits, and aquatic products have high water activity and they are highly heat-sensitive and easily degradable. Dehydration is one of the most common methods used to improve food shelf-life. However, drying methods used for food dehydration must not only be efficient and economic but also yield high-quality products based on flavor, nutrients, color, rehydration, uniformity, appearance, and texture. This paper reviews some new drying technologies developed for dehydration of vegetables, fruits, and aquatic products. These include: infrared drying, microwave drying, radio frequency drying, electrohydrodynamic drying, etc., as well as hybrid drying methods combining two or more different drying techniques. A comprehensive review of recent developments in high-quality drying of vegetables, fruits and aquatic products is presented and recommendations are made for future research.
Östbring, Karolina; Sjöholm, Ingegerd; Sörenson, Henrietta; Ekholm, Andrej; Erlanson-Albertsson, Charlotte; Rayner, Marilyn
2018-03-01
Thylakoids, a chloroplast membrane extracted from green leaves, are a promising functional ingredient with appetite-reducing properties via their lipase-inhibiting effect. Thylakoids in powder form have been evaluated in animal and human models, but no comprehensive study has been conducted on powder characteristics. The aim was to investigate the effects of different isolation methods and drying techniques (drum-drying, spray-drying, freeze-drying) on thylakoids' physicochemical and functional properties. Freeze-drying yielded thylakoid powders with the highest lipase-inhibiting capacity. We hypothesize that the specific macromolecular structures involved in lipase inhibition were degraded to different degrees by exposure to heat during spray-drying and drum-drying. We identified lightness (Hunter's L-value), greenness (Hunter's a-value), chlorophyll content and emulsifying capacity to be correlated to lipase-inhibiting capacity. Thus, to optimize the thylakoids functional properties, the internal membrane structure indicated by retained green colour should be preserved. This opens possibilities to use chlorophyll content as a marker for thylakoid functionality in screening processes during process optimization. Thylakoids are heat sensitive, and a mild drying technique should be used in industrial production. Strong links between physicochemical parameters and lipase inhibition capacity were found that can be used to predict functionality. The approach from this study can be applied towards production of standardized high-quality functional food ingredients. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi
NASA Astrophysics Data System (ADS)
Baik, Sangyul; Kim, Da Wan; Park, Youngjin; Lee, Tae-Jin; Ho Bhang, Suk; Pang, Changhyun
2017-06-01
Adhesion strategies that rely on mechanical interlocking or molecular attractions between surfaces can suffer when coming into contact with liquids. Thus far, artificial wet and dry adhesives have included hierarchical mushroom-shaped or porous structures that allow suction or capillarity, supramolecular structures comprising nanoparticles, and chemistry-based attractants that use various protein polyelectrolytes. However, it is challenging to develop adhesives that are simple to make and also perform well—and repeatedly—under both wet and dry conditions, while avoiding non-chemical contamination on the adhered surfaces. Here we present an artificial, biologically inspired, reversible wet/dry adhesion system that is based on the dome-like protuberances found in the suction cups of octopi. To mimic the architecture of these protuberances, we use a simple, solution-based, air-trap technique that involves fabricating a patterned structure as a polymeric master, and using it to produce a reversed architecture, without any sophisticated chemical syntheses or surface modifications. The micrometre-scale domes in our artificial adhesive enhance the suction stress. This octopus-inspired system exhibits strong, reversible, highly repeatable adhesion to silicon wafers, glass, and rough skin surfaces under various conditions (dry, moist, under water and under oil). To demonstrate a potential application, we also used our adhesive to transport a large silicon wafer in air and under water without any resulting surface contamination.
NASA Astrophysics Data System (ADS)
Nagasaka, Yuji; Kobayashi, Yusuke
2007-09-01
The surface tension and the viscosity of molten LiNbO 3 (LN) having the congruent composition have been measured simultaneously in a temperature range from 1537 to 1756 K under argon gas and dry-air atmospheres. The present measurement technique involves surface laser-light scattering (SLLS) that detects nanometer-order-amplitude surface waves usually regarded as ripplons excited by thermal fluctuations. This technique's non-invasive nature allows it to avoid the experimental difficulties of conventional techniques resulting from the insertion of an actuator in the melt. The results of surface tension measurement obtained under a dry-air atmosphere are about 5% smaller than those obtained under an argon atmosphere near the melting temperature, and the temperature dependence of the surface tension under a dry-air atmosphere is twice that under an argon atmosphere. The uncertainty of surface tension measurement is estimated to be ±2.6% under argon and ±1.9% under dry air. The temperature dependence of viscosity can be well correlated with the results of Arrhenius-type equations without any anomalous behavior near the melting point. The viscosities obtained under a dry-air atmosphere were slightly smaller than those obtained under an argon atmosphere. The uncertainty of viscosity measurement is estimated to be ±11.1% for argon and ±14.3% for dry air. Moreover, we observed the real-time dynamic behavior of the surface tension and the viscosity of molten LN in response to argon and dry-air atmospheres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kai; Li, Ruixin; Jiang, Wenxue, E-mail: jiangortholivea@sina.cn
In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher thanmore » those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.« less
Fabrication of biomimetic dry-adhesion structures through nanosphere lithography
NASA Astrophysics Data System (ADS)
Kuo, P. C.; Chang, N. W.; Suen, Y.; Yang, S. Y.
2018-03-01
Components with surface nanostructures suitable for biomimetic dry adhesion have a great potential in applications such as gecko tape, climbing robots, and skin patches. In this study, a nanosphere lithography technique with self-assembly nanospheres was developed to achieve effective and efficient fabrication of dry-adhesion structures. Self-assembled monolayer nanospheres with high regularity were obtained through tilted dip-coating. Reactive-ion etching of the self-assembled nanospheres was used to fabricate nanostructures of different shapes and aspect ratios by varying the etching time. Thereafter, nickel molds with inverse nanostructures were replicated using the electroforming process. Polydimethylsiloxane (PDMS) nanostructures were fabricated through a gas-assisted hot-embossing method. The pulling test was performed to measure the shear adhesion on the glass substrate of a sample, and the static contact angle was measured to verify the hydrophobic property of the structure. The enhancement of the structure indicates that the adhesion force increased from 1.2 to 4.05 N/cm2 and the contact angle increased from 118.6° to 135.2°. This columnar structure can effectively enhance the adhesion ability of PDMS, demonstrating the potential of using nanosphere lithography for the fabrication of adhesive structures.
High-Throughput Fabrication of Flexible and Transparent All-Carbon Nanotube Electronics.
Chen, Yong-Yang; Sun, Yun; Zhu, Qian-Bing; Wang, Bing-Wei; Yan, Xin; Qiu, Song; Li, Qing-Wen; Hou, Peng-Xiang; Liu, Chang; Sun, Dong-Ming; Cheng, Hui-Ming
2018-05-01
This study reports a simple and effective technique for the high-throughput fabrication of flexible all-carbon nanotube (CNT) electronics using a photosensitive dry film instead of traditional liquid photoresists. A 10 in. sized photosensitive dry film is laminated onto a flexible substrate by a roll-to-roll technology, and a 5 µm pattern resolution of the resulting CNT films is achieved for the construction of flexible and transparent all-CNT thin-film transistors (TFTs) and integrated circuits. The fabricated TFTs exhibit a desirable electrical performance including an on-off current ratio of more than 10 5 , a carrier mobility of 33 cm 2 V -1 s -1 , and a small hysteresis. The standard deviations of on-current and mobility are, respectively, 5% and 2% of the average value, demonstrating the excellent reproducibility and uniformity of the devices, which allows constructing a large noise margin inverter circuit with a voltage gain of 30. This study indicates that a photosensitive dry film is very promising for the low-cost, fast, reliable, and scalable fabrication of flexible and transparent CNT-based integrated circuits, and opens up opportunities for future high-throughput CNT-based printed electronics.
A nontransferring dry adhesive with hierarchical polymer nanohairs.
Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y
2009-04-07
We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.
A nontransferring dry adhesive with hierarchical polymer nanohairs
Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y.
2009-01-01
We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (≈26 N/cm2 in maximum) in the angled direction and easy detachment (≈2.2 N/cm2) in the opposite direction, with a hysteresis value of ≈10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 μm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 × 37.5 cm2, second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization. PMID:19304801
Aramwit, Pornanong; Ratanavaraporn, Juthamas; Ekgasit, Sanong; Tongsakul, Duangta; Bang, Nipaporn
2015-05-01
Sericin/PVA/glycerin scaffolds could be fabricated using the freeze-drying technique; they showed good physical and biological properties and can be applied as wound dressings. However, freeze-drying is an energy- and time-consuming process with a high associated cost. In this study, an alternative, solvent-free, energy- and time-saving, low-cost salt-leaching technique is introduced as a green technology to produce sericin/PVA/glycerin scaffolds. We found that sericin/PVA/glycerin scaffolds were successfully fabricated without any crosslinking using a salt-leaching technique. The salt-leached sericin/PVA/glycerin scaffolds had a porous structure with pore interconnectivity. The sericin in the salt-leached scaffolds had a crystallinity that was as high as that of the freeze-dried scaffolds. Compared to the freeze-dried scaffolds with the same composition, the salt-leached sericin/PVA/glycerin scaffolds has larger pores, a lower Young's modulus, and faster rates of biodegradation and sericin release. When cultured with L929 mouse fibroblast cells, a higher number of cells were found in the salt-leached scaffolds. Furthermore, the salt-leached scaffolds were less adhesive to the wound, which would reduce pain upon removal. Therefore, salt-leached sericin/PVA/glycerin scaffolds with distinguished characteristics were introduced as another choice of wound dressing, and their production process was simpler, more energy efficient, and saved time and money compared to the freeze-dried scaffolds. © 2014 Wiley Periodicals, Inc.
Air Conditioner Ready to Change Industry - Continuum Magazine | NREL
create very dry air, ideal for cooling with evaporative techniques. Desiccants, which can be liquids or into an innovative "cooling core." This would marry the desiccants' capacity to create dry air using heat and evaporative coolers' capability to turn dry air into cold air. If it worked, it
Grabowski, Nils Th; Klein, Günter
2017-01-01
To increase the shelf life of edible insects, modern techniques (e.g. freeze-drying) add to the traditional methods (degutting, boiling, sun-drying or roasting). However, microorganisms become inactivated rather than being killed, and when rehydrated, many return to vegetative stadia. Crickets (Gryllus bimaculatus) and superworms (Zophobas atratus) were submitted to four different drying techniques (T1 = 10' cooking, 24 h drying at 60℃; T2 = 10' cooking, 24 h drying at 80℃; T3 = 30' cooking, 12 h drying at 80℃, and 12 h drying at 100℃; T4 = boiling T3-treated insects after five days) and analysed for total bacteria counts, Enterobacteriaceae, staphylococci, bacilli, yeasts and moulds counts, E. coli, salmonellae, and Listeria monocytogenes (the latter three being negative throughout). The microbial counts varied strongly displaying species- and treatment-specific patterns. T3 was the most effective of the drying treatments tested to decrease all counts but bacilli, for which T2 was more efficient. Still, total bacteria counts remained high (G. bimaculatus > Z. atratus). Other opportunistically pathogenic microorganisms (Bacillus thuringiensis, B. licheniformis, B. pumilis, Pseudomonas aeruginosa, and Cryptococcus neoformans) were also encountered. The tyndallisation-like T4 reduced all counts to below detection limit, but nutrients leakage should be considered regarding food quality. In conclusion, species-specific drying procedures should be devised to ensure food safety. © The Author(s) 2016.
Kraus, Max-Joseph; Seifert, Jan; Strasser, Erwin F; Gawaz, Meinrad; Schäffer, Tilman E; Rheinlaender, Johannes
2016-09-01
Many conventional microscopy techniques for investigating platelet morphology such as electron or fluorescence microscopy require highly invasive treatment of the platelets such as fixation, drying and metal coating or staining. Here, we present two unique but entirely different microscopy techniques for direct morphology analysis of live, unstained platelets: scanning ion conductance microscopy (SICM) and robotic dark-field microscopy (RDM). We demonstrate that both techniques allow for a quantitative evaluation of the morphological features of live adherent platelets. We show that their morphology can be quantified by both techniques using the same geometric parameters and therefore can be directly compared. By imaging the same identical platelets subsequently with SICM and RDM, we found that area, perimeter and circularity of the platelets are directly correlated between SICM and dark-field microscopy (DM), while the fractal dimension (FD) differed between the two microscopy techniques. We show that SICM and RDM are both valuable tools for the ex vivo investigation of the morphology of live platelets, which might contribute to new insights into the physiological and pathophysiological role of platelet spreading.
Korang-Yeboah, Maxwell; Srinivasan, Charudharshini; Siddiqui, Akhtar; Awotwe-Otoo, David; Cruz, Celia N; Muhammad, Ashraf
2018-01-01
Optical coherence tomography freeze-drying microscopy (OCT-FDM) is a novel technique that allows the three-dimensional imaging of a drug product during the entire lyophilization process. OCT-FDM consists of a single-vial freeze dryer (SVFD) affixed with an optical coherence tomography (OCT) imaging system. Unlike the conventional techniques, such as modulated differential scanning calorimetry (mDSC) and light transmission freeze-drying microscopy, used for predicting the product collapse temperature (Tc), the OCT-FDM approach seeks to mimic the actual product and process conditions during the lyophilization process. However, there is limited understanding on the application of this emerging technique to the design of the lyophilization process. In this study, we investigated the suitability of OCT-FDM technique in designing a lyophilization process. Moreover, we compared the product quality attributes of the resulting lyophilized product manufactured using Tc, a critical process control parameter, as determined by OCT-FDM versus as estimated by mDSC. OCT-FDM analysis revealed the absence of collapse even for the low protein concentration (5 mg/ml) and low solid content formulation (1%w/v) studied. This was confirmed by lab scale lyophilization. In addition, lyophilization cycles designed using Tc values obtained from OCT-FDM were more efficient with higher sublimation rate and mass flux than the conventional cycles, since drying was conducted at higher shelf temperature. Finally, the quality attributes of the products lyophilized using Tc determined by OCT-FDM and mDSC were similar, and product shrinkage and cracks were observed in all the batches of freeze-dried products irrespective of the technique employed in predicting Tc.
Chong, Chien Hwa; Law, Chung Lim; Figiel, Adam; Wojdyło, Aneta; Oziembłowski, Maciej
2013-12-15
The objective of this study was to improve product quality of dehydrated fruits (apple, pear, papaya, mango) using combined drying techniques. This involved investigation of bioactivity, colour, and sensory assessment on colour of the dried products as well as the retention of the bio-active ingredients. The attributes of quality were compared in regard to the quality of dehydrated samples obtained from continuous heat pump (HP) drying technique. It was found that for apple, pear and mango the total colour change (ΔE) of samples dried using continuous heat pump (HP) or heat pump vacuum-microwave (HP/VM) methods was lower than of samples dried by other combined methods. However, for papaya, the lowest colour change exhibited by samples dried using hot air-cold air (HHC) method and the highest colour change was found for heat pump (HP) dehydrated samples. Sensory evaluation revealed that dehydrated pear with higher total colour change (ΔE) is more desirable because of its golden yellow appearance. In most cases the highest phenol content was found from fruits dried by HP/VM method. Judging from the quality findings on two important areas namely colour and bioactivity, it was found that combined drying method consisted of HP pre-drying followed by VM finish drying gave the best results for most dehydrated fruits studied in this work as the fruits contain first group of polyphenol compounds, which preferably requires low temperature followed by rapid drying strategy. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
The effect of sea-water and fresh-water soaking on the quality of Eucheuma sp. syrup and pudding
NASA Astrophysics Data System (ADS)
Novianty, H.; Herandarudewi, S. M. C.
2018-04-01
Eucheuma alvarezii is one of marine commodity with great opportunities to be developed in Indonesia. This seaweed can be used as an additional material in cosmetic and pharmaceutical products or for syrup and pudding. Post-harvest technique conducted by the seaweed farmers will affects the quality of dried and processed products. The purpose of this study was to observe the effect of post harvest technique on the quality of dried seaweed and hedonic test (favorable test) of processed product (syrup and pudding). This study was conducted using descriptive method. The study compared dried, syrup, and puddings from two differents post-harvest technique, between salt and fresh-water draining products. The results showed that fresh-water draining technique obtained better quality results organoleptic test. The results showed that panelist prefered the fresh-water drained products of syrup and pudding. The hedonic scores were much higher for the fresh-water drained products in all three catagories of color, taste, and smell.
The value of forecasting key-decision variables for rain-fed farming
NASA Astrophysics Data System (ADS)
Winsemius, Hessel; Werner, Micha
2013-04-01
Rain-fed farmers are highly vulnerable to variability in rainfall. Timely knowledge of the onset of the rainy season, the expected amount of rainfall and the occurrence of dry spells can help rain-fed farmers to plan the cropping season. Seasonal probabilistic weather forecasts may provide such information to farmers, but need to provide reliable forecasts of key variables with which farmers can make decisions. In this contribution, we present a new method to evaluate the value of meteorological forecasts in predicting these key variables. The proposed method measures skill by assessing whether a forecast was useful to this decision. This is done by taking into account the required accuracy of timing of the event to make the decision useful. The method progresses the estimate of forecast skill to forecast value by taking into account the required accuracy that is needed to make the decision valuable, based on the cost/loss ratio of possible decisions. The method is applied over the Limpopo region in Southern Africa. We demonstrate the method using the example of temporary water harvesting techniques. Such techniques require time to construct and must be ready long enough before the occurrence of a dry spell to be effective. The value of the forecasts to the decision used as an example is shown to be highly sensitive to the accuracy in the timing of forecasted dry spells, and the tolerance in the decision to timing error. The skill with which dry spells can be predicted is shown to be higher in some parts of the basin, indicating that these forecasts have higher value for the decision in those parts than in others. Through assessing the skill of forecasting key decision variables to the farmers we show that it is easier to understand if the forecasts have value in reducing risk, or if other adaptation strategies should be implemented.
Ballesteros, Lina F; Ramirez, Monica J; Orrego, Carlos E; Teixeira, José A; Mussatto, Solange I
2017-12-15
Freeze-drying and spray-drying techniques were evaluated for encapsulation of phenolic compounds (PC) extracted from spent coffee grounds. Additionally, the use of maltodextrin, gum arabic and a mixture of these components (ratio 1:1) as wall material to retain the PC and preserve their antioxidant activity was also assessed. The contents of PC and flavonoids (FLA), as well as the antioxidant activity of the encapsulated samples were determined in order to verify the efficiency of each studied condition. Additional analyses for characterization of the samples were also performed. Both the technique and the coating material greatly influenced the encapsulation of antioxidant PC. The best results were achieved when PC were encapsulated by freeze-drying using maltodextrin as wall material. Under these conditions, the amount of PC and FLA retained in the encapsulated sample corresponded to 62% and 73%, respectively, and 73-86% of the antioxidant activity present in the original extract was preserved. Copyright © 2017 Elsevier Ltd. All rights reserved.
Membrane-Filtered Olive Mill Wastewater: Quality Assessment of the Dried Phenolic-Rich Fraction.
Sedej, Ivana; Milczarek, Rebecca; Wang, Selina C; Sheng, Runqi; de Jesús Avena-Bustillos, Roberto; Dao, Lan; Takeoka, Gary
2016-04-01
A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also to extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW and compare the techniques in terms of the dried product quality and feasibility of the process. The OMWW from 2 (3-phase and 2-phase) California mills was subjected to a 2-step membrane filtration process using a novel vibratory system. The reverse osmosis retentate (RO-R) is a phenolic-rich coproduct stream, and the reverse osmosis permeate is a near-pure water stream that could be recycled into the milling process. Spray-, freeze-, and infrared-drying were applied to obtain solid material from the RO-R. Drying of the RO-R was made possible only with addition of 10% maltodextrin as a carrier. The total soluble phenolics in dried RO-R were in the range 0.15 to 0.58 mg gallic acid equivalents/g of dry weight for 2-phase RO-R, and 1.38 to 2.17 mg gallic acid equivalents/g of dry weight for the 3-phase RO-R. Spray-dried RO-R from 3-phase OMWW showed remarkable antioxidant activity. Protocatechuic acid, tyrosol, vanillic acid, and p-coumaric acid were quantified in all dried RO-R, whereas 3-hydroxytyrosol was found in 3-phase dried RO-R. This combination of separation and drying technologies helps to add value and shelf-stability to an olive oil by-product and increase environmental sustainability of its production. © 2016 Institute of Food Technologists®
Corral, Sara; Salvador, Ana; Flores, Mónica
2015-04-01
The use of different extraction techniques - solid phase microextraction (SPME) and solvent assisted flavour evaporation (SAFE) - can deliver different aroma profiles and it is essential to determine which is most suitable to extract the aroma compounds from dry fermented sausages. Forty-five aroma-active compounds were detected by SPME and SAFE, with 11 of them reported for the first time as aroma compounds in dry fermented sausages: ethyl 3-hydroxy butanoate, trimethyl pyrazine, D-pantolactone, isobutyl hexanoate, ethyl benzoate, α-terpineol, ethyl 3-pyridinecarboxylate, benzothiazole, 2,3-dihydrothiophene, methyl eugenol, γ-nonalactone. The aroma concentration and odour activity values (OAVs) were calculated. Flavour reconstitution analyses were performed using 20 odorants with OAVs above 1 obtained from the SAFE and SPME extracts to prepare the aroma model. SPME and SAFE techniques were complementary and necessary to reproduce the overall dry fermented sausage aroma. The final aroma model included the odorants from both extraction techniques (SPME and SAFE) but it was necessary to incorporate the compounds 2,4-decadienal (E,E), benzothiazole, methyl eugenol, α-terpineol, and eugenol to the final aroma model to evoked the fresh sausage aroma although a lowest cured meat aroma note was perceived. © 2014 Society of Chemical Industry.
Enhanced sludge dewatering by electrofiltration. A feasibility study.
Saveyn, H; Huybregts, L; Van der Meeren, P
2001-01-01
Sludge treatment is a major issue in today's waste water treatment. One of the problems encountered is the limiting dewaterability of mainly biological sludges, causing high final treatment costs for incineration or landfill. Although during recent years, improvements are realised in the field of dewatering, the actual dry solids content after dewatering remains at a maximum value of about 35%. In order to increase the dry solids content, the technique of electrofiltration was investigated. Electrofiltration is the combination of two known techniques, traditional pressure filtration and electroosmotic/electrophoretic dewatering. Pressure filtration is based on pressure as the driving force for dewatering a sludge. Limitations hereby lie in the clogging of the filter cloth due to the build-up of the filtercake. Electroosmotic/electrophoretic dewatering is based on an electric field to separate sludge colloid particles from the surrounding liquid by placing the sludge liquor between two oppositely charged electrodes. In this case, mobile sludge particles will move to one electrode due to their natural surface charge, and the liquid phase will be collected at the oppositely charged electrode. Combination of both techniques makes it possible to create a more homogeneous filter cake and prevent the filter from clogging, resulting in higher cake dry solids contents and shorter filtration cycles. To investigate the feasibility of this technique for the dewatering of activated sludge, a filter unit was developed for investigations on lab scale. Multiple dewatering tests were performed in which the electric parameters for electrofiltration were varied. It was derived from these experiments that very high filter cake dry solids contents (to more than 60%), and short filtration cycles were attainable by using a relatively small electric DC field. The power consumption was very low compared to the power needed to dewater sludge by thermal drying techniques. For this reason, this technique seems very promising for the dewatering of biological sludges.
NASA Astrophysics Data System (ADS)
Thanthong, P.; Mustafa, Y.; Ngamrungroj, D.
2017-09-01
Today, dried shrimp in the market were refused food colour and drying until shrimp are colourful and tasty. Meanwhile, Community groups, women’s health trying to produce food products come from herbs. As an alternative to consumers. The production process is also a traditional way to dry. In order to extend the shelf life longer. Sometimes, potential risks, both in quality and quantity of products. As a result, consumers are enormous. Thus, this research aims to study the possibility to produce shrimp dried mixed with turmeric and salt. Then dried shrimp mixed with turmeric and salt to keep up the quality criteria of the Food and Drug Administration-FDA It can reduce the risk of the consumer and can keep up in a kitchen Thailand. When buying shrimp from the fisherman’s boat Will be made clear, clean impurities and shaking the sand to dry. Prepare a mixture of turmeric and salt. The shrimp were dipped into a beef with stirrer for 3 minutes. And scoop up centrifugal shrimp with dried. Measurement of initial moisture content averaging 78%wb. Then drying technique Spouted enter the rectangular chamber a continuous manner. Until average moisture content to 17%wb. The air temperature in the drying chamber at 180 °C and hot air speed 4.5 m/s, a state heat transfer Mass and moisture within the shrimp. In chamber when drying, the shrimp have moved freely behaviour can spit water out faster does not burn. Shaving legs of shrimp shell fragments lightweight is sorting out the top of drying chamber. Private shrimp were dried out to the front of the quad drying chamber. Power consumption 27.5 MJ/kg, divided into electrical energy 12.3 MJ/kg and thermal energy is 15.2 MJ/kg. The hot air comes from burning LPG gas burner with dual automatic. And can adjustable to room temperature drying characteristics modulation setting.
Basheti, Iman A; Armour, Carol L; Bosnic-Anticevich, Sinthia Z; Reddel, Helen K
2008-07-01
To evaluate the feasibility, acceptability and effectiveness of a brief intervention about inhaler technique, delivered by community pharmacists to asthma patients. Thirty-one pharmacists received brief workshop education (Active: n=16, CONTROL: n=15). Active Group pharmacists were trained to assess and teach dry powder inhaler technique, using patient-centered educational tools including novel Inhaler Technique Labels. Interventions were delivered to patients at four visits over 6 months. At baseline, patients (Active: 53, CONTROL: 44) demonstrated poor inhaler technique (mean+/-S.D. score out of 9, 5.7+/-1.6). At 6 months, improvement in inhaler technique score was significantly greater in Active cf. CONTROL patients (2.8+/-1.6 cf. 0.9+/-1.4, p<0.001), and asthma severity was significantly improved (p=0.015). Qualitative responses from patients and pharmacists indicated a high level of satisfaction with the intervention and educational tools, both for their effectiveness and for their impact on the patient-pharmacist relationship. A simple feasible intervention in community pharmacies, incorporating daily reminders via Inhaler Technique Labels on inhalers, can lead to improvement in inhaler technique and asthma outcomes. Brief training modules and simple educational tools, such as Inhaler Technique Labels, can provide a low-cost and sustainable way of changing patient behavior in asthma, using community pharmacists as educators.
The Freeze-Drying of Wet and Waterlogged Materials from Archaeological Excavations
ERIC Educational Resources Information Center
Watson, Jacqui
2004-01-01
Large quantities of wood and leather have been found in the waterlogged layers on archaeological excavations. Centuries of burial, however, have left these materials in a very degraded and vulnerable state such that if they dry out they will fall apart. This paper discusses the physics behind the freeze-drying techniques that allow the…
Ultrasonic inspection and analysis techniques in green and dried lumber
Mark E. Schafer; Robert J. Ross; Brian K. Brashaw; Roy D. Adams
1999-01-01
Ultrasonic inspection of lumber has been under investigation for over 20 years, with little commercial impact. Recently, the USDA Forest Products Laboratory (FPL) developed ultrasound-based scanning technology to examine both green and dried lumber. In green lumber, the bacterial infection called wetwood (a significant source of degradation in oak at the kiln-drying...
FINAL REPORT: Transformational electrode drying process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus Daniel, C.; Wixom, M.
2013-12-19
This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheatingmore » and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.« less
Short-interval SMS wind vector determinations for a severe local storms area
NASA Technical Reports Server (NTRS)
Peslen, C. A.
1980-01-01
Short-interval SMS-2 visible digital image data are used to derive wind vectors from cloud tracking on time-lapsed sequences of geosynchronous satellite images. The cloud tracking areas are located in the Central Plains, where on May 6, 1975 hail-producing thunderstorms occurred ahead of a well defined dry line. Cloud tracking is performed on the Goddard Space Flight Center Atmospheric and Oceanographic Information Processing System. Lower tropospheric cumulus tracers are selected with the assistance of a cloud-top height algorithm. Divergence is derived from the cloud motions using a modified Cressman (1959) objective analysis technique which is designed to organize irregularly spaced wind vectors into uniformly gridded wind fields. The results demonstrate the feasibility of using satellite-derived wind vectors and their associated divergence fields in describing the conditions preceding severe local storm development. For this case, an area of convergence appeared ahead of the dry line and coincided with the developing area of severe weather. The magnitude of the maximum convergence varied between -10 to the -5th and -10 to the -14th per sec. The number of satellite-derived wind vectors which were required to describe conditions of the low-level atmosphere was adequate before numerous cumulonimbus cells formed. This technique is limited in areas of advanced convection.
Optimization of Adhesive Pastes for Dental Caries Prevention.
Sodata, Patteera; Juntavee, Apa; Juntavee, Niwut; Peerapattana, Jomjai
2017-11-01
Dental caries prevention products available on the market contain only remineralizing agents or antibacterial agents. This study aimed to develop adhesive pastes containing calcium phosphate and α-mangostin for dental caries prevention using the optimization technique. Calcium phosphate was used as a remineralizing agent, and extracted α-mangostin was used as an antibacterial agent. The effect of the independent variables, which were fumed silica, Eudragit ® EPO, polyethylene glycol, and ethyl alcohol, on the responses was investigated. The drying time, erosion rate, calcium release rate, and α-mangostin release rate were established as the measured responses. An equation and a model of the relationship were constructed. An optimal formulation was obtained, and its effect on dental caries prevention was investigated using the pH-cycling model. The quadratic equation revealed that the drying time, calcium release rate, and α-mangostin release rate tended to decrease when increasing the fumed silica and decreasing other factors. The erosion rate tended to increase when decreasing Eudragit ® EPO and increasing other factors. The observed responses of the optimal adhesive pastes were not significantly different from the predicted responses. This result demonstrated that optimization is an efficient technique in the formulation development of the adhesive pastes. In addition, the optimal adhesive pastes could enhance acid resistance activity to the tooth enamel.
Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard
2017-05-01
This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Gieseler, Henning; Lee, Geoffrey
2008-02-01
To determine the effects of vial packing density in a laboratory freeze dryer on drying rate profiles of crystalline and amorphous formulations. The Christ freeze-drying balance measured cumulative water loss, m(t), and instantaneous drying rate, m(t), of water, mannitol, sucrose and sucrose/BSA formulations in commercial vials. Crystalline mannitol shows drying rate behaviour indicative of a largely homogeneous dried-product layer. The drying rate behaviour of amorphous sucrose indicates structural heterogeneity, postulated to come from shrinkage or microcollapse. Trehalose dries more slowly than sucrose. Addition of BSA to either disaccharide decreases primary drying time. Higher vial packing density greatly reduces drying rate because of effects of radiation heat transfer from chamber walls to test vial. Plots of m(t) versus radical t and m(t) versus layer thickness (either ice or dried-product) allow interpretation of changes in internal cake morphology during drying. Vial packing density greatly influences these profiles.
Nano spray drying for encapsulation of pharmaceuticals.
Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi
2018-05-17
Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.
Diagnosing dry eye with dynamic-area high-speed videokeratoscopy
NASA Astrophysics Data System (ADS)
Alonso-Caneiro, David; Turuwhenua, Jason; Iskander, D. Robert; Collins, Michael J.
2011-07-01
Dry eye syndrome is one of the most commonly reported eye health conditions. Dynamic-area high-speed videokeratoscopy (DA-HSV) represents a promising alternative to the most invasive clinical methods for the assessment of the tear film surface quality (TFSQ), particularly as Placido-disk videokeratoscopy is both relatively inexpensive and widely used for corneal topography assessment. Hence, improving this technique to diagnose dry eye is of clinical significance and the aim of this work. First, a novel ray-tracing model is proposed that simulates the formation of a Placido image. This model shows the relationship between tear film topography changes and the obtained Placido image and serves as a benchmark for the assessment of indicators of the ring's regularity. Further, a novel block-feature TFSQ indicator is proposed for detecting dry eye from a series of DA-HSV measurements. The results of the new indicator evaluated on data from a retrospective clinical study, which contains 22 normal and 12 dry eyes, have shown a substantial improvement of the proposed technique to discriminate dry eye from normal tear film subjects. The best discrimination was obtained under suppressed blinking conditions. In conclusion, this work highlights the potential of the DA-HSV as a clinical tool to diagnose dry eye syndrome.
NASA Astrophysics Data System (ADS)
Franssens, Matthias; Flament, Pascal; Deboudt, Karine; Weis, Dominique; Perdrix, Espéranza
2004-09-01
To demonstrate the ability of the lead isotope signature technique to evidence the spatial extent of an industrial Pb deposition plume at a local scale, dry deposition of lead in the urban environment of a Pb-Zn refinery was investigated, as a study case, using transient ("short-lived") isotopic signatures of the industrial source. Sampling campaigns were achieved in representative weather conditions, on an 8-h basis. Dry deposition rates measured downwind from refinery emissions (≈102-103 μg Pb m-2 h-1), cross-sectionally in a 3-5 km radius area around the plant, represent 10-100 times the urban background dry fallout, measured upwind, as well as fallout measured near other potential sources of anthropogenic Pb. The Pb-Zn refinery isotopic signature (approx. 1.100<206Pb/207Pb<1.135) is made identifiable, using the same set of Pb and Zn ores for 2 days before sampling and during field experiments, by agreement with the executive staff of the plant. This source signature is less radiogenic than signatures of urban background Pb aerosols (1.155<206Pb/207Pb<1.165) and minor sources of Pb aerosols (1.147<206Pb/207Pb<1.165). By a simple binary mixing model calculation, we established the extension of the industrial Pb deposition plume. Fifty to eighty percents of total lead settled by the dry deposition mode, 3-4 km away from the refinery, still have an industrial origin. That represents from 40 to 80 μg Pb m-2 h-1, in an area where the blood lead level exceeds 100 μg Pb l-1 for 30% of men and 12% of women living there. We demonstrate here that stable Pb isotope analysis is able to evidence the Pb dry deposition plume in stabilised aerodynamic conditions, using a short-lived source term, suggesting that this methodology is able to furnish valuable data to validate industrial Pb aerosols dispersion models, at the urban scale.
Microstructurally tailored ceramics for advanced energy applications by thermoreversible gelcasting
NASA Astrophysics Data System (ADS)
Shanti, Noah Omar
Thermoreversible gelcasting (TRG) is an advantageous technique for rapidly producing bulk, net-shape ceramics and laminates. In this method, ceramic powder is suspended in warm acrylate triblock copolymer/alcohol solutions that reversibly gel upon cooling by the formation of endblock aggregates, to produce slurries which are cast into molds. Gel properties can be tailored by controlling the endblock and midblock lengths of the copolymer network-former and selecting an appropriate alcohol solvent. This research focuses on expanding and improving TRG techniques, focusing specifically on advanced energy applications including the solid oxide fuel cell (SOFC). Rapid drying of filled gels can lead to warping and cracking caused by high differential capillary stresses. A new drying technique using concentrated, alcohol-based solutions as liquid desiccants (LDs) to greatly reduce warping is introduced. The optimal LD is a poly(tert-butyl acrylate)/isopropyl alcohol solution with 5 mol% tert-butyl acrylate units. Alcohol emissions during drying are completely eliminated by combining initial drying in an LD with final stage drying in a vacuum oven having an in-line solvent trap. Porous ceramics are important structures for many applications, including SOFCs. Pore network geometries are tailored by the addition of fugitive fillers to TRG slurries. Uniform spherical, bimodal spherical and uniform fibrous fillers are used. Three-dimensional pore structures are visualized by X-ray computed tomography, allowing for direct measurements of physical parameters such as concentration and morphology as well as transport properties such as tortuosity. Tortuosity values as low as 1.52 are achieved when 60 vol% of solids are uniform spherical filler. Functionally graded laminates with layers ranging from 10 mum to > 1 mm thick are produced with a new technique that combines TRG with tape casting. Gels used for bulk casting are not suitable for use with tape casting, and appropriate base gels are selected for this technique. Each layer is cast in a single pass, and the layers are directly laminated. The anode support, anode functional layer, and electrolyte of anode-supported SOFCs are produced using this technique. The performance of SOFCs produced this way is not yet equal to that of traditionally processed cells, but shows the promise of this technique.
Steinke, Hanno; Rabi, Suganthy; Saito, Toshiyuki; Sawutti, Alimjan; Miyaki, Takayoshi; Itoh, Masahiro; Spanel-Borowski, Katharina
2008-11-20
Plastination is an excellent technique which helps to keep the anatomical specimens in a dry, odourless state. Since the invention of plastination technique by von Hagens, research has been done to improve the quality of plastinated specimens. In this paper, we have described a method of producing light-weight plastinated specimens using xylene along with silicone and in the final step, substitute xylene with air. The finished plastinated specimens were light-weight, dry, odourless and robust. This method requires less use of resin thus making the plastination technique more cost-effective. The light-weight specimens are easy to carry and can easily be used for teaching.
Fabrication of sinterable silicon nitride by injection molding
NASA Technical Reports Server (NTRS)
Quackenbush, C. L.; French, K.; Neil, J. T.
1982-01-01
Transformation of structural ceramics from the laboratory to production requires development of near net shape fabrication techniques which minimize finish grinding. One potential technique for producing large quantities of complex-shaped parts at a low cost, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material. Binder selection methodology, compounding of ceramic and binder components, injection molding techniques, and problems in binder removal are discussed. Strength, oxidation resistance, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material.
Use of a Tea Infuser to Submerge Low-Density Dry Ice
ERIC Educational Resources Information Center
Fictorie, Carl P.; Vitz, Ed
2004-01-01
A simple tea infuser is obtained and been used as a container for the dry ice to simulate the effect from high-density dry ice. The tea infuser is a simple, low cost device to allow instructors with access to dry ice makers to effectively use the interesting demonstration.
40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.
Code of Federal Regulations, 2013 CFR
2013-07-01
... inlet moisture content of less than or equal to 30 percent (by weight, dry basis) and operates with a... dry rotary dryer. You must record the inlet furnish moisture content (dry basis) and inlet dryer... days. You must submit the highest recorded 24-hour average inlet furnish moisture content and the...
40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.
Code of Federal Regulations, 2012 CFR
2012-07-01
... inlet moisture content of less than or equal to 30 percent (by weight, dry basis) and operates with a... dry rotary dryer. You must record the inlet furnish moisture content (dry basis) and inlet dryer... days. You must submit the highest recorded 24-hour average inlet furnish moisture content and the...
40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.
Code of Federal Regulations, 2014 CFR
2014-07-01
... inlet moisture content of less than or equal to 30 percent (by weight, dry basis) and operates with a... dry rotary dryer. You must record the inlet furnish moisture content (dry basis) and inlet dryer... days. You must submit the highest recorded 24-hour average inlet furnish moisture content and the...
Koshari, Stijn H S; Ross, Jean L; Nayak, Purnendu K; Zarraga, Isidro E; Rajagopal, Karthikan; Wagner, Norman J; Lenhoff, Abraham M
2017-02-06
Protein-stabilizer microheterogeneity is believed to influence long-term protein stability in solid-state biopharmaceutical formulations and its characterization is therefore essential for the rational design of stable formulations. However, the spatial distribution of the protein and the stabilizer in a solid-state formulation is, in general, difficult to characterize because of the lack of a functional, simple, and reliable characterization technique. We demonstrate the use of confocal fluorescence microscopy with fluorescently labeled monoclonal antibodies (mAbs) and antibody fragments (Fabs) to directly visualize three-dimensional particle morphologies and protein distributions in dried biopharmaceutical formulations, without restrictions on processing conditions or the need for extensive data analysis. While industrially relevant lyophilization procedures of a model IgG1 mAb generally lead to uniform protein-excipient distribution, the method shows that specific spray-drying conditions lead to distinct protein-excipient segregation. Therefore, this method can enable more definitive optimization of formulation conditions than has previously been possible.
Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains.
Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae
2018-03-23
In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H 2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.
Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains
NASA Astrophysics Data System (ADS)
Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae
2018-03-01
In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.
Nondestructive Biological Evidence Collection with Alternative Swabs and Adhesive Lifters.
Plaza, Dane T; Mealy, Jamia L; Lane, J Nicholas; Parsons, M Neal; Bathrick, Abigail S; Slack, Donia P
2016-03-01
In forensic science, biological material is typically collected from evidence via wet/dry double swabbing with cotton swabs, which is effective but can visibly damage an item's surface. When an item's appearance must be maintained, dry swabbing and tape-lifting may be employed as collection techniques that are visually nondestructive to substrates' surfaces. This study examined the efficacy of alternative swab matrices and adhesive lifters when collecting blood and fingerprints from glass, painted drywall, 100% cotton, and copy paper. Data were evaluated by determining the percent profile and quality score for each STR profile generated. Hydraflock(®) swabs, BVDA Gellifters(®) , and Scenesafe FAST™ tape performed as well as or better than cotton swabs when collecting fingerprints from painted drywall and 100% cotton. Collection success was also dependent on the type of biological material sampled and the substrate on which it was deposited. These results demonstrated that alternative swabs and adhesive lifters can be effective for nondestructive DNA collection from various substrates. © 2015 American Academy of Forensic Sciences.
