Sample records for demonstrate great potential

  1. RELATIONSHIP BETWEEN PHYLOGENETIC DISTRIBUTION AND GENOMIC FEATURES IN NEUROSPORA CRASSA

    USDA-ARS?s Scientific Manuscript database

    In the post-genome era, insufficient functional annotation of predicted genes greatly restricts the potential of mining genome data. We demonstrate that an evolutionary approach, which is independent of functional annotation, has great potential as a tool for genome analysis. We chose the genome o...

  2. ENVIRONMENTAL APPLICATIONS OF RAMAN SPECTROSCOPY TO AQUEOUS SYSTEMS

    EPA Science Inventory

    The aim of this chapter is to demonstrate the great potential that the Raman spectroscopic technique offers for environmental applications, particularly to aqueous systems. We demonstrate the benefits of the technique relative to other information-rich spectroscopic techniques, i...

  3. Phytotoxicity induced in isolated zooxanthellae by herbicides extracted from Great Barrier Reef flood waters.

    PubMed

    Shaw, C M; Brodie, J; Mueller, J F

    2012-01-01

    To date there has been limited evidence anthropogenically sourced pollution from catchments reaching corals of the Great Barrier Reef (GBR). In this study, freshly isolated zooxanthellae were exposed to polar chemicals (chiefly herbicides) extracted from water samples collected in a flood plume in the GBR lagoon. Photosynthetic potential of the isolated zooxanthellae declined after exposure to concentrated extracts (10 times) from all but one of the sampling sites. Photosynthetic potential demonstrated a significant positive relationship with the concentration of diuron in the concentrated extracts and a significant inverse relationship with salinity measured at the sampling site. This study demonstrates that runoff from land based application of herbicides may reduce photosynthetic efficiency in corals of inshore reefs in the GBR. The ecological impacts of the chemicals in combination with other potential stressors on corals remain unclear. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Bridging the Science/Policy Gap through Boundary Chain Partnerships and Communities of Practice

    NASA Astrophysics Data System (ADS)

    Kalafatis, S.

    2014-12-01

    Generating the capacity to facilitate the informed usage of climate change science by decision makers on a large scale is fast becoming an area of great concern. While research demonstrates that sustained interactions between producers of such information and potential users can overcome barriers to information usage, it also demonstrates the high resource demand of these efforts. Our social science work at Great Lakes Integrated Sciences and Assessments (GLISA) sheds light on scaling up the usability of climate science through two research areas. The first focuses on partnerships with other boundary organizations that GLISA has leveraged - the "boundary chains" approach. These partnerships reduce the transaction costs involved with outreach and have enhanced the scope of GLISA's climate service efforts to encompass new users such as First Nations groups in Wisconsin and Michigan and underserved neighborhoods in St. Paul, Minnesota. The second research area looks at the development of information usability across the regional scale of the eight Great Lakes states. It has identified the critical role that communities of practice are playing in making information usable to large groups of users who work in similar contexts and have similar information needs. Both these research areas demonstrate the emerging potential of flexible knowledge networks to enhance society's ability to prepare for the impacts of climate change.

  5. Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes

    NASA Astrophysics Data System (ADS)

    Jeong, Chan Jin; Roy, Arup Kumer; Kim, Sung Han; Lee, Jung-Eun; Jeong, Ji Hoon; Insik; Park, Sung Young

    2014-11-01

    Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials.Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04805a

  6. Music-of-Light Stethoscope: A Demonstration of the Photoacoustic Effect

    ERIC Educational Resources Information Center

    Nikitichev, D. I.; Xia, W.; Hill, E.; Mosse, C. A.; Perkins, T.; Konyn, K.; Ourselin, S.; Desjardins, A. E.; Vercauteren, T.

    2016-01-01

    In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on…

  7. Two New Fluorogenic Aptasensors Based on Capped Mesoporous Silica Nanoparticles to Detect Ochratoxin A

    PubMed Central

    Ribes, Àngela; Santiago‐Felipe, Sara; Bernardos, Andrea; Marcos, M. Dolores; Pardo, Teresa; Sancenón, Félix; Aznar, Elena

    2017-01-01

    Abstract Aptamers have been used as recognition elements for several molecules due to their great affinity and selectivity. Additionally, mesoporous nanomaterials have demonstrated great potential in sensing applications. Based on these concepts, we report herein the use of two aptamer‐capped mesoporous silica materials for the selective detection of ochratoxin A (OTA). A specific aptamer for OTA was used to block the pores of rhodamine B‐loaded mesoporous silica nanoparticles. Two solids were prepared in which the aptamer capped the porous scaffolds by using a covalent or electrostatic approach. Whereas the prepared materials remained capped in water, dye delivery was selectively observed in the presence of OTA. The protocol showed excellent analytical performance in terms of sensitivity (limit of detection: 0.5–0.05 nm), reproducibility, and selectivity. Moreover, the aptasensors were tested for OTA detection in commercial foodstuff matrices, which demonstrated their potential applicability in real samples. PMID:29046860

  8. Simultaneous imaging of cellular morphology and multiple biomarkers using an acousto-optic tunable filter-based bright field microscope.

    PubMed

    Wachman, Elliot S; Geyer, Stanley J; Recht, Joel M; Ward, Jon; Zhang, Bill; Reed, Murray; Pannell, Chris

    2014-05-01

    An acousto-optic tunable filter (AOTF)-based multispectral imaging microscope system allows the combination of cellular morphology and multiple biomarker stainings on a single microscope slide. We describe advances in AOTF technology that have greatly improved spectral purity, field uniformity, and image quality. A multispectral imaging bright field microscope using these advances demonstrates pathology results that have great potential for clinical use.

  9. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking.

    PubMed

    Sakai, Shinji; Ohi, Hiromi; Hotta, Tomoki; Kamei, Hidenori; Taya, Masahito

    2018-02-01

    Bioprinting has a great potential to fabricate three-dimensional (3D) functional tissues and organs. In particular, the technique enables fabrication of 3D constructs containing stem cells while maintaining cell proliferation and differentiation abilities, which is believed to be promising in the fields of tissue engineering and regenerative medicine. We aimed to demonstrate the utility of the bioprinting technique to create hydrogel constructs consisting of hyaluronic acid (HA) and gelatin derivatives through irradiation by visible light to fabricate 3D constructs containing human adipose stem cells (hADSCs). The hydrogel was obtained from a solution of HA and gelatin derivatives possessing phenolic hydroxyl moieties in the presence of ruthenium(II) tris-bipyridyl dication and sodium ammonium persulfate. hADSCs enclosed in the bioprinted hydrogel construct elongated and proliferated in the hydrogel. In addition, their differentiation potential was confirmed by examining the expression of pluripotency marker genes and cell surface marker proteins, and differentiation to adipocytes in adipogenic differentiation medium. Our results demonstrate the great potential of the bioprinting method and the resultant hADSC-laden HA/gelatin constructs for applications in tissue engineering and regenerative medicine. © 2017 Wiley Periodicals, Inc.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaoyi; Zhou, You; Qi, Hao

    The electron-doping-induced phase transition of a prototypical perovskite SmNiO 3 induces a large and non-volatile optical refractive-index change and has great potential for active-photonic-device applications. Strong optical modulation from the visible to the mid-infrared is demonstrated using thin-film SmNiO 3. Finally, modulation of a narrow band of light is demonstrated in this paper using plasmonic metasurfaces integrated with SmNiO 3.

  11. POTENTIAL FOR GREAT EGRETS (ARDEA ALBA) TO TRANSMIT A VIRULENT STRAIN OF AEROMONAS HYDROPHILA AMONG CHANNEL CATFISH (ICTALURUS PUNCTATUS) CULTURE PONDS.

    PubMed

    Jubirt, Madison M; Hanson, Larry A; Hanson-Dorr, Katie C; Ford, Lorelei; Lemmons, Scott; Fioranelli, Paul; Cunningham, Fred L

    2015-07-01

    Aeromonas hydrophila is a gram-negative, rod-shaped, facultative, anaerobic bacterium that is ubiquitous in freshwater and slightly brackish aquatic environments and infects fish, humans, reptiles, and birds. Recent severe outbreaks of disease in commercial channel catfish (Ictalurus punctatus) aquaculture ponds have been associated with a highly virulent A. hydrophila strain (VAH), which is genetically distinct from less-virulent strains. The epidemiology of this disease has not been determined. Given that A. hydrophila infects birds, we hypothesized that fish-eating birds may serve as a reservoir for VAH and spread the pathogen by flying to uninfected ponds. Great Egrets (Ardea alba) were used in this transmission model because these wading birds frequently prey on farmed catfish. Great Egrets that were fed VAH-infected catfish shed VAH in feces demonstrating their potential to spread VAH.

  12. Behavior Analytic Consultation for Academic Referral Concerns

    ERIC Educational Resources Information Center

    Dufrene, Brad A.; Zoder-Martell, Kimberly A.; Dieringe, Shannon Titus; Labrot, Zachary

    2016-01-01

    Applied behavior analysis provides a technology of human behavior that demonstrates great potential for improving socially important outcomes for individuals. School-based consultation may provide a vehicle for delivering applied behavior analysis services in schools to address academic referral concerns. In this article, we propose that…

  13. Urea removal coupled with enhanced electricity generation in single-chambered microbial fuel cells.

    PubMed

    Wang, Luguang; Xie, Beizhen; Gao, Ningshengjie; Min, Booki; Liu, Hong

    2017-09-01

    High concentration of total ammonia nitrogen (TAN) in the form of urea is known to inhibit the performance of many biological wastewater treatment processes. Microbial fuel cells (MFCs) have great potential for TAN removal due to its unique oxic/anoxic environment. In this study, we demonstrated that increased urea (TAN) concentration up to 3940 mg/L did not inhibit power output of single-chambered MFCs, but enhanced power generation by 67% and improved coulombic efficiency by 78% compared to those obtained at 80 mg/L of TAN. Over 80% of nitrogen removal was achieved at TAN concentration of 2630 mg/L. The increased nitrogen removal coupled with significantly enhanced coulombic efficiency, which was observed for the first time, indicates the possibility of a new electricity generation mechanism in MFCs: direct oxidation of ammonia for power generation. This study also demonstrates the great potential of using one MFC reactor to achieve simultaneous electricity generation and urea removal from wastewater.

  14. Tuning magnetic spirals beyond room temperature with chemical disorder

    NASA Astrophysics Data System (ADS)

    Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa

    2016-12-01

    In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature.

  15. Tuning magnetic spirals beyond room temperature with chemical disorder

    PubMed Central

    Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa

    2016-01-01

    In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature. PMID:27982127

  16. Monitoring the environment and human sentiment on the Great Barrier Reef: Assessing the potential of collective sensing.

    PubMed

    Becken, Susanne; Stantic, Bela; Chen, Jinyan; Alaei, Ali Reza; Connolly, Rod M

    2017-12-01

    With the growth of smartphone usage the number of social media posts has significantly increased and represents potentially valuable information for management, including of natural resources and the environment. Already, evidence of using 'human sensor' in crises management suggests that collective knowledge could be used to complement traditional monitoring. This research uses Twitter data posted from the Great Barrier Reef region, Australia, to assess whether the extent and type of data could be used to Great Barrier Reef organisations as part of their monitoring program. The analysis reveals that large amounts of tweets, covering the geographic area of interest, are available and that the pool of information providers is greatly enhanced by the large number of tourists to this region. A keyword and sentiment analysis demonstrates the usefulness of the Twitter data, but also highlights that the actual number of Reef-related tweets is comparatively small and lacks specificity. Suggestions for further steps towards the development of an integrative data platform that incorporates social media are provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Teaching with Videogames: How Experience Impacts Classroom Integration

    ERIC Educational Resources Information Center

    Bell, Amanda; Gresalfi, Melissa

    2017-01-01

    Digital games have demonstrated great potential for supporting students' learning across disciplines. But integrating games into instruction is challenging and requires teachers to shift instructional practices. One factor that contributes to the successful use of games in a classroom is teachers' experience implementing the technologies. But how…

  18. Molecular screening for bacteria and protozoa in great cormorants (Phalacrocorax carbo sinensis) nesting in Slovakia, central Europe.

    PubMed

    Víchová, Bronislava; Reiterová, Katarína; Špilovská, Silvia; Blaňarová, Lucia; Hurníková, Zuzana; Turčeková, Ĺudmila

    2016-09-01

    This study brings the data about the occurrence of bacterial and protozoan pathogens in 32 great cormorants (Phalacrocorax carbo sinensis), representing approximately 20% of the population nesting in the surroundings of water basin Liptovská Mara (northern part of Central Slovakia). A survey revealed the presence of tick-borne bacteria Anaplasma phagocytophilum (6.25%) and parasitic protozoa Toxoplasma gondii (3.1%). These data indicate an infectious status of the great cormorant population nesting in Slovakia; they might suggest a degree of environmental contamination by infectious agents and demonstrate the role of migratory seabirds in the circulation and dispersal of pathogens with zoonotic potential.

  19. Validating Innovative Renewable Energy Technologies: ESTCP Demonstrations at Two DoD Facilities

    DTIC Science & Technology

    2011-11-01

    4. TITLE AND SUBTITLE Validating Innovative Renewable Energy Technologies: ESTCP Demonstrations at Two DoD Facilities 5a. CONTRACT NUMBER 5b...goals of 25% of energy consumed required to be from renewable energy by 2025, the DoD has set aggressive, yet achievable targets. With its array of land...holdings facilities, and environments, the potential for renewable energy generation on DoD lands is great. Reaching these goals will require

  20. On medicine and politics.

    PubMed Central

    Krakauer, E.

    1992-01-01

    This paper explores the relationship between medicine and politics, between medical management of the human body and governmental management of the body politic. It argues that the increasing complexity both of society and of governmental administration of society in the modern age has made it impossible completely to separate medicine from politics. It demonstrates that, along with great potential for social benefit, "medico-politics" brought with it great danger; much harm has been done purportedly to heal the body politic. The paper concludes by suggesting a way for physicians to minimize this danger. Images FIG. 1 PMID:1285451

  1. Economic Thought and Educational Policy Making: An Historical Perspective.

    ERIC Educational Resources Information Center

    Ricker, Eric W.

    1980-01-01

    Until the 1950s, Canadian economists demonstrated little concern about the relationship between education and society's economic performance. In the 1960s, the neoclassical school became preoccupied with education's investment potential and, with the Keynsians, formed a consensus on greatly increased expenditures. In the 1970s, this judgment was…

  2. Parents in Youth Sport: What Happens after the Game?

    ERIC Educational Resources Information Center

    Elliott, Samuel Kim; Drummond, Murray J. N.

    2017-01-01

    Characteristic issues surrounding parents in youth sport include examples of negative verbal and non-verbal behaviour demonstrated during competition. Numerous studies have done well to highlight while parents possess a great potential for positively influencing the sport experience, they can also exert a considerable negative influence by…

  3. Lavandula angustifolia Miller: English lavender.

    PubMed

    Denner, Sallie Stoltz

    2009-01-01

    Folk and traditional therapeutic use of the essential oil of English lavender for pain, infection, relaxation, and sedation dates back centuries. Current research focusing on the inherent synergism of Lavandula angustifolia Miller demonstrates great potential for future applications. Today's investigations may provide the key to eradicating degenerative inflammatory disease, infectious disease, and carcinogenesis.

  4. Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study.

    PubMed

    Xie, Ruiqi; Hu, Jinlian; Hoffmann, Oskar; Zhang, Yuanchi; Ng, Frankie; Qin, Tingwu; Guo, Xia

    2018-04-01

    Although tissue engineering has been attracted greatly for healing of critical-sized bone defects, great efforts for improvement are still being made in scaffold design. In particular, bone regeneration would be enhanced if a scaffold precisely matches the contour of bone defects, especially if it could be implanted into the human body conveniently and safely. In this study, polyurethane/hydroxyapatite-based shape memory polymer (SMP) foam was fabricated as a scaffold substrate to facilitate bone regeneration. The minimally invasive delivery and the self-fitting behavior of the SMP foam were systematically evaluated to demonstrate its feasibility in the treatment of bone defects in vivo. Results showed that the SMP foam could be conveniently implanted into bone defects with a compact shape. Subsequently, it self-matched the boundary of bone defects upon shape-recovery activation in vivo. Micro-computed tomography determined that bone ingrowth initiated at the periphery of the SMP foam with a constant decrease towards the inside. Successful vascularization and bone remodeling were also demonstrated by histological analysis. Thus, our results indicate that the SMP foam demonstrated great potential for bone regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics

    DOE PAGES

    Li, Zhaoyi; Zhou, You; Qi, Hao; ...

    2016-08-30

    The electron-doping-induced phase transition of a prototypical perovskite SmNiO 3 induces a large and non-volatile optical refractive-index change and has great potential for active-photonic-device applications. Strong optical modulation from the visible to the mid-infrared is demonstrated using thin-film SmNiO 3. Finally, modulation of a narrow band of light is demonstrated in this paper using plasmonic metasurfaces integrated with SmNiO 3.

  6. Cellulose Nanomaterials — A Path Towards Commercialization Workshop Report

    Treesearch

    Fred Hansen; Victoria Brun; Emily Keller; World Nieh; Theodore Wegner; Michael Meador; Lisa Friedersdorf

    2014-01-01

    Cellulose nanomaterials are primarily isolated from trees and other organisms; are naturally occurring polymeric materials that have demonstrated great promise for commercial applications across an array of industrial sectors; are renewable and environmentally sustainable; and have the potential to be produced in large volumes (i.e., millions of tons per year). The...

  7. Written Identification of Errors to Learn Professional Procedures in VET

    ERIC Educational Resources Information Center

    Boldrini, Elena; Cattaneo, Alberto

    2013-01-01

    Research has demonstrated that the use of worked-out examples to present errors has great potential for procedural knowledge acquirement. Nevertheless, the identification of errors alone does not directly enhance a deep learning process if it is not adequately scaffolded by written self-explanations. We hypothesised that in learning a professional…

  8. FIA forest inventory data for wildlife habitat assessment

    Treesearch

    David C. Chojnacky

    2000-01-01

    The Forest Inventory and Analysis (FIA) program of the USDA Forest Service maintains a network of permanent plots to monitor changing forest conditions. These plots were originally established to monitor the nation's timber supply; however, these data have great potential for evaluating other forest resources. To demonstrate a wildlife application, an assessment...

  9. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium.

    PubMed

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-11-01

    Bioremediation of polyaromatic hydrocarbons (PAH) contaminated soils in the presence of heavy metals have proved to be difficult and often challenging due to the ability of toxic metals to inhibit PAH degradation by bacteria. In this study, a mixed bacterial culture designated as consortium-5 was isolated from a former manufactured gas plant (MGP) site. The ability of this consortium to utilise HMW PAHs such as pyrene and BaP as a sole carbon source in the presence of toxic metal Cd was demonstrated. Furthermore, this consortium has proven to be effective in degradation of HMW PAHs even from the real long term contaminated MGP soil. Thus, the results of this study demonstrate the great potential of this consortium for field scale bioremediation of PAHs in long term mix contaminated soils such as MGP sites. To our knowledge this is the first study to isolate and characterize metal tolerant HMW PAH degrading bacterial consortium which shows great potential in bioremediation of mixed contaminated soils such as MGP.

  10. RAINBOW LAKE WILDERNESS AND FLYNN LAKE WILDERNESS STUDY AREA, WISCONSIN.

    USGS Publications Warehouse

    Cannon, W.F.; Dunn, Maynard L.

    1984-01-01

    The Rainbow Lake Wilderness and Flynn Lake Wilderness study area in Wisconsin are contiguous and were studied as a unit. The rainbow Lake Wilderness contains a demonstrated resource of about 210,000 tons of commercial-quality peat in an area of substantiated peat resource potential. The Flynn Lake Wilderness study area contains a demonstrated resource of about 300,000 tons of commercial-quality peat in an area of substantiated peat resource potential. These deposits, however, are of limited importance because larger deposits of similar material are abundant outside the areas, closer to present markets. Rocks in the subsurface contain a low-grade copper resource identified by mining company exploration drilling. Although this is an area of substantiated copper resource potential, it is a low-grade resource, thin and generally at great depth.

  11. Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer.

    PubMed

    Hong, F-L; Musha, M; Takamoto, M; Inaba, H; Yanagimachi, S; Takamizawa, A; Watabe, K; Ikegami, T; Imae, M; Fujii, Y; Amemiya, M; Nakagawa, K; Ueda, K; Katori, H

    2009-03-01

    We demonstrate a precision frequency measurement using a phase-stabilized 120 km optical fiber link over a physical distance of 50 km. The transition frequency of the (87)Sr optical lattice clock at the University of Tokyo is measured to be 429228004229874.1(2.4) Hz referenced to international atomic time. The results demonstrate the excellent functions of the intercity optical fiber link and the great potential of optical lattice clocks for use in the redefinition of the second.

  12. Water based fluidic radio frequency metamaterials

    NASA Astrophysics Data System (ADS)

    Cai, Xiaobing; Zhao, Shaolin; Hu, Mingjun; Xiao, Junfeng; Zhang, Naibo; Yang, Jun

    2017-11-01

    Electromagnetic metamaterials offer great flexibility for wave manipulation and enable exceptional functionality design, ranging from negative refraction, anomalous reflection, super-resolution imaging, transformation optics to cloaking, etc. However, demonstration of metamaterials with unprecedented functionalities is still challenging and costly due to the structural complexity or special material properties. Here, we demonstrate for the first time the versatile fluidic radio frequency metamaterials with negative refraction using a water-embedded and metal-coated 3D architecture. Effective medium analysis confirms that metallic frames create an evanescent environment while simultaneously water cylinders produce negative permeability under Mie resonance. The water-metal coupled 3D architectures and the accessory devices for measurement are fabricated by 3D printing with post electroless deposition. Our study also reveals the great potential of fluidic metamaterials and versatility of the 3D printing process in rapid prototyping of customized metamaterials.

  13. Automatic Generation of OpenMP Directives and Its Application to Computational Fluid Dynamics Codes

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Jin, Haoqiang; Frumkin, Michael; Yan, Jerry (Technical Monitor)

    2000-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate OpenMP-based parallel programs with nominal user assistance. We outline techniques used in the implementation of the tool and discuss the application of this tool on the NAS Parallel Benchmarks and several computational fluid dynamics codes. This work demonstrates the great potential of using the tool to quickly port parallel programs and also achieve good performance that exceeds some of the commercial tools.

  14. NASA JSC water monitor system: City of Houston field demonstration

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Jeffers, E. L.; Fricks, D. H.

    1979-01-01

    A water quality monitoring system with on-line and real time operation similar to the function in a spacecraft was investigated. A system with the capability to determine conformance to future high effluent quality standards and to increase the potential for reclamation and reuse of water was designed. Although all system capabilities were not verified in the initial field trial, fully automated operation over a sustained period with only routine manual adjustments was accomplished. Two major points were demonstrated: (1) the water monitor system has great potential in water monitoring and/or process control applications; and (2) the water monitor system represents a vast improvement over conventional (grab sample) water monitoring techniques.

  15. Understanding Responses to High School Exit Exams in Literacy: A Bourdieusian Analysis of Poetic Transcriptions

    ERIC Educational Resources Information Center

    Huddleston, Andrew P.

    2012-01-01

    In this article, the author demonstrates how a Bourdieusian analysis of poetic transcriptions offers great potential for helping teachers and students to understand how they are responding to state policy mandates in schools. Specifically, the author uses Bourdieu's concepts of field, capital, and habitus to analyze two poetic transcriptions,…

  16. The Influence of Emerging Nursing Strategy and Policy Leaders: An Interview With Dr Suzanne Miyamoto.

    PubMed

    Miyamoto, Suzanne; Adams, Jeffrey M

    2015-09-01

    This department highlights emerging nursing leaders who have demonstrated great potential in advancing innovation and patient care leadership in practice, policy, research, education, and theory. This interview profiles Suzanne Miyamoto, PhD, RN, Senior Director of Government Affairs and Health Policy at the American Association of Colleges of Nursing.

  17. Reviewing Research on Mobile Learning in K-12 Educational Settings: Implications for Students with Disabilities

    ERIC Educational Resources Information Center

    Xie, Jingrong; Basham, James D.; Marino, Matthew T.; Rice, Mary F.

    2018-01-01

    Mobile technologies have shown great potential in various educational settings. Moreover, there is an emerging research base demonstrating how students view and interact with mobile devices to learn. As more of these technologies enter inclusive educational settings, an understanding of the extant research base for mobile learning (M-learning) and…

  18. Small-scale heat detection using catalytic microengines irradiated by laser

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng

    2013-01-01

    We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f

  19. Automatic Generation of Directive-Based Parallel Programs for Shared Memory Parallel Systems

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Yan, Jerry; Frumkin, Michael

    2000-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. Due to its ease of programming and its good performance, the technique has become very popular. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate directive-based, OpenMP, parallel programs. We outline techniques used in the implementation of the tool and present test results on the NAS parallel benchmarks and ARC3D, a CFD application. This work demonstrates the great potential of using computer-aided tools to quickly port parallel programs and also achieve good performance.

  20. Individual and Population-Level Impacts of an Emerging Poxvirus Disease in a Wild Population of Great Tits

    PubMed Central

    Lachish, Shelly; Bonsall, Michael B.; Lawson, Becki; Cunningham, Andrew A.; Sheldon, Ben C.

    2012-01-01

    Emerging infectious diseases of wildlife can have severe effects on host populations and constitute a pressing problem for biodiversity conservation. Paridae pox is an unusually severe form of avipoxvirus infection that has recently been identified as an emerging infectious disease particularly affecting an abundant songbird, the great tit (Parus major), in Great Britain. In this study, we study the invasion and establishment of Paridae pox in a long-term monitored population of wild great tits to (i) quantify the impact of this novel pathogen on host fitness and (ii) determine the potential threat it poses to population persistence. We show that Paridae pox significantly reduces the reproductive output of great tits by reducing the ability of parents to fledge young successfully and rear those young to independence. Our results also suggested that pathogen transmission from diseased parents to their offspring was possible, and that disease entails severe mortality costs for affected chicks. Application of multistate mark-recapture modelling showed that Paridae pox causes significant reductions to host survival, with particularly large effects observed for juvenile survival. Using an age-structured population model, we demonstrate that Paridae pox has the potential to reduce population growth rate, primarily through negative impacts on host survival rates. However, at currently observed prevalence, significant disease-induced population decline seems unlikely, although pox prevalence may be underestimated if capture probability of diseased individuals is low. Despite this, because pox-affected model populations exhibited lower average growth rates, this emerging infectious disease has the potential to reduce the resilience of populations to other environmental factors that reduce population size. PMID:23185263

  1. Novel determinants of the neuronal Cl− concentration

    PubMed Central

    Delpire, Eric; Staley, Kevin J

    2014-01-01

    It is now a well-accepted view that cation-driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation–chloride cotransporters in regulating Cl−, we examine the participation of the following factors in the formation of the transmembrane Cl− gradient: (i) fixed ‘Donnan’ charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl− and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K+–Cl− cotransporter, a large osmotic gradient builds at concentrations below or above a set value of ‘Donnan’ charges, and show that at any value of these fixed charges, the reversal potential for Cl− equates that of K+. When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl− through the cotransporter. In this scenario, the reversal potential for Cl− does not closely follow that of K+. Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl− reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl−. In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl− gradient and Cl− conductance across neuronal membranes. PMID:25107928

  2. Are we producing PHAs? On the target selection for a proposed mitigation demo-mission within the NEO-Shield project

    NASA Astrophysics Data System (ADS)

    Eggl, S.; Hestroffer, D.; Thuillot, W.

    2013-09-01

    The Chelyabinsk event on February 15th, 2013 has shown once again that even small near earth objects (NEOs) can become a real safety concern. Eventhough we believe to have the capabilities to avert larger potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can confirm this claim. The target selection process for such deflection demonstrations is a demanding task, as physical, dynamical and engineering aspects have to be considered in great detail. One of the top priorities of such a demonstration mission is, of course, that a harmless asteroid should not be turned into a potentially hazardous object (PHO). Given the potentially large uncertainties in the asteroid's physical parameters as well as the additional uncertainties introduced during the deflection attempt, an in depth analysis of the impact probabilities over the next century becomes necessary, in order to exclude an augmentation of potential risks. Assuming worst case scenarios regard- ing the orbital, physical and mitigation induced uncertainties, we provide a keyhole and impact risk analysis of a list of potential targets for the mitigation demomission proposed in the framework of the NEO-Shield project.

  3. So long as they grow out of it: comics, the discourse of developmental normalcy, and disability.

    PubMed

    Squier, Susan M

    2008-06-01

    This essay draws on two emerging fields--the study of comics or graphic fiction, and disability studies--to demonstrate how graphic fictions articulate the embodied, ethical, and sociopolitical experiences of impairment and disability. Examining David B's Epileptic and Paul Karasik and Judy Karasik's The Ride Together, I argue that these graphic novels unsettle conventional notions of normalcy and disability. In so doing, they also challenge our assumed dimensions and possibilities of the comics genre and medium, demonstrating the great potential comics hold for disability studies.

  4. Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers.

    PubMed

    Cheng, Fei; Yang, Xiaodong; Gao, Jie

    2014-06-01

    An infrared refractive index sensor based on plasmonic perfect absorbers for glucose concentration sensing is experimentally demonstrated. Utilizing substantial absorption contrast between a perfect absorber (∼98% at normal incidence) and a non-perfect absorber upon the refractive index change, a maximum value of figure of merit (FOM*) about 55 and a bulk wavelength sensitivity about 590  nm/RIU are achieved. The demonstrated sensing platform provides great potential in improving the performance of plasmonic refractive index sensors and developing future surface enhanced infrared spectroscopy.

  5. 12P-conjugated PEG-modified gold nanorods combined with near-infrared laser for tumor targeting and photothermal therapy.

    PubMed

    Zhan, Tao; Li, Pengfei; Bi, Shan; Dong, Biao; Song, Hongwei; Ren, Hui; Wang, Liping

    2012-09-01

    Gold nanorods have been reported as potential tumor photothermal therapy in vivo and in vitro. However, development of the safe and efficient tumor-targeting gold nanorods for in vivo localized tumor therapy is still a challenge. In our present study, we synthesized the PEG modified gold nanorods and demonstrated its negligible cytotoxicity in vitro. These nanorods also have been demonstrated to efficiently ablate the different kinds of tumor cells in vitro after exposure to the near-infrared laser. When the PEG modified gold nanorods conjugated with the 12P (sequence: TACHQHVRMVRP), this conjugate showed great tumor-targeting and hyperthermia effects on the human liver cancer cell line HepG2 in vitro when coupled with the near-infrared laser treatment. To determine the potential hyperthermia effect of PEG modified gold nanorods or 12P conjugate on tumor cells in vivo, the mice hepatic cancer cells were used to induce the subcutaneous tumor-bearing model in ICR mice. The significant inhibition effects of near-infrared laser mediated PEG modified gold nanorods or 12P conjugate on the tumor growth were observed. These composite results suggest that the 12P-conjugated PEG modified gold nanorods exhibit great biocompatible, particular tumor-targeting and effective photothermal ablation of tumor cells, which warrant the potential therapeutic value of this conjugate for further application in in vivo localized tumor therapy.

  6. Bioconversion of α-chitin into N-acetyl-glucosamine using chitinases produced by marine-derived Aeromonas caviae isolates.

    PubMed

    Cardozo, Flávio Augusto; Gonzalez, Juan Miguel; Feitosa, Valker Araujo; Pessoa, Adalberto; Rivera, Irma Nelly Gutierrez

    2017-10-27

    N-Acetyl-D-glucosamine (GlcNAc) is a monosaccharide with great application potential in the food, cosmetic, pharmaceutical, and biomaterial areas. GlcNAc is currently produced by chemical hydrolysis of chitin, but the current processes are environmentally unfriendly, have low yield and high cost. This study demonstrates the potential to produce GlcNAc from α-chitin using chitinases of ten marine-derived Aeromonas isolates as a sustainable alternative to the current chemical process. The isolates were characterized as Aeromonas caviae by multilocus sequence analysis (MLSA) using six housekeeping genes (gltA, groL, gyrB, metG, ppsA, and recA), not presented the virulence genes verified (alt, act, ast, ahh1, aer, aerA, hlyA, ascV and ascFG), but showed hemolytic activity on blood agar. GlcNAc was produced at 37 °C, pH 5.0, 2% (w/v) colloidal chitin and crude chitinase extracts (0.5 U mL -1 ) by all the isolates with yields from 14 to 85% at 6 h, 17-89% at 12 h and 19-93% after 24 h. The highest yield of GlcNAc was observed by A. caviae CH129 (93%). This study demonstrates one of the most efficient chitin enzymatic hydrolysis procedures and A. caviae isolates with great potential for chitinases expression and GlcNAc production.

  7. Sterility method of pest control and its potential role in an integrated sea lamprey (Petromyzon marinus) control program

    USGS Publications Warehouse

    Hanson, Lee H.; Manion, Patrick J.

    1980-01-01

    The sterility method of pest control could be an effective tool in the sea lamprey (Petromyzon marinus) control program in the Great Lakes. Some of the requirements for its successful application have been met. A field study demonstrated that the release of male sea lampreys, sterilized by the injection of 100 mg/kg of P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide (bisazir), will reduce the number of viable larvae produced. The actual reduction in reproductive success that occurred was directly related to the ratio of sterile to normal males in the population. The technique can be used in many ways in an integrated control program and has considerable potential for the more effective control of the sea lamprey. Eradication is a distinct possibility.Key words: sea lamprey, Petromyzon marinus; pest control, fish control, sterile-male technique, sterilization, chemosterilants, bisazir, Great Lakes

  8. Molecular Imaging Probe Development using Microfluidics

    PubMed Central

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  9. Generation of three-dimensional optical cusp beams with ultrathin metasurfaces.

    PubMed

    Liu, Weiwei; Zhang, Yuchao; Gao, Jie; Yang, Xiaodong

    2018-06-22

    Cusp beams are one type of complex structured beams with unique multiple self-accelerating channels and needle-like field structures owning great potentials to advance applications such as particle micromanipulation and super-resolution imaging. The traditional method to generate optical catastrophe is based on cumbrous reflective diffraction optical elements, which makes optical system complicated and hinders the nanophotonics integration. Here we design geometric phase based ultrathin plasmonic metasurfaces made of nanoslit antennas to produce three-dimensional (3D) optical cusp beams with variable numbers of self-accelerating channels in a broadband wavelength range. The entire beam propagation profiles of the cusp beams generated from the metasurfaces are mapped theoretically and experimentally. The special self-accelerating behavior and caustics concentration property of the cups beams are also demonstrated. Our results provide great potentials for promoting metasurface-enabled compact photonic devices used in wide applications of light-matter interactions.

  10. Novel magnetic-fluorescent bifunctional Janus nanofiber membrane

    NASA Astrophysics Data System (ADS)

    Wang, Qiutong; Geng, Yuting; Li, Jianhao; Yin, Meizhen; Hu, Yiseng; Liu, Yangxiu; Pan, Kai

    2018-04-01

    Magnetic-fluorescent bifunctional materials have received global attention owing to their potential in many fields. Herein, we reported a novel magnetic-fluorescent bifunctional Janus nanofiber membrane (NFM) by adding the as-prepared magnetic CoFe2O4 nanoparticles into the polyacrylonitrile (PAN) side (m-PAN) and the fluorescent molecules of 1,8-naphthalene anhydride (1,8-NAD) into the polyvinylpyrrolidone (PVP) side (f-PVP) via electrospinning method. The obtained m-PAN/f-PVP Janus NFM exhibited excellent magnetic performance and high fluorescent properties due to the unique structure. Compared with the m-PAN/f-PVP composite NFM, the Janus NFM showed higher fluorescent performance because the fluorescent molecules were isolated from the magnetic nanoparticles. In addition, the Janus NFM not only maintain the good self-supporting state in water but also realize a directional movement attracted by a magnet. The unique structure of Janus nanofiber is of great importance and demonstrates great potential applications.

  11. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers.

    PubMed

    Gao, Yisheng; Wang, Shuai; Huang, Can; Yi, Ningbo; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2017-03-28

    Hybrid lead halide perovskites have made great strides in next-generation light-harvesting and light emitting devices. Recently, they have also shown great potentials in nonlinear optical materials. Two-photon absorption and two-photon light emission have been thoroughly studied in past two years. However, the three-photon processes are rarely explored, especially for the laser emissions. Here we synthesized high quality CH 3 NH 3 PbBr 3 perovskite microstructures with solution processed precipitation method and studied their optical properties. When the microstructures are pumped with intense 1240 nm lasers, we have observed clear optical limit effect and the band-to-band photoluminescence at 540 nm. By increasing the pumping density, whispering-gallery-mode based microlasers have been achieved from CH 3 NH 3 PbBr 3 perovskite microplate and microrod for the first time. This work demonstrates the potentials of hybrid lead halide perovskites in nonlinear photonic devices.

  12. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers

    NASA Astrophysics Data System (ADS)

    Gao, Yisheng; Wang, Shuai; Huang, Can; Yi, Ningbo; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2017-03-01

    Hybrid lead halide perovskites have made great strides in next-generation light-harvesting and light emitting devices. Recently, they have also shown great potentials in nonlinear optical materials. Two-photon absorption and two-photon light emission have been thoroughly studied in past two years. However, the three-photon processes are rarely explored, especially for the laser emissions. Here we synthesized high quality CH3NH3PbBr3 perovskite microstructures with solution processed precipitation method and studied their optical properties. When the microstructures are pumped with intense 1240 nm lasers, we have observed clear optical limit effect and the band-to-band photoluminescence at 540 nm. By increasing the pumping density, whispering-gallery-mode based microlasers have been achieved from CH3NH3PbBr3 perovskite microplate and microrod for the first time. This work demonstrates the potentials of hybrid lead halide perovskites in nonlinear photonic devices.

  13. Virulent strain of African swine fever virus eclipses its attenuated derivative after challenge.

    PubMed

    Titov, Ilya; Burmakina, Galina; Morgunov, Yuriy; Morgunov, Sergey; Koltsov, Andrey; Malogolovkin, Alexander; Kolbasov, Denis

    2017-10-01

    African swine fever (ASF) is one of the most devastating diseases affecting the swine industry worldwide. No effective vaccine is currently available for disease prevention and control. Although live attenuated vaccines (LAV) have demonstrated great potential for immunizing against homologous strains of African swine fever virus (ASFV), adverse reactions from LAV remain a concern. Here, by using a homologous ASFV Congo strain system, we show passage-attenuated Congo LAV to induce an efficient protective immune response against challenge with the virulent parental Congo strain. Notably, only the parental challenge Congo strain was identified in blood and organs of recovered pigs through B602L gene PCR, long-range PCR, nucleotide sequencing and virus isolation. Thus, despite the great protective potential of homologous attenuated ASFV strain, the challenge Congo strain can persist for weeks in recovered pigs and a recrudescence of virulent virus at late time post-challenge may occur.

  14. Applications of High-Q Microresonators in Cavity Optomechanics and Nonlinear Photonics

    NASA Astrophysics Data System (ADS)

    Jiang, Wei C.

    Optical microresonators confining light to small volumes are indispensable for a great variety of studies and applications. This thesis is devoted to a study of cavity optomechanical and nonlinear optical phenomena in high-Q microresonators with different materials and structures. Based on that, it proposes and demonstrates several novel schemes and device platforms that exhibit great potential for various applications ranging from frequency metrology and quantum photonics, to information processing and sensing. The thesis starts with a demonstration of a high-frequency (above 1 GHz) regenerative optomechanical oscillator based on a 2-mum-radius high-Q silicon microdisk resonator in the silicon-on-insulator platform with an ultra-low threshold pump power at room temperature and atmosphere. It then continues to explore the cavity optomechanics in single-crystal lithium niobate. A compact lithium niobate microdisk optomechanical resonator with high optical and mechanical qualities, large optomechanical coupling, and high mechanical frequency is achieved, enabling the demonstration of regenerative oscillation in the ambience. Meanwhile, I propose and investigate a novel approach for single molecule detection that utilizes the optical spring effect in a high-Q coherent optomechanical oscillator to dramatically enhance the sensing resolution by orders of magnitude compared with conventional resonator-based approaches. In particular, a high-Q silica microsphere is employed to experimentally demonstrate the detection of single Bovine Serum Albumin proteins with a molecular weight of 66 kDalton at a signal-to-noise ratio of 16.8. On the other hand, the thesis focuses on the theoretical and experimental investigation of the generation of high-purity bright photon pairs in a silicon microdisk based on the cavity enhanced four-wave mixing. The device is able to produce multiple photon pairs at different wavelengths in the telecom band with a high spectral brightness of 6.24 x 107 pairs/s/mW 2/GHz and photon-pair correlation with a coincidence-to-accidental ratio of 1386+/-278 while pumped with a continuous-wave laser. Finally, an intriguing approach is proposed for dispersion dynamic tuning and micro-engineering, by taking advantage of the optical forces in nano-optomechanical structures. The proposed approach exhibits great potential for broad applications in dispersion-sensitive processes, which not only offer a new root towards versatile tunable nonlinear photonics, but may also open up a great avenue towards a new regime of nonlinear dynamics coupling between nonlinear optical and optomechanical effects.

  15. Detection of Viral Hemorrhagic Septicemia Virus (VHSV) from Diporeia spp. (Pontoporeiidae, Amphipoda) in the Laurentian Great Lakes, USA

    PubMed Central

    2011-01-01

    The mode of viral hemorrhagic septicemia virus (VHSV) transmission in the Great Lakes basin is largely unknown. In order to assess the potential role of macroinvertebrates in VHSV transmission, Diporeia spp., a group of amphipods that are preyed upon by a number of susceptible Great Lakes fishes, were collected from seven locations in four of the Great Lakes and analyzed for the presence of VHSV. It was demonstrated that VHSV is present in some Diporeia spp. samples collected from lakes Ontario, Huron, and Michigan, but not from Lake Superior. Phylogenetic comparison of partial nucleoprotein (N) gene sequences (737 base pairs) of the five isolates to sequences of 13 other VHSV strains showed the clustering of Diporeia spp. isolates with the VHSV genotype IVb. This study reports the first incidence of a fish-pathogenic rhabdovirus being isolated from Diporeia, or any other crustacean and underscores the role macroinvertebrates may play in VHSV ecology. PMID:21210995

  16. Microplastic is an abundant and distinct microbial habitat in an urban river.

    PubMed

    McCormick, Amanda; Hoellein, Timothy J; Mason, Sherri A; Schluep, Joseph; Kelly, John J

    2014-10-21

    Recent research has documented microplastic particles (< 5 mm in diameter) in ocean habitats worldwide and in the Laurentian Great Lakes. Microplastic interacts with biota, including microorganisms, in these habitats, raising concerns about its ecological effects. Rivers may transport microplastic to marine habitats and the Great Lakes, but data on microplastic in rivers is limited. In a highly urbanized river in Chicago, Illinois, USA, we measured concentrations of microplastic that met or exceeded those measured in oceans and the Great Lakes, and we demonstrated that wastewater treatment plant effluent was a point source of microplastic. Results from high-throughput sequencing showed that bacterial assemblages colonizing microplastic within the river were less diverse and were significantly different in taxonomic composition compared to those from the water column and suspended organic matter. Several taxa that include plastic decomposing organisms and pathogens were more abundant on microplastic. These results demonstrate that microplastic in rivers are a distinct microbial habitat and may be a novel vector for the downstream transport of unique bacterial assemblages. In addition, this study suggests that urban rivers are an overlooked and potentially significant component of the global microplastic life cycle.

  17. Control of operating parameters of laser ceilometers with the application of fiber optic delay line imitation

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Klochkov, D. V.; Konyaev, M. A.; Mihaylenko, A. S.

    2017-11-01

    The article considers the problem of control and verification of the laser ceilometers basic performance parameters and describes an alternative method based on the use of multi-length fiber optic delay line, simulating atmospheric track. The results of the described experiment demonstrate the great potential of this method for inspection and verification procedures of laser ceilometers.

  18. Immunoconjugates: Magic Bullets for Cancer Therapy?

    NASA Technical Reports Server (NTRS)

    Passeri, Daniel R.; Spiegel, Jack

    1993-01-01

    Conjugating cytotoxic agents to antibodies allows for site-specific delivery of the agent to tumor cells and should provide increased efficacy and reduced non-specific toxicity. These site-specific cytotoxic agents are known as immunoconjugates or 'magic bullets' and have demonstrated great promise as therapeutic agents for cancer and other diseases. The historical developments and future potential of this new approach to cancer therapy are reviewed.

  19. Photocatalysis and self-cleaning from g-C3N4 coated cotton fabrics under sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Fan, Yunde; Zhou, Ji; Zhang, Jin; Lou, Yaqin; Huang, Zhenwu; Ye, Yong; Jia, Li; Tang, Bin

    2018-05-01

    Graphite-like carbon nitride (g-C3N4) nanosheets have been facilely assembled via electrostatic interaction onto cotton fabrics for achieving multi-functionalities. The surface morphologies, chemical composition and optical features of the g-C3N4-coated fabrics were characterized. The treated cotton fabrics exhibited remarkable photocatalytic degradation activity and superior self-cleaning performance. A complete degradation of Rhodamine B (RhB) and removal of stains were accomplished under simulated sunlight irradiation. More importantly, the modified fabrics can be reused in catalysis reactions with great durability. The practical treatment approach demonstrated from this work has great potential to be applied in textile industry for functional fabrics manufacture.

  20. Distinguishing human normal or cancerous esophagus tissue ex vivo using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liu, N. R.; Chen, G. N.; Wu, S. S.; Chen, R.

    2014-02-01

    Application of multiphoton microscopy (MPM) to clinical cancer research has greatly developed over the last few years. In this paper, we mainly focus on two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) for investigating esophageal cancer. We chiefly discuss the SHG/TPEF image and spectral characteristics of normal and cancerous esophagus submucosa with the combined multi-channel imaging mode and Lambda mode of a multiphoton microscope (LSM 510 META). Great differences can be detected, such as collagen content and morphology, glandular-shaped cancer cells, TPEF/SHG intensity ratio, and so on, which demonstrate that the multiphoton imaging technique has the potential ability for minimally-invasive early cancer diagnosis.

  1. Template-assisted fabrication of protein nanocapsules

    NASA Astrophysics Data System (ADS)

    Dougherty, Shelley A.; Liang, Jianyu; Kowalik, Timothy F.

    2009-02-01

    Bionanomaterials have recently begun to spark a great amount of interest and could potentially revolutionize biomedical research. Nanoparticles, nanocapsules, and nanotubular structures are becoming attractive options in drug and gene delivery. The size of the delivery vehicles greatly impacts cellular uptake and makes it highly desirable to precisely control the diameter and length of nanocarriers to make uniform nanoparticles at low cost. Carbon nanotubes have shown great potential within the field of drug and gene delivery. However, their insolubility and cytotoxicity could severely delay FDA approval. A desirable alternative would be to fabricate nanostructures from biomaterials such as proteins, peptides, or liposomes, which are already FDA approved. In this article we demonstrate the preparation of protein nanocapsules with both ends sealed using a template-assisted alternate immersion method combined with controlled cleaving. Glucose oxidase nanocapsules with controllable diameter, wall thickness, and length were fabricated and characterized with SEM and TEM. The biochemical activity of glucose oxidase in the form of nanocapsules after processing was confirmed using UV spectrometry. Our future work will explore proteins suitable for drug encapsulation and cellular uptake and will focus on optimizing the cleaving process to gain precise control over the length of the nanocapsules.

  2. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel

    NASA Astrophysics Data System (ADS)

    Bruggeman, Kiara F.; Rodriguez, Alexandra L.; Parish, Clare L.; Williams, Richard J.; Nisbet, David R.

    2016-09-01

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.

  3. Microneedles for enhanced transdermal and intraocular drug delivery.

    PubMed

    Moffatt, Kurtis; Wang, Yujing; Raj Singh, Thakur Raghu; Donnelly, Ryan F

    2017-10-01

    Microneedle mediated delivery based research has garnered great interest in recent years. In the past, the initial focus was delivery of macromolecules of biological origin, however the field has now broadened its scope to include transdermal delivery of conventional low molecular weight drug molecules. Great success has been demonstrated utilising this approach, particularly in the field of vaccine delivery. Current technological advances have permitted an enhancement in design formulation, allowing delivery of therapeutic doses of small molecule drugs and biomolecules, aided by larger patch sizes and scalable manufacture. In addition, it has been recently shown that microneedles are beneficial in localisation of drug delivery systems within targeted ocular tissues. Microneedles have the capacity to modify the means in which therapeutics and formulations are delivered to the eye. However, further research is still required due to potential drawbacks and challenges. Indeed, no true microneedle-based transdermal or ocular drug delivery system has yet been marketed. Some concerns have been raised regarding regulatory issues and manufacturing processes of such systems, and those in the field are now actively working to address them. Microneedle-based transdermal and ocular drug delivery systems have the potential to greatly impact not only patient benefits, but also industry, and through diligence, innovation and collaboration, their true potential will begin to be realised within the next 3-5 years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Changes in depth occupied by Great Lakes lake whitefish populations and the influence of survey design

    USGS Publications Warehouse

    Rennie, Michael D.; Weidel, Brian C.; Claramunt, Randall M.; Dunlob, Erin S.

    2015-01-01

    Understanding fish habitat use is important in determining conditions that ultimately affect fish energetics, growth and reproduction. Great Lakes lake whitefish (Coregonus clupeaformis) have demonstrated dramatic changes in growth and life history traits since the appearance of dreissenid mussels in the Great Lakes, but the role of habitat occupancy in driving these changes is poorly understood. To better understand temporal changes in lake whitefish depth of capture (Dw), we compiled a database of fishery-independent surveys representing multiple populations across all five Laurentian Great Lakes. By demonstrating the importance of survey design in estimating Dw, we describe a novel method for detecting survey-based bias in Dw and removing potentially biased data. Using unbiased Dw estimates, we show clear differences in the pattern and timing of changes in lake whitefish Dw between our reference sites (Lake Superior) and those that have experienced significant benthic food web changes (lakes Michigan, Huron, Erie and Ontario). Lake whitefish Dw in Lake Superior tended to gradually shift to shallower waters, but changed rapidly in other locations coincident with dreissenid establishment and declines in Diporeia densities. Almost all lake whitefish populations that were exposed to dreissenids demonstrated deeper Dw following benthic food web change, though a subset of these populations subsequently shifted to more shallow depths. In some cases in lakes Huron and Ontario, shifts towards more shallow Dw are occurring well after documented Diporeia collapse, suggesting the role of other drivers such as habitat availability or reliance on alternative prey sources.

  5. Astronomical and Hydrological Perspective of Mountain Impacts on the Asian Summer Monsoon.

    PubMed

    He, Bian; Wu, Guoxiong; Liu, Yimin; Bao, Qing

    2015-12-01

    The Asian summer monsoon has great socioeconomic impacts. Understanding how the huge Tibetan and Iranian Plateaus affect the Asian summer monsoon is of great scientific value and has far-reaching significance for sustainable global development. One hypothesis considers the plateaus to be a shield for monsoon development in India by blocking cold-dry northerly intrusion into the tropics. Based on astronomical radiation analysis and numerical modeling, here we show that in winter the plateaus cannot block such a northerly intrusion; while in summer the daily solar radiation at the top of the atmosphere and at the surface, and the surface potential temperature to the north of the Tibetan Plateau, are higher than their counterparts to its south, and such plateau shielding is not needed. By virtue of hydrological analysis, we show that the high energy near the surface required for continental monsoon development is maintained mainly by high water vapor content. Results based on potential vorticity-potential temperature diagnosis further demonstrate that it is the pumping of water vapor from sea to land due to the thermal effects of the plateaus that breeds the Asian continental monsoon.

  6. Rice Husk Ash-Derived Silica Nanofluids: Synthesis and Stability Study

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiliang; He, Wenxiu; Zheng, Jianzhong; Wang, Guangquan; Ji, Jianbing

    2016-11-01

    Nanofluids, colloidal suspensions consisting of base fluids and nanoparticles, are a new generation of engineering working fluids. Nanofluids have shown great potential in heat/mass transfer applications. However, their practical applications are limited by the high production cost and low stability. In this study, a low-cost agricultural waste, rice husk ash (RHA), was used as a silicon source to the synthesis of silica nanofluids. First, silica nanoparticles with an average size of 47 nm were synthesized. Next, by dispersing the silica nanoparticles in water with ultrasonic vibration, silica nanofluids were formed. The results indicated that the dispersibility and stability of nanofluids were highly dependent on sonication time and power, dispersant types and concentrations, as well as pH; an optimal experiment condition could result in the highest stability of silica nanofluid. After 7 days storage, the nanofluid showed no sedimentation, unchanged particle size, and zeta potential. The results of this study demonstrated that there is a great potential for the use of RHA as a low-cost renewable resource for the production of stable silica nanofluids.

  7. Nanochannel Electroporation as a Platform for Living Cell Interrogation in Acute Myeloid Leukemia.

    PubMed

    Zhao, Xi; Huang, Xiaomeng; Wang, Xinmei; Wu, Yun; Eisfeld, Ann-Kathrin; Schwind, Sebastian; Gallego-Perez, Daniel; Boukany, Pouyan E; Marcucci, Guido I; Lee, Ly James

    2015-12-01

    A living cell interrogation platform based on nanochannel electroporation is demonstrated with analysis of RNAs in single cells. This minimally invasive process is based on individual cells and allows both multi-target analysis and stimulus-response analysis by sequential deliveries. The unique platform possesses a great potential to the comprehensive and lysis-free nucleic acid analysis on rare or hard-to-transfect cells.

  8. Frequency modulation detection atomic force microscopy in the liquid environment

    NASA Astrophysics Data System (ADS)

    Jarvis, S. P.; Ishida, T.; Uchihashi, T.; Nakayama, Y.; Tokumoto, H.

    True atomic resolution imaging using frequency modulation detection is already well established in ultra-high vacuum. In this paper we demonstrate that it also has great potential in the liquid environment. Using a combination of magnetic activation and high-aspect-ratio carbon nanotube probes, we show that imaging can be readily combined with point spectroscopy, revealing both the tip-sample interaction and the structure of the intermediate liquid.

  9. Mitigation of Mains Disturbances.

    DTIC Science & Technology

    1987-11-01

    cause of disturbance, which is of great significance, is the high-altitude electromagnetic pulse ( HEMP ) that illuminates overhead power lines. In...demonstration may leave a permanent burn mark onI the plastic insulation at the outlet.) A lightning strike raises the potential of the earth ground at...bunch the input and output cords together and secure them with a tight plastic cable tie. UPS Temporary loss of mains power can be avoided by using an

  10. Novel culture system of mesenchymal stromal cells from human subcutaneous adipose tissue.

    PubMed

    Iwashima, Shigejiro; Ozaki, Takenori; Maruyama, Shoichi; Saka, Yousuke; Kobori, Masato; Omae, Kaoru; Yamaguchi, Hirotake; Niimi, Tomoaki; Toriyama, Kazuhiro; Kamei, Yuzuru; Torii, Shuhei; Murohara, Toyoaki; Yuzawa, Yukio; Kitagawa, Yasuo; Matsuo, Seiichi

    2009-05-01

    Accumulating evidence suggests that the delivery of human adipose tissue-derived stromal cells (hASCs) has great potential as regenerative therapy. This was performed to develop a method for expanding hASCs by reducing the amount of serum required. We demonstrate that hASCs were able to expand efficiently in media containing 2% serum and fibroblast growth factor-2. These cells, or low serum cultured hASCs (hLASCs), expressed cell surface markers similar to those on bone marrow-derived mesenchymal stem cells, and could be differentiated into cells of mesenchymal lineage. Of interest, hLASCs secreted higher levels of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) than hASCs cultured in 20% serum (hHASCs). Moreover, hLASC-conditioned media significantly increased endothelial cell (EC) proliferation and decreased EC apoptosis compared to that obtained from hHASCs or control media only. Antibodies against VEGF and HGF virtually negated these effects. When hASCs were administered into the ischemic hindlimbs of nude rats, hLASCs improved blood flow, increased capillary density, and raised the levels of VEGF and HGF in the muscles as compared with hHASCs. In conclusion, we demonstrate a novel low serum culture system for hASCs, which may have great potential in regenerative cell therapy for damaged organs in the clinical setting.

  11. Generation of Cardiomyocytes from Pluripotent Stem Cells.

    PubMed

    Nakahama, Hiroko; Di Pasquale, Elisa

    2016-01-01

    The advent of pluripotent stem cells (PSCs) enabled a multitude of studies for modeling the development of diseases and testing pharmaceutical therapeutic potential in vitro. These PSCs have been differentiated to multiple cell types to demonstrate its pluripotent potential, including cardiomyocytes (CMs). However, the efficiency and efficacy of differentiation vary greatly between different cell lines and methods. Here, we describe two different methods for acquiring CMs from human pluripotent lines. One method involves the generation of embryoid bodies, which emulates the natural developmental process, while the other method chemically activates the canonical Wnt signaling pathway to induce a monolayer of cardiac differentiation.

  12. Evaluating the effect of a year-long film focused environmental education program on Ugandan student knowledge of and attitudes toward great apes.

    PubMed

    Leeds, Austin; Lukas, Kristen E; Kendall, Corinne J; Slavin, Michelle A; Ross, Elizabeth A; Robbins, Martha M; van Weeghel, Dagmar; Bergl, Richard A

    2017-08-01

    Films, as part of a larger environmental education program, have the potential to influence the knowledge and attitudes of viewers. However, to date, no evaluations have been published reporting the effectiveness of films, when used within primate range countries as part of a conservation themed program. The Great Ape Education Project was a year-long environmental education program implemented in Uganda for primary school students living adjacent to Kibale National Park (KNP) and Bwindi Impenetrable National Park (BINP). Students viewed a trilogy of conservation films about great apes, produced specifically for this audience, and participated in complementary extra-curricular activities. The knowledge and attitudes of students participating in the program from KNP, but not BINP were assessed using questionnaires prior to (N = 1271) and following (N = 872) the completion of the program. Following the program, students demonstrated a significant increase in their knowledge of threats to great apes and an increase in their knowledge of ways that villagers and students can help conserve great apes. Additionally, student attitudes toward great apes improved following the program. For example, students showed an increase in agreement with liking great apes and viewing them as important to the environment. These data provide evidence that conservation films made specifically to address regional threats and using local actors and settings can positively influence knowledge of and attitudes toward great apes among students living in a primate range country. © 2017 Wiley Periodicals, Inc.

  13. Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian

    2015-06-15

    Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction betweenmore » 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.« less

  14. Fully Printed Ultraflexible Supercapacitor Supported by a Single-Textile Substrate.

    PubMed

    Zhang, Huihui; Qiao, Yan; Lu, Zhisong

    2016-11-30

    Textile-based supercapacitors have recently attracted much attention owing to their great potential as energy storage components in wearable electronics. However, fabrication of a high-performance, fully printed, and ultraflexible supercapacitor based on a single textile still remains a great challenge. Herein, a facile, low-cost, and textile-compatible method involving screen printing and transfer printing is developed to construct all-solid-state supercapacitors on a single silk fabric. The system exhibits a high specific capacitance of 19.23 mF cm -2 at a current density of 1 mA cm -2 and excellent cycling stability with capacitance retention of 84% after 2000 charging/discharging cycles. In addition, the device possesses superior mechanical stability with stable performance and structures after 100 times of bending and twisting. A butterfly-patterned supercapacitor was manufactured to demonstrate the compatibility of the printing approaches to textile aesthetics. This work may provide a facile and versatile approach for fabricating rationally designed ultraflexible textile-based power-storage elements for potential applications in smart textiles and stretchable/flexible electronics.

  15. Polymers mediate a one-pot route for functionalized quantum dot barcodes with a large encoding capacity.

    PubMed

    Zhang, Ding Sheng-Zi; Jiang, Yang; Wei, Dan; Wei, Xunbin; Xu, Hong; Gu, Hongchen

    2018-06-21

    With the increasing demands for high-throughput multiplexed bioassays, quantum dot (QD)-encoded microbeads as biocarriers for various bioreactions have attracted considerable attention. However, three key requirements for these biocarriers are still longstanding issues: a stable fluorescence intensity, a large encoding capacity and abundant surface functional groups. Here, a novel one-pot strategy is developed, generating functionalized QD-encoded microspheres with a strong fluorescence intensity and optical stability. With poly(styrene-co-maleic anhydride) (PSMA) molecules as mediators, the encapsulation of QDs and carboxylation of the bead surface are integrated together, greatly improving the preparation efficiency and guaranteeing their potential application in biodetection. Moreover, the mechanism for preparing QD-doped beads is further proposed, which helps to precisely manipulate the preparation process and accurately encode the beads. Through this approach, a single- and dual-color barcode library of QD-encoded microspheres has been successfully established, which demonstrates their great potential in suspension arrays.

  16. A novel approach to enhance biological nutrient removal using a culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (Rpf) in SBR process.

    PubMed

    Liu, Yindong; Su, Xiaomei; Lu, Lian; Ding, Linxian; Shen, Chaofeng

    2016-03-01

    A culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (SRpf) was used to enhance the biological nutrient removal of potentially functional bacteria. The obtained results suggest that SRpf accelerated the start-up process and significantly enhanced the biological nutrient removal in sequencing batch reactor (SBR). PO4 (3-)-P removal efficiency increased by over 12 % and total nitrogen removal efficiency increased by over 8 % in treatment reactor acclimated by SRpf compared with those without SRpf addition. The Illumina high-throughput sequencing analysis showed that SRpf played an essential role in shifts in the composition and diversity of bacterial community. The phyla of Proteobacteria and Actinobacteria, which were closely related to biological nutrient removal, were greatly abundant after SRpf addition. This study demonstrates that SRpf acclimation or addition might hold great potential as an efficient and cost-effective alternative for wastewater treatment plants (WWTPs) to meet more stringent operation conditions and legislations.

  17. Coumarin-Based Oxime Esters: Photobleachable and Versatile Unimolecular Initiators for Acrylate and Thiol-Based Click Photopolymerization under Visible Light-Emitting Diode Light Irradiation.

    PubMed

    Li, Zhiquan; Zou, Xiucheng; Zhu, Guigang; Liu, Xiaoya; Liu, Ren

    2018-05-09

    Developing efficient unimolecular visible light-emitting diode (LED) light photoinitiators (PIs) with photobleaching capability, which are essential for various biomedical applications and photopolymerization of thick materials, remains a great challenge. Herein, we demonstrate the synthesis of a series of novel PIs, containing coumarin moieties as chromophores and oxime ester groups as initiation functionalities and explore their structure-activity relationship. The investigated oxime esters can effectively induce acrylates and thiol-based click photopolymerization under 450 nm visible LED light irradiation. The initiator O-3 exhibited excellent photobleaching capability and enabled photopolymerization of thick materials (∼4.8 mm). The efficient unimolecular photobleachable initiators show great potential in dental materials and 3D printings.

  18. Effects of Moquiniastrum polymorphum ssp floccosum ethnolic extract on colorectal carcinogenesis induced by 1,2-dimethylhydrazine.

    PubMed

    Limeiras, S M A; Oliveira, B C; Pessatto, L R; Pesarini, J R; Kassuya, C A L; Monreal, A C D; Cantero, W B; Antoniolli-Silva, R; Antoniolli-Silva, A C M B; Stefanello, M E A; Oliveira, R J

    2017-03-16

    The objective of this study was to evaluate the effect of Moquiniastrum polymorphum ssp floccosum ethanolic extract (MPEE) on 1,2 dimethylhydrazine (DMH)-induced colorectal carcinogenesis in mice. Forty-two male Swiss mice (Mus musculus) were subdivided into six groups (N = 7/group): negative control, DMH, MPEE, pre-treatment, simultaneous, and post-treatment. Results showed that MPEE has antigenotoxic potential on the tested protocols pre- and silmultaneous treatment, and the percent damage reductions (%DRs) were 81.88 and 93.12%, respectively. The micronucleus test demonstrated that MPEE has great antimutagenic activity, with %DRs higher than 77.09 in the associated groups. The aberrant crypt focus assay demonstrated anticarcinogenic potential of MPEE as the associated groups showed %DRs that ranged from 62.13 to 95.14%. The study shows that MPEE is nontoxic and has chemopreventive and anticarcinogenic activity, thus it may prove to be a promising medicinal plant in view of its demonstrated properties.

  19. Plasmonic metasurface for simultaneous detection of polarization and spectrum.

    PubMed

    Pelzman, Charles; Cho, Sang-Yeon

    2016-03-15

    We present a new plasmonic metasurface for simultaneous detection of polarization and spectrum of incident light. The demonstrated metasurface is a rationally designed cluster of artificial atoms that are engineered to exhibit polarization and wavelength-selective optical transmission. The fundamental building block of this structure is periodically coupled subwavelength aperture arrays with different orientations and lattice constants. When integrated with pixelated photodetectors, the metasurface can be used to measure the polarization and spectral information of an optical input. In this Letter, simultaneous detection of the polarization and spectrum of polarized light was experimentally demonstrated by analyzing the transmitted intensity distribution through the metasurface. The demonstrated metasurface offers great potential for many applications, such as polarimetric multispectral imaging and polarization-division multiplexing in optical communications.

  20. Transgenics in crops

    NASA Technical Reports Server (NTRS)

    Li, Y.; Wu, Y. H.; McAvoy, R.; Duan, H.

    2001-01-01

    With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.

  1. Development of nonhuman adenoviruses as vaccine vectors

    PubMed Central

    Bangari, Dinesh S.; Mittal, Suresh K.

    2006-01-01

    Human adenoviral (HAd) vectors have demonstrated great potential as vaccine vectors. Preclinical and clinical studies have demonstrated the feasibility of vector design, robust antigen expression and protective immunity using this system. However, clinical use of adenoviral vectors for vaccine purposes is anticipated to be limited by vector immunity that is either preexisting or develops rapidly following the first inoculation with adenoviral vectors. Vector immunity inactivates the vector particles and rapidly removes the transduced cells, thereby limiting the duration of transgene expression. Due to strong vector immunity, subsequent use of the same vector is usually less efficient. In order to circumvent this limitation, nonhuman adenoviral vectors have been proposed as alternative vectors. In addition to eluding HAd immunity, these vectors possess most of the attractive features of HAd vectors. Several replication-competent or replication-defective nonhuman adenoviral vectors have been developed and investigated for their potential as vaccine delivery vectors. Here, we review recent advances in the design and characterization of various nonhuman adenoviral vectors, and discuss their potential applications for human and animal vaccination. PMID:16297508

  2. The activity of spontaneous action potentials in developing hair cells is regulated by Ca(2+)-dependence of a transient K+ current.

    PubMed

    Levic, Snezana; Lv, Ping; Yamoah, Ebenezer N

    2011-01-01

    Spontaneous action potentials have been described in developing sensory systems. These rhythmic activities may have instructional roles for the functional development of synaptic connections. The importance of spontaneous action potentials in the developing auditory system is underpinned by the stark correlation between the time of auditory system functional maturity, and the cessation of spontaneous action potentials. A prominent K(+) current that regulates patterning of action potentials is I(A). This current undergoes marked changes in expression during chicken hair cell development. Although the properties of I(A) are not normally classified as Ca(2+)-dependent, we demonstrate that throughout the development of chicken hair cells, I(A) is greatly reduced by acute alterations of intracellular Ca(2+). As determinants of spike timing and firing frequency, intracellular Ca(2+) buffers shift the activation and inactivation properties of the current to more positive potentials. Our findings provide evidence to demonstrate that the kinetics and functional expression of I(A) are tightly regulated by intracellular Ca(2+). Such feedback mechanism between the functional expression of I(A) and intracellular Ca(2+) may shape the activity of spontaneous action potentials, thus potentially sculpting synaptic connections in an activity-dependent manner in the developing cochlea. © 2011 Levic et al.

  3. The Representation of Older People in East Asian Television Advertisements.

    PubMed

    Prieler, Michael; Ivanov, Alex; Hagiwara, Shigeru

    2017-06-01

    In this study, 432 television advertisements from Hong Kong, Japan, and South Korea were analyzed to determine their representations of older people. Findings demonstrate that in East Asian advertisements, older people are highly underrepresented, appear in major roles, mostly alongside younger people, and older men clearly outnumber older women. The other variables investigated (i.e., setting and product categories) led to no conclusive findings for the three societies. In short, our study, employing ethnolinguistic vitality theory to analyze television advertisements, demonstrates how East Asian societies greatly marginalize older people. Potential effects of such representations are discussed using social cognitive theory and cultivation theory.

  4. A low-cost photoacoustic microscopy system with a laser diode excitation

    PubMed Central

    Wang, Tianheng; Nandy, Sreyankar; Salehi, Hassan S.; Kumavor, Patrick D.; Zhu, Quing

    2014-01-01

    Photoacoustic microscopy (PAM) is capable of mapping microvasculature networks in biological tissue and has demonstrated great potential for biomedical applications. However, the clinical application of the PAM system is limited due to the use of bulky and expensive pulsed laser sources. In this paper, a low-cost optical-resolution PAM system with a pulsed laser diode excitation has been introduced. The lateral resolution of this PAM system was estimated to be 7 µm by imaging a carbon fiber. The phantoms made of polyethylene tubes filled with blood and a mouse ear were imaged to demonstrate the feasibility of this PAM system for imaging biological tissues. PMID:25401019

  5. Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis.

    PubMed

    Kim, Sewoong; Cho, Dongrae; Kim, Jihun; Kim, Manjae; Youn, Sangyeon; Jang, Jae Eun; Je, Minkyu; Lee, Dong Hun; Lee, Boreom; Farkas, Daniel L; Hwang, Jae Youn

    2016-12-01

    We investigate the potential of mobile smartphone-based multispectral imaging for the quantitative diagnosis and management of skin lesions. Recently, various mobile devices such as a smartphone have emerged as healthcare tools. They have been applied for the early diagnosis of nonmalignant and malignant skin diseases. Particularly, when they are combined with an advanced optical imaging technique such as multispectral imaging and analysis, it would be beneficial for the early diagnosis of such skin diseases and for further quantitative prognosis monitoring after treatment at home. Thus, we demonstrate here the development of a smartphone-based multispectral imaging system with high portability and its potential for mobile skin diagnosis. The results suggest that smartphone-based multispectral imaging and analysis has great potential as a healthcare tool for quantitative mobile skin diagnosis.

  6. The role of interbasin groundwater transfers in geologically complex terranes, demonstrated by the Great Basin in the western United States

    NASA Astrophysics Data System (ADS)

    Nelson, Stephen T.; Mayo, Alan L.

    2014-06-01

    In the Great Basin, USA, bedrock interbasin flow is conceptualized as the mechanism by which large groundwater fluxes flow through multiple basins and intervening mountains. Interbasin flow is propounded based on: (1) water budget imbalances, (2) potential differences between basins, (3) stable isotope evidence, and (4) modeling studies. However, water budgets are too imprecise to discern interbasin transfers and potential differences may exist with or without interbasin fluxes. Potentiometric maps are dependent on conceptual underpinnings, leading to possible false inferences regarding interbasin transfers. Isotopic evidence is prone to non-unique interpretation and may be confounded by the effects of climate change. Structural and stratigraphic considerations in a geologically complex region like the Great Basin should produce compartmentalization, where increasing aquifer size increases the odds of segmentation along a given flow path. Initial conceptual hypotheses should explain flow with local recharge and short flow paths. Where bedrock interbasin flow is suspected, it is most likely controlled by diversion of water into the damage zones of normal faults, where fault cores act as barriers. Large-scale bedrock interbasin flow where fluxes must transect multiple basins, ranges, and faults at high angles should be the conceptual model of last resort.

  7. Differentiation of neural crest stem cells from nasal mucosa into motor neuron-like cells.

    PubMed

    Bagher, Zohreh; Kamrava, Seyed Kamran; Alizadeh, Rafieh; Farhadi, Mohammad; Absalan, Moloud; Falah, Masoumeh; Faghihi, Faezeh; Zare-Sadeghi, Arash; Komeili, Ali

    2018-05-25

    Cell transplantation is a potential therapeutic approach for repairing neuropathological and neurodegenerative disorders of central nervous system by replacing the degenerated cells with new ones. Among a variety of stem cell candidates to provide these new cells, olfactory ectomesenchymal stem cells (OE-MSCs) have attracted a great attention due to their neural crest origin, easy harvest, high proliferation, and autologous transplantation. Since there is no report on differentiation potential of these cells into motor neuron-like cells, we evaluated this potential using Real-time PCR, flowcytometry and immunocytochemistry after the treatment with differentiation cocktail containing retinoic acid and Sonic Hedgehog. Immunocytochemistry staining of the isolated OE-MSCs demonstrated their capability to express nestin and vimentin, as the two markers of primitive neuroectoderm. The motor neuron differentiation of OE-MSCs resulted in changing their morphology into bipolar cells with high expression of motor neuron markers of ChAT, Hb-9 and Islet-1 at the level of mRNA and protein. Consequently, we believe that the OE-MSCs have great potential to differentiate into motor neuron-like cells and can be an ideal stem cell source for the treatment of motor neuron-related disorders of central nervous system. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Three-dimensional graphene-polypyrrole hybrid electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Wang, Zhi; Zhao, Yang; Cheng, Huhu; Hu, Chuangang; Jiang, Lan; Qu, Liangti

    2012-11-01

    The advancement of mechanical actuators benefits from the development of new structural materials with prominent properties. A novel three-dimensional (3D) hydrothermally converted graphene and polypyrrole (G-PPy) hybrid electrochemical actuator is presented, which is prepared via a convenient hydrothermal process, followed by in situ electropolymerization of pyrrole. The 3D pore-interconnected G-PPy pillar exhibits strong actuation responses superior to pure graphene and PPy film. In response to the low potentials of +/-0.8 V, the saturated strain of 3D G-PPy pillar can reach a record of 2.5%, which is more than 10 times higher than that of carbon nanotube film and about 3 times that of unitary graphene film under an applied potential of +/-1.2 V. Also, the 3D G-PPy actuator exhibits high actuation durability with high operating load as demonstrated by an 11 day continuous measurement. Finally, a proof-of-concept application of 3D G-PPy as smart filler for on/off switch is also demonstrated, which indicates the great potential of the 3D G-PPy structure developed in this study for advanced actuator systems.The advancement of mechanical actuators benefits from the development of new structural materials with prominent properties. A novel three-dimensional (3D) hydrothermally converted graphene and polypyrrole (G-PPy) hybrid electrochemical actuator is presented, which is prepared via a convenient hydrothermal process, followed by in situ electropolymerization of pyrrole. The 3D pore-interconnected G-PPy pillar exhibits strong actuation responses superior to pure graphene and PPy film. In response to the low potentials of +/-0.8 V, the saturated strain of 3D G-PPy pillar can reach a record of 2.5%, which is more than 10 times higher than that of carbon nanotube film and about 3 times that of unitary graphene film under an applied potential of +/-1.2 V. Also, the 3D G-PPy actuator exhibits high actuation durability with high operating load as demonstrated by an 11 day continuous measurement. Finally, a proof-of-concept application of 3D G-PPy as smart filler for on/off switch is also demonstrated, which indicates the great potential of the 3D G-PPy structure developed in this study for advanced actuator systems. Electronic supplementary information (ESI) available: Experimental setup for fabrication of G-PPy hybrid structure, and movie showing the on/off response of G-PPy filler. See DOI: 10.1039/c2nr32699j

  9. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9.

    PubMed

    Ren, Jiangtao; Zhao, Yangbing

    2017-09-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (CRISPR/Cas9) system, an RNA-guided DNA targeting technology, is triggering a revolution in the field of biology. CRISPR/Cas9 has demonstrated great potential for genetic manipulation. In this review, we discuss the current development of CRISPR/Cas9 technologies for therapeutic applications, especially chimeric antigen receptor (CAR) T cell-based adoptive immunotherapy. Different methods used to facilitate efficient CRISPR delivery and gene editing in T cells are compared. The potential of genetic manipulation using CRISPR/Cas9 system to generate universal CAR T cells and potent T cells that are resistant to exhaustion and inhibition is explored. We also address the safety concerns associated with the use of CRISPR/Cas9 gene editing and provide potential solutions and future directions of CRISPR application in the field of CAR T cell immunotherapy. As an integration-free gene insertion method, CRISPR/Cas9 holds great promise as an efficient gene knock-in platform. Given the tremendous progress that has been made in the past few years, we believe that the CRISPR/Cas9 technology holds immense promise for advancing immunotherapy.

  10. Constraining the geometry of AGN outflows with reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Buisson, D. J. K.; Jiang, J.; Gallo, L. C.; Kara, E.; Matzeu, G. A.; Walton, D. J.

    2018-06-01

    We collate active galactic nuclei (AGN) with reported detections of both relativistic reflection and ultra-fast outflows. By comparing the inclination of the inner disc from reflection with the line-of-sight velocity of the outflow, we show that it is possible to meaningfully constrain the geometry of the absorbing material. We find a clear relation between the velocity and inclination, and demonstrate that it can potentially be explained either by simple wind geometries or by absorption from the disc surface. Due to systematic errors and a shortage of high-quality simultaneous measurements our conclusions are tentative, but this study represents a proof-of-concept that has great potential.

  11. A satellite system for land-mobile communications in Europe

    NASA Technical Reports Server (NTRS)

    Bartholome, P.; Rogard, R.

    1988-01-01

    There exists a great unsatisified demand for land mobile communications in Europe, particularly in sectors of business activity such as the road transport industry. This demand could best be satisfied by means of satellite-based private networks providing voice and data communications in a hub configuration. The potential market is estimated to encompass several hundred thousand road vehicles and the transmission capacity required would be several thousand channels. ESA is currently demonstrating the potential of satellite communications for this type of application, using a system called PRODAT. System studies are being performed with the aim of defining the architecture of a regional satellite system for Europe.

  12. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  13. Thin-Film Thermocouple Technology Demonstrated for Reliable Heat Transfer Measurements

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exploratory work is in progress to apply thin-film thermocouples to localized heat transfer measurements on turbine engine vanes and blades. The emerging thin-film thermocouple technology shows great potential to improve the accuracy of local heat transfer measurements. To verify and master the experimental methodology of thin-film thermocouples, the NASA Lewis Research Center conducted a proof-of-concept experiment in a controlled environment before applying the thin-film sensors to turbine tests.

  14. Large-scale broadband absorber based on metallic tungsten nanocone structure

    NASA Astrophysics Data System (ADS)

    Wang, Jiaxing; Liang, Yuzhang; Huo, Pengcheng; Wang, Daopeng; Tan, Jun; Xu, Ting

    2017-12-01

    We report a broadband tungsten absorber based on a nanocone metallic resonant structure fabricated by self-assembly nanosphere lithography. In experimental demonstration, the fabricated absorber has more than 90% average absorption efficiency and shows superior angular tolerance in the entire visible and near-infrared spectral region. We envision that this large-scale nanostructured broadband optical absorber would find great potential in the applications of high performance optoelectronic platforms and solar-thermal energy harvesting systems.

  15. Magnetic storms and induction hazards

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, E. Joshua; Pulkkinen, Antti; Balch, Christopher

    2014-01-01

    Magnetic storms are potentially hazardous to the activities and technological infrastructure of modern civilization. This reality was dramatically demonstrated during the great magnetic storm of March 1989, when surface geoelectric fields, produced by the interaction of the time-varying geomagnetic field with the Earth's electrically conducting interior, coupled onto the overlying Hydro-Québec electric power grid in Canada. Protective relays were tripped, the grid collapsed, and about 9 million people were temporarily left without electricity [Bolduc, 2002].

  16. Mechanical design of DNA nanostructures

    NASA Astrophysics Data System (ADS)

    Castro, Carlos E.; Su, Hai-Jun; Marras, Alexander E.; Zhou, Lifeng; Johnson, Joshua

    2015-03-01

    Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07153k

  17. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes

    NASA Astrophysics Data System (ADS)

    Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d

  18. Parametric studies on droplet generation reproducibility for applications with biological relevant fluids

    PubMed Central

    Eichler, Marko; Römer, Robert; Grodrian, Andreas; Lemke, Karen; Nagel, Krees; Klages, Claus‐Peter; Gastrock, Gunter

    2017-01-01

    Abstract Although the great potential of droplet based microfluidic technologies for routine applications in industry and academia has been successfully demonstrated over the past years, its inherent potential is not fully exploited till now. Especially regarding to the droplet generation reproducibility and stability, two pivotally important parameters for successful applications, there is still a need for improvement. This is even more considerable when droplets are created to investigate tissue fragments or cell cultures (e.g. suspended cells or 3D cell cultures) over days or even weeks. In this study we present microfluidic chips composed of a plasma coated polymer, which allow surfactants‐free, highly reproducible and stable droplet generation from fluids like cell culture media. We demonstrate how different microfluidic designs and different flow rates (and flow rate ratios) affect the reproducibility of the droplet generation process and display the applicability for a wide variety of bio(techno)logically relevant media. PMID:29399017

  19. Continuous Solidification of Immiscible Alloys and Microstructure Control

    NASA Astrophysics Data System (ADS)

    Jiang, Hongxiang; Zhao, Jiuzhou

    2018-05-01

    Immiscible alloys have aroused considerable interest in last few decades due to their excellent physical and mechanical characteristics as well as potential industrial applications. Up to date, plenty of researches have been carried out to investigate the solidification of immiscible alloys on the ground or in space and great progress has been made. It is demonstrated that the continuous solidification technique have great future in the manufacturing of immiscible alloys, it also indicates that the addition of surface active micro-alloying or inoculants for the nucleation of the minority phase droplets and proper application of external fields, e.g., static magnetic field, electric current, microgravity field, etc. may promote the formation of immiscible alloys with an expected microstructure. The objective of this article is to review the research work in this field.

  20. New technology in the management of liver trauma

    PubMed Central

    Chatoupis, Konstantinos; Papadopoulou, Glikeria; Kaskarelis, Ioannis

    2013-01-01

    The liver is the second most frequently injured solid organ in patients with blunt abdominal trauma. Hence the diagnosis and clinical assessment of hepatic trauma is of great importance because of the relationship of the liver to high morbidity and mortality. Multi detector-row computed tomography is the main diagnostic modality for the examination of hepatic parenchyma and other associated organ injuries, such as acute or delayed complications. Based on clinical and radiological findings, the majority of patients are managed conservatively, with the most important criterion of surgical therapy being hemodynamic instability. Radiologists must demonstrate a high knowledge of imaging recommendations and standardization of reporting to enable the selection of the appropriate treatment algorithm. Transcatheter embolization therapy is a method of great potential for the management of patients with traumatic hepatic injuries. PMID:24714662

  1. Modeling and design for electromagnetic surface wave devices

    NASA Astrophysics Data System (ADS)

    La Spada, Luigi; Haq, Sajad; Hao, Yang

    2017-09-01

    A great deal of interest has reemerged recently in the study of surface waves. The possibility to control and manipulate electromagnetic wave propagations at will opens many new research areas and leads to lots of novel applications in engineering. In this paper, we will present a comprehensive modeling and design approach for surface wave cloaks, based on graded-refractive-index materials and the theory of transformation optics. It can be also applied to any other forms of surface wave manipulation, in terms of amplitude and phase. In this paper, we will present a general method to illustrate how this can be achieved from modeling to the final design. The proposed approach is validated to be versatile and allows ease in manufacturing, thereby demonstrating great potential for practical applications.

  2. Diamond-Based Magnetic Imaging with Fourier Optical Processing

    NASA Astrophysics Data System (ADS)

    Backlund, Mikael P.; Kehayias, Pauli; Walsworth, Ronald L.

    2017-11-01

    Diamond-based magnetic field sensors have attracted great interest in recent years. In particular, wide-field magnetic imaging using nitrogen-vacancy (NV) centers in diamond has been previously demonstrated in condensed matter, biological, and paleomagnetic applications. Vector magnetic imaging with NV ensembles typically requires a significant applied field (>10 G ) to resolve the contributions from four crystallographic orientations, hindering studies of magnetic samples that require measurement in low or independently specified bias fields. Here we model and measure the complex amplitude distribution of NV emission at the microscope's Fourier plane and show that by modulating this collected light at the Fourier plane, one can decompose the NV ensemble magnetic resonance spectrum into its constituent orientations by purely optical means. This decomposition effectively extends the dynamic range at a given bias field and enables wide-field vector magnetic imaging at arbitrarily low bias fields, thus broadening potential applications of NV imaging and sensing. Our results demonstrate that NV-based microscopy stands to benefit greatly from Fourier optical approaches, which have already found widespread utility in other branches of microscopy.

  3. Current Status of Gene Therapy for Inherited Lung Diseases

    PubMed Central

    Driskell, Ryan R.; Engelhardt, John F.

    2007-01-01

    Gene therapy as a treatment modality for pulmonary disorders has attracted significant interest over the past decade. Since the initiation of the first clinical trials for cystic fibrosis lung disease using recombinant adenovirus in the early 1990s, the field has encountered numerous obstacles including vector inflammation, inefficient delivery, and vector production. Despite these obstacles, enthusiasm for lung gene therapy remains high. In part, this enthusiasm is fueled through the diligence of numerous researchers whose studies continue to reveal great potential of new gene transfer vectors that demonstrate increased tropism for airway epithelia. Several newly identified serotypes of adeno-associated virus have demonstrated substantial promise in animal models and will likely surface soon in clinical trials. Furthermore, an increased understanding of vector biology has also led to the development of new technologies to enhance the efficiency and selectivity of gene delivery to the lung. Although the promise of gene therapy to the lung has yet to be realized, the recent concentrated efforts in the field that focus on the basic virology of vector development will undoubtedly reap great rewards over the next decade in treating lung diseases. PMID:12524461

  4. Policies and practices of beach monitoring in the Great Lakes, USA: a critical review

    USGS Publications Warehouse

    Nevers, Meredith B.; Whitman, Richard L.

    2010-01-01

    Beaches throughout the Great Lakes are monitored for fecal indicator bacteria (typically Escherichia coli) in order to protect the public from potential sewage contamination. Currently, there is no universal standard for sample collection and analysis or results interpretation. Monitoring policies are developed by individual beach management jurisdictions, and applications are highly variable across and within lakes, states, and provinces. Extensive research has demonstrated that sampling decisions for time, depth, number of replicates, frequency of sampling, and laboratory analysis all influence the results outcome, as well as calculations of the mean and interpretation of the results in policy decisions. Additional shortcomings to current monitoring approaches include appropriateness and reliability of currently used indicator bacteria and the overall goal of these monitoring programs. Current research is attempting to circumvent these complex issues by developing new tools and methods for beach monitoring. In this review, we highlight the variety of sampling routines used across the Great Lakes and the extensive body of research that challenges comparisons among beaches. We also assess the future of Great Lakes monitoring and the advantages and disadvantages of establishing standards that are evenly applied across all beaches.

  5. Unified interatomic potential and energy barrier distributions for amorphous oxides.

    PubMed

    Trinastic, J P; Hamdan, R; Wu, Y; Zhang, L; Cheng, Hai-Ping

    2013-10-21

    Amorphous tantala, titania, and hafnia are important oxides for biomedical implants, optics, and gate insulators. Understanding the effects of oxide doping is crucial to optimize performance in these applications. However, no molecular dynamics potentials have been created to date that combine these and other oxides that would allow computational analyses of doping-dependent structural and mechanical properties. We report a novel set of computationally efficient, two-body potentials modeling van der Waals and covalent interactions that reproduce the structural and elastic properties of both pure and doped amorphous oxides. In addition, we demonstrate that the potential accurately produces energy barrier distributions for pure and doped samples. The distributions can be directly compared to experiment and used to calculate physical quantities such as internal friction to understand how doping affects material properties. Future analyses using these potentials will be of great value to determine optimal doping concentrations and material combinations for myriad material science applications.

  6. Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis

    PubMed Central

    Kim, Sewoong; Cho, Dongrae; Kim, Jihun; Kim, Manjae; Youn, Sangyeon; Jang, Jae Eun; Je, Minkyu; Lee, Dong Hun; Lee, Boreom; Farkas, Daniel L.; Hwang, Jae Youn

    2016-01-01

    We investigate the potential of mobile smartphone-based multispectral imaging for the quantitative diagnosis and management of skin lesions. Recently, various mobile devices such as a smartphone have emerged as healthcare tools. They have been applied for the early diagnosis of nonmalignant and malignant skin diseases. Particularly, when they are combined with an advanced optical imaging technique such as multispectral imaging and analysis, it would be beneficial for the early diagnosis of such skin diseases and for further quantitative prognosis monitoring after treatment at home. Thus, we demonstrate here the development of a smartphone-based multispectral imaging system with high portability and its potential for mobile skin diagnosis. The results suggest that smartphone-based multispectral imaging and analysis has great potential as a healthcare tool for quantitative mobile skin diagnosis. PMID:28018743

  7. Dynamic Control of the Vortex Pinning Potential in a Superconductor Using Current Injection through Nanoscale Patterns.

    PubMed

    Kalcheim, Yoav; Katzir, Eran; Zeides, Felix; Katz, Nadav; Paltiel, Yossi; Millo, Oded

    2017-05-10

    Control over the vortex potential at the nanoscale in a superconductor is a subject of great interest for both fundamental and technological reasons. Many methods for achieving artificial pinning centers have been demonstrated, for example, with magnetic nanostructures or engineered imperfections, yielding many intriguing effects. However, these pinning mechanisms do not offer dynamic control over the strength of the patterned vortex potential because they involve static nanostructures created in or near the superconductor. Dynamic control has been achieved with scanning probe methods on the single vortex level but these are difficult so scale up. Here, we show that by applying controllable nanopatterned current injection, the superconductor can be locally driven out of equilibrium, creating an artificial vortex potential that can be tuned by the magnitude of the injected current, yielding a unique vortex channeling effect.

  8. Emulating short-term synaptic dynamics with memristive devices

    NASA Astrophysics Data System (ADS)

    Berdan, Radu; Vasilaki, Eleni; Khiat, Ali; Indiveri, Giacomo; Serb, Alexandru; Prodromakis, Themistoklis

    2016-01-01

    Neuromorphic architectures offer great promise for achieving computation capacities beyond conventional Von Neumann machines. The essential elements for achieving this vision are highly scalable synaptic mimics that do not undermine biological fidelity. Here we demonstrate that single solid-state TiO2 memristors can exhibit non-associative plasticity phenomena observed in biological synapses, supported by their metastable memory state transition properties. We show that, contrary to conventional uses of solid-state memory, the existence of rate-limiting volatility is a key feature for capturing short-term synaptic dynamics. We also show how the temporal dynamics of our prototypes can be exploited to implement spatio-temporal computation, demonstrating the memristors full potential for building biophysically realistic neural processing systems.

  9. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.

    PubMed

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-09-14

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.

  10. Coordination and Control of Flexible Building Loads for Renewable Integration; Demonstrations using VOLTTRON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, He; Liu, Guopeng; Huang, Sen

    Renewable energy resources such as wind and solar power have a high degree of uncertainty. Large-scale integration of these variable generation sources into the grid is a big challenge for power system operators. Buildings, in which we live and work, consume about 75% of the total electricity in the United States. They also have a large capacity of power flexibility due to their massive thermal capacitance. Therefore, they present a great opportunity to help the grid to manage power balance. In this report, we study coordination and control of flexible building loads for renewable integration. We first present the motivationmore » and background, and conduct a literature review on building-to-grid integration. We also compile a catalog of flexible building loads that have great potential for renewable integration, and discuss their characteristics. We next collect solar generation data from a photovoltaic panel on Pacific Northwest National Laboratory campus, and conduct data analysis to study their characteristics. We find that solar generation output has a strong uncertainty, and the uncertainty occurs at almost all time scales. Additional data from other sources are also used to verify our study. We propose two transactive coordination strategies to manage flexible building loads for renewable integration. We prove the theories that support the two transactive coordination strategies and discuss their pros and cons. In this report, we select three types of flexible building loads—air-handling unit, rooftop unit, and a population of WHs—for which we demonstrate control of the flexible load to track a dispatch signal (e.g., renewable generation fluctuation) using experiment, simulation, or hardware-in-the-loop study. More specifically, we present the system description, model identification, controller design, test bed setup, and experiment results for each demonstration. We show that coordination and control of flexible loads has a great potential to integrate variable generation sources. The flexible loads can successfully track a power dispatch signal from the coordinator, while having little impact on the quality of service to the end-users.« less

  11. Aluminum plasmonic metamaterials for structural color printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Fei; Gao, Jie; Stan, Liliana

    2015-01-01

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  12. Aluminum plasmonic metamaterials for structural color printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Fei; Gao, Jie; Stan, Liliana

    2015-05-26

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  13. Tissue engineering and regenerative medicine in applied research: a year in review of 2014.

    PubMed

    Lin, Xunxun; Huang, Jia; Shi, Yuan; Liu, Wei

    2015-04-01

    Tissue engineering and regenerative medicine (TERM) remains to be one of the fastest growing fields, which covers a wide scope of topics of both basic and applied biological researches. This overview article summarized the advancements in applied researches of TERM area, including stem cell-mediated tissue regeneration, material science, and TERM clinical trial. These achievements demonstrated the great potential of clinical regenerative therapy of tissue/organ disease or defect through stem cells and tissue engineering approaches.

  14. A green route to methyl acrylate and acrylic acid by an aldol condensation reaction over H-ZSM-35 zeolite catalysts.

    PubMed

    Ma, Zhanling; Ma, Xiangang; Liu, Hongchao; He, Yanli; Zhu, Wenliang; Guo, Xinwen; Liu, Zhongmin

    2017-08-10

    A one-step aldol condensation reaction to produce MA and AA is a green and promising strategy. Here, the aldol condensation reaction was first conducted with DMM and MAc over different types of zeolite catalysts. The H-ZSM-35 zeolite demonstrates excellent catalytic performance with a DMM conversion of 100% and a MA + AA selectivity of up to 86.2% and superior regeneration ability, with great potential for industrial operation.