Miezan, T.; Doua, F.; Cattand, P.; de Raadt, P.
1991-01-01
The Testryp CATT was performed on dried blood samples on filter-paper and on diluted blood using a microtechnique. This method was applied to both sample collection techniques and was evaluated in parallel with the classical Testryp CATT on whole blood, as described in the instructions provided with the reagents by the manufacturer. A total of 2087 people were tested; 453 samples were tested in the laboratory and 1634 during a field survey in 5 villages of a trypanosomiasis focus in Daloa, Côte d'Ivoire. This study has demonstrated that the Testryp CATT micromethod on either type of sample collection gives results comparable to the Testryp CATT on whole blood. The collection of dried blood samples on filter-paper can be performed by non-specialized staff in trypanosomiasis control programmes of the national health services. In addition, a flask of CATT reagent will allow testing of 6 times more people by the micromethod than by the classical whole-blood method. The micromethod is suitable in the implementation of programmes for the serological surveillance of populations at risk. PMID:1959162
Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; McLaughlin, Gregory; Lednev, Igor K
2013-09-01
Body fluid traces recovered at crime scenes are among the most common and important types of forensic evidence. However, the ability to characterize a biological stain at a crime scene nondestructively has not yet been demonstrated. Here, we expand the Raman spectroscopic approach for the identification of dry traces of pure body fluids to address the problem of heterogeneous contamination, which can impair the performance of conventional methods. The concept of multidimensional Raman signatures was utilized for the identification of blood in dry traces contaminated with sand, dust, and soil. Multiple Raman spectra were acquired from the samples via automatic scanning, and the contribution of blood was evaluated through the fitting quality using spectroscopic signature components. The spatial mapping technique allowed for detection of "hot spots" dominated by blood contribution. The proposed method has great potential for blood identification in highly contaminated samples. © 2013 American Academy of Forensic Sciences.
Denora, Nunzio; Lopedota, Angela; Perrone, Mara; Laquintana, Valentino; Iacobazzi, Rosa M; Milella, Antonella; Fanizza, Elisabetta; Depalo, Nicoletta; Cutrignelli, Annalisa; Lopalco, Antonio; Franco, Massimo
2016-10-01
This work describes N-acetylcysteine (NAC)- and glutathione (GSH)-glycol chitosan (GC) polymer conjugates engineered as potential platform useful to formulate micro-(MP) and nano-(NP) particles via spray-drying techniques. These conjugates are mucoadhesive over the range of urine pH, 5.0-7.0, which makes them advantageous for intravesical drug delivery and treatment of local bladder diseases. NAC- and GSH-GC conjugates were generated with a synthetic approach optimizing reaction times and purification in order to minimize the oxidation of thiol groups. In this way, the resulting amount of free thiol groups immobilized per gram of NAC- and GSH-GC conjugates was 6.3 and 3.6mmol, respectively. These polymers were completely characterized by molecular weight, surface sulfur content, solubility at different pH values, substitution and swelling degree. Mucoadhesion properties were evaluated in artificial urine by turbidimetric and zeta (ζ)-potential measurements demonstrating good mucoadhesion properties, in particular for NAC-GC at pH 5.0. Starting from the thiolated polymers, MP and NP were prepared using both the Büchi B-191 and Nano Büchi B-90 spray dryers, respectively. The resulting two formulations were evaluated for yield, size, oxidation of thiol groups and ex-vivo mucoadhesion. The new spray drying technique provided NP of suitable size (<1μm) for catheter administration, low degree of oxidation, and sufficient mucoadhesion property with 9% and 18% of GSH- and NAC-GC based NP retained on pig mucosa bladder after 3h of exposure, respectively. The aim of the present study was first to optimize the synthesis of NAC-GC and GSH-GC, and preserve the oxidation state of the thiol moieties by introducing several optimizations of the already reported synthetic procedures that increase the mucoadhesive properties and avoid pH-dependent aggregation. Second, starting from these optimized thiomers, we studied the feasibility of manufacturing MP and NP by spray-drying techniques. The aim of this second step was to produce mucoadhesive drug delivery systems of adequate size for vesical administration by catheter, and comparable mucoadhesive properties with respect to the processed polymers, avoiding thiolic oxidation during the formulation. MP with acceptable size produced by spray-dryer Büchi B-191 were compared with NP made with the apparatus Nano Büchi B-90. Copyright © 2016 Acta Materialia Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Cong-Min; Zhu, Ying; Jin, Di-Qiong
Ambient mass spectrometry (MS) has revolutionized the way of MS analysis and broadened its application in various fields. This paper describes the use of microfluidic techniques to simplify the setup and improve the functions of ambient MS by integrating the sampling probe, electrospray emitter probe, and online mixer on a single glass microchip. Two types of sampling probes, including a parallel-channel probe and a U-shaped channel probe, were designed for dryspot and liquid-phase droplet samples, respectively. We demonstrated that the microfabrication techniques not only enhanced the capability of ambient MS methods in analysis of dry-spot samples on various surfaces, butmore » also enabled new applications in the analysis of nanoliter-scale chemical reactions in an array of droplets. The versatility of the microchip-based ambient MS method was demonstrated in multiple different applications including evaluation of residual pesticide on fruit surfaces, sensitive analysis of low-ionizable analytes using postsampling derivatization, and high-throughput screening of Ugi-type multicomponent reactions.« less
Study of Photosensitive Dry Films Absorption for Printed Circuit Boards by Photoacoustic Technique
NASA Astrophysics Data System (ADS)
Hernández, R.; Zaragoza, J. A. Barrientos; Jiménez-Pérez, J. L.; Orea, A. Cruz; Correa-Pacheco, Z. N.
2017-08-01
In this work, the study of photosensitive dry-type films by photoacoustic technique is proposed. The dry film photoresist is resistant to chemical etching for printed circuit boards such as ferric chloride, sodium persulfate or ammonium, hydrochloric acid. It is capable of faithfully reproducing circuit pattern exposed to ultraviolet light (UV) through a negative. Once recorded, the uncured portion is removed with alkaline solution. It is possible to obtain good results in surface mount circuits with tracks of 5 mm. Furthermore, the solid resin films are formed by three layers, two protective layers and a UV-sensitive optical absorption layer in the range of 325 nm to 405 nm. By means of optical absorption of UV-visible rays emitted by a low-power Xe lamp, the films transform this energy into thermal waves generated by the absorption of optical radiation and subsequently no-radiative de-excitation occurs. The photoacoustic spectroscopy is a useful technique to measure the transmittance and absorption directly. In this study, the optical absorption spectra of the three layers of photosensitive dry-type films were obtained as a function of the wavelength, in order to have a knowledge of the absorber layer and the protective layers. These analyses will give us the physical properties of the photosensitive film, which are very important in curing the dry film for applications in printed circuit boards.
A technique for thick polymer coating of inertial-confinement-fusion targets
NASA Technical Reports Server (NTRS)
Lee, M. C.; Feng, I.-A.; Wang, T. G.; Kim, H.-G.
1983-01-01
A technique to coat a stalk-mounted inertial-confinement fusion (ICF) target with a thick polymer layer has been successfully demonstrated. The polymer solution is first atomized, allowed to coalesce into a droplet, and positioned in a stable acoustic levitating field. The stalk-mounted ICF target is then moved into the acoustic field by manipulating a 3-D positioner to penetrate the surface membrane of the droplet, thus immersing the target in the levitated coating solution. The target inside the droplet is maintained at the center of the levitated liquid using the 3-D positional information provided by two orthogonally placed TV cameras until the drying process is completed. The basic components of the experimental apparatus, including an acoustic levitator, liquid sample deployment device, image acquisition instrumentation, and 3-D positioner, are briefly described.
NASA Astrophysics Data System (ADS)
Tao, Feifei; Mba, Ogan; Liu, Li; Ngadi, Michael
2017-04-01
Polyunsaturated fatty acids (PUFAs) are important nutrients present in Salmon. However, current methods for quantifying the fatty acids (FAs) contents in foods are generally based on gas chromatography (GC) technique, which is time-consuming, laborious and destructive to the tested samples. Therefore, the capability of near-infrared (NIR) hyperspectral imaging to predict the PUFAs contents of C20:2 n-6, C20:3 n-6, C20:5 n-3, C22:5 n-3 and C22:6 n-3 in Salmon fillets in a rapid and non-destructive way was investigated in this work. Mean reflectance spectra were first extracted from the region of interests (ROIs), and then the spectral pre-processing methods of 2nd derivative and Savitzky-Golay (SG) smoothing were performed on the original spectra. Based on the original and the pre-processed spectra, PLSR technique was employed to develop the quantitative models for predicting each PUFA content in Salmon fillets. The results showed that for all the studied PUFAs, the quantitative models developed using the pre-processed reflectance spectra by "2nd derivative + SG smoothing" could improve their modeling results. Good prediction results were achieved with RP and RMSEP of 0.91 and 0.75 mg/g dry weight, 0.86 and 1.44 mg/g dry weight, 0.82 and 3.01 mg/g dry weight for C20:3 n-6, C22:5 n-3 and C20:5 n-3, respectively after pre-processing by "2nd derivative + SG smoothing". The work demonstrated that NIR hyperspectral imaging could be a useful tool for rapid and non-destructive determination of the PUFA contents in fish fillets.
[Methods of cholesterol determination: conventional procedure or "dry chemistry"?].
Riesen, W; Keller, H
1990-06-01
The search for the cardiovascular risk factor cholesterol should essentially be done in the physicians' laboratory. The majority of such analyses is performed by 'dry' chemistry tests. This review compares this technique with conventional methods for the determination of cholesterol. The reagents and the reaction mechanisms are principally the same for both techniques, i.e. fully enzymatic methods are used. In 'dry' chemistry the reagents are fixed on a solid carrier. The reactive state is provided by the liquid of the specimen. Two principles are employed: the technique of strips which is already utilised in urinary analysis and the system of multiple film layers as it is common in color-film technique. Three already introduced systems are discussed: the Seralyzer (Ames), the Ektachem (Kodak), and the Reflotron (Boehringer, Mannheim), and one system which is still in evaluation (the Clinistat, Ames). All the systems give a good agreement provided that they are operated by well-trained operators. Problems arise with quality control, since matrix effects are particularly important. The exactitude of the results depends on the calibration. Both, the Reflotron and the Clinistat are calibrated by the manufactories himself, the employer has no influence and is entirely dependent on the reliability of the producer. Although clinical chemistry analyses are facilitated by 'dry' chemistry it is by no means devoid of risks because the errors are more difficult to recognize.
A Novel Animal Model for Investigating the Neural Basis of Focal Dystonia
2017-09-01
as the predisposing condition and dry eye as an environmental trigger to model blepharospasm in rodents. This reporting year we demonstrated that 7...benign essential blepharospasm, dry eye , motor plasticity, basal ganglia, deep brain stimulation, eyelids, blinking 16. SECURITY CLASSIFICATION OF: 17...basal ganglia create the predisposing condition and that eye irritation from dry eye is the envi‐ ronmental trigger. Our demonstration that
Oster, C G; Kissel, T
2005-05-01
Recently, several research groups have shown the potential of microencapsulated DNA as adjuvant for DNA immunization and in tissue engineering approaches. Among techniques generally used for microencapsulation of hydrophilic drug substances into hydrophobic polymers, modified WOW double emulsion method and spray drying of water-in-oil dispersions take a prominent position. The key parameters for optimized microspheres are particle size, encapsulation efficiency, continuous DNA release and stabilization of DNA against enzymatic and mechanical degradation. This study investigates the possibility to encapsulate DNA avoiding shear forces which readily degrade DNA during this microencapsulation. DNA microparticles were prepared with polyethylenimine (PEI) as a complexation agent for DNA. Polycations are capable of stabilizing DNA against enzymatic, as well as mechanical degradation. Further, complexation was hypothesized to facilitate the encapsulation by reducing the size of the macromolecule. This study additionally evaluated the possibility of encapsulating lyophilized DNA and lyophilized DNA/PEI complexes. For this purpose, the spray drying and double emulsion techniques were compared. The size of the microparticles was characterized by laser diffractometry and the particles were visualized by scanning electron microscopy (SEM). DNA encapsulation efficiencies were investigated photometrically after complete hydrolysis of the particles. Finally, the DNA release characteristics from the particles were studied. Particles with a size of <10 microm which represent the threshold for phagocytic uptake could be prepared with these techniques. The encapsulation efficiency ranged from 100-35% for low theoretical DNA loadings. DNA complexation with PEI 25?kDa prior to the encapsulation process reduced the initial burst release of DNA for all techniques used. Spray-dried particles without PEI exhibited high burst releases, whereas double emulsion techniques showed continuous release rates.
Cosmic ray muons for spent nuclear fuel monitoring
NASA Astrophysics Data System (ADS)
Chatzidakis, Stylianos
There is a steady increase in the volume of spent nuclear fuel stored on-site (at reactor) as currently there is no permanent disposal option. No alternative disposal path is available and storage of spent nuclear fuel in dry storage containers is anticipated for the near future. In this dissertation, a capability to monitor spent nuclear fuel stored within dry casks using cosmic ray muons is developed. The motivation stems from the need to investigate whether the stored content agrees with facility declarations to allow proliferation detection and international treaty verification. Cosmic ray muons are charged particles generated naturally in the atmosphere from high energy cosmic rays. Using muons for proliferation detection and international treaty verification of spent nuclear fuel is a novel approach to nuclear security that presents significant advantages. Among others, muons have the ability to penetrate high density materials, are freely available, no radiological sources are required and consequently there is a total absence of any artificial radiological dose. A methodology is developed to demonstrate the applicability of muons for nuclear nonproliferation monitoring of spent nuclear fuel dry casks. Purpose is to use muons to differentiate between spent nuclear fuel dry casks with different amount of loading, not feasible with any other technique. Muon scattering and transmission are used to perform monitoring and imaging of the stored contents of dry casks loaded with spent nuclear fuel. It is shown that one missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the scattering distributions with 300,000 muons or more. A Bayesian monitoring algorithm was derived to allow differentiation of a fully loaded dry cask from one with a fuel assembly missing in the order of minutes and negligible error rate. Muon scattering and transmission simulations are used to reconstruct the stored contents of sealed dry casks from muon measurements. A combination of muon scattering and muon transmission imaging can improve resolution and thus a missing fuel assembly can be identified for vertical and horizontal dry casks. The apparent separation of the images reveals that the muon scattering and transmission can be used for discrimination between casks, satisfying the diversion criteria set by IAEA.
NASA Astrophysics Data System (ADS)
Novianty, H.; Herandarudewi, S. M. C.
2018-04-01
Seaweed is a non-fishery marine commodity that has great opportunities to be developed in Indonesia. One of the seaweed with a high economic value is Eucheuma alvarezii. This seaweed can be used as an additional material in cosmetic and pharmaceutical products or directly used for syrup and pudding. Post-harvest technique conducted by the seaweed farmers will affects the quality of dried and processed products. The purpose of this study is to see the effect of post harvest technique on the quality of dried seaweed and hedonic test (favorable test) of processed product (syrup and pudding). This study was conducted using descriptive method. The study compared dried, syrup, and puddings from two differents post-harvest technique, between salt and fresh-water draining products. The results showed that fresh-water draining technique obtained better quality results organoleptic test. Supported by hedonic test, that showed more panelists were prefered the fresh-water drained products of syrup and pudding. The preference were much higher for the fresh-water drained products in all three catagories of color, taste, and smell.
IMAGE-GUIDED EVALUATION AND MONITORING OF TREATMENT RESPONSE IN PATIENTS WITH DRY EYE DISEASE
Hamrah, Pedram
2014-01-01
Dry eye disease (DED) is one of the most common ocular disorders worldwide. The pathophysiological mechanisms involved in the development of DED are not well understood and thus treating DED has been a significant challenge for ophthalmologists. Most of the currently available diagnostic tests demonstrate low correlation to patient symptoms and have low reproducibility. Recently, sophisticated in vivo imaging modalities have become available for patient care, namely, in vivo confocal microscopy (IVCM) and optical coherence tomography (OCT). These emerging modalities are powerful and non-invasive, allowing real-time visualization of cellular and anatomical structures of the cornea and ocular surface. Here we discuss how, by providing both qualitative and quantitative assessment, these techniques can be used to demonstrate early subclinical disease, grade layer-by-layer severity, and allow monitoring of disease severity by cellular alterations. Imaging-guided stratification of patients may also be possible in conjunction with clinical examination methods. Visualization of subclinical changes and stratification of patients in vivo, allows objective image-guided evaluation of tailored treatment response based on cellular morphological alterations specific to each patient. This image-guided approach to DED may ultimately improve patient outcomes and allow studying the efficacy of novel therapies in clinical trials. PMID:24696045
Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor
NASA Astrophysics Data System (ADS)
Tawie, R.; Lee, H. K.
2011-08-01
This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials.
NASA Astrophysics Data System (ADS)
Cuglietta, Mark; Kuhn, Joel; Kesler, Olivera
2013-06-01
Composite coatings containing Cu, Co, Ni, and samaria-doped ceria (SDC) have been fabricated using a novel hybrid atmospheric plasma spraying technique, in which a multi-component aqueous suspension of CuO, Co3O4, and NiO was injected axially simultaneously with SDC injected radially in a dry powder form. Coatings were characterized for their microstructure, permeability, porosity, and composition over a range of plasma spray conditions. Deposition efficiency of the metal oxides and SDC was also estimated. Depending on the conditions, coatings displayed either layering or high levels of mixing between the SDC and metal phases. The deposition efficiencies of both feedstock types were strongly dependent on the nozzle diameter. Plasma-sprayed metal-supported solid oxide fuel cells utilizing anodes fabricated with this technique demonstrated power densities at 0.7 V as high as 366 and 113 mW/cm2 in humidified hydrogen and methane, respectively, at 800 °C.
Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions.
Das, Sriya; Wajid, Ahmed S; Shelburne, John L; Liao, Yen-Chih; Green, Micah J
2011-06-01
We demonstrate a novel in situ polymerization technique to develop localized polymer coatings on the surface of dispersed pristine graphene sheets. Graphene sheets show great promise as strong, conductive fillers in polymer nanocomposites; however, difficulties in dispersion quality and interfacial strength between filler and matrix have been a persistent problem for graphene-based nanocomposites, particularly for pristine graphene. With this in mind, a physisorbed polymer layer is used to stabilize graphene sheets in solution. To create this protective layer, we formed an organic microenvironment around dispersed graphene sheets in surfactant solutions, and created a nylon 6, 10 or nylon 6, 6 coating via interfacial polymerization. Technique lies at the intersection of emulsion and admicellar polymerization; a similar technique was originally developed to protect luminescent properties of carbon nanotubes in solution. These coated graphene dispersions are aggregation-resistant and may be reversibly redispersed in water even after freeze-drying. The coated graphene holds promise for a number of applications, including multifunctional graphene-polymer nanocomposites. © 2011 American Chemical Society
Dejmek, Annika; Zendehrokh, Nooreldin; Tomaszewska, Malgorzata; Edsjö, Anders
2013-07-01
Personalized oncology requires molecular analysis of tumor cells. Several studies have demonstrated that cytological material is suitable for DNA analysis, but to the authors' knowledge there are no systematic studies comparing how the yield and quality of extracted DNA is affected by the various techniques used for the preparation of cytological material. DNA yield and quality were compared using cultured human lung cancer cells subjected to different preparation techniques used in routine cytology, including fixation, mounting medium, and staining. The results were compared with the outcome of epidermal growth factor receptor (EGFR) genotyping of 66 clinical cytological samples using the same DNA preparation protocol. All tested protocol combinations resulted in fragment lengths of at least 388 base pairs. The mounting agent EcoMount resulted in higher yields than traditional xylene-based medium. Spray and ethanol fixation resulted in both a higher yield and better DNA quality than air drying. In liquid-based cytology (LBC) methods, CytoLyt solution resulted in a 5-fold higher yield than CytoRich Red. Papanicolaou staining provided twice the yield of hematoxylin and eosin staining in both liquid-based preparations. Genotyping outcome and quality control values from the clinical EGFR genotyping demonstrated a sufficient amount and amplifiability of DNA in both spray-fixed and air-dried cytological samples. Reliable clinical genotyping can be performed using all tested methods. However, in the cell line experiments, spray- or ethanol-fixed, Papanicolaou-stained slides provided the best results in terms of yield and fragment length. In LBC, the DNA recovery efficiency of the preserving medium may differ considerably, which should be taken into consideration when introducing LBC. Cancer (Cancer Cytopathol) 2013;121:344-353. © 2013 American Cancer Society. © 2013 American Cancer Society.
Tian, Yuting; Zhao, Yingting; Huang, Jijun; Zeng, Hongliang; Zheng, Baodong
2016-04-15
Various drying methods play important roles in the preservation of foods. However, how the different drying methods affect the quality of some foods is not clear. This paper evaluates the effects of hot air, vacuum, microwave, and microwave vacuum drying techniques on important qualities and volatile compounds of whole shiitake (Lentinus edodes) mushrooms. These four drying methods resulted in a significantly (p<0.05) increase in the content of total free amino acids and the relative content of sulfur compounds of dried products. Microwave vacuum drying helped to maintain larger amounts of taste-active amino acids, and improved nutrient retention and color attributes. Furthermore, the uniform honeycomb network created by microwave vacuum drying along with a less collapsed structure of dried samples can be used to explain the observed high rehydration ratio. Therefore, microwave vacuum drying should be a potential method for obtaining high-quality dried mushrooms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Ming-Xia; Zhang, Jian-Bao; Yu, Ji-Ping; Ye, Jing; Wei, Bao-Hong; Zhang, Yu-Jie
2013-06-01
To optimize the freeze-dried powder preparation technology of recombinate hirudin-2 (rHV2) nanoparticle which has bio-adhesive characteristic for nasal delivery, also to investigate its stability and permeability through nasal membrane in vitro. Taking the appearance, rediffusion of nanoparticle and rHV2 encapsulation efficiency as the evaluation indexes. Cryoprotector, the preparative technique and the effect of illumination and high temperature factors on its stability for rHV2 freeze-dried powder were investigated. Using Fraze diffusion cell technique, the permeability of rHV2 across rabbit nasal mucous membrane in chitosan solution, chitosan nanoparticle, and nanoparticle frozen-dried powder were compared with that in normal saline solution. The optimized preparation of rHV2 nanoparticle freeze-dried powder was as follows: 5% trehalose and glucose (1:1) was used as cryoprotector, nanoparticle solution was freezed for 24 h in vacuum frozen-dryer after being pre-freezed for 24 h. The content of rHV2 in the freeze-dried powder was 1.1 ug/mg. Illumination had little effect on the appearance, rediffusion and encapsulation efficiency of the rHV2 freeze-dried powder. High temperature could obviously influence the appearance of nanoparticle freeze-dried powder. The permeability coefficient (P) of nanoparticle was 5 times more than that in chictonson solution. It was indicated that chitosan nanoparticle has effect on increasing the permeability of rHV2. The freeze-dried powder of chitosan nanoparticle can be a good nasal preparation of rHV2.
Applications of optical coherence tomography in the non-contact assessment of automotive paints
NASA Astrophysics Data System (ADS)
Lawman, Samuel; Zhang, Jinke; Williams, Bryan M.; Zheng, Yalin; Shen, Yao-Chun
2017-06-01
The multiple layer paint systems on modern cars serve two end purposes, they firstly protect against corrosion and secondly give the desired visual appearance. To ensure consistent corrosion protection and appearance, suitable Quality Assurance (QA) measures on the final product are required. Various (layer thickness and consistency, layer composition, flake statistics, surface profile and layer dryness) parameters are of importance, each with specific techniques that can measure one or some of them but no technique that can measure all or most of them. Optical Coherence Tomography (OCT) is a 3D imaging technique with micrometre resolution. Since 2016, OCT measurements of layer thickness and consistency, layer composition fingerprint and flake statistics have been reported. In this paper we demonstrate two more novel applications of OCT to automotive paints. Firstly, we use OCT to quantify unwanted surface texture, which leads to an "orange peel" visual defect. This was done by measuring the surface profiles of automotive paints, with an unoptimised precision of 37 nm over lateral range of 7 mm, to quantify texture of less than 500 nm. Secondly, we demonstrate that OCT can measure how dry a coating layer is by measuring how fast it is still shrinking quasiinstantaneously, using Fourier phase sensitivity.
Bench Remarks: Carbon Dioxide.
ERIC Educational Resources Information Center
Bent, Henry A.
1987-01-01
Discusses the properties of carbon dioxide in its solid "dry ice" stage. Suggests several demonstrations and experiments that use dry ice to illustrate Avogadro's Law, Boyle's Law, Kinetic-Molecular Theory, and the effects of dry ice in basic solution, in limewater, and in acetone. (TW)
Dry and noncontact EEG sensors for mobile brain-computer interfaces.
Chi, Yu Mike; Wang, Yu-Te; Wang, Yijun; Maier, Christoph; Jung, Tzyy-Ping; Cauwenberghs, Gert
2012-03-01
Dry and noncontact electroencephalographic (EEG) electrodes, which do not require gel or even direct scalp coupling, have been considered as an enabler of practical, real-world, brain-computer interface (BCI) platforms. This study compares wet electrodes to dry and through hair, noncontact electrodes within a steady state visual evoked potential (SSVEP) BCI paradigm. The construction of a dry contact electrode, featuring fingered contact posts and active buffering circuitry is presented. Additionally, the development of a new, noncontact, capacitive electrode that utilizes a custom integrated, high-impedance analog front-end is introduced. Offline tests on 10 subjects characterize the signal quality from the different electrodes and demonstrate that acquisition of small amplitude, SSVEP signals is possible, even through hair using the new integrated noncontact sensor. Online BCI experiments demonstrate that the information transfer rate (ITR) with the dry electrodes is comparable to that of wet electrodes, completely without the need for gel or other conductive media. In addition, data from the noncontact electrode, operating on the top of hair, show a maximum ITR in excess of 19 bits/min at 100% accuracy (versus 29.2 bits/min for wet electrodes and 34.4 bits/min for dry electrodes), a level that has never been demonstrated before. The results of these experiments show that both dry and noncontact electrodes, with further development, may become a viable tool for both future mobile BCI and general EEG applications.
Wierzchos, Jacek; Sancho, Leopoldo García; Ascaso, Carmen
2005-04-01
In some zones of Antarctica's cold and dry desert, the extinction of cryptoendolithic microorganisms leaves behind inorganic traces of microbial life. In this paper, we examine the transition from live microorganisms, through their decay, to microbial fossils using in situ microscopy (transmission electron microscopy, scanning electron microscopy in back-scattered electron mode) and microanalytical (energy dispersive X-ray spectroscopy) techniques. Our results demonstrate that, after their death, endolithic microorganisms inhabiting Commonwealth Glacier sandstone from the Antarctica McMurdo Dry Valleys become mineralized. In some cases, epicellular deposition of minerals and/or simply filling up of empty moulds by minerals leads to the formation of cell-shaped structures that may be considered biomarkers. The continuous deposition of allochthonous clay minerals and sulfate-rich salts fills the sandstone pores. This process can give rise to microbial fossils with distinguishable cell wall structures. Often, fossilized cell interiors were of a different chemical composition to the mineralized cell walls. We propose that the microbial fossil formation observed was induced by mineral precipitation resulting from inorganic processes occurring after the death of cryptoendolithic microorganisms. Nevertheless, it must have been the organic template that provoked the diffusion of mineral elements and gave rise to their characteristic distribution pattern inside the fossilized cells.
El-Hela, Atef A; Al-Amier, Hussein A; Ibrahim, Taghreed A
2010-10-08
Verbena rigida L., Verbena tenera Spreng. and Verbena venosa L. were investigated for their flavonoid content. Analysis was carried out by high-performance liquid chromatography coupled to diode array UV detection (LC-UV), using different techniques, also using post-column addition of shift reagents, afforded precise structural information about the position of the free hydroxyl groups in the flavonoid nucleus. LC-MS using atmospheric pressure chemical ionization (APCI) in the positive mode provided the molecular weight, the number of hydroxyl groups, the number of sugars and an idea about the substitution pattern of the flavonoid. On-line UV and MS data demonstrated the presence of orientin, vitexin, isovitexin, luteolin, luteolin 7-O-glucoside, apigenin 7-O-glucoside in addition to luteolin, chryseriol and apigenin aglycones in the three Verbena species with different concentrations. Quantitative determination of flavonoid content revealed the presence of 69.84 mg/g dry sample, 88.26 mg/g dry sample and 85.82 mg/g dry sample total flavonoid compounds in V. rigida L., V. tenera Spreng. and V. venosa L., respectively. The method developed for identification is useful for further chromatographic fingerprinting of plant flavonoids. Copyright © 2010 Elsevier B.V. All rights reserved.
Abd-Khorsand, Saber; Saber-Samandari, Samaneh; Saber-Samandari, Saeed
2017-08-01
Porous three-dimensional scaffolds with potential for application as cancellous bone graft substitutes were prepared using the freeze-drying technique. Hydroxyapatite with different weight ratio was embedded in the network of poly(acrylic acid) grafted chitosan accompanied by using TiO 2 as an auxiliary component to fabricate porous nanocomposite bone scaffolds. Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analysis and mechanical tests were carried out to characterize the prepared scaffolds. These scaffolds showed well-controlled and interconnected porous structures. The pore size and porosity of the scaffolds could be effectively modulated by selecting appropriate amounts of hydroxyapatite. The results obtained from mechanical properties measurements indicated that the scaffolds could basically retain their strength in their dry state and have adequate mechanical properties close to those of cancellous bone. The swelling behavior of the scaffolds was also examined in both water and phosphate buffer saline solution. The cytotoxicity of the scaffold was determined by MTT assays on human fibroblast gum (HuGu) cells for 24, 48 and 72h. In conclusion, this investigation demonstrates that the fabricated nanocomposite scaffolds are suitable for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Manicke, Nicholas Edward; Abu-Rabie, Paul; Spooner, Neil; Ouyang, Zheng; Cooks, R. Graham
2011-09-01
A method is presented for the direct quantitative analysis of therapeutic drugs from dried blood spot samples by mass spectrometry. The method, paper spray mass spectrometry, generates gas phase ions directly from the blood card paper used to store dried blood samples without the need for complex sample preparation and separation; the entire time for preparation and analysis of blood samples is around 30 s. Limits of detection were investigated for a chemically diverse set of some 15 therapeutic drugs; hydrophobic and weakly basic drugs, such as sunitinib, citalopram, and verapamil, were found to be routinely detectable at approximately 1 ng/mL. Samples were prepared by addition of the drug to whole blood. Drug concentrations were measured quantitatively over several orders of magnitude, with accuracies within 10% of the expected value and relative standard deviation (RSD) of around 10% by prespotting an internal standard solution onto the paper prior to application of the blood sample. We have demonstrated that paper spray mass spectrometry can be used to quantitatively measure drug concentrations over the entire therapeutic range for a wide variety of drugs. The high quality analytical data obtained indicate that the technique may be a viable option for therapeutic drug monitoring.
A technique based on droplet evaporation to recognize alcoholic drinks
NASA Astrophysics Data System (ADS)
González-Gutiérrez, Jorge; Pérez-Isidoro, Rosendo; Ruiz-Suárez, J. C.
2017-07-01
Chromatography is, at present, the most used technique to determine the purity of alcoholic drinks. This involves a careful separation of the components of the liquid elements. However, since this technique requires sophisticated instrumentation, there are alternative techniques such as conductivity measurements and UV-Vis and infrared spectrometries. We report here a method based on salt-induced crystallization patterns formed during the evaporation of alcoholic drops. We found that droplets of different samples form different structures upon drying, which we characterize by their radial density profiles. We prove that using the dried deposit of a spirit as a control sample, our method allows us to differentiate between pure and adulterated drinks. As a proof of concept, we study tequila.
Pint, Cary L; Xu, Ya-Qiong; Moghazy, Sharief; Cherukuri, Tonya; Alvarez, Noe T; Haroz, Erik H; Mahzooni, Salma; Doorn, Stephen K; Kono, Junichiro; Pasquali, Matteo; Hauge, Robert H
2010-02-23
A scalable and facile approach is demonstrated where as-grown patterns of well-aligned structures composed of single-walled carbon nanotubes (SWNT) synthesized via water-assisted chemical vapor deposition (CVD) can be transferred, or printed, to any host surface in a single dry, room-temperature step using the growth substrate as a stamp. We demonstrate compatibility of this process with multiple transfers for large-scale device and specifically tailored pattern fabrication. Utilizing this transfer approach, anisotropic optical properties of the SWNT films are probed via polarized absorption, Raman, and photoluminescence spectroscopies. Using a simple model to describe optical transitions in the large SWNT species present in the aligned samples, polarized absorption data are demonstrated as an effective tool for accurate assignment of the diameter distribution from broad absorption features located in the infrared. This can be performed on either well-aligned samples or unaligned doped samples, allowing simple and rapid feedback of the SWNT diameter distribution that can be challenging and time-consuming to obtain in other optical methods. Furthermore, we discuss challenges in accurately characterizing alignment in structures of long versus short carbon nanotubes through optical techniques, where SWNT length makes a difference in the information obtained in such measurements. This work provides new insight to the efficient transfer and optical properties of an emerging class of long, large diameter SWNT species typically produced in the CVD process.
Light-assisted drying (LAD) of small volume biologics: a comparison of two IR light sources
NASA Astrophysics Data System (ADS)
Young, Madison A.; Van Vorst, Matthew; Elliott, Gloria D.; Trammell, Susan R.
2016-03-01
Protein therapeutics have been developed to treat diseases ranging from arthritis and psoriasis to cancer. A challenge in the development of protein-based drugs is maintaining the protein in the folded state during processing and storage. We are developing a novel processing method, light-assisted drying (LAD), to dehydrate proteins suspended in a sugar (trehalose) solution for storage at supra-zero temperatures. Our technique selectively heats the water in small volume samples using near-IR light to speed dehydration which prevents sugar crystallization that can damage embedded proteins. In this study, we compare the end moisture content (EMC) as a function of processing time of samples dried with two different light sources, Nd:YAG (1064 nm) and Thulium fiber (1850 nm) lasers. EMC is the ratio of water to dry weight in a sample and the lower the EMC the higher the possible storage temperature. LAD with the 1064 and 1850 nm lasers yielded 78% and 65% lower EMC, respectively, than standard air-drying. After 40 minutes of LAD with 1064 and 1850 nm sources, EMCs of 0.27+/-.27 and 0.15+/-.05 gH2O/gDryWeight were reached, which are near the desired value of 0.10 gH2O/gDryWeight that enables storage in a glassy state without refrigeration. LAD is a promising new technique for the preparation of biologics for anhydrous preservation.
A comparative structural study of wet and dried ettringite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaudin, G.; CNRS, UMR 6002, LMI, F-63177 Aubiere; Filinchuk, Y.
2010-03-15
Two different techniques were used to compare structural characteristics of 'wet' ettringite (stored in the synthesis mother liquid) and 'dried' ettringite (dried to 35% relative humidity over saturated CaCl{sub 2} solution). Lattice parameters and the water content in the channel region of the structure (site occupancy factor of the water molecule not bonded to cations) as well as microstructure parameters (size and strain) were determined from a Rietveld refinement on synchrotron powder diffraction data. Local environment of sulphate anions and of the hydrogen bonding network was characterized by Raman spectroscopy. Both techniques led to the same conclusion: the 'wet' ettringitemore » sample immersed in the mother solution from the synthesis presents similar structural features as ettringite dried to 35% relative humidity. An increase of the a lattice parameter combined with a decrease of the c lattice parameter occurs on drying. The amount of structural water, the point symmetry of sulphate and the hydrogen bond network are unchanged when passing from the wet to the dried ettringite powder. Ettringite does not form a high-hydrate polymorph in equilibrium with alkaline solution, in contrast to the AFm phases that lose water molecules on drying. According to these results we conclude that ettringite precipitated in aqueous solution at the early hydration stages is of the same chemical composition as ettringite present in the hardening concrete.« less
Dry Arthroscopy of the Elbow and Basic Hip Arthroscopy Positioning.
Lubowitz, James H
2015-08-01
In Arthroscopy Techniques, dry arthroscopy of the elbow is well-illustrated, and hip arthroscopy patient positioning including fluoroscopic examination under anesthesia is critically reviewed. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ge, Wangyao
Thin film deposition techniques are indispensable to the development of modern technologies as thin film based optical coatings, optoelectronic devices, sensors, and biological implants are the building blocks of many complicated technologies, and their performance heavily depends on the applied deposition technique. Particularly, the emergence of novel solution-processed materials, such as soft organic molecules, inorganic compounds and colloidal nanoparticles, facilitates the development of flexible and printed electronics that are inexpensive, light weight, green and smart, and these thin film devices represent future trends for new technologies. One appealing feature of solution-processed materials is that they can be deposited into thin films using solution-processed deposition techniques that are straightforward, inexpensive, high throughput and advantageous to industrialize thin film based devices. However, solution-processed techniques rely on wet deposition, which has limitations in certain applications, such as multi-layered film deposition of similar materials and blended film deposition of dissimilar materials. These limitations cannot be addressed by traditional, vacuum-based deposition techniques because these dry approaches are often too energetic and can degrade soft materials, such as polymers, such that the performance of resulting thin film based devices is compromised. The work presented in this dissertation explores a novel thin film deposition technique, namely emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE), which combines characteristics of wet and dry deposition techniques for solution-processed materials. Previous studies have demonstrated the feasibility of emulsion-based RIR-MAPLE to deposit uniform and continuous organic, nanoparticle and blended films, as well as hetero-structures that otherwise are difficult to achieve. However, fundamental understanding of the growth mechanisms that govern emulsion-based RIR-MAPLE is still missing, which increases the difficulty of using rational design to improve the performance of initial RIR-MAPLE devices that have been demonstrated. As a result, it is important to study the fundamentals of emulsion-based RIR-MAPLE in order to provide insight into the long-term prospects for this thin film deposition technique. This dissertation explores the fundamental deposition mechanisms of emulsion-based RIR-MAPLE by considering the effects of the emulsion target composition (namely, the primary solvent, secondary solvent, and surfactant) on the properties of deposited polymer films. The study of primary solvent effects on hydrophobic polymer deposition helps identify the unique method of film formation for emulsion-based RIR-MAPLE, which can be described as cluster-by-cluster deposition of emulsified particles that yields two levels of ordering (i.e., within the clusters and among the clusters). The generality of this film formation mechanism is tested by applying the lessons learned to hydrophilic polymer deposition. Based on these studies, the deposition design rules to achieve smooth polymer films, which are important for different device applications, are identified according to the properties of the polymer. After discussion of the fundamental deposition mechanisms, three applications of emulsion-based RIR-MAPLE, namely thin film deposition of organic solar cells, polymer/nanoparticle hybrid solar cells, and antimicrobial/fouling-release multifunctional films, are studied. The work on organic solar cells identifies the ideal deposition mode for blended films with nanoscale domain sizes, as well as demonstrates the relationships among emulsion target composition, film properties, and corresponding device performance. The studies of polymer/nanoparticle hybrid solar cells demonstrate precise control of colloidal nanoparticle deposition, in which the integrity of nanoparticles is maintained and a distinct film morphology is achieved when co-deposited with polymers. Finally, the application of antimicrobial and fouling-release multifunctional films demonstrates the importance of blended film deposition with nanoscale phase separation, a key feature to achieving reusable bio-films that can kill bacteria when illuminated with ultraviolet light. Thus, this dissertation provides great insight to the fundamentals of emulsion-based RIR-MAPLE, serves as a valuable reference for future development, and paves the pathway for wider adoption of this unique thin film deposition technique, especially for organic solar cells.
Electrochromic TiO2 Thin Film Prepared by Dip-Coating Technique
NASA Astrophysics Data System (ADS)
Suriani, S.; Kamisah, M. M.
2002-12-01
Titanium dioxide (TiO2) thin films were prepared by using sol-gel dip coating technique. The coating solutions were prepared by reacting titanium isopropoxide as precursors and ethanol as solvent. The films were formed on transparent ITO-coated glass by a dip coating technique and final dried at various temperatures up to 600 °C for 30 minutes. The films were characterized with the UV-Vis-NIR Spectrometer, Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). XRD results show that the films dried at 600 °C form anatase structure. From the spectroscopic studies, the sample shows electrochromic property.
2014-03-01
purpose of the study was to determine if the use of a simulator is at least as effective in marksmanship training as traditional dry fire techniques...determine if the use of a simulator is at least as effective in marksmanship training as traditional dry fire techniques. A between-groups study with a...marksmanship. Naval commands could use the information to effectively maintain gun qualifications for inport duty section watch bills and constant anti
Drying kinetics of onion ( Allium cepa L.) slices with convective and microwave drying
NASA Astrophysics Data System (ADS)
Demiray, Engin; Seker, Anıl; Tulek, Yahya
2017-05-01
Onion slices were dried using two different drying techniques, convective and microwave drying. Convective drying treatments were carried out at different temperatures (50, 60 and 70 °C). Three different microwave output powers 328, 447 and 557 W were used in microwave drying. In convective drying, effective moisture diffusivity was estimated to be between 3.49 × 10-8 and 9.44 × 10-8 m2 s-1 within the temperature range studied. The effect of temperature on the diffusivity was described by the Arrhenius equation with an activation energy of 45.60 kJ mol-1. At increasing microwave power values, the effective moisture diffusivity values ranged from 2.59 × 10-7 and 5.08 × 10-8 m2 s-1. The activation energy for microwave drying of samples was calculated using an exponential expression based on Arrhenius equation. Among of the models proposed, Page's model gave a better fit for all drying conditions used.