  15. Control of secondary electrons from ion beam impact using a positive potential electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, T. P., E-mail: tpcrowley@xanthotechnologies.com; Demers, D. R.; Fimognari, P. J.

    2016-11-15

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  16. Real-time monitoring of chemical and structural changes induced by light irradiation of cells and tissues

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vladislav V.; Thomas, Robert J.; Noojin, Gary; Denton, Michael

    2008-02-01

    We report on a novel approach to study cells and tissues exposed to laser radiation. By using a tightly focused laser beam, a selected area of a cell or a tissue can be selectively irradiated, and the results of this interaction can be immediately interrogated using Raman confocal microscopy. We present our experimental results for skin and eye tissues and individual retinal pigmented epithelium cells demonstrating a great potential of this new research paradigm.

  17. Fiber-optic-bundle-based optical coherence tomography.

    PubMed

    Xie, Tuqiang; Mukai, David; Guo, Shuguang; Brenner, Matthew; Chen, Zhongping

    2005-07-15

    A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.

  18. Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived mesenchymal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiou, Michael; Xu Yue; Longaker, Michael T.

    2006-05-05

    Adipose-derived mesenchymal cells (AMCs) have demonstrated a great capacity for differentiating into bone, cartilage, and fat. Studies using bone marrow-derived mesenchymal cells (BMSCs) have shown that fibroblast growth factor (FGF)-2, a potent mitogenic factor, plays an important role in tissue engineering due to its effects in proliferation and differentiation for mesenchymal cells. The aim of this study was to investigate the function of FGF-2 in AMC chondrogenic differentiation and its possible contributions to cell-based therapeutics in skeletal tissue regeneration. Data demonstrated that FGF-2 significantly promoted the proliferation of AMCs and enhanced chondrogenesis in three-dimensional micromass culture. Moreover, priming AMCs withmore » treatment of FGF-2 at 10 ng/ml demonstrated that cells underwent chondrogenic phenotypic differentiation, possibly by inducing N-Cadherin, FGF-receptor 2, and transcription factor Sox9. Our results indicated that FGF-2 potentiates chondrogenesis in AMCs, similar to its functions in BMSCs, suggesting the versatile potential applications of FGF-2 in skeletal regeneration and cartilage repair.« less

  19. Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis.

    PubMed

    Moon, Jihea; Kim, Giyoung; Lee, Sangdae; Park, Saetbyeol

    2013-11-01

    Conventional methods for detection of infective organisms, such as Salmonella, are complicated and require multiple steps, and the need for rapid detection has increased. Biosensors show great potential for rapid detection of pathogens. In turn, aptamers have great potential for biosensor assay development, given their small size, ease of synthesis and labeling, lack of immunogenicity, a lower cost of production than antibodies, and high target specificity. In this study, ssDNA aptamers specific to Salmonella Typhimurium were obtained by a whole bacterium-based systematic evolution of ligands by exponential enrichment (SELEX) procedure and applied to probing S. Typhimurium. After 10 rounds of selection with S. Typhimurium as the target and Salmonella Enteritidis, Escherichia coli and Staphylococcus aureus as counter targets, the highly enriched oligonucleic acid pool was sorted using flow cytometry. In total, 12 aptamer candidates from different families were sequenced and grouped. Fluorescent analysis demonstrated that aptamer C4 had particularly high binding affinity and selectivity; this aptamer was then further characterized. © 2013 Elsevier B.V. All rights reserved.

  20. Novel Layered Supercell Structure from Bi 2AlMnO 6 for Multifunctionalities

    DOE PAGES

    Li, Leigang; Boullay, Philippe; Lu, Ping; ...

    2017-10-02

    Layered materials, e.g., graphene and transition metal (di)chalcogenides, holding great promises in nanoscale device applications have been extensively studied in fundamental chemistry, solid state physics and materials research areas. In parallel, layered oxides (e.g., Aurivillius and Ruddlesden–Popper phases) present an attractive class of materials both because of their rich physics behind and potential device applications. In this work, we report a novel layered oxide material with self-assembled layered supercell structure consisting of two mismatch-layered sublattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M = Al/Mn, simply named BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made ofmore » a three-layer-thick Bi–O slab and a one-layer-thick Al/Mn–O octahedra slab in the out-of-plane direction. Strong room-temperature ferromagnetic and piezoelectric responses as well as anisotropic optical property have been demonstrated with great potentials in various device applications. Furthermore, the realization of the novel BAMO layered supercell structure in this work has paved an avenue toward exploring and designing new materials with multifunctionalities.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Leigang; Boullay, Philippe; Lu, Ping

    Layered materials, e.g., graphene and transition metal (di)chalcogenides, holding great promises in nanoscale device applications have been extensively studied in fundamental chemistry, solid state physics and materials research areas. In parallel, layered oxides (e.g., Aurivillius and Ruddlesden–Popper phases) present an attractive class of materials both because of their rich physics behind and potential device applications. In this work, we report a novel layered oxide material with self-assembled layered supercell structure consisting of two mismatch-layered sublattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M = Al/Mn, simply named BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made ofmore » a three-layer-thick Bi–O slab and a one-layer-thick Al/Mn–O octahedra slab in the out-of-plane direction. Strong room-temperature ferromagnetic and piezoelectric responses as well as anisotropic optical property have been demonstrated with great potentials in various device applications. Furthermore, the realization of the novel BAMO layered supercell structure in this work has paved an avenue toward exploring and designing new materials with multifunctionalities.« less

  2. Direct writing electrodes using a ball pen for paper-based point-of-care testing.

    PubMed

    Li, Zedong; Li, Fei; Hu, Jie; Wee, Wei Hong; Han, Yu Long; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-08-21

    The integration of paper with an electrochemical device has attracted growing attention for point-of-care testing, where it is of great importance to fabricate electrodes on paper in a low-cost, easy and versatile way. In this work, we report a simple strategy for directly writing electrodes on paper using a pressure-assisted ball pen to form a paper-based electrochemical device (PED). This method is demonstrated to be capable of fabricating electrodes on paper with good electrical conductivity and electrochemical performance, holding great potential to be employed in point-of-care applications, such as in human health diagnostics and food safety detection. As examples, the PEDs fabricated using the developed method are applied for detection of glucose in artificial urine and melamine in sample solutions. Furthermore, our developed strategy is also extended to fabricate PEDs with multi-electrode arrays and write electrodes on non-planar surfaces (e.g., paper cup, human skin), indicating the potential application of our method in other fields, such as fabricating biosensors, paper electronics etc.

  3. Constructing Free Standing Metal Organic Framework MIL-53 Membrane Based on Anodized Aluminum Oxide Precursor

    PubMed Central

    Zhang, Yunlu; Gao, Qiuming; Lin, Zhi; Zhang, Tao; Xu, Jiandong; Tan, Yanli; Tian, Weiqian; Jiang, Lei

    2014-01-01

    Metal organic framework (MOF) materials have attracted great attention due to their well-ordered and controllable pores possessing of prominent potentials for gas molecule sorption and separation performances. Organizing the MOF crystals to a continuous membrane with a certain scale will better exhibit their prominent potentials. Reports in recent years concentrate on well grown MOF membranes on specific substrates. Free standing MOF membranes could have more important applications since they are independent from the substrates. However, the method to prepare such a membrane has been a great challenge because good mechanical properties and stabilities are highly required. Here, we demonstrate a novel and facile technique for preparing the free standing membrane with a size as large as centimeter scale. The substrate we use proved itself not only a good skeleton but also an excellent precursor to fulfill the reaction. This kind of membrane owns a strong mechanical strength, based on the fact that it is much thinner than the composite membranes grown on substrates and it could exhibit good property of gas separation. PMID:24821299

  4. Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy

    NASA Astrophysics Data System (ADS)

    Compton, Brett G.; Hmeidat, Nadim S.; Pack, Robert C.; Heres, Maximilian F.; Sangoro, Joshua R.

    2018-03-01

    Recent developments in additive manufacturing have demonstrated the potential for thermoset polymer feedstock materials to achieve high strength, stiffness, and functionality through incorporation of structural and functional filler materials. In this work, graphene was investigated as a potential filler material to provide rheological properties necessary for direct-write three-dimensional (3D) printing and electrostatic discharge properties to the printed component. The rheological properties of epoxy/graphene mixtures were characterized, and printable epoxy/graphene inks formulated. Sheet resistance values for printed epoxy/graphene composites ranged from 0.67 × 102 Ω/sq to 8.2 × 103 Ω/sq. The flexural strength of printed epoxy/graphene composites was comparable to that of cast neat epoxy ( 80 MPa), suggesting great potential for these new materials in multifunctional 3D-printed devices.

  5. Polyaniline as a new type of hole-transporting material to significantly increase the solar water splitting performance of BiVO4 photoanodes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojun; Ye, Kai-Hang; Yu, Xiang; Zhu, Jiaqian; Zhu, Yi; Zhang, Yuanming

    2018-07-01

    Polyaniline (PANI), with its low cost, chemical stability and high conductivity, is used as a hole transporting layer to fabricate NiOOH/PANI/BiVO4 (NPB) photoanode, of which the photoelectrochemical (PEC) water splitting performance is significantly enhanced. The remarkable water oxidation photocurrent of NPB photoanode achieves 3.31 mA cm-2 at 1.23 V vs. RHE under AM 1.5G solar light irradiation, which is greatly increased compared with that of pristine BiVO4 (0.89 mA cm-2 under the same condition). The maximal incident photon-to-current conversion efficiency achieves 83.3% at 430 nm at 1.23 V vs. RHE and the maximal applied bias photo-to-current efficiency reaches 1.20% at 0.68 V vs. RHE, which are nearly five and ten times higher than that of pristine BiVO4 photoanode, respectively. This NPB photoanode exhibits excellent stability with about 97.22% Faraday efficiency after PEC water splitting for 3 h. The exciting results demonstrate that PANI shows great potential as a hole-transporting layer for photoanode and NPB is an efficient and stable photoanode material with a great potential application in PEC water splitting. Overall, this work provides an excellent reference on designing and fabricating photoanode materials for the future.

  6. Myogenic potential of mesenchymal stem cells isolated from porcine adipose tissue.

    PubMed

    Milner, Derek J; Bionaz, Massimo; Monaco, Elisa; Cameron, Jo Ann; Wheeler, Matthew B

    2018-06-01

    Advances in stem cell biology and materials science have provided a basis for developing tissue engineering methods to repair muscle injury. Among stem cell populations with potential to aid muscle repair, adipose-derived mesenchymal stem cells (ASC) hold great promise. To evaluate the possibility of using porcine ASC for muscle regeneration studies, we co-cultured porcine ASC with murine C 2 C 12 myoblasts. These experiments demonstrated that porcine ASC display significant myogenic potential. Co-culture of ASC expressing green fluorescent protein (GFP) with C 2 C 12 cells resulted in GFP + myotube formation, indicating fusion of ASC with myoblasts to form myotubes. The presence of porcine lamin A/C positive nuclei in myotubes and RTqPCR analysis of porcine myogenin and desmin expression confirmed that myotube nuclei derived from ASC contribute to muscle gene expression. Co-culturing GFP + ASC with porcine satellite cells demonstrated enhanced myogenic capability of ASC, as the percentage of labeled myotubes increased compared to mouse co-cultures. Enhancing myogenic potential of ASC through soluble factor treatment or expansion of ASC with innate myogenic capacity should allow for their therapeutic use to regenerate muscle tissue lost to disease or injury.

  7. Role of non-coding RNAs in non-aging-related neurological disorders.

    PubMed

    Vieira, A S; Dogini, D B; Lopes-Cendes, I

    2018-06-11

    Protein coding sequences represent only 2% of the human genome. Recent advances have demonstrated that a significant portion of the genome is actively transcribed as non-coding RNA molecules. These non-coding RNAs are emerging as key players in the regulation of biological processes, and act as "fine-tuners" of gene expression. Neurological disorders are caused by a wide range of genetic mutations, epigenetic and environmental factors, and the exact pathophysiology of many of these conditions is still unknown. It is currently recognized that dysregulations in the expression of non-coding RNAs are present in many neurological disorders and may be relevant in the mechanisms leading to disease. In addition, circulating non-coding RNAs are emerging as potential biomarkers with great potential impact in clinical practice. In this review, we discuss mainly the role of microRNAs and long non-coding RNAs in several neurological disorders, such as epilepsy, Huntington disease, fragile X-associated ataxia, spinocerebellar ataxias, amyotrophic lateral sclerosis (ALS), and pain. In addition, we give information about the conditions where microRNAs have demonstrated to be potential biomarkers such as in epilepsy, pain, and ALS.

  8. Flexible graphene transistors for recording cell action potentials

    NASA Astrophysics Data System (ADS)

    Blaschke, Benno M.; Lottner, Martin; Drieschner, Simon; Bonaccini Calia, Andrea; Stoiber, Karolina; Rousseau, Lionel; Lissourges, Gaëlle; Garrido, Jose A.

    2016-06-01

    Graphene solution-gated field-effect transistors (SGFETs) are a promising platform for the recording of cell action potentials due to the intrinsic high signal amplification of graphene transistors. In addition, graphene technology fulfills important key requirements for in-vivo applications, such as biocompability, mechanical flexibility, as well as ease of high density integration. In this paper we demonstrate the fabrication of flexible arrays of graphene SGFETs on polyimide, a biocompatible polymeric substrate. We investigate the transistor’s transconductance and intrinsic electronic noise which are key parameters for the device sensitivity, confirming that the obtained values are comparable to those of rigid graphene SGFETs. Furthermore, we show that the devices do not degrade during repeated bending and the transconductance, governed by the electronic properties of graphene, is unaffected by bending. After cell culture, we demonstrate the recording of cell action potentials from cardiomyocyte-like cells with a high signal-to-noise ratio that is higher or comparable to competing state of the art technologies. Our results highlight the great capabilities of flexible graphene SGFETs in bioelectronics, providing a solid foundation for in-vivo experiments and, eventually, for graphene-based neuroprosthetics.

  9. Nanotechnology in the development of novel functional foods or their package. An overview based in patent analysis.

    PubMed

    Pérez-Esteve, Edgar; Bernardos, Andrea; Martínez-Máñez, Ramón; Barat, José M

    2013-04-01

    In recent years nanotechnology has become a significant component in food industry. It is present in all food chain steps, from the design of new ingredients or additives, to the most modern systems of food quality methods or packaging, demonstrating the great potential of this new technology in a sector as traditional as food. However, while interest by industry in nanotechnology increases, the rejection by consumers, concerned about the potential risk, does too. The aim of this review is to evaluate the development of food nanotechnology by means of a patent analysis, highlighting current applications of nanotechnology along the whole food chain and contextualizing this evolution in the social scene.

  10. Ear swelling test by using laser speckle imaging with a long exposure time

    NASA Astrophysics Data System (ADS)

    Kalchenko, Vyacheslav; Kuznetsov, Yuri; Preise, Dina; Meglinski, Igor; Harmelin, Alon

    2014-06-01

    Laser speckle imaging with long exposure time has been applied noninvasively to visualize the immediate reaction of cutaneous vessels in mice in response to a known primary irritant and potential allergen-methyl salicylate. The compound has been used topically on the surface of the pinna and the reaction of the vascular network was examined. We demonstrate that irritant-induced acute vascular reaction can be effectively and accurately detected by laser speckle imaging technique. The current approach holds a great promise for application in routine screening of the cutaneous vascular response induced by contact agents, screenings of mouse ear swelling test, and testing the allergenic potential of new synthetic materials and healthcare pharmaceutical products.

  11. Low-voltage all-inorganic perovskite quantum dot transistor memory

    NASA Astrophysics Data System (ADS)

    Chen, Zhiliang; Zhang, Yating; Zhang, Heng; Yu, Yu; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Che, Yongli; Jin, Lufan; Li, Yifan; Li, Qingyan; Dai, Haitao; Yang, Junbo; Yao, Jianquan

    2018-05-01

    An all-inorganic cesium lead halide quantum dot (QD) based Au nanoparticle (NP) floating-gate memory with a solution processed layer-by-layer method is demonstrated. Easy synthesis at room temperature and excellent stability make all-inorganic CsPbBr3 perovskite QDs suitable as a semiconductor layer in low voltage nonvolatile transistor memory. The bipolarity of QDs has both electrons and holes stored in the Au NP floating gate, resulting in bidirectional shifts of initial threshold voltage according to the applied programing and erasing pulses. Under low operation voltage (±5 V), the memory achieved a great memory window (˜2.4 V), long retention time (>105 s), and stable endurance properties after 200 cycles. So the proposed memory device based on CsPbBr3 perovskite QDs has a great potential in the flash memory market.

  12. Tuning the surface microstructure of titanate coatings on titanium implants for enhancing bioactivity of implants

    PubMed Central

    Wang, Hui; Lai, Yue-Kun; Zheng, Ru-Yue; Bian, Ye; Zhang, Ke-Qin; Lin, Chang-Jian

    2015-01-01

    Biological performance of artificial implant materials is closely related to their surface characteristics, such as microtopography, and composition. Therefore, convenient fabrication of artificial implant materials with a cell-friendly surface structure and suitable composition was of great significance for current tissue engineering. In this work, titanate materials with a nanotubular structure were successfully fabricated through a simple chemical treatment. Immersion test in a simulated body fluid and in vitro cell culture were used to evaluate the biological performance of the treated samples. The results demonstrate that the titanate layer with a nanotubular structure on Ti substrates can promote the apatite-inducing ability remarkably and greatly enhance cellular responses. This highlights the potential of such titanate biomaterials with the special nanoscale structure and effective surface composition for biomedical applications such as bone implants. PMID:26089665

  13. Towards rewritable multilevel optical data storage in single nanocrystals.

    PubMed

    Riesen, Nicolas; Pan, Xuanzhao; Badek, Kate; Ruan, Yinlan; Monro, Tanya M; Zhao, Jiangbo; Ebendorff-Heidepriem, Heike; Riesen, Hans

    2018-04-30

    Novel approaches for digital data storage are imperative, as storage capacities are drastically being outpaced by the exponential growth in data generation. Optical data storage represents the most promising alternative to traditional magnetic and solid-state data storage. In this paper, a novel and energy efficient approach to optical data storage using rare-earth ion doped inorganic insulators is demonstrated. In particular, the nanocrystalline alkaline earth halide BaFCl:Sm is shown to provide great potential for multilevel optical data storage. Proof-of-concept demonstrations reveal for the first time that these phosphors could be used for rewritable, multilevel optical data storage on the physical dimensions of a single nanocrystal. Multilevel information storage is based on the very efficient and reversible conversion of Sm 3+ to Sm 2+ ions upon exposure to UV-C light. The stored information is then read-out using confocal optics by employing the photoluminescence of the Sm 2+ ions in the nanocrystals, with the signal strength depending on the UV-C fluence used during the write step. The latter serves as the mechanism for multilevel data storage in the individual nanocrystals, as demonstrated in this paper. This data storage platform has the potential to be extended to 2D and 3D memory for storage densities that could potentially approach petabyte/cm 3 levels.

  14. Tendon allograft sterilized by peracetic acid/ethanol combined with gamma irradiation.

    PubMed

    Zhou, Mo; Zhang, Naili; Liu, Xiaoming; Li, Youchen; Zhang, Yumin; Wang, Xusheng; Li, Baoming; Li, Baoxing

    2014-07-01

    Research and clinical applications have demonstrated that the effects of tendon allografts are comparable to those of autografts when reconstructing injured tendons or ligaments, but allograft safety remains problematic. Sterilisation could eliminate or decrease the possibility of disease transmission, but current methods seldom achieve satisfactory sterilisation without affecting the mechanical properties of the tendon. Peracetic acid-ethanol in combination with low-dose gamma irradiation (PE-R) would inactivate potential deleterious microorganisms without affecting mechanical and biocompatible properties of tendon allograft. Controlled laboratory design. HIV, PPV, PRV and BVDV inactivation was evaluated. After verifying viral inactivation, the treated tendon allografts were characterised by optical microscopy, scanning electron microscopy and tensile testing, and the cytocompatibility was assessed with an MTT assay and by subcutaneous implantation. Effective and efficient inactivation of HIV, PPV, PRV and BVDV was observed. Histological structure and ultrastructure were unchanged in the treated tendon allograft, which also exhibited comparable biomechanical properties and good biocompatibility. The preliminary results confirmed our hypothesis and demonstrated that the PE-R tendon allograft has significant potential as an alternative to ligament/tendon reconstruction. Tendon allografts have been extensively used in ligament reconstruction and tendon repair. However, current sterilisation methods have various shortcomings, so PE-R has been proposed. This study suggests that PE-R tendon allograft has great potential as an alternative for ligament/tendon reconstruction. Sterilisation has been a great concern for tendon allografts. However, most sterilisation methods cannot inactivate viruses and bacteria without impairing the mechanical properties of the tendon allograft. Peracetic acid/ethanol with gamma irradiation can effectively inactivate viruses and bacteria. Meanwhile, tendon allografts sterilised by this method maintain their physiological tendon structure, biomechanical integrity and good compatibility.

  15. Forensic proteomics for the evaluation of the post-mortem decay in bones.

    PubMed

    Procopio, Noemi; Williams, Anna; Chamberlain, Andrew T; Buckley, Michael

    2018-04-15

    Current methods for evaluation the of post-mortem interval (PMI) of skeletal remains suffer from poor accuracy due to the great number of variables that affect the diagenetic process and to the lack of specific guidelines to address this issue. During decomposition, proteins can undergo cumulative decay over the time, resulting in a decrease in the range and abundance of proteins present (i.e., the proteome) in different tissues as well as in an increase of post-translational modifications occurring in these proteins. In this study, we investigate the applicability of bone proteomic analyses to simulated forensic contexts, looking for specific biomarkers that may help the estimation of PMI, as well as evaluate a previously discovered marker for the estimation of biological age. We noticed a reduction of particular plasma and muscle proteins with increasing PMIs, as well as an increased deamidation of biglycan, a protein with a role in modulating bone growth and mineralization. We also corroborated our previous results regarding the use of fetuin-A as a potential biomarker for the estimation of age-at-death, demonstrating the applicability and the great potential that proteomics may have towards forensic sciences. The estimation of the post-mortem interval has a key role in forensic investigations, however nowadays it still suffers from poor reliability, especially when body tissues are heavily decomposed. Here we propose for the first time the application of bone proteomics to the estimation of the time elapsed since death and found several new potential biomarkers to address this, demonstrating the applicability of proteomic analyses to forensic sciences. Copyright © 2018. Published by Elsevier B.V.

  16. Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Zeng, Fei; Li, Fan; Wang, Minjuan; Mao, Haijun; Wang, Guangyue; Song, Cheng; Pan, Feng

    2015-03-01

    The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications.The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06406b

  17. Good-to-Great Superintendents: An Examination of Jim Collins' Good-to-Great Level Five Leadership Attributes as Demonstrated by the Leadership Behaviors of Superintendents of High-Performing California Public Single-School Districts

    ERIC Educational Resources Information Center

    Brown, James D.

    2010-01-01

    Purpose: The purpose of this study was to examine Collins' good-to-great Level Five leadership attributes, as demonstrated by the leadership behaviors of superintendents of high-performing California public single-school districts. Methodology: The researcher used a case study design to conduct this study. Personal interviews were conducted in…

  18. Exposure to Odors of Rivals Enhances Sexual Motivation in Male Giant Pandas

    PubMed Central

    Bian, Xiaoxing; Liu, Dingzhen; Zeng, Hua; Zhang, Guiquan; Wei, Rongping; Hou, Rong

    2013-01-01

    Males will alter their mating behavior to cope with the presence of their competitors. Even exposure to odors from potential competitors can greatly increase male ejaculate expenditure in a variety of animals including insects, fishes, birds and rodents. Major efforts have been made to examine males' plastic responses to sperm competition and its fitness benefits. However, the effects of competitor absence on male's sexual motivation and behaviors remain unclear, which has been proposed to be one of the causes for the poor sexual performance of some captive mammals. This study revealed that sexual motivation can be greatly enhanced in captive male giant pandas (Ailuropoda melanoleuca) by exposure to chemosensory cues from either one or three conspecifics males. It had been shown that potential rivals' odors increased males' chemosensory investigation behavior, as well as their observing, following and sniffing behaviors towards estrous females. Behaviors changed regardless of the number of rivals (one or three). Our results demonstrate the effects of potential competition on male giant pandas' sexual motivation and behavioral coping strategy. We anticipate that our research will provide a fresh insight into the mechanisms underlying poor sexual performance in male captive mammals, and valuable information for the practical management and ex situ conservation of endangered species. PMID:23940532

  19. Exposure to odors of rivals enhances sexual motivation in male giant pandas.

    PubMed

    Bian, Xiaoxing; Liu, Dingzhen; Zeng, Hua; Zhang, Guiquan; Wei, Rongping; Hou, Rong

    2013-01-01

    Males will alter their mating behavior to cope with the presence of their competitors. Even exposure to odors from potential competitors can greatly increase male ejaculate expenditure in a variety of animals including insects, fishes, birds and rodents. Major efforts have been made to examine males' plastic responses to sperm competition and its fitness benefits. However, the effects of competitor absence on male's sexual motivation and behaviors remain unclear, which has been proposed to be one of the causes for the poor sexual performance of some captive mammals. This study revealed that sexual motivation can be greatly enhanced in captive male giant pandas (Ailuropoda melanoleuca) by exposure to chemosensory cues from either one or three conspecifics males. It had been shown that potential rivals' odors increased males' chemosensory investigation behavior, as well as their observing, following and sniffing behaviors towards estrous females. Behaviors changed regardless of the number of rivals (one or three). Our results demonstrate the effects of potential competition on male giant pandas' sexual motivation and behavioral coping strategy. We anticipate that our research will provide a fresh insight into the mechanisms underlying poor sexual performance in male captive mammals, and valuable information for the practical management and ex situ conservation of endangered species.

  20. A Screening Assessment of the Potential Impacts of Climate ...

    EPA Pesticide Factsheets

    EPA announced the availability of the report, A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (CSO) Mitigation in the Great Lakes and New England Regions. This report is a screening-level assessment of the potential implications climate change has had on combined sewer overflow (CSO) mitigation in the Great Lakes and New England Regions. This report describes the potential scope and magnitude of climate change impacts on combined sewer overflow (CSOs) mitigation efforts in the Great Lakes Region and New England Region.

  1. A novel platform designed by Au core/inorganic shell structure conjugated onto MTX/LDH for chemo-photothermal therapy.

    PubMed

    Tian, De-Ying; Wang, Wei-Yuan; Li, Shu-Ping; Li, Xiao-Dong; Sha, Zhao-Lin

    2016-05-30

    A novel platform making up of methotrexate intercalated layered double hydroxide (MTX/LDH) hybrid doped with gold nanoparticles (NPs) may have great potential both in chemo-photothermal therapy and the simultaneous drug delivery. In this paper, a promising platform of Au@PDDA-MTX/LDH was developed for anti-tumor drug delivery and synergistic therapy. Firstly, Au NPs were coated using Layer-by-Layer (LbL) technology by alternate deposition of poly (diallyldimethylammonium chloride) (PDDA) and MTX molecules, and then the resulting core-shell structures (named as Au@PDDA-MTX) were directly conjugated onto the surface of MTX/LDH hybrid by electrostatic attraction to afford Au@PDDA-MTX/LDH NPs. Here MTX was used as both the agent for surface modification and the anti-tumor drug for chemotherapy. The platform of Au@PDDA-MTX/LDH NPs not only had a high drug-loading capacity, but also showed excellent colloidal stability and interesting pH-responsive release profile. In vitro drug release studies demonstrated that MTX released from Au@PDDA-MTX/LDH was relatively slow under normal physiological pH, but it was enhanced significantly at a weak acidic pH value. Furthermore, the combined treatment of cancer cells by using Au@PDDA-MTX/LDH for synergistic hyperthermia ablation and chemotherapy was demonstrated to exhibit higher therapeutic efficacy than either single treatment alone, underscoring the great potential of the platform for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. CCD-camera-based diffuse optical tomography to study ischemic stroke in preclinical rat models

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Jing; Niu, Haijing; Liu, Yueming; Su, Jianzhong; Liu, Hanli

    2011-02-01

    Stroke, due to ischemia or hemorrhage, is the neurological deficit of cerebrovasculature and is the third leading cause of death in the United States. More than 80 percent of stroke patients are ischemic stroke due to blockage of artery in the brain by thrombosis or arterial embolism. Hence, development of an imaging technique to image or monitor the cerebral ischemia and effect of anti-stoke therapy is more than necessary. Near infrared (NIR) optical tomographic technique has a great potential to be utilized as a non-invasive image tool (due to its low cost and portability) to image the embedded abnormal tissue, such as a dysfunctional area caused by ischemia. Moreover, NIR tomographic techniques have been successively demonstrated in the studies of cerebro-vascular hemodynamics and brain injury. As compared to a fiberbased diffuse optical tomographic system, a CCD-camera-based system is more suitable for pre-clinical animal studies due to its simpler setup and lower cost. In this study, we have utilized the CCD-camera-based technique to image the embedded inclusions based on tissue-phantom experimental data. Then, we are able to obtain good reconstructed images by two recently developed algorithms: (1) depth compensation algorithm (DCA) and (2) globally convergent method (GCM). In this study, we will demonstrate the volumetric tomographic reconstructed results taken from tissuephantom; the latter has a great potential to determine and monitor the effect of anti-stroke therapies.

  3. High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes.

    PubMed

    Zhou, Fei; Badillo-Corona, Jesus A; Karcher, Daniel; Gonzalez-Rabade, Nuria; Piepenburg, Katrin; Borchers, A-M Inka; Maloney, Alan P; Kavanagh, Tony A; Gray, John C; Bock, Ralph

    2008-12-01

    Transgene expression from the plant's plastid genome represents a promising strategy in molecular farming because of the plastid's potential to accumulate foreign proteins to high levels and the increased biosafety provided by the maternal mode of organelle inheritance. In this article, we explore the potential of transplastomic plants to produce human immunodeficiency virus (HIV) antigens as potential components of an acquired immunodeficiency syndrome (AIDS) vaccine. It is shown that the HIV antigens p24 (the major target of T-cell-mediated immune responses in HIV-positive individuals) and Nef can be expressed to high levels in plastids of tobacco, a non-food crop, and tomato, a food crop with an edible fruit. Optimized p24-Nef fusion gene cassettes trigger antigen protein accumulation to up to approximately 40% of the plant's total protein, demonstrating the great potential of transgenic plastids to produce AIDS vaccine components at low cost and high yield.

  4. Chitosan-functionalised single-walled carbon nanotube-mediated drug delivery of SNX-2112 in cancer cells.

    PubMed

    Zheng, Lixia; Wu, Shao; Tan, Li; Tan, Huo; Yu, Baodan

    2016-09-01

    Delivery of amphiphobic drugs (insoluble in both water and oil) has been a great challenge in drug delivery. SNX-2112, a novel inhibitor of Hsp90, is a promising drug candidate for treating various types of cancers; however, the insolubility greatly limits its clinical application. This study aimed to build a new type of drug delivery system using single-walled carbon nanotubes (SWNTs) for controllable release of SNX-2112; chitosan (CHI) was non-covalently added to SWNTs to improve their biocompatibility. SWNTs-CHI demonstrated high drug-loading capability; the release of SNX-2112 was pH triggered and time related. The intracellular reactive oxygen species of SWNTs-CHI increased, compared with that of SWNTs, leading to higher mitogen-activated protein kinase and cell apoptosis. The results of western-blotting, lactate dehydrogenase (LDH) release assay, and cell viability assay analyses indicated that apoptosis-related proteins were abundantly expressed in K562 cells and that the drug delivery system significantly inhibited K562 cells. Thus, SWNT-CHI/SNX-2112 shows great potential as a drug delivery system for cancer therapy. © The Author(s) 2016.

  5. Grassland and cropland net ecosystem production of the U.S. Great Plains: Regression tree model development and comparative analysis

    USGS Publications Warehouse

    Wylie, Bruce K.; Howard, Daniel; Dahal, Devendra; Gilmanov, Tagir; Ji, Lei; Zhang, Li; Smith, Kelcy

    2016-01-01

    This paper presents the methodology and results of two ecological-based net ecosystem production (NEP) regression tree models capable of up scaling measurements made at various flux tower sites throughout the U.S. Great Plains. Separate grassland and cropland NEP regression tree models were trained using various remote sensing data and other biogeophysical data, along with 15 flux towers contributing to the grassland model and 15 flux towers for the cropland model. The models yielded weekly mean daily grassland and cropland NEP maps of the U.S. Great Plains at 250 m resolution for 2000–2008. The grassland and cropland NEP maps were spatially summarized and statistically compared. The results of this study indicate that grassland and cropland ecosystems generally performed as weak net carbon (C) sinks, absorbing more C from the atmosphere than they released from 2000 to 2008. Grasslands demonstrated higher carbon sink potential (139 g C·m−2·year−1) than non-irrigated croplands. A closer look into the weekly time series reveals the C fluctuation through time and space for each land cover type.

  6. Boosting current generation in microbial fuel cells by an order of magnitude by coating an ionic liquid polymer on carbon anodes.

    PubMed

    Yang, Lu; Deng, Wenfang; Zhang, Youming; Tan, Yueming; Ma, Ming; Xie, Qingji

    2017-05-15

    Microbial fuel cells (MFCs) have attracted great attentions due to their great application potentials, but the relatively low power densities of MFCs still hinder their widespread practical applications. Herein, we report that the current generation in MFCs can be boosted by an order of magnitude, simply by coating a hydrophilic and positively charged ionic liquid polymer (ILP) on carbon cloth (CC) or carbon felt (CF). The ILP coating not only can increase the bacterial loading capacity due to the electrostatic interactions between ILP and bacterial cells, but also can improve the mediated extracellular electron transfer between the electrode and the cytochrome proteins on the outer membrane of Shewanella putrefaciens cells. As a result, the maximum power density of a MFC equipped with the CF-ILP bioanode is as high as 4400±170mWm -2 , which is amongst the highest values reported to date. This work demonstrates a new strategy for greatly boosting the current generation in MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons

    PubMed Central

    Williams, Stephen R; Stuart, Greg J

    1999-01-01

    Electrophysiological recordings and pharmacological manipulations were used to investigate the mechanisms underlying the generation of action potential burst firing and its postsynaptic consequences in visually identified rat layer 5 pyramidal neurons in vitro.Based upon repetitive firing properties and subthreshold membrane characteristics, layer 5 pyramidal neurons were separated into three classes: regular firing and weak and strong intrinsically burst firing.High frequency (330 ± 10 Hz) action potential burst firing was abolished or greatly weakened by the removal of Ca2+ (n = 5) from, or by the addition of the Ca2+ channel antagonist Ni2+ (250–500 μm; n = 8) to, the perfusion medium.The blockade of apical dendritic sodium channels by the local dendritic application of TTX (100 nm; n = 5) abolished or greatly weakened action potential burst firing, as did the local apical dendritic application of Ni2+ (1 mm; n = 5).Apical dendritic depolarisation resulted in low frequency (157 ± 26 Hz; n = 6) action potential burst firing in regular firing neurons, as classified by somatic current injection. The intensity of action potential burst discharges in intrinsically burst firing neurons was facilitated by dendritic depolarisation (n = 11).Action potential amplitude decreased throughout a burst when recorded somatically, suggesting that later action potentials may fail to propagate axonally. Axonal recordings demonstrated that each action potential in a burst is axonally initiated and that no decrement in action potential amplitude is apparent in the axon > 30 μm from the soma.Paired recordings (n = 16) from synaptically coupled neurons indicated that each action potential in a burst could cause transmitter release. EPSPs or EPSCs evoked by a presynaptic burst of action potentials showed use-dependent synaptic depression.A postsynaptic, TTX-sensitive voltage-dependent amplification process ensured that later EPSPs in a burst were amplified when generated from membrane potentials positive to -60 mV, providing a postsynaptic mechanism that counteracts use-dependent depression at synapses between layer 5 pyramidal neurons. PMID:10581316

  8. Speech-Like Rhythm in a Voiced and Voiceless Orangutan Call

    PubMed Central

    Lameira, Adriano R.; Hardus, Madeleine E.; Bartlett, Adrian M.; Shumaker, Robert W.; Wich, Serge A.; Menken, Steph B. J.

    2015-01-01

    The evolutionary origins of speech remain obscure. Recently, it was proposed that speech derived from monkey facial signals which exhibit a speech-like rhythm of ∼5 open-close lip cycles per second. In monkeys, these signals may also be vocalized, offering a plausible evolutionary stepping stone towards speech. Three essential predictions remain, however, to be tested to assess this hypothesis' validity; (i) Great apes, our closest relatives, should likewise produce 5Hz-rhythm signals, (ii) speech-like rhythm should involve calls articulatorily similar to consonants and vowels given that speech rhythm is the direct product of stringing together these two basic elements, and (iii) speech-like rhythm should be experience-based. Via cinematic analyses we demonstrate that an ex-entertainment orangutan produces two calls at a speech-like rhythm, coined “clicks” and “faux-speech.” Like voiceless consonants, clicks required no vocal fold action, but did involve independent manoeuvring over lips and tongue. In parallel to vowels, faux-speech showed harmonic and formant modulations, implying vocal fold and supralaryngeal action. This rhythm was several times faster than orangutan chewing rates, as observed in monkeys and humans. Critically, this rhythm was seven-fold faster, and contextually distinct, than any other known rhythmic calls described to date in the largest database of the orangutan repertoire ever assembled. The first two predictions advanced by this study are validated and, based on parsimony and exclusion of potential alternative explanations, initial support is given to the third prediction. Irrespectively of the putative origins of these calls and underlying mechanisms, our findings demonstrate irrevocably that great apes are not respiratorily, articulatorilly, or neurologically constrained for the production of consonant- and vowel-like calls at speech rhythm. Orangutan clicks and faux-speech confirm the importance of rhythmic speech antecedents within the primate lineage, and highlight potential articulatory homologies between great ape calls and human consonants and vowels. PMID:25569211

  9. Perovskite photodetectors with both visible-infrared dual-mode response and super-narrowband characteristics towards photo-communication encryption application.

    PubMed

    Wu, Ye; Li, Xiaoming; Wei, Yi; Gu, Yu; Zeng, Haibo

    2017-12-21

    Photo-communication has attracted great attention because of the rapid development of wireless information transmission technology. However, it is still a great challenge in cryptography communications, where it is greatly weakened by the openness of the light channels. Here, visible-infrared dual-mode narrowband perovskite photodetectors were fabricated and a new photo-communication encryption technique was proposed. For the first time, highly narrowband and two-photon absorption (TPA) resultant photoresponses within a single photodetector are demonstrated. The full width at half maximum (FWHM) of the photoresponse is as narrow as 13.6 nm in the visible range, which is superior to state-of-the-art narrowband photodetectors. Furthermore, these two merits of narrowband and TPA characteristics are utilized to encrypt the photo-communication based on the above photodetectors. When sending information and noise signals with 532 and 442 nm laser light simultaneously, the perovskite photodetectors only receive the main information, while the commercial Si photodetector responds to both lights, losing the main information completely. The final data are determined by the secret key through the TPA process as preset. Such narrowband and TPA detection abilities endow the perovskite photodetectors with great potential in future security communication and also provide new opportunities and platforms for encryption techniques.

  10. Strategies for Controlling Non-Transmissible Infection Outbreaks Using a Large Human Movement Data Set

    PubMed Central

    Hancock, Penelope A.; Rehman, Yasmin; Hall, Ian M.; Edeghere, Obaghe; Danon, Leon; House, Thomas A.; Keeling, Matthew J.

    2014-01-01

    Prediction and control of the spread of infectious disease in human populations benefits greatly from our growing capacity to quantify human movement behavior. Here we develop a mathematical model for non-transmissible infections contracted from a localized environmental source, informed by a detailed description of movement patterns of the population of Great Britain. The model is applied to outbreaks of Legionnaires' disease, a potentially life-threatening form of pneumonia caused by the bacteria Legionella pneumophilia. We use case-report data from three recent outbreaks that have occurred in Great Britain where the source has already been identified by public health agencies. We first demonstrate that the amount of individual-level heterogeneity incorporated in the movement data greatly influences our ability to predict the source location. The most accurate predictions were obtained using reported travel histories to describe movements of infected individuals, but using detailed simulation models to estimate movement patterns offers an effective fast alternative. Secondly, once the source is identified, we show that our model can be used to accurately determine the population likely to have been exposed to the pathogen, and hence predict the residential locations of infected individuals. The results give rise to an effective control strategy that can be implemented rapidly in response to an outbreak. PMID:25211122

  11. Theoretical analysis and concept demonstration of a novel MOEMS accelerometer based on Raman—Nath diffraction

    NASA Astrophysics Data System (ADS)

    Zuwei, Zhang; Zhiyu, Wen; Jing, Hu

    2012-04-01

    The design and simulation of a novel microoptoelectromechanical system (MOEMS) accelerometer based on Raman—Nath diffraction are presented. The device is planned to be fabricated by microelectromechanical system technology and has a different sensing principle than the other reported MOEMS accelerometers. The fundamental theories and principles of the device are discussed in detail, a 3D finite element simulation of the flexural plate wave delay line oscillator is provided, and the operation frequency around 40 MHz is calculated. Finally, a lecture experiment is performed to demonstrate the feasibility of the device. This novel accelerometer is proposed to have the advantages of high sensitivity and anti-radiation, and has great potential for various applications.

  12. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses

    NASA Astrophysics Data System (ADS)

    Serb, Alexander; Bill, Johannes; Khiat, Ali; Berdan, Radu; Legenstein, Robert; Prodromakis, Themis

    2016-09-01

    In an increasingly data-rich world the need for developing computing systems that cannot only process, but ideally also interpret big data is becoming continuously more pressing. Brain-inspired concepts have shown great promise towards addressing this need. Here we demonstrate unsupervised learning in a probabilistic neural network that utilizes metal-oxide memristive devices as multi-state synapses. Our approach can be exploited for processing unlabelled data and can adapt to time-varying clusters that underlie incoming data by supporting the capability of reversible unsupervised learning. The potential of this work is showcased through the demonstration of successful learning in the presence of corrupted input data and probabilistic neurons, thus paving the way towards robust big-data processors.

  13. Quantify Glucose Level in Freshly Diabetic's Blood by Terahertz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Chen, Xiaofeng; Ma, Shihua; Wu, Xiumei; Yang, Wenxing; Zhang, Weifeng; Li, Xiao

    2018-04-01

    We demonstrate the capability of terahertz (THz) time-domain spectroscopy (TDS) to quantify glucose level in ex vivo freshly diabetic's blood. By investigating the THz spectra of different human blood, we find out THz absorption coefficients reflect a high sensitivity to the glucose level in blood. With a quantitative analysis of 70 patients, we demonstrate that the THz absorption coefficients and the blood glucose levels perform a linear relationship. A comparative experiment between THz measurement and glucometers is also conducted with another 20 blood samples, and the results confirm that the relative error is as less as 15%. Our ex vivo human blood study indicates that THz technique has great potential application to diagnose blood glucose level in clinical practice.

  14. Semiconducting polymer dot as a highly effective contrast agent for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Zhang, Jian

    2018-02-01

    In this study, we developed a novel PIID-DTBT based semiconducting polymer dots (Pdots) that have broad and strong optical absorption in the visible-light region (500 nm - 700 nm). Gold nanoparticles (GNPs) and gold nanorods (GNRs) that have been verified as an excellent photoacoustic contrast agent were compared with Pdots based on photoacoustic imaging method. Both ex vivo and in vivo experiment demonstrated Pdots have a better photoacoustic conversion efficiency at 532 nm than GNPs and similar photoacoustic performance with GNRs at 700 nm at the same mass concentration. Our work demonstrates the great potential of Pdots as a highly effective contrast agent for precise localization of lesions relative to the blood vessels based on photoacoustic tomography imaging.

  15. A fully reconfigurable photonic integrated signal processor

    NASA Astrophysics Data System (ADS)

    Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping

    2016-03-01

    Photonic signal processing has been considered a solution to overcome the inherent electronic speed limitations. Over the past few years, an impressive range of photonic integrated signal processors have been proposed, but they usually offer limited reconfigurability, a feature highly needed for the implementation of large-scale general-purpose photonic signal processors. Here, we report and experimentally demonstrate a fully reconfigurable photonic integrated signal processor based on an InP-InGaAsP material system. The proposed photonic signal processor is capable of performing reconfigurable signal processing functions including temporal integration, temporal differentiation and Hilbert transformation. The reconfigurability is achieved by controlling the injection currents to the active components of the signal processor. Our demonstration suggests great potential for chip-scale fully programmable all-optical signal processing.

  16. Promotion on electrochemical performance of a cation deficient SrCo0.7Nb0.1Fe0.2O3-δ perovskite cathode for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ding, Liming; Wang, Lixi; Ding, Dong; Zhang, Shihua; Ding, Xifeng; Yuan, Guoliang

    2017-06-01

    Solid oxide fuel cells (SOFCs) offer great promise for the most efficient and cost-effective conversion to electricity of a wide variety of fuels. The cathode materials with high electro-catalytic activity for oxygen reduction reaction is vital to the development of commercially-viable SOFCs to be operated at reduced temperatures. In present study, cobalt-based perovskite oxides SrxCo0.7Nb0.1Fe0.2O3-δ (SCNF, x = 0.95 and 1) were comparatively investigated as promising cathode materials for intermediate-temperature SOFCs. The SCNF compounds with a slight Sr deficiency (S0.95CNF) exhibited single phase of primitive cubic structure with Pm-3m symmetry. A small Sr deficiency is demonstrated to greatly enhance the electrochemical performance of stoichiometric SCNF cathode due to significantly increased oxygen vacancy. The polarization resistance of S0.95CNF at 700 °C was 0.11 Ω cm2, only about 61% of SCNF. The rate limiting step for oxygen reduction reaction (ORR) is demonstrated to be oxygen ion transfer within the bulk electrode and/or from electrode to electrolyte through the triple phase boundary. Full cells with the SCNF cathode present good performance and stable output at reduced temperatures, indicating the great potential for enhanced performance of Co-based cathodes with A-site deficiency.

  17. Evaluation of Heavy-Chain C-Terminal Deletion on Product Quality and Pharmacokinetics of Monoclonal Antibodies.

    PubMed

    Jiang, Guoying; Yu, Christopher; Yadav, Daniela B; Hu, Zhilan; Amurao, Annamarie; Duenas, Eileen; Wong, Marc; Iverson, Mark; Zheng, Kai; Lam, Xanthe; Chen, Jia; Vega, Roxanne; Ulufatu, Sheila; Leddy, Cecilia; Davis, Helen; Shen, Amy; Wong, Pin Y; Harris, Reed; Wang, Y John; Li, Dongwei

    2016-07-01

    Due to their potential influence on stability, pharmacokinetics, and product consistency, antibody charge variants have attracted considerable attention in the biotechnology industry. Subtle to significant differences in the level of charge variants and new charge variants under various cell culture conditions are often observed during routine manufacturing or process changes and pose a challenge when demonstrating product comparability. To explore potential solutions to control charge heterogeneity, monoclonal antibodies (mAbs) with native, wild-type C-termini, and mutants with C-terminal deletions of either lysine or lysine and glycine were constructed, expressed, purified, and characterized in vitro and in vivo. Analytical and physiological characterization demonstrated that the mAb mutants had greatly reduced levels of basic variants without decreasing antibody biologic activity, structural stability, pharmacokinetics, or subcutaneous bioavailability in rats. This study provides a possible solution to mitigate mAb heterogeneity in C-terminal processing, improve batch-to-batch consistency, and facilitate the comparability study during process changes. Published by Elsevier Inc.

  18. Real-time encoding and compression of neuronal spikes by metal-oxide memristors

    NASA Astrophysics Data System (ADS)

    Gupta, Isha; Serb, Alexantrou; Khiat, Ali; Zeitler, Ralf; Vassanelli, Stefano; Prodromakis, Themistoklis

    2016-09-01

    Advanced brain-chip interfaces with numerous recording sites bear great potential for investigation of neuroprosthetic applications. The bottleneck towards achieving an efficient bio-electronic link is the real-time processing of neuronal signals, which imposes excessive requirements on bandwidth, energy and computation capacity. Here we present a unique concept where the intrinsic properties of memristive devices are exploited to compress information on neural spikes in real-time. We demonstrate that the inherent voltage thresholds of metal-oxide memristors can be used for discriminating recorded spiking events from background activity and without resorting to computationally heavy off-line processing. We prove that information on spike amplitude and frequency can be transduced and stored in single devices as non-volatile resistive state transitions. Finally, we show that a memristive device array allows for efficient data compression of signals recorded by a multi-electrode array, demonstrating the technology's potential for building scalable, yet energy-efficient on-node processors for brain-chip interfaces.

  19. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.

    PubMed

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2013-01-14

    We have demonstrated a rapid and general strategy to synthesize novel three-dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as-prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as-synthesized three-dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well-defined sponge-like network, large-scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen-gas sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Laser-Induced Breakdown Spectroscopy (LIBS) in a Novel Molten Salt Aerosol System.

    PubMed

    Williams, Ammon N; Phongikaroon, Supathorn

    2017-04-01

    In the pyrochemical separation of used nuclear fuel (UNF), fission product, rare earth, and actinide chlorides accumulate in the molten salt electrolyte over time. Measuring this salt composition in near real-time is advantageous for operational efficiency, material accountability, and nuclear safeguards. Laser-induced breakdown spectroscopy (LIBS) has been proposed and demonstrated as a potential analytical approach for molten LiCl-KCl salts. However, all the studies conducted to date have used a static surface approach which can lead to issues with splashing, low repeatability, and poor sample homogeneity. In this initial study, a novel molten salt aerosol approach has been developed and explored to measure the composition of the salt via LIBS. The functionality of the system has been demonstrated as well as a basic optimization of the laser energy and nebulizer gas pressure used. Initial results have shown that this molten salt aerosol-LIBS system has a great potential as an analytical technique for measuring the molten salt electrolyte used in this UNF reprocessing technology.

  1. Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors

    NASA Astrophysics Data System (ADS)

    Diemoz, P. C.; Endrizzi, M.; Vittoria, F. A.; Hagen, C. K.; Kallon, G.; Basta, D.; Marenzana, M.; Delogu, P.; Vincenzi, A.; De Ruvo, L.; Spandre, G.; Brez, A.; Bellazzini, R.; Olivo, A.

    2015-03-01

    Edge illumination (EI) X-ray phase-contrast imaging (XPCI) has potential for applications in different fields of research, including materials science, non-destructive industrial testing, small-animal imaging, and medical imaging. One of its main advantages is the compatibility with laboratory equipment, in particular with conventional non-microfocal sources, which makes its exploitation in normal research laboratories possible. In this work, we demonstrate that the signal in laboratory implementations of EI can be correctly described with the use of the simplified geometrical optics. Besides enabling the derivation of simple expressions for the sensitivity and spatial resolution of a given EI setup, this model also highlights the EI's achromaticity. With the aim of improving image quality, as well as to take advantage of the fact that all energies in the spectrum contribute to the image contrast, we carried out EI acquisitions using a photon-counting energy-resolved detector. The obtained results demonstrate that this approach has great potential for future laboratory implementations of EI.

  2. A review of slow-release fluoride devices.

    PubMed

    Toumba, K J; Al-Ibrahim, N S; Curzon, M E J

    2009-09-01

    Fluoride has been used to combat dental caries using a number of different clinical approaches. An exciting relatively new development is fluoride slow-releasing devices that consistently elevate intra-oral fluoride levels of plaque and saliva for prolonged periods of up to two years. The literature on the use of slow-releasing fluoride devices in dentistry were reviewed. A Medline search on key words was carried out. All papers in English were individually reviewed. Slow-releasing fluoride devices have been shown to be effective in elevating salivary fluoride levels in both animals and human studies and to enhance the remineralisation of dental enamel. They have been demonstrated to be safe to use and without the risk of fluoride toxicity. A double blind randomised clinical trial demonstrated 76% fewer new carious surface increment in high caries-risk children after two years. These devices have a number of potential uses in dentistry and in particular have great potential for caries prevention of non-compliant high caries-risk groups.

  3. Femtosecond lasers as novel tool in dental surgery

    NASA Astrophysics Data System (ADS)

    Serbin, J.; Bauer, T.; Fallnich, C.; Kasenbacher, A.; Arnold, W. H.

    2002-09-01

    There is a proven potential of femtosecond lasers for medical applications like cornea shaping [1], ear surgery or dental surgery [2]. Minimal invasive treatment of carious tissue has become an increasingly important aspect in modern dentistry. State of the art methods like grinding using turbine-driven drills or ablation by Er:YAG lasers [3] generate mechanical and thermal stress, thus generating micro cracks of several tens of microns in the enamel [4]. These cracks are starting points for new carious attacks and have to be avoided for long term success of the dental treatment. By using femtosecond lasers (1 fs=10 -15 s) for ablating dental tissue, these drawbacks can be overcome. We have demonstrated that femtosecond laser ablation offers a tool for crack-free generation of cavities in dental tissue. Furthermore, spectral analysis of the laser induced plasma has been used to indicate carious oral tissue. Our latest results on femtosecond laser dentistry will be presented, demonstrating the great potential of this kind of laser technology in medicine.

  4. High Potential Source for Biomass Degradation Enzyme Discovery and Environmental Aspects Revealed through Metagenomics of Indian Buffalo Rumen

    PubMed Central

    Singh, K. M.; Reddy, Bhaskar; Patel, Dishita; Patel, A. K.; Patel, J. B.; Joshi, C. G.

    2014-01-01

    The complex microbiomes of the rumen functions as an effective system for plant cell wall degradation, and biomass utilization provide genetic resource for degrading microbial enzymes that could be used in the production of biofuel. Therefore the buffalo rumen microbiota was surveyed using shot gun sequencing. This metagenomic sequencing generated 3.9 GB of sequences and data were assembled into 137270 contiguous sequences (contigs). We identified potential 2614 contigs encoding biomass degrading enzymes including glycoside hydrolases (GH: 1943 contigs), carbohydrate binding module (CBM: 23 contigs), glycosyl transferase (GT: 373 contigs), carbohydrate esterases (CE: 259 contigs), and polysaccharide lyases (PE: 16 contigs). The hierarchical clustering of buffalo metagenomes demonstrated the similarities and dissimilarity in microbial community structures and functional capacity. This demonstrates that buffalo rumen microbiome was considerably enriched in functional genes involved in polysaccharide degradation with great prospects to obtain new molecules that may be applied in the biofuel industry. PMID:25136572

  5. Understanding Self-Catalyzed Epitaxial Growth of III-V Nanowires toward Controlled Synthesis.

    PubMed

    Zi, Yunlong; Suslov, Sergey; Yang, Chen

    2017-02-08

    The self-catalyzed growth of III-V nanowires has drawn plenty of attention due to the potential of integration in current Si-based technologies. The homoparticle-assisted vapor-liquid-solid growth mechanism has been demonstrated for self-catalyzed III-V nanowire growth. However, the understandings of the preferred growth sites of these nanowires are still limited, which obstructs the controlled synthesis and the applications of self-catalyzed nanowire arrays. Here, we experimentally demonstrated that thermally created pits could serve as the preferred sites for self-catalyzed InAs nanowire growth. On that basis, we performed a pregrowth annealing strategy to promote the nanowire density by enhancing the pits formation on the substrate surface and enable the nanowire growth on the substrate that was not capable to facilitate the growth. The discovery of the preferred self-catalyzed nanowire growth sites and the pregrowth annealing strategy have shown great potentials for controlled self-catalyzed III-V nanowire array growth with preferred locations and density.

  6. Study of SiRNA-loaded PS-mPEG/CaP nanospheres on lung cancer

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Qin, Liubin; Sun, Ying; Shen, Ming; Duan, Yourong

    2014-05-01

    An ultrasound-adsorption method was used to prepare Bcl-2-SiRNA-loaded PS-mPEG/CaP nanospheres. The size and zeta potential were 18.41 ± 4.31 nm ( n = 5) and -23.5 ± 0.6 mV, respectively. The entrapment efficiency of SiRNA was 92.86 %. MTT assay results confirmed that the blank nanospheres demonstrated a negligible cytotoxicity response in H1299 cells. Flow cytometer analysis results demonstrated that PS-mPEG/CaP NSs could carry SiRNA into the cells effectively. RT-PCR experiments and apoptosis assay results approved that, compared with free SiRNA, SiRNA-loaded PS-mPEG/CaP NSs could silence Bcl-2 gene and induce cell apoptosis effectively. In vivo distribution results confirmed PS-mPEG/CaP NSs could carry SiRNA enter the tumor tissue effectively. Taken together, these results suggest that the Bcl-2-SiRNA-loaded PS-mPEG/CaP nanospheres have great potential to be used to cure lung cancer.

  7. Real-time encoding and compression of neuronal spikes by metal-oxide memristors

    PubMed Central

    Gupta, Isha; Serb, Alexantrou; Khiat, Ali; Zeitler, Ralf; Vassanelli, Stefano; Prodromakis, Themistoklis

    2016-01-01

    Advanced brain-chip interfaces with numerous recording sites bear great potential for investigation of neuroprosthetic applications. The bottleneck towards achieving an efficient bio-electronic link is the real-time processing of neuronal signals, which imposes excessive requirements on bandwidth, energy and computation capacity. Here we present a unique concept where the intrinsic properties of memristive devices are exploited to compress information on neural spikes in real-time. We demonstrate that the inherent voltage thresholds of metal-oxide memristors can be used for discriminating recorded spiking events from background activity and without resorting to computationally heavy off-line processing. We prove that information on spike amplitude and frequency can be transduced and stored in single devices as non-volatile resistive state transitions. Finally, we show that a memristive device array allows for efficient data compression of signals recorded by a multi-electrode array, demonstrating the technology's potential for building scalable, yet energy-efficient on-node processors for brain-chip interfaces. PMID:27666698

  8. Mobility-Selected Ion Trapping and Enrichment Using Structures for Lossless Ion Manipulations

    DOE PAGES

    Chen, Tsung-Chi; Ibrahim, Yehia M.; Webb, Ian K.; ...

    2016-01-11

    The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in a more reliable and cost-effective manner, while opening opportunities for much more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolationmore » and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. Lastly, we observed a linear increase in ion intensity with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tsung-Chi; Ibrahim, Yehia M.; Webb, Ian K.

    The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in a more reliable and cost-effective manner, while opening opportunities for much more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolationmore » and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. Lastly, we observed a linear increase in ion intensity with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.« less

  10. Targeting GPR120 and other fatty acid sensing GPCRs ameliorates insulin resistance and inflammatory diseases

    PubMed Central

    Talukdar, Saswata; Olefsky, Jerrold M; Osborn, Olivia

    2011-01-01

    The last decade has seen great progress in the understanding of the molecular pharmacology, physiological function and therapeutic potential of the G protein-coupled receptors. Free Fatty acids (FFAs) have been demonstrated to act as ligands of several GPCRs including GPR40, GPR43, GPR84, GPR119 and GPR120. We have recently shown that GPR120 acts as a physiological receptor of ω3 fatty acids in macrophages and adipocytes, which mediate potent anti-inflammatory and insulin sensitizing effects. The important role GPR120 plays in the control of inflammation raises the possibility that targeting this receptor could have therapeutic potential in many inflammatory diseases including obesity and type 2 diabetes. In this review, we discuss lipid-sensing GPCRs and highlight potential outcomes of targeting such receptors in ameliorating disease. PMID:21663979

  11. Evaluation of a rural demonstration program to increase seat belt use in the Great Lakes Region.

    DOT National Transportation Integrated Search

    2009-03-01

    Six States in the Great Lakes Region (Region 5) participated in a Rural Demonstration Program to increase seat belt : use in rural areas and among high-risk occupants, such as young males and occupants of pickup trucks. These : efforts, which include...

  12. Electrochemically mediated polymerization for highly sensitive detection of protein kinase activity.

    PubMed

    Hu, Qiong; Wang, Qiangwei; Jiang, Cuihua; Zhang, Jian; Kong, Jinming; Zhang, Xueji

    2018-07-01

    Protein kinases play a pivotal role in cellular regulation and signal transduction, the detection of protein kinase activity and inhibition is therefore of great importance to clinical diagnosis and drug discovery. In this work, a novel electrochemical platform using the electrochemically mediated polymerization as an efficient and cost-effective signal amplification strategy is described for the highly sensitive detection of protein kinase activity. This platform involves 1) the phosphorylation of substrate peptide by protein kinase, 2) the attachment of alkyl halide to the phosphorylated sites via the carboxylate-Zr 4+ -phosphate chemistry, and 3) the in situ grafting of electroactive polymers from the phosphorylated sites through the electrochemically mediated atom transfer radical polymerization (eATRP) at a negative potential, in the presence of the surface-attached alkyl halide as the initiator and the electroactive tag-conjugated acrylate as the monomer, respectively. Due to the electrochemically mediated polymerization, a large number of electroactive tags can be linked to each phosphorylated site, thereby greatly improving the detection sensitivity. This platform has been successfully applied to detect the activity of cAMP-dependent protein kinase (PKA) with a detection limit down to 1.63 mU mL -1 . Results also demonstrate that it is highly selective and can be used for the screening of protein kinase inhibitors. The potential application of our platform for protein kinase activity detection in complex biological samples has been further verified using normal human serum and HepG2 cell lysate. Moreover, our platform is operationally simple, highly efficient and cost-effective, thus holding great potential in protein kinase detection and inhibitor screening. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells.

    PubMed

    Li, Bo-Chao; Chang, Hao; Ren, Ke-Feng; Ji, Jian

    2016-11-01

    Substrate-mediated delivery of functional plasmid DNA (pDNA) has been proven to be a promising strategy to promote competitiveness of endothelial cells (ECs) over smooth muscle cells (SMCs), which is beneficial to inducing fast endothelialization of implanted vascular devices. Thus, it is of great importance to develop universal approaches with simplicity and easiness to immobilize DNA complex nanoparticles on substrates. In this study, the bioinspired polydopamine (PDA) coating was employed in immobilization of DNA complex nanoparticles, which were composed of protamine (PrS) and plasmid DNA encoding with hepatocyte growth factor (HGF-pDNA) gene. We demonstrated that the DNA complex nanoparticles can be successfully immobilized onto the PDA surface. Consequently, the HGF expression of both ECs and SMCs were significantly improved when they cultured on the DNA complex nanoparticles-immobilized substrates. Furthermore, EC proliferation was specifically promoted due to bioactivity of HGF, leading to an enhancement of EC competitiveness over SMCs. Our findings demonstrated the substrate-mediated functional gene nanoparticle delivery through PDA coating as a simple and efficient approach. It may hold great potential in the field of interventional cardiovascular implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Toxins vapC and pasB from prokaryotic TA modules remain active in mammalian cancer cells.

    PubMed

    Wieteska, Łukasz; Skulimowski, Aleksander; Cybula, Magdalena; Szemraj, Janusz

    2014-09-30

    Among the great number of addictive modules which have been discovered, only a few have been characterized. However, research concerning the adoption of toxins from these systems shows their great potential as a tool for molecular biology and medicine. In our study, we tested two different toxins derived from class II addictive modules, pasAB from plasmid pTF-FC2 (Thiobacillus ferrooxidans) and vapBC 2829Rv (Mycobacterium tuberculosis), in terms of their usefulness as growth inhibitors of human cancer cell lines, namely KYSE 30, MCF-7 and HCT 116. Transfection of the pasB and vapC genes into the cells was conducted with the use of two different expression systems. Cellular effects, such as apoptosis, necrosis and changes in the cell cycle, were tested by applying flow cytometry with immunofluorescence staining. Our findings demonstrated that toxins VapC and PasB demonstrate proapoptotic activity in the human cancer cells, regardless of the expression system used. As for the toxin PasB, observed changes were more subtle than for the VapC. The level of expression for both the genes was monitored by QPCR and did not reveal statistically significant differences within the same cell line.

  15. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.

    PubMed

    Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng

    2017-02-08

    Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.

  16. Seismic potential for large and great interplate earthquakes along the Chilean and Southern Peruvian Margins of South America: A quantitative reappraisal

    NASA Astrophysics Data System (ADS)

    Nishenko, Stuart P.

    1985-04-01

    The seismic potential of the Chilean and southern Peruvian margins of South America is reevaluated to delineate those areas or segments of the margin that may be expected to experience large or great interplate earthquakes within the next 20 years (1984-2004). Long-term estimates of seismic potential (or the conditional probability of recurrence within a specified period of time) are based on (1) statistical analysis of historic repeat time data using Weibull distributions and (2) deterministic estimates of recurrence times based on the time-predictable model of earthquake recurrence. Both methods emphasize the periodic nature of large and great earthquake recurrence, and are compared with estimates of probability based on the assumption of Poisson-type behavior. The estimates of seismic potential presented in this study are long-term forecasts only, as the temporal resolution (or standard deviation) of both methods is taken to range from ±15% to ±25% of the average or estimated repeat time. At present, the Valparaiso region of central Chile (32°-35°S) has a high potential or probability of recurrence in the next 20 years. Coseismic uplift data associated with previous shocks in 1822 and 1906 suggest that this area may have already started to rerupture in 1971-1973. Average repeat times also suggest this area is due for a great shock within the next 20 years. Flanking segments of the Chilean margin, Coquimbo-Illapel (30°-32°S) and Talca-Concepcion (35°-38°S), presently have poorly constrained but possibly quite high potentials for a series of large or great shocks within the next 20 years. In contrast, the rupture zone of the great 1960 earthquake (37°-46°S) has the lowest potential along the margin and is not expected to rerupture in a great earthquake within the next 100 years. In the north, the seismic potentials of the Mollendo-Arica (17°-18°S) and Arica-Antofagasta (18°-24°S) segments (which last ruptured during great earthquakes in 1868 and 1877) are also high, but poorly constrained.

  17. Fluorescent in situ hybridisation to amphioxus chromosomes.

    PubMed

    Castro, Luis Filipe Costa; Holland, Peter William Harold

    2002-12-01

    We describe an efficient protocol for mapping genes and other DNA sequences to amphioxus chromosomes using fluorescent in situ hybridisation. We apply this method to identify the number and location of ribosomal DNA gene clusters and telomere sequences in metaphase spreads of Branchiostoma floridae. We also describe how the locations of two single copy genes can be mapped relative to each other, and demonstrate this by mapping an amphioxus Pax gene relative to a homologue of the Notch gene. These methods have great potential for performing comparative genomics between amphioxus and vertebrates.

  18. Development of small molecule biosensors by coupling the recognition of the bacterial allosteric transcription factor with isothermal strand displacement amplification.

    PubMed

    Yao, Yongpeng; Li, Shanshan; Cao, Jiaqian; Liu, Weiwei; Fan, Keqiang; Xiang, Wensheng; Yang, Keqian; Kong, Deming; Wang, Weishan

    2018-05-08

    Here, we demonstrate an easy-to-implement and general biosensing strategy by coupling the small-molecule recognition of the bacterial allosteric transcription factor (aTF) with isothermal strand displacement amplification (SDA) in vitro. Based on this strategy, we developed two biosensors for the detection of an antiseptic, p-hydroxybenzoic acid, and a disease marker, uric acid, using bacterial aTF HosA and HucR, respectively, highlighting the great potential of this strategy for the development of small-molecule biosensors.

  19. Recent Advances in Attention Bias Modification for Substance Addictions

    PubMed Central

    Zhang, Melvyn Weibin; Ying, Jiang Bo; Song, Guo; Fung, Daniel S. S.; Smith, Helen E.

    2018-01-01

    Research on attentional bias modification has increased since 2014. A recent meta-analysis demonstrates evidence for bias modification for substance disorders, including alcohol and tobacco use disorders. Several pharmacological trials have shown that pharmacological agents can attenuate and modify such attentional bias. The pharmacological trials that have appeared to date have produced mixed results, which has clinical implications. Developments in Internet and mobile technologies have transformed how attention bias modification is currently being achieved. There remains great potential for further research that examines the efficacy of technology-aided attention bias interventions. PMID:29617325

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latychevskaia, Tatiana, E-mail: tatiana@physik.uzh.ch; Fink, Hans-Werner; Chushkin, Yuriy

    Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.

  1. Note: Ultra-high frequency ultra-low dc power consumption HEMT amplifier for quantum measurements in millikelvin temperature range.

    PubMed

    Korolev, A M; Shnyrkov, V I; Shulga, V M

    2011-01-01

    We have presented theory and experimentally demonstrated an efficient method for drastically reducing the power consumption of the rf/microwave amplifiers based on HEMT in unsaturated dc regime. Conceptual one-stage 10 dB-gain amplifier showed submicrowatt level of the power consumption (0.95 μW at frequency of 0.5 GHz) when cooled down to 300 mK. Proposed technique has a great potential to design the readout amplifiers for ultra-deep-cooled cryoelectronic quantum devices.

  2. Revolutionizing Child Welfare with Outcomes Management

    PubMed Central

    Toche-Manley, Linda L.; Dietzen, Laura; Nankin, Jesse; Beigel, Astrid

    2013-01-01

    Outcomes management technology holds great promise for improving the quality of services provided to youth in the child welfare system. Advantages include better detection of behavioral health and trauma-related issues, early indicators of case progress or risk of failure and program- and system-level learning. Yet organizational barriers to implementation persist. Attention is spent in this paper on addressing these barriers so the use of outcomes management technology becomes a common practice. A model for predicting resiliency is presented, along with case examples demonstrating its potential use for treatment planning and monitoring progress. PMID:23460130

  3. Measurement of surface shear stress vector beneath high-speed jet flow using liquid crystal coating

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Peng; Zhao, Ji-Song; Jiao, Yun; Cheng, Ke-Ming

    2018-05-01

    The shear-sensitive liquid crystal coating (SSLCC) technique is investigated in the high-speed jet flow of a micro-wind-tunnel. An approach to measure surface shear stress vector distribution using the SSLCC technique is established, where six synchronous cameras are used to record the coating color at different circumferential view angles. Spatial wall shear stress vector distributions on the test surface are obtained at different velocities. The results are encouraging and demonstrate the great potential of the SSLCC technique in high-speed wind-tunnel measurement.

  4. Translation lexicon acquisition from bilingual dictionaries

    NASA Astrophysics Data System (ADS)

    Doermann, David S.; Ma, Huanfeng; Karagol-Ayan, Burcu; Oard, Douglas W.

    2001-12-01

    Bilingual dictionaries hold great potential as a source of lexical resources for training automated systems for optical character recognition, machine translation and cross-language information retrieval. In this work we describe a system for extracting term lexicons from printed copies of bilingual dictionaries. We describe our approach to page and definition segmentation and entry parsing. We have used the approach to parse a number of dictionaries and demonstrate the results for retrieval using a French-English Dictionary to generate a translation lexicon and a corpus of English queries applied to French documents to evaluation cross-language IR.

  5. Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits

    PubMed Central

    Yang, Cheng; Cui, Xiaoya; Zhang, Zhexu; Chiang, Sum Wai; Lin, Wei; Duan, Huan; Li, Jia; Kang, Feiyu; Wong, Ching-Ping

    2015-01-01

    Fractal metallic dendrites have been drawing more attentions recently, yet they have rarely been explored in electronic printing or packaging applications because of the great challenges in large-scale synthesis and limited understanding in such applications. Here we demonstrate a controllable synthesis of fractal Ag micro-dendrites at the hundred-gram scale. When used as the fillers for isotropically electrically conductive composites (ECCs), the unique three-dimensional fractal geometrical configuration and low-temperature sintering characteristic render the Ag micro dendrites with an ultra-low electrical percolation threshold of 0.97 vol% (8 wt%). The ultra-low percolation threshold and self-limited fusing ability may address some critical challenges in current interconnect technology for microelectronics. For example, only half of the laser-scribe energy is needed to pattern fine circuit lines printed using the present ECCs, showing great potential for wiring ultrathin circuits for high performance flexible electronics. PMID:26333352

  6. Piezoelectric tuning fork biosensors for the quantitative measurement of biomolecular interactions

    NASA Astrophysics Data System (ADS)

    Gonzalez, Laura; Rodrigues, Mafalda; Benito, Angel Maria; Pérez-García, Lluïsa; Puig-Vidal, Manel; Otero, Jorge

    2015-12-01

    The quantitative measurement of biomolecular interactions is of great interest in molecular biology. Atomic force microscopy (AFM) has proved its capacity to act as a biosensor and determine the affinity between biomolecules of interest. Nevertheless, the detection scheme presents certain limitations when it comes to developing a compact biosensor. Recently, piezoelectric quartz tuning forks (QTFs) have been used as laser-free detection sensors for AFM. However, only a few studies along these lines have considered soft biological samples, and even fewer constitute quantified molecular recognition experiments. Here, we demonstrate the capacity of QTF probes to perform specific interaction measurements between biotin-streptavidin complexes in buffer solution. We propose in this paper a variant of dynamic force spectroscopy based on representing adhesion energies E (aJ) against pulling rates v (nm s-1). Our results are compared with conventional AFM measurements and show the great potential of these sensors in molecular interaction studies.

  7. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    Li, Hongliang; Wang, Liangbing; Dai, Yizhou; Pu, Zhengtian; Lao, Zhuohan; Chen, Yawei; Wang, Menglin; Zheng, Xusheng; Zhu, Junfa; Zhang, Wenhua; Si, Rui; Ma, Chao; Zeng, Jie

    2018-05-01

    Exploring the interaction between two neighbouring monomers has great potential to significantly raise the performance and deepen the mechanistic understanding of heterogeneous catalysis. Herein, we demonstrate that the synergetic interaction between neighbouring Pt monomers on MoS2 greatly enhanced the CO2 hydrogenation catalytic activity and reduced the activation energy relative to isolated monomers. Neighbouring Pt monomers were achieved by increasing the Pt mass loading up to 7.5% while maintaining the atomic dispersion of Pt. Mechanistic studies reveal that neighbouring Pt monomers not only worked in synergy to vary the reaction barrier, but also underwent distinct reaction paths compared with isolated monomers. Isolated Pt monomers favour the conversion of CO2 into methanol without the formation of formic acid, whereas CO2 is hydrogenated stepwise into formic acid and methanol for neighbouring Pt monomers. The discovery of the synergetic interaction between neighbouring monomers may create a new path for manipulating catalytic properties.

  8. Photocatalytically Renewable Micro-electrochemical Sensor for Real-Time Monitoring of Cells.

    PubMed

    Xu, Jia-Quan; Liu, Yan-Ling; Wang, Qian; Duo, Huan-Huan; Zhang, Xin-Wei; Li, Yu-Tao; Huang, Wei-Hua

    2015-11-23

    Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs-RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Transmission Parameters of the 2001 Foot and Mouth Epidemic in Great Britain

    PubMed Central

    Chis Ster, Irina; Ferguson, Neil M.

    2007-01-01

    Despite intensive ongoing research, key aspects of the spatial-temporal evolution of the 2001 foot and mouth disease (FMD) epidemic in Great Britain (GB) remain unexplained. Here we develop a Markov Chain Monte Carlo (MCMC) method for estimating epidemiological parameters of the 2001 outbreak for a range of simple transmission models. We make the simplifying assumption that infectious farms were completely observed in 2001, equivalent to assuming that farms that were proactively culled but not diagnosed with FMD were not infectious, even if some were infected. We estimate how transmission parameters varied through time, highlighting the impact of the control measures on the progression of the epidemic. We demonstrate statistically significant evidence for assortative contact patterns between animals of the same species. Predictive risk maps of the transmission potential in different geographic areas of GB are presented for the fitted models. PMID:17551582

  10. Tunable meta-atom using liquid metal embedded in stretchable polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Peng; Yang, Siming; Wang, Qiugu

    2015-07-07

    Reconfigurable metamaterials have great potential to alleviate complications involved in using passive metamaterials to realize emerging electromagnetic functions, such as dynamical filtering, sensing, and cloaking. This paper presents a new type of tunable meta-atoms in the X-band frequency range (8–12 GHz) toward reconfigurable metamaterials. The meta-atom is made of all flexible materials compliant to the surface of an interaction object. It uses a liquid metal-based split-ring resonator as its core constituent embedded in a highly flexible elastomer. We demonstrate that simple mechanical stretching of the meta-atom can lead to the great flexibility in reconfiguring its resonance frequency continuously over moremore » than 70% of the X-band frequency range. The presented meta-atom technique provides a simple approach to dynamically tune response characteristics of metamaterials over a broad frequency range.« less

  11. Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation

    PubMed Central

    Zhang, Haoran; Yang, Fengyou; Dong, Jianjie; Du, Lena; Wang, Chuang; Zhang, Jianming; Guo, Chuan Fei; Liu, Qian

    2016-01-01

    Complex surface structures have stimulated a great deal of interests due to many potential applications in surface devices. However, in the fabrication of complex surface micro-/nanostructures, there are always great challenges in precise design, or good controllability, or low cost, or high throughput. Here, we present a route for the accurate design and highly controllable fabrication of surface quasi-three-dimensional (quasi-3D) structures based on a thermal deformation of simple two-dimensional laser-induced patterns. A complex quasi-3D structure, coaxially nested convex–concave microlens array, as an example, demonstrates our capability of design and fabrication of surface elements with this method. Moreover, by using only one relief mask with the convex–concave microlens structure, we have gotten hundreds of target patterns at different imaging planes, offering a cost-effective solution for mass production in lithography and imprinting, and portending a paradigm in quasi-3D manufacturing. PMID:27910852

  12. Rapid Detection of Ebola Virus with a Reagent-Free, Point-of-Care Biosensor

    PubMed Central

    Baca, Justin T.; Severns, Virginia; Lovato, Debbie; Branch, Darren W.; Larson, Richard S.

    2015-01-01

    Surface acoustic wave (SAW) sensors can rapidly detect Ebola antigens at the point-of-care without the need for added reagents, sample processing, or specialized personnel. This preliminary study demonstrates SAW biosensor detection of the Ebola virus in a concentration-dependent manner. The detection limit with this methodology is below the average level of viremia detected on the first day of symptoms by PCR. We observe a log-linear sensor response for highly fragmented Ebola viral particles, with a detection limit corresponding to 1.9 × 104 PFU/mL prior to virus inactivation. We predict greatly improved sensitivity for intact, infectious Ebola virus. This point-of-care methodology has the potential to detect Ebola viremia prior to symptom onset, greatly enabling infection control and rapid treatment. This biosensor platform is powered by disposable AA batteries and can be rapidly adapted to detect other emerging diseases in austere conditions. PMID:25875186

  13. Pesticide presence in Great Lakes tributaries and comparison to ToxCast and other water quality benchmarks to screen for potential biological effects

    EPA Science Inventory

    Product Description:Pesticides are a broad category of current use chemicals that pose potential threats to aquatic organisms in and around the Great Lakes basin. In this study, we monitored for over 200 pesticides or their break down products in 16 major tributaries to the Great...

  14. Multispectral and polarimetric photodetection using a plasmonic metasurface

    NASA Astrophysics Data System (ADS)

    Pelzman, Charles; Cho, Sang-Yeon

    2018-01-01

    We present a metasurface-integrated Si 2-D CMOS sensor array for multispectral and polarimetric photodetection applications. The demonstrated sensor is based on the polarization selective extraordinary optical transmission from periodic subwavelength nanostructures, acting as artificial atoms, known as meta-atoms. The meta-atoms were created by patterning periodic rectangular apertures that support optical resonance at the designed spectral bands. By spatially separating meta-atom clusters with different lattice constants and orientations, the demonstrated metasurface can convert the polarization and spectral information of an optical input into a 2-D intensity pattern. As a proof-of-concept experiment, we measured the linear components of the Stokes parameters directly from captured images using a CMOS camera at four spectral bands. Compared to existing multispectral polarimetric sensors, the demonstrated metasurface-integrated CMOS system is compact and does not require any moving components, offering great potential for advanced photodetection applications.

  15. Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%

    DOE PAGES

    Yan, Yong; Crisp, Ryan W.; Gu, Jing; ...

    2017-04-03

    Multiple exciton generation (MEG) in quantum dots (QDs) has the potential to greatly increase the power conversion efficiency in solar cells and in solar-fuel production. During the MEG process, two electron-hole pairs (excitons) are created from the absorption of one high-energy photon, bypassing hot-carrier cooling via phonon emission. Here we demonstrate that extra carriers produced via MEG can be used to drive a chemical reaction with quantum efficiency above 100%. We developed a lead sulfide (PbS) QD photoelectrochemical cell that is able to drive hydrogen evolution from aqueous Na 2S solution with a peak external quantum efficiency exceeding 100%. QDmore » photoelectrodes that were measured all demonstrated MEG when the incident photon energy was larger than 2.7 times the bandgap energy. Finally, our results demonstrate a new direction in exploring high-efficiency approaches to solar fuels.« less

  16. Robust label-free biosensing using microdisk laser arrays with on-chip references.

    PubMed

    Wondimu, S F; Hippler, M; Hussal, C; Hofmann, A; Krämmer, S; Lahann, J; Kalt, H; Freude, W; Koos, C

    2018-02-05

    Whispering-gallery mode (WGM) microdisk lasers show great potential for highly sensitive label-free detection in large-scale sensor arrays. However, when used in practical applications under normal ambient conditions, these devices suffer from temperature fluctuations and photobleaching. Here we demonstrate that these challenges can be overcome by a novel referencing scheme that allows for simultaneous compensation of temperature drift and photobleaching. The technique relies on reference structures protected by locally dispensed passivation materials, and can be scaled to extended arrays of hundreds of devices. We prove the viability of the concept in a series of experiments, demonstrating robust and sensitive label-free detection over a wide range of constant or continuously varying temperatures. To the best of our knowledge, these measurements represent the first demonstration of biosensing in active WGM devices with simultaneous compensation of both photobleaching and temperature drift.

  17. A Noninvasive and Real-Time Method for Circulating Tumor Cell Detection by In Vivo Flow Cytometry.

    PubMed

    Wei, Xunbin; Zhou, Jian; Zhu, Xi; Yang, Xinrong; Yang, Ping; Wang, Qiyan

    2017-01-01

    The quantification of circulating tumor cells (CTCs) has been considered a potentially powerful tool in cancer diagnosis and prognosis, as CTCs have been shown to appear very early in cancer development. Great efforts have been made to develop methods that were less invasive and more sensitive to detect CTCs earlier. There is growing evidence that CTC clusters have greater metastatic potential than single CTCs. Therefore, the detection of CTC clusters is also important. This chapter is aimed to introduce a noninvasive technique for CTCs detection named in vivo flow cytometry (IVFC), which has been demonstrated to be capable of monitoring CTCs dynamics continuously. Furthermore, IVFC could be helpful for CTC cluster enumeration.

  18. Facile Hydrothermal Preparation of ZNO/CO3O4 Heterogeneous Nanostructures and its Photovoltaic Effect

    NASA Astrophysics Data System (ADS)

    Wei, Fanan; Jiang, Minlin; Liu, Lianqing

    2015-07-01

    Photovoltaic technology offers great potential in the replacement of fossil fuel resources, but still suffers from high device fabrication cost. Herein, we attempted to provide a solution to these issues with heterogeneous nanostructures. Firstly, Zinc oxide (ZnO)/cobalt oxide (Co3O4) heterojunction nanowires are prepared through facile fabrication methods. By assembling Co(OH)2 nanoplates on ZnO nanowire arrays, the ZnO/Co3O4 heterogeneous nanostructures are uniformly synthesized on ITO coated glass and wafer. Current (I)-voltage (V) measurement through conductive atomic force microscope shows excellent photovoltaic effect. And, the heterojunction nanostructures shows unprecedented high open circuit voltage. Therefore, the potential application of the heterogeneous nanostructures in solar cells is demonstrated.

  19. Latest development on RNA-based drugs and vaccines.

    PubMed

    Lundstrom, Kenneth

    2018-06-01

    Drugs and vaccines based on mRNA and RNA viruses show great potential and direct translation in the cytoplasm eliminates chromosomal integration. Limitations are associated with delivery and stability issues related to RNA degradation. Clinical trials on RNA-based drugs have been conducted in various disease areas. Likewise, RNA-based vaccines for viral infections and various cancers have been subjected to preclinical and clinical studies. RNA delivery and stability improvements include RNA structure modifications, targeting dendritic cells and employing self-amplifying RNA. Single-stranded RNA viruses possess self-amplifying RNA, which can provide extreme RNA replication in the cytoplasm to support RNA-based drug and vaccine development. Although oligonucleotide-based approaches have demonstrated potential, the focus here is on mRNA- and RNA virus-based methods.

  20. Study on nasopharyngeal cancer tissue using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ge, Xiaosong; Lin, Xueliang; Xu, Zhihong; Wei, Guoqiang; Huang, Wei; Lin, Duo

    2016-10-01

    Surface-enhanced Raman spectroscopy (SERS) can provide detailed molecular structure and composition information, and has demonstrated great potential in biomedical filed. This spectroscopy technology has become one of the most important optical techniques in the early diagnosis of cancer. Nasopharyngeal cancer (NPC) is a malignant neoplasm arising in the nasopharyngeal epithelial lining, which has relatively high incidence and death rate in Southeast Asia and southern China. This paper reviews the current progress of SERS in the field of cancer diagnostics, including gastric cancer, colorectal cancer, cervical cancer and nasopharyngeal cancer. In addition to above researches, we recently develop a novel NPC detection method based on tissue section using SERS, and obtain primary results. The proposed method has promising potential for the detection of nasopharyngeal carcinoma.

  1. Carbon nanotubes from synthesis to in vivo biomedical applications.

    PubMed

    Sajid, Muhammad Imran; Jamshaid, Usama; Jamshaid, Talha; Zafar, Nadiah; Fessi, H; Elaissari, Abdelhamid

    2016-03-30

    Owing to their unique and interesting properties, extensive research round the globe has been carried out on carbon nanotubes and carbon nanotubes based systems to investigate their practical usefulness in biomedical applications. The results from these studies demonstrate a great promise in their use in targeted drug delivery systems, diagnostic techniques and in bio-analytical applications. Although, carbon nanotubes possess quite interesting properties, which make them potential candidates in the biomedical science, but they also have some inherent properties which arise great concern regarding their biosafety. In this comprehensive review, we have discussed different aspects of carbon nanotubes and carbon nanotube based systems related to biomedical applications. In the beginning, a short historical account of these tiny yet powerful particles is given followed by discussion regarding their types, properties, methods of synthesis, large scale production method, purification techniques and characterization aspects of carbon nanotubes. In the second part of the review, the functionalization of carbon nanotubes is reviewed in detail, which is not only important to make them biocompatible and stable in biological systems but also render them a great property of loading various biomolecules, diagnostic and therapeutic moieties resulting in diversified applications. In the final part of the review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes including administration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account about the potential biomedical applications has been given followed by insights into the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine.

    PubMed

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C; Nolta, Jan A; Athanasiou, Kyriacos A

    2015-10-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides analysis of the current state-of-the-art regenerative approaches using human-derived dermal stem cells, with consideration of current guidelines, to assist translation toward therapeutic use. ©AlphaMed Press.

  3. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine

    PubMed Central

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C.; Nolta, Jan A.

    2015-01-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Significance Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides analysis of the current state-of-the-art regenerative approaches using human-derived dermal stem cells, with consideration of current guidelines, to assist translation toward therapeutic use. PMID:26253713

  4. Design and characterization of a durable and highly efficient energy-harvesting electrochromic window

    NASA Astrophysics Data System (ADS)

    Amasawa, Eri

    With the growing global energy demands, electrochromic window (ECW) technology has attracted great attention for its ability to reversibly change the transmittance of incoming light through applied moderate potential. While ECW has a great potential to conserve energy from lighting and air conditioning in buildings, ECW still consumes energy; ECW should be self-powered for further energy conservation. In this study, a new design of energy-harvesting electrochromic window (EH-ECW) based on fusion of two technologies, organic electrochromic window and dye-sensitized solar cell (DSSC) is presented. Unlike other self-powered smart windows such as photoelectrochromic device that only contains two states (i.e. closed circuit colored state and open circuit bleaching state), EH-ECW allows active tuning of transmittance through varying applied potential and function as a photovoltaic cell based on DSSC. The resulting device demonstrates fast switching rate of 1 second in both bleaching and coloring process through the use of electrochromic polymer as a counter electrode layer. In order to increase the transmittance of the device, cobalt redox couple and light colored yet efficient organic dye are employed. The organic dye utilized contains polymeric structure, which contributes to high cyclic stability. The device exhibits power conversion efficiency (PCE) of 4.5 % under AM 1.5 irradiation (100 mW/cm2), change in transmittance (Delta T = Tmax - Tmin) of 34 % upon applied potential, and shows only 3 % degradation in PCE after 5000 cycles.

  5. Human embryonic stem cell-derived mesodermal progenitors display substantially increased tissue formation compared to human mesenchymal stem cells under dynamic culture conditions in a packed bed/column bioreactor.

    PubMed

    de Peppo, Giuseppe Maria; Sladkova, Martina; Sjövall, Peter; Palmquist, Anders; Oudina, Karim; Hyllner, Johan; Thomsen, Peter; Petite, Hervé; Karlsson, Camilla

    2013-01-01

    Bone tissue engineering represents a promising strategy to obviate bone deficiencies, allowing the ex vivo construction of bone substitutes with unprecedented potential in the clinical practice. Considering that in the human body cells are constantly stimulated by chemical and mechanical stimuli, the use of bioreactor is emerging as an essential factor for providing the proper environment for the reproducible and large-scale production of the engineered substitutes. Human mesenchymal stem cells (hMSCs) are experimentally relevant cells but, regardless the encouraging results reported after culture under dynamic conditions in bioreactors, show important limitations for tissue engineering applications, especially considering their limited proliferative potential, loss of functionality following protracted expansion, and decline in cellular fitness associated with aging. On the other hand, we previously demonstrated that human embryonic stem cell-derived mesodermal progenitors (hES-MPs) hold great potential to provide a homogenous and unlimited source of cells for bone engineering applications. Based on prior scientific evidence using different types of stem cells, in the present study we hypothesized that dynamic culture of hES-MPs in a packed bed/column bioreactor had the potential to affect proliferation, expression of genes involved in osteogenic differentiation, and matrix mineralization, therefore resulting in increased bone-like tissue formation. The reported findings suggest that hES-MPs constitute a suitable alternative cell source to hMSCs and hold great potential for the construction of bone substitutes for tissue engineering applications in clinical settings.

  6. Photoacoustic molecular imaging of angiogenesis using theranostic ανβ3-targeted copper nanoparticles incorporating a sn-2 lipase-labile fumagillin prodrug

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiying; Cai, Xin; Yang, Xiaoxia; Senpan, Angana; Allen, John S.; Pan, Dipanjan; Lanza, Gregory M.; Wang, Lihong V.

    2014-03-01

    Photoacoustic (PA) tomography imaging is an emerging, versatile, and noninvasive imaging modality, which combines the advantages of both optical imaging and ultrasound imaging. It opens up opportunities for noninvasive imaging of angiogenesis, a feature of skin pathologies including cancers and psoriasis. In this study, high-density copper oleate encapsulated within a phospholipid surfactant (CuNPs) generated a soft nanoparticle with PA contrast comparable to gold. Within the near-infrared window, the copper nanoparticles can provide a signal more than 7 times higher that of blood. ανβ3-targeted of CuNPs in a Matrigel mouse model demonstrated prominent PA contrast enhancement of the neovasculature compared to mice given nontargeted or competitively inhibited CuNPs. Incorporation of a sn-2 lipase-labile fumagillin prodrug into the CuNPs produced marked antiangiogenesis in the same model, demonstrating the theranostic potential of a PA agent for the first time in vivo. With a PA signal comparable to gold-based nanoparticles yet a lower cost and demonstrated drug delivery potential, ανβ3-targeted CuNPs hold great promise for the management of skin pathologies with neovascular features.

  7. Potential Anticancer Properties of Grape Antioxidants

    PubMed Central

    Zhou, Kequan; Raffoul, Julian J.

    2012-01-01

    Dietary intake of foods rich in antioxidant properties is suggested to be cancer protective. Foods rich in antioxidant properties include grape (Vitis vinifera), one of the world's largest fruit crops and most commonly consumed fruits in the world. The composition and cancer-protective effects of major phenolic antioxidants in grape skin and seed extracts are discussed in this review. Grape skin and seed extracts exert strong free radical scavenging and chelating activities and inhibit lipid oxidation in various food and cell models in vitro. The use of grape antioxidants are promising against a broad range of cancer cells by targeting epidermal growth factor receptor (EGFR) and its downstream pathways, inhibiting over-expression of COX-2 and prostaglandin E2 receptors, or modifying estrogen receptor pathways, resulting in cell cycle arrest and apoptosis. Interestingly, some of these activities were also demonstrated in animal models. However, in vivo studies have demonstrated inconsistent antioxidant efficacy. Nonetheless, a growing body of evidence from human clinical trials has demonstrated that consumption of grape, wine and grape juice exerts many health-promoting and possible anti-cancer effects. Thus, grape skin and seed extracts have great potential in cancer prevention and further investigation into this exciting field is warranted. PMID:22919383

  8. Multiplexed Electrochemical Immunosensors for Clinical Biomarkers

    PubMed Central

    Yáñez-Sedeño, Paloma; Campuzano, Susana; Pingarrón, José M.