Review of Climatic Protection Techniques for Electronic Equipments.
1982-10-01
that the water vapour to be measured is carried in a dry nitrogen gas flow to an electrolytic cell which electrolyses the water vapour to hydrogen and...environments, the major factor being protection from the effects of water and water vapour in the atmosphere aided by temperature effects. The effects of...moisture on equipments, achieving and maintaining a dry interior, sealing standards, water vapour barriers, desiccation, drying-out procedures and
Long-term residual dry matter mapping for monitoring California hardwood rangelands
Norman R. Harris; William E. Frost; Neil K. McDougald; Melvin R. George; Donald L. Nielsen
2002-01-01
Long-term residual dry matter mapping on the San Joaquin Experimental Range provides a working example of this monitoring technique for grazing management and research. Residual dry matter (RDM) is the amount of old plant material left on the ground at the beginning of a new growing season. RDM indicates the previous seasonâs use and can be used to describe the health...
Feguš, Urban; Žigon, Uroš; Petermann, Marcus; Knez, Željko
2015-01-01
Aim of this experimental work was to investigate the possibility of producing fruit powders without employing drying aid and to investigate the effect of drying temperatures on the final powder characteristics. Raw fruit materials (banana puree, strawberry puree and blueberry concentrate) were processed using three different drying techniques each operating at a different temperature conditions: vacuum-drying (-27-17 °C), Spray-drying (130-160 °C) and PGSS-drying (112-152 °C). Moisture content, total colour difference, antioxidant activity and sensory characteristics of the processed fruit powders were analysed. The results obtained from the experimental work indicate that investigated fruit powders without or with minimal addition of maltodextrin can be produced. Additionally, it was observed that an increase in process temperature results in a higher loss of colour, antioxidant activity and intensity of the flavour profile.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Powell, J. Anthony; Trunek, Andrew; Spry, David; Beheim, Glenn M.; Benavage, Emye; Abel, Phillip; Vetter, William M.; Dudley, Michael
2001-01-01
Homoepitaxial CVD growth of thin lateral cantilevers emanating from the edges of mesa patterns dry-etched into on-axis commercial 4H-SiC substrates prior to growth is reported. Cantilevers on the order of a micrometer thick extending tens of micrometers from the edge of a mesa have been grown. The termination of vertically propagating screw dislocations, including a micropipe, that are overgrown by the cantilevers has been demonstrated, in large part because the crystal structure of the cantilevers is established laterally from the mesa sidewalls. This technique could help reduce performance-degrading dislocations in SiC electrical devices.
Multi-wavelength VCSEL arrays using high-contrast gratings
NASA Astrophysics Data System (ADS)
Haglund, Erik; Gustavsson, Johan S.; Sorin, Wayne V.; Bengtsson, Jörgen; Fattal, David; Haglund, Àsa; Tan, Michael; Larsson, Anders
2017-02-01
The use of a high-contrast grating (HCG) as the top mirror in a vertical-cavity surface-emitting laser (VCSEL) allows for setting the resonance wavelength by the grating parameters in a post-epitaxial growth fabrication process. Using this technique, we demonstrate electrically driven multi-wavelength VCSEL arrays at 980 nm wavelength. The VCSELs are GaAs-based and the suspended GaAs HCGs were fabricated using electron-beam lithography, dry etching and selective removal of an InGaP sacrificial layer. The air-coupled cavity design enabled 4-channel arrays with 5 nm wavelength spacing and sub-mA threshold currents thanks to the high HCG reflectance.
Foam-mat drying technology: A review.
Hardy, Z; Jideani, V A
2017-08-13
This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.
(Dry) arthroscopic partial wrist arthrodesis: tips and tricks.
del Piñal, F; Tandioy-Delgado, F
2014-10-01
One of the options for performing a partial wrist arthrodesis is the arthroscopic technique. As a first advantage arthroscopy allows us to directly assess the state of the articular surface of the carpal bones and define the best surgical option during the salvage operation. Furthermore, it allows performance of the procedure with minimal ligament damage and minimal interference with the blood supply of the carpals. These will (presumably) entail less capsular scarring and more rapid healing. Lastly, there is cosmetic benefit by reducing the amount of external scarring. The procedure has a steep learning curve even for accomplished arthroscopists but can be performed in a competitive manner to the open procedure if the dry technique is used. The aim of this paper is to present the technical details, tricks and tips to make the procedure accessible to all hand specialists with an arthroscopic interest. As it is paramount that the surgeon is acquainted with the "dry" technique, some technical details about it will also be presented. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Takahashi, K.; Ishida, H.; Sawada, K.
2018-01-01
We report the development of a microcavity drum sealed by suspended graphene. The drum is fabricated by using a low-pressure dry-transfer technique, which involves vacuum de-aeration between a graphene sheet and a substrate and raising the temperature to above the glass transition of the supporting poly(methyl methacrylate) film, which serves to increase the real contact area. The result is a suspended graphene sheet with a maximum diameter of 48.6 μm. The Raman spectrum of the suspended graphene has a 2D/G ratio of 1.79 and a few D peaks, which suggests that the material is high-quality single-layer graphene. The dry-transfer technique yields a vacuum-sealed microcavity drum 1.1 μm deep up to 4.5 μm in diameter. The Raman shift indicates that the suspended graphene is subjected to a tensile strain of 0.05%, which is attributed to the pressure difference between the evacuated cavity and the exterior gas.
Zielonka-Brzezicka, Joanna; Nowak, Anna; Zielińska, Magdalena; Klimowicz, Adam
Antioxidants contained in plant raw materials prevent oxidative stress, and reduce the degenerative effects of free radical reactions and damage caused by UV radiation. Antioxidant activity is exhibited, for example, in raspberry (Rubus idaeus), and blackberry (Rubus fruticosus), which have a high content of tannins, flavonoids, phenolic acids, vitamins and minerals. The raw plant material consisted of fresh and dried leaves and fruits of raspberries and blackberries harvested in 2014. This material was extracted using a Soxhlet apparatus and by an ultrasound-assisted technique. To evaluate antioxidant activity DPPH and FRAP methods were used in the first year and DPPH and ABTS methods in the second year of the study. The highest antioxidant activity, evaluated by the DPPH method in 2015, was demonstrated by both raspberry and blackberry fresh leaf extracts, whereas the highest reductive ability, assessed by FRAP, was demonstrated in fresh and dried blackberry leaves. In the next year of the study (2016), the activity of samples evaluated using the DPPH method did not differ significantly, with the exception of fresh raspberry leaf. In this year, the highest antioxidant properties, assessed using the ABTS method, were shown by extracts made of fresh blackberry leaves and fruits, and dried blackberry leaves. All the studied material, both ethanolic leaves and fruit extracts of raspberry and blackberry, reduced free radicals, which was examined using three methods of evaluation of the antioxidative properties (DPPH, FRAP and ABTS). The storage of ethanolic extracts at ambient temperature had no significant impact on the activity reduction of the evaluated plant material. The antioxidant activity of most examined extracts remained consistently high, which may be reflected in the use of the studied materials as sources of antioxidants in the cosmetics and pharmaceuticals industries.
Rieman, Mary T; Neely, Alice N; Boyce, Steven T; Kossenjans, William J; Durkee, Paula J; Zembrodt, Jacquelyn M; Puthoff, Barbara K; Kagan, Richard J
2014-01-01
Amish burn wound ointment (ABO) contains honey, lanolin, oils, glycerin, bees wax, and other natural additives. Although there are many anecdotal reports that this ointment covered with a burdock leaf (BL) dressing promotes burn wound healing, little scientific testing of this treatment has occurred. The goal of this study was to evaluate in vitro some of the components of this treatment modality for antimicrobial and cytotoxic activities. The ABO was tested for sterility using standard microbiological techniques. Because of the semisolid, lipid-based nature of the salve, the at-use product could not be tested in bioassays. Samples of BL and the dry ingredients (DI) used in the ointment were provided by the Amish vendor. Aqueous extracts of the DI and of the BL were prepared and freeze dried. The freeze-dried extracts were reconstituted, filtered, and tested separately on keratinocyte and fibroblast cell cultures for cytotoxicity (growth inhibition assay) and against a panel of susceptible and resistant microbes for antimicrobial activity (Nathan's agar-well diffusion assay) in a series of concentrations (% wt/vol). Neither DI nor BL extracts demonstrated antimicrobial activity against any of organisms tested. The DI extract inhibited growth of both keratinocytes and fibroblasts at the 0.1% concentration. The 0.1 and 0.03% concentrations of the BL extract were cytotoxic to both keratinocytes and fibroblasts. Although tests for microbial growth from the at-use preparation of the ABO were negative, extracts of the DI and BL did not demonstrate any antimicrobial activity. Additionally, both extracts inhibited the growth of skin cells in vitro at higher concentrations. These results suggest caution in the use of ABO and BL dressings if there is more than a minimal risk of complications from the burn injury.
NanoXCT: a novel technique to probe the internal architecture of pharmaceutical particles.
Wong, Jennifer; D'Sa, Dexter; Foley, Matthew; Chan, John Gar Yan; Chan, Hak-Kim
2014-11-01
To demonstrate the novel application of nano X-ray computed tomography (NanoXCT) for visualizing and quantifying the internal structures of pharmaceutical particles. An Xradia NanoXCT-100, which produces ultra high-resolution and non-destructive imaging that can be reconstructed in three-dimensions (3D), was used to characterize several pharmaceutical particles. Depending on the particle size of the sample, NanoXCT was operated in Zernike Phase Contrast (ZPC) mode using either: 1) large field of view (LFOV), which has a two-dimensional (2D) spatial resolution of 172 nm; or 2) high resolution (HRES) that has a resolution of 43.7 nm. Various pharmaceutical particles with different physicochemical properties were investigated, including raw (2-hydroxypropyl)-beta-cyclodextrin (HβCD), poly (lactic-co-glycolic) acid (PLGA) microparticles, and spray-dried particles that included smooth and nanomatrix bovine serum albumin (BSA), lipid-based carriers, and mannitol. Both raw HβCD and PLGA microparticles had a network of voids, whereas spray-dried smooth BSA and mannitol generally had a single void. Lipid-based carriers and nanomatrix BSA particles resulted in low quality images due to high noise-to-signal ratio. The quantitative capabilities of NanoXCT were also demonstrated where spray-dried mannitol was found to have an average void volume of 0.117 ± 0.247 μm(3) and average void-to-material percentage of 3.5%. The single PLGA particle had values of 1993 μm(3) and 59.3%, respectively. This study reports the first series of non-destructive 3D visualizations of inhalable pharmaceutical particles. Overall, NanoXCT presents a powerful tool to dissect and observe the interior of pharmaceutical particles, including those of a respirable size.
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2015-01-01
Remotely sensing the water status of plants and the water content of canopies remain long-term goals of remote sensing research [1]. Estimates of canopy water content commonly involve measurements in the 900nm to 2000nm portion of the optical spectrum [1]. We have used optical polarization techniques to remove leaf surface reflection and to demonstrate that the visible light reflected by the interior of green healthy corn leaves measured in situ inversely depends upon the leaf relative water content (RWC) [2]. In the research reported here, we again used optical polarization techniques in order to remove the leaf surface reflection from our measurements. This allowed us to monitor the interiors of detached corn leaf samples during leaf dry down measuring for each sample the RWC, bidirectional spectral reflectance and bidirectional spectral transmittance over the wavelength range 450nm to 2,500nm. Our new results like our earlier results show light scattered by the leaf interior measured in the visible wavelength region generally increased as leaf RWC decreased. However, the spectral character and the much improved signal noise of our new results shows the RWC-linked visible light scattering changes are due to leaf structural changes. Our new results show that scattering changes that occur with changing leaf RWC are not attributable to molecular configuration changes in cellular pigments.
Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery
Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F
2011-01-01
Background Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously “entrap” the nano-oil droplets (around 150 nm) in their core. Methods Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. Results We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. Conclusion This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets. PMID:21760727
Kassa, Adane; Stephan, Dietrich; Vidal, Stefan; Zimmermann, Gisbert
2004-01-01
Currently, mycopesticide development for locust and grasshopper control depends on aerial conidia or submerged spores of entomopathogenic fungi. In our study, the production of submerged conidia of Metarhizium anisopliae var. acridum (IMI 330189) was investigated in a liquid medium containing 3% biomalt and 1% yeast extract (BH-medium). The effects of freeze and spray drying techniques on the quality of submerged conidia were determined. The influence of different additives on the viability of fresh submerged conidia and their suitability for oil flowable concentrate formulation development was assessed. In a BH medium maintained at 180 rev min(-1), at 30 degrees C for 72 h, IMI 330189 produced a green pigmented biomass of submerged conidia whereas in Adámek medium it produced a yellowish biomass of submerged spores. The spore concentration was high in both media; however, the size of the spores produced in the BH medium was significantly lower than those produced in Adámek medium (P < 0.001). Submerged conidia can be effectively dried using either freeze or spray drying techniques. The viability and speed of germination were significantly affected by the drying and pulverizing process (P < 0.001). The initial viability was significantly higher for spray-dried submerged conidia than for freeze-dried spores. Pulverizing of freeze-dried submerged conidia reduced the speed of germination and the viability by 63-95%. Dried submerged conidia can be stored over 45 wk at low temperatures (< 10 degrees) without suffering a significant loss in viability. Furthermore, we have identified carriers that are suitable for oil flowable concentrate formulation development.
Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery.
Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F
2011-01-01
Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously "entrap" the nano-oil droplets (around 150 nm) in their core. Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets.
Phahom, Traiphop; Phoungchandang, Singhanat; Kerr, William L
2017-08-01
Dried Thunbergia laurifolia leaves are usually prepared using tray drying, resulting in products that have lost substantial amounts of bioactive compounds and antioxidant activity. The maturity of the raw material, blanching techniques and drying methods were investigated in order to select the best condition to produce high qualities of dried T. laurifolia leaves. The 1st stage of maturity was selected and steam-microwave blanching (SMB) for 4 min was adequate for blanching leading to the maximum recovery of bioactive compounds. The modified Halsey model was the best desorption isotherm model. A new drying model proposed in this study was the best to fit the drying curves as compared to five common drying models. Moisture diffusivities were increased with the increase of drying temperature when combining SMB and heat pump-dehumidified drying. Microwave heat pump-dehumidified drying (MHPD) provided the shortest drying time, high specific moisture extraction rate (SMER) and could reduce drying time by 67.5% and increase caffeic acid and quercetin by 51.24% and 60.89%, respectively. MHPD was found to be the best drying method and provided the highest antioxidant activity and bioactive compounds content, high SMER and short drying time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Goetz, Alexander F. H.
1992-01-01
Over the last decade, technological advances in airborne imaging spectrometers, having spectral resolution comparable with laboratory spectrometers, have made it possible to estimate biochemical constituents of vegetation canopies. Wessman estimated lignin concentration from data acquired with NASA's Airborne Imaging Spectrometer (AIS) over Blackhawk Island in Wisconsin. A stepwise linear regression technique was used to determine the single spectral channel or channels in the AIS data that best correlated with measured lignin contents using chemical methods. The regression technique does not take advantage of the spectral shape of the lignin reflectance feature as a diagnostic tool nor the increased discrimination among other leaf components with overlapping spectral features. A nonlinear least squares spectral matching technique was recently reported for deriving both the equivalent water thicknesses of surface vegetation and the amounts of water vapor in the atmosphere from contiguous spectra measured with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The same technique was applied to a laboratory reflectance spectrum of fresh, green leaves. The result demonstrates that the fresh leaf spectrum in the 1.0-2.5 microns region consists of spectral components of dry leaves and the spectral component of liquid water. A linear least squares spectral matching technique for retrieving equivalent water thickness and biochemical components of green vegetation is described.
Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul
2017-12-01
There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantitative ultrasonic evaluation of concrete structures using one-sided access
NASA Astrophysics Data System (ADS)
Khazanovich, Lev; Hoegh, Kyle
2016-02-01
Nondestructive diagnostics of concrete structures is an important and challenging problem. A recent introduction of array ultrasonic dry point contact transducer systems offers opportunities for quantitative assessment of the subsurface condition of concrete structures, including detection of defects and inclusions. The methods described in this paper are developed for signal interpretation of shear wave impulse response time histories from multiple fixed distance transducer pairs in a self-contained ultrasonic linear array. This included generalizing Kirchoff migration-based synthetic aperture focusing technique (SAFT) reconstruction methods to handle the spatially diverse transducer pair locations, creating expanded virtual arrays with associated reconstruction methods, and creating automated reconstruction interpretation methods for reinforcement detection and stochastic flaw detection. Interpretation of the reconstruction techniques developed in this study were validated using the results of laboratory and field forensic studies. Applicability of the developed methods for solving practical engineering problems was demonstrated.
Willow bioenergy plantation research in the Northeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, E.H.; Abrahamson, L.P.; Kopp, R.F.
1993-12-31
Experiments were established in Central New York in the spring of 1987 to evaluate the potential of Salix for biomass production in bioenergy plantations. Emphasis of the research was on developing and refining establishment, tending and maintenance techniques, with complimentary study of breeding, coppice physiology, pests, nutrient use and bioconversion to energy products. Current yields utilizing salix clones developed in cooperation with the University of Toronto in short-rotation intensive culture bioenergy plantations in the Northeast approximate 8 oven dry tons per acre per year with annual harvesting. Successful clones have been identified and culture techniques refined. The results are nowmore » being integrated to establish a 100 acre Salix large-scale bioenergy farm to demonstrate current successful biomass production technology and to provide plantations of sufficient size to test harvesters; adequately assess economics of the systems; and provide large quantities of uniform biomass for pilot-scale conversion facilities.« less
Application of nonlinear ultrasonics to inspection of stainless steel for dry storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrich, Timothy James II; Anderson, Brain E.; Remillieux, Marcel C.
This report summarized technical work conducted by LANL staff an international collaborators in support of the UFD Storage Experimentation effort. The focus of the current technical work is on the detection and imaging of a failure mechanism known as stress corrosion cracking (SCC) in stainless steel using the nonlinear ultrasonic technique known as TREND. One of the difficulties faced in previous work is in finding samples that contain realistically sized SCC. This year such samples were obtained from EPRI. Reported here are measurements made on these samples. One of the key findings is the ability to detect subsurface changes tomore » the direction in which a crack is penetrating into the sample. This result follows from last year's report that demonstrated the ability of TREND techniques to image features below the sample surface. A new collaboration was established with AGH University of Science and Technology, Krakow, Poland.« less
Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.
Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir
2006-06-01
Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.
Effects of dehydration methods on quality characteristics of yellow passion fruit co-products.
Silva, Neiton C; Duarte, Claudio R; Barrozo, Marcos As
2017-11-01
The production and processing of fruits generate a large amount of residues, which are usually disposed of or under-used, representing losses of raw material and energy. The present paper investigates the effect of four dehydration techniques (convective, infrared, microwave and freeze-drying) on yellow passion fruit (Passiflora edulis f. flavicarpa) co-products and the influence of the main variables on moisture removal and bioactive compounds. The compounds analyzed were total phenolics, total flavonoids, ascorbic acid and pectin. The content of phenolics and flavonoids increased after dehydration in all techniques investigated and the process temperatures directly affected the ascorbic acid content. Microwave dehydration showed the best results for most bioactive compounds analyzed, if performed in suitable process conditions. However, the highest levels of pectin content were obtained by freeze-drying and convective dehydration. This study reinforces the importance of the adequate use of passion fruit co-products due to the high levels of bioactive compounds in this material. Microwave dehydration presented the best results, which indicates the potential use of this technique for a better exploitation of fruit co-products. Larger quantities of pectin were extracted from samples dehydrated through methodologies with long-time process and low temperatures, such as convective drying and freeze-drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Study Techniques for Controlling Flavor Intensity in Compressed Foods (Phase 2)
1976-06-10
and gravies were prepared as cooked materials, freeze- dried and chopped . The mushroom soup ingredients were all used as procured in their dry...This material, after blending with the soup base, was free£e= dried and chopped prior to blending with the re- maining components in preparation of...Exec- utive Chef, using the following formula: TABLE XII Onion Gravy Formula Ingredients % Onions, Chopped Tomato Paste Hard Wheat Flour Beef
Energy Design Guidelines for High Performance Schools: Hot and Dry Climates.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.
This guide contains recommendations for designing high performance, energy efficient schools located in hot and dry climates. A high performance checklist for designers is included along with several case studies of projects that successfully demonstrated high performance design solutions for hot and dry climates. The guide's 10 sections…
Demonstrating a nutritional advantage to the fast cooking dry bean (Phaseolus vulgaris L.)
USDA-ARS?s Scientific Manuscript database
Dry beans (Phaseolus vulgaris L.) are a nutrient dense food rich in protein and micronutrients. Despite their nutritional benefits, long cooking times limit the consumption of dry beans worldwide, especially in nations where fuelwood for cooking is often expensive or scarce. This study evaluated the...
Mulhall, Aaron M; Zafar, Muhammad A; Record, Samantha; Channell, Herman; Panos, Ralph J
2017-02-01
Although inhaled medications are effective therapies for COPD, many patients and providers use them incorrectly. We recruited providers who prescribe inhalers or teach inhaler technique and assessed their use of metered-dose inhalers (MDIs), various dry powder inhalers (DPIs), and Respimat using predefined checklists. Then they watched tablet-based multimedia educational videos that demonstrated correct inhaler technique by a clinical pharmacist with teach-back from a patient and were re-evaluated. We also recruited patients with COPD and assessed their use of their prescribed inhalers and then retested them after 3-6 months. Baseline and follow-up respiratory symptoms were measured by the COPD Assessment Test. Fifty-eight providers and 50 subjects participated. For all providers, correct inhaler technique (reported as percentage correct steps) increased after the videos: MDI without a spacer (72% vs 97%) MDI with a spacer (72% vs 96%), formoterol DPI (50% vs 94%), mometasone DPI (43% vs 95%), tiotropium DPI (73% vs 99%), and Respimat (32% vs 93%) (before vs after, P < .001 for all comparisons). Subjects also improved their inhaler use technique after viewing the educational videos: MDI without a spacer (69% vs 92%), MDI with a spacer (73% vs 95%), and tiotropium DPI (83% vs 96%) (before vs after, P < .001 for all comparisons). The beneficial effect of this educational intervention declined slightly for subjects but was durably improved after several months. COPD Assessment Test scores did not demonstrate any change in respiratory symptoms. A tablet-based inhaler education tool improved inhaler technique for both providers and subjects. Although this intervention did show durable efficacy for improving inhaler use by patients, it did not reduce their respiratory symptoms. Copyright © 2017 by Daedalus Enterprises.
The report evaluates the Kress Indirect Dry Cooling (KIDC) process, an innovative system for handling and cooling coke produced from a slot-type by-product coke oven battery. The report is based on the test work and demonstration of the system at Bethlehem Steel Corporation's Sp...
Computational analysis of fluid dynamics in pharmaceutical freeze-drying.
Alexeenko, Alina A; Ganguly, Arnab; Nail, Steven L
2009-09-01
Analysis of water vapor flows encountered in pharmaceutical freeze-drying systems, laboratory-scale and industrial, is presented based on the computational fluid dynamics (CFD) techniques. The flows under continuum gas conditions are analyzed using the solution of the Navier-Stokes equations whereas the rarefied flow solutions are obtained by the direct simulation Monte Carlo (DSMC) method for the Boltzmann equation. Examples of application of CFD techniques to laboratory-scale and industrial scale freeze-drying processes are discussed with an emphasis on the utility of CFD for improvement of design and experimental characterization of pharmaceutical freeze-drying hardware and processes. The current article presents a two-dimensional simulation of a laboratory scale dryer with an emphasis on the importance of drying conditions and hardware design on process control and a three-dimensional simulation of an industrial dryer containing a comparison of the obtained results with analytical viscous flow solutions. It was found that the presence of clean in place (CIP)/sterilize in place (SIP) piping in the duct lead to significant changes in the flow field characteristics. The simulation results for vapor flow rates in an industrial freeze-dryer have been compared to tunable diode laser absorption spectroscopy (TDLAS) and gravimetric measurements.
Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus.
Lavra, Zênia Maria Maciel; Pereira de Santana, Davi; Ré, Maria Inês
2017-01-01
Efavirenz (EFV), a first-line anti-HIV drug largely used as part of antiretroviral therapies, is practically insoluble in water and belongs to BCS class II (low solubility/high permeability). The aim of this study was to improve the solubility and dissolution performances of EFV by formulating an amorphous solid dispersion of the drug in polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus ® ) using spray-drying technique. To this purpose, spray-dried dispersions of EFV in Soluplus ® at different mass ratios (1:1.25, 1:7, 1:10) were prepared and characterized using particle size measurements, SEM, XRD, DSC, FTIR and Raman microscopy mapping. Solubility and dissolution were determined in different media. Stability was studied at accelerated conditions (40 °C/75% RH) and ambient conditions for 12 months. DSC and XRD analyses confirmed the EFV amorphous state. FTIR spectroscopy analyses revealed possible drug-polymer molecular interaction. Solubility and dissolution rate of EFV was enhanced remarkably in the developed spray-dried solid dispersions, as a function of the polymer concentration. Spray-drying was concluded to be a proper technique to formulate a physically stable dispersion of amorphous EFV in Soluplus ® , when protected from moisture.
Lavoie, Jean-Michel
2014-01-01
With the actual growth of the natural gas industry in the US as well as the potential and availability of this non-renewable carbon source worldwide, reforming of methane gas is getting increasing attention. Methane can be used for the production of heat or electricity, as well, it can be converted to syngas, a building block that could lead to the production of liquid fuels and chemicals, a very promising pathway in light of the increasing price of oil. Amongst the different reforming techniques, dry reforming could represent a very interesting approach both to valorize a cheap source or carbon (CO2) as well as to reduce the overall carbon footprint of the increasing worldwide fossil-based methane consumption. In this short review, attention will be given to the thermodynamics of dry reforming followed by an investigation on dry reforming using heterogeneous catalyst by focusing on the most popular elements used in literature for dry reforming. Attention will as well be given to other emerging techniques that may allow countering at one point the high thermodynamic penalties that accompanies conversion of methane using carbon dioxide. PMID:25426488
Jiang, Hao; Zhang, Min; Mujumdar, Arun S; Lim, Rui-Xin
2014-07-01
To overcome the flaws of high energy consumption of freeze drying (FD) and the non-uniform drying of microwave freeze drying (MFD), pulse-spouted microwave vacuum drying (PSMVD) was developed. The results showed that the drying time can be dramatically shortened if microwave was used as the heating source. In this experiment, both MFD and PSMVD could shorten drying time by 50% as compared to the FD process. Depending on the heating method, MFD and PSMVD dried banana cubes showed trends of expansion while FD dried samples demonstrated trends of shrinkage. Shrinkage also brought intensive structure and highest fracturability of all three samples dried by different methods. The residual ascorbic acid content of PSMVD dried samples can be as high as in FD dried samples, which were superior to MFD dried samples. The tests confirmed that PSMVD could bring about better drying uniformity than MFD. Besides, compared with traditional MFD, PSMVD can provide better extrinsic feature, and can bring about improved nutritional features because of the higher residual ascorbic acid content. © 2013 Society of Chemical Industry.
Dry powder segregation and flowability: Experimental and numerical studies
NASA Astrophysics Data System (ADS)
Ely, David R.
Dry powder blending is a very important industrial and physical process used in the production of numerous pharmaceutical dosage forms such as tablets, capsules, and dry powder aerosols. Key aspects of this unit operation are process monitoring and control. Process control is particularly difficult due to the complexity of particle-particle interactions, which arise from the adhesion/cohesion characteristics of interfaces and morphological characteristics such as particle size, shape, and dispersity. The effects of such characteristics need to be understood in detail in order to correlate individual particle properties to bulk powder properties. The present dissertation numerically and experimentally quantifies the mixing process to rationalize particle-particle interactions. In particular, near infrared spectroscopy (NIRS) was used to non-invasively characterize in real-time the blending processes and thus investigate the dynamics of blending under different operating conditions. A novel image analysis technique was developed to quantify the scale of segregation from images obtained non-destructively via near infrared chemical imaging (NIR-CI). Although NIR-CI data acquisition times are too long for real-time data collection, NIR-CI has an advantage, in that it provides the spatial distribution of the drug. Therefore, NIRS and NIR-CI are complementary techniques for investigating the complex process of blending dry powders and assessing end-product quality. Additionally, the discrete element method was used to investigate the effect of powder cohesion on the packing fraction. Simulations indicated an exponential relationship between the random loose packing fraction and cohesive forces. Specifically, the packing fraction decreased asymptotically with increased ratio of cohesive force to particle weight. Thus, increasing this force ratio above a critical value has negligible impact on the packing fraction. Such result directly impacts the Hausner ratio flowability measurement, which is directly related to the packing fraction. Two commonly used tests were compared to assess their utility: the rotational split-cell shear cell test and the Hausner ratio. The Hausner ratio proved to be better suited for characterizing the flowability of unconsolidated powders than the splitring shear cell. Results demonstrate that the optimal flowability test depends on the powder properties and the environment under which flow will be induced.
Sapra, Mahak; Ugrani, Suraj; Mayya, Y S; Venkataraman, Chandra
2017-08-15
Air-jet atomization of solution into droplets followed by controlled drying is increasingly being used for producing nanoparticles for drug delivery applications. Nanoparticle size is an important parameter that influences the stability, bioavailability and efficacy of the drug. In air-jet atomization technique, dry particle diameters are generally predicted by using solute diffusion models involving the key concept of critical supersaturation solubility ratio (Sc) that dictates the point of crust formation within the droplet. As no reliable method exists to determine this quantity, the present study proposes an aerosol based method to determine Sc for a given solute-solvent system and process conditions. The feasibility has been demonstrated by conducting experiments for stearic acid in ethanol and chloroform as well as for anti-tubercular drug isoniazid in ethanol. Sc values were estimated by combining the experimentally observed particle and droplet diameters with simulations from a solute diffusion model. Important findings of the study were: (i) the measured droplet diameters systematically decreased with increasing precursor concentration (ii) estimated Sc values were 9.3±0.7, 13.3±2.4 and 18±0.8 for stearic acid in chloroform, stearic acid and isoniazid in ethanol respectively (iii) experimental results pointed at the correct interfacial tension pre-factor to be used in theoretical estimates of Sc and (iv) results showed a consistent evidence for the existence of induction time delay between the attainment of theoretical Sc and crust formation. The proposed approach has been validated by testing its predictive power for a challenge concentration against experimental data. The study not only advances spray-drying technique by establishing an aerosol based approach to determine Sc, but also throws considerable light on the interfacial processes responsible for solid-phase formation in a rapidly supersaturating system. Until satisfactory theoretical formulae for predicting CSS are developed, the present approach appears to offer the best option for engineering nanoparticle size through solute diffusion models. Copyright © 2017 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... limits HMIWI size Small Medium Large Averaging time 1 Methodfor demonstrating compliance 2 Particulate matter Milligrams per dry standard cubic meter (grains per dry standard cubic foot) 69 (0.03) 34 (0.015.../furans (grains per billion dry standard cubic feet) or nanograms per dry standard cubic meter TEQ (grains...
NASA Astrophysics Data System (ADS)
Rahmawati, Y.; Mahmudatussa'adah, A.; Yogha, S.
2016-04-01
Sweet potato processing is limited, such as flour, snacks, cystic, or chips. Flakes as pre-cooked meals are made through the stages of making pasta and drying. The purpose of this study was to optimize the production of sweet potato flakes at the stage of making pasta and drying. Making the pasta is done through techniques steamed or baked. Pasta drying using tools a drum dryer or cabinet dryer. As an indicator of optimization is the total of monomeric anthocyanins, β-carotene and color the resulting flakes. The results showed that the amount of anthocyanin monomeric flakes by using steam, and drum dryer (3.83 ± 0.03 mg CYE/g db), flakes by the technique of steam, and cabinet dryer (3.03 ± 0.02 mg CYE/g db), flakes with techniques bake, drum dryer (2.49 ± 0.05 CYE mg/g db), flakes with bake technique, cabinet dryer (1.98 ± 0.03 mg CYE/g db). The Color of purple sweet potato flakes produced through steamed techniques bright purple, while the color purple sweet potato flakes produced through techniques roast give a brownish purple color. The amount of β-carotene yellow flakes sweet potato with stages of cooking steamed, drum dryer (152±0.5 mg/Kg db), grilled drum dryer (136±0.4 mg/Kg db), flakes of yellow sweet potato with stages of roasted and cabinet dryer (140±0.8 mg/Kg db), and grilled stage with cabinet dryer (122±0.3 mg/Kg db). In conclusion sweet potato flakes production techniques through the stages of steam process, and used drum dryers have a number of anthocyanins or β-carotene bigger and brighter colors than the baked flakes techniques and used cabinet dryer.
Advances in Spacecraft Brine Water Recovery: Development of a Radial Vaned Capillary Drying Tray
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Sargusingh, Miriam J.; Pickering, Karen D.; Weislogel, Mark M.
2014-01-01
Technology improvements in the recovery of water from brine are critical to establishing closed-loop water recovery systems, enabling long-duration missions, and achieving a sustained human presence in space. A genre of 'in-place drying' brine water recovery concepts, collectively referred to herein as Brine Residual In-Containment, are under development. These brine water recovery concepts aim to increase the overall robustness and reliability of the brine recovery process by performing drying inside the container used for final disposal of the solid residual waste. Implementation of in-place drying techniques have been demonstrated for applications where gravity is present and phase separation occurs naturally by buoyancy-induced effects. In this work, a microgravity-compatible analogue of the gravity-driven phase separation process is considered by exploiting capillarity in the form of surface wetting, surface tension, and container geometry. The proposed design consists of a series of planar radial vanes aligned about a central slotted core. Preliminary testing of the fundamental geometry in a reduced gravity environment has shown the device to spontaneously fill and saturate rapidly, thereby creating a free surface from which evaporation and phase separation can occur similar to a terrestrial-like 'cylindrical pool' of fluid. Mathematical modeling and analysis of the design suggest predictable rates of filling and stability of fluid containment as a function of relevant system dimensions; e.g., number of vanes, vane length, width, and thickness. A description of the proposed capillary design solution is presented along with preliminary results from testing, modeling, and analysis of the system.
Advancements in Spacecraft Brine Water Recovery: Development of a Radial Vaned Capillary Drying Tray
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Sargusingh, Miriam J.; Pickerin, Karen D.; Weislogel, Mark M.
2013-01-01
Technology improvements in the recovery of water from brine are critical to establishing closedloop water recovery systems, enabling long duration missions, and achieving a sustained human presence in space. A genre of 'in-place drying' brine water recovery concepts, collectively referred to herein as Brine Residual In-Containment (BRIC), are under development which aim to increase the overall robustness and reliability of the brine recovery process by performing drying inside the container used for final disposal of the solid residual waste. Implementation of in-place drying techniques have been demonstrated for applications where gravity is present and phase separation occurs naturally by buoyancy induced effects. In this work, a microgravity compatible analogue of the gravity-driven phase separation process is considered by exploiting capillarity in the form of surface wetting, surface tension, and container geometry. The proposed design consists of a series of planar radial vanes aligned about a central slotted core. Preliminary testing of the fundamental geometry in a reduced gravity environment has shown the device to spontaneously fill and saturate rapidly creating a free surface from which evaporation and phase separation can occur similar to a 1-g like 'cylindrical pool' of fluid. Mathematical modeling and analysis of the design suggest predictable rates of filling and stability of fluid containment as a function of relevant system dimensions, e.g., number of vanes, vane length, width, and thickness. A description of the proposed capillary design solution is presented along with preliminary results from testing, modeling and analysis of the system.
Dry needling — peripheral and central considerations
Dommerholt, Jan
2011-01-01
Dry needling is a common treatment technique in orthopedic manual physical therapy. Although various dry needling approaches exist, the more common and best supported approach targets myofascial trigger points. This article aims to place trigger point dry needling within the context of pain sciences. From a pain science perspective, trigger points are constant sources of peripheral nociceptive input leading to peripheral and central sensitization. Dry needling cannot only reverse some aspects of central sensitization, it reduces local and referred pain, improves range of motion and muscle activation pattern, and alters the chemical environment of trigger points. Trigger point dry needling should be based on a thorough understanding of the scientific background of trigger points, the differences and similarities between active and latent trigger points, motor adaptation, and central sensitize application. Several outcome studies are included, as well as comments on dry needling and acupuncture. PMID:23115475
The Illinois State Water Survey hosted a three-week field intercomparison of several sulfate dry deposition measurement techniques during September 81. The site was an 80-acre grass field in a rural area 14 km southwest of Champaign, IL. The vegetation consisted of mixed grasses ...
Membrane-filtered olive mill wastewater: Quality assessment of the dried phenolic-rich fraction
USDA-ARS?s Scientific Manuscript database
A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW a...
NASA Astrophysics Data System (ADS)
Aranda-González, Irma; Betancur-Ancona, David; Chel-Guerrero, Luis; Moguel-Ordóñez, Yolanda
2017-01-01
Drying techniques can modify the composition of certain plant compounds. Therefore, the aim of the study was to assess the effect of different drying methods on steviol glycosides in Stevia rebaudiana Bertoni leaves. Four different drying methods were applied to Stevia rebaudiana Bertoni leaves, which were then subjected to aqueous extraction. Radiation or convection drying was performed in stoves at 60°C, whereas shade or sun drying methods were applied at 29.7°C and 70% of relative humidity. Stevioside, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, dulcoside A, and steviolbioside were quantified by a validated HPLC method. Among steviol glycosides, the content (g 100 g-1 dry basis) of stevioside, rebaudioside A, rebaudioside B, and rebaudioside C varied according to the drying method. The total glycoside content was higher in sun-dried samples, with no significant differences compared to shade or convection drying, whereas radiation drying adversely affected the content of rebaudioside A and rebaudioside C (p <0.01) and was therefore a method lowering total glycoside content. The effect of the different drying methods was also reflected in the proportion of the sweetener profile. Convection drying could be suitable for modern food processing industries while shadow or sun drying may be a low-cost alternative for farmers.
Brouckaert, Davinia; De Meyer, Laurens; Vanbillemont, Brecht; Van Bockstal, Pieter-Jan; Lammens, Joris; Mortier, Séverine; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas
2018-04-03
Near-infrared chemical imaging (NIR-CI) is an emerging tool for process monitoring because it combines the chemical selectivity of vibrational spectroscopy with spatial information. Whereas traditional near-infrared spectroscopy is an attractive technique for water content determination and solid-state investigation of lyophilized products, chemical imaging opens up possibilities for assessing the homogeneity of these critical quality attributes (CQAs) throughout the entire product. In this contribution, we aim to evaluate NIR-CI as a process analytical technology (PAT) tool for at-line inspection of continuously freeze-dried pharmaceutical unit doses based on spin freezing. The chemical images of freeze-dried mannitol samples were resolved via multivariate curve resolution, allowing us to visualize the distribution of mannitol solid forms throughout the entire cake. Second, a mannitol-sucrose formulation was lyophilized with variable drying times for inducing changes in water content. Analyzing the corresponding chemical images via principal component analysis, vial-to-vial variations as well as within-vial inhomogeneity in water content could be detected. Furthermore, a partial least-squares regression model was constructed for quantifying the water content in each pixel of the chemical images. It was hence concluded that NIR-CI is inherently a most promising PAT tool for continuously monitoring freeze-dried samples. Although some practicalities are still to be solved, this analytical technique could be applied in-line for CQA evaluation and for detecting the drying end point.
The effects of PEP-1-FK506BP on dry eye disease in a rat model.
Kim, Dae Won; Lee, Sung Ho; Ku, Sae Kwang; Lee, Ji Eun; Cha, Hyun Ju; Youn, Jong Kyu; Kwon, Hyeok Yil; Park, Jong Hoon; Park, Eun Young; Cho, Sung-Woo; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young
2015-03-01
As FK506 binding proteins (FK506BPs) are known to play an important role in the regulation of a variety of biological processes related to cell survival, this study was designed to examined the protective effects of FK506 binding protein 12 (FK506BP) on low humidity air flow induced dry eye in a rat model using transduced PEP-1-FK506BP. After the topical application of PEP-1-FK506BP, tear volumes were markedly increased and significant prevention of cornea damage was observed compared with dry eye rats. Further, immunohistochemical analysis demonstrated that PEP-1-FK506BP markedly prevented damage to the cornea, the bulbar conjunctiva, and the palpebral conjunctiva epithelial lining compared with dry eye rats. In addition, caspase-3 and PARP expression levels were found to be decreased. These results demonstrated that topical application of PEP-1-FK506BP significantly ameliorates dry eye injury in an animal model. Thus, we suggest that PEP-1-FK506BP can be developed as a new ophthalmic drop to treat dry eye diseases.
Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.
Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis; Larsen, Niels Bent; Hinrichs, Wouter Leonardus Joseph; Andersen, Peter; Rantanen, Jukka; Nielsen, Hanne Mørck; Yang, Mingshi; Foged, Camilla
2013-05-10
Dry powder vaccine formulations are highly attractive due to improved storage stability and the possibility for particle engineering, as compared to liquid formulations. However, a prerequisite for formulating vaccines into dry formulations is that their physicochemical and adjuvant properties remain unchanged upon rehydration. Thus, we have identified and optimized the parameters of importance for the design of a spray dried powder formulation of the cationic liposomal adjuvant formulation 01 (CAF01) composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) via spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol. Trehalose and lactose were in the glassy state upon co-spray drying with the liposomes, whereas mannitol appeared crystalline, suggesting that the ability of the stabilizer to form a glassy matrix around the liposomes is one of the prerequisites for stabilization. Systematic studies on the effect of process parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome formulations. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Clements, J. M.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Collins, L. M.; Throckmorton, C. S.
2016-12-01
Objective. Dry electrodes have an advantage over gel-based ‘wet’ electrodes by providing quicker set-up time for electroencephalography recording; however, the potentially poorer contact can result in noisier recordings. We examine the impact that this may have on brain-computer interface communication and potential approaches for mitigation. Approach. We present a performance comparison of wet and dry electrodes for use with the P300 speller system in both healthy participants and participants with communication disabilities (ALS and PLS), and investigate the potential for a data-driven dynamic data collection algorithm to compensate for the lower signal-to-noise ratio (SNR) in dry systems. Main results. Performance results from sixteen healthy participants obtained in the standard static data collection environment demonstrate a substantial loss in accuracy with the dry system. Using a dynamic stopping algorithm, performance may have been improved by collecting more data in the dry system for ten healthy participants and eight participants with communication disabilities; however, the algorithm did not fully compensate for the lower SNR of the dry system. An analysis of the wet and dry system recordings revealed that delta and theta frequency band power (0.1-4 Hz and 4-8 Hz, respectively) are consistently higher in dry system recordings across participants, indicating that transient and drift artifacts may be an issue for dry systems. Significance. Using dry electrodes is desirable for reduced set-up time; however, this study demonstrates that online performance is significantly poorer than for wet electrodes for users with and without disabilities. We test a new application of dynamic stopping algorithms to compensate for poorer SNR. Dynamic stopping improved dry system performance; however, further signal processing efforts are likely necessary for full mitigation.
The report evaluates the Kress Indirect Dry Cooling (KIDC) process, an innovative system for handling and cooling coke produced from a slot-type by-product coke oven battery. he report is based on the test work and demonstration of the system at Bethlehem Steel Corporation's Spar...
Cleaning Process Development for Metallic Additively Manufactured Parts
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark
2014-01-01
Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.
Kanyas, Selin; Aydın, Derya; Kizilel, Riza; Demirel, A. Levent; Kizilel, Seda
2014-01-01
Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS) polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA) measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite. PMID:24516593
NASA Technical Reports Server (NTRS)
Flynn, Michael; Shaw, Hali; Hyde, Deirdre; Beeler, David; Parodi, Jurek
2015-01-01
The Forward Osmosis Brine Drying (FOBD) system is based on a technique called forward osmosis (FO). FO is a membrane-based process where the osmotic potential between brine and a salt solution is equalized by the movement of water from the brine to the salt solution. The FOBD system is composed of two main elements, the FO bag and the salt regeneration system. This paper discusses the results of testing of the FO bag to determine the maximum water recovery ratio that can be attained using this technology. Testing demonstrated that the FO bag is capable of achieving a maximum brine water recovery ratio of the brine of 95%. The equivalent system mass was calculated to be 95 kg for a feed similar to the concentrated brine generated on the International Space Station and 86 kg for an Exploration brine. The results have indicated that the FOBD can process all the brine for a one year mission for between 11% to 10% mass required to bring the water needed to make up for water lost in the brine if not recycled. The FOBD saves 685 kg and when treating the International Space Station brine and it saves 829 kg when treating the Exploration brine. It was also demonstrated that saturated salt solutions achieve a higher water recovery ratios than solids salts do and that lithium chloride achieved a higher water recovery ratio than sodium chloride.
Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka; Yang, Mingshi
2013-04-15
Freeze-drying and spray-drying are often applied drying techniques for biopharmaceutical formulations. The formation of different solid forms upon drying is often dependent on the complex interplay between excipient selection and process parameters. The purpose of this study was to investigate the influence of the chosen drying method on the solid state form. Mannitol-lysozyme solutions of 20mg/mL, with the amount of lysozyme varying between 2.5% and 50% (w/w) of total solid content, were freeze-dried and spray-dried, respectively. The resulting solid state of mannitol was analysed by near-infrared spectroscopy in combination with multivariate analysis and further, results were verified with X-ray powder diffraction. It was seen that the prevalence of the mannitol polymorphic form shifted from β-mannitol to δ-mannitol with increasing protein concentration in freeze-dried formulations. In spray-dried formulations an increase in protein concentration resulted in a shift from β-mannitol to α-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying process in itself, rather than the temperature, that leads to the observed solid state changes. Copyright © 2013 Elsevier B.V. All rights reserved.
Defect reduction in overgrown semi-polar (11-22) GaN on a regularly arrayed micro-rod array template
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.; Bai, J.; Hou, Y.
2016-02-15
We demonstrate a great improvement in the crystal quality of our semi-polar (11-22) GaN overgrown on regularly arrayed micro-rod templates fabricated using a combination of industry-matched photolithography and dry-etching techniques. As a result of our micro-rod configuration specially designed, an intrinsic issue on the anisotropic growth rate which is a great challenge in conventional overgrowth technique for semi-polar GaN has been resolved. Transmission electron microscopy measurements show a different mechanism of defect reduction from conventional overgrowth techniques and also demonstrate major advantages of our approach. The dislocations existing in the GaN micro-rods are effectively blocked by both a SiO{sub 2}more » mask on the top of each GaN micro-rod and lateral growth along the c-direction, where the growth rate along the c-direction is faster than that along any other direction. Basal stacking faults (BSFs) are also effectively impeded, leading to a distribution of BSF-free regions periodically spaced by BSF regions along the [-1-123] direction, in which high and low BSF density areas further show a periodic distribution along the [1-100] direction. Furthermore, a defect reduction model is proposed for further improvement in the crystalline quality of overgrown (11-22) GaN on sapphire.« less
Combined control of morphology and polymorph in spray drying of mannitol for dry powder inhalation
NASA Astrophysics Data System (ADS)
Lyu, Feng; Liu, Jing J.; Zhang, Yang; Wang, Xue Z.
2017-06-01
The morphology and polymorphism of mannitol particles were controlled during spray drying with the aim of improving the aerosolization properties of inhalable dry powders. The obtained microparticles were characterized using scanning electron microscopy, infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction and inhaler testing with a next generation impactor. Mannitol particles of varied α-mannitol content and surface roughness were prepared via spray drying by manipulating the concentration of NH4HCO3 in the feed solution. The bubbles produced by NH4HCO3 led to the formation of spheroid particles with a rough surface. Further, the fine particle fraction was increased by the rough surface of carriers and the high α-mannitol content. Inhalable dry powders with a 29.1 ± 2.4% fine particle fraction were obtained by spray-drying using 5% mannitol (w/v)/2% NH4HCO3 (w/v) as the feed solution, proving that this technique is an effective method to engineer particles for dry powder inhalation.
Effect of different drying methods on moisture ratio and rehydration of pumpkin slices.
Seremet Ceclu, Liliana; Botez, Elisabeta; Nistor, Oana-Viorela; Andronoiu, Doina Georgeta; Mocanu, Gabriel-Danut
2016-03-15
This study was carried to determine the influence of hot air drying process and combined methods on physicochemical properties of pumpkin (Cucurbita moschata) samples. The experiments in hot air chamber were lead at 50, 60 and 70 °C. The combined method consists of a triple combination of the main drying techniques. Thus, in first stage the samples were dried in hot air convection at 60 °C followed by hot air ventilation at 40 °C simultaneous with microwave. The time required to reduce the moisture content to any given level was highly dependent on the drying conditions. So, the highest value of drying time in hot air has been 540 min at 50 °C, while the lowest time has been 189 min in hot air combined by microwave at 40 °C and a power of 315 W. The samples dried by hot air shows a higher rehydration capacity than samples dried by combined method. Copyright © 2015 Elsevier Ltd. All rights reserved.
Teixeira, C C C; Mendonça, L M; Bergamaschi, M M; Queiroz, R H C; Souza, G E P; Antunes, L M G; Freitas, L A P
2016-04-01
This work aimed at improving the solubility of curcumin by the preparation of spray-dried ternary solid dispersions containing Gelucire®50/13-Aerosil® and quantifying the resulting in vivo oral bioavailability and anti-inflammatory activity. The solid dispersion containing 40% of curcumin was characterised by calorimetry, infrared spectroscopy and X-ray powder diffraction. The solubility and dissolution rate of curcumin in aqueous HCl or phosphate buffer improved up to 3600- and 7.3-fold, respectively. Accelerated stability test demonstrated that the solid dispersion was stable for 9 months. The pharmacokinetic study showed a 5.5-fold increase in curcumin in rat blood plasma when compared to unprocessed curcumin. The solid dispersion also provided enhanced anti-inflammatory activity in rat paw oedema. Finally, the solid dispersion proposed here is a promising way to enhance curcumin bioavailability at an industrial pharmaceutical perspective, since its preparation applies the spray drying, which is an easy to scale up technique. The findings herein stimulate further in vivo evaluations and clinical tests as a cancer and Alzheimer chemoprevention agent.
Sánchez, T; Ceballos, H; Dufour, D; Ortiz, D; Morante, N; Calle, F; Zum Felde, T; Domínguez, M; Davrieux, F
2014-05-15
Efforts are currently underway to improve carotenoids content in cassava roots through conventional breeding as a strategy to reduce vitamin A deficiency. However, only few samples can be quantified each day for total carotenoids (TCC) and β-carotene (TBC) contents, limiting the gains from breeding. A database with >3000 samples was used to evaluate the potential of NIRS and chromameter devices to predict root quality traits. Maximum TTC and TBC were up to 25.5 and 16.6 μg/g (fresh weight basis), respectively. NIRS predictions were highly satisfactory for dry matter content (DMC, R(2): 0.96), TCC (R(2): 0.92) and TBC (R(2): 0.93). NIRS could also distinguish roots with high or low cyanogenic potential (R(2): 0.86). Hunter color parameters could also be used for predictions, but with lower accuracy than NIRS. NIRS or chromameter improve selection protocols, allowing faster gains from breeding. Results also demonstrate that TBC and DMC can be improved simultaneously (required for the adoption of biofortified cassava). Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Yiming; Zhang, Wei; Cházaro-Ruiz, Luis F
2018-05-01
In this work, polyvinylidene fluoride (PVDF)/polyaniline (PANI) heterogeneous anion-exchange membranes filled with pore-forming agents polyvinylpyrrolidone (PVP) and lithium chloride were prepared by the solution-casting technique using the solvent 1-methyl-2-pyrrolidone (NMP) and a two-step phase inversion procedure. Key properties of the as-prepared membranes, such as hydrophilicity, water content, ion exchange capacity, fixed ion concentration, conductivity and transport number were examined and compared between membranes in different conditions. The pore-forming hydrophilic additives PVP and lithium chloride to the casting solution appeared to improve the ion-exchange membranes (IEMs) by increasing the conductivity, transport number and hydrophilicity. The effects of increasing membrane drying time on the porosity of the as-prepared membranes were found to lower membrane porosity by reducing membrane water content. However, pore-forming agents were found to be able to stabilise membrane transport number with different drying times. As-prepared PVDF/PANI anion-exchange membrane with pore-forming agent is demonstrated to be a more efficient candidate for water purification (e.g. desalination) and other industrial applications.
ESDA®-Lite collection of DNA from latent fingerprints on documents.
Plaza, Dane T; Mealy, Jamia L; Lane, J Nicholas; Parsons, M Neal; Bathrick, Abigail S; Slack, Donia P
2015-05-01
The ability to detect and non-destructively collect biological samples for DNA processing would benefit the forensic community by preserving the physical integrity of evidentiary items for more thorough evaluations by other forensic disciplines. The Electrostatic Detection Apparatus (ESDA®) was systemically evaluated for its ability to non-destructively collect DNA from latent fingerprints deposited on various paper substrates for short tandem repeat (STR) DNA profiling. Fingerprints were deposited on a variety of paper substrates that included resume paper, cotton paper, magazine paper, currency, copy paper, and newspaper. Three DNA collection techniques were performed: ESDA collection, dry swabbing, and substrate cutting. Efficacy of each collection technique was evaluated by the quantity of DNA present in each sample and the percent profile generated by each sample. Both the ESDA and dry swabbing non-destructive sampling techniques outperformed the destructive methodology of substrate cutting. A greater number of full profiles were generated from samples collected with the non-destructive dry swabbing collection technique than were generated from samples collected with the ESDA; however, the ESDA also allowed the user to visualize the area of interest while non-destructively collecting the biological material. The ability to visualize the biological material made sampling straightforward and eliminated the need for numerous, random swabbings/cuttings. Based on these results, the evaluated non-destructive ESDA collection technique has great potential for real-world forensic implementation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Reddy, Jay Poorna; Jones, John W; Wray, Patrick S; Dennis, Andrew B; Brown, Jonathan; Timmins, Peter
2018-04-25
Form changes during drug product processing can be a risk to the final product quality in terms of chemical stability and bioavailability. In this study, online Raman spectroscopy was used to monitor the form changes in real time during high shear wet granulation of Compound A, a highly soluble drug present at a high drug load in an extended release formulation. The effect of water content, temperature, wet massing time and drying technique on the degree of drug transformation were examined. A designed set of calibration standards were employed to develop quantitative partial least square regression models to predict the concentration of each drug form during both wet granulation and the drying process. Throughout all our experiments we observed complex changes of the drug form during granulation, manifest as conversions between the initial non-solvated form of Compound A, the hemi-hydrate form and the "apparent" amorphous form (dissolved drug). The online Raman data demonstrate that the non-solvated form converts to an "apparent" amorphous form (dissolved drug) due to drug dissolution with no appearance of the hemi-hydrate form during water addition stage. The extent of conversion of the non-solvated form was governed by the amount of water added and the rate of conversion was accelerated at higher temperatures. Interestingly, in the wet massing zone, the formation of the hemi-hydrate form was observed at a rate equivalent to the rate of depletion of the non-solvated form with no change in the level of the "apparent amorphous" form generated. The level of hemi-hydrate increased with an increase in wet massing time. The drying process had a significant effect on the proportion of each form. During tray drying, changes in drug form continued for hours. In contrast fluid bed drying appeared to lock the final proportions of drug form product attained during granulation, with comparatively small changes observed during drying. In conclusion, it was possible to simultaneously monitor the three forms in real time during wet granulation and drying using online Raman spectroscopy. The results regarding the effect of process parameters on the degree of transformation are critical for designing a robust process that ensures a consistent form in the final drug product. Copyright © 2018 Elsevier B.V. All rights reserved.
Barreto, M P; Veillette, R; L'Espérance, G
1995-07-01
The formability of galvanneal steel sheets used in the automotive industry is influenced by the presence and distribution of brittle and difficult to distinguish Zn-Fe intermetallics in the coating. Characterization of these intermetallics requires a high spatial resolution technique such as analytical transmission electron microscopy (ATEM). Sample preparation by ion milling is impossible due to iron redeposition, and traditional ultramicrotomy using water affects the coating chemistry. A technique based on dry ultramicrotomy has therefore been developed. To optimize the technique, different parameters (knife angle, cutting medium, thickness setting on the ultramicrotome, cutting speed) have been investigated for the preparation of galvanneal coatings and pure A1 sections. Results show that dry cutting does not affect the coating chemistry but shortens the life of the knife. Knife quality (cleanliness, sharpness and absence of defects) is a major factor to obtain good dry sections. The best results for the more ductile pure A1 are obtained with a 35 degrees knife whilst for the harder galvanneal coating it is recommended to use a 55 degrees knife. These results suggest that the sectioning mechanism for the harder material involves more a cleavage-fracture mechanism whilst a greater amount of shear is involved when sectioning relatively ductile A1. The optimum parameters for sectioning galvanneal coatings are established and results obtained by parallel electron energy loss spectrum imaging and energy dispersive X-ray spectrometry in the TEM are given. This study shows that with a good control of all the sectioning parameters it is possible to obtain good sections repeatedly and rapidly.
Wideband Interferometric Sensing and Imaging Polarimetry
NASA Technical Reports Server (NTRS)
Verdi, James Salvatore; Kessler, Otto; Boerner, Wolfgang-Martin
1996-01-01
Wideband Interferometric Sensing and Imaging Polarimetry (WISIP) has become an important, indispensible tool in wide area military surveillance and global environmental monitoring of the terrestrial and planetary covers. It enables dynamic, real time optimal feature extraction of significant characteristics of desirable targets and/or target sections with simultaneous suppression of undesirable background clutter and propagation path speckle at hitherto unknown clarity and never before achieved quality. WISIP may be adopted to the detection, recognition, and identification (DRI) of any stationary, moving or vibrating targets or distributed scatterer segments versus arbitrary stationary, dynamical changing and/or moving geo-physical/ecological environments, provided the instantaneous 2x2 phasor and 4x4 power density matrices for forward propagation/backward scattering, respectively, can be measured with sufficient accuracy. For example, the DRI of stealthy, dynamically moving inhomogeneous volumetric scatter environments such as precipitation scatter, the ocean/sea/lake surface boundary layers, the littoral coastal surf zones, pack ice and snow or vegetative canopies, dry sands and soils, etc. can now be successfully realized. A comprehensive overview is presented on how these modern high resolution/precision, complete polarimetric co-registered signature sensing and imaging techniques, complemented by full integration of novel navigational electronic tools, such as DGPS, will advance electromagnetic vector wave sensing and imaging towards the limits of physical realization. Various examples utilizing the most recent image data take sets of airborne, space shuttle, and satellite imaging systems demonstrate the utility of WISIP.
Porous mannitol carrier for pulmonary delivery of cyclosporine A nanoparticles.
Leung, Sharon Shui Yee; Wong, Jennifer; Guerra, Heloisa Victorino; Samnick, Kevin; Prud'homme, Robert K; Chan, Hak-Kim
2017-03-01
This study employed the ultrasonic spray-freeze-drying technique to prepare porous mannitol carriers that incorporated hydrophobic cyclosporine A (CsA) nanoparticles (NPs) for pulmonary delivery. Two nanosuspension stabilization systems, (1) a combination of lecithin and lactose system and (2) a D-α-tocopheryl polyethylene glycol succinate (TPGS) system, were investigated. The ability of the lecithin and TPGS in anchoring the hydrophobic CsA NPs to the porous hydrophilic mannitol structure was first reported. Formulations stabilized by TPGS provided a much better dose uniformity, suggesting that TPGS is a better anchoring agent compared with lecithin. The effects of mannitol carrier density and CsA loading (4.9-27%) on aerosol performance and dissolution profiles were assessed. The fine particle fraction (FPF) increased from 44 to 63% as the mannitol concentration decreased from 1 to 5%. All formulations achieved full dissolution within an hour without significant influence from the mannitol content and CsA loading. The initial dissolution rates of the present formulations were almost double than that of the spray-dried counterpart, with 90% of the drug dissolved in 10 min. Overall, the CsA NPs were successfully incorporated into the porous mannitol which demonstrated good aerosol performance and enhanced dissolution profiles. These spray-freeze-drying (SFD) powders were stable after 2-year storage under desiccation at 20 ± 3°C.
Dorati, Rossella; DeTrizio, Antonella; Spalla, Melissa; Migliavacca, Roberta; Pagani, Laura; Pisani, Silvia; Chiesa, Enrica; Modena, Tiziana; Genta, Ida
2018-01-01
Nanotechnology is a promising approach both for restoring or enhancing activity of old and conventional antimicrobial agents and for treating intracellular infections by providing intracellular targeting and sustained release of drug inside infected cells. The present paper introduces a formulation study of gentamicin loaded biodegradable nanoparticles (Nps). Solid-oil-in water technique was studied for gentamicin sulfate nanoencapsulation using uncapped Polylactide-co-glycolide (PLGA-H) and Polylactide-co-glycolide-co-Polyethylenglycol (PLGA-PEG) blends. Screening design was applied to optimize: drug payload, Nps size and size distribution, stability and resuspendability after freeze-drying. PLGA-PEG concentration resulted most significant factor influencing particles size and drug content (DC): 8 w/w% DC and 200 nm Nps were obtained. Stirring rate resulted most influencing factor for size distribution (PDI): 700 rpm permitted to obtain homogeneous Nps dispersion (PDI = 1). Further experimental parameters investigated, by 23 screening design, were: polymer blend composition (PLGA-PEG and PLGA-H), Polyvinylalcohol (PVA) and methanol concentrations into aqueous phase. Drug content was increased to 10.5 w/w%. Nanoparticle lyophilization was studied adding cryoprotectants, polyvinypirrolidone K17 and K32, and sodiumcarboxymetylcellulose. Freeze-drying protocol was optimized by a mixture design. A freeze-dried Nps powder free resuspendable with stable Nps size and payload, was developed. The powder was tested on clinic bacterial isolates demonstrating that after encapsulation, gentamicin sulfate kept its activity. PMID:29329209
NASA Astrophysics Data System (ADS)
Krawczyk, Piotr; Badyda, Krzysztof
2011-12-01
The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.
Limitations of an ocular surface inflammatory biomarker in impression cytology specimens.
Yafawi, Rolla; Ko, Mira; Sace, Frederick P; John-Baptiste, Annette
2013-03-01
A number of ocular conditions, such as dry eye, are associated with inflammation on the surface of the eye leading to irritation and ocular pain. Many drugs such as chemotherapeutics, beta blockers, angiotensin-converting enzymes and so forth also cause dry eye but currently there are no validated ocular surface biomarkers available. We evaluated sample stability, assay sensitivity, reproducibility and overall performance of impression cytology (IC) utilizing the cellular surface biomarker human leukocyte antigen DR-1 (HLA-DR) as an ocular surface inflammatory biomarker by flow cytometry in a fit-for-purpose validation study. Additionally, subjects classified as normal or having various degrees of dry eye were evaluated to determine if HLA-DR could demonstrate a clear separation between normal and dry eye samples. The assay demonstrated high dynamic range detecting a broad range of fluorescent intensities in healthy donors. Additionally, inter, intra and stability assay results demonstrated strong concordance and low variability. Overall CV% for both assays were less than 25% for all measured parameters. However, high variability was observed for donor samples assayed beyond day 10 post IC sample collection (4.2-110.8 CV%). HLA-DR expression demonstrated a progressive increase in patients with mild to severe levels of dry eye disease providing sufficient evidence it is sensitive enough to monitor inflammatory effects of dry eye when coupled with additional biomarkers and/or methodologies such as cytokine analysis or ICAM-1. This biomarker can be used to monitor ocular surface disorders in patients and to evaluate potential treatment options during drug development. Although our results demonstrate this methodology is reproducible for routine evaluation, limitations around sample integrity exist. The ocular cell surface inflammatory biomarker, HLA-DR coupled with impression cytology is a simple non-invasive robust, specific and reproducible assay that can be utilized to measure inflammatory infiltrates on the surface of the eye in IC samples less than 10-days old.
Niwa, Toshiyuki; Shimabara, Hiroko; Kondo, Masahiro; Danjo, Kazumi
2009-12-01
Spray freeze-drying (SFD) process, which is a novel particle design technique previously developed by authors, has been improved by using four-fluid nozzle (4N) instead of conventional two-fluid nozzle (2N) to expand its application in pharmaceutical industry. Aqueous spray solutions of the drug and the polymeric carrier were separately supplied into 4N, and atomized while colliding with each other at the tip of nozzle. The droplets of mixed solutions were directly immersed into liquid nitrogen and immediately frozen to form a suspension. Then, the iced droplets were lyophilized by freeze-dryer to prepare the composite particles of the drug and carrier. This process has been used in the present study to modify and enhance the dissolution profiles of poorly water-soluble drug, phenytoin. Water-soluble and enteric polymeric carriers in pharmaceutical use were used as a dissolution modifier. The SFD composite particles prepared by using 4N were fully characterized compared to those using 2N from morphological and physicochemical perspectives. It was found that the particles have fine porous structure producing vast specific surface area. Further, phenytoin was completely dispersed as amorphous state in the polymeric matrix with higher carrier ratio than phenytoin:carrier = 1:3. The dissolution of phenytoin from the water-soluble carrier-based particles was greatly enhanced because of large effective surface area and disappearance of crystalline. On the other hand, the release profiles from enteric carrier-based particles showed the typical enteric patterns, that is, delayed in acidic medium and accelerated in neutral pH. The results demonstrated that SFD technique using 4N has potential to develop the novel solubilized formulation for poorly water-soluble APIs.
Wang, Sheng-Yao; Ho, Yi-Fang; Chen, Yen-Po; Chen, Ming-Ju
2015-04-01
Lactobacillus kefiranofaciens M1 (M1) has been shown to possess many different beneficial health effects including anti-colitis activity. The purpose of this study was to develop a novel and easily scaled-up encapsulating technique that would improve the temperature tolerance of the bacterium and reduce the sensitivity of the organism to gastrointestinal fluid. A mixture of sodium alginate, gellan gum and skim milk powder was used as a coating material to entrap M1. The M1 gel was then directly freeze dried in order to dehydrate the covering and form microcapsules. The viable cell numbers of M1 present only dropped ten folds after the freeze-drying encapsulation process. The viable cell counts remained constant at 5 × 10(7) CFU/g after heating from 25 °C to 75 °C and holding at 75 °C for 1 min. The viable cell counts were reduced to 10(6) CFU/g and 10(5) CFU/g after 8-week storage at 4 °C and subsequent heat treatment with simulated gastrointestinal fluid test (SGFT) and bile salts, respectively. The effect of encapsulated M1 on the organism's anti-colitis activity was evaluated using the dextran sodium sulfate (DSS) induced colitis mouse model. An in vivo study indicated that administration of heat treated encapsulated M1 was able to ameliorate DSS-induced colitis producing a significant reduction in the bleeding score and an attenuation of inflammatory score. These findings clearly demonstrate that encapsulation of M1 using this novel technique is able to provide good protection from temperature changes and SGFT treatment and also does not affect the organism's anti-colitis activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, J.; Hoopingarner, J.
Effective techniques have been developed from work on dozens of North Sea Wells to minimize the amount of oil-based mud discharged to the sea while maintaining acceptable levels of solids. Pressure to reduce pollution during the course of drilling prompted the development of these techniques. They involve personnel and optimization of mud system and procedures. Case histories demonstrate that regulations may be met with economical techniques using existing technology. The benefits of low solids content are widely known, and are a key part of any successful mud program. Good solids control should result in lower mud costs and better drillingmore » performance. Operators have specified high-performance shakers to accomplish this and have revised their mud programs with lower and lower allowable drilled solids percentages. This will pay off in certain areas. But with the U.K. Department of Energy regulations requiring cuttings oil discharge content (CODC) to be less than 150 g of oil/kg of dry solids discharge that went into effect Jan. 1, 1989, oil-loss control has a higher profile in the U.K. sector of the North Sea.« less
Ruiz-Aceituno, Laura; García-Sarrió, M Jesús; Alonso-Rodriguez, Belén; Ramos, Lourdes; Sanz, M Luz
2016-04-01
Microwave assisted extraction (MAE) and pressurized liquid extraction (PLE) methods using water as solvent have been optimized by means of a Box-Behnken and 3(2) composite experimental designs, respectively, for the effective extraction of bioactive carbohydrates (inositols and inulin) from artichoke (Cynara scolymus L.) external bracts. MAE at 60 °C for 3 min of 0.3 g of sample allowed the extraction of slightly higher concentrations of inositol than PLE at 75 °C for 26.7 min (11.6 mg/g dry sample vs. 7.6 mg/g dry sample). On the contrary, under these conditions, higher concentrations of inulin were extracted with the latter technique (185.4 mg/g vs. 96.4 mg/g dry sample), considering two successive extraction cycles for both techniques. Both methodologies can be considered appropriate for the simultaneous extraction of these bioactive carbohydrates from this particular industrial by-product. To the best of our knowledge this is the first time that these techniques are applied for this purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Pneumothorax following dry needling treatment: legal and ethical aspects].
Ronconi, Gianpaolo; De Giorgio, Fabio; Ricci, Eleonora; Maggi, Loredana; Spagnolo, Antonio G; Ferrara, Paola Emilia
2016-01-01
Trigger point "dry needling" is a technique used to treat myofascial pain. It involves using filiform needles which are inserted into muscles to give local pain relief. Few cases of serious adverse events following this treatment have been reported in the literature. In this paper we describe the case of a professional swimmer who developed pneumothorax after dry needling treatment and discuss the medicolegal and ethical aspects related to competencies and responsibilities of medical doctors and physiotherapists performing the procedure.
Effect of drying temperatures on starch-related functional and thermal properties of acorn flours.
Correia, P R; Beirão-da-Costa, M L
2011-03-01
The application of starchy flours from different origins in food systems depends greatly on information about the chemical and functional properties of such food materials. Acorns are important forestry resources in the central and southern regions of Portugal. To preserve these fruits and to optimize their use, techniques like drying are needed. The effects of different drying temperatures on starch-related functional properties of acorn flours obtained from dried fruits of Quercus rotundifolia (QR) and Quercus suber (QS) were evaluated. Flours were characterized for amylose and resistant starch (RS) contents, swelling ability, and gelatinization properties. Drying temperature mainly affected amylose content and viscoamylographic properties. Amylograms of flours from fruits dried at 60 °C displayed higher consistency (2102 B.U. and 1560 B.U., respectively, for QR and QS). The transition temperatures and enthalpy were less affected by drying temperature, suggesting few modifications in starch structure during drying. QR flours presented different functional properties to those obtained from QS acorn flours. The effect of drying temperatures were more evident in QR.
Valeriana officinalis Dry Plant Extract for Direct Compression: Preparation and Characterization.
Gallo, Loreana; Ramírez-Rigo, María Veronica; Piña, Juliana; Palma, Santiago; Allemandi, Daniel; Bucalá, Verónica
2012-01-01
Valeriana officinalis L. (Valerianaceae) is one of the most widely used plants for the treatment of anxiety and insomnia. Usually dry plant extracts, including V. officinalis, are hygroscopic materials with poor physico-mechanical properties that can be directly compressed.A V. officinalis dry extract with moderate hygroscocity is suitable for direct compression, and was obtained by using a simple and economical technique. The V. officinalis fluid extract was oven-dried with colloidal silicon dioxide as a drying adjuvant. The addition of colloidal silicon dioxide resulted in a dry plant extract with good physico-mechanical properties for direct compression and lower hygroscopicity than the dry extract without the carrier. The dry plant extract glass transition temperature was considerably above room temperature (about 72 °C). The colloidal silicon dioxide also produced an antiplasticizing effect, improving the powder's physical stability.The pharmaceutical performance of the prepared V. officinalis dry extract was studied through the design of tablets. The manufactured tablets showed good compactability, friability, hardness, and disintegration time. Those containing a disintegrant (Avicel PH 101) exhibited the best pharmaceutical performance, having the lowest disintegration time of around 40 seconds.
Polarimetric measurements of natural surfaces at 95 GHz
NASA Astrophysics Data System (ADS)
Chang, Paul S.; McIntosh, Robert E.
1992-08-01
A high power 95 GHz radar system, developed at the University of Massachusetts, was used to make polarimetric measurements of natural surfaces. Over the two year period of this grant, the following items were accomplished: (1) The 95 GHz radar was configured into a unique system capable of simultaneously making coherent and incoherent Mueller matrix measurements; (2) The equivalence of the coherent and noncoherent measurement technique was demonstrated; (3) The polarimetric properties of various foliage targets were characterized. These included the weeping willow, the sugar maple, and the white pine tree species; (4) The polarimetric properties of various snowcover types were characterized; and (5) Mueller matrix models for wet and dry snow were developed.
NASA Astrophysics Data System (ADS)
Ramulu, M.; Rogers, E.
1994-04-01
The predominant machining application with graphite/epoxy composite materials in aerospace industry is peripheral trimming. The computer numerically controlled (CNC) high speed routers required to do edge trimming work are generally scheduled for production work in industry and are not available for extensive cutter testing. Therefore, an experimental method of simulating the conditions of periphery trim using a lathe is developed in this paper. The validity of the test technique will be demonstrated by conducting carbide tool wear tests under dry cutting conditions. The experimental results will be analyzed to characterize the wear behavior of carbide cutting tools in machining the composite materials.
Plasma-assisted reduction of silver ions impregnated into a natural zeolite framework
NASA Astrophysics Data System (ADS)
Osonio, Airah P.; Vasquez, Magdaleno R.
2018-02-01
A green, dry, and energy-efficient method for the fabrication of silver-zeolite (AgZ) composite via 13.56 MHz radio-frequency plasma reduction is demonstrated. Impregnation by soaking and ion-exchange deposition were performed to load the silver ions (Ag+) into the sodium-zeolite samples. Characterization was performed by optical emission spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller analyses. Results indicate the successful reduction of Ag+ to its metallic state on the surface of the zeolite with a mean diameter of 165 nm. This plasma-induced reduction technique opens possibilities in several areas including catalysis, adsorption, water treatment, and medicine.
Small-Scale Production of High-Density Dry Ice: A Variant Combination of Two Classic Demonstrations
ERIC Educational Resources Information Center
Flowers, Paul A.
2009-01-01
Easily recoverable, thumb-sized pieces of high-density dry ice are conveniently produced by deposition of carbon dioxide within a test tube submerged in liquid nitrogen. A carbon dioxide-filled balloon sealed over the mouth of the test tube serves as a gas reservoir, and further permits a dramatic demonstration of both the gas-to-solid phase…
This study will quantify the daily surrogate surface dry deposition of mercury and nutrient species, and evaluate its relative importance to wet deposition at two sites in Florida over a two-year period. It will identify the major sources contributing to the observed mercury and...
USDA-ARS?s Scientific Manuscript database
A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also utilize valuable co-products. Recovery of phenolics from OMWW could help olive oil processors add value to their co-product, increasing the sustainability of olive oil production. The ...
Optimization and modeling of flow characteristics of low-oil DDGS using regression techniques
USDA-ARS?s Scientific Manuscript database
Storage conditions such as temperature, relative humidity (RH), consolidation pressure (CP), and time affect flow behavior of bulk solids like distillers dried grains with solubles (DDGS), which is widely used as animal feed by the U.S. cattle and swine industries. The typical dry grind DDGS product...
Laser cutting eliminates nucleic acid cross-contamination in dried-blood-spot processing.
Murphy, Sean C; Daza, Glenda; Chang, Ming; Coombs, Robert
2012-12-01
Dried blood spots (DBS) are useful for molecular assays but are prone to false positives from cross-contamination. In our malaria DBS assay, cross-contamination was encountered despite cleaning techniques suitable for HIV-1. We therefore developed a contact-free laser cutting system that effectively eliminated cross-contamination during DBS processing.
Q.Q. Wang; Z. He; Z. Zhu; Y.-H.P. Zhang; Y. Ni; X.L. Luo; J.Y. Zhu
2012-01-01
Cellulose accessibilities of a set of hornified lignocellulosic substrates derived by drying the never dried pretreated sample and a set of differently pretreated lodgepople pine substrates, were evaluated using solute exclusion and protein adsorption methods. Direct measurements of cellulase adsorption onto cellulose surface of the set of pretreated substrates were...
Chang, Chin-Fu; Wu, Francis Fu-Sheng; Chen, Chi-Ying; Crane, Julian; Siebers, Rob
2011-09-01
Soft toys are a major source of house dust mites (HDM) and HDM allergens, and sleeping with soft toys is a significant risk factor for HDM sensitization. We studied three techniques to eliminate HDM from soft toys, namely freezing, hot tumble drying and washing with eucalyptus oil. Thirty-six toys (12 in each treatment group) were enumerated for live HDM by the heat escape method before and after freezing overnight, hot tumble drying for 1 h and washing in 0.2% to 0.4% eucalyptus oil. Freezing, hot tumble drying and washing with eucalyptus oil resulted in significant reductions in live HDM, an average reduction of 95.1%, 89.1% and 95.1%, respectively. Additionally, washing with eucalyptus oil resulted in a significant reduction in HDM allergens as well from a geometric mean of 9.12 μg/g to 0.37 μg/g (p = 0.033). These three HDM elimination techniques give parents of infants effective and acceptable methods of limiting HDM exposure. © 2011 John Wiley & Sons A/S.
Donadel, Karina; Felisberto, Marcos D V; Laranjeira, Mauro C M
2009-06-01
Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP) were coated with hydroxyapatite (HAp) by spray-drying using two IOMP/HAp ratios (0.7 and 3.2). The magnetic particles were characterized by way of scanning electronic microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transformed infrared spectroscopy, flame atomic absorption spectrometry,vibrating sample magnetometry and particle size distribution (laser diffraction). The surface morphology of the coated samples is different from that of the iron oxide due to formation of hydroxyapatite coating. From an EDX analysis, it was verified that the surface of the coated magnetic particles is composed only of HAp, while the interior containsiron oxide and a few layers of HAp as expected. The results showed that spray-drying technique is an efficient and relatively inexpensive method for forming spherical particles with a core/shell structure.
Hajj-Hassan, Mohamad; Khayyat-Kholghi, Maedeh; Wang, Huifen; Chodavarapu, Vamsy; Henderson, Janet E
2011-11-01
Porous silicon shows great promise as a bio-interface material due to its large surface to volume ratio, its stability in aqueous solutions and to the ability to precisely regulate its pore characteristics. In the current study, porous silicon scaffolds were fabricated from single crystalline silicon wafers by a novel xenon difluoride dry etching technique. This simplified dry etch fabrication process allows selective formation of porous silicon using a standard photoresist as mask material and eliminates the post-formation drying step typically required for the wet etching techniques, thereby reducing the risk of damaging the newly formed porous silicon. The porous silicon scaffolds supported the growth of primary cultures of bone marrow derived mesenchymal stromal cells (MSC) plated at high density for up to 21 days in culture with no significant loss of viability, assessed using Alamar Blue. Scanning electron micrographs confirmed a dense lawn of cells at 9 days of culture and the presence of MSC within the pores of the porous silicon scaffolds. Copyright © 2011 Wiley Periodicals, Inc.
State of polyphenols in the drying process of fruits and vegetables.
McSweeney, M; Seetharaman, K
2015-01-01
This review presents an overview of drying technologies and its impact on the polyphenol content of vegetables and fruits. Polyphenols contribute to many health benefits and can act as antioxidants. Specifically an increased intake of polyphenols has been shown to decrease the incidence of cardiovascular disease; furthermore, it has been shown to help reduce the risk of neurodegenerative diseases in humans. Many researchers have reported on the effect of different drying techniques on the polyphenol content in fruits and vegetables. Polyphenol degradation mechanisms proposed in literature and pretreatments that potentially lead to higher retention of polyphenols during drying are also discussed.
Guajardo-Flores, Daniel; Rempel, Curtis; Gutiérrez-Uribe, Janet A; Serna-Saldívar, Sergio O
2015-12-03
Black beans (Phaseolus vulgaris L.) are a rich source of flavonoids and saponins with proven health benefits. Spray dried black bean extract powders were used in different formulations for the production of nutraceutical capsules with reduced batch-to-batch weight variability. Factorial designs were used to find an adequate maltodextrin-extract ratio for the spray-drying process to produce black bean extract powders. Several flowability properties were used to determine composite flow index of produced powders. Powder containing 6% maltodextrin had the highest yield (78.6%) and the best recovery of flavonoids and saponins (>56% and >73%, respectively). The new complexes formed by the interaction of black bean powder with maltodextrin, microcrystalline cellulose 50 and starch exhibited not only bigger particles, but also a rougher structure than using only maltodextrin and starch as excipients. A drying process prior to capsule production improved powder flowability, increasing capsule weight and reducing variability. The formulation containing 25.0% of maltodextrin, 24.1% of microcrystalline cellulose 50, 50% of starch and 0.9% of magnesium stearate produced capsules with less than 2.5% weight variability. The spray drying technique is a feasible technique to produce good flow extract powders containing valuable phytochemicals and low cost excipients to reduce the end-product variability.