    2017-01-01

    Management and prognosis of disease requires the accurate determination of specific biomarkers indicative of normal or disease-related biological processes or responses to therapy. Moreover since multiple determinations of biomarkers have demonstrated to provide more accurate information than individual determinations to assist the clinician in prognosis and diagnosis, the detection of several clinical biomarkers by using the same analytical device hold enormous potential for early detection and personalized therapy and will simplify the diagnosis providing more information in less time. In this field, electrochemical immunosensors have demonstrated to offer interesting alternatives against conventional strategies due to their simplicity, fast response, low cost, high sensitivity and compatibility with multiplexed determination, microfabrication technology and decentralized determinations, features which made them very attractive for integration in point-of-care (POC) devices. Therefore, in this review, the relevance and current challenges of multiplexed determination of clinical biomarkers are briefly introduced, and an overview of the electrochemical immunosensing platforms developed so far for this purpose is given in order to demonstrate the great potential of these methodologies. After highlighting the main features of the selected examples, the unsolved challenges and future directions in this field are also briefly discussed. PMID:28448466

  9. Positively-charged reduced graphene oxide as an adhesion promoter for preparing a highly-stable silver nanowire film

    NASA Astrophysics Data System (ADS)

    Sun, Qijun; Lee, Seong Jun; Kang, Hyungseok; Gim, Yuseong; Park, Ho Seok; Cho, Jeong Ho

    2015-04-01

    An ultrathin conductive adhesion promoter using positively charged reduced graphene oxide (rGO-NH3+) has been demonstrated for preparing highly stable silver nanowire transparent conductive electrodes (AgNW TCEs). The adhesion promoter rGO-NH3+, spray coated between the substrate and AgNWs, significantly enhances the chemical and mechanical stabilities of the AgNW TCEs. Besides, the ultrathin thickness of the rGO-NH3+ ensures excellent optical transparency and mechanical flexibility for TCEs. The AgNW films prepared using the adhesion promoter are extremely stable under harsh conditions, including ultrasonication in a variety of solvents, 3M Scotch tape detachment test, mechanical bending up to 0.3% strain, or fatigue over 1000 cycles. The greatly enhanced adhesion force is attributed to the ionic interactions between the positively charged protonated amine groups in rGO-NH3+ and the negatively charged hydroxo- and oxo-groups on the AgNWs. The positively charged GO-NH3+ and commercial polycationic polymer (poly allylamine hydrochloride) are also prepared as adhesion promoters for comparison with rGO-NH3+. Notably, the closely packed hexagonal atomic structure of rGO offers better barrier properties to water permeation and demonstrates promising utility in durable waterproof electronics. This work offers a simple method to prepare high-quality TCEs and is believed to have great potential application in flexible waterproof electronics.An ultrathin conductive adhesion promoter using positively charged reduced graphene oxide (rGO-NH3+) has been demonstrated for preparing highly stable silver nanowire transparent conductive electrodes (AgNW TCEs). The adhesion promoter rGO-NH3+, spray coated between the substrate and AgNWs, significantly enhances the chemical and mechanical stabilities of the AgNW TCEs. Besides, the ultrathin thickness of the rGO-NH3+ ensures excellent optical transparency and mechanical flexibility for TCEs. The AgNW films prepared using the adhesion promoter are extremely stable under harsh conditions, including ultrasonication in a variety of solvents, 3M Scotch tape detachment test, mechanical bending up to 0.3% strain, or fatigue over 1000 cycles. The greatly enhanced adhesion force is attributed to the ionic interactions between the positively charged protonated amine groups in rGO-NH3+ and the negatively charged hydroxo- and oxo-groups on the AgNWs. The positively charged GO-NH3+ and commercial polycationic polymer (poly allylamine hydrochloride) are also prepared as adhesion promoters for comparison with rGO-NH3+. Notably, the closely packed hexagonal atomic structure of rGO offers better barrier properties to water permeation and demonstrates promising utility in durable waterproof electronics. This work offers a simple method to prepare high-quality TCEs and is believed to have great potential application in flexible waterproof electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00777a

  10. Wind and Wildlife in the Northern Great Plains: Identifying Low-Impact Areas for Wind Development

    PubMed Central

    Fargione, Joseph; Kiesecker, Joseph; Slaats, M. Jan; Olimb, Sarah

    2012-01-01

    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP) is home both to some of the world’s best wind resources and to remaining temperate grasslands, the most converted and least protected ecological system on the planet. Thus, appropriate siting and mitigation of wind development is particularly important in this region. Steering energy development to disturbed lands with low wildlife value rather than placing new developments within large and intact habitats would reduce impacts to wildlife. Goals for wind energy development in the NGP are roughly 30 GW of nameplate capacity by 2030. Our analyses demonstrate that there are large areas where wind development would likely have few additional impacts on wildlife. We estimate there are ∼1,056 GW of potential wind energy available across the NGP on areas likely to have low-impact for biodiversity, over 35 times development goals. New policies and approaches will be required to guide wind energy development to low-impact areas. PMID:22848505

  11. Efficient Planning of Wind-Optimal Routes in North Atlantic Oceanic Airspace

    NASA Technical Reports Server (NTRS)

    Rodionova, Olga; Sridhar, Banavar

    2017-01-01

    The North Atlantic oceanic airspace (NAT) is crossed daily by more than a thousand flights, which are greatly affected by strong jet stream air currents. Several studies devoted to generating wind-optimal (WO) aircraft trajectories in the NAT demonstrated great efficiency of such an approach for individual flights. However, because of the large separation norms imposed in the NAT, previously proposed WO trajectories induce a large number of potential conflicts. Much work has been done on strategic conflict detection and resolution (CDR) in the NAT. The work presented here extends previous methods and attempts to take advantage of the NAT traffic structure to simplify the problem and improve the results of CDR. Four approaches are studied in this work: 1) subdividing the existing CDR problem into sub-problems of smaller sizes, which are easier to handle; 2) more efficient data reorganization within the considered time period; 3) problem localization, i.e. concentrating the resolution effort in the most conflicted regions; 4) applying CDR to the pre-tactical decision horizon (a couple of hours in advance). Obtained results show that these methods efficiently resolve potential conflicts at the strategic and pre-tactical levels by keeping the resulting trajectories close to the initial WO ones.

  12. Wind and wildlife in the Northern Great Plains: identifying low-impact areas for wind development.

    PubMed

    Fargione, Joseph; Kiesecker, Joseph; Slaats, M Jan; Olimb, Sarah

    2012-01-01

    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP) is home both to some of the world's best wind resources and to remaining temperate grasslands, the most converted and least protected ecological system on the planet. Thus, appropriate siting and mitigation of wind development is particularly important in this region. Steering energy development to disturbed lands with low wildlife value rather than placing new developments within large and intact habitats would reduce impacts to wildlife. Goals for wind energy development in the NGP are roughly 30 GW of nameplate capacity by 2030. Our analyses demonstrate that there are large areas where wind development would likely have few additional impacts on wildlife. We estimate there are ∼1,056 GW of potential wind energy available across the NGP on areas likely to have low-impact for biodiversity, over 35 times development goals. New policies and approaches will be required to guide wind energy development to low-impact areas.

  13. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance

    NASA Astrophysics Data System (ADS)

    Lou, Shuaifeng; Cheng, Xinqun; Wang, Long; Gao, Jinlong; Li, Qin; Ma, Yulin; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping

    2017-09-01

    Orthorhombic Niobium oxide (T-Nb2O5) has been regarded as a promising anode material for high-rate lithium ion batteries (LIBs) due to its potential to operate at high rates with improved safety and high theoretical capacity of 200 mA h g-1. Herein, three-dimensionally ordered macroporous (3DOM) T-Nb2O5, with mesoporous hierarchical structure, was firstly prepared by a simple approach employing self-assembly polystyrene (PS) microspheres as hard templates. The obtained T-Nb2O5 anode material presents obvious and highly-efficiency pseudocapacitive Li+ intercalation behaviour, which plays a dominant role in the kinetics of electrode process. As a result, rapid Li+ intercalation/de-intercalation are achieved, leading to excellent rate capability and long cycle life. The 3DOM T-Nb2O5 shows a remarkable high capacity of 106 and 77 mA h g-1 at the rate of 20C and 50C. The work presented herein holds great promise for future design of material structure, and demonstrates the great potential of T-Nb2O5 as a practical high-rate anode material for LIBs.

  14. Isolation and characterization of anti ROR1 single chain fragment variable antibodies using phage display technique.

    PubMed

    Aghebati-Maleki, Leili; Younesi, Vahid; Jadidi-Niaragh, Farhad; Baradaran, Behzad; Majidi, Jafar; Yousefi, Mehdi

    2017-01-01

    Receptor tyrosine kinase-like orphan receptor (ROR1) belongs to one of the families of receptor tyrosine kinases (RTKs). RTKs are involved in the various physiologic cellular functions including proliferation, migration, survival, signaling and differentiation. Several RTKs are deregulated in various cancers implying the targeting potential of these molecules in cancer therapy. ROR1 has recently been shown to be expressed in various types of cancer cells but not in normal adult cells. Hence a molecular inhibitor of extracellular domain of ROR1 that inhibits ROR1-cell surface interaction is of great therapeutic importance. In an attempt to develop molecular inhibitors of ROR1, we screened single chain variable fragment (scFv) phage display libraries, Tomlinson I + J, against one specific synthetic oligopeptide from extracellular domain of ROR1 and selected scFvs were characterized using various immunological techniques. Several ROR1 specific scFvs were selected following five rounds of panning procedure. The scFvs showed specific binding to ROR1 using immunological techniques. Our results demonstrate successful isolation and characterization of specific ROR1 scFvs that may have great therapeutic potential in cancer immunotherapy.

  15. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2015-06-01

    Human intradermal components contain important clinical information beneficial to the field of immunology and disease diagnosis. Although microneedles have shown great potential to act as probes to break the human skin barrier for the minimally invasive measurement of intradermal components, metal microneedles that include stainless steel could cause the following problems: (1) sharp waste production, and (2) contamination due to reuse of microneedles especially in developing regions. In this study, we fabricate agarose microneedles coated with a layer of silver (Ag) and demonstrate their use as a probe for the realization of intradermal surface-enhanced Raman scattering measurements in a set of skin-mimicking phantoms. The Ag-coated agarose microneedle quantifies a range of glucose concentrations from 5 to 150 mM inside the skin phantoms with a root-mean-square error of 5.1 mM within 10 s. The needle is found enlarged by 53.9% after another 6 min inside the phantom. The shape-changing capability of this agarose microneedle ensures that the reuse of these microneedles is impossible, thus avoiding sharp waste production and preventing needle contamination, which shows the great potential for safe and effective needle-based measurements.

  16. Potential of cancer screening with serum surface-enhanced Raman spectroscopy and a support vector machine

    NASA Astrophysics Data System (ADS)

    Li, S. X.; Zhang, Y. J.; Zeng, Q. Y.; Li, L. F.; Guo, Z. Y.; Liu, Z. M.; Xiong, H. L.; Liu, S. H.

    2014-06-01

    Cancer is the most common disease to threaten human health. The ability to screen individuals with malignant tumours with only a blood sample would be greatly advantageous to early diagnosis and intervention. This study explores the possibility of discriminating between cancer patients and normal subjects with serum surface-enhanced Raman spectroscopy (SERS) and a support vector machine (SVM) through a peripheral blood sample. A total of 130 blood samples were obtained from patients with liver cancer, colonic cancer, esophageal cancer, nasopharyngeal cancer, gastric cancer, as well as 113 blood samples from normal volunteers. Several diagnostic models were built with the serum SERS spectra using SVM and principal component analysis (PCA) techniques. The results show that a diagnostic accuracy of 85.5% is acquired with a PCA algorithm, while a diagnostic accuracy of 95.8% is obtained using radial basis function (RBF), PCA-SVM methods. The results prove that a RBF kernel PCA-SVM technique is superior to PCA and conventional SVM (C-SVM) algorithms in classification serum SERS spectra. The study demonstrates that serum SERS, in combination with SVM techniques, has great potential for screening cancerous patients with any solid malignant tumour through a peripheral blood sample.

  17. Screening of Bioactivities and Toxicity of Cnidoscolus quercifolius Pohl

    PubMed Central

    Vasconcelos, Fábio Roger; Paim, Raquel Teixeira Terceiro; Marques, Márcia Maria Mendes; De Morais, Selene Maia; Lira, Sandra Machado; Braquehais, Isabel Desidério; Vieira, Ícaro Gusmão Pinto; Mendes, Francisca Noelia Pereira; Guedes, Maria Izabel Florindo

    2016-01-01

    The caatinga, an exclusively Brazilian biome, is one of the most endangered vegetation systems in the planet. To be exploited rationally, its potential needs to be scientifically demonstrated. Among these is the faveleira, used in northeastern Brazil. It stands out for its extraordinary drought resistance and medicinal properties. The objective of this study was to assess the therapeutic potential of compounds extracted from Cnidoscolus quercifolius Pohl in preventing disease and its rational use as a herbal therapeutic tool. The methodology began with the collection and herborization of the plant material, to obtain the chemical compounds, preliminary phytochemical analysis, and extraction of the constituents of the active extracts. To determine the biological activities the authors conducted investigation of antioxidant and antimicrobial activities, inhibition capacity of the acetylcholinesterase enzyme, and initial assessment of toxicity of the extracts. The results demonstrated great potential as an antimicrobial agent, an important antioxidant capacity, and acetylcholinesterase inhibition response with no significant difference compared with the reference drug. The authors expect to develop a new herbal product, resulting in lower production costs and that, consequently, could be commercialized in more accessible form to the population, highlighting the risk reduction of contraindication of this category of medications. PMID:27293464

  18. Interactive educational simulators in diabetes care.

    PubMed

    Lehmann, E D

    1997-01-01

    Since the Diabetes Control and Complications Trial demonstrated the substantial benefits of tight glycaemic control there has been renewed interest in the application of information technology (IT) based techniques for improving the day-to-day care of patients with diabetes mellitus. Computer-based educational approaches have a great deal of potential for patients use, and may offer a means of training more health-care professionals to deliver such improved care. In this article the potential role of IT in diabetes education is reviewed, focusing in particular on the application of compartmental models in both computer-based interactive simulators and educational video games. Close attention is devoted to practical applications-available today-for use by patients, their relatives, students and health-care professionals. The novel features and potential benefits of such methodologies are highlighted and some of the limitations of currently available software are discussed. The need for improved graphical user interfaces, and for further efforts to evaluate such programs and demonstrate an educational benefit from their use are identified as hurdles to their more widespread application. The review concludes with a look to the future and the type of modelling features which should be provided in the next generation of interactive diabetes simulators and educational video games.

  19. The Noncompetitive Effect of Gambogic Acid Displaces Fluorescence-Labeled ATP but Requires ATP for Binding to Hsp90/HtpG.

    PubMed

    Yue, Qing; Stahl, Frank; Plettenburg, Oliver; Kirschning, Andreas; Warnecke, Athanasia; Zeilinger, Carsten

    2018-05-08

    The heat shock protein 90 (Hsp90) family plays a critical role in maintaining the homeostasis of the intracellular environment for human and prokaryotic cells. Hsp90 orthologues were identified as important target proteins for cancer and plant disease therapies. It was shown that gambogic acid (GBA) has the potential to inhibit human Hsp90. However, it is unknown whether it is also able to act on the bacterial high-temperature protein (HtpG) analogue. In this work, we screened GBA and nine other novel potential Hsp90 inhibitors using a miniaturized high-throughput protein microarray-based assay and found that GBA shows an inhibitory effect on different Hsp90s after dissimilarity analysis of the protein sequence alignment. The dissociation constant of GBA and HtpG Xanthomonas (XcHtpG) computed from microscale thermophoresis is 682.2 ± 408 μM in the presence of ATP, which is indispensable for the binding of GBA to XcHtpG. Our results demonstrate that GBA is a promising Hsp90/HtpG inhibitor. The work further demonstrates that our assay concept has great potential for finding new potent Hsp/HtpG inhibitors.

  20. Synergies of Subaru and CGI

    NASA Technical Reports Server (NTRS)

    Groff, Tyler D.

    2017-01-01

    Given the limited observing time and demanding scenarios of the WFIRST coronagraph instrument (CGI), it is critical to consider how Subaru observations can benefit its observing program. Subaru telescope has a suite of instruments with their adaptive optics (AO) and extreme adaptive optics modules (SCExAO). With SCExAO, the Subaru telescope is capable of detection and spectral characterization of binaries and bright (greater than 5(exp -6) contrast) companions in the near-infrared. This will enable the vetting of targets, disk detection and characterization, and potentially some additional science should CGI identify interesting targets during its technology demonstration and potential guest observer program. Additionally, large companions that are within the inner working angle of the coronagraph can be identified using the VAMPIRES aperture masking interferometer. With highly complementary target brightness and significantly overlapping fields of view, there is a great deal of potential for combined observations with Subaru and CGI. This will represent the first time single observations spanning the visible to near-infrared will be possible for high contrast imaging. We will discuss the overlap of instrumentation over time, the implication of instrument evolution as TMT comes online, and how this can be used to improve both science and technology demonstrations for CGI.

  1. Melatonin potentiates "inside-out" nano-thermotherapy in human breast cancer cells: a potential cancer target multimodality treatment based on melatonin-loaded nanocomposite particles.

    PubMed

    Xie, Wensheng; Gao, Qin; Wang, Dan; Wang, Wei; Yuan, Jie; Guo, Zhenhu; Yan, Hao; Wang, Xiumei; Sun, Xiaodan; Zhao, Lingyun

    2017-01-01

    With the wide recognition of oncostatic effect of melatonin, the current study proposes a potential breast cancer target multimodality treatment based on melatonin-loaded magnetic nanocomposite particles (Melatonin-MNPs). Melatonin-MNPs were fabricated by the single emulsion solvent extraction/evaporation method. Based on the facilitated transport of melatonin by the GLUT overexpressed on the cell membrane, such Melatonin-MNPs can be more favorably uptaken by MCF-7 cells compared with the melatonin-free nanocomposite particles, which indicates the cancer targeting ability of melatonin molecule. Inductive heating can be generated by exposure to the Melatonin-MNPs internalized within cancer cells under alternative magnetic field, so as to achieve the "inside-out" magnetic nano-thermotherapy. In addition to demonstrating the superior cytotoxic effect of such nano-thermotherapy over the conventional exogenous heating by metal bath, more importantly, the sustainable release of melatonin from the Melatonin-MNPs can be greatly promoted upon responsive to the magnetic heating. The multimodality treatment based on Melatonin-MNPs can lead to more significant decrease in cell viability than any single treatment, suggesting the potentiated effect of melatonin on the cytotoxic response to nano-thermotherapy. This study is the first to fabricate the precisely engineered melatonin-loaded multifunctional nanocomposite particles and demonstrate the potential in breast cancer target multimodality treatment.

  2. Pharmacological properties of Datura stramonium L. as a potential medicinal tree: An overview

    PubMed Central

    Soni, Priyanka; Siddiqui, Anees Ahmad; Dwivedi, Jaya; Soni, Vishal

    2012-01-01

    India has a great wealth of various naturally occurring plant drugs which have great potential pharmacological activities. Datura stramonium (D. stramonium) is one of the widely well known folklore medicinal herbs. The troublesome weed, D. stramonium is a plant with both poisonous and medicinal properties and has been proven to have great pharmacological potential with a great utility and usage in folklore medicine. D. stromonium has been scientifically proven to contain alkaloids, tannins, carbohydrates and proteins. This plant has contributed various pharmacological actions in the scientific field of Indian systems of medicines like analgesic and antiasthmatic activities. The present paper presents an exclusive review work on the ethnomedical, phytochemical, pharmacological activities of this plant. PMID:23593583

  3. Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire.

    PubMed

    Fang, Hehai; Hu, Weida; Wang, Peng; Guo, Nan; Luo, Wenjin; Zheng, Dingshan; Gong, Fan; Luo, Man; Tian, Hongzheng; Zhang, Xutao; Luo, Chen; Wu, Xing; Chen, Pingping; Liao, Lei; Pan, Anlian; Chen, Xiaoshuang; Lu, Wei

    2016-10-12

    One-dimensional InAs nanowires (NWs) have been widely researched in recent years. Features of high mobility and narrow bandgap reveal its great potential of optoelectronic applications. However, most reported work about InAs NW-based photodetectors is limited to the visible waveband. Although some work shows certain response for near-infrared light, the problems of large dark current and small light on/off ratio are unsolved, thus significantly restricting the detectivity. Here in this work, a novel "visible light-assisted dark-current suppressing method" is proposed for the first time to reduce the dark current and enhance the infrared photodetection of single InAs NW photodetectors. This method effectively increases the barrier height of the metal-semiconductor contact, thus significantly making the device a metal-semiconductor-metal (MSM) photodiode. These MSM photodiodes demonstrate broadband detection from less than 1 μm to more than 3 μm and a fast response of tens of microseconds. A high detectivity of ∼10 12 Jones has been achieved for the wavelength of 2000 nm at a low bias voltage of 0.1 V with corresponding responsivity of as much as 40 A/W. Even for the incident wavelength of 3113 nm, a detectivity of ∼10 10 Jones and a responsivity of 0.6 A/W have been obtained. Our work has achieved an extended detection waveband for single InAs NW photodetector from visible and near-infrared to mid-infrared. The excellent performance for infrared detection demonstrated the great potential of narrow bandgap NWs for future infrared optoelectronic applications.

  4. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications.

    PubMed

    Ning, Liqun; Sun, Haoying; Lelong, Tiphanie; Guilloteau, Romain; Zhu, Ning; Schreyer, David J; Chen, Daniel Xiongbiao

    2018-06-18

    Three-dimensional (3D) bioprinting of biomaterials shows great potential for producing cell-encapsulated scaffolds to repair nerves after injury or disease. For this, preparation of biomaterials and bioprinting itself are critical to create scaffolds with both biological and mechanical properties appropriate for nerve regeneration, yet remain unachievable. This paper presents our study on bioprinting Schwann cell-encapsulated scaffolds using composite hydrogels of alginate, fibrin, hyaluronic acid, and/or RGD peptide, for nerve tissue engineering applications. For the preparation of composite hydrogels, suitable hydrogel combinations were identified and prepared by adjusting the concentration of fibrin based on the morphological spreading of Schwann cells. In bioprinting, the effects of various printing process parameters (including the air pressure for dispensing, dispensing head movement speed, and crosslinking conditions) on printed structures were investigated and, by regulating these parameters, mechanically-stable scaffolds with fully interconnected pores were printed. The performance of Schwann cells within the printed scaffolds were examined in terms of viability, proliferation, orientation, and ability to produce laminin. Our results show that the printed scaffolds can promote the alignment of Schwann cells inside scaffolds and thus provide haptotactic cues to direct the extension of dorsal root ganglion neurites along the printed strands, demonstrating their great potential for applications in the field of nerve tissue engineering. © 2018 IOP Publishing Ltd.

  5. Redox and pH Dual-Responsive Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy.

    PubMed

    Zhuang, Weihua; Xu, Yangyang; Li, Gaocan; Hu, Jun; Ma, Boxuan; Yu, Tao; Su, Xin; Wang, Yunbing

    2018-05-21

    Intelligent polymeric micelles for antitumor drug delivery and tumor bioimaging have drawn a broad attention because of their reduced systemic toxicity, enhanced efficacy of drugs, and potential application of tumor diagnosis. Herein, we developed a multifunctional polymeric micelle system based on a pH and redox dual-responsive mPEG-P(TPE- co-AEMA) copolymer for stimuli-triggered drug release and aggregation-induced emission (AIE) active imaging. These mPEG-P(TPE- co-AEMA)-based micelles showed excellent biocompatibility and emission property, exhibiting great potential application for cellular imaging. Furthermore, the antitumor drug doxorubicin (DOX) could be encapsulated during self-assembly process with high loading efficiency, and a DOX-loaded micelle system with a size of 68.2 nm and narrow size distribution could be obtained. DOX-loaded micelles demonstrated great tumor suppression ability in vitro, and the dual-responsive triggered intracellular drug release could be further traced. Moreover, DOX-loaded micelles could efficiently accumulate at the tumor site because of enhanced permeability and retention effect and long circulation of micelles. Compared with free DOX, DOX-loaded micelles exhibited better antitumor effect and significantly reduced adverse effects. Given the efficient accumulation targeting to tumor tissue, dual-responsive drug release, and excellent AIE property, this polymeric micelle would be a potential candidate for cancer therapy and diagnosis.

  6. Effectiveness of the May 2005 rural demonstration program and the Click It or Ticket mobilization in the Great Lakes region : first year results

    DOT National Transportation Integrated Search

    2007-04-01

    NHTSAs Great Lakes Region (GLR) implemented a Rural Demonstration Program (RDP) prior to the May 2005 Click It or Ticket (CIOT) mobilization with the goal of increasing seat belt usage in rural areas. Paid media was used to notify rural residents ...

  7. Parametric amplification of orbital angular momentum beams based on light-acoustic interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wei, E-mail: wei-g@163.com, E-mail: zhuzhihandd@sina.com; Mu, Chunyuan; Yang, Yuqiang

    A high fidelity amplification of beams carrying orbital angular momentum (OAM) is very crucial for OAM multiplexing and other OAM-based applications. Here, we report a demonstration of stimulated Brillouin amplification for OAM beams, and the energy conversion efficiency of photon-phonon coupling and the phase structure of amplified signals are investigated in collinear and noncollinear frame systems, respectively. Our results demonstrate that the OAM signals can be efficiently amplified without obvious noise introduced, and the modes of output signal are independent of the pump modes or the geometrical frames. Meanwhile, an OAM state depending on the optical modes and the geometricalmore » frames is loaded into phonons by coherent light-acoustic interaction, which reveals more fundamental significance and a great application potential in OAM-multiplexing.« less

  8. Regulation function of MMP-1 downregulated by siRNA on migration of heat-denatured dermal fibroblasts

    PubMed Central

    He, Xianghui; Dai, Jinhua; Fan, Youfen; Zhang, Chun; Zhao, Xihong

    2017-01-01

    ABSTRACT Cutaneous wound healing is a complex physiological process that requires the efforts of various cell types and signaling pathways and often results in thickened collagen-enriched healed tissue called a scar. Therefore, the identification of the mechanism of cutaneous wound healing is necessary and has great value in providing better treatment. Here, we demonstrated that MMP-1 inhibition could promote cell proliferation in dermal fibroblasts via the MTT assay. Meanwhile, we investigated cell migration by flow cytometry and tested type I collagenase activity. We found that MMP-1 inhibition promoted cell proliferation and inhibited cell migration and type I collagenase activity. In conclusion, our study demonstrated that MMP-1 might be a potential therapeutic target in cutaneous wound healing. PMID:28277161

  9. Application of laser Raman spectroscopy in concentration measurements of multiple analytes in human body fluids

    NASA Astrophysics Data System (ADS)

    Qu, Jianan Y.; Suria, David; Wilson, Brian C.

    1998-05-01

    The primary goal of these studies was to demonstrate that NIR Raman spectroscopy is feasible as a rapid and reagentless analytic method for clinical diagnostics. Raman spectra were collected on human serum and urine samples using a 785 nm excitation laser and a single-stage holographic spectrometer. A partial east squares method was used to predict the analyte concentrations of interest. The actual concentrations were determined by a standard clinical chemistry. The prediction accuracy of total protein, albumin, triglyceride and glucose in human sera ranged from 1.5 percent to 5 percent which is greatly acceptable for clinical diagnostics. The concentration measurements of acetaminophen, ethanol and codeine inhuman urine have demonstrated the potential of NIR Raman technology in screening of therapeutic drugs and substances of abuse.

  10. Process Demonstration For Lunar In Situ Resource Utilization-Molten Oxide Electrolysis (MSFC Independent Research and Development Project No. 5-81)

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Ethridge, E. C.; Hudson, S. B.; Miller, T. Y.; Grugel, R. N.; Sen, S.; Sadoway, D. R.

    2006-01-01

    The purpose of this Focus Area Independent Research and Development project was to conduct, at Marshall Space Flight Center, an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis process to produce oxygen and metal. In essence, the vision was to develop two key technologies, the first to produce materials (oxygen, metals, and silicon) from lunar resources and the second to produce energy by photocell production on the Moon using these materials. Together, these two technologies have the potential to greatly reduce the costs and risks of NASA s human exploration program. Further, it is believed that these technologies are the key first step toward harvesting abundant materials and energy independent of Earth s resources.

  11. Research Priorities from Animal Behaviour for Maximising Conservation Progress.

    PubMed

    Greggor, Alison L; Berger-Tal, Oded; Blumstein, Daniel T; Angeloni, Lisa; Bessa-Gomes, Carmen; Blackwell, Bradley F; St Clair, Colleen Cassady; Crooks, Kevin; de Silva, Shermin; Fernández-Juricic, Esteban; Goldenberg, Shifra Z; Mesnick, Sarah L; Owen, Megan; Price, Catherine J; Saltz, David; Schell, Christopher J; Suarez, Andrew V; Swaisgood, Ronald R; Winchell, Clark S; Sutherland, William J

    2016-12-01

    Poor communication between academic researchers and wildlife managers limits conservation progress and innovation. As a result, input from overlapping fields, such as animal behaviour, is underused in conservation management despite its demonstrated utility as a conservation tool and countless papers advocating its use. Communication and collaboration across these two disciplines are unlikely to improve without clearly identified management needs and demonstrable impacts of behavioural-based conservation management. To facilitate this process, a team of wildlife managers and animal behaviour researchers conducted a research prioritisation exercise, identifying 50 key questions that have great potential to resolve critical conservation and management problems. The resulting agenda highlights the diversity and extent of advances that both fields could achieve through collaboration. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Application of Biomass from Palm Oil Mill for Organic Rankine Cycle to Generate Power in North Sumatera Indonesia

    NASA Astrophysics Data System (ADS)

    Nur, T. B.; Pane, Z.; Amin, M. N.

    2017-03-01

    Due to increasing oil and gas demand with the depletion of fossil resources in the current situation make efficient energy systems and alternative energy conversion processes are urgently needed. With the great potential of resources in Indonesia, make biomass has been considered as one of major potential fuel and renewable resource for the near future. In this paper, the potential of palm oil mill waste as a bioenergy source has been investigated. An organic Rankine cycle (ORC) small scale power plant has been preliminary designed to generate electricity. The working fluid candidates for the ORC plant based on the heat source temperature domains have been investigated. The ORC system with a regenerator has higher thermal efficiency than the basic ORC system. The study demonstrates the technical feasibility of ORC solutions in terms of resources optimizations and reducing of greenhouse gas emissions.

  13. Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases.

    PubMed

    Talukdar, Saswata; Olefsky, Jerrold M; Osborn, Olivia

    2011-09-01

    The past decade has seen great progress in the understanding of the molecular pharmacology, physiological function and therapeutic potential of G-protein-coupled receptors (GPCRs). Free fatty acids (FFAs) have been demonstrated to act as ligands of several GPCRs including GPR40, GPR43, GPR84, GPR119 and GPR120. We have recently shown that GPR120 acts as a physiological receptor of ω3 fatty acids in macrophages and adipocytes, which mediate potent anti-inflammatory and insulin sensitizing effects. The important role GPR120 plays in the control of inflammation raises the possibility that targeting this receptor could have therapeutic potential in many inflammatory diseases including obesity and type 2 diabetes. In this review paper, we discuss lipid-sensing GPCRs and highlight potential outcomes of targeting such receptors in ameliorating disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication.

    PubMed

    Wang, Biao; Wang, Ren-Rui; Cui, Zhen-Hua; Bi, Wen-Lu; Li, Jing-Wei; Li, Bai-Quan; Ozudogru, Elif Aylin; Volk, Gayle M; Wang, Qiao-Chun

    2014-01-01

    Rapid increases in human populations provide a great challenge to ensure that adequate quantities of food are available. Sustainable development of agricultural production by breeding more productive cultivars and by increasing the productive potential of existing cultivars can help meet this demand. The present paper provides information on the potential uses of cryogenic techniques in ensuring food security, including: (1) long-term conservation of a diverse germplasm and successful establishment of cryo-banks; (2) maintenance of the regenerative ability of embryogenic tissues that are frequently the target for genetic transformation; (3) enhancement of genetic transformation and plant regeneration of transformed cells, and safe, long-term conservation for transgenic materials; (4) production and maintenance of viable protoplasts for transformation and somatic hybridization; and (5) efficient production of pathogen-free plants. These roles demonstrate that cryogenic technologies offer opportunities to ensure food security. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Structural Design and Photochemical Preparation of Ultrathin Molecular Film Materials

    DTIC Science & Technology

    2006-12-01

    tetracene and pentacene that have great potential as organic semiconducting materials, have been determined. Overall, we have gained to great extend a...layer of linear acenes, molecules such as tetracene and pentacene that have great potential as organic semiconducting materials, have been determined...intermolecular interaction of mono- and multi-layer linear acenes on metal A systematic study of adsorption of linear acenes, from benzene to pentacene , on metal

  16. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    PubMed

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen-bonded systems is demonstrated here.

  17. Automatic tissue image segmentation based on image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  18. Coral Skeletons Provide Historical Evidence of Phosphorus Runoff on the Great Barrier Reef

    PubMed Central

    Mallela, Jennie; Lewis, Stephen E.; Croke, Barry

    2013-01-01

    Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca) of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs. PMID:24086606

  19. Dual Targeting Biomimetic Liposomes for Paclitaxel/DNA Combination Cancer Treatment

    PubMed Central

    Liu, Guo-Xia; Fang, Gui-Qing; Xu, Wei

    2014-01-01

    Combinations of chemotherapeutic drugs with nucleic acid has shown great promise in cancer therapy. In the present study, paclitaxel (PTX) and DNA were co-loaded in the hyaluronic acid (HA) and folate (FA)-modified liposomes (HA/FA/PPD), to obtain the dual targeting biomimetic nanovector. The prepared HA/FA/PPD exhibited nanosized structure and narrow size distributions (247.4 ± 4.2 nm) with appropriate negative charge of −25.40 ± 2.7 mV. HA/FA/PD (PTX free HA/FA/PPD) showed almost no toxicity on murine malignant melanoma cell line (B16) and human hepatocellular carcinoma cell line (HepG2) (higher than 80% cell viability), demonstrating the safety of the blank nanovector. In comparison with the FA-modified PTX/DNA co-loaded liposomes (FA/PPD), HA/FA/PPD showed significant superiority in protecting the nanoparticles from aggregation in the presence of plasma and degradation by DNase I. Moreover, HA/FA/PPD could also significantly improve the transfection efficiency and cellular internalization rates on B16 cells comparing to that of FA/PPD (p < 0.05) and PPD (p < 0.01), demonstrating the great advantages of dual targeting properties. Furthermore, fluorescence microscope and flow cytometry results showed that PTX and DNA could be effectively co-delivered into the same tumor cell via HA/FA/PPD, contributing to PTX/DNA combination cancer treatment. In conclusion, the obtained HA/FA/PPD in the study could effectively target tumor cells, enhance transfection efficiency and subsequently achieve the co-delivery of PTX and DNA, displaying great potential for optimal combination therapy. PMID:25177862

  20. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.

    PubMed

    Deng, Zexing; Guo, Yi; Zhao, Xin; Li, Longchao; Dong, Ruonan; Guo, Baolin; Ma, Peter X

    2016-12-01

    Development of flexible degradable electroactive shape memory polymers (ESMPs) with tunable switching temperature (around body temperature) for tissue engineering is still a challenge. Here we designed and synthesized a series of shape memory copolymers with electroactivity, super stretchability and tunable recovery temperature based on poly(ε-caprolactone) (PCL) with different molecular weight and conductive amino capped aniline trimer, and demonstrated their potential to enhance myogenic differentiation from C2C12 myoblast cells. We characterized the copolymers by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance ( 1 H NMR), cyclic voltammetry (CV), ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), shape memory test, tensile test and in vitro enzymatic degradation study. The electroactive biodegradable shape memory copolymers showed great elasticity, tunable recovery temperature around 37°C, and good shape memory properties. Furthermore, proliferation and differentiation of C2C12 myoblasts were investigated on electroactive copolymers films, and they greatly enhanced the proliferation, myotube formation and related myogenic differentiation genes expression of C2C12 myoblasts compared to the pure PCL with molecular weight of 80,000. Our study suggests that these electroactive, highly stretchable, biodegradable shape memory polymers with tunable recovery temperature near the body temperature have great potential in skeletal muscle tissue engineering application. Conducting polymers can regulate cell behavior such cell adhesion, proliferation, and differentiation with or without electrical stimulation. Therefore, they have great potential for electrical signal sensitive tissue regeneration. Although conducting biomaterials with degradability have been developed, highly stretchable and electroactive degradable copolymers for soft tissue engineering have been rarely reported. On the other hand, shape memory polymers (SMPs) have been widely used in biomedical fields. However, SMPs based on polyesters usually are biologically inert. This work reported the design of super stretchable electroactive degradable SMPs based on polycaprolactone and aniline trimer with tunable recovery temperature around body temperature. These flexible electroactive SMPs facilitated the proliferation and differentiation of C2C12 myoblast cells compared with polycaprolactone, indicating that they are excellent scaffolding biomaterials in tissue engineering to repair skeletal muscle and possibly other tissues. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Potential fault region detection in TFDS images based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Sun, Junhua; Xiao, Zhongwen

    2016-10-01

    In recent years, more than 300 sets of Trouble of Running Freight Train Detection System (TFDS) have been installed on railway to monitor the safety of running freight trains in China. However, TFDS is simply responsible for capturing, transmitting, and storing images, and fails to recognize faults automatically due to some difficulties such as such as the diversity and complexity of faults and some low quality images. To improve the performance of automatic fault recognition, it is of great importance to locate the potential fault areas. In this paper, we first introduce a convolutional neural network (CNN) model to TFDS and propose a potential fault region detection system (PFRDS) for simultaneously detecting four typical types of potential fault regions (PFRs). The experimental results show that this system has a higher performance of image detection to PFRs in TFDS. An average detection recall of 98.95% and precision of 100% are obtained, demonstrating the high detection ability and robustness against various poor imaging situations.

  2. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raveh-Sadka, Tali; Thomas, Brian C.; Singh, Andrea

    Premature infants are highly vulnerable to aberrant gastrointestinal tract colonization, a process that may lead to diseases like necrotizing enterocolitis. Thus, spread of potential pathogens among hospitalized infants is of great concern. Here, we reconstructed hundreds of high-quality genomes of microorganisms that colonized co-hospitalized premature infants, assessed their metabolic potential, and tracked them over time to evaluate bacterial strain dispersal among infants. We compared microbial communities in infants who did and did not develop necrotizing enterocolitis. Surprisingly, while potentially pathogenic bacteria of the same species colonized many infants, our genome-resolved analysis revealed that strains colonizing each baby were typically distinct.more » In particular, no strain was common to all infants who developed necrotizing enterocolitis. The paucity of shared gut colonizers suggests the existence of significant barriers to the spread of bacteria among infants. Furthermore, we demonstrate that strain-resolved comprehensive community analysis can be accomplished on potentially medically relevant time scales.« less

  3. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development

    DOE PAGES

    Raveh-Sadka, Tali; Thomas, Brian C.; Singh, Andrea; ...

    2015-03-03

    Premature infants are highly vulnerable to aberrant gastrointestinal tract colonization, a process that may lead to diseases like necrotizing enterocolitis. Thus, spread of potential pathogens among hospitalized infants is of great concern. Here, we reconstructed hundreds of high-quality genomes of microorganisms that colonized co-hospitalized premature infants, assessed their metabolic potential, and tracked them over time to evaluate bacterial strain dispersal among infants. We compared microbial communities in infants who did and did not develop necrotizing enterocolitis. Surprisingly, while potentially pathogenic bacteria of the same species colonized many infants, our genome-resolved analysis revealed that strains colonizing each baby were typically distinct.more » In particular, no strain was common to all infants who developed necrotizing enterocolitis. The paucity of shared gut colonizers suggests the existence of significant barriers to the spread of bacteria among infants. Furthermore, we demonstrate that strain-resolved comprehensive community analysis can be accomplished on potentially medically relevant time scales.« less

  4. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development

    PubMed Central

    Raveh-Sadka, Tali; Thomas, Brian C; Singh, Andrea; Firek, Brian; Brooks, Brandon; Castelle, Cindy J; Sharon, Itai; Baker, Robyn; Good, Misty; Morowitz, Michael J; Banfield, Jillian F

    2015-01-01

    Premature infants are highly vulnerable to aberrant gastrointestinal tract colonization, a process that may lead to diseases like necrotizing enterocolitis. Thus, spread of potential pathogens among hospitalized infants is of great concern. Here, we reconstructed hundreds of high-quality genomes of microorganisms that colonized co-hospitalized premature infants, assessed their metabolic potential, and tracked them over time to evaluate bacterial strain dispersal among infants. We compared microbial communities in infants who did and did not develop necrotizing enterocolitis. Surprisingly, while potentially pathogenic bacteria of the same species colonized many infants, our genome-resolved analysis revealed that strains colonizing each baby were typically distinct. In particular, no strain was common to all infants who developed necrotizing enterocolitis. The paucity of shared gut colonizers suggests the existence of significant barriers to the spread of bacteria among infants. Importantly, we demonstrate that strain-resolved comprehensive community analysis can be accomplished on potentially medically relevant time scales. DOI: http://dx.doi.org/10.7554/eLife.05477.001 PMID:25735037

  5. SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts

    NASA Astrophysics Data System (ADS)

    Ma, Zhinan; Zhuang, Jibin; Zhang, Xu; Zhou, Zhen

    2018-06-01

    Because of graphene and phosphorene, two-dimensional (2D) layered materials of group IV and group V elements arouse great interest. However, group IV-V monolayers have not received due attention. In this work, three types of SiP monolayers were computationally designed to explore their electronic structure and optical properties. Computations confirm the stability of these monolayers, which are all indirect-bandgap semiconductors with bandgaps in the range 1.38-2.21 eV. The bandgaps straddle the redox potentials of water at pH = 0, indicating the potential of the monolayers for use as watersplitting photocatalysts. The computed optical properties demonstrate that certain monolayers of SiP 2D materials are absorbers of visible light and would serve as good candidates for optoelectronic devices.

  6. Just-in-time: maximizing its success potential.

    PubMed

    Johnston, S K

    1990-08-01

    The effective implementation and use of JIT manufacturing practices depends largely on the education, training, and commitment of all levels of management to a fundamental quality-first policy. Management must transfer and demonstrate that commitment to every level and extension of the manufacturing endeavor. As a company establishes and reaches toward that goal, the move to JIT manufacturing practices becomes rational and justifiable. Failing to establish and commit to a quality directive greatly diminishes the potential benefits of JIT. If all levels of manufacturing participate in the JIT planning, implementing, and maintenance procedure, the realization of positive change and improvement drives the process. Total participation makes the task of JIT implementation not only possible, but practical. Enhanced mutual respect for all concerned is a likely consequence, advancing the productive environment.

  7. Microtools for single-cell analysis in biopharmaceutical development and manufacturing.

    PubMed

    Love, Kerry Routenberg; Bagh, Sangram; Choi, Jonghoon; Love, J Christopher

    2013-05-01

    Biologic drugs are promoting growth in the biopharmaceutical industry. Despite the clinical benefits of these drugs, the time and costs required to bring new biologics to market still are substantial. Three key challenges, among others, persist in the development of biologic drugs: namely, establishing product similarity, product toxicity, and global accessibility. New classes of microtools that facilitate the isolation and interrogation of single cells have the potential to impact each of these challenges. This opinion considers recent examples of microtools with demonstrated or potential utility to address problems in these areas. Integrating these advanced technologies into the development of new biologics could greatly reduce time and costs required to bring alternative products to market, and thus expand their global availability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. RECENT DEVELOPMENTS IN ELECTROCHEMICAL SENSORS FOR THE DETECTION OF NEUROTRANSMITTERS FOR APPLICATIONS IN BIOMEDICINE

    PubMed Central

    Özel, Rıfat Emrah; Hayat, Akhtar; Andreescu, Silvana

    2015-01-01

    Neurotransmitters are important biological molecules that are essential to many neurophysiological processes including memory, cognition, and behavioral states. The development of analytical methodologies to accurately detect neurotransmitters is of great importance in neurological and biological research. Specifically designed microelectrodes or microbiosensors have demonstrated potential for rapid, real-time measurements with high spatial resolution. Such devices can facilitate study of the role and mechanism of action of neurotransmitters and can find potential uses in biomedicine. This paper reviews the current status and recent advances in the development and application of electrochemical sensors for the detection of small-molecule neurotransmitters. Measurement challenges and opportunities of electroanalytical methods to advance study and understanding of neurotransmitters in various biological models and disease conditions are discussed. PMID:26973348

  9. Fabrication of gallium nitride nanowires by metal-assisted photochemical etching

    NASA Astrophysics Data System (ADS)

    Zhang, Miao-Rong; Jiang, Qing-Mei; Zhang, Shao-Hui; Wang, Zu-Gang; Hou, Fei; Pan, Ge-Bo

    2017-11-01

    Gallium nitride (GaN) nanowires (NWs) were fabricated by metal-assisted photochemical etching (MaPEtch). Gold nanoparticles (AuNPs) as metal catalyst were electrodeposited on the GaN substrate. SEM and HRTEM images show the surface of GaN NWs is smooth and clean without any impurity. SAED and FFT patterns demonstrate GaN NWs have single crystal structure, and the crystallographic orientation of GaN NWs is (0002) face. On the basis of the assumption of localized galvanic cells, combined with the energy levels and electrochemical potentials of reactants in this etching system, the generation, transfer and consumption of electron-hole pairs reveal the whole MaPEtch reaction process. Such easily fabricated GaN NWs have great potential for the assembly of GaN-based single-nanowire nanodevices.

  10. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    PubMed Central

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  11. Synergistic potentiation of D-fraction with vitamin C as possible alternative approach for cancer therapy.

    PubMed

    Konno, Sensuke

    2009-07-30

    Maitake D-fraction or PDF is the bioactive extract of maitake mushroom (Grifola frondosa) and its active constituent is the protein-bound polysaccharide (proteoglucan), or more specifically known as beta-glucan. PDF has been extensively studied and a number of its medicinal potentials/properties have been unveiled and demonstrated. Those include various physiological benefits ranging from immunomodulatory and antitumor activities to treatment for hypertension, diabetes, hypercholesterolemia, viral infections (hepatitis B and human immunodeficiency virus), and obesity. Particularly, two major biological activities of PDF, immunomodulatory and antitumor activities, have been the main target for scientific and clinical research. To demonstrate and confirm such biological activities, numerous studies have been performed in vitro and in vivo or in clinical settings. These studies showed that PDF was indeed capable of modulating immunologic and hematologic parameters, inhibiting or regressing the cancer cell growth, and even improving quality of life of cancer patients. Synergistic potentiation of PDF with vitamin C demonstrated in vitro is rather interesting and may have clinical implication, because such combination therapy appears to help improve the efficacy of currently ongoing cancer therapies. Recently, intravenous administration of vitamin C has been often used to increase its physiological concentration and this useful procedure may further make this combination therapy feasible. Therefore, PDF may have great potential, either being used solely or combined with other agents, for cancer therapy. Such relevant and detailed studies will be described and discussed herein with a special focus on the combination of PDF and vitamin C as a viable therapeutic option.