High energy neutron transmission analysis of dry cask storage
NASA Astrophysics Data System (ADS)
Greulich, Christopher; Hughes, Christopher; Gao, Yuan; Enqvist, Andreas; Baciak, James
2017-12-01
Since the U.S. currently only approves of storing used nuclear fuel in pools or dry casks, the demand for dry cask storage is on the rise due to the continuous operation of currently existing nuclear plants which are reaching or have reached the capacity of their used fuel pools. With the rising demand comes additional pressure to ensure the integrity of dry cask systems. Visual inspection is costly and man-power intensive, so alternative nondestructive testing techniques are desired to insure the continued safe and effective storage of fuel. One such approach being investigated by the University of Florida is neutron based computed tomography. Simulations in MCNP are preformed where D-T energy neutrons are transmitted through the dry cask and measured on the opposite side. If the transmitted signal is clear enough, the interior of the cask can be reconstructed from the measurement of the alterations of neutron signal intensity using standard mathematical techniques developed for medical imaging. Preliminary efforts show a correlation between energy and number of scatters (which is an indication of retention of position information). Work is ongoing to quantify if the correlation is strong enough that an energy discriminator may be used as a filter in future image reconstruction. The calculated transmission probability suggests that an image could be reconstructed with a week of scanning.
Varshosaz, Jaleh; Minayian, Mohsen; Ahmadi, Mahdieh; Ghassami, Erfaneh
2017-09-01
The purpose of the study was to enhance the solubility of the poorly water-soluble drug, Repaglinide using spray drying based solid dispersion technique by different carriers including Eudragit E100, hydroxyl propyl cellulose Mw 80 000 and poly vinyl pyrollidone K30. Optimization of the best formulation was carried out according to drug solubility, release profile, particle size and angle of repose of the solid dispersions. The optimized sample was characterized using X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The morphology of the dispersions was studied by SEM. The blood glucose lowering effect of spray dried solid dispersions was studied in normal and streptozocin-induced diabetic rats. The results showed that Eudragit E100 in 1:3 ratio could enhance drug solubility by 100-fold. DSC studies indicated a marked change in melting point of the drug possibly due to strong hydrogen bonds between the drug and Eudragit, while FT-IR study did not show obvious interactions between them. According to XRPD results Repaglinide converted to an amorphous state in the spray dried dispersions. Spray dried Repaglinide reduced the blood glucose level significantly during the 8 h of obtaining blood samples in comparison with untreated drug (p < 0.05).
Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes
NASA Astrophysics Data System (ADS)
Zhou, Zilong; Cai, Xin; Cao, Wenzhuo; Li, Xibing; Xiong, Cheng
2016-08-01
Water content has a pronounced influence on the properties of rock materials, which is responsible for many rock engineering hazards, such as landslides and karst collapse. Meanwhile, water injection is also used for the prevention of some engineering disasters like rock-bursts. To comprehensively investigate the effect of water content on mechanical properties of rocks, laboratory tests were carried out on sandstone specimens with different water contents in both saturation and drying processes. The Nuclear Magnetic Resonance technique was applied to study the water distribution in specimens with variation of water contents. The servo-controlled rock mechanics testing machine and Split Hopkinson Pressure Bar technique were used to conduct both compressive and tensile tests on sandstone specimens with different water contents. From the laboratory tests, reductions of the compressive and tensile strength of sandstone under static and dynamic states in different saturation processes were observed. In the drying process, all of the saturated specimens could basically regain their mechanical properties and recover its strength as in the dry state. However, for partially saturated specimens in the saturation and drying processes, the tensile strength of specimens with the same water content was different, which could be related to different water distributions in specimens.
Fazi, Stefano; Amalfitano, Stefano; Pizzetti, Ilaria; Pernthaler, Jakob
2007-09-01
We studied the efficiency of two hybridization techniques for the analysis of benthic bacterial community composition under varying sediment water content. Microcosms were set up with sediments from four European temporary rivers. Wet sediments were dried, and dry sediments were artificially rewetted. The percentage of bacterial cells detected by fluorescence in situ hybridization with fluorescently monolabeled probes (FISH) significantly increased from dry to wet sediments, showing a positive correlation with the community activity measured via incorporation of (3)H leucine. FISH and signal amplification by catalyzed reporter deposition (CARD-FISH) could significantly better detect cells with low activity in dried sediments. Through the application of an optimized cell permeabilization protocol, the percentage of hybridized cells by CARD-FISH showed comparable values in dry and wet conditions. This approach was unrelated to (3)H leucine incorporation rates. Moreover, the optimized protocol allowed a significantly better visualization of Gram-positive Actinobacteria in the studied samples. CARD-FISH is, therefore, proposed as an effective technique to compare bacterial communities residing in sediments with contrasting water content, irrespective of differences in the activity state of target cells. Considering the increasing frequencies of flood and drought cycles in European temporary rivers, our approach may help to better understand the dynamics of microbial communities in such systems.
Kupietzky, Ari; Vargas, Karen G; Waggoner, William F; Fuks, Anna B
2010-01-01
To determine current teaching policies regarding the use of coolant type during tooth preparation with high-speed hand-pieces in pediatric dental residency programs in the US. A 17-question survey was electronically mailed to 63 program directors with one follow-up. Multiple-choice questions asked about school and program teaching of cavity preparation with or without water coolant, including hypothetical clinical situations. Fifty-two (83%) program directors returned the survey. Fifty-two percent taught both dry and water coolant methods, 6% taught dry cutting exclusively, and 42% did not teach the dry method and always used water coolant. Dry techniques were used primarily for special needs patients with poor swallow reflexes (50%) and for young children undergoing sedation (41%). Air coolant was taught more frequently in programs in the Midwest (77%) and South (85%) vs. the Northeast (32%) and West (50%) (P<.01). Forty-four percent of combined programs and 60% of hospital programs taught water spray use exclusively, while all university programs taught the dry cutting technique (P<.01). A majority of program directors teach the use of air coolant alone for high-speed preparation of teeth. University and combined programs were more likely to teach the method compared with hospital based ones.
Micropatterns of Matrigel for three-dimensional epithelial cultures.
Sodunke, Temitope R; Turner, Keneshia K; Caldwell, Sarah A; McBride, Kevin W; Reginato, Mauricio J; Noh, Hongseok Moses
2007-09-01
Three-dimensional (3D) epithelial culture models are widely used to promote a physiologically relevant microenvironment for the study of normal and aberrant epithelial organization. Despite the increased use of these models, their potential as a cell-based screening tool for therapeutics has been hindered by the lack of existing platforms for large-scale 3D cellular studies. Current 3D standard culture does not allow for single spheroid or 'acinus' analysis required for high-throughput systems. Here, we present general strategies for creating bulk micropatterns of Matrigel that can be used as a platform for 3D epithelial culture and cell-based assays at the single acinus level. Both buried and free-standing micropatterns of Matrigel were created using modified soft lithography techniques such as microtransfer molding (microTM) and dry lift-off technique. Surface modification of poly(dimethylsiloxane) (PDMS) with oxygen plasma followed by treatment with poly(2-hydroxy-ethylmethacrylate) (poly-HEMA) was sufficient to promote deformation-free release of Matrigel patterns. In addition, a novel dual-layer dry lift-off technique was developed to simultaneously generate patterns of Matrigel and poly-HEMA on a single substrate. We also demonstrate that the micropatterned Matrigel can support 3D culture originating from a single normal human mammary epithelial (MCF-10A) cell or a human breast cancer cell (MDA-MB-231) with comparable phenotypes to standard 3D culture techniques. Culture of normal MCF-10A cells on micropatterned Matrigel resulted in formation of structures with the characteristic apoptosis of centrally located cells and formation of hollow lumens. Moreover, the carcinoma cell line showed their characteristic formation of disorganized invasive cellular clusters, lacking the normal epithelial architecture on micropatterned Matrigel. Hence, micropatterned Matrigel can be used as a 3D epithelial cell-based platform for a wide variety of applications in epithelial and cancer biology, tissue engineering, as well as gene/drug screening technology.
Dutta, Himjyoti; Mahanta, Charu Lata; Singh, Vasudeva; Das, Barnali Baruah; Rahman, Narzu
2016-01-15
Bhoja chaul is a traditional whole rice product processed by the dry heat parboiling technique of low amylose/waxy paddy that is eaten after soaking in water and requires no cooking. The essential steps in Bhoja chaul making are soaking paddy in water, roasting with sand, drying and milling. In this study, the product was prepared from a low amylose variety and a waxy rice variety by an improvised laboratory scale technique. Bhoja chaul prepared in the laboratory by this technique was studied for physical, physicochemical, and textural properties. Improvised method shortened the processing time and gave a product with good textural characteristics. Shape of the rice kernels became bolder on processing. RVA studies and DSC endotherms suggested molecular damage and amylose-lipid complex formation by the linear B-chains of amylopectin, respectively. X-ray diffractography indicated formation of partial B-type pattern. Shifting of the crystalline region of the XRD curve towards lower values of Bragg's angle was attributed to the overall increase in inter-planar spacing of the crystalline lamellae. Resistant starch was negligible. Bhoja chaul may be useful for children and people with poor state of digestibility. Copyright © 2014 Elsevier Ltd. All rights reserved.
Calorimetric analysis of cryopreservation and freeze-drying formulations.
Sun, Wendell Q
2015-01-01
Differential scanning calorimetry (DSC) is a commonly used thermal analysis technique in cryopreservation and freeze-drying research. It has been used to investigate crystallization, eutectic formation, glass transition, devitrification, recrystallization, melting, polymorphism, molecular relaxation, phase separation, water transport, thermochemistry, and kinetics of complex reactions (e.g., protein denaturation). Such information can be used for the optimization of protective formulations and process protocols. This chapter gives an introduction to beginners who are less familiar with this technique. It covers the instrument and its basic principles, followed by a discussion of the methods as well as examples of specific applications.
NASA Technical Reports Server (NTRS)
1994-01-01
In planning for the long duration Apollo missions, NASA conducted extensive research into space food. One of the techniques developed was freeze drying. Action Products commercialized this technique, concentrating on snack food including the first freeze-dried ice cream. The foods are cooked, quickly frozen and then slowly heated in a vacuum chamber to remove the ice crystals formed by the freezing process. The final product retains 98 percent of its nutrition and weighs only 20 percent of its original weight. Action snacks are sold at museums, NASA facilities and are exported to a number of foreign countries. Sales run to several million dollars annually.
NASA Astrophysics Data System (ADS)
Bellotti, Mariela I.; Bast, Walter; Berra, Alejandro; Bonetto, Fabián J.
2011-07-01
We present a novel experimental technique to determine eye ulcers in animals using a spectral electrical impedance technique. We expect that this technique will be useful in dry eye syndrome. We used a sensor that is basically a platinum (Pt) microelectrode electrically insulated by glass from a cylindrical stainless steel counter-electrode. This sensor was applied to the naked eye of New Zealand rabbits (2.0-3.5 kg in weight). Whereas half of the eyes were normal (control), we applied to the remainder a few drops of 20% (v/v) alcohol to produce an ulcer in the eye. Using a multispectral electrical impedance system we measured ulcerated and control eyes and observed significant difference between normal and pathological samples. We also investigated the effects of different applied pressures and natural degradation of initially normal eyes as a function of time. We believe that this technique could be sufficiently sensitive and repetitive to help diagnose ocular surface diseases such as dry eye syndrome.
Lorido, Laura; Estévez, Mario; Ventanas, Sonia
2014-01-01
Although dynamic sensory techniques such as time-intensity (TI) have been applied to certain meat products, existing knowledge regarding the temporal sensory perception of muscle foods is still limited. The objective of the present study was to apply TI to the flavour and texture perception of three different Iberian meat products: liver pâté, dry-cured sausages ("salchichon") and dry-cured loin. Moreover, the advantages of using dynamic versus static sensory techniques were explored by subjecting the same products to a quantitative descriptive analysis (QDA). TI was a suitable technique to assess the impact of composition and structure of the three meat products on flavour and texture perception from a dynamic perspective. TI parameters extracted from the TI-curves and related to temporal perception enabled the detection of clear differences in sensory temporal perception between the meat products and provided additional insight on sensory perception compared to the conventional static sensory technique (QDA). © 2013.
Bellotti, Mariela I; Bast, Walter; Berra, Alejandro; Bonetto, Fabián J
2011-07-01
We present a novel experimental technique to determine eye ulcers in animals using a spectral electrical impedance technique. We expect that this technique will be useful in dry eye syndrome. We used a sensor that is basically a platinum (Pt) microelectrode electrically insulated by glass from a cylindrical stainless steel counter-electrode. This sensor was applied to the naked eye of New Zealand rabbits (2.0-3.5 kg in weight). Whereas half of the eyes were normal (control), we applied to the remainder a few drops of 20% (v/v) alcohol to produce an ulcer in the eye. Using a multispectral electrical impedance system we measured ulcerated and control eyes and observed significant difference between normal and pathological samples. We also investigated the effects of different applied pressures and natural degradation of initially normal eyes as a function of time. We believe that this technique could be sufficiently sensitive and repetitive to help diagnose ocular surface diseases such as dry eye syndrome.
Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique
NASA Astrophysics Data System (ADS)
Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka
2018-06-01
Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.
Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique
NASA Astrophysics Data System (ADS)
Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka
2016-06-01
Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.
Ye, Xingyou; Patil, Hemlata; Feng, Xin; Tiwari, Roshan V; Lu, Jiannan; Gryczke, Andreas; Kolter, Karl; Langley, Nigel; Majumdar, Soumyajit; Neupane, Dipesh; Mishra, Sanjay R; Repka, Michael A
2016-02-01
Over the past few decades, nanocrystal formulations have evolved as promising drug delivery systems owing to their ability to enhance the bioavailability and maintain the stability of poorly water-soluble drugs. However, conventional methods of preparing nanocrystal formulations, such as spray drying and freeze drying, have some drawbacks including high cost, time and energy inefficiency, traces of residual solvent, and difficulties in continuous operation. Therefore, new techniques for the production of nanocrystal formulations are necessary. The main objective of this study was to introduce a new technique for the production of nanocrystal solid dispersions (NCSDs) by combining high-pressure homogenization (HPH) and hot-melt extrusion (HME). Efavirenz (EFZ), a Biopharmaceutics Classification System class II drug, which is used for the treatment of human immunodeficiency virus (HIV) type I, was selected as the model drug for this study. A nanosuspension (NS) was first prepared by HPH using sodium lauryl sulfate (SLS) and Kollidon® 30 as a stabilizer system. The NS was then mixed with Soluplus® in the extruder barrel, and the water was removed by evaporation. The decreased particle size and crystalline state of EFZ were confirmed by scanning electron microscopy, zeta particle size analysis, and differential scanning calorimetry. The increased dissolution rate was also determined. EFZ NCSD was found to be highly stable after storage for 6 months. In summary, the conjugation of HPH with HME technology was demonstrated to be a promising novel method for the production of NCSDs.
Casale, Monica; Bagnasco, Lucia; Zotti, Mirca; Di Piazza, Simone; Sitta, Nicola; Oliveri, Paolo
2016-11-01
Boletus edulis and allied species (BEAS), known as "porcini mushrooms", represent almost the totality of wild mushrooms placed on the Italian market, both fresh and dehydrated. Furthermore, considerable amounts of these dried fungi are imported from China. The presence of Tylopilus spp. and other extraneous species (i.e., species edible but not belonging to BEAS) within dried porcini mushrooms - mainly from those imported from China and sold in Italy - may represent an evaluable problem from a commercial point of view. The purpose of the present study is to evaluate near-infrared spectroscopy (NIRS) as a rapid and effective alternative to classical methods for identifying extraneous species within dried porcini batches and detecting related commercial frauds. To this goal, 80 dried fungi including BEAS, Tylopilus spp., and Boletus violaceofuscus were analysed by NIRS. For each sample, 3 different parts of the pileus (pileipellis, flesh and hymenium) were analysed and a low-level strategy for data fusion, consisting of combining the signals obtained by the different parts before data processing, was applied. Then, NIR spectra were used to develop reliable and efficient class-models using a novel method, partial least squares density modelling (PLS-DM), and the two most commonly used class-modelling techniques, UNEQ and SIMCA. The results showed that NIR spectroscopy coupled with chemometric class-modelling technique can be suggested as an effective analytical strategy to check the authenticity of dried BEAS mushrooms. Copyright © 2016 Elsevier B.V. All rights reserved.
Differentiation of the drying time of adhesives on plywoods through the dynamic speckle technique
NASA Astrophysics Data System (ADS)
Kumari, S.; Nirala, A. K.
2018-02-01
The drying time of adhesives such as Fevicol SH, Fevicol MR, Dendrite white and Bulbond after coating separately on the three plywoods, namely Archidply, Centuryply and Greenply, has been studied non-destructively using the dynamic speckle technique. The time history of the speckle pattern, the co-occurrence matrix, 3D graphs and line profiles of images from the time history of the speckle pattern along with 3D trajectory plots have been used for qualitative analysis whereas the inertia moment, absolute value difference, SM index and autocovariance have been used for quantitative analysis. The gray-level co-occurrence matrix has been used for the first time to study the textual parameters of adhesive coated on plywoods during drying. The average drying time of adhesive is a maximum for Bulbond on Archidply (357.25 ± 1.49 min) and a minimum for Dendrite white on Greenply (90.75 ± 2.36 min). Comparative studies among the results obtained for all the four adhesives on the three plywoods reveal that Dendrite white adhesive is the best among the adhesives because it takes the shortest time to dry on all the plywoods, and Greenply is the best among all the plywoods because drying is fastest on it for all the adhesives. Furthermore, it is also concluded that the best plywood and the best adhesive may be decided by knowing the remnant activity.
Agent selection and protective effects during single droplet drying of bacteria.
Khem, Sarim; Woo, Meng Wai; Small, Darryl M; Chen, Xiao Dong; May, Bee K
2015-01-01
The protective mechanisms of whey protein isolate (WPI), trehalose, lactose, and skim milk on Lactobacillus plantarum A17 during convective droplet drying has been explored. A single droplet drying technique was used to monitor cell survival, droplet temperature and corresponding changes in mass. WPI and skim milk provided the highest protection amongst the materials tested. In situ analysis of the intermediate stage of drying revealed that for WPI and skim milk, crust formation reduces the rate of sudden temperature increase thereby imparting less stress on the cells. Irreversible denaturation of the WPI components might have also contributed to the protection of the cells. Skim milk, however, 'loses' the protective behaviour towards the latter stages of drying. This indicates that the concentration of the WPI components could be another possible factor determining the sustained protective behaviour during the later stages of drying when the moisture content is low. Copyright © 2014 Elsevier Ltd. All rights reserved.
Farhat, Asma; Fabiano-Tixier, Anne-Sylvie; Visinoni, Franco; Romdhane, Mehrez; Chemat, Farid
2010-11-19
Without adding any solvent or water, we proposed a novel and green approach for the extraction of secondary metabolites from dried plant materials. This "solvent, water and vapor free" approach based on a simple principle involves the application of microwave irradiation and earth gravity to extract the essential oil from dried caraway seeds. Microwave dry-diffusion and gravity (MDG) has been compared with a conventional technique, hydrodistillation (HD), for the extraction of essential oil from dried caraway seeds. Essential oils isolated by MDG were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained by HD, but MDG was better than HD in terms of rapidity (45min versus 300min), energy saving, and cleanliness. The present apparatus permits fast and efficient extraction, reduces waste, avoids water and solvent consumption, and allows substantial energy savings. Copyright © 2010 Elsevier B.V. All rights reserved.
Quantitative imaging of heterogeneous dynamics in drying and aging paints
van der Kooij, Hanne M.; Fokkink, Remco; van der Gucht, Jasper; Sprakel, Joris
2016-01-01
Drying and aging paint dispersions display a wealth of complex phenomena that make their study fascinating yet challenging. To meet the growing demand for sustainable, high-quality paints, it is essential to unravel the microscopic mechanisms underlying these phenomena. Visualising the governing dynamics is, however, intrinsically difficult because the dynamics are typically heterogeneous and span a wide range of time scales. Moreover, the high turbidity of paints precludes conventional imaging techniques from reaching deep inside the paint. To address these challenges, we apply a scattering technique, Laser Speckle Imaging, as a versatile and quantitative tool to elucidate the internal dynamics, with microscopic resolution and spanning seven decades of time. We present a toolbox of data analysis and image processing methods that allows a tailored investigation of virtually any turbid dispersion, regardless of the geometry and substrate. Using these tools we watch a variety of paints dry and age with unprecedented detail. PMID:27682840
Abang, Sariah; Chan, Eng-Seng; Poncelet, Denis
2012-01-01
The objective of this study was to investigate the effects of process variables on the encapsulation of oil in a calcium alginate membrane using an inverse gelation technique. A dispersion of calcium chloride solution in sunflower oil (water-in-oil emulsion) was added dropwise to the alginate solution. The migration of calcium ions to the alginate solution initiates the formation of a ca-alginate membrane around the emulsion droplets. The membrane thickness of wet capsules and the elastic modulus of dry capsules increased following first-order kinetics with an increasing curing time. An increase in the calcium chloride concentration increased the membrane thickness of wet capsules and the elastic modulus of dry capsules. An increase in the alginate concentration decreased the mean diameter of wet capsules but increased the elastic modulus of dry capsules.
A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables.
Kamiloglu, Senem; Toydemir, Gamze; Boyacioglu, Dilek; Beekwilder, Jules; Hall, Robert D; Capanoglu, Esra
2016-07-29
The role of antioxidants in human nutrition has gained increased interest, especially due to their associated health beneficial effects for a number of chronic diseases, including cardiovascular diseases and certain types of cancer. Fruits and vegetables are perishable and difficult to preserve as fresh products. Dried fruits and vegetables can be easily stored, transported at relatively low cost, have reduced packing costs, and their low water content delays microbial spoilage. Air-, freeze-, microwave- and sun-drying are among the most thoroughly studied drying methods. This review provides an overview of recent findings on the effects of different drying techniques on major antioxidants of fruits and vegetables. In particular, changes in ascorbic acid, carotenoids, flavonoids, phenolic acids, total phenolics, and antioxidant activity are discussed in detail.
Miernik, Arkadiusz; Schoenthaler, Martin; Lilienthal, Kerstin; Frankenschmidt, Alexander; Karcz, Wojciech Konrad; Kuesters, Simon
2012-07-01
Different types of single-incision laparoscopic surgery (SILS) have become increasingly popular. Although SILS is technically even more challenging than conventional laparoscopy, published data of first clinical series seem to demonstrate the feasibility of these approaches. Various attempts have been made to overcome restrictions due to loss of triangulation in SILS by specially designed SILS-specific instruments. This study involving novices in a dry lab compared task performances between conventional laparoscopic surgery (CLS) and single-port laparoscopic surgery (SPLS) using newly designed pre-bent instruments. In this study, 90 medical students without previous experience in laparoscopic techniques were randomly assigned to undergo one of three procedures: CLS, SPLS using two pre-bent instruments (SPLS-pp), or SPLS using one pre-bent and one straight laparoscopic instrument (SPLS-ps). In the dry lab, the participants performed four typical laparoscopic tasks of increasing difficulty. Evaluation included performance times or number of completed tasks within a given time frame. All performances were videotaped and evaluated for unsuccessful attempts and unwanted interactions of instruments. Using subjective questionnaires, the participants rated difficulties with two-dimensional vision and coordination of instruments. Task performances were significantly better in the CLS group than in either SPLS group. The SPLS-ps group showed a tendency toward better performances than the SPLS-pp group, but the difference was not significant. Video sequences and participants` questionnaires showed instrument interaction as the major problem in the single-incision surgery groups. Although SILS is feasible, as shown in clinical series published by laparoscopically experienced experts, SILS techniques are demanding due to restrictions that come with the loss of triangulation. These can be compensated only partially by currently available SILS-designed instruments. The future of SILS depends on further improvements in the available equipment or the development of new approaches such as needlescopically assisted or robotically assisted procedures.
Monitoring fluidized bed drying of pharmaceutical granules.
Briens, Lauren; Bojarra, Megan
2010-12-01
Placebo granules consisting of lactose monohydrate, corn starch, and polyvinylpyrrolidone were prepared using de-ionized water in a high-shear mixer and dried in a conical fluidized bed dryer at various superficial gas velocities. Acoustic, vibration, and pressure data obtained over the course of drying was analyzed using various statistical, frequency, fractal, and chaos techniques. Traditional monitoring methods were also used for reference. Analysis of the vibration data showed that the acceleration levels decreased during drying and reached a plateau once the granules had reached a final moisture content of 1–2 wt.%; this plateau did not differ significantly between superficial gas velocities, indicating a potential criterion to support drying endpoint identification. Acoustic emissions could not reliably identify the drying endpoint. However, high kurtosis values of acoustic emissions measured in the filtered air exhaust corresponded to high entrainment rates. This could be used for process control to adjust the fluidization gas velocity to allow drying to continue rapidly while minimizing entrainment and possible product losses.
Recent developments of artificial intelligence in drying of fresh food: A review.
Sun, Qing; Zhang, Min; Mujumdar, Arun S
2018-03-01
Intellectualization is an important direction of drying development and artificial intelligence (AI) technologies have been widely used to solve problems of nonlinear function approximation, pattern detection, data interpretation, optimization, simulation, diagnosis, control, data sorting, clustering, and noise reduction in different food drying technologies due to the advantages of self-learning ability, adaptive ability, strong fault tolerance and high degree robustness to map the nonlinear structures of arbitrarily complex and dynamic phenomena. This article presents a comprehensive review on intelligent drying technologies and their applications. The paper starts with the introduction of basic theoretical knowledge of ANN, fuzzy logic and expert system. Then, we summarize the AI application of modeling, predicting, and optimization of heat and mass transfer, thermodynamic performance parameters, and quality indicators as well as physiochemical properties of dried products in artificial biomimetic technology (electronic nose, computer vision) and different conventional drying technologies. Furthermore, opportunities and limitations of AI technique in drying are also outlined to provide more ideas for researchers in this area.
Production of microparticles of molinate degrading biocatalysts using the spray drying technique.
Lopes, Ana R; Sousa, Vera M; Estevinho, Berta N; Leite, José P; Moreira, Nuno F F; Gales, Luís; Rocha, Fernando; Nunes, Olga C
2016-10-01
Previous studies demonstrated the capability of mixed culture DC1 to mineralize the thiocarbamate herbicide molinate through the activity of molinate hydrolase (MolA). Because liquid suspensions are not compatible with long-term storage and are not easy to handle when bioremediation strategies are envisaged, in this study spray drying was evaluated as a cost-effective method to store and transport these molinate biocatalysts. Microparticles of mixed culture DC1 (DC1) and of cell free crude extracts containing MolA (MA) were obtained without any carrier polymer, and with calcium alginate (CA) or modified chitosan (MCt) as immobilizing agents. All the DC1 microparticles showed high molinate degrading activity upon storage for 6 months, or after 9 additions of ∼0.4 mM molinate over 1 month. The DC1-MCt microparticles were those with the highest survival rate and lowest heterogeneity. For MA microparticles, only MA-MCt degraded molinate. However, its Vmax was only 1.4% of that of the fresh cell free extract (non spray dried). The feasibility of using the DC1-MCt and MA-MCt microparticles in bioaugmentation processes was assessed in river water microcosms, using mass (g):volume (L) ratios of 1:13 and 1:0.25, respectively. Both type of microparticles removed ∼65-75% of the initial 1.5 mg L(-1) molinate, after 7 days of incubation. However, only DC1-MCt microparticles were able to degrade this environmental concentration of molinate without disturbing the native bacterial community. These results suggest that spray drying can be successfully used to produce DC1-MCt microparticles to remediate molinate polluted sites through a bioaugmentation strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nonlinear vibration analysis of bladed disks with dry friction dampers
NASA Astrophysics Data System (ADS)
Ciğeroğlu, Ender; Özgüven, H. Nevzat
2006-08-01
In this work, a new model is proposed for the vibration analysis of turbine blades with dry friction dampers. The aim of the study is to develop a multiblade model that is accurate and yet easy to be analyzed so that it can be used efficiently in the design of friction dampers. The suggested nonlinear model for a bladed disk assembly includes all the blades with blade to blade and/or blade to cover plate dry friction dampers. An important feature of the model is that both macro-slip and micro-slip models are used in representing dry friction dampers. The model is simple to be analyzed as it is the case in macro-slip model, and yet it includes the features of more realistic micro-slip model. The nonlinear multidegree-of-freedom (mdof) model of bladed disk system is analyzed in frequency domain by applying a quasi-linearization technique, which transforms the nonlinear differential equations into a set of nonlinear algebraic equations. The solution method employed reduces the computational effort drastically compared to time solution methods for nonlinear systems, which makes it possible to obtain a more realistic model by the inclusion of all blades around the disk, disk itself and all friction dampers since in general system parameters are not identical throughout the geometry. The validation of the method is demonstrated by comparing the results obtained in this study with those given in literature and also with results obtained by time domain analysis. In the case studies presented the effect of friction damper parameters on vibration characteristics of tuned and mistuned bladed disk systems is studied by using a 20 blade system. It is shown that the method presented can be used to find the optimum friction damper values in a bladed disk assembly.
Kosek, Margaret N.; Schwab, Kellogg J.
2017-01-01
Empiric quantification of environmental fecal contamination is an important step toward understanding the impact that water, sanitation, and hygiene interventions have on reducing enteric infections. There is a need to standardize the methods used for surface sampling in field studies that examine fecal contamination in low-income settings. The dry cloth method presented in this manuscript improves upon the more commonly used swabbing technique that has been shown in the literature to have a low sampling efficiency. The recovery efficiency of a dry electrostatic cloth sampling method was evaluated using Escherichia coli and then applied to household surfaces in Iquitos, Peru, where there is high fecal contamination and enteric infection. Side-by-side measurements were taken from various floor locations within a household at the same time over a three-month period to compare for consistency of quantification of E. coli bacteria. The dry cloth sampling method in the laboratory setting showed 105% (95% Confidence Interval: 98%, 113%) E. coli recovery efficiency off of the cloths. The field application demonstrated strong agreement of side-by-side results (Pearson correlation coefficient for dirt surfaces was 0.83 (p < 0.0001) and 0.91 (p < 0.0001) for cement surfaces) and moderate agreement for results between entrance and kitchen samples (Pearson (0.53, p < 0.0001) and weighted Kappa statistic (0.54, p < 0.0001)). Our findings suggest that this method can be utilized in households with high bacterial loads using either continuous (quantitative) or categorical (semi-quantitative) data. The standardization of this low-cost, dry electrostatic cloth sampling method can be used to measure differences between households in intervention and non-intervention arms of randomized trials. PMID:28829392
Bertaso, Anna; Sorio, Daniela; Vandoros, Anthula; De Palo, Elio F; Bortolotti, Federica; Tagliaro, Franco
2016-10-01
Continued progress in chronic alcohol abuse investigation requires the development of less invasive procedures for screening purposes. The application of finger-prick and related dried blood spots (fpDBS) for carbohydrate deficient transferrin (CDT) detection appears suitable for this aim. Therefore, the goal of this project was to develop a screening method for CDT using fpDBS with CZE analysis. Blood samples prepared by finger-prick were placed on DBS cards and left to air dry; each dried fpDBS disc was shredded into small pieces and suspended in acid solution (60 μL of HCl 120 mmol/L). After centrifugation (10 min at 1500 × g), the collected sample was adjusted to pH 3.5. After an overnight incubation, the pH was neutralised and an iron rich solution was added. After 1 h, CZE analysis was carried out. A group of 47 individuals was studied. Parallel serum samples were collected from each investigated subject and the %CDT for each sample was measured using HPLC and CZE techniques. The fpDBS transferrin sialo isoform electropherograms were similar to those obtained with serum. Moreover, fpDBS CZE CDT percentage levels demonstrated significant statistical correlation with those obtained from serum for both HPLC and CZE %CDT (p < 0.01; r 2 = 0.8913 and 0.8976, respectively), with %CDT from 0.8 to 13.7% for fpDBS and from 0.7 to 12.7% for serum. The newly developed fpDBS procedure for CDT analysis provides a simple and inexpensive tool for use in population screening. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exum, Natalie G; Kosek, Margaret N; Davis, Meghan F; Schwab, Kellogg J
2017-08-22
Empiric quantification of environmental fecal contamination is an important step toward understanding the impact that water, sanitation, and hygiene interventions have on reducing enteric infections. There is a need to standardize the methods used for surface sampling in field studies that examine fecal contamination in low-income settings. The dry cloth method presented in this manuscript improves upon the more commonly used swabbing technique that has been shown in the literature to have a low sampling efficiency. The recovery efficiency of a dry electrostatic cloth sampling method was evaluated using Escherichia coli and then applied to household surfaces in Iquitos, Peru, where there is high fecal contamination and enteric infection. Side-by-side measurements were taken from various floor locations within a household at the same time over a three-month period to compare for consistency of quantification of E. coli bacteria. The dry cloth sampling method in the laboratory setting showed 105% (95% Confidence Interval: 98%, 113%) E. coli recovery efficiency off of the cloths. The field application demonstrated strong agreement of side-by-side results (Pearson correlation coefficient for dirt surfaces was 0.83 ( p < 0.0001) and 0.91 ( p < 0.0001) for cement surfaces) and moderate agreement for results between entrance and kitchen samples (Pearson (0.53, p < 0.0001) and weighted Kappa statistic (0.54, p < 0.0001)). Our findings suggest that this method can be utilized in households with high bacterial loads using either continuous (quantitative) or categorical (semi-quantitative) data. The standardization of this low-cost, dry electrostatic cloth sampling method can be used to measure differences between households in intervention and non-intervention arms of randomized trials.
Isaacson, Dylan; Ahmad, Tessnim; Metzler, Ian; Tzou, David T; Taguchi, Kazumi; Usawachintachit, Manint; Zetumer, Samuel; Sherer, Benjamin; Stoller, Marshall; Chi, Thomas
2017-10-01
Careful decontamination and sterilization of reusable flexible ureteroscopes used in ureterorenoscopy cases prevent the spread of infectious pathogens to patients and technicians. However, inefficient reprocessing and unavailability of ureteroscopes sent out for repair can contribute to expensive operating room (OR) delays. Time-driven activity-based costing (TDABC) was applied to describe the time and costs involved in reprocessing. Direct observation and timing were performed for all steps in reprocessing of reusable flexible ureteroscopes following operative procedures. Estimated times needed for each step by which damaged ureteroscopes identified during reprocessing are sent for repair were characterized through interviews with purchasing analyst staff. Process maps were created for reprocessing and repair detailing individual step times and their variances. Cost data for labor and disposables used were applied to calculate per minute and average step costs. Ten ureteroscopes were followed through reprocessing. Process mapping for ureteroscope reprocessing averaged 229.0 ± 74.4 minutes, whereas sending a ureteroscope for repair required an estimated 143 minutes per repair. Most steps demonstrated low variance between timed observations. Ureteroscope drying was the longest and highest variance step at 126.5 ± 55.7 minutes and was highly dependent on manual air flushing through the ureteroscope working channel and ureteroscope positioning in the drying cabinet. Total costs for reprocessing totaled $96.13 per episode, including the cost of labor and disposable items. Utilizing TDABC delineates the full spectrum of costs associated with ureteroscope reprocessing and identifies areas for process improvement to drive value-based care. At our institution, ureteroscope drying was one clearly identified target area. Implementing training in ureteroscope drying technique could save up to 2 hours per reprocessing event, potentially preventing expensive OR delays.
Harnessing Solid-State Ionic Transport for Nanomanufacturing and Nanodevices
ERIC Educational Resources Information Center
Hsu, Keng Hao
2009-01-01
Through this work a new all-solid, ambient processing condition direct metal patterning technique has been developed and characterized. This ionic-transport-based patterning technique is capable of sub-50nm feature resolution under ambient conditions. It generates features with a rate that is comparable to conventional dry-etching techniques. A…
Reddy, Pathakota Krishnajaneya; Bolla, Vijayalakshmi; Koppolu, Pradeep; Srujan, Peruka
2015-01-01
Replacement of missing maxillary anterior tooth with localized residual alveolar ridge defect is challenging, considering the high esthetic demand. Various soft and hard tissue procedures were proposed to correct alveolar ridge deformities. Novel techniques have evolved in treating these ridge defects to improve function and esthetics. In the present case reports, a novel technique using long palatal connective tissue rolled pedicle graft with demineralized freeze-dried bone allografts (DFDBAs) plus Platelet-rich fibrin (PRF) combination was proposed to correct the Class III localized anterior maxillary anterior alveolar ridge defect. The present technique resulted in predictable ridge augmentation, which can be attributed to the soft and hard tissue augmentation with a connective tissue pedicle and DFDBA plus PRF combination. This technique suggests a variation in roll technique with DFDBA plus PRF and appears to promise in gaining predictable volume in the residual ridge defect and can be considered for the treatment of moderate to severe maxillary anterior ridge defects. PMID:26015679
1994-10-27
paraformaidehyde in 500 mM Trehalose stored desiccated at RT, 4* C, or at -70,° C. Neither prep maintained good morphology at any temperature, and there...platelets, or para-platelets dried in Trehalose are as susceptible to loss of integrity over time as other preps. Our platelet handling techniques have
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... following definitions: Adhesion primer, aerosol coating product, air-dried coating, baked coating, dip... coatings..... 0.85 7.1. Automotive/Transportation Parts High bake coatings Flexible primer 0.46 3.8. Non....3. Interior colorcoat 0.49 4.1. Exterior colorcoat 0.55 4.6. Low bake/air dried coatings-exterior...
USDA-ARS?s Scientific Manuscript database
To better understand the effects and relationship between precipitation, net ecosystem carbon dioxide (NEE) and water vapor exchange (ET), we report a study conducted in the tropical dry forest (TDF) in the northwest of Mexico. Ecosystem gas exchange was measured using the eddy correlation technique...
Laser Cutting Eliminates Nucleic Acid Cross-Contamination in Dried-Blood-Spot Processing
Daza, Glenda; Chang, Ming; Coombs, Robert
2012-01-01
Dried blood spots (DBS) are useful for molecular assays but are prone to false positives from cross-contamination. In our malaria DBS assay, cross-contamination was encountered despite cleaning techniques suitable for HIV-1. We therefore developed a contact-free laser cutting system that effectively eliminated cross-contamination during DBS processing. PMID:23052309
Artificial neural network modeling of DDGS flowability with varying process and storage parameters
USDA-ARS?s Scientific Manuscript database
Neural Network (NN) modeling techniques were used to predict flowability behavior in distillers dried grains with solubles (DDGS) prepared with varying CDS (10, 15, and 20%, wb), drying temperature (100, 200, and 300°C), cooling temperature (-12, 0, and 35°C) and cooling time (0 and 1 month) levels....
Kuck, Luiza Siede; Noreña, Caciano Pelayo Zapata
2016-03-01
Bordo grape skin extract was microencapsulated by spray-drying and freeze-drying, using gum arabic (GA), partially hydrolyzed guar gum (PHGG), and polydextrose (PD) as encapsulating agents. Total phenolics and total monomeric anthocyanin, antioxidant activity, color, moisture, water activity (aw), solubility, hygroscopicity, glass transition temperature (Tg), particle size, and microstructure of the powders were evaluated. The retention of phenolics and anthocyanins ranged from 81.4% to 95.3%, and 80.8% to 99.6%, respectively, while the retention of antioxidant activity ranged from 45.4% to 83.7%. Treatments subjected to spray-drying had lower moisture, aw, and particle size, and greater solubility, while the freeze-dried samples were less hygroscopic. Tg values ranged from 10.1 to 52.2°C, and the highest values corresponded to the spray-dried microparticles. The spray-dried particles had spherical shape, while the freeze-dried powders showed irregular structures. The spray drying technique and the use of 5% PHGG and 5% PD has proven to be the best treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zielinska, Magdalena; Markowski, Marek
2016-04-01
The aim of this study was to determine the effect of: (a) different drying methods, (b) hot air temperature in a convection oven, and (c) the moisture content of fruits dehydrated by multi-stage drying which involves a transition between different stages of drying, on the rehydration kinetics of dry blueberries. Models describing rehydration kinetics were also studied. Blueberries dehydrated by multi-stage microwave-assisted drying, which involved a hot air pre-drying step at 80 °C until the achievement of a moisture content of 1.95 kg H2O kg(-1)DM, were characterized by significantly higher rates of initial and successive rehydration as well as smaller initial loss of soluble solids in comparison with the samples dried by other methods. The highest initial rehydration rate and the smallest loss of soluble solids after 30 min of soaking were determined at 0.46 min(-1) and 0.29 kg DM kg(-1)DM, respectively. The Peleg model and the first-order-kinetic model fit the experimental data well. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Juan; Huang, Song; Fu, Nan; Jeantet, Romain; Chen, Xiao Dong
2016-08-03
Probiotic bacteria have been reported to confer benefits on hosts when delivered in an adequate dose. Spray-drying is expected to produce dried and microencapsulated probiotic products due to its low production cost and high energy efficiency. The bottleneck in probiotic application addresses the thermal and dehydration-related inactivation of bacteria during process. A protective drying matrix was designed by modifying skim milk with the principle of calcium-induced protein thermal aggregation. The well-defined single-droplet drying technique was used to monitor the droplet-particle conversion and the protective effect of this modified Ca-aggregated milk on Lactobacillus rhamnosus GG. The Ca-aggregated milk exhibited a higher drying efficiency and superior protection on L. rhamnosus GG during thermal convective drying. The mechanism was explained by the aggregation in milk, causing the lower binding of water in the serum phase and, conversely, local concentrated milk aggregates involved in bacteria entrapment in the course of drying. This work may open new avenues for the development of probiotic products with high bacterial viability and calcium enrichment.