  12. ICFA Beam Dynamics Newsletter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, A.

    2017-11-21

    Electron beam ion sources technology made significant progress since 1968 when this method of producing highly charged ions in a potential trap within electron beam was proposed by E. Donets. Better understanding of physical processes in EBIS, technological advances and better simulation tools determined significant progress in key EBIS parameters: electron beam current and current density, ion trap capacity, attainable charge states. Greatly increased the scope of EBIS and EBIT applications. An attempt is made to compile some of EBIS engineering problems and solutions and to demonstrate a present stage of understanding the processes and approaches to build a bettermore » EBIS.« less

  13. Particle trapping and manipulation using hollow beam with tunable size generated by thermal nonlinear optical effect

    NASA Astrophysics Data System (ADS)

    He, Bo; Cheng, Xuemei; Zhang, Hui; Chen, Haowei; Zhang, Qian; Ren, Zhaoyu; Ding, Shan; Bai, Jintao

    2018-05-01

    We report micron-sized particle trapping and manipulation using a hollow beam of tunable size, which was generated by cross-phase modulation via the thermal nonlinear optical effect in an ethanol medium. The results demonstrated that the particle can be trapped stably in air for hours and manipulated in millimeter range with micrometer-level accuracy by modulating the size of the hollow beam. The merits of flexibility in tuning the beam size and simplicity in operation give this method great potential for the in situ study of individual particles in air.

  14. Current status of hybrid coronary revascularization.

    PubMed

    Jaik, Nikhil P; Umakanthan, Ramanan; Leacche, Marzia; Solenkova, Natalia; Balaguer, Jorge M; Hoff, Steven J; Ball, Stephen K; Zhao, David X; Byrne, John G

    2011-10-01

    Hybrid coronary revascularization combines coronary artery bypass surgery with percutaneous coronary intervention techniques to treat coronary artery disease. The potential benefits of such a technique are to offer the patients the best available treatments for coronary artery disease while minimizing the risks of the surgery. Hybrid coronary revascularization has resulted in the establishment of new 'hybrid operating suites', which incorporate and integrate the capabilities of a cardiac surgery operating room with that of an interventional cardiology laboratory. Hybrid coronary revascularization has greatly augmented teamwork and cooperation between both fields and has demonstrated encouraging as well as good initial outcomes.

  15. Femtosecond Laser Ablated FBG with Composite Microstructure for Hydrogen Sensor Application.

    PubMed

    Zou, Meng; Dai, Yutang; Zhou, Xian; Dong, Ke; Yang, Minghong

    2016-12-01

    A composite microstructure in fiber Bragg grating (FBG) with film deposition for hydrogen detection is presented. Through ablated to FBG cladding by a femtosecond laser, straight-trenches and spiral micro-pits are formed. A Pd-Ag film is sputtered on the surface of the laser processed FBG single mode fiber, and acts as hydrogen sensing transducer. The demonstrated experimental outcomes show that a composite structure produced the highest sensitivity of 26.3 pm/%H, nearly sevenfold more sensitive compared with original standard FBG. It offers great potential in engineering applications for its good structure stability and sensitivity.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yin; Wang, Wen; Wysocki, Gerard, E-mail: gwysocki@princeton.edu

    In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (∼15 MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing.

  17. Attack-Resistant Trust Metrics

    NASA Astrophysics Data System (ADS)

    Levien, Raph

    The Internet is an amazingly powerful tool for connecting people together, unmatched in human history. Yet, with that power comes great potential for spam and abuse. Trust metrics are an attempt to compute the set of which people are trustworthy and which are likely attackers. This chapter presents two specific trust metrics developed and deployed on the Advogato Website, which is a community blog for free software developers. This real-world experience demonstrates that the trust metrics fulfilled their goals, but that for good results, it is important to match the assumptions of the abstract trust metric computation to the real-world implementation.

  18. Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Chen, Weisheng; Wang, Yue; Chen, Rong; Zeng, Haishan

    2013-01-01

    The capability of using silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) spectroscopy combined with principal component analysis (PCA) and linear discriminate analysis (LDA) to differentiate esophageal cancer tissue from normal tissue was presented. Significant differences in Raman intensities of prominent SERS bands were observed between normal and cancer tissues. PCA-LDA multivariate analysis of the measured tissue SERS spectra achieved diagnostic sensitivity of 90.9% and specificity of 97.8%. This exploratory study demonstrated great potential for developing label-free tissue SERS analysis into a clinical tool for esophageal cancer detection.

  19. Generation and propagation characteristics of a localized hollow beam

    NASA Astrophysics Data System (ADS)

    Xia, Meng; Wang, Zhizhang; Yin, Yaling; Zhou, Qi; Xia, Yong; Yin, Jianping

    2018-05-01

    A succinct experimental scheme is demonstrated to generate a localized hollow beam by using a π-phase binary bitmap and a convergent thin lens. The experimental results show that the aspect ratio of the dark-spot size of the hollow beam can be effectively controlled by the focal length of the lens. The measured beam profiles in free space also agree with the theoretical modeling. The studies hold great promise that such a hollow beam can be used to cool trapped atoms (or molecules) by Sisyphus cooling and to achieve an optically-trapped Bose–Einstein condensate by optical-potential evaporative cooling.

  20. Advanced Guidance and Control Methods for Reusable Launch Vehicles: Test Results

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.; Krupp, Don R.; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety/reliability and reducing the cost. In this paper, we examine some of these methods and compare the results. We briefly introduce the various methods under test, list the test cases used to demonstrate that the desired results are achieved, show an automated test scoring method that greatly reduces the evaluation effort required, and display results of the tests. Results are shown for the algorithms that have entered testing so far.

  1. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Keßler, Christian A; Kettler, Jan; Hepp, Christian; Arend, Carsten; Albrecht, Roland; Schulz, Wolfgang-Michael; Jetter, Michael; Michler, Peter; Becher, Christoph

    2012-10-05

    We demonstrate efficient (>30%) quantum frequency conversion of visible single photons (711 nm) emitted by a quantum dot to a telecom wavelength (1313 nm). Analysis of the first- and second-order coherence before and after wavelength conversion clearly proves that pivotal properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with quantum frequency conversion as a promising technique that may pave the way for a number of new applications in quantum technology.

  2. National Space Transportation and Support Study/technology requirements and plans

    NASA Technical Reports Server (NTRS)

    Walberg, G. D.; Gasperich, F. J., Jr.; Scheyhing, E. R.

    1986-01-01

    This paper presents a generic technology plan which has been developed as part of the National Space Transportation and Support Study. This program, which addresses a wide variety of potentially high payoff technology areas, is structured to promote both enhanced vehicle performance and greatly improved operational efficiency and includes both evolutionary and breakthrough technologies. The plan is presented in terms of disciplinary plan elements, which were developed by joint NASA/USAF disciplinary working groups, and as a set of demonstration projects which serve as focal points for the overall plan and drive the development of the many interrelated disciplinary activities.

  3. Rydberg Excitation of a Single Trapped Ion.

    PubMed

    Feldker, T; Bachor, P; Stappel, M; Kolbe, D; Gerritsma, R; Walz, J; Schmidt-Kaler, F

    2015-10-23

    We demonstrate excitation of a single trapped cold (40)Ca(+) ion to Rydberg levels by laser radiation in the vacuum ultraviolet at a wavelength of 122 nm. Observed resonances are identified as 3d(2)D(3/2) to 51F, 52F and 3d(2)D(5/2) to 64F. We model the line shape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps.

  4. Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope.

    PubMed

    Gao, Mingyuan; Hu, Chengzhi; Chen, Zhenzhi; Zhang, Honghai; Liu, Sheng

    2010-12-01

    This paper investigates design, modeling, simulation, and control issues related to self-propelled endoscopic capsule navigated inside the human body through external magnetic fields. A novel magnetic propulsion system is proposed and fabricated, which has great potential of being used in the field of noninvasive gastrointestinal endoscopy. Magnetic-analysis model is established and finite-element simulations as well as orthogonal design are performed for obtaining optimized mechanical and control parameters for generating appropriate external magnetic field. Simulated intestinal tract experiments are conducted, demonstrating controllable movement of the capsule under the developed magnetic propulsion system.

  5. Floating compression of Ag nanowire networks for effective strain release of stretchable transparent electrodes

    NASA Astrophysics Data System (ADS)

    Pyo, Jun Beom; Kim, Byoung Soo; Park, Hyunchul; Kim, Tae Ann; Koo, Chong Min; Lee, Jonghwi; Son, Jeong Gon; Lee, Sang-Soo; Park, Jong Hyuk

    2015-10-01

    Manipulation of the configuration of Ag nanowire (NW) networks has been pursued to enhance the performance of stretchable transparent electrodes. However, it has remained challenging due to the high Young's modulus and low yield strain of Ag NWs, which lead to their mechanical failure when subjected to structural deformation. We demonstrate that floating a Ag NW network on water and subsequent in-plane compression allows convenient development of a wavy configuration in the Ag NW network, which can release the applied strain. A greatly enhanced electromechanical stability of Ag NW networks can be achieved due to their wavy configuration, while the NW networks maintain the desirable optical and electrical properties. Moreover, the produced NW networks can be transferred to a variety of substrates, offering flexibility for device fabrication. The Ag NW networks with wavy configurations are used as compliant electrodes for dielectric elastomer actuators. The study demonstrates their promising potential to provide improved performance for soft electronic devices.Manipulation of the configuration of Ag nanowire (NW) networks has been pursued to enhance the performance of stretchable transparent electrodes. However, it has remained challenging due to the high Young's modulus and low yield strain of Ag NWs, which lead to their mechanical failure when subjected to structural deformation. We demonstrate that floating a Ag NW network on water and subsequent in-plane compression allows convenient development of a wavy configuration in the Ag NW network, which can release the applied strain. A greatly enhanced electromechanical stability of Ag NW networks can be achieved due to their wavy configuration, while the NW networks maintain the desirable optical and electrical properties. Moreover, the produced NW networks can be transferred to a variety of substrates, offering flexibility for device fabrication. The Ag NW networks with wavy configurations are used as compliant electrodes for dielectric elastomer actuators. The study demonstrates their promising potential to provide improved performance for soft electronic devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03814f

  6. A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (CSO) Mitigation in the Great Lakes and New England Regions (Final Report)

    EPA Science Inventory

    EPA announced the availability of the report, A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (CSO) Mitigation in the Great Lakes and New England Regions. This report is a screening-level assessment of the potential implications...

  7. Assessing community values for reducing agricultural emissions to improve water quality and protect coral health in the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Rolfe, John; Windle, Jill

    2011-12-01

    Policymakers wanting to increase protection of the Great Barrier Reef from pollutants generated by agriculture need to identify when measures to improve water quality generate benefits to society that outweigh the costs involved. The research reported in this paper makes a contribution in several ways. First, it uses the improved science understanding about the links between management changes and reef health to bring together the analysis of costs and benefits of marginal changes, helping to demonstrate the appropriate way of addressing policy questions relating to reef protection. Second, it uses the scientific relationships to frame a choice experiment to value the benefits of improved reef health, with the results of mixed logit (random parameter) models linking improvements explicitly to changes in "water quality units." Third, the research demonstrates how protection values are consistent across a broader population, with some limited evidence of distance effects. Fourth, the information on marginal costs and benefits that are reported provide policymakers with information to help improve management decisions. The results indicate that while there is potential for water quality improvements to generate net benefits, high cost water quality improvements are generally uneconomic. A major policy implication is that cost thresholds for key pollutants should be set to avoid more expensive water quality proposals being selected.

  8. Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils.

    PubMed

    Jia, Weitao; Lv, Sulian; Feng, Juanjuan; Li, Jihong; Li, Yinxin; Li, Shizhong

    2016-09-01

    Cadmium (Cd) contamination is a worldwide environmental problem, and remediation of Cd pollution is of great significance for food production as well as human health. Here, the responses of sweet sorghum cv. 'M-81E' to cadmium stress were studied for its potential as an energy plant in restoring soils contaminated by cadmium. In hydroponic experiments, the biomass of 'M-81E' showed no obvious change under 10 μM cadmium treatment. Cadmium concentration was the highest in roots of seedlings as well as mature plants, but in agricultural practice, the valuable and harvested parts of sweet sorghum are shoots, so promoting the translocation of cadmium to shoots is of great importance in order to improve its phytoremediation capacity. Further histochemical assays with dithizone staining revealed that cadmium was mainly concentrated in the stele of roots and scattered in intercellular space of caulicles. Moreover, the correlation analysis showed that Cd had a negative relationship with iron (Fe), zinc (Zn), and manganese (Mn) in caulicles and leaves and a positive relationship with Fe in roots. These results implied that cadmium might compete with Fe, Zn, and Mn for the transport binding sites and further prevent their translocation to shoots. In addition, transmission electron microscopic observations showed that under 100 μM cadmium treatment, the structure of chloroplast was impaired and the cell wall of vascular bundle cells in leaves and xylem and phloem cells in roots turned thicker compared to control. In summary, morphophysiological characteristic analysis demonstrated sweet sorghum can absorb cadmium and the growth is not negatively affected by mild level cadmium stress; thus, it is a promising material for the phytoremediation of cadmium-contaminated soils considering its economic benefit. This study also points out potential strategies to improve the phytoremediation capacity of sweet sorghum through genetic modification of transporters and cell wall components.

  9. A Causal Relation between Bioluminescence and Oxygen to Quantify the Cell Niche

    PubMed Central

    Lambrechts, Dennis; Roeffaers, Maarten; Goossens, Karel; Hofkens, Johan; Van de Putte, Tom; Schrooten, Jan; Van Oosterwyck, Hans

    2014-01-01

    Bioluminescence imaging assays have become a widely integrated technique to quantify effectiveness of cell-based therapies by monitoring fate and survival of transplanted cells. To date these assays are still largely qualitative and often erroneous due to the complexity and dynamics of local micro-environments (niches) in which the cells reside. Here, we report, using a combined experimental and computational approach, on oxygen that besides being a critical niche component responsible for cellular energy metabolism and cell-fate commitment, also serves a primary role in regulating bioluminescent light kinetics. We demonstrate the potential of an oxygen dependent Michaelis-Menten relation in quantifying intrinsic bioluminescence intensities by resolving cell-associated oxygen gradients from bioluminescent light that is emitted from three-dimensional (3D) cell-seeded hydrogels. Furthermore, the experimental and computational data indicate a strong causal relation of oxygen concentration with emitted bioluminescence intensities. Altogether our approach demonstrates the importance of oxygen to evolve towards quantitative bioluminescence and holds great potential for future microscale measurement of oxygen tension in an easily accessible manner. PMID:24840204

  10. Designing Intervention Studies: Selected Populations, Range Restrictions, and Statistical Power

    PubMed Central

    Miciak, Jeremy; Taylor, W. Pat; Stuebing, Karla K.; Fletcher, Jack M.; Vaughn, Sharon

    2016-01-01

    An appropriate estimate of statistical power is critical for the design of intervention studies. Although the inclusion of a pretest covariate in the test of the primary outcome can increase statistical power, samples selected on the basis of pretest performance may demonstrate range restriction on the selection measure and other correlated measures. This can result in attenuated pretest-posttest correlations, reducing the variance explained by the pretest covariate. We investigated the implications of two potential range restriction scenarios: direct truncation on a selection measure and indirect range restriction on correlated measures. Empirical and simulated data indicated direct range restriction on the pretest covariate greatly reduced statistical power and necessitated sample size increases of 82%–155% (dependent on selection criteria) to achieve equivalent statistical power to parameters with unrestricted samples. However, measures demonstrating indirect range restriction required much smaller sample size increases (32%–71%) under equivalent scenarios. Additional analyses manipulated the correlations between measures and pretest-posttest correlations to guide planning experiments. Results highlight the need to differentiate between selection measures and potential covariates and to investigate range restriction as a factor impacting statistical power. PMID:28479943

  11. Designing Intervention Studies: Selected Populations, Range Restrictions, and Statistical Power.

    PubMed

    Miciak, Jeremy; Taylor, W Pat; Stuebing, Karla K; Fletcher, Jack M; Vaughn, Sharon

    2016-01-01

    An appropriate estimate of statistical power is critical for the design of intervention studies. Although the inclusion of a pretest covariate in the test of the primary outcome can increase statistical power, samples selected on the basis of pretest performance may demonstrate range restriction on the selection measure and other correlated measures. This can result in attenuated pretest-posttest correlations, reducing the variance explained by the pretest covariate. We investigated the implications of two potential range restriction scenarios: direct truncation on a selection measure and indirect range restriction on correlated measures. Empirical and simulated data indicated direct range restriction on the pretest covariate greatly reduced statistical power and necessitated sample size increases of 82%-155% (dependent on selection criteria) to achieve equivalent statistical power to parameters with unrestricted samples. However, measures demonstrating indirect range restriction required much smaller sample size increases (32%-71%) under equivalent scenarios. Additional analyses manipulated the correlations between measures and pretest-posttest correlations to guide planning experiments. Results highlight the need to differentiate between selection measures and potential covariates and to investigate range restriction as a factor impacting statistical power.

  12. Maskless localized patterning of biomolecules on carbon nanotube microarray functionalized by ultrafine atmospheric pressure plasma jet using biotin-avidin system

    NASA Astrophysics Data System (ADS)

    Abuzairi, Tomy; Okada, Mitsuru; Purnamaningsih, Retno Wigajatri; Poespawati, Nji Raden; Iwata, Futoshi; Nagatsu, Masaaki

    2016-07-01

    Ultrafine plasma jet is a promising technology with great potential for nano- or micro-scale surface modification. In this letter, we demonstrated the use of ultrafine atmospheric pressure plasma jet (APPJ) for patterning bio-immobilization on vertically aligned carbon nanotube (CNT) microarray platform without a physical mask. The biotin-avidin system was utilized to demonstrate localized biomolecule patterning on the biosensor devices. Using ±7.5 kV square-wave pulses, the optimum condition of plasma jet with He/NH3 gas mixture and 2.5 s treatment period has been obtained to functionalize CNTs. The functionalized CNTs were covalently linked to biotin, bovine serum albumin (BSA), and avidin-(fluorescein isothiocyanate) FITC, sequentially. BSA was necessary as a blocking agent to protect the untreated CNTs from avidin adsorption. The localized patterning results have been evaluated from avidin-FITC fluorescence signals analyzed using a fluorescence microscope. The patterning of biomolecules on the CNT microarray platform using ultrafine APPJ provides a means for potential application of microarray biosensors based on CNTs.

  13. Speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance-Fourier transform-infrared imaging and quantitative energy-dispersive electron probe X-ray microanalysis techniques.

    PubMed

    Jung, Hae-Jin; Malek, Md Abdul; Ryu, JiYeon; Kim, BoWha; Song, Young-Chul; Kim, HyeKyeong; Ro, Chul-Un

    2010-07-15

    Our previous work demonstrated for the first time the potential of the combined use of two techniques, attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis, low-Z particle EPMA, for the characterization of individual aerosol particles. In this work, the speciation of mineral particles was performed on a single particle level for 24 mineral samples, including kaolinite, montmorillonite, vermiculite, talc, quartz, feldspar, calcite, gypsum, and apatite, by the combined use of ATR-FT-IR imaging and low-Z particle EPMA techniques. These two single particle analytical techniques provide complementary information, the ATR-FT-IR imaging on mineral types and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles. This work demonstrates that the combined use of the two single particle analytical techniques can powerfully characterize externally heterogeneous mineral particle samples in detail and has great potential for the characterization of airborne mineral dust particles.

  14. Do the health claims made for Morinda citrifolia (Noni) harmonize with current scientific knowledge and evaluation of its biological effects.

    PubMed

    Gupta, Rakesh Kumar; Patel, Amit Kumar

    2013-01-01

    Morinda citrifolia, also known as Great Morinda, Indian Mulberry, or Noni, is a plant belonging to the family Rubiaceae. A number of major chemical compounds have been identified in the leaves, roots, and fruits of Noni plant. The fruit juice is in high demand in alternative medicine for different kinds for illnesses such as arthritis, diabetes, high blood pressure, muscle ached and pains, menstrual difficulties, headache, heart diseases, AIDS, gastric ulcer, sprains, mental depression, senility, poor digestion, arteriosclerosis, blood vessel problems, and drug addiction. Several studies have also demonstrated the anti-inflammatory, antioxidant and apoptosis-inducing effect of Noni in various cancers. Based on a toxicological assessment, Noni juice was considered as safe. Though a large number of in vitro, and, to a certain extent, in vivo studies demonstrated a range of potentially beneficial effects, clinical data are essentially lacking. To what extent the findings from experimental pharmacological studies are of potential clinical relevance is not clear at present and this question needs to be explored in detail before an recommendations can be made.

  15. Golden Needle Mushroom: A Culinary Medicine with Evidenced-Based Biological Activities and Health Promoting Properties

    PubMed Central

    Tang, Calyn; Hoo, Pearl Ching-Xin; Tan, Loh Teng-Hern; Pusparajah, Priyia; Khan, Tahir Mehmood; Lee, Learn-Han; Goh, Bey-Hing; Chan, Kok-Gan

    2016-01-01

    Flammulina velutipes (enoki, velvet shank, golden needle mushroom or winter mushroom), one of the main edible mushrooms on the market, has long been recognized for its nutritional value and delicious taste. In recent decades, research has expanded beyond detailing its nutritional composition and delved into the biological activities and potential health benefits of its constituents. Many bioactive constituents from a range of families have been isolated from different parts of the mushroom, including carbohydrates, protein, lipids, glycoproteins, phenols, and sesquiterpenes. These compounds have been demonstrated to exhibit various biological activities, such as antitumour and anticancer activities, anti-atherosclerotic and thrombosis inhibition activity, antihypertensive and cholesterol lowering effects, anti-aging and antioxidant properties, ability to aid with restoring memory and overcoming learning deficits, anti-inflammatory, immunomodulatory, anti-bacterial, ribosome inactivation and melanosis inhibition. This review aims to consolidate the information concerning the phytochemistry and biological activities of various compounds isolated from F. velutipes to demonstrate that this mushroom is not only a great source of nutrients but also possesses tremendous potential in pharmaceutical drug development. PMID:28003804

  16. Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases.

    PubMed

    Ahmed, Towfiq; Haraldsen, Jason T; Rehr, John J; Di Ventra, Massimiliano; Schuller, Ivan; Balatsky, Alexander V

    2014-03-28

    Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new 'multi-point cross-correlation' technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology.

  17. Preparation of gellan-cholesterol nanohydrogels embedding baicalin and evaluation of their wound healing activity.

    PubMed

    Manconi, Maria; Manca, Maria Letizia; Caddeo, Carla; Cencetti, Claudia; di Meo, Chiara; Zoratto, Nicole; Nacher, Amparo; Fadda, Anna Maria; Matricardi, Pietro

    2018-06-01

    In the present work, the preparation, characterization and therapeutic potential of baicalin-loaded nanohydrogels are reported. The nanohydrogels were prepared by sonicating (S nanohydrogel) or autoclaving (A nanohydrogel) a dispersion of cholesterol-derivatized gellan in phosphate buffer. The nanohydrogel obtained by autoclave treatment showed the most promising results: smaller particles (∼362 nm vs. ∼530 nm), higher homogeneity (polydispersity index = ∼0.24 vs. ∼0.47), and lower viscosity than those obtained by sonication. In vitro studies demonstrated the ability of the nanohydrogels to favour the deposition of baicalin in the epidermis. A high biocompatibility was found for baicalin-loaded nanohydrogels, along with a great ability to counteract the toxic effect induced by hydrogen peroxide in cells, as the nanohydrogels re-established the normal conditions (∼100% viability). Further, the potential of baicalin-loaded nanohydrogels in skin wound healing was demonstrated in vivo in mice by complete skin restoration and inhibition of specific inflammatory markers (i.e., myeloperoxidase, tumor necrosis factor-α, and oedema). Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Quantum-Circuit Refrigerator

    NASA Astrophysics Data System (ADS)

    MöTtöNen, Mikko; Tan, Kuan Y.; Masuda, Shumpei; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Silveri, Matti; Grabert, Hermann

    Quantum technology holds great potential in providing revolutionizing practical applications. However, fast and precise cooling of the functional quantum degrees of freedom on demand remains a major challenge in many solid-state implementations, such as superconducting circuits. We demonstrate direct cooling of a superconducting resonator mode using voltage-controllable quantum tunneling of electrons in a nanoscale refrigerator. In our first experiments on this type of a quantum-circuit refrigerator, we measure the drop in the mode temperature by electron thermometry at a resistor which is coupled to the resonator mode through ohmic losses. To eliminate unwanted dissipation, we remove the probe resistor and directly observe the power spectrum of the resonator output in agreement with the so-called P(E) theory. We also demonstrate in microwave reflection experiments that the internal quality factor of the resonator can be tuned by orders of magnitude. In the future, our refrigerator can be integrated with different quantum electric devices, potentially enhancing their performance. For example, it may prove useful in the initialization of superconducting quantum bits and in dissipation-assisted quantum annealing. We acknowledge European Research Council Grant SINGLEOUT (278117) and QUESS (681311) for funding.

  19. A causal relation between bioluminescence and oxygen to quantify the cell niche.

    PubMed

    Lambrechts, Dennis; Roeffaers, Maarten; Goossens, Karel; Hofkens, Johan; Vande Velde, Greetje; Van de Putte, Tom; Schrooten, Jan; Van Oosterwyck, Hans

    2014-01-01

    Bioluminescence imaging assays have become a widely integrated technique to quantify effectiveness of cell-based therapies by monitoring fate and survival of transplanted cells. To date these assays are still largely qualitative and often erroneous due to the complexity and dynamics of local micro-environments (niches) in which the cells reside. Here, we report, using a combined experimental and computational approach, on oxygen that besides being a critical niche component responsible for cellular energy metabolism and cell-fate commitment, also serves a primary role in regulating bioluminescent light kinetics. We demonstrate the potential of an oxygen dependent Michaelis-Menten relation in quantifying intrinsic bioluminescence intensities by resolving cell-associated oxygen gradients from bioluminescent light that is emitted from three-dimensional (3D) cell-seeded hydrogels. Furthermore, the experimental and computational data indicate a strong causal relation of oxygen concentration with emitted bioluminescence intensities. Altogether our approach demonstrates the importance of oxygen to evolve towards quantitative bioluminescence and holds great potential for future microscale measurement of oxygen tension in an easily accessible manner.

  20. Electrochemical writing on edible polysaccharide films for intelligent food packaging.

    PubMed

    Wu, Si; Wang, Wenqi; Yan, Kun; Ding, Fuyuan; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2018-04-15

    Polysaccharide films used as intelligent food packaging possess the advantages of renewability, safety and biodegradability. Printing on the polysaccharidic food packaging is challenging due to the high demand for edible-ink and the need for a suitable printing technique. In this work, we propose an electrochemical method for writing on polysaccharide film. Unlike conventional printing, this electrochemical writing process relies on the pH responsive color change of anthocyanin embedded in the chitosan/agarose hydrogel. By biasing a negative potential to a stainless wire (used as a pen) contacting the surface of the chitosan/agarose/ATH hydrogel, the locally generated pH change induced the color change of ATH and wrote programmed information on the hydrogel. We demonstrate the writing can be temporary in the hydrogel but stable when the hydrogel is dried. We further demonstrate that the written film is applicable for the detection of the spoilage of crucian fish. The reported electrochemical writing process provides a novel method for printing information on polysaccharide film and great potential for intelligent food packaging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan

    2015-10-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.

  2. One-dimensional nanostructures for novel biosensor and transparent electronics applications

    NASA Astrophysics Data System (ADS)

    Chang, Hsiao-Kang

    This dissertation presents one-dimensional nanostructures for novel biosensors and transparent electronics applications. In chapter 1, background information regarding nanomaterials studied in this dissertation is described. In chapter 2, I describe the first application of antibody mimic proteins (AMPs) in the field of nanobiosensors. In2O3 nanowire based biosensors have been configured with an AMP (Fibronectin, Fn) to detect nucleocapsid (N) protein, a biomarker for severe acute respiratory syndrome (SARS). Using these devices, N protein was detected at sub-nanomolar concentration in the presence of 44 microM bovine serum albumin as a background. Furthermore, the binding constant of the AMP to Fn was determined from the concentration dependence of the response of our biosensors. In chapter 3, I demonstrate an In2O3 nanowire-based biosensing system that is capable of performing rapid, label-free, electrical detection of cancer biomarkers directly from human whole blood collected by a finger prick. Detection of multiple cancer biomarkers with high reliability at clinically meaningful concentrations from whole blood collected by a finger prick using this sensing system is demonstrated. In chapter 4, I introduce a top-down nanobiosensor based on polysilicon nanoribbon with enhanced yield and device uniformity. The polysilicon nanoribbon devices can be fabricated by conventional photolithography with only easily available materials and equipments required, thus results in great time and cost efficiency as well as scalability. The devices show great response to pH changes with a wide dynamic range and high sensitivity. Biomarker detection is also demonstrated with clinically relevant sensitivity. Such results suggest that polysilicon nanoribbon devices exhibit great potential toward a highly efficient, reliable and sensitive biosensing platform. In chapter 5, I demonstrate the first printed nanobiosensor application based on separated semiconducting single-walled carbon nanotubes. The printed nanosensors exhibit reliable sensing to pH variation. We have successfully achieved the detection of Estradial, a commonly used hormone biomarker, as a proof of concept for using printed nanobiosensors on disease diagnosis. High-performance fully transparent thin-film transistors (TTFTs) on both rigid and flexible substrates with transfer printed aligned nanotubes as the active channel and indium-tin oxide as the source, drain and gate electrodes is reported in chapter 6. Such transistors are fabricated through low temperature processing, which allows device fabrication even on flexible substrates. Transparent transistors with high effective mobilities (˜1,300 cm2V -1s-1) were first demonstrated on glass substrates via engineering of the source and drain contacts, and high on/off ratio (3 x 104) was achieved using electrical breakdown. In addition, flexible TTFTs with good transparency were also fabricated and successfully operated under bending up to 120°. All of the devices showed good transparency (˜80% on average). The transparent transistors were further utilized to construct a fully transparent and flexible logic inverter on a plastic substrate, and also used to control commercial GaN light-emitting diodes (LEDs) with light intensity modulation of 103. Our results suggest that aligned nanotubes have great potential to work as building blocks for future transparent electronics. In chapter 7, a summary of all topics in this dissertation is described. Future work regarding the nanobiosensor project is also proposed.

  3. Potential for DNA-based ID of Great Lakes fauna: Species inventories vs. barcode libraries

    EPA Science Inventory

    DNA-based identification of mixed-organism samples offers the potential to greatly reduce the need for resource-intensive morphological identification, which would be of value both to biotic condition assessment and non-native species early-detection monitoring. However the abil...

  4. Enhanced spectral domain optical coherence tomography for pathological and functional studies

    NASA Astrophysics Data System (ADS)

    Yuan, Zhijia

    Optical coherence tomography (OCT) is a novel technique that enables noninvasive or minimally invasive, cross-sectional imaging of biological tissue at sub-10mum spatial resolution and up to 2-3mm imaging depth. Numerous technological advances have emerged in recent years that have shown great potential to develop OCT into a powerful imaging and diagnostic tools. In particular, the implementation of Fourier-domain OCT (FDOCT) is a major step forward that leads to greatly improved imaging rate and image fidelity of OCT. This dissertation summarizes the work that focuses on enhancing the performances and functionalities of spectral radar based FDOCT (SDOCT) for pathological and functional applications. More specifically, chapters 1-4 emphasize on the development of SDOCT and its utility in pathological studies, including cancer diagnosis. The principle of SDOCT is first briefly outlined, followed by the design of our bench-top SDOCT systems with emphasis on spectral linear interpolation, calibration and system dispersion compensation. For ultrahigh-resolution SDOCT, time-lapse image registration and frame averaging is introduced to effectively reduce speckle noise and uncover subcellular details, showing great promise for enhancing the diagnosis of carcinoma in situ. To overcome the image depth limitation of OCT, a dual-modal imaging method combing SDOCT with high-frequency ultrasound is proposed and examined in animal cancer models to enhance the sensitivity and staging capabilities for bladder cancer diagnosis. Chapters 5-7 summarize the work on developing Doppler SDOCT for functional studies. Digital-frequency-ramping OCT (DFR-OCT) is developed in the study, which has demonstrated the ability to significantly improve the signal-to-noise ratio and thus sensitivity for retrieving subsurface blood flow imaging. New DFR algorithms and imaging processing methods are discussed to further enhance cortical CBF imaging. Applications of DFR-OCT for brain functional studies are presented and laser speckle imaging is combined to enable quantitative cerebral blood flow (CBF) imaging at high spatiotemporal resolutions. An angiography-enhanced Doppler optical coherence tomography (aDFR-OCT) was also demonstrated to enable quantitative imaging of capillary changes for brain functional studies. Lastly, future work on technological development and potential biomedical applications is briefly outlined.

  5. Label-free high-throughput detection and quantification of circulating melanoma tumor cell clusters by linear-array-based photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Hai, Pengfei; Zhou, Yong; Zhang, Ruiying; Ma, Jun; Li, Yang; Shao, Jin-Yu; Wang, Lihong V.

    2017-04-01

    Circulating tumor cell (CTC) clusters, arising from multicellular groupings in a primary tumor, greatly elevate the metastatic potential of cancer compared with single CTCs. High-throughput detection and quantification of CTC clusters are important for understanding the tumor metastatic process and improving cancer therapy. Here, we applied a linear-array-based photoacoustic tomography (LA-PAT) system and improved the image reconstruction for label-free high-throughput CTC cluster detection and quantification in vivo. The feasibility was first demonstrated by imaging CTC cluster ex vivo. The relationship between the contrast-to-noise ratios (CNRs) and the number of cells in melanoma tumor cell clusters was investigated and verified. Melanoma CTC clusters with a minimum of four cells could be detected, and the number of cells could be computed from the CNR. Finally, we demonstrated imaging of injected melanoma CTC clusters in rats in vivo. Similarly, the number of cells in the melanoma CTC clusters could be quantified. The data showed that larger CTC clusters had faster clearance rates in the bloodstream, which agreed with the literature. The results demonstrated the capability of LA-PAT to detect and quantify melanoma CTC clusters in vivo and showed its potential for tumor metastasis study and cancer therapy.

  6. Lactoferrin-modified PEGylated liposomes loaded with doxorubicin for targeting delivery to hepatocellular carcinoma

    PubMed Central

    Wei, Minyan; Guo, Xiucai; Tu, Liuxiao; Zou, Qi; Li, Qi; Tang, Chenyi; Chen, Bao; Xu, Yuehong; Wu, Chuanbin

    2015-01-01

    Lactoferrin (Lf) is a potential-targeting ligand for hepatocellular carcinoma (HCC) cells because of its specific binding with asialoglycoprotein receptor (ASGPR). In this present work, a doxorubicin (DOX)-loaded, Lf-modified, polyethylene glycol (PEG)ylated liposome (Lf-PLS) system was developed, and its targeting effect and antitumor efficacy to HCC was also explored. The DOX-loaded Lf-PLS system had spherical or oval vesicles, with mean particle size approximately 100 nm, and had an encapsulation efficiency of 97%. The confocal microscopy and flow cytometry indicated that the cellular uptake of Lf-PLS was significantly higher than that of PEGylated liposome (PLS) in ASGPR-positive cells (P<0.05) but not in ASGPR-negative cells (P>0.05). Cytotoxicity assay by MTT demonstrated that DOX-loaded Lf-PLS showed significantly stronger antiproliferative effects on ASGPR-positive HCC cells than did PLS without the Lf modification (P<0.05). The in vivo antitumor studies on male BALB/c nude mice bearing HepG2 xenografts demonstrated that DOX-loaded Lf-PLS had significantly stronger antitumor efficacy compared with PLS (P<0.05) and free DOX (P<0.05). All these results demonstrated that a DOX-loaded Lf-PLS might have great potential application for HCC-targeting therapy. PMID:26316745

  7. Phased Array 3D MR Spectroscopic Imaging of the Brain at 7 Tesla

    PubMed Central

    Xu, Duan; Cunningham, Charles H; Chen, Albert P.; Li, Yan; Kelley, Douglas AC; Mukherjee, Pratik; Pauly, John M.; Nelson, Sarah J.; Vigneron, Daniel B.

    2008-01-01

    Ultrahigh field 7T MR scanners offer the potential for greatly improved MR spectroscopic imaging due to increased sensitivity and spectral resolution. Prior 7T human single-voxel MRS studies have shown significant increases in SNR and spectral resolution as compared to lower magnetic fields, but have not demonstrated the increase in spatial resolution and multivoxel coverage possible with 7T MR spectroscopic imaging. The goal of this study was to develop specialized rf pulses and sequences for 3D MRSI at 7T to address the challenges of increased chemical shift misregistration, B1 power limitations, and increased spectral bandwidth. The new 7T MRSI sequence was tested in volunteer studies and demonstrated the feasibility of obtaining high SNR phased-array 3D MRSI from the human brain. PMID:18486386

  8. Electric Switching of Fluorescence Decay in Gold-Silica-Dye Nematic Nanocolloids Mediated by Surface Plasmons.

    PubMed

    Jiang, Li; Mundoor, Haridas; Liu, Qingkun; Smalyukh, Ivan I

    2016-07-26

    Tunable composite materials with interesting physical behavior can be designed through integrating unique optical properties of solid nanostructures with facile responses of soft matter to weak external stimuli, but this approach remains challenged by their poorly controlled coassembly at the mesoscale. Using scalable wet chemical synthesis procedures, we fabricated anisotropic gold-silica-dye colloidal nanostructures and then organized them into the device-scale (demonstrated for square-inch cells) electrically tunable composites by simultaneously invoking molecular and colloidal self-assembly. We show that the ensuing ordered colloidal dispersions of shape-anisotropic nanostructures exhibit tunable fluorescence decay rates and intensity. We characterize how these properties depend on low-voltage fields and polarization of both the excitation and emission light, demonstrating a great potential for the practical realization of an interesting breed of nanostructured composite materials.

  9. High-frequency and high-quality silicon carbide optomechanical microresonators

    PubMed Central

    Lu, Xiyuan; Lee, Jonathan Y.; Lin, Qiang

    2015-01-01

    Silicon carbide (SiC) exhibits excellent material properties attractive for broad applications. We demonstrate the first SiC optomechanical microresonators that integrate high mechanical frequency, high mechanical quality, and high optical quality into a single device. The radial-breathing mechanical mode has a mechanical frequency up to 1.69 GHz with a mechanical Q around 5500 in atmosphere, which corresponds to a fm · Qm product as high as 9.47 × 1012 Hz. The strong optomechanical coupling allows us to efficiently excite and probe the coherent mechanical oscillation by optical waves. The demonstrated devices, in combination with the superior thermal property, chemical inertness, and defect characteristics of SiC, show great potential for applications in metrology, sensing, and quantum photonics, particularly in harsh environments that are challenging for other device platforms. PMID:26585637

  10. Nature of the Band Gap and Origin of the Electro-/Photo-Activity of Co3O4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, L.; Xiao, Haiyan Y.; Meyer, H. M.

    2013-08-21

    Co3O4 exhibits intriguing physical, chemical and catalytic properties and has demonstrated great potential for next-generation renewable energy applications. These interesting properties and promising applications are underpinned by its electronic structure and optical properties, which are unfortunately poorly understood and the subject of considerable debate over many years. Here, we unveil a consistent electronic structural description of Co3O4 by synergetic infrared optical and in situ photoemission spectroscopy as well as standard density functional theory calculations. In contrast to previous assumptions, we demonstrate a much smaller fundamental band gap, which is directly related to its efficient electro-/photoactivity. The present results may helpmore » to advance the fundamental understanding and provide guidance for the use of oxidematerials in photocatalysis and solar applications.« less

  11. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode

    PubMed Central

    Chang, Jung-Hung; Lin, Wei-Hsiang; Wang, Po-Chuan; Taur, Jieh-I; Ku, Ting-An; Chen, Wei-Ting; Yan, Shiang-Jiuan; Wu, Chih-I

    2015-01-01

    Graphene thin films have great potential to function as transparent electrodes in organic electronic devices, due to their excellent conductivity and high transparency. Recently, organic light-emitting diodes (OLEDs)have been successfully demonstrated to possess high luminous efficiencies with p-doped graphene anodes. However, reliable methods to fabricate n-doped graphene cathodes have been lacking, which would limit the application of graphene in flexible electronics. In this paper, we demonstrate fully solution-processed OLEDs with n-type doped multilayer graphene as the top electrode. The work function and sheet resistance of graphene are modified by an aqueous process which can also transfer graphene on organic devices as the top electrodes. With n-doped graphene layers used as the top cathode, all-solution processed transparent OLEDs can be fabricated without any vacuum process. PMID:25892370

  12. Ultraviolet photodissociation enhances top-down mass spectrometry as demonstrated on green fluorescent protein variants.

    PubMed

    Dang, Xibei; Young, Nicolas L

    2014-05-01

    Ultraviolet photodissociation (UVPD) is a compelling fragmentation technique with great potential to enhance proteomics generally and top-down MS specifically. In this issue, Cannon et al. (Proteomics 2014, 14, XXXX-XXXX) use UVPD to perform top-down MS on several sequence variants of green fluorescent protein and compare the results to CID, higher energy collision induced dissociation, and electron transfer dissociation. As compared to the other techniques UVPD produces a wider variety of fragment ion types that are relatively evenly distributed across the protein sequences. Overall, their results demonstrate enhanced sequence coverage and higher confidence in sequence assignment via UVPD MS. Based on these and other recent results UVPD is certain to become an increasingly widespread and valuable tool for top-down proteomics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides

    PubMed Central

    Li, Hao; Anuwongcharoen, Nuttapat; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E. S.; Nantasenamat, Chanin

    2016-01-01

    Host defense peptides (HDPs) are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA) is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs. PMID:27376281

  14. Direct Observation of Conducting Filaments in Tungsten Oxide Based Transparent Resistive Switching Memory.

    PubMed

    Qian, Kai; Cai, Guofa; Nguyen, Viet Cuong; Chen, Tupei; Lee, Pooi See

    2016-10-05

    Transparent nonvolatile memory has great potential in integrated transparent electronics. Here, we present highly transparent resistive switching memory using stoichiometric WO 3 film produced by cathodic electrodeposition with indium tin oxide electrodes. The memory device demonstrates good optical transmittance, excellent operative uniformity, low operating voltages (+0.25 V/-0.42 V), and long retention time (>10 4 s). Conductive atomic force microscopy, ex situ transmission electron microscopy, and X-ray photoelectron spectroscopy experiments directly confirm that the resistive switching effects occur due to the electric field-induced formation and annihilation of the tungsten-rich conductive channel between two electrodes. Information on the physical and chemical nature of conductive filaments offers insightful design strategies for resistive switching memories with excellent performances. Moreover, we demonstrate the promising applicability of the cathodic electrodeposition method for future resistive memory devices.

  15. Predicting invasiveness of species in trade: Climate match, trophic guild and fecundity influence establishment and impact of non-native freshwater fishes

    USGS Publications Warehouse

    Howeth, Jennifer G.; Gantz, Crysta A.; Angermeier, Paul; Frimpong, Emmanuel A.; Hoff, Michael H.; Keller, Reuben P.; Mandrak, Nicholas E.; Marchetti, Michael P.; Olden, Julian D.; Romagosa, Christina M.; Lodge, David M.

    2016-01-01

    AimImpacts of non-native species have motivated development of risk assessment tools for identifying introduced species likely to become invasive. Here, we develop trait-based models for the establishment and impact stages of freshwater fish invasion, and use them to screen non-native species common in international trade. We also determine which species in the aquarium, biological supply, live bait, live food and water garden trades are likely to become invasive. Results are compared to historical patterns of non-native fish establishment to assess the relative importance over time of pathways in causing invasions.LocationLaurentian Great Lakes region.MethodsTrait-based classification trees for the establishment and impact stages of invasion were developed from data on freshwater fish species that established or failed to establish in the Great Lakes. Fishes in trade were determined from import data from Canadian and United States regulatory agencies, assigned to specific trades and screened through the developed models.ResultsClimate match between a species’ native range and the Great Lakes region predicted establishment success with 75–81% accuracy. Trophic guild and fecundity predicted potential harmful impacts of established non-native fishes with 75–83% accuracy. Screening outcomes suggest the water garden trade poses the greatest risk of introducing new invasive species, followed by the live food and aquarium trades. Analysis of historical patterns of introduction pathways demonstrates the increasing importance of these trades relative to other pathways. Comparisons among trades reveal that model predictions parallel historical patterns; all fishes previously introduced from the water garden trade have established. The live bait, biological supply, aquarium and live food trades have also contributed established non-native fishes.Main conclusionsOur models predict invasion risk of potential fish invaders to the Great Lakes region and could help managers prioritize efforts among species and pathways to minimize such risk. Similar approaches could be applied to other taxonomic groups and geographic regions.

  16. The nanosilica hazard: another variable entity

    PubMed Central

    2010-01-01

    Silica nanoparticles (SNPs) are produced on an industrial scale and are an addition to a growing number of commercial products. SNPs also have great potential for a variety of diagnostic and therapeutic applications in medicine. Contrary to the well-studied crystalline micron-sized silica, relatively little information exists on the toxicity of its amorphous and nano-size forms. Because nanoparticles possess novel properties, kinetics and unusual bioactivity, their potential biological effects may differ greatly from those of micron-size bulk materials. In this review, we summarize the physico-chemical properties of the different nano-sized silica materials that can affect their interaction with biological systems, with a specific emphasis on inhalation exposure. We discuss recent in vitro and in vivo investigations into the toxicity of nanosilica, both crystalline and amorphous. Most of the in vitro studies of SNPs report results of cellular uptake, size- and dose-dependent cytotoxicity, increased reactive oxygen species levels and pro-inflammatory stimulation. Evidence from a limited number of in vivo studies demonstrates largely reversible lung inflammation, granuloma formation and focal emphysema, with no progressive lung fibrosis. Clearly, more research with standardized materials is needed to enable comparison of experimental data for the different forms of nanosilicas and to establish which physico-chemical properties are responsible for the observed toxicity of SNPs. PMID:21126379

  17. In vivo flow cytometry and time-resolved near-IR angiography and lymphography

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekaterina I.; Tuchin, Valery V.; Brock, Robert W.; Zharov, Vladimir P.

    2007-05-01

    Integration of photoacoustic and photothermal techniques with high-speed, high-resolution transmission and fluorescence microscopy shows great potential for in vivo flow cytometry and indocyanine green (ICG) near-infrared (IR) angiography of blood and lymph microvessels. In particular, the capabilities of in vivo flow cytometry using rat mesentery and nude mouse ear models are demonstrated for real-time quantitative detection of circulating and migrating individual blood and cancer cells in skin, mesentery, lymph nodes, liver, kidney; studying vascular dynamics with a focus on lymphatics; monitoring cell traffic between blood and lymph systems; high-speed imaging of cell deformability in flow; and label-free real-time monitoring of single cell extravasation from blood vessel lumen into tissue. As presented, the advantages of ICG IR-angiography include estimation of time resolved dye dynamics (appearance and clearance) in blood and lymph microvessels using fluorescent and photoacoustic modules of the integrated technique. These new approaches are important for monitoring and quantifying metastatic and apoptotic cells; comparative measurements of plasma and cell velocities; analysis of immune responses; monitoring of circulating macromolecules, chylomicrons, bacteria, viruses and nanoparticles; molecular imaging. In the future, we believe that the integrated technique presented will have great potential for translation to early disease diagnoses (e.g. cancer) or assessment of innovative therapeutic interventions in humans.

  18. Tweaking Dendrimers and Dendritic Nanoparticles for Controlled Nano-bio Interactions: Potential Nanocarriers for Improved Cancer Targeting

    PubMed Central

    Bugno, Jason; Hsu, Hao-Jui; Hong, Seungpyo

    2016-01-01

    Nanoparticles have shown great promise in the treatment of cancer, with a demonstrated potential in targeted drug delivery. Among a myriad of nanocarriers that have been recently developed, dendrimers have attracted a great deal of scientific interests due to their unique chemical and structural properties that allow for precise engineering of their characteristics. Despite this, the clinical translation of dendrimers has been hindered due to their drawbacks, such as scale-up issues, rapid systemic elimination, inefficient tumor accumulation, and limited drug loading. In order to overcome these limitations, a series of reengineered dendrimers have been recently introduced using various approaches, including: i) modifications of structure and surfaces; ii) integration with linear polymers; and iii) hybridization with other types of nanocarriers. Chemical modifications and surface engineering have tailored dendrimers to improve their pharmacokinetics and tissue permeation. Copolymerization of dendritic polymers with linear polymers has resulted in various amphiphilic copolymers with self-assembly capabilities and improved drug loading efficiencies. Hybridization with other nanocarriers integrates advantageous characteristics of both systems, which includes prolonged plasma circulation times and enhanced tumor targeting. This review provides a comprehensive summary of the newly emerging drug delivery systems that involve reengineering of dendrimers in an effort to precisely control their nano-bio interactions, mitigating their inherent weaknesses. PMID:26453160

  19. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis

    PubMed Central

    Kim, Jaoon Young Hwan; Kwak, Ho Seok; Sung, Young Joon; Choi, Hong Il; Hong, Min Eui; Lim, Hyun Seok; Lee, Jae-Hyeok; Lee, Sang Yup; Sim, Sang Jun

    2016-01-01

    Microalgae possess great potential as a source of sustainable energy, but the intrinsic inefficiency of photosynthesis is a major challenge to realize this potential. Photosynthetic organisms evolved phototaxis to find optimal light condition for photosynthesis. Here we report a microfluidic screening using competitive phototaxis of the model alga, Chlamydomonas reinhardtii, for rapid isolation of strains with improved photosynthetic efficiencies. We demonstrated strong relationship between phototaxis and photosynthetic efficiency by quantitative analysis of phototactic response at the single-cell level using a microfluidic system. Based on this positive relationship, we enriched the strains with improved photosynthetic efficiency by isolating cells showing fast phototactic responses from a mixture of 10,000 mutants, thereby greatly improving selection efficiency over 8 fold. Among 147 strains isolated after screening, 94.6% showed improved photoautotrophic growth over the parental strain. Two mutants showed much improved performances with up to 1.9- and 8.1-fold increases in photoautotrophic cell growth and lipid production, respectively, a substantial improvement over previous approaches. We identified candidate genes that might be responsible for fast phototactic response and improved photosynthesis, which can be useful target for further strain engineering. Our approach provides a powerful screening tool for rapid improvement of microalgal strains to enhance photosynthetic productivity. PMID:26852806

  20. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review.

    PubMed

    Gadde, U; Kim, W H; Oh, S T; Lillehoj, Hyun S

    2017-06-01

    With the increase in regulations regarding the use of antibiotic growth promoters and the rise in consumer demand for poultry products from 'Raised Without Antibiotics' or 'No Antibiotics Ever' flocks, the quest for alternative products or approaches has intensified in recent years. A great deal of research has focused on the development of antibiotic alternatives to maintain or improve poultry health and performance. This review describes the potential for the various alternatives available to increase animal productivity and help poultry perform to their genetic potential under existing commercial conditions. The classes of alternatives described include probiotics, prebiotics, synbiotics, organic acids, enzymes, phytogenics, antimicrobial peptides, hyperimmune egg antibodies, bacteriophages, clay, and metals. A brief description of the mechanism of action, efficacy, and advantages and disadvantages of their uses are also presented. Though the beneficial effects of many of the alternatives developed have been well demonstrated, the general consensus is that these products lack consistency and the results vary greatly from farm to farm. Furthermore, their mode of action needs to be better defined. Optimal combinations of various alternatives coupled with good management and husbandry practices will be the key to maximize performance and maintain animal productivity, while we move forward with the ultimate goal of reducing antibiotic use in the animal industry.

  1. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing

    PubMed Central

    Kola, Vijaya Sudhakara Rao; Renuka, P.; Madhav, Maganti Sheshu; Mangrauthia, Satendra K.

    2015-01-01

    RNA interference (RNAi) is a mechanism of homology dependent gene silencing present in plants and animals. It operates through 21–24 nucleotides small RNAs which are processed through a set of core enzymatic machinery that involves Dicer and Argonaute proteins. In recent past, the technology has been well appreciated toward the control of plant pathogens and insects through suppression of key genes/proteins of infecting organisms. The genes encoding key enzymes/proteins with the great potential for developing an effective insect control by RNAi approach are actylcholinesterase, cytochrome P450 enzymes, amino peptidase N, allatostatin, allatotropin, tryptophan oxygenase, arginine kinase, vacuolar ATPase, chitin synthase, glutathione-S-transferase, catalase, trehalose phosphate synthase, vitellogenin, hydroxy-3-methylglutaryl coenzyme A reductase, and hormone receptor genes. Through various studies, it is demonstrated that RNAi is a reliable molecular tool which offers great promises in meeting the challenges imposed by crop insects with careful selection of key enzymes/proteins. Utilization of RNAi tool to target some of these key proteins of crop insects through various approaches is described here. The major challenges of RNAi based insect control such as identifying potential targets, delivery methods of silencing trigger, off target effects, and complexity of insect biology are very well illustrated. Further, required efforts to address these challenges are also discussed. PMID:25954206

  2. Rapid thermal responsive conductive hybrid cryogels with shape memory properties, photothermal properties and pressure dependent conductivity.

    PubMed

    Deng, Zexing; Guo, Yi; Ma, Peter X; Guo, Baolin

    2018-09-15

    Stimuli responsive cryogels with multi-functionality have potential application for electrical devices, actuators, sensors and biomedical devices. However, conventional thermal sensitive poly(N-isopropylacrylamide) cryogels show slow temperature response speed and lack of multi-functionality, which greatly limit their practical application. Herein we present conductive fast (2 min for both deswelling and reswelling behavior) thermally responsive poly(N-isopropylacrylamide) cryogels with rapid shape memory properties (3 s for shape recovery), near-infrared (NIR) light sensitivity and pressure dependent conductivity, and further demonstrated their applications as temperature sensitive on-off switch, NIR light sensitive on-off switch, water triggered shape memory on-off switch and pressure dependent device. These cryogels were first prepared in dimethyl sulfoxide below its melting temperature in ice bath and subsequently put into aniline or pyrrole solution to in situ deposition of conducting polyaniline or polypyrrole nanoparticles. The continuous macroporous sponge-like structure provides cryogels with rapid responsivity both in deswelling, reswelling kinetics and good elasticity. After incorporating electrically conductive polyaniline or polypyrrole nanoaggregates, the hybrid cryogels exhibit desirable conductivity, photothermal property, pressure dependent conductivity and good cytocompatibility. These multifunctional hybrid cryogels make them great potential as stimuli responsive electrical device, tissue engineering scaffolds, drug delivery vehicle and electronic skin. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Speed breeding is a powerful tool to accelerate crop research and breeding.

    PubMed

    Watson, Amy; Ghosh, Sreya; Williams, Matthew J; Cuddy, William S; Simmonds, James; Rey, María-Dolores; Asyraf Md Hatta, M; Hinchliffe, Alison; Steed, Andrew; Reynolds, Daniel; Adamski, Nikolai M; Breakspear, Andy; Korolev, Andrey; Rayner, Tracey; Dixon, Laura E; Riaz, Adnan; Martin, William; Ryan, Merrill; Edwards, David; Batley, Jacqueline; Raman, Harsh; Carter, Jeremy; Rogers, Christian; Domoney, Claire; Moore, Graham; Harwood, Wendy; Nicholson, Paul; Dieters, Mark J; DeLacy, Ian H; Zhou, Ji; Uauy, Cristobal; Boden, Scott A; Park, Robert F; Wulff, Brande B H; Hickey, Lee T

    2018-01-01

    The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.

  4. Biomedical Scientific and Professional Social Networks in the Service of the Development of Modern Scientific Publishing.

    PubMed

    Masic, Izet; Begic, Edin

    2016-12-01

    Information technologies have found their application in virtually every branch of health care. In recent years they have demonstrated their potential in the development of online library, where scientists and researchers can share their latest findings. Academia.edu, ResearchGate, Mendeley, Kudos, with the support of platform GoogleScholar, have indeed increased the visibility of scientific work of one author, and enable a much greater availability of the scientific work to the broader audience. Online libraries have allowed free access to the scientific content to the countries that could not follow the economic costs of getting access to certain scientific bases. Especially great benefit occurred in countries in transition and developing countries. Online libraries have great potential in terms of expanding knowledge, but they also present a major problem for many publishers, because their rights can be violated, which are signed by the author when publishing the paper. In the future it will lead to a major conflict of the author, the editorial board and online database, about the right to scientific content This question certainly represents one of the most pressing issues of publishing, whose future in printed form is already in the past, and the future of the online editions will be a problem of large-scale.

  5. Enhanced electrocatalytic oxidation of isoniazid at electrochemically modified rhodium electrode for biological and pharmaceutical analysis.

    PubMed

    Cheemalapati, Srikanth; Chen, Shen-Ming; Ali, M Ajmal; Al-Hemaid, Fahad M A

    2014-09-01

    A simple and sensitive electrochemical method has been proposed for the determination of isoniazid (INZ). For the first time, rhodium (Rh) modified glassy carbon electrode (GCE) has been employed for the determination of INZ by linear sweep voltammetry technique (LSV). Compared with the unmodified electrode, the proposed Rh modified electrode provides strong electrocatalytic activity toward INZ with significant enhancement in the anodic peak current. Scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) results reveal the morphology of Rh particles. With the advantages of wide linearity (70-1300μM), good sensitivity (0.139μAμM(-1)cm(-2)) and low detection limit (13μM), this proposed sensor holds great potential for the determination of INZ in real samples. The practicality of the proposed electrode for the detection of INZ in human urine and blood plasma samples has been successfully demonstrated using LSV technique. Through the determination of INZ in commercially available pharmaceutical tablets, the practical applicability of the proposed method has been validated. The recovery results are found to be in good agreement with the labeled amounts of INZ in tablets, thus showing its great potential for use in clinical and pharmaceutical analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Optimal Electrocatalytic Pd/MWNTs Nanocatalysts toward Formic Acid Oxidation

    PubMed Central

    Wang, Yiran; He, Qingliang; Wei, Huige; Guo, Jiang; Ding, Keqiang; Wang, Qiang; Wang, Zhe; Wei, Suying; Guo, Zhanhu

    2017-01-01

    The operating conditions such as composition of electrolyte and temperature can greatly influence the formic acid (HCOOH) oxidation reaction (FAOR). Palladium decorated multi-walled carbon nanotubes (Pd/MWNTs) were successfully synthesized and employed as nanocatalysts to explore the effects of formic acid, sulfuric acid (H2SO4) concentration and temperature on FAOR. Both the hydrogen adsorption in low potential range and the oxidation of poisoning species during the high potential range in cyclic voltammetry were demonstrated to contribute to the enhanced electroactivity of Pd/MWNTs. The as-synthesized Pd/MWNTs gave the best performance under a condition with balanced adsorptions of HCOOH and H2SO4 molecules. The dominant dehydrogenation pathway on Pd/MWNTs can be largely depressed by the increased dehydration pathway, leading to an increased charge transfer resistance (Rct). Increasing HCOOH concentration could directly increase the dehydration process proportion and cause the production of COads species. H2SO4 as donor of H+ greatly facilitated the onset oxidation of HCOOH in the beginning process but it largely depressed the HCOOH oxidation with excess amount of H+. Enhanced ion mobility with increasing the temperature was mainly responsible for the increased current densities, improved tolerance stabilities and reduced Rct values, while dehydration process was also increased simultaneously. PMID:29622817

  7. Biomedical Scientific and Professional Social Networks in the Service of the Development of Modern Scientific Publishing

    PubMed Central

    Masic, Izet; Begic, Edin

    2016-01-01

    Information technologies have found their application in virtually every branch of health care. In recent years they have demonstrated their potential in the development of online library, where scientists and researchers can share their latest findings. Academia.edu, ResearchGate, Mendeley, Kudos, with the support of platform GoogleScholar, have indeed increased the visibility of scientific work of one author, and enable a much greater availability of the scientific work to the broader audience. Online libraries have allowed free access to the scientific content to the countries that could not follow the economic costs of getting access to certain scientific bases. Especially great benefit occurred in countries in transition and developing countries. Online libraries have great potential in terms of expanding knowledge, but they also present a major problem for many publishers, because their rights can be violated, which are signed by the author when publishing the paper. In the future it will lead to a major conflict of the author, the editorial board and online database, about the right to scientific content This question certainly represents one of the most pressing issues of publishing, whose future in printed form is already in the past, and the future of the online editions will be a problem of large-scale. PMID:28077905

  8. Potential Impacts of Climate Change in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Winkler, J. A.

    2011-12-01

    Climate change is projected to have substantial impacts in the Great Lakes region of the United States. One intent of this presentation is to introduce the Great Lakes Integrated Sciences and Assessments Center (GLISA), a recently-funded NOAA RISA center. The goals and unique organizational structure of GLISA will be described along with core activities that support impact and assessment studies in the region. Additionally, observed trends in temperature, precipitation including lake effect snowfall, and lake temperatures and ice cover will be summarized for the Great Lakes region, and vulnerabilities to, and potential impacts of, climate change will be surveyed for critical natural and human systems. These include forest ecosystems, water resources, traditional and specialized agriculture, and tourism/recreation. Impacts and vulnerabilities unique to the Great Lakes region are emphasized.

  9. The Class I-Specific HDAC Inhibitor MS-275 Decreases Motivation to Consume Alcohol and Relapse in Heavy Drinking Rats

    PubMed Central

    Lemoine, Sandrine; Jeanblanc, Virginie; Alaux-Cantin, Stéphanie; Naassila, Mickaël

    2015-01-01

    Background: New strategies for the treatment of alcohol dependence are a pressing need, and recent evidence suggests that targeting enzymes involved in epigenetic mechanisms seems to have great potential. Among these mechanisms, alteration of histone acetylation by histone deacetylases is of great importance for gene expression and has also been implicated in addiction. Here, we examined whether intra-cerebroventricular administration of MS-275, a class I-specific histone deacetylase inhibitor, could alter ethanol self-administration, motivation to consume ethanol, and relapse in heavy drinking rats. Methods: Male Long Evans rats trained to self-administer high levels of ethanol received intra-cerebroventricular micro-infusions of MS-275 (250 µM, 500 µM, and 1000 µM) 3 hours prior to the self-administration sessions. Results: First, we demonstrated that intra-cerebroventricular infusion of MS-275 increases acetylation of Histone 4 within the nucleus accumbens nucleus accumbens and the dorsolateral striatum. Second, we observed that MS-275 decreases ethanol self-administration by about 75%. We found that 2 consecutive daily injections are necessary to decrease ethanol self-administration. Additionally, the dose-response curve test indicated that MS-275 has a U-shape effect on ethanol self-administration with the dose of 500 µM as the most efficient dose. Furthermore, we showed that MS-275 also diminished the motivation to consume ethanol (25% decrease), and finally, we demonstrated that MS-275 reduced relapse (by about 50%) and postponed reacquisition even when the treatment was stopped. Conclusions: Our study confirms the potential therapeutic interest of targeting epigenetic mechanisms in excessive alcohol drinking and strengthens the interest of focusing on specific isoforms of histone deacetylases. PMID:25762717

  10. Surface-enhanced Raman scattering from AgNP-graphene-AgNP sandwiched nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Xu, Yijun; Xu, Pengyu; Pan, Zhenghui; Chen, Sheng; Shen, Qishen; Zhan, Li; Zhang, Yuegang; Ni, Weihai

    2015-10-01

    We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a ``hot surface'' for enhancing the Raman response of two-dimensional materials.We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a ``hot surface'' for enhancing the Raman response of two-dimensional materials. Electronic supplementary information (ESI) available: Additional SEM images, electric field enhancement profiles, Raman scattering spectra, and structure-dependent peak ratios. See DOI: 10.1039/c5nr04500b

  11. ISS Benefits for Humanity: Eye on the Tide

    NASA Image and Video Library

    2015-04-22

    Published on Apr 22, 2015 The vantage point of space not only contributes to a better understanding of our home planet, it helps improve lives around the world. Onboard the International Space Station, the Hyperspectral Imager for the Coastal Ocean (HICO) instrument gave scientists an exceptional new view of the coastal ocean and the Great Lakes. Using a special camera that separates light into hundreds of wavelength channels, HICO was used to identify potentially harmful algae blooms in Lake Erie and other lakes and reservoirs that provide critical drinking water for millions of users. The EPA is developing an early warning indicator system using historical and current satellite data to detect algal blooms. For more information, visit: http://www.epa.gov The International Space Station is a blueprint for global cooperation and scientific advancements, a destination for a growing commercial marketplace in low-Earth orbit and a test bed for demonstrating new technologies. The space station is the springboard to NASA’s next great leap in exploration, including future missions to an asteroid and Mars.

  12. Seismic characteristics of Sumatra and its relevance to Peninsular Malaysia and Singapore

    NASA Astrophysics Data System (ADS)

    Sun, Jichun; Pan, Tso-Chien

    In this paper we first use the great Mexico City earthquake of 1985 to demonstrate that great earthquakes not only cause devastating losses locally, but can also be dangerous to buildings on soft soils several hundred kilometers away. The building responses to some recent earthquakes suggest that in South East Asia, similar scenarios cannot be totally ruled out. Secondly, the cause and the characteristics of teh earthquakes in the Sumatra area are reviewed. Thirdly we present the results of a preliminary investigation into the risk of very large earthquakes in Sumatra. The result indicates that the recurrence interval of an earthquake with a moment magnitude ( Mw) of 8.5 or larger is about 340 years, which is equivalent to a 14% probability of exceedance within 50 years. The results imply that the risk of a very large earthquake is high in Sumatra, and that its potential effects on the distant metropolitan areas in Peninsular Malaysia and Singapore should be investigated in further research.

  13. Rapid detection of Ebola virus with a reagent-free, point-of-care biosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, Justin T.; Severns, Virginia; Lovato, Debbie

    Surface acoustic wave (SAW) sensors can rapidly detect Ebola antigens at the point-of-care without the need for added reagents, sample processing, or specialized personnel. This preliminary study demonstrates SAW biosensor detection of the Ebola virus in a concentration-dependent manner. The detection limit with this methodology is below the average level of viremia detected on the first day of symptoms by PCR. We observe a log-linear sensor response for highly fragmented Ebola viral particles, with a detection limit corresponding to 1.9 × 10⁴ PFU/mL prior to virus inactivation. We predict greatly improved sensitivity for intact, infectious Ebola virus. This point-of-care methodologymore » has the potential to detect Ebola viremia prior to symptom onset, greatly enabling infection control and rapid treatment. This biosensor platform is powered by disposable AA batteries and can be rapidly adapted to detect other emerging diseases in austere conditions.« less

  14. Tribotronic Tuning Diode for Active Analog Signal Modulation.

    PubMed

    Zhou, Tao; Yang, Zhi Wei; Pang, Yaokun; Xu, Liang; Zhang, Chi; Wang, Zhong Lin

    2017-01-24

    Realizing active interaction with external environment/stimuli is a great challenge for current electronics. In this paper, a tribotronic tuning diode (TTD) is proposed by coupling a variable capacitance diode and a triboelectric nanogenerator in free-standing sliding mode. When the friction layer is sliding on the device surface for electrification, a reverse bias voltage is created and applied to the diode for tuning the junction capacitance. When the sliding distance increases from 0 to 25 mm, the capacitance of the TTD decreases from about 39 to 8 pF. The proposed TTD has been integrated into analog circuits and exhibited excellent performances in frequency modulation, phase shift, and filtering by sliding a finger. This work has demonstrated tunable diode and active analog signal modulation by tribotronics, which has great potential to replace ordinary variable capacitance diodes in various practical applications such as signal processing, electronic tuning circuits, precise tuning circuits, active sensor networks, electronic communications, remote controls, flexible electronics, etc.

  15. Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method.

    PubMed

    Wang, Zhihui; Zhang, Ling; Liu, Jin; Jiang, Hao; Li, Chunzhong

    2018-05-30

    Recently, flexible pressure sensors featuring high sensitivity, broad sensing range and real-time detection have aroused great attention owing to their crucial role in the development of artificial intelligent devices and healthcare systems. Herein, highly sensitive pressure sensors based on hemisphere-microarray flexible substrates are fabricated via inversely templating honeycomb structures deriving from a facile and static breath figure process. The interlocked and subtle microstructures greatly improve the sensing characteristics and compressibility of the as-prepared pressure sensor, endowing it a sensitivity as high as 196 kPa-1 and a wide pressure sensing range (0-100 kPa), as well as other superior performance, including a lower detection limit of 0.5 Pa, fast response time (<26 ms) and high reversibility (>10 000 cycles). Based on the outstanding sensing performance, the potential capability of our pressure sensor in capturing physiological information and recognizing speech signals has been demonstrated, indicating promising application in wearable and intelligent electronics.

  16. Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon

    NASA Astrophysics Data System (ADS)

    Chen, Qiongyu; Chen, Jizhang; Zhou, Yuyang; Song, Chao; Tian, Qinghua; Xu, Junling; Wong, Ching-Ping

    2018-05-01

    The rational construction of heterostructured electrode materials that deliver superior performances to their individual counterparts offers an attractive strategy for supercapacitors. Herein, we anchor low-crystalline nanostructured MnO2 onto soybean stalk-derived carbon matrix through chemical activation and subsequent hydrothermal reaction. The highly porous and conductive matrix can effectively enhance pseudocapacitive kinetics of nanostructured MnO2. Therefore, the obtained nanocomposite exhibits high specific capacitance (384.9 F g-1 at a current density of 0.5 A g-1), great rate capability (185.0 F g-1 at 20 A g-1), and superior cyclability (90.7% capacitance retention after 5000 cycles). Using this nanocomposite as the positive electrode material, an asymmetric supercapacitor (ASC) is assembled, and achieves high specific energy of 34.2 Wh kg-1 and high specific power of 9.58 kW kg-1. The results of this study demonstrate great potential of combining biomass-derived porous carbon with metal oxides.

  17. Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor

    PubMed Central

    Wei, Helin; Wei, Sihang; Tian, Weifeng; Zhu, Daming; Liu, Yuhao; Yuan, Lili; Li, Xin

    2014-01-01

    Hybrid carbon films composed of graphene film and porous carbon film may give full play to the advantages of both carbon materials, and have great potential for application in energy storage and conversion devices. Unfortunately, there are very few reports on fabrication of hybrid carbon films. Here we demonstrate a simple approach to fabricate free-standing sandwich-structured hybrid carbon film composed of porous amorphous carbon film and multilayer graphene film by chemical vapor deposition in a controllable and scalable way. Hybrid carbon films reveal good electrical conductivity, excellent flexibility, and good compatibility with substrate. Supercapacitors assembled by hybrid carbon films exhibit ultrahigh rate capability, wide frequency range, good capacitance performance, and high-power density. Moreover, this approach may provide a general path for fabrication of hybrid carbon materials with different structures by using different metals with high carbon solubility, and greatly expands the application scope of carbon materials. PMID:25394410

  18. Doxorubicin and Indocyanine Green Loaded Hybrid Bicelles for Fluorescence Imaging Guided Synergetic Chemo/Photothermal Therapy.

    PubMed

    Lin, Li; Liang, Xiaolong; Xu, Yunxue; Yang, Yongbo; Li, Xiaoda; Dai, Zhifei

    2017-09-20

    Hybrid bicelles have been demonstrated to have great potential for hydrophobic drug delivery. Herein, we report a near-infrared light-driven, temperature-sensitive hybrid bicelles co-encapsulating hydrophobic doxorubicin (DOX) and indocyanine green (ICG) (DOX/ICG@HBs). Encapsulation of ICG into the lipid bilayer membrane of DOX/ICG@HBs results in higher photostability than free ICG. DOX/ICG@HBs exhibited temperature-regulated drug release behavior and significant photothermal cytotoxicity. After tail vein injection, such discotic nanoparticles of DOX/ICG@HBs were found to accumulate selectively at the tumor site and act as an efficient probe to enhance fluorescence imaging greatly. The in vivo experiments showed that the DOX/ICG@HBs-mediated chemo- and photothermal combination therapy was more cytotoxic to tumor cells than the photothermal treatment or the chemotherapy alone due to the synergistic effect, reducing the occurrence of tumor metastasis. Therefore, DOX/ICG@HBs can act as a powerful nanotheranostic agent for chemo/photothermal therapy of cancer under the guidance of near-infrared fluorescence imaging.

  19. The physics and chemistry of graphene-on-surfaces.

    PubMed

    Zhao, Guoke; Li, Xinming; Huang, Meirong; Zhen, Zhen; Zhong, Yujia; Chen, Qiao; Zhao, Xuanliang; He, Yijia; Hu, Ruirui; Yang, Tingting; Zhang, Rujing; Li, Changli; Kong, Jing; Xu, Jian-Bin; Ruoff, Rodney S; Zhu, Hongwei

    2017-07-31

    Graphene has demonstrated great potential in next-generation electronics due to its unique two-dimensional structure and properties including a zero-gap band structure, high electron mobility, and high electrical and thermal conductivity. The integration of atom-thick graphene into a device always involves its interaction with a supporting substrate by van der Waals forces and other intermolecular forces or even covalent bonding, and this is critical to its real applications. Graphene films on different surfaces are expected to exhibit significant differences in their properties, which lead to changes in their morphology, electronic structure, surface chemistry/physics, and surface/interface states. Therefore, a thorough understanding of the surface/interface properties is of great importance. In this review, we describe the major "graphene-on-surface" structures and examine the roles of their properties and related phenomena in governing the overall performance for specific applications including optoelectronics, surface catalysis, anti-friction and superlubricity, and coatings and composites. Finally, perspectives on the opportunities and challenges of graphene-on-surface systems are discussed.

  20. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coradetti, Samuel T.; Pinel, Dominic; Geiselman, Gina M.

    The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted functionmore » in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. Lastly, these results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi.« less

  1. Performance analysis of higher mode spoof surface plasmon polariton for terahertz sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Haizi; Tu, Wanli; Zhong, Shuncong, E-mail: zhongshuncong@hotmail.com

    2015-04-07

    We investigated the spoof surface plasmon polaritons (SSPPs) on 1D grooved metal surface for terahertz sensing of refractive index of the filling analyte through a prism-coupling attenuated total reflection setup. From the dispersion relation analysis and the finite element method-based simulation, we revealed that the dispersion curve of SSPP got suppressed as the filling refractive index increased, which cause the coupling resonance frequency redshifting in the reflection spectrum. The simulated results for testing various refractive indexes demonstrated that the incident angle of terahertz radiation has a great effect on the performance of sensing. Smaller incident angle will result in amore » higher sensitive sensing with a narrower detection range. In the meanwhile, the higher order mode SSPP-based sensing has a higher sensitivity with a narrower detection range. The maximum sensitivity is 2.57 THz/RIU for the second-order mode sensing at 45° internal incident angle. The proposed SSPP-based method has great potential for high sensitive terahertz sensing.« less

  2. Design of a biochemical circuit motif for learning linear functions

    PubMed Central

    Lakin, Matthew R.; Minnich, Amanda; Lane, Terran; Stefanovic, Darko

    2014-01-01

    Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective. PMID:25401175

  3. Design of a biochemical circuit motif for learning linear functions.

    PubMed

    Lakin, Matthew R; Minnich, Amanda; Lane, Terran; Stefanovic, Darko

    2014-12-06

    Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective.

  4. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides

    PubMed Central

    Geiselman, Gina M; Ito, Masakazu; Mondo, Stephen J; Reilly, Morgann C; Cheng, Ya-Fang; Bauer, Stefan; Grigoriev, Igor V; Gladden, John M; Simmons, Blake A; Brem, Rachel B

    2018-01-01

    The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi. PMID:29521624

  5. Rapid detection of Ebola virus with a reagent-free, point-of-care biosensor

    DOE PAGES

    Baca, Justin T.; Severns, Virginia; Lovato, Debbie; ...

    2015-04-14

    Surface acoustic wave (SAW) sensors can rapidly detect Ebola antigens at the point-of-care without the need for added reagents, sample processing, or specialized personnel. This preliminary study demonstrates SAW biosensor detection of the Ebola virus in a concentration-dependent manner. The detection limit with this methodology is below the average level of viremia detected on the first day of symptoms by PCR. We observe a log-linear sensor response for highly fragmented Ebola viral particles, with a detection limit corresponding to 1.9 × 10⁴ PFU/mL prior to virus inactivation. We predict greatly improved sensitivity for intact, infectious Ebola virus. This point-of-care methodologymore » has the potential to detect Ebola viremia prior to symptom onset, greatly enabling infection control and rapid treatment. This biosensor platform is powered by disposable AA batteries and can be rapidly adapted to detect other emerging diseases in austere conditions.« less

  6. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides

    DOE PAGES

    Coradetti, Samuel T.; Pinel, Dominic; Geiselman, Gina M.; ...

    2018-03-09

    The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted functionmore » in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. Lastly, these results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi.« less

  7. Terahertz sensing of chlorpyrifos-methyl using metamaterials.

    PubMed

    Xu, Wendao; Xie, Lijuan; Zhu, Jianfei; Wang, Wei; Ye, Zunzhong; Ma, Yungui; Tsai, Chao-Yin; Chen, Suming; Ying, Yibin

    2017-03-01

    By squeezing electromagnetic energy into small volumes near a metal-dielectric interface, plasmonics provide many routes to enhance and manipulate light-matter interactions, which presents new strategies for signal enhancing technologies. As an extension of the ideas of plasmonics to the terahertz (THz) range, metamaterials have shown great potential in sensing applications. In this study, terahertz time-domain spectroscopy (THz-TDS) combined with metamaterials was used to detect chlorpyrifos-methyl (CM), which is one type of the broad-spectrum organophosphorus pesticides. The results demonstrate that sensitivity is greatly improved using THz metamaterials, with the limit of detection (LOD) of CM reaching 0.204mgL -1 , which is lower than the World Health Organization's provisional guideline limit for CM in vegetables (1mgL -1 ). The results indicated that THz spectroscopy combined with metamaterials could be a valuable method for highly sensitive THz applications, presenting a new strategy for food quality and safety control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels

    PubMed Central

    Zhou, Han; Guo, Jianjun; Li, Peng; Fan, Tongxiang; Zhang, Di; Ye, Jinhua

    2013-01-01

    The development of an “artificial photosynthetic system” (APS) having both the analogous important structural elements and reaction features of photosynthesis to achieve solar-driven water splitting and CO2 reduction is highly challenging. Here, we demonstrate a design strategy for a promising 3D APS architecture as an efficient mass flow/light harvesting network relying on the morphological replacement of a concept prototype-leaf's 3D architecture into perovskite titanates for CO2 photoreduction into hydrocarbon fuels (CO and CH4). The process uses artificial sunlight as the energy source, water as an electron donor and CO2 as the carbon source, mimicking what real leaves do. To our knowledge this is the first example utilizing biological systems as “architecture-directing agents” for APS towards CO2 photoreduction, which hints at a more general principle for APS architectures with a great variety of optimized biological geometries. This research would have great significance for the potential realization of global carbon neutral cycle. PMID:23588925

  9. BioPig: a Hadoop-based analytic toolkit for large-scale sequence data.

    PubMed

    Nordberg, Henrik; Bhatia, Karan; Wang, Kai; Wang, Zhong

    2013-12-01

    The recent revolution in sequencing technologies has led to an exponential growth of sequence data. As a result, most of the current bioinformatics tools become obsolete as they fail to scale with data. To tackle this 'data deluge', here we introduce the BioPig sequence analysis toolkit as one of the solutions that scale to data and computation. We built BioPig on the Apache's Hadoop MapReduce system and the Pig data flow language. Compared with traditional serial and MPI-based algorithms, BioPig has three major advantages: first, BioPig's programmability greatly reduces development time for parallel bioinformatics applications; second, testing BioPig with up to 500 Gb sequences demonstrates that it scales automatically with size of data; and finally, BioPig can be ported without modification on many Hadoop infrastructures, as tested with Magellan system at National Energy Research Scientific Computing Center and the Amazon Elastic Compute Cloud. In summary, BioPig represents a novel program framework with the potential to greatly accelerate data-intensive bioinformatics analysis.

  10. [The diagnostic value of cine-MR imaging in diseases of great vessels].

    PubMed

    Sasaki, S; Yoshida, H; Matsui, Y; Sakuma, M; Yasuda, K; Tanabe, T; Chouji, H

    1990-02-01

    The diagnostic value of cine magnetic resonance imaging (cine-MRI) was evaluated in 10 patients with disease of great vessels. The parameters necessary to decide the appropriate treatment, such as presence and extension of intimal flap, DeBakey type classification, identification of the entry, differentiation between true and false lumen, and between thrombosis and slow flow were demonstrated in all patients with dissecting aortic aneurysm. However, abdominal aortic branches could not be demonstrated enough by cine-MRI, therefore conventional AOG was necessary to choose the operative procedure in these cases. In patients with thoracic aortic aneurysm (TAA), cine-MRI was valuable in demonstrating both blood flow and thrombus in the lumen of aneurysm, and AOG was thought to be unnecessary in most cases. Cine-MRI is a promising new technique for the evaluation of diseases of great vessels.

  11. Iceland as a demonstrator for a transition to low carbon economy?

    NASA Astrophysics Data System (ADS)

    Asbjornsson, Einar Jon; Stefansson, Hlynur; Finger, David Christian

    2017-04-01

    The energy supply in Iceland is quite unique, about 85% of the total primary energy is coming from renewable resources. Nevertheless, the ecological footprint of an average Icelander is with 6.5 worlds, one of the highest worldwide and the energy consumption per capita is about 7 times higher than the European average. Recent developments have shown that there is a great potential to reduce the footprint and develop towards low carbon economy. With its small population, well educated and governed society and clear system boundaries to the outside world, Iceland is a good research laboratory and an ideal demonstrator for a transition towards a low carbon economy. This presentation will outline how several innovative research projects at Reykjavik University could lead Iceland towards a sustainable and low carbon economy. The presentations will conclude with a visionary outlook how Iceland can become a demonstration nation towards a prosperous, low carbon and sustainable economy, helping stabilize global warming at an acceptable level.

  12. Interfacial charge-mediated non-volatile magnetoelectric coupling in Co 0.3Fe 0.7/Ba 0.6Sr 0.4TiO 3/Nb:SrTiO 3 multiferroic heterostructures

    DOE PAGES

    Zhou, Ziyao; Howe, Brandon M.; Liu, Ming; ...

    2015-01-13

    The central challenge in realizing non-volatile, E-field manipulation of magnetism lies in finding an energy efficient means to switch between the distinct magnetic states in a stable and reversible manner. In this work, we demonstrate using electrical polarization-induced charge screening to change the ground state of magnetic ordering in order to non-volatilely tune magnetic properties in ultra-thin Co 0.3Fe 0.7/Ba 0.6Sr 0.4TiO 3/Nb:SrTiO 3 (001) multiferroic heterostructures. A robust, voltage-induced, non-volatile manipulation of out-of-plane magnetic anisotropy up to 40 Oe is demonstrated and confirmed by ferromagnetic resonance measurements. This discovery provides a framework for realizing charge-sensitive order parameter tuning inmore » ultra-thin multiferroic heterostructures, demonstrating great potential for delivering compact, lightweight, reconfigurable, and energy-efficient electronic devices.« less

  13. Conversion of Coal Mine Gas to LNG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This project evolved from a 1995, DOE-NETL competitive solicitation for practical CMM capture and utilization concepts. Appalachian Pacific was one of three companies selected to proceed with the construction and operation of a cost-shared demonstration plant. In the course of trying to proceed with this demonstration plant, AP examined several liquefaction technologies, discussed obtaining rights to coal mine methane with a number of coal companies, explored marketing potential with a wide variety of customers in many sections of the United States, studied in great detail the impact of a carbon credit exchange, and developed a suite of analytical tools withmore » which to evaluate possible project options. In the end, the newness of the product, reluctance on the part of the coal companies to venture away from time tested practices, difficulty with obtaining financing, the failure of a carbon credit market to develop and the emergence of shale derived gas production prevented a demonstration plant from being built.« less

  14. Potential for DNA-based identification of Great Lakes fauna: Match and mismatch between taxa inventories and DNA barcode libraries

    EPA Science Inventory

    DNA-based identification of mixed-organism samples offers the potential to greatly reduce the need for resource-intensive morphological identification, which would be of value both to biotic condition assessment and non-native species early-detection monitoring. However, the abi...

  15. Toward seamless wearable sensing: Automatic on-body sensor localization for physical activity monitoring.

    PubMed

    Saeedi, Ramyar; Purath, Janet; Venkatasubramanian, Krishna; Ghasemzadeh, Hassan

    2014-01-01

    Mobile wearable sensors have demonstrated great potential in a broad range of applications in healthcare and wellness. These technologies are known for their potential to revolutionize the way next generation medical services are supplied and consumed by providing more effective interventions, improving health outcomes, and substantially reducing healthcare costs. Despite these potentials, utilization of these sensor devices is currently limited to lab settings and in highly controlled clinical trials. A major obstacle in widespread utilization of these systems is that the sensors need to be used in predefined locations on the body in order to provide accurate outcomes such as type of physical activity performed by the user. This has reduced users' willingness to utilize such technologies. In this paper, we propose a novel signal processing approach that leverages feature selection algorithms for accurate and automatic localization of wearable sensors. Our results based on real data collected using wearable motion sensors demonstrate that the proposed approach can perform sensor localization with 98.4% accuracy which is 30.7% more accurate than an approach without a feature selection mechanism. Furthermore, utilizing our node localization algorithm aids the activity recognition algorithm to achieve 98.8% accuracy (an increase from 33.6% for the system without node localization).

  16. Building bio-assays with magnetic particles on a digital microfluidic platform.

    PubMed

    Kokalj, Tadej; Pérez-Ruiz, Elena; Lammertyn, Jeroen

    2015-09-25

    Digital microfluidics (DMF) has emerged as a promising liquid handling technology for a variety of applications, demonstrating great potential both in terms of miniaturization and automation. DMF is based on the manipulation of discrete, independently controllable liquid droplets, which makes it highly reconfigurable and reprogrammable. One of its most exclusive advantages, compared to microchannel-based microfluidics, is its ability to precisely handle solid nano- and microsized objects, such as magnetic particles. Magnetic particles have become very popular in the last decade, since their high surface-to-volume ratio and the possibility to magnetically separate them from the matrix make them perfect suitable as a solid support for bio-assay development. The potential of magnetic particles in DMF-based bio-assays has been demonstrated for various applications. In this review we discuss the latest developments of magnetic particle-based DMF bio-assays with the aim to present, identify and analyze the trends in the field. We also discuss the state-of-the art of device integration, current status of commercialization and issues that still need to be addressed. With this paper we intend to stimulate researchers to exploit and unveil the potential of these exciting tools, which will shape the future of modern biochemistry, microbiology and biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Essentials of clinical immunology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapel, M.A.; Haeney, M.

    1988-01-01

    The authors demonstrate that clinical immunology is a subject which is useful for the diagnosis and management of a great number and variety of human diseases. The book makes use of illustrative case histories and flow charts to demonstrate the usefulness of clinical immunology in the diagnosis and management of a great number and variety of human diseases. The authors discuss the relevance of new DNA technology and the role of bone marrow transplantation.

  18. GREAT LAKES REGIONAL ASSESSMENT: REPORT OF A WORKSHOP ON CLIMATE CHANGE IN THE UPPER GREAT LAKES REGION

    EPA Science Inventory

    The Upper Great Lakes workshop, sponsored by the U.S. Environmental Protection Agency (USEPA), was held at the University of Michigan in Ann Arbor, Michigan from 4-7 May 1998 to discuss some of the potential consequences of climate change in the Upper Great Lakes region (e.g., Mi...

  19. Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins.

    PubMed

    Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin

    2018-02-10

    A novel method to characterize cell surface proteins and complexes has been developed. Polydopamine (PDA)-encapsulated Hela cells were prepared for plasma membrane proteome research. Since the PDA protection, the encapsulated cells could be maintained for more than two weeks. Amino groups functionalized magnetic nanoparticles were also used for cell capture by the reaction with the PDA coatings. Plasma membrane fragments were isolated and enriched with assistance of an external magnetic field after disruption of the coated cells by ultrasonic treatment. Plasma membrane proteins (PMPs) and complexes were well preserved on the fragments and identified by shot-gun proteomic analytical strategy. 385 PMPs and 1411 non-PMPs were identified using the method. 85.2% of these PMPs were lipid-raft associated proteins. Ingenuity Pathway Analysis was employed for bio-information extraction from the identified proteins. It was found that 653 non-PMPs had interactions with 140 PMPs. Among them, epidermal growth factor receptor and its complexes, and a series of important pathways including STAT3 pathway were observed. All these results demonstrated that the new approach is of great importance in applying to the research of physiological function and mechanism of the plasma membrane proteins. This work developed a novel strategy for the proteomic analysis of cell surface proteins. According to the results, 73.3% of total identified proteins were lipid-raft associated proteins, which imply that the proposed method is of great potential in the identification of lipid-raft associated proteins. In addition, a series of protein-protein interactions and pathways related to Hela cells were pointed out. All these results demonstrated that our proposed approach is of great importance and could well be applied to the physiological function and mechanism research of plasma membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Development of Next Generation Stevia Sweetener: Rebaudioside M.

    PubMed

    Prakash, Indra; Markosyan, Avetik; Bunders, Cynthia

    2014-02-27

    This work aims to review and showcase the unique properties of rebaudioside M as a natural non-caloric potential sweetener in food and beverage products. To determine the potential of rebaudioside M, isolated from Stevia rebaudiana Bertoni, as a high potency sweetener, we examined it with the Beidler Model. This model estimated that rebaudioside M is 200-350 times more potent than sucrose. Numerous sensory evaluations of rebaudioside M's taste attributes illustrated that this steviol glycoside possesses a clean, sweet taste with a slightly bitter or licorice aftertaste. The major reaction pathways in aqueous solutions (pH 2-8) for rebaudioside M are similar to rebaudioside A. Herein we demonstrate that rebaudioside M could be of great interest to the global food industry because it is well-suited for blending and is functional in a wide variety of food and beverage products.

  1. Graphene-MoS2 Heterojunctions for High-Speed Opto-electronics

    NASA Astrophysics Data System (ADS)

    Horng, Jason; Wang, Alex; Wang, Danqing; Li, Alexander Shengzhi; Wang, Feng

    Heterostructures consisting of two-dimensional materials has drawn significant attention in different research fields owning to their novel electronic states and potential applications. Transmitting information with transition metal dichalcogenides(TMDC) electro-optical modulator switch interconnect is of great interest for technological applications. However, their high-speed applications have been slowed by their intrinsically high resistivity as well as the difficulties in making optimized metal contacts. Here, we present a new strategy by using graphene as a tunable contact to two-dimensional semiconductors to explore possible applications in high-speed opto-electronics. We will present an optical study to provide better understanding of band alignment in graphene/MoS2 heterostructures and a demonstration of high-speed opto-electronics based on these heterostructures. The result shows the new scheme could have potential in both opto-modulators and optical sensing applications.

  2. Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.

    PubMed

    Pearce, Wendy; Golding, Maryanne; Dillon, Harvey

    2007-05-01

    Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy.

  3. Using ISS Telescopes for Electromagnetic Follow-up of Gravitational Wave Detections of NS-NS and NS-BH Mergers

    NASA Technical Reports Server (NTRS)

    Camp, J.; Barthelmy, S.; Blackburn, L.; Carpenter, K. G.; Gehrels, N.; Kanner, J.; Marshall, F. E.; Racusin, J. L.; Sakamoto, T.

    2013-01-01

    The International Space Station offers a unique platform for rapid and inexpensive deployment of space telescopes. A scientific opportunity of great potential later this decade is the use of telescopes for the electromagnetic follow-up of ground-based gravitational wave detections of neutron star and black hole mergers. We describe this possibility for OpTIIX, an ISS technology demonstration of a 1.5 m diffraction limited optical telescope assembled in space, and ISS-Lobster, a wide-field imaging X-ray telescope now under study as a potential NASA mission. Both telescopes will be mounted on pointing platforms, allowing rapid positioning to the source of a gravitational wave event. Electromagnetic follow-up rates of several per year appear likely, offering a wealth of complementary science on the mergers of black holes and neutron stars.

  4. Orienting hypnosis.

    PubMed

    Hope, Anna E; Sugarman, Laurence I

    2015-01-01

    This article presents a new frame for understanding hypnosis and its clinical applications. Despite great potential to transform health and care, hypnosis research and clinical integration is impaired in part by centuries of misrepresentation and ignorance about its demonstrated efficacy. The authors contend that advances in the field are primarily encumbered by the lack of distinct boundaries and definitions. Here, hypnosis, trance, and mind are all redefined and grounded in biological, neurological, and psychological phenomena. Solutions are proposed for boundary and language problems associated with hypnosis. The biological role of novelty stimulating an orienting response that, in turn, potentiates systemic plasticity forms the basis for trance. Hypnosis is merely the skill set that perpetuates and influences trance. This formulation meshes with many aspects of Milton Erickson's legacy and Ernest Rossi's recent theory of mind and health. Implications of this hypothesis for clinical skills, professional training, and research are discussed.

  5. Analysis of the Material Properties of Early Chondrogenic Differentiated Adipose-Derived Stromal Cells (ASC) Using an in vitro Three-dimensional Micromass Culture System

    PubMed Central

    Xu, Yue; Balooch, Guive; Chiou, Michael; Bekerman, Elena; Ritchie, Robert O.; Longaker, Michael T.