Aghilinategh, Nahid; Rafiee, Shahin; Hosseinpour, Soleiman; Omid, Mahmoud; Mohtasebi, Seyed Saeid
2016-10-01
An intermittent microwave convective drying method combined with a real-time computer vision technique was employed to detect the effect of drying parameters on color properties of apple slices. The experiments were performed at air temperature of 40 to 80℃, air velocities of 1-2 m/s, microwave powers of 200-600 W, and pulse ratios (PRs) of 2-6. Drying rate and drying time varied from 0.014 to 0.000001 min -1 and 27 to 244 min, respectively. The normalized lightness values had ascending and descending parabolic trends with decrease in product moisture content. With descending dimensionless moisture content, redness, yellowness, color change, hue angle, and chroma were enlarged. The normalized redness values changed from -4 to 3. Models relating drying parameters with drying time, drying rate, and lightness were obtained and found to be significant (P < 0.01). Results indicated that microwave power and PRs had more influence on lightness and color change than other parameters. © The Author(s) 2016.
Evaluation of dry technology for removal of pellicle adhesive residue on advanced optical reticles
NASA Astrophysics Data System (ADS)
Paracha, Shazad; Bekka, Samy; Eynon, Benjamin; Choi, Jaehyuck; Balooch, Mehdi; Varghese, Ivin; Hopkins, Tyler
2013-09-01
The fast pace of MOSFET scaling is accelerating the introduction of smaller technology nodes to extend CMOS beyond 20nm as required by Moore's law. To meet these stringent requirements, the industry is seeing an increase in the number of critical layers per reticle set as it move to lower technology nodes especially in a high volume manufacturing operation. These requirements are resulting in reticles with higher feature densities, smaller feature sizes and highly complex Optical Proximity Correction (OPC), built with using new absorber and pellicle materials. These rapid changes are leaving a gap in maintaining these reticles in a fab environment, for not only haze control but also the functionality of the reticle. The industry standard of using wet techniques (which uses aggressive chemicals, like SPM, and SC1) to repel reticles can result in damage to the sub-resolution assist features (SRAF's), create changes to CD uniformity and have potential for creating defects that require other means of removal or repair. Also, these wet cleaning methods in the fab environment can create source for haze growth. Haze can be controlled by: 1) Chemical free (dry) reticle cleaning, 2) In-line reticle inspection in fab, and 3) Manage the environment where reticles are stored. In this paper we will discuss a dry technique (chemical free) to remove pellicle adhesive residue from advanced optical reticles. Samsung Austin Semiconductors (SAS), jointly worked with Eco-Snow System (a division of RAVE N.P., Inc.) to evaluate the use of Dry Reactive Gas (DRG) technique to remove pellicle adhesive residue on reticles. This technique can significantly reduce the impact to the critical geometry in active array of the reticle, resulting in preserving the reticle performance level seen at wafer level. The paper will discuss results on the viability of this technique used on advanced reticles.
Development of Biodegradable Polycation-Based Inhalable Dry Gene Powders by Spray Freeze Drying
Okuda, Tomoyuki; Suzuki, Yumiko; Kobayashi, Yuko; Ishii, Takehiko; Uchida, Satoshi; Itaka, Keiji; Kataoka, Kazunori; Okamoto, Hirokazu
2015-01-01
In this study, two types of biodegradable polycation (PAsp(DET) homopolymer and PEG-PAsp(DET) copolymer) were applied as vectors for inhalable dry gene powders prepared by spray freeze drying (SFD). The prepared dry gene powders had spherical and porous structures with a 5~10-μm diameter, and the integrity of plasmid DNA could be maintained during powder production. Furthermore, it was clarified that PEG-PAsp(DET)-based dry gene powder could more sufficiently maintain both the physicochemical properties and in vitro gene transfection efficiencies of polyplexes reconstituted after powder production than PAsp(DET)-based dry gene powder. From an in vitro inhalation study using an Andersen cascade impactor, it was demonstrated that the addition of l-leucine could markedly improve the inhalation performance of dry powders prepared by SFD. Following pulmonary delivery to mice, both PAsp(DET)- and PEG-PAsp(DET)-based dry gene powders could achieve higher gene transfection efficiencies in the lungs compared with a chitosan-based dry gene powder previously reported by us. PMID:26343708
Shoyele, Sunday A; Sivadas, Neeraj; Cryan, Sally-Ann
2011-03-01
Pulmonary delivery of therapeutic peptides and proteins has many advantages including high relative bioavailability, rapid systemic absorption and onset of action and a non-invasive mode of administration which improves patient compliance. In this study, we investigated the effect of spray-drying (SD) and spray freeze-drying processes on the stability and aerosol performance of parathyroid hormone (PTH) (1-34) microparticles. In this study, the stabilisation effect of trehalose (a non-reducing sugar) and Brij 97 (a non-ionic surfactant) on spray-dried PTH particles was assessed using analytical techniques including circular dichroism (CD), fluorescence spectroscopy, modulated differential scanning calorimetry and an in vitro bioactivity assay. Physical characterisation also included electron microscopy, tap density measurement and laser light diffraction. The aerosol aerodynamic performance of the formulations was assessed using the Andersen cascade impactor. Based on these studies, a formulation for spray freeze-drying was selected and the effects of the two particle engineering techniques on the biophysical stability and aerosol performance of the resulting powders was determined. CD, fluorescence spectroscopy and bioactivity data suggest that trehalose when used alone as a stabilising excipient produces a superior stabilising effect than when used in combination with a non-ionic surfactant. This highlights the utility of CD and fluorescence spectroscopy studies for the prediction of protein bioactivity post-processing. Therefore, a method and formulation suitable for the preparation of PTH as a dry powder was developed based on spray-drying PTH with trehalose as a stabiliser with the bioactivity of SD PTH containing trehalose being equivalent to that of unprocessed PTH. © 2011 American Association of Pharmaceutical Scientists
Cook, Isobel Ann; Ward, Kevin Richard
2011-01-01
We compare frequency modulation spectroscopy (FMS) as a method of headspace water analysis with the method of Karl Fischer coulometric titration (KF), which is widely used in the analysis of residual water in a freeze-dried material. Parameters relating to the type of formulation (amorphous, crystalline) and the freeze-drying cycle (temperature, pressure, time) were investigated in relation to the resulting headspace moisture (HSM) and total water. We describe the effect of stopper treatment and storage conditions on the HSM levels observed using FMS as a non-destructive method, which also allowed individual vials to be reanalyzed at a series of time points as part of a long-term monitoring exercise. The results of this study enabled a better understanding of the effect of stopper type and pre-lyophilization treatment on the HSM levels both immediately after freeze-drying and upon subsequent storage of the sealed vials of lyophilized material at different temperatures. A clear, linear relationship was observed between HSM and KF values for vials containing freeze-dried sucrose, implying a relatively straightforward interaction between water and the lyophilized cake for this material. Moisture mapping of all vials on one shelf of the freeze-dryer enabled further information to be obtained on the relationship of the formulation, vial, process conditions, equipment geometry, and performance on the intra-batch variability in HSM level and dynamics. It is believed that this could therefore represent a potentially useful technique for quality assurance and in the validation of lyophilization cycles, equipment, and scale-up. Lyophilization, also known as "freeze-drying," is a relatively old technique that has been used in its most basic form for thousands of years (e.g., preservation of fish and meat products). In its more advanced form it is used to preserve many medical products, for example, many vaccines are not stable in solution and therefore need to be dried to allow long-term storage. In order to produce a freeze-dried vaccine a complex understanding of the processes and critical temperatures is required. Once these have been understood the material is dried to give relatively low moisture content (e.g., 2% w/w). This low moisture content is critical for the long-term stability of the product, allowing doctors/chemists to store these goods on site for use when required. This research paper provides further information on a technique called frequency modulation spectroscopy (FMS) that could be used to further our knowledge of the water dynamics within a freeze-dried product, enabling us to increase our understanding of the role various materials and processing conditions play; this in turn could assist in improving quality assurance and ultimately the final product that reaches the consumer.
Optimum Parameters for Freeze-Drying Decellularized Arterial Scaffolds
Sheridan, William S.; Duffy, Garry P.
2013-01-01
Decellularized arterial scaffolds have achieved success in advancing toward clinical use as vascular grafts. However, concerns remain regarding long-term preservation and sterilization of these scaffolds. Freeze drying offers a means of overcoming these concerns. In this study, we investigated the effects of various freeze-drying protocols on decellularized porcine carotid arteries and consequently, determined the optimum parameters to fabricate a stable, preserved scaffold with unaltered mechanical properties. Freeze drying by constant slow cooling to two final temperatures ((Tf), −10°C and −40°C) versus instant freezing was investigated by histological examination and mechanical testing. Slow cooling to Tf= −10°C produced a stiffer and less distensible response than the non freeze-dried scaffolds and resulted in disruption to the collagen fibers. The mechanical response of Tf= −40°C scaffolds demonstrated disruption to the elastin network, which was confirmed with histology. Snap freezing scaffolds in liquid nitrogen and freeze drying to Tf= −40°C with a precooled shelf at −60°C produced scaffolds with unaltered mechanical properties and a histology resembling non-freeze-dried scaffolds. The results of this study demonstrate the importance of optimizing the nucleation and ice crystal growth/size to ensure homogenous drying, preventing extracellular matrix disruption and subsequent inferior mechanical properties. This new manufacturing protocol creates the means for the preservation and sterilization of decellularized arterial scaffolds while simultaneously maintaining the mechanical properties of the tissue. PMID:23614758
Wong, P Y; Mee, A V; Doran, T A
1982-06-01
We modified the Pharmacia serum alpha-fetoprotein (AFP) kit to enable its use with dry blood-spots on filter paper. Reference values were established for blood from 253 women in the 16th to 18th weeks of gestation. The result by the present technique in a woman with a confirmed anencephalic fetus was elevated, and in agreement with the results of AFP assays in serum and amniotic fluid. Blood AFP was stable on dried filter paper sent by mail.
Valeriana officinalis Dry Plant Extract for Direct Compression: Preparation and Characterization
Gallo, Loreana; Ramírez-Rigo, María Veronica; Piña, Juliana; Palma, Santiago; Allemandi, Daniel; Bucalá, Verónica
2012-01-01
Valeriana officinalis L. (Valerianaceae) is one of the most widely used plants for the treatment of anxiety and insomnia. Usually dry plant extracts, including V. officinalis, are hygroscopic materials with poor physico-mechanical properties that can be directly compressed. A V. officinalis dry extract with moderate hygroscocity is suitable for direct compression, and was obtained by using a simple and economical technique. The V. officinalis fluid extract was oven-dried with colloidal silicon dioxide as a drying adjuvant. The addition of colloidal silicon dioxide resulted in a dry plant extract with good physico-mechanical properties for direct compression and lower hygroscopicity than the dry extract without the carrier. The dry plant extract glass transition temperature was considerably above room temperature (about 72 °C). The colloidal silicon dioxide also produced an antiplasticizing effect, improving the powder’s physical stability. The pharmaceutical performance of the prepared V. officinalis dry extract was studied through the design of tablets. The manufactured tablets showed good compactability, friability, hardness, and disintegration time. Those containing a disintegrant (Avicel PH 101) exhibited the best pharmaceutical performance, having the lowest disintegration time of around 40 seconds. PMID:23264947
Development of a microwave clothes dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-07-01
The objective of the project is to investigate the microwave drying of clothes and to produce an impartial, generic database for use by interested parties, including appliance manufacturers, who may want to use it when designing and developing microwave clothes dryers. This interim report covers the first year of activity on the project. During that time, a laboratory test model of a microwave clothes dryer was constructed and tested over a wide range of parameters. The test unit was the same size as a residential home dryer and had eight 0.85-kW microwave power supplies from home ovens and a 5-kWmore » resistance air heater. Thus, the model could be used for microwave drying, hot air drying or for a combination of both drying techniques. Microwave drying was effective in three drying modes: Cool drying, fast drying and very efficient drying. Microwaves penetrate the clothes and heat the water molecules directly while conventional heat energy must be conducted through the clothes to evaporate the water. In cool drying, microwaves alone heat the water and an airflow of slightly warmed air carries away the moisture. In fast drying, the microwave power is combined with hot air drying to reduce drying times by as much as 50%. In the most efficient mode of drying, microwave power is used along with the waste heat from the microwave power supply. Hazards testing and fine fabric tests are scheduled for the future.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... furnish with an inlet moisture content less than or equal to 30 percent (by weight, dry basis) AND operate... criteria of a “dry rotary dryer” AND you have a record of the inlet moisture content and inlet dryer... an inlet moisture content of less than or equal to 25 percent (by weight, dry basis) You meet the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... furnish with an inlet moisture content less than or equal to 30 percent (by weight, dry basis) AND operate... criteria of a “dry rotary dryer” AND you have a record of the inlet moisture content and inlet dryer... an inlet moisture content of less than or equal to 25 percent (by weight, dry basis) You meet the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... furnish with an inlet moisture content less than or equal to 30 percent (by weight, dry basis) AND operate... criteria of a “dry rotary dryer” AND you have a record of the inlet moisture content and inlet dryer... an inlet moisture content of less than or equal to 25 percent (by weight, dry basis) You meet the...
Electrohydrodynamic drying of carrot slices.
Ding, Changjiang; Lu, Jun; Song, Zhiqing
2015-01-01
Carrots have one of the highest levels of carotene, and they are rich in vitamins, fiber and minerals. However, since fresh carrots wilt rapidly after harvest under inappropriate storage conditions, drying has been used to improve their shelf life and retain nutritional quality. Therefore, to further investigate the potential of this method, carrot slices were dried in an EHD system in order to study the effect of different voltages on drying rate. As measures of quality, carotene content and rehydration ratio were, respectively, compared against the conventional oven drying regime. Carotene, the main component of the dried carrot, and rehydration characteristics of the dried product can both indicate quality by physical and chemical changes during the drying process. Mathematical modeling and simulation of drying curves were also performed, using root mean square error, reduced mean square of the deviation and modeling efficiency as the primary criteria to select the equation that best accounts for the variation in the drying curves of the dried samples. Theoretically, the Page model was best suited for describing the drying rate curve of carrot slices at 10kV to 30kV. Experimentally, the drying rate of carrots was notably greater in the EHD system when compared to control, and quality, as determined by carotene content and rehydration ratio, was also improved when compared to oven drying. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the drying properties of carrots, and, as a result, it provides deeper insight into the industrial potential of the EHD drying technique.
Hybrid Drying of Carrot Preliminary Processed with Ultrasonically Assisted Osmotic Dehydration
2017-01-01
Summary In this paper the kinetics of osmotic dehydration of carrot and the influence of this pretreatment on the post-drying processes and the quality of obtained products are analysed. Osmotic dehydration was carried out in the aqueous fructose solution in two different ways: with and without ultrasound assistance. In the first part of the research, the kinetics of osmotic dehydration was analysed on the basis of osmotic dewatering rate, water loss and solid gain. Next, the effective time of dehydration was determined and in the second part of research samples were initially dehydrated for 30 min and dried. Five different procedures of drying were established on the grounds of convective method enhanced with microwave and infrared radiation. The influence of osmotic dehydration on the drying kinetics and final product quality was analysed. It was found that it did not influence the drying kinetics significantly but positively affected the final product quality. Negligible influence on the drying kinetics was attributed to solid uptake, which may block the pores, hindering heat and mass transfer. It was also concluded that the application of microwave and/or infrared radiation during convective drying significantly influenced the kinetics of the final stage of drying. A proper combination of aforementioned techniques of hybrid drying allows reducing the drying time. Differences between the particular dehydration methods and drying schedules were discussed. PMID:28867949
Shim, Sung Hoon; Jeong, Sang Hyun; Lee, Sang-Sup
2015-04-01
Recently, numerical and experimental studies have been conducted to develop a moderate or intense low-oxygen dilution (MILD) combustion technology for solid fuels. The study results demonstrated that intense recirculation inside the furnace by high-momentum air is a key parameter to achieve the MILD combustion of solid fuels. However, the high-velocity air requires a significant amount of electricity consumption. A cyclone-type MILD combustor was therefore designed and constructed in the authors' laboratory to improve the recirculation inside the combustor. The laboratory-scale tests yielded promising results for the MILD combustion of dried sewage sludge. To achieve pilot-scale MILD combustion of dried sludge in this study, the effects of geometric parameters such as the venturi tube configuration, the air injection location, and the air nozzle diameter were investigated. With the optimized geometric and operational conditions, the pilot-scale cyclone combustor demonstrated successful MILD combustion of dried sludge at a rate of 75 kg/hr with an excess air ratio of 1.05. A horizontal cyclone combustor with recirculation demonstrated moderate or intense low-oxygen dilution (MILD) combustion of dried sewage sludge at a rate of 75 kg/hr. Optimizing only geometric and operational conditions of the combustor reduced nitrogen oxide (NOx) emissions to less than 75 ppm. Because the operating cost of the MILD combustor is much lower than that of the selective catalytic reduction (SCR) applied to the conventional combustor, MILD combustion technology with the cyclone type furnace is an eligible option for reducing NOx emissions from the combustion of dried sewage sludge.
NASA Astrophysics Data System (ADS)
Huang, Zufang; Sun, Yan; Wang, Jing; Du, Shengrong; Li, Yongzeng; Lin, Juqiang; Feng, Shangyuan; Lei, Jinping; Lin, Hongxin; Chen, Rong; Zeng, Haishan
2013-12-01
In this study, a rapid and simple method which combines drop coating deposition and Raman spectroscopy (DCDR) was developed to characterize the dry embryo culture media (ECM) droplet. We demonstrated that Raman spectra obtained from the droplet edge presented useful and characteristic signatures for protein and amino acids assessment. Using a different analytical method, scanning electron microscopy coupled with energy dispersive X-ray analysis, we further confirmed that Na, K, and Cl were mainly detected in the central area of the dry ECM droplet while sulphur, an indicative of the presence of macromolecules such as proteins, was mainly found at the periphery of the droplet. In addition, to reduce sample preparation time, different temperatures for drying the droplets were tested. The results showed that drying temperature at 50°C can effectively reduce the sample preparation time to 6 min (as compared to 50 min for drying at room temperature, ˜25°C) without inducing thermal damage to the proteins. This work demonstrated that DCDR has potential for rapid and reliable metabolomic profiling of ECM in clinical applications.
Heat-Stable Dry Powder Oxytocin Formulations for Delivery by Oral Inhalation.
Fabio, Karine; Curley, Kieran; Guarneri, Joseph; Adamo, Benoit; Laurenzi, Brendan; Grant, Marshall; Offord, Robin; Kraft, Kelly; Leone-Bay, Andrea
2015-12-01
In this work, heat stable dry powders of oxytocin (OT) suitable for delivery by oral inhalation were prepared. The OT dry powders were prepared by spray drying using excipients chosen to promote OT stability including trehalose, isoleucine, polyvinylpyrrolidone, citrate (sodium citrate and citric acid), and zinc salts (zinc chloride and zinc citrate). Characterization by laser diffraction indicated that the OT dry powders had a median particle size of 2 μm, making them suitable for delivery by inhalation. Aerodynamic performance upon discharge from proprietary dry powder inhalers was evaluated by Andersen cascade impaction (ACI) and in an anatomically correct airway (ACA) model, and confirmed that the powders had excellent aerodynamic performance, with respirable fractions up to 77% (ACI, 30 L/min). Physicochemical characterization demonstrated that the powders were amorphous (X-ray diffraction) with high glass transition temperature (modulated differential scanning calorimetry, MDSC), suggesting the potential for stabilization of the OT in a glassy amorphous matrix. OT assay and impurity profile were conducted by reverse phase HPLC and liquid chromatography-mass spectrometry (LC-MS) after storage up to 32 weeks at 40°C/75%RH. Analysis demonstrated that OT dry powders containing a mixture of citrate and zinc salts retained more than 90% of initial assay after 32 weeks storage and showed significant reduction in dimers and trisulfide formation (up to threefold reduction compared to control).
40 CFR 62.14495 - What authorities will be retained by the EPA Administrator?
Code of Federal Regulations, 2010 CFR
2010-07-01
... when using controls other than a dry scrubber followed by a fabric filter, a wet scrubber, or a dry scrubber followed by a fabric filter and a wet scrubber. (b) Alternative methods of demonstrating...
40 CFR 62.14495 - What authorities will be retained by the EPA Administrator?
Code of Federal Regulations, 2012 CFR
2012-07-01
... when using controls other than a dry scrubber followed by a fabric filter, a wet scrubber, or a dry scrubber followed by a fabric filter and a wet scrubber. (b) Alternative methods of demonstrating...
40 CFR 62.14495 - What authorities will be retained by the EPA Administrator?
Code of Federal Regulations, 2011 CFR
2011-07-01
... when using controls other than a dry scrubber followed by a fabric filter, a wet scrubber, or a dry scrubber followed by a fabric filter and a wet scrubber. (b) Alternative methods of demonstrating...
Tseng, C C; Harn, W M; Chen, Y H; Huang, C C; Yuan, K; Huang, P H
1996-12-01
Clinicians often have difficulty in the diagnosis and treatment of the combined endodontal and periodontal (endo-perio) lesion. A case of an endo-perio true-combined lesion on a maxillary premolar was first treated with conventional endodontic therapy. Periodontal surgery was then completed, which included scaling and root planing and apical curettage on the tooth. The facial bony defect was then filled with a decalcified freeze-dried bone allograft mixed with tetracycline powder. A non-resorbable Teflon membrane was then used to cover the bone material and the periodontal flap sutured over this. This combined treatment resulted in minimal probing depth (2 mm), maximal clinical attachment gain (8 mm), as well as radiographic evidence of alveolar bone gain. This case report demonstrates that proper diagnosis, followed by removal of etiological factors and utilizing the guided tissue regeneration technique combined with osseous grafting, will restore health and function to a tooth with severe attachment loss caused by an endo-perio lesion.
Transesterification of Waste Activated Sludge for Biosolids Reduction and Biodiesel Production.
Maeng, Min Ho; Cha, Daniel K
2018-02-01
Transesterification of waste activated sludge (WAS) was evaluated as a cost-effective technique to reduce excess biosolids and recover biodiesel feedstock from activated sludge treatment processes. A laboratory-scale sequencing batch reactor (SBR) was operated with recycling transesterification-treated WAS back to the aeration basin. Seventy percent recycling of WAS resulted in a 48% reduction of excess biosolids in comparison with a conventional SBR, which was operated in parallel as the control SBR. Biodiesel recovery of 8.0% (dried weight basis) was achieved at an optimum transesterification condition using acidic methanol and xylene as cosolvent. Average effluent soluble chemical oxygen demand (COD) and total suspended solids (TSS) concentrations from the test SBR and control SBR were comparable, indicating that the recycling of transesterification-treated WAS did not have detrimental effect on the effluent quality. This study demonstrated that transesterification and recycling of WAS may be a feasible technique for reducing excess biosolids, while producing valuable biodiesel feedstock from the activated sludge process.
Methods for imaging Shewanella oneidensis MR-1 nanofilaments.
Ray, R; Lizewski, S; Fitzgerald, L A; Little, B; Ringeisen, B R
2010-08-01
Nanofilament production by Shewanella oneidensis MR-1 was evaluated as a function of lifestyle (planktonic vs. sessile) under aerobic and anaerobic conditions using different sample preparation techniques prior to imaging with scanning electron microscopy. Nanofilaments could be imaged on MR-1 cells grown in biofilms or planktonically under both aerobic and anaerobic batch culture conditions after fixation, critical point drying and coating with a conductive metal. Critical point drying was a requirement for imaging nanofilaments attached to planktonically grown MR-1 cells, but not for cells grown in a biofilm. Techniques described in this paper cannot be used to differentiate nanowires from pili or flagella.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shayan, Kamran; Rabut, Claire; Kong, Xiaoqing
The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) upmore » to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.« less
Crystallization of spray-dried lactose/protein mixtures in humid air
NASA Astrophysics Data System (ADS)
Shawqi Barham, A.; Kamrul Haque, Md.; Roos, Yrjö H.; Kieran Hodnett, B.
2006-10-01
An in situ crystallization technique with X-ray diffraction analysis complemented by ex situ scanning electron microscopy and chromatographic analysis of the α/( α+ β) solid-state anomeric ratios has been developed to study the crystallization of lactose/protein mixtures in humid air. This technique was used to determine changes in phase composition and morphology during crystallization. Following an induction period during which water is sorbed, crystallization is rapid and the predominant phase observed using the in situ method in spray-dried lactose/sodium-caseinate, albumin and gelatin is α-lactose monohydrate. However, in the case of spray-dried lactose/whey protein isolate (WPI) the predominant phase that appears is the α/ β mixed phase with smaller amounts of α-lactose monohydrate. With pure lactose the α/ β mixed phase appears as a transient shortly after the onset of crystallization and α-lactose monohydrate and β-lactose both appear as stable crystalline phases at longer times. Another transient phase with 2 θ=12.2°, 20.7° and 21.8° was observed in spray-dried lactose/albumin. This phase decomposed as α-lactose monohydrate developed. Three phases seem to persist in the case of spray-dried lactose/gelatin, namely the phase with peaks at 2 θ=12.2°, 20.7° and 21.8°, α-lactose monohydrate and β-lactose for the duration of the in situ experiment.
Peng, Tingting; Zhang, Xuejuan; Huang, Ying; Zhao, Ziyu; Liao, Qiuying; Xu, Jing; Huang, Zhengwei; Zhang, Jiwen; Wu, Chuan-yu; Pan, Xin; Wu, Chuanbin
2017-01-01
An optimum carrier rugosity is essential to achieve a satisfying drug deposition efficiency for the carrier based dry powder inhalation (DPI). Therefore, a non-organic spray drying technique was firstly used to prepare nanoporous mannitol with small asperities to enhance the DPI aerosolization performance. Ammonium carbonate was used as a pore-forming agent since it decomposed with volatile during preparation. It was found that only the porous structure, and hence the specific surface area and carrier density were changed at different ammonium carbonate concentration. Furthermore, the carrier density was used as an indication of porosity to correlate with drug aerosolization. A good correlation between the carrier density and fine particle fraction (FPF) (r2 = 0.9579) was established, suggesting that the deposition efficiency increased with the decreased carrier density. Nanoporous mannitol with a mean pore size of about 6 nm exhibited 0.24-fold carrier density while 2.16-fold FPF value of the non-porous mannitol. The enhanced deposition efficiency was further confirmed from the pharmacokinetic studies since the nanoporous mannitol exhibited a significantly higher AUC0-8h value than the non-porous mannitol and commercial product Pulmicort. Therefore, surface modification by preparing nanoporous carrier through non-organic spray drying showed to be a facile approach to enhance the DPI aerosolization performance. PMID:28462948
Recent developments in drying of food products
NASA Astrophysics Data System (ADS)
Valarmathi, T. N.; Sekar, S.; Purushothaman, M.; Sekar, S. D.; Rama Sharath Reddy, Maddela; Reddy, Kancham Reddy Naveen Kumar
2017-05-01
Drying is a dehydration process to preserve agricultural products for long period usage. The most common and cheapest method is open sun drying in which the products are simply laid on ground, road, mats, roof, etc. But the open sun drying has some disadvantages like dependent on good weather, contamination by dust, birds and animals consume a considerable quantity, slow drying rate and damages due to strong winds and rain. To overcome these difficulties solar dryers are developed with closed environment for drying agricultural products effectively. To obtain good quality food with reduced energy consumption, selection of appropriate drying process and proper input parameters is essential. In recent years several researchers across the world have developed new drying systems for improving the product quality, increasing the drying rate, decreasing the energy consumption, etc. Some of the new systems are fluidized bed, vibrated fluidized bed, desiccant, microwave, vacuum, freeze, infrared, intermittent, electro hydrodynamic and hybrid dryers. In this review the most recent progress in the field of drying of agricultural food products such as new methods, new products and modeling and optimization techniques has been presented. Challenges and future directions are also highlighted. The review will be useful for new researchers entering into this ever needed and ever growing field of engineering.
Development of Solar Drying Model for Selected Cambodian Fish Species
Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan
2014-01-01
A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R 2), chi-square (χ 2) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing. PMID:25250381
Acoustic emission and acousto-ultrasonic techniques for wood and wood-based composites: a review
Sumire Kawamoto; R. Sam Williams
2002-01-01
This review focuses on the feasibility of acoustic emission (AE) and acousto-ultrasonic (AU) techniques for monitoring defects in wood, particularly during drying. The advantages and disadvantages of AE and AU techniques are described. Particular emphasis is placed on the propagation and attenuation of ultrasonic waves in wood and the associated measurement problems....
A microhistological technique for analysis of food habits of mycophagous rodents.
Patrick W. McIntire; Andrew B. Carey
1989-01-01
We present a technique, based on microhistological analysis of fecal pellets, for quantifying the diets of forest rodents. This technique provides for the simultaneous recording of fungal spores and vascular plant material. Fecal samples should be freeze dried, weighed, and rehydrated with distilled water. We recommend a minimum sampling intensity of 50 fields of view...
"Dry-column" chromatography of plant pigments
NASA Technical Reports Server (NTRS)
Woeller, F. H.; Lehwalt, M. F.; Oyama, V. I.
1973-01-01
Separation of plant pigments which can be accomplished on thin-layer silica plates with mixture of petroleum ether, halocarbon, acetone, and polar solvent can be readily translated into dry-column technique that yields reproducible chromatograms after elution in fashion of liquid chromatography with fluorimeter as detector. Best solvent system was found to be mixture of petroleum ether, dichloromethane, acetone, and ethyl acetate.
Chen, Jin-Jin; Gong, Peng-Fei; Liu, Yi-Lan; Liu, Bo-Yan; Eggert, Dawn; Guo, Yuan-Heng; Zhao, Ming-Xia; Zhao, Qing-Sheng; Zhao, Bing
2018-04-01
A novel technique of ultrasound-assisted freeze-thaw pretreatment (UFP) was developed to improve the drying efficiency of maca and bioactive amide synthesis in maca. The optimal UFP conditions are ultrasonic processing 90 min at 30 °C with 6 freeze-thaw cycles. Samples with freeze-thaw pretreatment (FP), ultrasound pretreatment (UP), and UFP were prepared for further comparative study. A no pretreatment (NP) sample was included as a control. The results showed that UFP improved the drying efficiency of maca slices, showing the highest effective moisture diffusivity (1.75 × 10 -9 m 2 /s). This result was further supported by low-field nuclear magnetic resonance (LF-NMR) analysis and scanning electron microscopy (SEM). The rehydration capacity and protein content of maca slices were improved by UFP. More importantly, contents of bioactive macamides and their biosynthetic precursors were increased in 2.5- and 10-fold, respectively. In conclusion, UFP is an efficient technique to improve drying efficiency, physicochemical properties, and bioactive macamides of maca, which can be applied in the industrial manufacture of maca products. © 2018 Institute of Food Technologists®.
Hooton, Jennifer C; Jones, Matthew D; Price, Robert
2006-06-01
The aim of this work was to utilize the recently developed cohesive-adhesive balance (CAB) technique for analyzing quantitative AFM measurements to compare the relative forces of interaction of micronized salbutamol sulfate particles and a selection of specifically grown sugar substrates (beta cyclodextrin, lactose, raffinose, trehalose and xylitol). The interfacial behavior was subsequently related to the in-vitro delivery performance of these sugars as carrier particles in dry powder inhalation (DPI) formulations. The CAB analysis indicated that the rank order of adhesion between salbutamol sulfate and the sugars was beta cyclodextrin < lactose < trehalose < raffinose < xylitol. The beta cyclodextrin was the only substrate with which salbutamol sulfate demonstrated a greater cohesive behavior. All other sugars exhibited an adhesive dominance. In-vitro deposition performance of the salbutamol sulfate based carrier DPI formulations showed that the rank order of the fine particle fraction (FPF) was beta cyclodextrin > lactose > raffinose > trehalose > xylitol. A linear correlation (R(2) = 0.9572) was observed between the FPF and cohesive-adhesive ratios of the AFM force measurements. The observed link between CAB analysis of the interactive forces and in-vitro performance of carrier based formulations suggested a fundamental understanding of the relative balance of the various forces of interaction within a dry powder formulation may provide a critical insight into the behavior of these formulations. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association
Dynamic quantitative analysis of adherent cell cultures by means of lens-free video microscopy
NASA Astrophysics Data System (ADS)
Allier, C.; Vincent, R.; Navarro, F.; Menneteau, M.; Ghenim, L.; Gidrol, X.; Bordy, T.; Hervé, L.; Cioni, O.; Bardin, S.; Bornens, M.; Usson, Y.; Morales, S.
2018-02-01
We present our implementation of lens-free video microscopy setup for the monitoring of adherent cell cultures. We use a multi-wavelength LED illumination together with a dedicated holographic reconstruction algorithm that allows for an efficient removal of twin images from the reconstructed phase image for densities up to those of confluent cell cultures (>500 cells/mm2). We thereby demonstrate that lens-free video microscopy, with a large field of view ( 30 mm2) can enable us to capture the images of thousands of cells simultaneously and directly inside the incubator. It is then possible to trace and quantify single cells along several cell cycles. We thus prove that lens-free microscopy is a quantitative phase imaging technique enabling estimation of several metrics at the single cell level as a function of time, for example the area, dry mass, maximum thickness, major axis length and aspect ratio of each cell. Combined with cell tracking, it is then possible to extract important parameters such as the initial cell dry mass (just after cell division), the final cell dry mass (just before cell division), the average cell growth rate, and the cell cycle duration. As an example, we discuss the monitoring of a HeLa cell cultures which provided us with a data-set featuring more than 10 000 cell cycle tracks and more than 2x106 cell morphological measurements in a single time-lapse.
Hydroponic cultivation improves the nutritional quality of soybean and its products.
Palermo, Mariantonella; Paradiso, Roberta; De Pascale, Stefania; Fogliano, Vincenzo
2012-01-11
Hydroponic cultivation allows the control of environmental conditions, saves irrigation water, increases productivity, and prevents plant infections. The use of this technique for large commodities such as soybean is not a relevant issue on fertile soils, but hydroponic soybean cultivation could provide proteins and oil in adverse environmental conditions. In this paper, the compositions of four cultivars of soybean seeds and their derivates, soy milk and okara, grown hydroponically were compared to that of the same cultivar obtained from soil cultivation in an open field. Besides proximal composition, the concentrations of phytic acid and isoflavones were monitored in the seeds, soy milk, and okara. Results demonstrated that, independent from the cultivar, hydroponic compared to soil cultivation promoted the accumulation of fats (from 17.37 to 21.94 g/100 g dry matter) and total dietary fiber (from 21.67 to 28.46 g/100 g dry matter) and reduced isoflavones concentration (from 17.04 to 7.66 mg/kg dry matter), whereas protein concentration was unaffected. The differences found in seed composition were confirmed in the respective okara products, but the effect of cultivation system was not significant looking at the soy milk composition. Data showed that hydroponic cultivation improved the nutritional quality of soybean seeds with regard to fats and dietary fiber. They also suggest that specific cultivars should be selected to obtain the desired nutritional features of the soybean raw material depending on its final destination.
Dry Storage of Research Reactor Spent Nuclear Fuel - 13321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.
2013-07-01
Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. Themore » initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)« less
Zhang, Guozhu; Xie, Changsheng; Zhang, Shunping; Zhao, Jianwei; Lei, Tao; Zeng, Dawen
2014-09-08
A combinatorial high-throughput temperature-programmed method to obtain the optimal operating temperature (OOT) of gas sensor materials is demonstrated here for the first time. A material library consisting of SnO2, ZnO, WO3, and In2O3 sensor films was fabricated by screen printing. Temperature-dependent conductivity curves were obtained by scanning this gas sensor library from 300 to 700 K in different atmospheres (dry air, formaldehyde, carbon monoxide, nitrogen dioxide, toluene and ammonia), giving the OOT of each sensor formulation as a function of the carrier and analyte gases. A comparative study of the temperature-programmed method and a conventional method showed good agreement in measured OOT.
Fragouli, Despina; Buonsanti, Raffaella; Bertoni, Giovanni; Sangregorio, Claudio; Innocenti, Claudia; Falqui, Andrea; Gatteschi, Dante; Cozzoli, Pantaleo Davide; Athanassiou, Athanassia; Cingolani, Roberto
2010-04-27
We present a simple technique for magnetic-field-induced formation, assembling, and positioning of magnetic nanowires in a polymer film. Starting from a polymer/iron oxide nanoparticle casted solution that is allowed to dry along with the application of a weak magnetic field, nanocomposite films incorporating aligned nanocrystal-built nanowire arrays are obtained. The control of the dimensions of the nanowires and of their localization across the polymer matrix is achieved by varying the duration of the applied magnetic field, in combination with the evaporation dynamics. These multifunctional anisotropic free-standing nanocomposite films, which demonstrate high magnetic anisotropy, can be used in a wide field of technological applications, ranging from sensors to microfluidics and magnetic devices.
NASA Astrophysics Data System (ADS)
Onwude, Daniel I.; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan
2018-04-01
This study investigated the drying kinetics, mass and heat transfer characteristics of sweet potato slices (0.4-0.6 cm thickness) during drying based on mid-infrared experimental set-up (intensity of 1100-1400 W/m2). Thin layer drying models were used to evaluate the drying kinetics of sweet potato slices. Two analytical models (Fick's diffusion model, and Dincer and Dost model) were used to study the mass transfer behaviour of sweet potato slices with and without shrinkage during mid-infrared drying. The heat transfer flux between the emitter and sweet potato slices was also investigated. Results demonstrated that an increase in infrared intensity from 1100 W/m2 to 1400 W/m2 resulted in increased in average radiation heat flux by 3.4 times and a 15% reduction in the overall drying time. The two-term exponential model was found to be the best in predicting the drying kinetics of sweet potato slices during mid-infrared drying. The specific heat consumption varied from 0.91-4.82 kWh/kg. The effective moisture diffusivity with and without shrinkage using the Fick's diffusion model varied from 2.632 × 10-9 to 1.596 × 10-8 m2/s, and 1.24 × 10-8 to 2.4 × 10-8 m2/s using Dincer and Dost model, respectively. The obtained values of mass transfer coefficient, Biot number and activation energy varied from 5.99 × 10-6 to 1.17 × 10-5 m/s, 0.53 to 2.62, and 12.83 kJ/mol to 34.64 kJ/mol, respectively. The values obtained for Biot number implied the existence of simultaneous internal and external resistances. The findings further explained that mid-infrared intensity of 1100 W/m2 did not significantly affect the quality of sweet potato during drying, demonstrating a great potential of applying low intensity mid-infrared radiation in the drying of agricultural crops.
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Delozier, Donavon M.; Working, Dennis C.; Siochi, Emilie J.; Connell, John W.
2006-01-01
As part of an ongoing effort to develop multifunctional advanced composites, blends of PETI330 and multiwalled carbon nanotubes (MWNTs) were prepared and characterized. Dry mixing techniques were employed and the maximum loading level of the MWNT chosen was based primarily on its effect on melt viscosity. The PETI330/ MWNT mixtures were prepared at concentrations ranging from 3 to 25 wt %. The resulting powders were characterized for homogeneity, thermal and rheological properties and extrudability as continuous fibers. Based on the characterization results, samples containing 10, 15 and 20 wt % MWNTs were chosen for more comprehensive evaluation. Samples were also prepared using in situ polymerization and solution mixing techniques and their properties were compared with the ball-mill prepared samples. The preparation and characterization of PETI330/ MWNT nanocomposites are discussed herein.
Represas-Carrera, Francisco Jesús
2015-01-01
To determine the percentage of patients with Pulmonary Obstructive Chronic Disease who doing of incorrect form the inhaler technique. Descriptive transversal study made in the Primary Care Center "Antón de Borja" of Rubi (in Barcelona) during the period between May and December 2013, where it was studied a representative sample of 200 patients. To assess the inhaler technique was performed a personal interview with the patient in which it was requested him to carry out a demonstration of how he was using his inhaler regularly evaluating his inhaler technique by means of the regulations established by Spanish Society of Pneumology and Thoracic Surgery. 43% of the patients carry out inhaler technique incorrectly. The percentage of inadequate use of inhalers of dry powder was 26%, of the pressurized cartridge 38% and the inhaler chamber 10%. 82% of patients ≥ 65 years who have prescribed a pressurized inhaler cartridge do not perform accompanied by an inhaler chamber. A high percentage of patients do not correctly carry out inhaler technique, pointing the rare use made of the inhaler chamber despite its proven efficacy and the high number of patients with pressurized inhaler cartridge. These results reflect the need for the implementation of an educational program in our Primary Care Center to teach patients to use inhaler devices. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Perdana, Jimmy; Bereschenko, Ludmila; Roghair, Mark; Fox, Martijn B; Boom, Remko M; Kleerebezem, Michiel; Schutyser, Maarten A I
2012-11-01
Survival of probiotic bacteria during drying is not trivial. Survival percentages are very specific for each probiotic strain and can be improved by careful selection of drying conditions and proper drying carrier formulation. An experimental approach is presented, comprising a single-droplet drying method and a subsequent novel screening methodology, to assess the microbial viability within single particles. The drying method involves the drying of a single droplet deposited on a flat, hydrophobic surface under well-defined drying conditions and carrier formulations. Semidried or dried particles were subjected to rehydration, fluorescence staining, and live/dead enumeration using fluorescence microscopy. The novel screening methodology provided accurate survival percentages in line with conventional plating enumeration and was evaluated in single-droplet drying experiments with Lactobacillus plantarum WCFS1 as a model probiotic strain. Parameters such as bulk air temperatures and the carrier matrices (glucose, trehalose, and maltodextrin DE 6) were varied. Following the experimental approach, the influence on the viability as a function of the drying history could be monitored. Finally, the applicability of the novel viability assessment was demonstrated for samples obtained from drying experiments at a larger scale.
Perdana, Jimmy; Bereschenko, Ludmila; Roghair, Mark; Fox, Martijn B.; Boom, Remko M.; Kleerebezem, Michiel
2012-01-01
Survival of probiotic bacteria during drying is not trivial. Survival percentages are very specific for each probiotic strain and can be improved by careful selection of drying conditions and proper drying carrier formulation. An experimental approach is presented, comprising a single-droplet drying method and a subsequent novel screening methodology, to assess the microbial viability within single particles. The drying method involves the drying of a single droplet deposited on a flat, hydrophobic surface under well-defined drying conditions and carrier formulations. Semidried or dried particles were subjected to rehydration, fluorescence staining, and live/dead enumeration using fluorescence microscopy. The novel screening methodology provided accurate survival percentages in line with conventional plating enumeration and was evaluated in single-droplet drying experiments with Lactobacillus plantarum WCFS1 as a model probiotic strain. Parameters such as bulk air temperatures and the carrier matrices (glucose, trehalose, and maltodextrin DE 6) were varied. Following the experimental approach, the influence on the viability as a function of the drying history could be monitored. Finally, the applicability of the novel viability assessment was demonstrated for samples obtained from drying experiments at a larger scale. PMID:22983965
Mechanisms and management of dry eye in cataract surgery patients.
Sutu, Christine; Fukuoka, Hideki; Afshari, Natalie A
2016-01-01
To provide a summary of the mechanisms that may cause dry eye after cataract surgery and discuss available and upcoming treatment modalities. Development or worsening of dry eye symptoms after cataract surgery is multifactorial with corneal nerve transection, inflammation, goblet cell loss, and meibomian gland dysfunction commonly cited as underlying disorders. With increasing awareness of the prevalence of dry eye disease, current surgical techniques are being analyzed for their contribution to the issue. Although many classic interventions, such as artificial tears and anti-inflammatory drops, remain first-line treatment options, they may not adequately address abnormalities of the tear film. The trend has been to create new drugs and technologies that target meibomian gland deficiencies and restore goblet cell numbers. Therapy for postoperative dry eye symptoms should be determined based on symptom severity and which underlying cause is most prominent at a given time. Patients with high-level risk factors for dry eye should be evaluated preoperatively to determine whether they have preexisting dry eye disease or if they are susceptible to developing disease after surgery.
Değirmencioğlu, Nurcan; Gürbüz, Ozan; Herken, Emine Nur; Yıldız, Aysun Yurdunuseven
2016-03-01
In this study, the changes in phenolic composition, total phenolic content, and antioxidant capacity of tarhanas supplemented with oat flour (OF) at the levels of 20-100% (w/w) after three drying treatments (sun-, oven-, and microwave drying) were investigated. A total of seventeen phenolic standards have been screened in tarhanas, and the most abundant flavonol and phenolic acid compounds were kaempferol (23.62mg/g) and 3-hydroxy-4-metoxy cinnamic acid (9.60mg/g). The total phenolic content amount gradually increased with the addition of OF to tarhana, but decidedly higher total phenolic content was found in samples oven dried at 55°C as compared with other methods. The microwave- and oven dried tarhana samples showed higher TEACDPPH and TEACABTS values than those dried with the other methods, respectively, in higher OF amounts. Consequently, oven- and microwave-drying can be recommended to retain the highest for phenolic compounds as well as maximal antioxidant capacity in OF supplemented tarhana samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stravs, Michael A; Mechelke, Jonas; Ferguson, P Lee; Singer, Heinz; Hollender, Juliane
2016-03-01
Online solid-phase extraction was combined with nano-liquid chromatography coupled to high-resolution mass spectrometry (HRMS) for the analysis of micropollutants in environmental samples from small volumes. The method was validated in surface water, Microcystis aeruginosa cell lysate, and spent Microcystis growth medium. For 41 analytes, quantification limits of 0.1-28 ng/L (surface water) and 0.1-32 ng/L (growth medium) were obtained from only 88 μL of sample. In cell lysate, quantification limits ranged from 0.1-143 ng/L or 0.33-476 ng/g dry weight from a sample of 88 μL, or 26 μg dry weight, respectively. The method matches the sensitivity of established online and offline solid-phase extraction-liquid chromatography-mass spectrometry methods but requires only a fraction of the sample used by those techniques, and is among the first applications of nano-LC-MS for environmental analysis. The method was applied to the determination of bioconcentration in Microcystis aeruginosa in a laboratory experiment, and the benefit of coupling to HRMS was demonstrated in a transformation product screening.
NASA Astrophysics Data System (ADS)
Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh
2016-11-01
Synthesis of orthorhombic (α) MoO3 nano-flakes by dry oxidation of RF sputtered Mo thin film is presented. The influence of Mo thickness variation, oxidation temperature and time on the crystallographic structure, surface morphology and roughness of MoO3 thin films was studied using SEM, AFM, XRD and Raman spectroscopy. A structural study shows that MoO3 is polycrystalline in nature with an α phase. It was noticed that oxidation temperature plays an important role in the formation of nano-flakes. The synthesis technique proposed is simple and suitable for large scale productions. The synthesis parameters were optimized for the fabrication of sensors. Chrome gold-based IDE (interdigitated electrodes) structures were patterned for the electrical detection of organic vapors. Sensors were exposed to wide range 5-100 ppm of organic vapors like ethanol, acetone, IPA (isopropanol alcohol) and water vapors. α-MoO3 nano-flakes have demonstrated selective sensing to acetone in the range of 10-100 ppm at 150 °C. The morphology of such nanostructures has potential in applications such as sensor devices due to their high surface area and thermal stability.
Armah, Frederick Ato; Paintsil, Arnold; Yawson, David Oscar; Adu, Michael Osei; Odoi, Justice O
2017-08-01
Chemometric techniques were applied to evaluate the spatial and temporal heterogeneities in groundwater quality data for approximately 740 goldmining and agriculture-intensive locations in Ghana. The strongest linear and monotonic relationships occurred between Mn and Fe. Sixty-nine per cent of total variance in the dataset was explained by four variance factors: physicochemical properties, bacteriological quality, natural geologic attributes and anthropogenic factors (artisanal goldmining). There was evidence of significant differences in means of all trace metals and physicochemical parameters (p < 0.001) between goldmining and non-goldmining locations. Arsenic and turbidity produced very high value F's demonstrating that 'physical properties and chalcophilic elements' was the function that most discriminated between non-goldmining and goldmining locations. Variations in Escherichia coli and total coliforms were observed between the dry and wet seasons. The overall predictive accuracy of the discriminant function showed that non-goldmining locations were classified with slightly better accuracy (89%) than goldmining areas (69.6%). There were significant differences between the underlying distributions of Cd, Mn and Pb in the wet and dry seasons. This study emphasizes the practicality of chemometrics in the assessment and elucidation of complex water quality datasets to promote effective management of groundwater resources for sustaining human health.
Xiao, Lin; Ng, Tzi Bun; Feng, Yi-Bin; Yao, Tong; Wong, Jack Ho; Yao, Ren-Min; Li, Lei; Mo, Fei-Zhi; Xiao, Yin; Shaw, Pang-Chui; Li, Ze-Min; Sze, Stephen Cho Wing; Zhang, Kalin Yanbo
2011-01-15
This study aimed to investigate the mechanism of Dendrobium candidum extract in promoting expression of aquaporin-5 for treatment of Sjögren's syndrome (SS). Sixteen patients with SS suffered from deficient secretion of saliva due to an autoimmune destruction of salivary glands leading to dry mouth symptoms (xerostomia). However, glandular dysfunction also occurred without destruction. Based upon its abnormal distribution in SS salivary glands, a potential role of the water channel protein aquaporin-5 (AQP-5) in the pathogenesis of SS was proposed. After oral administration of D. candidum extracted liquid (DCEL) for 1 week, saliva and salivary gland biopsies from labial glands of patients were collected and examined by employing immunoreactivity and immunohistochemistry techniques. Results showed that salivary secretion increased by about 65% in patients treated with DCEL as compared with the control group. Higher labeling indices (percentage of acinus area immunoreactive for AQP-5) in the biopsies were found in SS patients who had taken DCEL. This study demonstrated that D. candidum would regulate the expression of AQP-5 in labial glands of SS patients and thereby promoted secretion of saliva to improve dry mouth symptoms. 2010 Elsevier GmbH. All rights reserved.
Using complexation for the microencapsulation of nisin in biopolymer matrices by spray-drying.
Ben Amara, Chedia; Kim, Lanhee; Oulahal, Nadia; Degraeve, Pascal; Gharsallaoui, Adem
2017-12-01
The aim of this study is to investigate the potential of complexation to encapsulate nisin (5g/L concentration) using spray-drying technique and to evaluate how complexation with pectin or alginate (2g/L concentration) can preserve nisin structure and antimicrobial activity. Spray-drying of nisin-low methoxyl pectin or nisin-alginate electrostatic complexes has led to the microencapsulation of the peptide in different networks that were highly influenced by the polysaccharide type. Turbidity and particle size measurements indicated that while spray-drying promoted the aggregation of nisin-pectin complexes, it favored the dissociation of nisin-alginate aggregates to form individual complexes. Structural changes of nisin induced by complexation with pectin or alginate and spray-drying were studied by using UV-Vis absorption and fluorescence spectroscopy. The results showed that complexation with pectin or alginate preserved nisin structure as well as its antimicrobial activity during spray-drying. Copyright © 2017 Elsevier Ltd. All rights reserved.
Affordable Hybrid Heat Pump Clothes Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward E.; Butterfield, Andrew; Caldwell, Dustin D.
This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency overmore » heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.« less
Dry-film polymer waveguide for silicon photonics chip packaging.
Hsu, Hsiang-Han; Nakagawa, Shigeru
2014-09-22
Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.
Anesthetic technique for inferior alveolar nerve block: a new approach
PALTI, Dafna Geller; de ALMEIDA, Cristiane Machado; RODRIGUES, Antonio de Castro; ANDREO, Jesus Carlos; LIMA, José Eduardo Oliveira
2011-01-01
Background Effective pain control in Dentistry may be achieved by local anesthetic techniques. The success of the anesthetic technique in mandibular structures depends on the proximity of the needle tip to the mandibular foramen at the moment of anesthetic injection into the pterygomandibular region. Two techniques are available to reach the inferior alveolar nerve where it enters the mandibular canal, namely indirect and direct; these techniques differ in the number of movements required. Data demonstrate that the indirect technique is considered ineffective in 15% of cases and the direct technique in 1329% of cases. Objective Objective: The aim of this study was to describe an alternative technique for inferior alveolar nerve block using several anatomical points for reference, simplifying the procedure and enabling greater success and a more rapid learning curve. Materials and Methods A total of 193 mandibles (146 with permanent dentition and 47 with primary dentition) from dry skulls were used to establish a relationship between the teeth and the mandibular foramen. By using two wires, the first passing through the mesiobuccal groove and middle point of the mesial slope of the distolingual cusp of the primary second molar or permanent first molar (right side), and the second following the oclusal plane (left side), a line can be achieved whose projection coincides with the left mandibular foramen. Results The obtained data showed correlation in 82.88% of cases using the permanent first molar, and in 93.62% of cases using the primary second molar. Conclusion This method is potentially effective for inferior alveolar nerve block, especially in Pediatric Dentistry. PMID:21437463
Bagchi, Sourav Kumar; Rao, Pavuluri Srinivasa; Mallick, Nirupama
2015-03-01
Drying of wet algal biomass is a major bottleneck in viable commercial production of the microalgal biodiesel. In the present investigation, an oven drying protocol was standardized for drying of wet Scenedesmus biomass at 60, 80 and 100°C with initial sample thickness of 5.0, 7.5 and 10.0mm. The optimum drying temperature was found to be 80°C with a maximum lipid yield of 425.0±5.9mgg(-1) at 15h drying time for 5.0mm thick samples with 0.033kWh power consumption. Partial drying at 80°C up to 10% residual moisture content was efficient showing 93% lipid recovery with 8h drying and a power consumption of 0.017kWh. Scenedesmus biomass was also found to be rich in saturated and mono-unsaturated fatty acids. Thus, the drying protocol demonstrates its suitability to improve the downstream processing of biodiesel production by significantly lowering the power consumption and the drying time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam
2014-01-01
Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.
Salazar, Jaime; Müller, Rainer H; Möschwitzer, Jan P
2013-07-16
Standard particle size reduction techniques such as high pressure homogenization or wet bead milling are frequently used in the production of nanosuspensions. The need for micronized starting material and long process times are their evident disadvantages. Combinative particle size reduction technologies have been developed to overcome the drawbacks of the standard techniques. The H 42 combinative technology consists of a drug pre-treatment by means of spray-drying followed by standard high pressure homogenization. In the present paper, spray-drying process parameters influencing the diminution effectiveness, such as drug and surfactant concentration, were systematically analyzed. Subsequently, the untreated and pre-treated drug powders were homogenized for 20 cycles at 1500 bar. For untreated, micronized glibenclamide, the particle size analysis revealed a mean particle size of 772 nm and volume-based size distribution values of 2.686 μm (d50%) and 14.423 μm (d90%). The use of pre-treated material (10:1 glibenclamide/docusate sodium salt ratio spray-dried as ethanolic solution) resulted in a mean particle size of 236 nm and volume-based size distribution values of 0.131 μm (d50%) and 0.285 μm (d90%). These results were markedly improved compared to the standard process. The nanosuspensions were further transferred into tablet formulations. Wet granulation, freeze-drying and spray-drying were investigated as downstream methods to produce dry intermediates. Regarding the dissolution rate, the rank order of the downstream processes was as follows: Spray-drying>freeze-drying>wet granulation. The best drug release (90% within 10 min) was obtained for tablets produced with spray-dried nanosuspension containing 2% mannitol as matrix former. In comparison, the tablets processed with micronized glibenclamide showed a drug release of only 26% after 10 min. The H 42 combinative technology could be successfully applied in the production of small drug nanocrystals. A nanosuspension transfer to tablets that maintained the fast dissolution properties of the drug nanocrystals was successfully achieved. Copyright © 2013 Elsevier B.V. All rights reserved.
Temperature Control System for Mushroom Dryer
NASA Astrophysics Data System (ADS)
Wibowo, I. A.; Indah, Nur; Sebayang, D.; Adam, N. H.
2018-03-01
The main problem in mushroom cultivation is the handling after the harvest. Drying is one technique to preserve the mushrooms. Traditionally, mushrooms are dried by sunshine which depends on the weather. This affects the quality of the dried mushrooms. Therefore, this paper proposes a system to provide an artificial drying for mushrooms in order to maintain their quality. The objective of the system is to control the mushroom drying process to be faster compared to the natural drying at an accurate and right temperature. A model of the mushroom dryer has been designed, built, and tested. The system comprises a chamber, heater, blower, temperature sensor and electronic control circuit. A microcontroller is used as the controller which is programmed to implement a bang-bang control that regulates the temperature of the chamber. A desired temperature is inputted as a set point of the control system. Temperature of 45 °C is chosen as the operational drying temperature. Several tests have been carried out to examine the performance of the system including drying speed, the effects of ambient conditions, and the effects of mushroom size. The results show that the system can satisfy the objective.
Demonstration of ROV Based Underwater Electromagnetic Array Technology
2016-03-01
levels. In addition, South Florida experiences more hurricanes and tropical depressions than any other area in the United States. Storms are most...organisms and processes building reefs and islands of the Dry Tortugas: The Carnegie Dry Tortugas laboratory centennial celebrations (1905-2005
Demonstration of ROV-Based Underwater Electromagnetic Array Technology
2016-03-01
levels. In addition, South Florida experiences more hurricanes and tropical depressions than any other area in the United States. Storms are most...organisms and processes building reefs and islands of the Dry Tortugas: The Carnegie Dry Tortugas laboratory centennial celebrations (1905-2005
M. Badr-Eldin, Shaimaa; A. Ahmed, Tarek; R Ismail, Hatem
2013-01-01
Objective(s): The aim of this work was to investigate the effect of the natural and the chemically modified form of cyclodextrins namely; β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) respectively on the solubility and dissolution rate of aripiprazole; an antipsychotic medication showing poor aqueous solubility. Materials and Methods: Phase solubility of aripiprazole with the studied CDs and the complexation efficiency values (CE) which reflect the solubilizing power of the CDs towards the drug was performed. Solid binary systems of aripiprazole with CDs were prepared by kneading, microwave irradiation and freeze-drying techniques at 1:1 and 1:2 (drug to CD) molar ratios. Drug-CD physical mixtures were also prepared in the same molar ratios for comparison. The dissolution of aripiprazole-binary systems was carried out to select the most appropriate CD type, molar ratio and preparation technique. Results: Phase solubility study indicated formation of higher order complexes and the complexation efficiency values was higher for HP-β-CD compared to β-CD. Drug dissolution study revealed that aripiprazole dissolution was increased upon increasing the CD molar ratio and, the freeze-drying technique was superior to the other studied methods especially when combined with the HP-β-CD. The cyclodextrin type, preparation technique and molar ratio exhibited statistically significant effect on the drug dissolution at P≤ 0.05. Conclusion: The freeze-dried system prepared at molar ratio 1:2 (drug: CD) can be considered as efficient tool for enhancing aripiprazole dissolution with the possibility of improving its bioavailability. PMID:24570827
Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG
ten Have, R.; Reubsaet, K.; van Herpen, P.; Kersten, G.; Amorij, J.-P.
2016-01-01
Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG. PMID:26981867
Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG.
Ten Have, R; Reubsaet, K; van Herpen, P; Kersten, G; Amorij, J-P
2016-01-01
Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG.
NASA Astrophysics Data System (ADS)
Remmel, Tarmo Kaarel
Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or buckypapers. This novel technique could construct CNT films with reproducible properties, which also had the potential to be scale-up for industrial mass production. Based on the microcombing approach, dispersion issue of the long, straight, and highly aligned CNTs was investigated by adding PVA matrix into the microcombed CNT sheets. It was found although microcombing promoted the formation of agglomerated strands of the long, straight, and aligned CNTs, this was not an adverse problem in impairing the composite performance. When matrix was added, those agglomerated strands were wrapped together which maintained a more stable and better contact between nanotubes than those in the dry films. The as-produced CNT/PVA composite films exhibit an electrical conductivity of 1.84x105 S/m, Young's modulus of 119 GPa, tensile strength of 2.9 GPa, and toughness of 52.4 J/cm3, which represent improvements over those of uncombed samples by 300%, 100%, 120%, and 200%, respectively, demonstrating the effectiveness and reliability of microcombing in producing high-performance CNT/polymer composite films.
Drying step optimization to obtain large-size transparent magnesium-aluminate spinel samples
NASA Astrophysics Data System (ADS)
Petit, Johan; Lallemant, Lucile
2017-05-01
In the transparent ceramics processing, the green body elaboration step is probably the most critical one. Among the known techniques, wet shaping processes are particularly interesting because they enable the particles to find an optimum position on their own. Nevertheless, the presence of water molecules leads to drying issues. During the water removal, its concentration gradient induces cracks limiting the sample size: laboratory samples are generally less damaged because of their small size but upscaling the samples for industrial applications lead to an increasing cracking probability. Thanks to the drying step optimization, large size spinel samples were obtained.
2015-01-01
We have demonstrated a multistep 2-dimensional paper network immunoassay based on controlled rehydration of patterned, dried reagents. Previous work has shown that signal enhancement improves the limit of detection in 2-dimensional paper network assays, but until now, reagents have only been included as wet or dried in separate conjugate pads placed at the upstream end of the assay device. Wet reagents are not ideal for point-of-care because they must be refrigerated and typically limit automation and require more user steps. Conjugate pads allow drying but do not offer any control of the reagent distribution upon rehydration and can be a source of error when pads do not contact the assay membrane uniformly. Furthermore, each reagent is dried on a separate pad, increasing the fabrication complexity when implementing multistep assays that require several different reagents. Conversely, our novel method allows for consistent, controlled rehydration from patterned reagent storage depots directly within the paper membrane. In this assay demonstration, four separate reagents were patterned in different regions of the assay device: a gold-antibody conjugate used for antigen detection and three different signal enhancement components that must not be mixed until immediately before use. To show the viability of patterning and drying reagents directly onto a paper device for dry reagent storage and subsequent controlled release, we tested this device with the malaria antigen Plasmodium falciparum histidine-rich protein 2 (PfHRP2) as an example of target analyte. In this demonstration, the signal enhancement step increases the visible signal by roughly 3-fold and decreases the analytical limit of detection by 2.75-fold. PMID:24882058
Multiple-Angle Muon Radiography of a Dry Storage Cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, J. Matthew; Guardincerri, Elena; Morris, Christopher
A partially loaded dry storage cask was imaged using cosmic ray muons. Since the cask is large relative to the size of the muon tracking detectors, the instruments were placed at nine different positions around the cask to record data covering the entire fuel basket. We show that this technique can detect the removal of a single fuel assembly from the center of the cask.
NASA Astrophysics Data System (ADS)
Dikmen, Erkan; Ayaz, Mahir; Gül, Doğan; Şahin, Arzu Şencan
2017-07-01
The determination of drying behavior of herbal plants is a complex process. In this study, gene expression programming (GEP) model was used to determine drying behavior of herbal plants as fresh sweet basil, parsley and dill leaves. Time and drying temperatures are input parameters for the estimation of moisture ratio of herbal plants. The results of the GEP model are compared with experimental drying data. The statistical values as mean absolute percentage error, root-mean-squared error and R-square are used to calculate the difference between values predicted by the GEP model and the values actually observed from the experimental study. It was found that the results of the GEP model and experimental study are in moderately well agreement. The results have shown that the GEP model can be considered as an efficient modelling technique for the prediction of moisture ratio of herbal plants.
3D imaging of cells and tissues by focused ion beam/scanning electron microscopy (FIB/SEM).
Drobne, Damjana
2013-01-01
Integration of a scanning electron microscope (SEM) and focused ion beam (FIB) technology into a single FIB/SEM system permits use of the FIB as a nano-scalpel to reveal site-specific subsurface microstructures which can be examined in great detail by SEM. The FIB/SEM technology is widely used in the semiconductor industry and material sciences, and recently its use in the life sciences has been initiated. Samples for FIB/SEM investigation can be either embedded in a plastic matrix, the traditional means of preparation of transmission electron microscopy (TEM) specimens, or simply dried as in samples prepared for SEM imaging. Currently, FIB/SEM is used in the life sciences for (a) preparation by the lift-out technique of lamella for TEM analysis, (b) tomography of samples embedded in a matrix, and (c) in situ site-specific FIB milling and SEM imaging using a wide range of magnifications. Site-specific milling and imaging has attracted wide interest as a technique in structural research of single eukaryotic and prokaryotic cells, small animals, and different animal tissue, but it still remains to be explored more thoroughly. In the past, preparation of samples for site-specific milling and imaging by FIB/SEM has typically adopted the embedding techniques used for TEM samples, and which have been very well described in the literature. Sample preparation protocols for the use of dried samples in FIB/SEM have been less well investigated. The aim of this chapter is to encourage application of FIB/SEM on dried biological samples. A detailed description of conventional dried sample preparation and FIB/SEM investigation of dried biological samples is presented. The important steps are described and illustrated, and direct comparison between embedded and dried samples of same tissues is provided. The ability to discover links between gross morphology of the tissue or organ, surface characteristics of any selected region, and intracellular structural details on the nanometer scale is an appealing application of electron microscopy in the life sciences and merits further exploration.
New is the well-forgotten old: The use of dry cupping in musculoskeletal medicine.
Rozenfeld, Evgeni; Kalichman, Leonid
2016-01-01
Cupping is an ancient technique used in treating pain and various disorders. Different techniques have been developed over time, however, applying a cup to create suction over a painful area, is common to all. Dry or fire cupping, used on the intact skin, leaves bluish circular hematomas. Recently, interest in cupping has re-emerged and subsequently, several studies have begun to investigate the mechanisms of cupping therapy. Mechanically, cupping increases blood circulation, whereas physiologically it activates the immune system and stimulates the mechanosensitive fibers, thus leading to a reduction in pain. There is initial scientific evidence that dry cupping is able to reduce musculoskeletal pain. Since cupping is an inexpensive, noninvasive and low-risk (if performed by a trained practitioner) therapeutic modality, we believe that it should be included in the arsenal of musculoskeletal medicine. It is essential to perform additional studies clarifying the biological mechanism and clinical effects of cupping. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analytical and numerical solutions for mass diffusion in a composite cylindrical body
NASA Astrophysics Data System (ADS)
Kumar, A.
1980-12-01
The analytical and numerical solution techniques were investigated to study moisture diffusion problems in cylindrical bodies that are assumed to be composed of a finite number of layers of different materials. A generalized diffusion model for an n-layer cylindrical body with discontinuous moisture content at the interfaces was developed and the formal solutions were obtained. The model is to be used for describing mass transfer rates of any composite body, such as an ear of corn which could be assumed of consisting two different layers: the inner core represents the woody cob and the outer cylinder represents the kernel layer. Data describing the fully exposed drying characteristics of ear corn at high air velocity were obtained under different drying conditions. Ear corns were modeled as homogeneous bodies since composite model did not improve the fit substantially. A computer program using multidimensional optimization technique showed that diffusivity was an exponential function of moisture content and an arrhenius function of temperature of drying air.
The Human Resource Management in Dry-Bulk Shipping
NASA Astrophysics Data System (ADS)
Konstantopoulos, Nikolaos; Alexopoulos, Aristotelis B.
2007-12-01
This article investigates some positions and human resource management practices in dry-bulk shipping. The particularity of the human resource management field, as well as the crews' nationality change that has occurred over the last years, underpin the configuration of the hypothesis of this present research. The results demonstrate that the Greek dry-bulk shipping is going through a transition phase regarding the sector of the ships' human resource management by the captains.
Vector delivery technique affects gene transfer in the cornea in vivo.
Mohan, Rajiv R; Sharma, Ajay; Cebulko, Tyler C; Tandon, Ashish
2010-11-27
This study tested whether controlled drying of the cornea increases vector absorption in mouse and rabbit corneas in vivo and human cornea ex vivo, and studied the effects of corneal drying on gene transfer, structure and inflammatory reaction in the mouse cornea in vivo. Female C57 black mice and New Zealand White rabbits were used for in vivo studies. Donor human corneas were used for ex vivo experiments. A hair dryer was used for drying the corneas after removing corneal epithelium by gentle scraping. The corneas received no, once, twice, thrice, or five times warm air for 10 s with a 5 s interval after each 10 s hair dryer application. Thereafter, balanced salt solution (BSS) was topically applied immediately on the cornea for 2 min using a custom-cloning cylinder. The absorbed BSS was quantified using Hamilton microsyringes. The adeno-associated virus 8 (AAV8) vector (1.1×10(8) genomic copies/µl) expressing marker gene was used to study the effect of corneal drying on gene transfer. Animals were sacrificed on day 14 and gene expression was analyzed using commercial staining kit. Morphological changes and infiltration of inflammatory cells were examined with H & E staining and immunocytochemistry. Mice, rabbit or human corneas subjected to no or 10 s drying showed 6%-8% BSS absorption whereas 20, 30, or 50 s corneal drying showed significantly high 14%-19% (p<0.001), 21%-22% (p<0.001), and 25%-27% (p<0.001) BSS absorption, respectively. The AAV8 application on mouse cornea after 50 s drying showed significantly higher transgene delivery (p<0.05) in vivo with mild-to-moderate changes in corneal morphology. The 30 s of drying also showed significantly (p<0.05) high transgene delivery in mouse stroma in vivo without jeopardizing corneal morphology whereas 10 or 20 s drying showed moderate degree of gene transfer with no altered corneal morphology. Corneas that underwent 50 s drying showed high CD11b-positive cells (p<0.01) compared to control corneas whereas 20 or 30 s air-dried corneas showed insignificant CD11b-positive cells compared to control corneas. Controlled corneal drying with hair dryer increases vector absorption significantly. The dispensing of efficacious AAV serotype into cornea with optimized minimally invasive topical application technique could provide high and targeted expression of therapeutic genes in the stroma in vivo without causing significant side effects.
Dissolved organic carbon (DOC) in soil extracts investigated by FT-ICR-MS
NASA Astrophysics Data System (ADS)
Hofmann, D.; Steffen, D.; Jablonowski, N. D.; Burauel, P.
2012-04-01
Soil drying and rewetting usually increases the release of xenobiotics like pesticides present in agricultural soils. Besides the effect on the release of two aged 14C-labeled pesticide residues we focus on the characterisation of simultaneously remobilized dissolved organic carbon (DOC) to gain new insights into structure and stability aspects of soil organic carbon fractions. The test soil (gleyic cambisol; Corg 1.2%, pH 7.2) was obtained from the upper soil layer of two individual outdoor lysimeter studies containing either environmentally long-term aged 14C residues of the herbicide ethidimuron (0-10 cm depth; time of aging: 9 years) or methabenzthiazuron (0-30 cm depth; time of aging: 17 years). Soil samples (10 g dry soil equivalents) were (A=dry/wet) previously dried (45°C) or (B=wet/wet) directly mixed with pure water (1+2, w:w), shaken (150 rpm, 1 h), and centrifuged (2000 g). This extraction procedure was repeated several individual times, for both setups. The first three individual extractions, respectively were used for further investigations. Salt was removed from samples prior analysis because of a possible quench effect in the electrospray (ESI) source by solid phase extraction (SPE) with Chromabond C18 Hydra-cartridges (Macherey-Nagel) and methanol as backextraction solvent. The so preconcentrated and desalted samples were introduced by flow injection analysis (FIA) in a fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS), equipped with an ESI source and a 7 T supra-conducting magnet (LTQ-FT Ultra, ThermoFisher Scientific). This technique is the key technique for complex natural systems attributed by their outstanding mass resolution (used 400.000 at m/z 400 Da) and mass accuracy (≤ 1ppm) by simultaneously providing molecular level details of thousands of compounds and was successful applied for the investigations of natural organic matter (NOM) different sources like marine and surface water, soil, sediment, bog and crude oil. The characteristics of measured DOM mass spectra were demonstrated. Furthermore, an algorithm to compute all chemically relevant C,H,O-, C,H,(O,S),N- as well as C,H,(O),S molecular compositions, designed and exercised by ourself using Scilab routines, was used for entire structure elucidation. Various methods for data evaluation of such an amount of peaks are applied to describe the characteristics of DOC. The van Krevelen diagram is widely used to classify the DOC compounds regarding polarity and aromaticity, whereas the Kendrick diagram allow to identify ions with elemental formulas that differ only in CH2, and molecular formulas with similar Kendrick Mass Defect (KMD) can be sorted by nominal mass series. Both kind of diagrams were developed and results are discussed together with the findings of ETD, MBT, and metabolites after soil drying and rewetting. Overall, the results suggest that intermittent soil drying and rewetting alters the disaggregation of soil aggregates, resulting in a release of entrapped organic carbon as well as pesticide molecules.
Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...
Shikha Ojha, K; Granato, Daniel; Rajuria, Gaurav; Barba, Francisco J; Kerry, Joseph P; Tiwari, Brijesh K
2018-01-15
The effects of ultrasound (US) frequency, addition of Lactobacillus sakei culture and drying time on key nutritional (protein, amino acids, and organic acids) and physicochemical properties (texture and colour) of cultured and uncultured beef jerky were evaluated. Cultured and uncultured jerky samples were subjected to US frequencies of 25kHz, 33kHz and 45kHz for 30min prior to marination and drying. Principal component analysis demonstrated a significant effect of beef jerky processing conditions on physicochemical properties. Taurine content of jerky samples was found to increase with an increase in ultrasonic frequencies for cultured samples. No significant changes in colour values were observed for ultrasound pre-treated and control samples. Interactive effects of culture treatment, drying and ultrasonic frequency were observed. This study demonstrates that the nutritional profile of beef jerky can be improved through the incorporation of L. sakei. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechanisms of deterioration of nutrients. [freeze drying methods for space flight food
NASA Technical Reports Server (NTRS)
Karel, M.; Flink, J. M.
1974-01-01
Methods are reported by which freeze dried foods of improved quality will be produced. The applicability of theories of flavor retention has been demonstrated for a number of food polymers, both proteins and polysacchardies. Studies on the formation of structures during freeze drying have been continued for emulsified systems. Deterioration of organoleptic quality of freeze dried foods due to high temperature heating has been evaluated and improved procedures developed. The influence of water activity and high temperature on retention of model flavor materials and browning deterioration has been evaluated for model systems and food materials.
Yánez-Mendizabal, V; Viñas, I; Usall, J; Cañamás, T; Teixidó, N
2012-04-01
The role of endospore production by Bacillus subtilis CPA-8 on survival during spray-drying was investigated by comparison with a non-spore-forming biocontrol agent Pantoea agglomerans CPA-2. Endospore formation promoted heat resistance in CPA-8 depending on growth time (72 h cultures were more resistant than 24 h ones). The survival of CPA-8 and CPA-2 after spray-drying was determined after being grown in optimised media for 24 and 72 h. Spray-dried 72 h CPA-8 had the best survival (32%), while CPA-2 viability was less than 2%. CPA-8 survival directly related with its ability to produce endospores. Spray-dried CPA-8 reduced Monilinia fructicola conidia germination similarly to fresh cells, demonstrating that spray-drying did not adversely affect biocontrol efficacy. Endospore production thus improves CPA-8 resistance to spray-drying. These results can provide a reliable basis for optimising of the spray-drying formulation process for CPA-8 and other microorganisms.
Determination of end point of primary drying in freeze-drying process control.
Patel, Sajal M; Doen, Takayuki; Pikal, Michael J
2010-03-01
Freeze-drying is a relatively expensive process requiring long processing time, and hence one of the key objectives during freeze-drying process development is to minimize the primary drying time, which is the longest of the three steps in freeze-drying. However, increasing the shelf temperature into secondary drying before all of the ice is removed from the product will likely cause collapse or eutectic melt. Thus, from product quality as well as process economics standpoint, it is very critical to detect the end of primary drying. Experiments were conducted with 5% mannitol and 5% sucrose as model systems. The apparent end point of primary drying was determined by comparative pressure measurement (i.e., Pirani vs. MKS Baratron), dew point, Lyotrack (gas plasma spectroscopy), water concentration from tunable diode laser absorption spectroscopy, condenser pressure, pressure rise test (manometric temperature measurement or variations of this method), and product thermocouples. Vials were pulled out from the drying chamber using a sample thief during late primary and early secondary drying to determine percent residual moisture either gravimetrically or by Karl Fischer, and the cake structure was determined visually for melt-back, collapse, and retention of cake structure at the apparent end point of primary drying (i.e., onset, midpoint, and offset). By far, the Pirani is the best choice of the methods tested for evaluation of the end point of primary drying. Also, it is a batch technique, which is cheap, steam sterilizable, and easy to install without requiring any modification to the existing dryer.
Dutta, Shanta; Vinnerås, Björn
2016-09-01
This research explored the possibility of making fertilizer at a laboratory from source separated and untreated human urine added to ash and lime by drying at low temperatures. A mixture of ash and lime (1:1) was used as drying agent and human urine was applied as undiluted and fresh. Ash and lime were chosen as drying agents for maintaining a pH > 10 during the drying process, which should inhibit urea hydrolysis in urine, and thereby urea should be retained in the drying agent. The drying technique was developed and drying capacity of the system was quantified; three specific temperatures (20 °, 35 °, 60 °C) and two airflow rates (1 L/min and 5 L/min) were used in the experiment. A mass balance for nitrogen in the system was obtained. It was evident from the experiment that urea can be retained by maintaining a high pH (>10). Urine drying at 20 °C was not a feasible option, since rate of evaporation was very low. The highest retention of inflow nitrogen at 35 °C and 60 °C were 74% and 54%, respectively, in the produced fertilizer. Reduced evaporation rate, flooding of urine over drying agent, and blockage in airflow influenced nitrogen loss and concentration of nitrogen in the final product.
Advancements in anti-inflammatory therapy for dry eye syndrome.
McCabe, Erin; Narayanan, Srihari
2009-10-01
The goal of this literature review is to discuss recent discoveries in the pathophysiology of dry eye and the subsequent evolution of diagnostic and management techniques. The mechanisms of various anti-inflammatory treatments are reviewed, and the efficacy of common pharmacologic agents is assessed. Anti-inflammatory therapy is evaluated in terms of its primary indications, target population, and utility within a clinical setting. The Medline PubMed database and the World Wide Web were searched for current information regarding dry eye prevalence, pathogenesis, diagnosis, and management. After an analysis of the literature, major concepts were integrated to generate an updated portrayal of the status of dry eye syndrome. Inflammation appears to play a key role in perpetuating and sustaining dry eye. Discoveries of inflammatory markers found within the corneal and conjunctival epithelium of dry eye patients have triggered recent advancements in therapy. Pharmacologic anti-inflammatory therapy for dry eye includes 2 major categories: corticosteroids and immunomodulatory agents. Fatty acid and androgen supplementation and oral antibiotics have also shown promise in dry eye therapy because of their anti-inflammatory effects. Anti-inflammatory pharmacologic agents have shown great success in patients with moderate to severe dry eye when compared with alternative treatment modalities. A deeper understanding of the link between inflammation and dry eye validates the utilization of anti-inflammatory therapy in everyday optometric practice.
Hernando, I; Sanjuán, N; Pérez-Munuera, I; Mulet, A
2008-10-01
Quality of rehydrated products is a key aspect linked to rehydration conditions. To assess the effect of rehydration temperature on some quality parameters, experiments at 20 and 70 degrees C were performed with convective dried and freeze-dried Boletus edulis mushrooms. Rehydration characteristics (through Peleg's parameter, k(1), and equilibrium moisture, W(e)), texture (Kramer), and microstructure (Cryo-Scanning Electron Microscopy) were evaluated. Freeze-dried samples absorbed water more quickly and attained higher W(e) values than convective dried ones. Convective dehydrated samples rehydrated at 20 degrees C showed significantly lower textural values (11.9 +/- 3.3 N/g) than those rehydrated at 70 degrees C (15.7 +/- 1.2 N/g). For the freeze-dried Boletus edulis, the textural values also exhibited significant differences, being 8.2 +/- 1.3 and 10.5 +/- 2.3 N/g for 20 and 70 degrees C, respectively. Freeze-dried samples showed a porous structure that allows rehydration to take place mainly at the extracellular level. This explains the fact that, regardless of temperature, freeze-dried mushrooms absorbed water more quickly and reached higher W(e) values than convective dried ones. Whatever the dehydration technique used, rehydration at 70 degrees C produced a structural damage that hindered water absorption; consequently lower W(e) values and higher textural values were attained than when rehydrating at 20 degrees C.
Enhancement of bioavailability of ketoprofen using dry elixir as a novel dosage form.
Ahn, H J; Kim, K M; Kim, C K
1998-07-01
To enhance the dissolution rate and bioavailability of poorly water-soluble ketoprofen, a novel oral dosage form of ketoprofen, termed ketoprofen dry elixir, was developed by the spray-drying technique. Ketoprofen, dextrin, and sodium lauryl sulfate were dissolved in an ethanol-water mixture (20:25 w/w) and thereafter spray-dried to form the ketoprofen dry elixir. Comparative studies on the in vitro dissolution and in vivo adsorption of ketoprofen in the form of dry elixir and powder were carried out. Ketoprofen in the dry elixir completely dissolved within 5 min. On the other hand, only about 50.1% of ketoprofen powder alone dissolved during 60 min. The initial dissolution rate of ketoprofen in the dry elixir markedly increased in distilled water at 37 degrees C, becoming fourfold higher than that of ketoprofen powder alone. The maximal plasma concentration of ketoprofen (Cmax) and the area under the concentration-time curve from zero to 8 hr (AUC0-8 hr) after the oral administration of dry elixir increased about 3.2- (24.6 versus 7.6 micrograms/ml) and 2.2-(38.4 versus 17.3 micrograms hr/ml) fold compared with powder alone. It was obvious that ketoprofen dry elixir might be a useful solid dosage form to improve the dissolution rate and bioavailability of poorly water-soluble ketoprofen.
Richter Reis, Felipe; de Oliveira, Aline Caroline; Gadelha, Gabriella Giani Pieretti; de Abreu, Marcela Breves; Soares, Hillary Isabelle
2017-06-01
In an attempt to obtain shelf-stable litchi fruit with preserved nutritional quality and good sensory features, quarters of peeled and pitted fruits were vacuum dried at 50, 60 and 70 °C at a constant pressure of 8.0 kPa. The product was assessed for its vitamin C, total phenolics and texture (hardness). In addition, the product with the best texture was assessed for its shelf-life by means of accelerated testing. Results suggest that vacuum dried litchi retained almost 70% of the vitamin C and total phenolics when compared to frozen fruits (control). Vitamin C and phenolic compounds content significantly decreased with drying, while no difference was found between different drying temperatures. Hardness increased with drying temperature. The sample dried at 70 °C presented crispness, which is a desired quality feature in dried fruit products. This sample was subjected to shelf-life evaluation, whose result suggests a shelf-life of eight months at 23 °C. Total color change (CIE ΔE 00 ) was the expiry criterion. Vacuum drying was a suitable technique for producing shelf-stable litchi fruit with good texture while preserving its desirable original nutrients. Consumption of vacuum dried litchi may be beneficial to health due to its remarkable content of phenolic compounds and vitamin C.
Gharib, Riham; Greige-Gerges, Hélène; Fourmentin, Sophie; Charcosset, Catherine
2018-11-30
The effect of hydrogenation of phospholipids on the characteristics of freeze-dried liposomes was investigated using hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as membrane protectant. The ethanol-injection method was applied to prepare liposomes using hydrogenated (Phospholopion-90H and 80H) and non-hydrogenated phospholipids (Lipoid-S100) in combination with cholesterol. Various liposomal formulations were tested: conventional liposomes (CL) and HP-ß-CD-loaded liposomes (CDL). Liposome suspensions were concentrated by ultracentrifugation; the pellets were reconstituted in water or CD solution and the dispersions were characterized for their size, polydispersity index and zeta potential. Results demonstrated that HP-ß-CD protected only the hydrogenated batches (CL and CDL) during freeze-drying. Moreover, the presence of HP-ß-CD in the aqueous phase of CDL protected them during freeze-drying. Freeze-dried CL and CDL made of phospholipon-90H loading anethole were demonstrated to be physically stable upon reconstitution in HP-ß-CD solutions, and are able to retain anethole after 6 months of storage at 4 °C thereby making them valuable for food applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Taki, Moeko; Tagami, Tatsuaki; Ozeki, Tetsuya
2017-05-01
The development of taste-masking technologies for foods and drugs is essential because it would enable people to consume and receive healthy and therapeutic effect without distress. In the current study, in order to develop a novel method to prepare nanocomposite particles (microparticles containing bitter nanoparticles) in only one step, by using spray drying, a two-solution mixing nozzle-equipped spray dryer that we previously reported was used. The nanocomposite particles with or without poorly water-soluble polymers prepared using our spray-drying technique were characterized. (1) The organic solution containing quinine, a model of bitter compound and poorly water-soluble polymers and (2) sugar alcohol (mannitol) aqueous solution were separately flown in tubes and two solutions were spray dried through two-solution type spray nozzle to prepare polymer-blended quinine nanocomposite particles. Mean diameters of nanoparticles, taste-masking effect and dissolution rate of quinine were evaluated. The results of taste masking by taste sensor suggested that the polymer (Eudragit EPO, Eudragit S100 or Ethyl cellulose)-blended quinine nanocomposite particles exhibited marked masking of instrumental quinine bitterness compared with the quinine nanocomposite particles alone. Quinine nanocomposite formulations altered the quinine dissolution rate, indicating that they can control intestinal absorption of quinine. These results suggest that polymer-blended quinine composite particles prepared using our spray-drying technique are useful for masking bitter tastes in the field of food and pharmaceutical industry.
Application of Dynamic Speckle Techniques in Monitoring Biofilms Drying Process
NASA Astrophysics Data System (ADS)
Enes, Adilson M.; Júnior, Roberto A. Braga; Dal Fabbro, Inácio M.; da Silva, Washington A.; Pereira, Joelma
2008-04-01
Horticultural crops exhibit losses far greater than grains in Brazil which are associated to inappropriate maturation, mechanical bruising, infestation by microorganisms, wilting, etc. Appropriate packing prevents excessive mass loss associated to transpiration as well as to respiration, by controlling gas exchanging with outside environment. Common packing materials are identified as plastic films, waxes and biofilms. Although research developed with edible films and biopolymers has increased during last years to attend the food industry demands, avoiding environmental problems, little efforts have been reported on biofilm physical properties investigations. These properties, as drying time and biofilm interactions with environment are considered of basic importance. This research work aimed to contribute to development of a methodology to evaluate yucca (Maniot vulgaris) based biofilms drying time supported by a biospeckle technique. Biospeckle is a phenomenon generated by a laser beam scattered on a dynamic active surface, producing a time varying pattern which is proportional to the surface activity level. By capturing and processing the biospeckle image it is possible to attribute a numerical quantity to the surface bioactivity. Materials exhibiting high moisture content will also show high activity, which will support the drying time determination. Tests were set by placing biofilm samples on polyetilen plates and further submitted to laser exposition at four hours interval to capture the pattern images, generating the Intensities Dispersion Modulus. Results indicates that proposed methodology is applicable in determining biofilm drying time as well as vapor losses to environment.
Cadaveric validation of dry needle placement in the lateral pterygoid muscle.
Mesa-Jiménez, Juan A; Sánchez-Gutiérrez, Jesús; de-la-Hoz-Aizpurua, José L; Fernández-de-las-Peñas, César
2015-02-01
The aim of this anatomical study was to determine if a needle is able to reach the lateral pterygoid muscle during the application of dry needling technique. A dry needling approach using 2 needles of 50 to 60 mm in length, one inserted over the zygomatic process posterior at the obituary arch (for the superior head) and other inserted below the zygomatic process between the mandibular condyle and the coronoid process (for the inferior head), was proposed. A progressive dissection into 3 stages was conducted into 2 heads of fresh male cadavers. First, dry needling of the lateral pterygoid muscle was applied on the cadaver. Second, a block dissection containing the lateral pterygoid was harvested. Finally, the ramus of the mandible was sectioned by osteotomy to visualize the lateral pterygoid muscle with the needle placements. With the needles inserted into the cadaver, the block dissection revealed that the superior needle reached the superior (sphenoid) head of the lateral pterygoid muscle and the inferior needle reached the inferior (pterygoid) head of the muscle. At the final stage of the dissection, when the ramus of the mandible was sectioned by osteotomy, it was revealed that the superior needle entered into the belly of the superior head of the lateral pterygoid muscle. This anatomical study supports that dry needling technique for the lateral pterygoid muscle can be properly conducted with the proposed approach. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
X-ray computed tomography to study rice (Oryza sativa L.) panicle development
Jhala, Vibhuti M.; Thaker, Vrinda S.
2015-01-01
Computational tomography is an important technique for developing digital agricultural models that may help farmers and breeders for increasing crop quality and yield. In the present study an attempt has been made to understand rice seed development within the panicle at different developmental stages using this technique. During the first phase of cell division the Hounsfield Unit (HU) value remained low, increased in the dry matter accumulation phase, and finally reached a maximum at the maturation stage. HU value and seed dry weight showed a linear relationship in the varieties studied. This relationship was confirmed subsequently using seven other varieties. This is therefore an easy, simple, and non-invasive technique which may help breeders to select the best varieties. In addition, it may also help farmers to optimize post-anthesis agronomic practices as well as deciding the crop harvest time for higher grain yield. PMID:26265763
The detection of microscopic markers of hemorrhaging and wound age on dry bone: a pilot study.
Cattaneo, Cristina; Andreola, Salvatore; Marinelli, Eloisa; Poppa, Pasquale; Porta, Davide; Grandi, Marco
2010-03-01
An example of the barriers and conceptual differences between forensic anthropology and pathology can be seen in determining the vitality of a wound. Pathology can make use of skin color and microscopic techniques; anthropology (as concerns the study of dry bone) needs different criteria. The diagnosis of the vitality of a wound (whether it is produced antemortem or postmortem) as well as determination of the time elapsed between the production of the wound and death is a crucial issue in forensic pathology. In fresh skin, the red-purplish coloration of a cut or bruise will reveal its vitality, whereas the change in coloration, from a macroscopic perspective, will reveal the time of survival. In more difficult cases, microscopic analyses can be performed. Bone follows similar "laws" as concerns the evolution of the histologic picture, but even if the beginning of healing processes (periosteal bone production and callus formation) can be detected macroscopically and radiologically, these processes require a long time.The scope of this pilot study was therefore to collect bone fractures from cadavers with a known time of survival, have them undergo a simulated putrefaction procedure until they became "dry or macerated bone" and perform macroscopic and microscopic analysis to verify the potential of histology in identifying "vital" processes in putrefied soft-tissue-free bone.A total of 6 samples of fractured bone (cranium, rib, and tibia) were taken from cadavers with known time of survival between trauma and death. Time intervals ranged from a few seconds after the bone fracture had been inflicted, to several hours, days, and weeks. A negative control was included (postmortem fracture). The bone was decalcified and stained with hematoxylin and eosin, Perls' (for the demonstration of hemosiderin deposits), Periodic Acid Schiff, phosphotungstic acid-hematoxylin, and Weigert (for the demonstration of fibrin). Immunohistochemistry was performed using a monoclonal antibody antihuman Glycophorin A.Results show the presence of clots and red blood cell residues on the fractured margins, strongly indicative of vital reaction.This study, though certainly not conclusive, shows that it may be worth pursuing the study of bone fractures from a histopathological point of view even on "dry bone" to verify whether the fracture is vital or not, and, if so, if its time of production can be verified.
Schaepe, Kaija; Kokesch-Himmelreich, Julia; Rohnke, Marcus; Wagner, Alena-Svenja; Schaaf, Thimo; Wenisch, Sabine; Janek, Jürgen
2015-01-01
In ToF-SIMS analysis, the experimental outcome from cell experiments is to a great extent influenced by the sample preparation routine. In order to better judge this critical influence in the case of lipid analysis, a detailed comparison of different sample preparation routines is performed—aiming at an optimized preparation routine for systematic lipid imaging of cell cultures. For this purpose, human mesenchymal stem cells were analyzed: (a) as chemically fixed, (b) freeze-dried, and (c) frozen-hydrated. For chemical fixation, different fixatives, i.e., glutaraldehyde, paraformaldehyde, and a mixture of both, were tested with different postfixative handling procedures like storage in phosphate buffered saline, water or critical point drying. Furthermore, secondary lipid fixation via osmium tetroxide was taken into account and the effect of an ascending alcohol series with and without this secondary lipid fixation was evaluated. Concerning freeze-drying, three different postprocessing possibilities were examined. One can be considered as a pure cryofixation technique while the other two routes were based on chemical fixation. Cryofixation methods known from literature, i.e., freeze-fracturing and simple frozen-hydrated preparation, were also evaluated to complete the comparison of sample preparation techniques. Subsequent data evaluation of SIMS spectra in both, positive and negative, ion mode was performed via principal component analysis by use of peak sets representative for lipids. For freeze-fracturing, these experiments revealed poor reproducibility making this preparation route unsuitable for systematic investigations and statistic data evaluation. Freeze-drying after cryofixation showed improved reproducibility and well preserved lipid contents while the other freeze-drying procedures showed drawbacks in one of these criteria. In comparison, chemical fixation techniques via glutar- and/or paraformaldehyde proved most suitable in terms of reproducibility and preserved lipid contents, while alcohol and osmium treatment led to the extraction of lipids and are therefore not recommended. PMID:25791294
Schaepe, Kaija; Kokesch-Himmelreich, Julia; Rohnke, Marcus; Wagner, Alena-Svenja; Schaaf, Thimo; Wenisch, Sabine; Janek, Jürgen
2015-03-19
In ToF-SIMS analysis, the experimental outcome from cell experiments is to a great extent influenced by the sample preparation routine. In order to better judge this critical influence in the case of lipid analysis, a detailed comparison of different sample preparation routines is performed-aiming at an optimized preparation routine for systematic lipid imaging of cell cultures. For this purpose, human mesenchymal stem cells were analyzed: (a) as chemically fixed, (b) freeze-dried, and (c) frozen-hydrated. For chemical fixation, different fixatives, i.e., glutaraldehyde, paraformaldehyde, and a mixture of both, were tested with different postfixative handling procedures like storage in phosphate buffered saline, water or critical point drying. Furthermore, secondary lipid fixation via osmium tetroxide was taken into account and the effect of an ascending alcohol series with and without this secondary lipid fixation was evaluated. Concerning freeze-drying, three different postprocessing possibilities were examined. One can be considered as a pure cryofixation technique while the other two routes were based on chemical fixation. Cryofixation methods known from literature, i.e., freeze-fracturing and simple frozen-hydrated preparation, were also evaluated to complete the comparison of sample preparation techniques. Subsequent data evaluation of SIMS spectra in both, positive and negative, ion mode was performed via principal component analysis by use of peak sets representative for lipids. For freeze-fracturing, these experiments revealed poor reproducibility making this preparation route unsuitable for systematic investigations and statistic data evaluation. Freeze-drying after cryofixation showed improved reproducibility and well preserved lipid contents while the other freeze-drying procedures showed drawbacks in one of these criteria. In comparison, chemical fixation techniques via glutar- and/or paraformaldehyde proved most suitable in terms of reproducibility and preserved lipid contents, while alcohol and osmium treatment led to the extraction of lipids and are therefore not recommended.
You, Yu; Zhao, Min; Liu, Guangli; Tang, Xing
2007-07-01
The objective of this study was to investigate the influence of formulation excipients on the physical characteristics and aerosolization performance of insulin dry powders for inhalation. Insulin dry powders were prepared by a spray drying technique using excipients such as sugars (trehalose, lactose and dextran), mannitol and amino acids (L-leucine, glycine and threonine). High performance liquid chromatography and the mouse blood glucose method were used for determination of the insulin content. The powder properties were determined and compared by scanning electron microscopy, thermo-gravimetric analysis and size distribution analysis by a time-of-flight technique. The in-vitro aerosolization behaviour of the powders was assessed with an Aerolizer inhaler using a twin-stage impinger. Powder yield and moisture absorption were also determined. Results showed that there was no noticeable change in insulin content in any of the formulations by both assay methods. All powders were highly wrinkled, with median aerodynamic diameters of 2-4 microm, and consequently suitable for pulmonary administration. The tapped density was reduced dramatically when glycine was added. The powders containing mannitol, with or without L-leucine, were less sensitive to moisture. The highest respirable fraction of 67.3 +/- 1.3% was obtained with the formulation containing L-leucine, in contrast to formulations containing glycine and threonine, which had a respirable fraction of 11.2 +/- 3.9% and 23.5 +/- 2.5%, respectively. In addition, powders with good physical properties were achieved by the combination of insulin and trehalose. This study suggests that L-leucine could be used to enhance the aerosolization behaviour of the insulin dry powders for inhalation, and trehalose could potentially be used as an excipient in the formulations.
Optimized pulmonary gene transfection in mice by spray-freeze dried powder inhalation.
Mohri, Kohta; Okuda, Tomoyuki; Mori, Asami; Danjo, Kazumi; Okamoto, Hirokazu
2010-06-01
Spray-freeze drying (SFD) is an attractive technique to prepare highly porous dry powders for inhalation. However, there have been few reports of its application to dry powder inhalers (DPIs). Therefore, in this study, we prepared dry plasmid DNA (pDNA) powders with different molecular ratios of chitosan to pDNA (N/P ratios) by SFD. All the pDNA powders were spherical and highly porous, with particles approximately 20-40microm in geometric diameter. The morphology changed little with the alteration of the N/P ratio. On electrophoresis, a band of linear pDNA was detected in the preparation without chitosan, suggesting the destabilization of pDNA through SFD. However, the addition of chitosan protected pDNA from destabilization. Moreover, the pDNA powders were evaluated for pulmonary gene transfection efficiency using an in vivo dual imaging technique for gene DPIs developed previously. Maximum gene expression was observed at 9-12h following pulmonary administration of the powders into mice. The powder with the N/P ratio of 10 had the highest gene transfection efficiency. A higher affinity of chitosan for pDNA and a smaller (approximately 100nm) pDNA/chitosan complex (N/Pf10) were found at pH 6.5 (in lung) than at pH 7.4 (in physiological conditions), suggesting that the effective compaction of pDNA by chitosan at the N/P ratio of 10 at pH 6.5 contributes to the gene transfection efficiency in the lung. These results suggest inhalable dry pDNA powders with chitosan prepared by SFD to be a suitable formulation for pulmonary gene therapy. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Reaction behavior of SO2 in the sintering process with flue gas recirculation.
Yu, Zhi-Yuan; Fan, Xiao-Hui; Gan, Min; Chen, Xu-Ling; Chen, Qiang; Huang, Yun-Song
2016-07-01
The primary goal of this paper is to reveal the reaction behavior of SO2 in the sinter zone, combustion zone, drying-preheating zone, and over-wet zone during flue gas recirculation (FGR) technique. The results showed that SO2 retention in the sinter zone was associated with free-CaO in the form of CaSO3/CaSO4, and the SO2 adsorption reached a maximum under 900ºC. SO2 in the flue gas came almost from the combustion zone. One reaction behavior was the oxidation of sulfur in the sintering mix when the temperature was between 800 and 1000ºC; the other behavior was the decomposition of sulfite/sulfate when the temperature was over 1000ºC. However, the SO2 adsorption in the sintering bed mainly occurred in the drying-preheating zone, adsorbed by CaCO3, Ca(OH)2, and CaO. When the SO2 adsorption reaction in the drying-preheating zone reached equilibrium, the excess SO2 gas continued to migrate to the over-wet zone and was then absorbed by Ca(OH)2 and H2O. The emission rising point of SO2 moved forward in combustion zone, and the concentration of SO2 emissions significantly increased in the case of flue gas recirculation (FGR) technique. Aiming for the reuse of the sensible heat and a reduction in exhaust gas emission, the FGR technique is proposed in the iron ore sintering process. When using the FGR technique, SO2 emission in exhaust gas gets changed. In practice, the application of the FGR technique in a sinter plant should be cooperative with the flue gas desulfurization (FGD) technique. Thus, it is necessary to study the influence of the FGR technique on SO2 emissions because it will directly influence the demand and design of the FGD system.
Dontireddy, Rakesh; Crean, Abina M
2011-10-01
Poor water solubility of new chemical entities (NCEs) is one of the major challenges the pharmaceutical industry currently faces. The purpose of this study was to investigate the feasibility of freeze-drying as an alternative technique to spray-drying to produce solid dispersions of poorly water-soluble drugs. Also investigated was the use of aqueous solvent mixtures in place of pure solvent for the production of solid dispersions. Aqueous solvent systems would reduce the environmental impact of pure organic solvent systems. Spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions exhibited differences in dissolution behavior. Freeze-dried dispersions exhibited faster dissolution rates than the corresponding spray-dried dispersions. Spray-dried systems prepared using both solvent systems (20% v/v and 96% v/v ethanol) displayed similar dissolution performance despite displaying differences in glass transition temperatures (T(g)) and surface areas. All dispersions showed drug/polymer interactions indicated by positive deviations in T(g) from the predicted values calculated using the Couchman-Karasz equation. Fourier transform infrared (FTIR) spectroscopic results confirmed the conversion of crystalline drug to the amorphous in the dispersions. Stability studies were preformed at 40°C and 75% relative humidity to investigate the physical stability of prepared dispersions. Recrystallization was observed after a month and the resultant dispersions were tested for their dissolution performance to compare with the dissolution performance of the dispersions prior to the stability study. The dissolution rate of the freeze-dried dispersions remained higher than both spray-dried dispersions after storage.
Rodríguez, Óscar; Eim, Valeria; Rosselló, Carmen; Femenia, Antoni; Cárcel, Juan A; Simal, Susana
2018-03-01
Drying gives rise to products with a long shelf life by reducing the water activity to a level that is sufficiently low to inhibit the growth of microorganisms, enzymatic reactions and other deteriorative reactions. Despite the benefits of this operation, the quality of heat sensitive products is diminished when high temperatures are used. The use of low drying temperatures reduces the heat damage but, because of a longer drying time, oxidation reactions occur and a reduction of the quality is also observed. Thus, drying is a method that lends itself to being intensified. For this reason, alternative techniques are being studied. Power ultrasound is considered as an emerging and promising technology in the food industry. The potential of this technology relies on its ability to accelerate the mass transfer processes in solid-liquid and solid-gas systems. Intensification of the drying process with power ultrasound can be achieved by modifying the product behavior during drying, using pre-treatments such as soaking in a liquid medium assisted acoustically or, during the drying process itself, by applying power ultrasound in the gaseous medium. This review summarises the effects of the application of the power ultrasound on the quality of different dried products, such as fruits and vegetables, when the acoustic energy is intended to intensify the drying process, either when the application is performed before pretreatment or during the drying process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Carotenoids microencapsulation by spray drying method and supercritical micronization.
Janiszewska-Turak, Emilia
2017-09-01
Carotenoids are used as natural food colourants in the food industry. As unstable natural pigments they need protection. This protection can involve the microencapsulation process. There are numerous techniques that can be used for carotenoid protection, but two of them -spray drying and supercritical micronization - are currently the most commonly used. The objective of this paper is to describe these two techniques for carotenoid microencapsulation. In this review information from articles from the last five years was taken into consideration. Pigments described in the review are all carotenoids. Short summary of carotenoids sources was presented. For the spray drying technique, a review of carrier material and process conditions was made. Moreover, a short description of some of the most suitable processes involving supercritical fluids for carotenoids (astaxanthin, β-carotene, lutein and lycopene) encapsulation was given. These include the Supercritical Antisolvent process (SAS), Particles from Gas-Saturated Solutions (PGSS), Supercritical Fluid Extraction From an Emulsion (SFEE) and Solution Enhanced Dispersion by Supercritical fluids (SEDS). In most cases the studies, independently of the described method, were conducted on the laboratory scale. In some a scale-up was also tested. In the review a critical assessment of the used methods was made. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zheng, Yaxu; Qu, Min; Jin, Qiao; Tong, Changqing
2017-01-01
Crassostrea gigas polysaccharides (CGP) were obtained by different drying methods: freeze-drying (FD), spray-drying (SD) or rotary evaporation-drying (RED). The physicochemical properties of CGP were evaluated on the basis of polysaccharide content, protein content, color characteristics, FT-IR spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Antioxidant activities were researched three different free radicals, including DPPH free radicals, ABTS free radicals and reducing power. The results demonstrated that FDCGP, SDCGP and REDCGP have different physicochemical properties and antioxidant activities. Contrasted with FDCGP and REDCGP, SDCGP exhibited stronger antioxidant abilities. Therefore, considering the polysaccharides appearances and antioxidant activities, the spray drying method is a decent selection for the preparation of such polysaccharides, and it should be selected for application in the food industry. PMID:29176846
A Monte Carlo Simulation of Brownian Motion in the Freshman Laboratory
ERIC Educational Resources Information Center
Anger, C. D.; Prescott, J. R.
1970-01-01
Describes a dry- lab" experiment for the college freshman laboratory, in which the essential features of Browian motion are given principles, using the Monte Carlo technique. Calculations principles, using the Monte Carlo technique. Calculations are carried out by a computation sheme based on computer language. Bibliography. (LC)
Water hyacinths and alligator weeds for removal of lead and mercury from polluted waters
NASA Technical Reports Server (NTRS)
Wolverton, B. C.; Mcdonald, R. C.
1975-01-01
Removal of lead and mercury by water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb. was investigated. Water hyacinths demonstrated the ability to remove 0.176 mg of lead and 0.150 mg of mercury per gram of dry plant material from distilled water and river water in a 24-hour period. One acre of water hyacinths is potentially capable of removing 105.6 grams of lead and 90.0 grams of mercury per day. Alligator weeds removed 0.101 mg of lead per gram of dry plant material in a 24-hour period. This same plant also demonstrated the ability to remove a minimum of 0.153 mg of mercury per gram of dry plant material in a six hour period.
Method of producing optical quality glass having a selected refractive index
Poco, John F.; Hrubesh, Lawrence W.
2000-01-01
Optical quality glass having a selected refractive index is produced by a two stage drying process. A gel is produced using sol-gel chemistry techniques and first dried by controlled evaporation until the gel volume reaches a pre-selected value. This pre-selected volume determines the density and refractive index of the finally dried gel. The gel is refilled with solvent in a saturated vapor environment, and then dried again by supercritical extraction of the solvent to form a glass. The glass has a refractive index less than the full density of glass, and the range of achievable refractive indices depends on the composition of the glass. Glasses having different refractive indices chosen from an uninterrupted range of values can be produced from a single precursor solution.
Gieseler, Henning; Lee, Geoffrey
2008-01-01
A freeze-drying balance was used to determine momentary drying-rate, m(t), of a sucrose/BSA formulation contained in a vial with varying shelf packing density, Ø2. A comparison between two different laboratory-scale freeze-dryers was made. The effects of Ø2 on m(t) differed between the two units, attributed to drying chamber design and its effects on heat transfer. At high Ø2 the differences are annulled because of the shielding effects of surrounding vials. Parallel effects of Ø2 were also found on product temperature, Tb, measured in the balance vial. Tb was used to calculate vial heat transfer coefficient, Kv. Kv was strongly reduced with increasing Ø2, but reached a plateau value at high Ø2.
High-quality uniform dry transfer of graphene to polymers.
Lock, Evgeniya H; Baraket, Mira; Laskoski, Matthew; Mulvaney, Shawn P; Lee, Woo K; Sheehan, Paul E; Hines, Daniel R; Robinson, Jeremy T; Tosado, Jacob; Fuhrer, Michael S; Hernández, Sandra C; Walton, Scott G
2012-01-11
In this paper we demonstrate high-quality, uniform dry transfer of graphene grown by chemical vapor deposition on copper foil to polystyrene. The dry transfer exploits an azide linker molecule to establish a covalent bond to graphene and to generate greater graphene-polymer adhesion compared to that of the graphene-metal foil. Thus, this transfer approach provides a novel alternative route for graphene transfer, which allows for the metal foils to be reused. © 2011 American Chemical Society
Silk-Quality, Spinnability and Low Temperature Behavior
2015-12-02
dry silk radial and web frame threads. In this study we experimentally demonstrated...green dashed line), nylon (orange), Nephila major ampullate spider silk ( dry : black, wet: cyan). Asterisk...gives low tension, dry Aciniform spider silk. [ 33 ] For the major
Dry-heat resistance of selected psychrophiles. [Viking lander in spacecraft sterilization
NASA Technical Reports Server (NTRS)
Winans, L.; Pflug, I. J.; Foster, T. L.
1977-01-01
The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 C with an ambient relative humidity of 50% at 22 C. The spores evaluated had a relatively low resistance to dry heat. D (110 C) values ranged from 7.5 to 122 min, whereas the D (125 C) values ranged from less than 1.0 to 9.8 min.
Dry-heat resistance of selected psychrophiles.
Winans, L; Pflug, I J; Foster, T L
1977-01-01
The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 degrees C with an ambient relative humidity of 50% at 22 degrees C. The spores evaluated had a relatively low resistance to dry heat. D(110 degrees C) values ranged from 7.5 to 122 min, whereas the D(123 degrees C) values ranged from less than 1.0 to 9.8 min. PMID:410367
An Acoustic-Based Method to Detect and Quantify the Effect of Exhalation into a Dry Powder Inhaler.
Holmes, Martin S; Seheult, Jansen N; O'Connell, Peter; D'Arcy, Shona; Ehrhardt, Carsten; Healy, Anne Marie; Costello, Richard W; Reilly, Richard B
2015-08-01
Dry powder inhaler (DPI) users frequently exhale into their inhaler mouthpiece before the inhalation step. This error in technique compromises the integrity of the drug and results in poor bronchodilation. This study investigated the effect of four exhalation factors (exhalation flow rate, distance from mouth to inhaler, exhalation duration, and relative air humidity) on dry powder dose delivery. Given that acoustic energy can be related to the factors associated with exhalation sounds, we then aimed to develop a method of identifying and quantifying this critical inhaler technique error using acoustic based methods. An in vitro test rig was developed to simulate this critical error. The effect of the four factors on subsequent drug delivery were investigated using multivariate regression models. In a further study we then used an acoustic monitoring device to unobtrusively record the sounds 22 asthmatic patients made whilst using a Diskus(™) DPI. Acoustic energy was employed to automatically detect and analyze exhalation events in the audio files. All exhalation factors had a statistically significant effect on drug delivery (p<0.05); distance from the inhaler mouthpiece had the largest effect size. Humid air exhalations were found to reduce the fine particle fraction (FPF) compared to dry air. In a dataset of 110 audio files from 22 asthmatic patients, the acoustic method detected exhalations with an accuracy of 89.1%. We were able to classify exhalations occurring 5 cm or less in the direction of the inhaler mouthpiece or recording device with a sensitivity of 72.2% and specificity of 85.7%. Exhaling into a DPI has a significant detrimental effect. Acoustic based methods can be employed to objectively detect and analyze exhalations during inhaler use, thus providing a method of remotely monitoring inhaler technique and providing personalized inhaler technique feedback.
Shazly, Gamal; Badran, Mohamed; Zoheir, Khairy; Alomrani, Abdullah
2015-01-01
Meloxicam (MLX) is a poorly water-soluble non steroidal anti-inflammatory drug (NSAID). The main objective of the present work was to enhance the dissolution of MLX and thus its bioavailability by the aid of additives. The novelty of this work rises from the utilization of spray drying technology to produce micro particulates solid dispersion systems containing MLX in the presence of small amount of additives. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and Scan Electron Microscope (SEM) were used for studying the physico-chemical and morphological properties of MLX samples. The dissolution of MLX samples was investigated in two different pH media. The morphology of MLX solid dispersion micro-particles was spherical in shape according to SEM. FT-IR profiles indicated that a complex was formed between MLX and the additives. DSC patterns of the MLX micro-particles suggested a reduction in the crystallinity of MLX and probability of presence of an interaction between MLX and the additives. The rate of dissolution of the spray-dried MLX enhanced as compared with the unprocessed MLX in both acidic and neutral media. It was found that 100% of the added MLX released within 5 min in phosphate buffer dissolution medium (pH 7.4) compared to that of the unprocessed MLX (15% in 60 min). Such increase rate in the dissolution of the spray dried MLX could be attributed to the increase in wettability of MLX particles and the hydrophilic nature of the additives. The anti-inflammatory effect of the spray dried MLX was explored using formalin induced rat paw edema model. The spray-dried samples showed an increase in the anti-inflammatory activity of MLX as compared to the unprocessed MLX. This work reveals that the spray drying technique is suitable for preparation of micro-particles with improved dissolution and anti-inflammatory effect of MLX.
Use of Ultrasonic Technology for Soil Moisture Measurement
NASA Technical Reports Server (NTRS)
Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.
1997-01-01
In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.
Lin, Yong-Qing; Zhang, Yilu; Li, Connie; Li, Louis; Zhang, Kelley; Li, Shawn
2012-01-01
To evaluate the dried blood spot (DBS) technique in ELISA quantification of larger biomolecular drugs, an anti-CD20 monoclonal antibody drug was used as an example. A method for the quantification of the anti-CD20 drug in human DBS was developed and validated. The drug standard and quality control samples prepared in fresh human blood were spotted on DBS cards and then extracted. A luminescent ELISA was used for quantification of the drug from DBS samples. The assay range of the anti-CD20 drug standards in DBS was 100-2500ng/mL. The intra-assay precision (%CV) ranged from 0.4% to 10.1%, and the accuracy (%Recovery) ranged from 77.9% to 113.9%. The inter assay precision (%CV) ranged from 5.9% to 17.4%, and the accuracy ranged from 81.5% to 110.5%. The DBS samples diluted 500 and 50-fold yielded recovery of 88.7% and 90.7%, respectively. The preparation of DBS in higher and lower hematocrit (53% and 35%) conditions did not affect the recovery of the drug. Furthermore, the storage stability of the anti-CD20 drug on DBS cards was tested at various conditions. It was found that the anti-CD20 drug was stable for one week in DBS stored at room temperature. However, it was determined that the stability was compro]mised in DBS stored at high humidity, high temperature (55°C), and exposed to direct daylight for a week, as well as for samples stored at room temperature and high humidity conditions for a month. Stability did not change significantly in samples that underwent 3 freeze/thaw cycles. Our results demonstrated a successful use of DBS technique in ELISA quantification of an anti-CD20 monoclonal antibody drug in human blood. The stability data provides information regarding sample storage and shipping for future clinical studies. It is, therefore, concluded that the DBS technique is applicable in the quantification of other large biomolecule drugs or biomarkers. Copyright © 2011 Elsevier Inc. All rights reserved.
Built-up Al-Li structures for cryogenic tank and dry bay applications
NASA Technical Reports Server (NTRS)
Lisagor, W. Barry
1993-01-01
The objectives are: (1) to demonstrate the cost benefits of built-up cryotank and dry bay structures; (2) to study of benefits of using Al alloys; (3) to study of benefit of using Al-Li alloys; (4) to evaluate alternative low-cost stiffener and joining concepts.
Forage Production on Dry Rangelands of Binary Grass-Legume Mixtures at Four Plant Densities
USDA-ARS?s Scientific Manuscript database
Forage production on Western US rangelands can be increased with the right combination of plants. Our objective was to demonstrate the relative forage production advantage of including a legume on dry rangelands. A falcata and rhizomatous alfalfa (medicago sativa L.), alti wildrye [Leymus andustus...
The paper describes the Kress Indirect Dry Cooling (KIDC) process and gives results of an evaluation through baseline and demonstration emission testing. he KIDC process offers a technology that has the potential to reduce emissions from coke pushing and quenching at existing cok...
Drying performance of fermented cassava (fercaf) using a convective multiple flash dryer
NASA Astrophysics Data System (ADS)
Handojo, Lienda A.; Zefanya, Samuel; Christanto, Yohanes
2017-05-01
Fermented cassava (fercaf) is a tropical versatile carbohydrate source flour which is produced by modifying the characteristics of cassava. Drying process is one of the processes that could influence the quality of fercaf. In general, for food application, convective and vacuum drying were used, however recently another advanced method using combination of both convective and vacuum, i.e. convective multiple flash drying (CMFD), was proposed. This method is conducted by repeating cycles of convective and vacuum drying in intermittent manner. Cassava chips with thickness of 0.1-0.2 cm were fermented for 24 hours at room condition. Then, the drying process was conducted by using 3 techniques, i.e. convective, vacuum, and combined method (CMFD), with operation temperatures between 50 and 70°C for 10 hours or until fermented cassava reached a moisture content of less than 20%. The study shows that CMFD was the fastest drying method with only 5-6 hours period compared to 8-10 hours using vacuum and more than 10 hours using convective method. CMFD also produces harder fercaf chips than those of vacuum and convective methods. Moreover, this research also proves that the operating pressure and temperature influence the moisture content.
Icken, W; Looft, C; Schellander, K; Cavero, D; Blanco, A; Schmutz, M; Preisinger, R
2014-01-01
1. The responses to genetic selection on yolk proportion as a technique for increasing egg dry matter content, an important criterion for the egg-product industry, was investigated in a pedigree flock of White Leghorn hens. 2. Parents were preselected on high and low yolk proportion from a base population. The absolute estimated breeding value for yolk proportion of both groups differed by 3%. The realised selection difference in dry matter content of eggs between groups was more than 1% in the analysed offspring population. 3. Heritability estimates were moderate and dry matter had a lower heritability (h(2) = 0.39) than yolk proportion (h(2) = 0.44). 4. The genetic correlation between yolk proportion and dry matter content was highly positive (rg = 0.91). Genetic correlations with egg weight were negative and would have to be compensated for in a breeding programme (rg = -0.76 with yolk proportion and rg = -0.64 with dry matter content). The genetic correlation between the laying performance and yolk proportion was rg = 0.28 and close to zero (rg = -0.05) for dry matter content. 5. Easy recording and lower undesirable correlations make yolk proportion more suitable for commercial selection compared with egg dry matter content in layer breeding.
Toward intradermal vaccination: preparation of powder formulations by collapse freeze-drying.
Etzl, Elsa E; Winter, Gerhard; Engert, Julia
2014-03-01
Intradermal powder immunization is an emerging technique in vaccine delivery. The purpose of this study was to generate powder particles for intradermal injection by freeze-drying and subsequent cryo-milling. Two different freeze-drying protocols were compared, a moderate freeze-drying cycle and an aggressive freeze-drying cycle, which induced a controlled collapse of the sugar matrix. Ovalbumin served as model antigen. The influence of collapse drying and cryo-milling on particle morphology and protein stability was investigated. Cryo-milling generated irregularly shaped particles of size 20-70 µm. The recovery of soluble monomer of ovalbumin was not changed during freeze-drying and after cryo-milling, or after 12 months of storage at 2-8 °C. A slight increase in higher molecular weight aggregates was found in formulations containing the polymer dextran after 12 months of storage at 50 °C. Light obscuration measurements showed an increase in cumulative particle counts after cryo-milling that did not further increase during storage at 2-8 °C for 12 months. The applicability of the cryo-milling process to other therapeutic proteins was shown using recombinant human granulocyte-colony stimulating factor. Collapse freeze-drying and subsequent cryo-milling allows the generation of particles suitable for intradermal powder injection.
Sterilization of space hardware.
NASA Technical Reports Server (NTRS)
Pflug, I. J.
1971-01-01
Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.
Silicon Nanotips Antireflection Surface for Micro Sun Sensor
NASA Technical Reports Server (NTRS)
Bae, Sam Y.; Lee, Choonsup; Mobasser, Sohrab; Manohara, Harish
2006-01-01
We have developed a new technique to fabricate antireflection surface using silicon nano-tips for use on a micro sun sensor for Mars rovers. We have achieved randomly distributed nano-tips of radius spanning from 20 nm to 100 nm and aspect ratio of 200 using a two-step dry etching process. The 30(deg) specular reflectance at the target wavelength of 1 (mu)m is only about 0.09 %, nearly three orders of magnitude lower than that of bare silicon, and the hemispherical reflectance is 8%. By changing the density and aspect ratio of these nanotips, the change in reflectance is demonstrated. Using surfaces covered with these nano-tips, the critical problem of ghost images that are caused by multiple internal reflections in a micro sun sensor was solved.
Bi-layer Channel AZO/ZnO Thin Film Transistors Fabricated by Atomic Layer Deposition Technique
NASA Astrophysics Data System (ADS)
Li, Huijin; Han, Dedong; Liu, Liqiao; Dong, Junchen; Cui, Guodong; Zhang, Shengdong; Zhang, Xing; Wang, Yi
2017-03-01
This letter demonstrates bi-layer channel Al-doped ZnO/ZnO thin film transistors (AZO/ZnO TFTs) via atomic layer deposition process at a relatively low temperature. The effects of annealing in oxygen atmosphere at different temperatures have also been investigated. The ALD bi-layer channel AZO/ZnO TFTs annealed in dry O2 at 300 °C exhibit a low leakage current of 2.5 × 10-13A, I on/ I off ratio of 1.4 × 107, subthreshold swing (SS) of 0.23 V/decade, and high transmittance. The enhanced performance obtained from the bi-layer channel AZO/ZnO TFT devices is explained by the inserted AZO front channel layer playing the role of the mobility booster.
Extremely Robust and Patternable Electrodes for Copy-Paper-Based Electronics.
Ahn, Jaeho; Seo, Ji-Won; Lee, Tae-Ik; Kwon, Donguk; Park, Inkyu; Kim, Taek-Soo; Lee, Jung-Yong
2016-07-27
We propose a fabrication process for extremely robust and easily patternable silver nanowire (AgNW) electrodes on paper. Using an auxiliary donor layer and a simple laminating process, AgNWs can be easily transferred to copy paper as well as various other substrates using a dry process. Intercalating a polymeric binder between the AgNWs and the substrate through a simple printing technique enhances adhesion, not only guaranteeing high foldability of the electrodes, but also facilitating selective patterning of the AgNWs. Using the proposed process, extremely crease-tolerant electronics based on copy paper can be fabricated, such as a printed circuit board for a 7-segment display, portable heater, and capacitive touch sensor, demonstrating the applicability of the AgNWs-based electrodes to paper electronics.
Microwave Remote Sensing of Soil Moisture
NASA Technical Reports Server (NTRS)
Schmugge, T. J.
1985-01-01
Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelength, there is a strong dependence of the thermal emission and radar backscatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques is demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research indicates that it is possible to obtain five or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation.
Multispectral InGaAs/GaAs/AlGaAs laser arrays by MBE growth on patterned substrates
NASA Astrophysics Data System (ADS)
Kamath, K.; Bhattacharya, P.; Singh, J.
1997-05-01
Multispectral semiconductor laser arrays on single chip is demonstrated by molecular beam epitaxial (MBE) growth of {In0.2Ga0.8As}/{GaAs} quantum well lasers on GaAs (1 0 0) substrates patterned by dry etching. No regrowth is needed for simple edge emitting lasers. It was observed that the laser characteristics are not degraded by the patterned growth. The shift in the emission wavelength obtained by this method can be controlled by varying the width of the pre-patterned ridges as well as by selecting the regions with different number of vertical sidewalls on both sides. We have also shown that multispectral vertical cavity surface emitting laser (VCSEL) arrays can be made by this technique with a single regrowth.