    2009-01-01

    Cartilage is an avascular tissue with only a limited potential to heal and chondrocytes in vitro have poor proliferative capacity. Recently, adipose-derived stromal cells (ASC) have demonstrated a great potential for application to tissue engineering due to their ability to differentiate into cartilage, bone, and fat. In this study, we have utilized a high density three-dimensional (3D) micromass model system of early chondrogenesis with ASC. The material properties of these micromasses showed a significant increase in dynamic and static elastic modulus during the early chondrogenic differentiation process. These data suggest that the 3D micromass culture system represents an in vitro model of early chondrogenesis with dynamic cell signaling interactions associated with the mechanical properties of chondrocyte differentiation. PMID:17543281

  6. Hybrid label-free multiphoton and optoacoustic microscopy (MPOM)

    NASA Astrophysics Data System (ADS)

    Soliman, Dominik; Tserevelakis, George J.; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Many biological applications require a simultaneous observation of different anatomical features. However, unless potentially harmful staining of the specimens is employed, individual microscopy techniques do generally not provide multi-contrast capabilities. We present a hybrid microscope integrating optoacoustic microscopy and multiphoton microscopy, including second-harmonic generation, into a single device. This combined multiphoton and optoacoustic microscope (MPOM) offers visualization of a broad range of structures by employing different contrast mechanisms and at the same time enables pure label-free imaging of biological systems. We investigate the relative performance of the two microscopy modalities and demonstrate their multi-contrast abilities through the label-free imaging of a zebrafish larva ex vivo, simultaneously visualizing muscles and pigments. This hybrid microscopy application bears great potential for developmental biology studies, enabling more comprehensive information to be obtained from biological specimens without the necessity of staining.

  7. Influence of immobilized quaternary ammonium group surface density on antimicrobial efficacy and cytotoxicity.

    PubMed

    Cavallaro, Alex; Mierczynska, Agnieszka; Barton, Mary; Majewski, Peter; Vasilev, Krasimir

    2016-01-01

    Bacterial colonization of medical devices causes infections and is a significant problem in healthcare. The use of antibacterial coatings is considered as a potential solution to this problem and has attracted a great deal of attention. Using concentration density gradients of immobilized quaternary ammonium compounds it was demonstrated that a specific threshold of surface concentration is required to induce significant bacterial death. It was determined that this threshold was 4.18% NR4(+) bonded nitrogen with a surface potential of + 120.4 mV. Furthermore, it is shown for the first time that adhesion of constituents of the culture medium to the quaternary ammonium modified surface eliminated any cytotoxicity towards eukaryotic cells such as primary human fibroblasts. The implications of this type of surface fouling on the antimicrobial efficacy of surface coatings are also discussed.

  8. Pigmentation in Xiphophorus: an emerging system in ecological and evolutionary genetics.

    PubMed

    Culumber, Zachary W

    2014-02-01

    The genus Xiphophorus has great potential to contribute to the study of vertebrate pigmentation and elucidating the relative influence of ecology, physiology, and behavior on evolution at the molecular level. More importantly, the association between pigmentation and a functional oncogene offers the potential to understand the evolution and maintenance of cancer-causing genetic elements. Using criteria laid out recently in the literature, I demonstrate the power of the Xiphophorus system for studying pigment evolution through integrative organismal biology. Using the most recent phylogeny, the phylogenetic distribution of several important pigmentation loci are reevaluated. I then review support for existing hypotheses of the functional importance of pigmentation. Finally, new observations and hypotheses regarding some of the characteristics of pigment patterns in natural populations and open questions and future directions in the study of the evolution of these traits are discussed.

  9. Analysis of the material properties of early chondrogenic differentiated adipose-derived stromal cells (ASC) using an in vitro three-dimensional micromass culture system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yue; Balooch, Guive; Chiou, Michael

    2007-07-27

    Cartilage is an avascular tissue with only a limited potential to heal and chondrocytes in vitro have poor proliferative capacity. Recently, adipose-derived stromal cells (ASC) have demonstrated a great potential for application to tissue engineering due to their ability to differentiate into cartilage, bone, and fat. In this study, we have utilized a high density three-dimensional (3D) micromass model system of early chondrogenesis with ASC. The material properties of these micromasses showed a significant increase in dynamic and static elastic modulus during the early chondrogenic differentiation process. These data suggest that the 3D micromass culture system represents an in vitromore » model of early chondrogenesis with dynamic cell signaling interactions associated with the mechanical properties of chondrocyte differentiation.« less

  10. Paper-Based Inkjet-Printed Flexible Electronic Circuits.

    PubMed

    Wang, Yan; Guo, Hong; Chen, Jin-Ju; Sowade, Enrico; Wang, Yu; Liang, Kun; Marcus, Kyle; Baumann, Reinhard R; Feng, Zhe-Sheng

    2016-10-05

    Printed flexible electronics have been widely studied for their potential use in various applications. In this paper, a simple, low-cost method of fabricating flexible electronic circuits with high conductivity of 4.0 × 10 7 S·m -1 (about 70% of the conductivity of bulk copper) is demonstrated. Teslin paper substrate is treated with stannous chloride (SnCl 2 ) colloidal solution to reduce the high ink absorption rate, and then the catalyst ink is inkjet-printed on its surface, followed by electroless deposition of copper at low temperature. In spite of the decrease in conductance to some extent, electronic circuits fabricated by this method can maintain function even under various folding angles or after repeated folding. This developed technology has great potential in a variety of applications, such as three-dimensional devices and disposable RFID tags.

  11. Formation of non-spherical polymersomes driven by hydrophobic directional aromatic perylene interactions.

    PubMed

    Wong, Chin Ken; Mason, Alexander F; Stenzel, Martina H; Thordarson, Pall

    2017-11-01

    Polymersomes, made up of amphiphilic block copolymers, are emerging as a powerful tool in drug delivery and synthetic biology due to their high stability, chemical versatility, and surface modifiability. The full potential of polymersomes, however, has been hindered by a lack of versatile methods for shape control. Here we show that a range of non-spherical polymersome morphologies with anisotropic membranes can be obtained by exploiting hydrophobic directional aromatic interactions between perylene polymer units within the membrane structure. By controlling the extent of solvation/desolvation of the aromatic side chains through changes in solvent quality, we demonstrate facile access to polymersomes that are either ellipsoidal or tubular-shaped. Our results indicate that perylene aromatic interactions have a great potential in the design of non-spherical polymersomes and other structurally complex self-assembled polymer structures.

  12. Phospholipase C-ε links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans

    PubMed Central

    Dzhura, Igor; Chepurny, Oleg G; Leech, Colin A; Roe, Michael W; Dzhura, Elvira; Xu, Xin; Lu, Youming; Schwede, Frank; Genieser, Hans-G; Smrcka, Alan V

    2011-01-01

    Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is potentiated by cAMP-elevating agents, such as the incretin hormone glucagon-like peptide-1 (GLP-1) and cAMP exerts its insulin secretagogue action by activating both protein kinase A (PKA) and the cAMP-regulated guanine nucleotide exchange factor designated as Epac2. Although prior studies of mouse islets demonstrated that Epac2 acts via Rap1 GTPase to potentiate GSIS, it is not understood which downstream targets of Rap1 promote the exocytosis of insulin. Here, we measured insulin secretion stimulated by a cAMP analog that is a selective activator of Epac proteins in order to demonstrate that a Rap1-regulated phospholipase C-epsilon (PLC-ε) links Epac2 activation to the potentiation of GSIS. Our analysis demonstrates that the Epac activator 8-pCPT-2′-O-Me-cAMP-AM potentiates GSIS from the islets of wild-type (WT) mice, whereas it has a greatly reduced insulin secretagogue action in the islets of Epac2 (−/−) and PLC-ε (−/−) knockout (KO) mice. Importantly, the insulin secretagogue action of 8-pCPT-2′-O-Me-cAMP-AM in WT mouse islets cannot be explained by an unexpected action of this cAMP analog to activate PKA, as verified through the use of a FRET-based A-kinase activity reporter (AKAR3) that reports PKA activation. Since the KO of PLC-ε disrupts the ability of 8-pCPT-2′-O-Me-cAMP-AM to potentiate GSIS, while also disrupting its ability to stimulate an increase of β-cell [Ca2+]i, the available evidence indicates that it is a Rap1-regulated PLC-ε that links Epac2 activation to Ca2+-dependent exocytosis of insulin. PMID:21478675

  13. Twin defects engineered Pd cocatalyst on C3N4 nanosheets for enhanced photocatalytic performance in CO2 reduction reaction

    NASA Astrophysics Data System (ADS)

    Lang, Qingqing; Hu, Wenli; Zhou, Penghui; Huang, Tianlong; Zhong, Shuxian; Yang, Lining; Chen, Jianrong; Bai, Song

    2017-12-01

    Photocatalytic conversion of CO2 to value-added chemicals, a potential route to addressing the depletion of fossil fuels and anthropogenic climate change, is greatly limited by the low-efficient semiconductor photocatalyst. The integration of cocatalyst with light-harvesting semiconductor is a promising approach to enhancing the photocatalytic performance in CO2 reduction reaction. The enhancement is greatly determined by the catalytic active sites on the surface of cocatalyst. Herein, we demonstrate that the photocatalytic performance in the CO2 reduction reaction is greatly promoted by twin defects engineered Pd cocatalyst. In this work, Pd nanoicosahedrons with twin defects were in situ grown on C3N4 nanosheets, which effectively improve the photocatalytic performance in reduction of CO2 to CO and CH4 in comparison with Pd nanotetrahedrons without twin defects. It is proposed that the twin boundary (TB) terminations on the surface of Pd cocatalysts are highly catalytic active sites for CO2 reduction reaction. Based on the proposed mechanism, the photocatalytic activity and selectivity in CO2 reduction were further advanced through reducing the size of Pd icosahedral cocatalyst resulted from the increased surface density of TB terminations. The defect engineering on the surface of cocatalyst represents a novel route in realizing high-performance photocatalytic applications.

  14. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Self-medication by orang-utans (Pongo pygmaeus) using bioactive properties of Dracaena cantleyi.

    PubMed

    Morrogh-Bernard, H C; Foitová, I; Yeen, Z; Wilkin, P; de Martin, R; Rárová, L; Doležal, K; Nurcahyo, W; Olšanský, M

    2017-11-30

    Animals self-medicate using a variety of plant and arthropod secondary metabolites by either ingesting them or anointing them to their fur or skin apparently to repel ectoparasites and treat skin diseases. In this respect, much attention has been focused on primates. Direct evidence for self-medication among the great apes has been limited to Africa. Here we document self-medication in the only Asian great ape, orang-utans (Pongo pygmaeus), and for the first time, to our knowledge, the external application of an anti-inflammatory agent in animals. The use of leaf extracts from Dracaena cantleyi by orang-utan has been observed on several occasions; rubbing a foamy mixture of saliva and leaf onto specific parts of the body. Interestingly, the local indigenous human population also use a poultice of these leaves for the relief of body pains. We present pharmacological analyses of the leaf extracts from this species, showing that they inhibit TNFα-induced inflammatory cytokine production (E-selectin, ICAM-1, VCAM-1 and IL-6). This validates the topical anti-inflammatory properties of this plant and provides a possible function for its use by orang-utans. This is the first evidence for the deliberate external application of substances with demonstrated bioactive potential for self-medication in great apes.

  16. Twin defects engineered Pd cocatalyst on C3N4 nanosheets for enhanced photocatalytic performance in CO2 reduction reaction.

    PubMed

    Lang, Qingqing; Hu, Wenli; Zhou, Penghui; Huang, Tianlong; Zhong, Shuxian; Yang, Lining; Chen, Jianrong; Bai, Song

    2017-12-01

    Photocatalytic conversion of CO 2 to value-added chemicals, a potential route to addressing the depletion of fossil fuels and anthropogenic climate change, is greatly limited by the low-efficient semiconductor photocatalyst. The integration of cocatalyst with light-harvesting semiconductor is a promising approach to enhancing the photocatalytic performance in CO 2 reduction reaction. The enhancement is greatly determined by the catalytic active sites on the surface of cocatalyst. Herein, we demonstrate that the photocatalytic performance in the CO 2 reduction reaction is greatly promoted by twin defects engineered Pd cocatalyst. In this work, Pd nanoicosahedrons with twin defects were in situ grown on C 3 N 4 nanosheets, which effectively improve the photocatalytic performance in reduction of CO 2 to CO and CH 4 in comparison with Pd nanotetrahedrons without twin defects. It is proposed that the twin boundary (TB) terminations on the surface of Pd cocatalysts are highly catalytic active sites for CO 2 reduction reaction. Based on the proposed mechanism, the photocatalytic activity and selectivity in CO 2 reduction were further advanced through reducing the size of Pd icosahedral cocatalyst resulted from the increased surface density of TB terminations. The defect engineering on the surface of cocatalyst represents a novel route in realizing high-performance photocatalytic applications.

  17. Porphyrin-Based Nanostructures for Photocatalytic Applications

    PubMed Central

    Chen, Yingzhi; Li, Aoxiang; Huang, Zheng-Hong; Wang, Lu-Ning; Kang, Feiyu

    2016-01-01

    Well-defined organic nanostructures with controllable size and morphology are increasingly exploited in optoelectronic devices. As promising building blocks, porphyrins have demonstrated great potentials in visible-light photocatalytic applications, because of their electrical, optical and catalytic properties. From this perspective, we have summarized the recent significant advances on the design and photocatalytic applications of porphyrin-based nanostructures. The rational strategies, such as texture or crystal modification and interfacial heterostructuring, are described. The applications of the porphyrin-based nanostructures in photocatalytic pollutant degradation and hydrogen evolution are presented. Finally, the ongoing challenges and opportunities for the future development of porphyrin nanostructures in high-quality nanodevices are also proposed. PMID:28344308

  18. Occurrence of male-specific bacteriophage in feral and domestic animal wastes, human feces, and human-associated wastewaters.

    PubMed

    Calci, K R; Burkhardt, W; Watkins, W D; Rippey, S R

    1998-12-01

    Male-specific bacteriophage (MSB) densities were determined in animal and human fecal wastes to assess their potential impact on aquatic environments. Fecal samples (1,031) from cattle, chickens, dairy cows, dogs, ducks, geese, goats, hogs, horses, seagulls, sheep, and humans as well as 64 sewerage samples were examined for MSB. All animal species were found to harbor MSB, although the great majority excreted these viruses at very low levels. The results from this study demonstrate that in areas affected by both human and animal wastes, wastewater treatment plants are the principal contributors of MSB to fresh, estuarine, and marine waters.

  19. Motivational interviewing: a tool for increasing psychotropic medication adherence for youth.

    PubMed

    Hamrin, Vanya; McGuinness, Teena M

    2013-06-01

    There are serious outcomes to nonadherence to psychotropic medications in children and adolescents, including poor school performance, prolonged duration of illness, increased psychopathology, poor interpersonal relationships, increased psychiatric episodes, and suicide attempts. Medication treatment has demonstrated improved psychiatric functioning and a 50% reduction in suicidal behavior. more than 50% of youth with mental health problems are nonadherent with psychiatric medications. A review of literature examining motivational interviewing (MI) for the problem of treatment adherence in children and adolescents is discussed. MI has great potential to improve psychiatric medication adherence in adolescents. An example of how to implement MI with youth is provided.

  20. Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yongmei; Wei, Dunzhao; Zhu, Yunzhi

    We experimentally demonstrate the plasmon-assisted second-harmonic generation of an optical orbital angular momentum (OAM) beam. Because of the shape resonance, the plasmons in a periodic array of rectangular metal holes greatly enhance the nonlinear optical conversion of an OAM state. The OAM conservation (i.e., 2l{sub 1} = l{sub 2} with l{sub 1} and l{sub 2} being the OAM numbers of the fundamental and second-harmonic waves, respectively) holds well under our experimental configuration. Our results provide a potential way to realize nonlinear optical manipulation of an OAM mode in a nano-photonic device.

  1. Occurrence of Male-Specific Bacteriophage in Feral and Domestic Animal Wastes, Human Feces, and Human-Associated Wastewaters

    PubMed Central

    Calci, Kevin R.; Burkhardt, William; Watkins, William D.; Rippey, Scott R.

    1998-01-01

    Male-specific bacteriophage (MSB) densities were determined in animal and human fecal wastes to assess their potential impact on aquatic environments. Fecal samples (1,031) from cattle, chickens, dairy cows, dogs, ducks, geese, goats, hogs, horses, seagulls, sheep, and humans as well as 64 sewerage samples were examined for MSB. All animal species were found to harbor MSB, although the great majority excreted these viruses at very low levels. The results from this study demonstrate that in areas affected by both human and animal wastes, wastewater treatment plants are the principal contributors of MSB to fresh, estuarine, and marine waters. PMID:9835602

  2. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds.

    PubMed

    Liu, Tingting; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun; Peng, Shuping

    2016-01-01

    A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering.

  3. Nanoscale Ge fin etching using F- and Cl-based etchants for Ge-based multi-gate devices

    NASA Astrophysics Data System (ADS)

    Zhang, Bingxin; An, Xia; Li, Ming; Hao, Peilin; Zhang, Xing; Huang, Ru

    2018-04-01

    In this paper, nanoscale germanium (Ge) fin etching with inductively coupled plasma equipment with SF6/CHF3/Ar and Cl2/BCl3/Ar gas mixes are experimentally demonstrated. The impact of the gas ratio on etching induced Ge surface flatness, etch rate and sidewall steepness are comprehensively investigated and compared for these two kinds of etchants and the optimized gas ratio is provided. By using silicon oxide as a hard mask, nanoscale Ge fin with a flat surface and sharp sidewall is experimentally illustrated, which indicates great potential for use in nanoscale Ge-based multi-gate MOSFETs.

  4. Low-temperature wafer direct bonding of silicon and quartz glass by a two-step wet chemical surface cleaning

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo

    2018-02-01

    We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.

  5. High resolution temperature mapping of gas turbine combustor simulator exhaust with femtosecond laser induced fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan

    2017-04-01

    Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.

  6. Combustor deployments of femtosecond laser written fiber Bragg grating arrays for temperature measurements surpassing 1000°C

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Ding, Huimin; Coulas, David; Mihailov, Stephen J.; Duchesne, Marc A.; Hughes, Robin W.; McCalden, David J.; Burchat, Ryan; Yandon, Robert; Yun, Sangsig; Ramachandran, Nanthan; Charbonneau, Michel

    2017-05-01

    Femtosecond Infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to advanced power plant technologies and gas turbine engines, under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper reviews our fabrication and deployment of hundreds of fs-IR written FBGs, for monitoring temperature gradients of an oxy-fuel fluidized bed combustor and an aerospace gas turbine combustor simulator.

  7. Applications of ultrafast laser direct writing: from polarization control to data storage

    NASA Astrophysics Data System (ADS)

    Donko, A.; Gertus, T.; Brambilla, G.; Beresna, M.

    2018-02-01

    Ultrafast laser direct writing is a fascinating technology which emerged more than two decades from fundamental studies of material resistance to high-intensity optical fields. Its development saw the discovery of many puzzling phenomena and demonstration of useful applications. Today, ultrafast laser writing is seen as a technology with great potential and is rapidly entering the industrial environment. Whereas, less than 10 years ago, ultrafast lasers were still confined within the research labs. This talk will overview some of the unique features of ultrafast lasers and give examples of its applications in optical data storage, polarization control and optical fibers.

  8. Learning in Stochastic Bit Stream Neural Networks.

    PubMed

    van Daalen, Max; Shawe-Taylor, John; Zhao, Jieyu

    1996-08-01

    This paper presents learning techniques for a novel feedforward stochastic neural network. The model uses stochastic weights and the "bit stream" data representation. It has a clean analysable functionality and is very attractive with its great potential to be implemented in hardware using standard digital VLSI technology. The design allows simulation at three different levels and learning techniques are described for each level. The lowest level corresponds to on-chip learning. Simulation results on three benchmark MONK's problems and handwritten digit recognition with a clean set of 500 16 x 16 pixel digits demonstrate that the new model is powerful enough for the real world applications. Copyright 1996 Elsevier Science Ltd

  9. Synthetic Phage for Tissue Regeneration

    PubMed Central

    Merzlyak, Anna; Lee, Seung-Wuk

    2014-01-01

    Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy. PMID:24991085

  10. Advances in neuroprosthetic learning and control.

    PubMed

    Carmena, Jose M

    2013-01-01

    Significant progress has occurred in the field of brain-machine interfaces (BMI) since the first demonstrations with rodents, monkeys, and humans controlling different prosthetic devices directly with neural activity. This technology holds great potential to aid large numbers of people with neurological disorders. However, despite this initial enthusiasm and the plethora of available robotic technologies, existing neural interfaces cannot as yet master the control of prosthetic, paralyzed, or otherwise disabled limbs. Here I briefly discuss recent advances from our laboratory into the neural basis of BMIs that should lead to better prosthetic control and clinically viable solutions, as well as new insights into the neurobiology of action.

  11. Assessment of dreissenid biodeposits as a potential food resource for invasive Asian carp

    USGS Publications Warehouse

    Anderson, Karl R.; Chapman, Duane C.; Hayer, Cari-Ann

    2016-01-01

    Silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) are poised to invade the Laurentian Great Lakes. Zebra mussels (Dreissena polymorpha) and quagga mussels (D. rostriformis bugensis) have shifted nutrient pathways towards the benthos, partly through deposition of feces and rejected food particles called biodeposits. When biodeposit material was fed to bighead and silver carp, they fed on the material, but on average lost weight. Energy density between fed and unfed fish did not differ, but a few individual fish did gain weight on the biodeposits diet. Our results demonstrate that biodeposits might be considered a supplemental food for bigheaded carps.

  12. An ion beam facility based on a 3 MV tandetron accelerator in Sichuan University, China

    NASA Astrophysics Data System (ADS)

    Han, Jifeng; An, Zhu; Zheng, Gaoqun; Bai, Fan; Li, Zhihui; Wang, Peng; Liao, Xiaodong; Liu, Mantian; Chen, Shunli; Song, Mingjiang; Zhang, Jun

    2018-03-01

    A new ion beam facility based on a 3 MV tandetron accelerator system has been installed in Sichuan University, China. The facility was developed by High Voltage Engineering Europa and consists of three high-energy beam lines including the ion beam analysis, ion implantation and nuclear physics experiment end stations, respectively. The terminal voltage stability of the accelerator is better than ±30 V, and the brightness of the proton beam is approximately 5.06 A/rad2/m2/eV. The system demonstrates a great application potential in fields such as nuclear, material and environmental studies.

  13. Nonprofit health systems: a promising new class of corporate citizen.

    PubMed

    Longest, Beaufort B

    Leading nonprofit health systems are demonstrating that communities can benefit from the emergence of this new class of corporate citizens. Just as the business sector has produced many good corporate citizens to the great advantage of American society, health systems with sufficient financial and organizational gravitas increasingly are assuming these roles, and in so doing, are making positive differences in their communities. More system leaders, however, must find compelling reasons to assume these demanding roles. They also must learn how to play citizenship roles more fully and effectively if the potential social good available through health systems' corporate citizenship is to be realized.

  14. Mechanical design of DNA nanostructures.

    PubMed

    Castro, Carlos E; Su, Hai-Jun; Marras, Alexander E; Zhou, Lifeng; Johnson, Joshua

    2015-04-14

    Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.

  15. Absolute Scale Quantitative Off-Axis Electron Holography at Atomic Resolution

    NASA Astrophysics Data System (ADS)

    Winkler, Florian; Barthel, Juri; Tavabi, Amir H.; Borghardt, Sven; Kardynal, Beata E.; Dunin-Borkowski, Rafal E.

    2018-04-01

    An absolute scale match between experiment and simulation in atomic-resolution off-axis electron holography is demonstrated, with unknown experimental parameters determined directly from the recorded electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of a pristine thin WSe2 flake can be measured uniquely, whereas some electron optical aberrations cannot be determined unambiguously for a periodic object. The ability to determine local specimen and imaging parameters directly from electron wave functions is of great importance for quantitative studies of electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and considering that aberrations change over time.

  16. Viscous optical clearing agent for in vivo optical imaging

    NASA Astrophysics Data System (ADS)

    Deng, Zijian; Jing, Lijia; Wu, Ning; lv, Pengyu; Jiang, Xiaoyun; Ren, Qiushi; Li, Changhui

    2014-07-01

    By allowing more photons to reach deeper tissue, the optical clearing agent (OCA) has gained increasing attention in various optical imaging modalities. However, commonly used OCAs have high fluidity, limiting their applications in in vivo studies with oblique, uneven, or moving surfaces. In this work, we reported an OCA with high viscosity. We measured the properties of this viscous OCA, and tested its successful performances in the imaging of a living animal's skin with two optical imaging modalities: photoacoustic microscopy and optical coherence tomography. Our results demonstrated that the viscous OCA has a great potential in the study of different turbid tissues using various optical imaging modalities.

  17. Advances in Neuroprosthetic Learning and Control

    PubMed Central

    Carmena, Jose M.

    2013-01-01

    Significant progress has occurred in the field of brain–machine interfaces (BMI) since the first demonstrations with rodents, monkeys, and humans controlling different prosthetic devices directly with neural activity. This technology holds great potential to aid large numbers of people with neurological disorders. However, despite this initial enthusiasm and the plethora of available robotic technologies, existing neural interfaces cannot as yet master the control of prosthetic, paralyzed, or otherwise disabled limbs. Here I briefly discuss recent advances from our laboratory into the neural basis of BMIs that should lead to better prosthetic control and clinically viable solutions, as well as new insights into the neurobiology of action. PMID:23700383

  18. Application of underdamped Langevin dynamics simulations for the study of diffusion from a drug-eluting stent

    NASA Astrophysics Data System (ADS)

    Regev, Shaked; Farago, Oded

    2018-10-01

    We use a one-dimensional two layer model with a semi-permeable membrane to study the diffusion of a therapeutic drug delivered from a drug-eluting stent (DES). The rate of drug transfer from the stent coating to the arterial wall is calculated by using underdamped Langevin dynamics simulations. Our results reveal that the membrane has virtually no delay effect on the rate of delivery from the DES. The work demonstrates the great potential of underdamped Langevin dynamics simulations as an easy to implement, efficient, method for solving complicated diffusion problems in systems with a spatially-dependent diffusion coefficient.

  19. Manipulation of immune system via immortal bone marrow stem cells.

    PubMed

    Ruedl, Christiane; Khameneh, Hanif Javanmard; Karjalainen, Klaus

    2008-09-01

    Extensive amplification of hematopoietic stem cells (HSCs) and their multipotent primitive progenitors (MPPs) in culture would greatly benefit not only clinical transplantation but also provide a potential tool to manipulate all cellular lineages derived from these cells for gene therapy and experimental purposes. Here, we demonstrate that mouse bone marrow cultures containing cells engineered to over-express NUP98-HOXB4 fusion protein support self-renewal of physiologically normal HSC and MPP for several weeks leading practically to their unlimited expansion. This allows time consuming and cumulative in vitro experimental manipulations without sacrificing their ability to differentiate in vivo or in vitro to any hematopoietic lineage.

  20. Soft Robotic Manipulation and Locomotion with a 3D Printed Electroactive Hydrogel.

    PubMed

    Han, Daehoon; Farino, Cindy; Yang, Chen; Scott, Tracy; Browe, Daniel; Choi, Wonjoon; Freeman, Joseph W; Lee, Howon

    2018-05-30

    Electroactive hydrogels (EAH) that exhibit large deformation in response to an electric field have received great attention as a potential actuating material for soft robots and artificial muscle. However, their application has been limited due to the use of traditional two-dimensional (2D) fabrication methods. Here we present soft robotic manipulation and locomotion with 3D printed EAH microstructures. Through 3D design and precise dimensional control enabled by a digital light processing (DLP) based micro 3D printing technique, complex 3D actuations of EAH are achieved. We demonstrate soft robotic actuations including gripping and transporting an object and a bidirectional locomotion.

  1. Implications of hydrologic variability on the succession of plants in Great Lakes wetlands

    USGS Publications Warehouse

    Wilcox, Douglas A.

    2004-01-01

    Primary succession of plant communities directed toward a climax is not a typical occurrence in wetlands because these ecological systems are inherently dependent on hydrology, and temporal hydrologic variability often causes reversals or setbacks in succession. Wetlands of the Great Lakes provide good examples for demonstrating the implications of hydrology in driving successional processes and for illustrating potential misinterpretations of apparent successional sequences. Most Great Lakes coastal wetlands follow cyclic patterns in which emergent communities are reduced in area or eliminated by high lake levels and then regenerated from the seed bank during low lake levels. Thus, succession never proceeds for long. Wetlands also develop in ridge and swale terrains in many large embayments of the Great Lakes. These formations contain sequences of wetlands of similar origin but different age that can be several thousand years old, with older wetlands always further from the lake. Analyses of plant communities across a sequence of wetlands at the south end of Lake Michigan showed an apparent successional pattern from submersed to floating to emergent plants as water depth decreased with wetland age. However, paleoecological analyses showed that the observed vegetation changes were driven largely by disturbances associated with increased human settlement in the area. Climate-induced hydrologic changes were also shown to have greater effects on plant-community change than autogenic processes. Other terms, such as zonation, maturation, fluctuations, continuum concept, functional guilds, centrifugal organization, pulse stability, and hump-back models provide additional means of describing organization and changes in vegetation; some of them overlap with succession in describing vegetation processes in Great Lakes wetlands, but each must be used in the proper context with regard to short- and long-term hydrologic variability.

  2. Phylogenetic and ecological characteristics associated with thiaminase activity in Laurentian Great Lakes fishes

    USGS Publications Warehouse

    Riley, S.C.; Evans, A.N.

    2008-01-01

    Thiamine deficiency complex (TDC) causes mortality and sublethal effects in Great Lakes salmonines and results from low concentrations of egg thiamine that are thought to be caused by thiaminolytic enzymes (i.e., thiaminase) present in the diet. This complex has the potential to undermine efforts to restore lake trout Salvelinus namaycush and severely restrict salmonid production in the Great Lakes. Although thiaminase has been found in a variety of Great Lakes fishes, the ultimate source of thiaminase in Great Lakes fishes is currently unknown. We used logistic regression analysis to investigate relationships between thiaminase activity and phylogenetic or ecological characteristics of 39 Great Lakes fish species. The taxonomically more ancestral species were more likely to show thiaminase activity than the more derived species. Species that feed at lower trophic levels and occupy benthic habitats also appeared to be more likely to show thiaminase activity; these variables were correlated with taxonomy, which was the most important predictor of thiaminase activity. Further analyses of the relationship between quantitative measures of thiaminase activity and ecological characteristics of Great Lakes fish species would provide greater insight into potential sources and pathways of thiaminase in Great Lakes food webs. ?? Copyright by the American Fisheries Society 2008.

  3. Pyrrolizidine alkaloids (PAs) in honey and pollen-legal regulation of PA levels in food and animal feed required.

    PubMed

    Kempf, Michael; Reinhard, Annika; Beuerle, Till

    2010-01-01

    Pyrrolizidine alkaloids (PAs) are secondary plant constituents that comprise about 400 different structures and occur in two major forms, a tertiary form and the corresponding N-oxide. PAs containing a 1,2-double bond are pre-toxins and metabolically activated by the action of hepatic P-450 enzymes to toxic pyrroles. Besides the acute toxic effects, the genotoxic and tumorigenicity potential of PAs was demonstrated in some eukaryotic model systems. Recently, the potential PA contamination of food and feeding stuff attracted recurrent great deals of attention. Humans are exposed to these toxins by consumption of herbal medicine, herbal teas, dietary supplements or food containing PA plant material. In numerous studies the potential threat to human health by PAs is stated. In pharmaceuticals, the use of these plants is regulated. Considering the PA concentrations observed especially in authentic honey from PA producing plants and pollen products, the results provoke an international regulation of PAs in food.

  4. Potential of roselle and blue pea in the dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Dayang, S.; Irwanto, M.; Gomesh, N.; Ismail, B.

    2017-09-01

    This paper discovers the use of natural dyes from Roselle flower and Blue Pea flower which act as a sensitizer in DSSC and in addition has a potential in absorbing visible light spectrum. The dyes were extracted using distilled water (DI) and ethanol (E) extract solvent in an ultrasonic cleaner for 30 minutes with a frequency of 37 Hz by using `degas' mode at the temperature of 30°C. Absorption spectra of roselle dye and blue pea dye with different extract solvent were tested using Evolution 201 UV-Vis Spectrophotometer. It was found that Roselle dye absorbs at a range of 400 nm - 620 nm and Blue Pea absorbs at the range of wavelength 500 nm - 680 nm. Fourier-Transform Infrared (FTIR) was used to identify the functional active group in extract dye. The concept of Dye-Sensitized Solar Cell (DSSC) similar to photosynthesis process has attracted much attention since it demonstrates a great potential due to the use of low-cost materials and environmentally friendly sources of technology.

  5. Eco-friendly synthesis of metal dichalcogenides nanosheets and their environmental remediation potential driven by visible light

    PubMed Central

    Mishra, Ashish Kumar; Lakshmi, K. V.; Huang, Liping

    2015-01-01

    Exfoliated transition metal dichalcogenides (TMDs) such as WS2 and MoS2 have shown exciting potential for energy storage, catalysis and optoelectronics. So far, solution based methods for scalable production of few-layer TMDs usually involve the use of organic solvents or dangerous chemicals. Here, we report an eco-friendly method for facile synthesis of few-layer WS2 and MoS2 nanosheets using dilute aqueous solution of household detergent. Short time sonication of varying amount of bulk samples in soapy water was used to scale up the production of nanosheets. Thermal stability, optical absorption and Raman spectra of as-synthesized WS2 and MoS2 nanosheets are in close agreement with those from other synthesis techniques. Efficient photocatalytic activity of TMDs nanosheets was demonstrated by decomposing Brilliant Green dye in aqueous solution under visible light irradiation. Our study shows the great potential of TMDs nanosheets for environmental remediation by degrading toxic industrial chemicals in wastewater using sunlight. PMID:26503125

  6. Eco-friendly synthesis of metal dichalcogenides nanosheets and their environmental remediation potential driven by visible light

    NASA Astrophysics Data System (ADS)

    Mishra, Ashish Kumar; Lakshmi, K. V.; Huang, Liping

    2015-10-01

    Exfoliated transition metal dichalcogenides (TMDs) such as WS2 and MoS2 have shown exciting potential for energy storage, catalysis and optoelectronics. So far, solution based methods for scalable production of few-layer TMDs usually involve the use of organic solvents or dangerous chemicals. Here, we report an eco-friendly method for facile synthesis of few-layer WS2 and MoS2 nanosheets using dilute aqueous solution of household detergent. Short time sonication of varying amount of bulk samples in soapy water was used to scale up the production of nanosheets. Thermal stability, optical absorption and Raman spectra of as-synthesized WS2 and MoS2 nanosheets are in close agreement with those from other synthesis techniques. Efficient photocatalytic activity of TMDs nanosheets was demonstrated by decomposing Brilliant Green dye in aqueous solution under visible light irradiation. Our study shows the great potential of TMDs nanosheets for environmental remediation by degrading toxic industrial chemicals in wastewater using sunlight.

  7. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum.

    PubMed

    Das, Lalitendu; Liu, Enshi; Saeed, Areej; Williams, David W; Hu, Hongqiang; Li, Chenlin; Ray, Allison E; Shi, Jian

    2017-11-01

    This study takes combined field trial, lab experiment, and economic analysis approaches to evaluate the potential of industrial hemp in comparison with kenaf, switchgrass and biomass sorghum. Agronomy data suggest that the per hectare yield (5437kg) of industrial hemp stem alone was at a similar level with switchgrass and sorghum; while the hemp plants require reduced inputs. Field trial also showed that ∼1230kg/ha hemp grain can be harvested in addition to stems. Results show a predicted ethanol yield of ∼82gallons/dry ton hemp stems, which is comparable to the other three tested feedstocks. A comparative cost analysis indicates that industrial hemp could generate higher per hectare gross profit than the other crops if both hemp grains and biofuels from hemp stem were counted. These combined evaluation results demonstrate that industrial hemp has great potential to become a promising regional commodity crop for producing both biofuels and value-added products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Yohimbine stress potentiates conditioned cue-induced reinstatement of heroin-seeking in rats.

    PubMed

    Banna, Kelly M; Back, Sudie E; Do, Phong; See, Ronald E

    2010-03-17

    Stress and drug-associated cues can trigger craving and relapse in abstinent drug-dependent individuals. Although the role of these two critical factors in relapse has been extensively studied, the interaction between stress and drug-associated cues in relapse has been less well characterized. Using an animal model of relapse, we assessed the effects of the pharmacological stressor, yohimbine (1.25 or 2.5mg/kg), on reinstatement of extinguished heroin-seeking in rats either in the presence or absence of heroin-associated cues. Yohimbine, in the absence of heroin-associated cues, and cues by themselves reliably reinstated heroin-seeking over extinction levels. Notably, animals showed significantly potentiated responding when yohimbine preceded cue-induced reinstatement (3-4x higher over cues or yohimbine alone). These results demonstrate that exposure to heroin-paired cues during yohimbine-induced stress greatly potentiates heroin-seeking, and support the simultaneous targeting of both stress and cue activation during relapse intervention. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Gene Editing of Human Hematopoietic Stem and Progenitor Cells: Promise and Potential Hurdles.

    PubMed

    Yu, Kyung-Rok; Natanson, Hannah; Dunbar, Cynthia E

    2016-10-01

    Hematopoietic stem and progenitor cells (HSPCs) have great therapeutic potential because of their ability to both self-renew and differentiate. It has been proposed that, given their unique properties, a small number of genetically modified HSPCs could accomplish lifelong, corrective reconstitution of the entire hematopoietic system in patients with various hematologic disorders. Scientists have demonstrated that gene addition therapies-targeted to HSPCs and using integrating retroviral vectors-possess clear clinical benefits in multiple diseases, among them immunodeficiencies, storage disorders, and hemoglobinopathies. Scientists attempting to develop clinically relevant gene therapy protocols have, however, encountered a number of unexpected hurdles because of their incomplete knowledge of target cells, genomic control, and gene transfer technologies. Targeted gene-editing technologies using engineered nucleases such as ZFN, TALEN, and/or CRISPR/Cas9 RGEN show great clinical promise, allowing for the site-specific correction of disease-causing mutations-a process with important applications in autosomal dominant or dominant-negative genetic disorders. The relative simplicity of the CRISPR/Cas9 system, in particular, has sparked an exponential increase in the scientific community's interest in and use of these gene-editing technologies. In this minireview, we discuss the specific applications of gene-editing technologies in human HSPCs, as informed by prior experience with gene addition strategies. HSPCs are desirable but challenging targets; the specific mechanisms these cells evolved to protect themselves from DNA damage render them potentially more susceptible to oncogenesis, especially given their ability to self-renew and their long-term proliferative potential. We further review scientists' experience with gene-editing technologies to date, focusing on strategies to move these techniques toward implementation in safe and effective clinical trials.

  10. SWATHtoMRM: Development of High-Coverage Targeted Metabolomics Method Using SWATH Technology for Biomarker Discovery.

    PubMed

    Zha, Haihong; Cai, Yuping; Yin, Yandong; Wang, Zhuozhong; Li, Kang; Zhu, Zheng-Jiang

    2018-03-20

    The complexity of metabolome presents a great analytical challenge for quantitative metabolite profiling, and restricts the application of metabolomics in biomarker discovery. Targeted metabolomics using multiple-reaction monitoring (MRM) technique has excellent capability for quantitative analysis, but suffers from the limited metabolite coverage. To address this challenge, we developed a new strategy, namely, SWATHtoMRM, which utilizes the broad coverage of SWATH-MS technology to develop high-coverage targeted metabolomics method. Specifically, SWATH-MS technique was first utilized to untargeted profile one pooled biological sample and to acquire the MS 2 spectra for all metabolites. Then, SWATHtoMRM was used to extract the large-scale MRM transitions for targeted analysis with coverage as high as 1000-2000 metabolites. Then, we demonstrated the advantages of SWATHtoMRM method in quantitative analysis such as coverage, reproducibility, sensitivity, and dynamic range. Finally, we applied our SWATHtoMRM approach to discover potential metabolite biomarkers for colorectal cancer (CRC) diagnosis. A high-coverage targeted metabolomics method with 1303 metabolites in one injection was developed to profile colorectal cancer tissues from CRC patients. A total of 20 potential metabolite biomarkers were discovered and validated for CRC diagnosis. In plasma samples from CRC patients, 17 out of 20 potential biomarkers were further validated to be associated with tumor resection, which may have a great potential in assessing the prognosis of CRC patients after tumor resection. Together, the SWATHtoMRM strategy provides a new way to develop high-coverage targeted metabolomics method, and facilitates the application of targeted metabolomics in disease biomarker discovery. The SWATHtoMRM program is freely available on the Internet ( http://www.zhulab.cn/software.php ).

  11. Historical land cover changes in the Great Lakes Region

    USGS Publications Warehouse

    Cole, K.L.; Davis, M.B.; Stearns, F.; Guntenspergen, G.; Walker, K.; Sisk, Thomas D.

    1999-01-01

    Two different methods of reconstructing historical vegetation change, drawing on General Land Office (GLO) surveys and fossil pollen deposits, are demonstrated by using data from the Great Lakes region. Both types of data are incorporated into landscape-scale analyses and presented through geographic information systems. Results from the two methods reinforce each other and allow reconstructions of past landscapes at different time scales. Changes to forests of the Great Lakes region during the last 150 years were far greater than the changes recorded over the preceding 1,000 years. Over the last 150 years, the total amount of forested land in the Great Lakes region declined by over 40%, and much of the remaining forest was converted to early successional forest types as a result of extensive logging. These results demonstrate the utility of using GLO survey data in conjunction with other data sources to reconstruct a generalized 'presettlement' condition and assess changes in landcover.

  12. Towards the development of tamper-resistant, ground-based mobile sensor nodes

    NASA Astrophysics Data System (ADS)

    Mascarenas, David; Stull, Christopher; Farrar, Charles

    2011-11-01

    Mobile sensor nodes hold great potential for collecting field data using fewer resources than human operators would require and potentially requiring fewer sensors than a fixed-position sensor array. It would be very beneficial to allow these mobile sensor nodes to operate unattended with a minimum of human intervention. In order to allow mobile sensor nodes to operate unattended in a field environment, it is imperative that they be capable of identifying and responding to external agents that may attempt to tamper with, damage or steal the mobile sensor nodes, while still performing their data collection mission. Potentially hostile external agents could include animals, other mobile sensor nodes, or humans. This work will focus on developing control policies to help enable a mobile sensor node to identify and avoid capture by a hostile un-mounted human. The work is developed in a simulation environment, and demonstrated using a non-holonomic, ground-based mobile sensor node. This work will be a preliminary step toward ensuring the cyber-physical security of ground-based mobile sensor nodes that operate unattended in potentially unfriendly environments.

  13. Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts

    USGS Publications Warehouse

    Jones, L. Camille; Rosenbauer, Robert; Goldsmith, Jonas I.; Oze, Christopher

    2010-01-01

    Serpentinization of forsteritic olivine results in the inorganic synthesis of molecular hydrogen (H2) in ultramafic hydrothermal systems (e.g., mid-ocean ridge and forearc environments). Inorganic carbon in those hydrothermal systems may react with H2 to produce methane (CH4) and other hydrocarbons or react with dissolved metal ions to form carbonate minerals. Here, we report serpentinization experiments at 200°C and 300 bar demonstrating Fe2+ being incorporated into carbonates more rapidly than Fe2+ oxidation (and concomitant H2 formation) leading to diminished yields of H2 and H2-dependent CH4. In addition, carbonate formation is temporally fast in carbonate oversaturated fluids. Our results demonstrate that carbonate chemistry ultimately modulates the abiotic synthesis of both H2 and CH4 in hydrothermal ultramafic systems and that ultramafic systems present great potential for CO2-mineral sequestration.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Fei; Gao, Jie; Luk, Ting S.

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  15. Stretchable V2O5/PEDOT supercapacitors: a modular fabrication process and charging with triboelectric nanogenerators.

    PubMed

    Qi, Ruijie; Nie, Jinhui; Liu, Mingyang; Xia, Mengyang; Lu, Xianmao

    2018-04-26

    Stretchable energy storage devices are of great importance for the viable applications of wearable/stretchable electronics. Studies on stretchable energy storage devices, especially supercapacitors (SCs), have shown encouraging progress. However, challenges still remain in the pursuit of high specific capacitances and facile fabrication methods. Herein, we report a modular materials fabrication and assembly process for stretchable SCs. With a V2O5/PEDOT composite as the active material, the resulting stretchable SCs exhibited high areal specific capacitances up to 240 mF cm-2 and good capacitance retention at a strain of 50%. To demonstrate the facile assembly process, a stretchable wristband was fabricated by simply assembling SC cells in series to deliver a voltage higher than 2 V. Charging the wristband with a triboelectric nanogenerator (TENG) to light an LED was further demonstrated, indicating the potential to integrate our SCs with environmental energy harvesters for self-powered stretchable devices.

  16. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-01

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ˜75 F g-1, ˜987 kW kg-1 and ˜27 W h kg-1, respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (˜158 F g-1) and energy density (˜53 W h kg-1). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices.

  17. Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole

    NASA Astrophysics Data System (ADS)

    Chen, Yanli; Du, Lianhuan; Yang, Peihua; Sun, Peng; Yu, Xiang; Mai, Wenjie

    2015-08-01

    Here, we report robust, flexible CNT-based supercapacitor (SC) electrodes fabricated by electrodepositing polypyrrole (PPy) on freestanding vacuum-filtered CNT film. These electrodes demonstrate significantly improved mechanical properties (with the ultimate tensile strength of 16 MPa), and greatly enhanced electrochemical performance (5.6 times larger areal capacitance). The major drawback of conductive polymer electrodes is the fast capacitance decay caused by structural breakdown, which decreases cycling stability but this is not observed in our case. All-solid-state SCs assembled with the robust CNT/PPy electrodes exhibit excellent flexibility, long lifetime (95% capacitance retention after 10,000 cycles) and high electrochemical performance (a total device volumetric capacitance of 4.9 F/cm3). Moreover, a flexible SC pack is demonstrated to light up 53 LEDs or drive a digital watch, indicating the broad potential application of our SCs for portable/wearable electronics.

  18. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites

    PubMed Central

    Yang, Ye; Yang, Mengjin; Zhu, Kai; Johnson, Justin C.; Berry, Joseph J.; van de Lagemaat, Jao; Beard, Matthew C.

    2016-01-01

    A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spin state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics. PMID:27577007

  19. Antidepressant-like and anxiolytic-like effects of cannabidiol: a chemical compound of Cannabis sativa.

    PubMed

    de Mello Schier, Alexandre R; de Oliveira Ribeiro, Natalia P; Coutinho, Danielle S; Machado, Sergio; Arias-Carrión, Oscar; Crippa, Jose A; Zuardi, Antonio W; Nardi, Antonio E; Silva, Adriana C

    2014-01-01

    Anxiety and depression are pathologies that affect human beings in many aspects of life, including social life, productivity and health. Cannabidiol (CBD) is a constituent non-psychotomimetic of Cannabis sativa with great psychiatric potential, including uses as an antidepressant-like and anxiolytic-like compound. The aim of this study is to review studies of animal models using CBD as an anxiolytic-like and antidepressant-like compound. Studies involving animal models, performing a variety of experiments on the above-mentioned disorders, such as the forced swimming test (FST), elevated plus maze (EPM) and Vogel conflict test (VCT), suggest that CBD exhibited an anti-anxiety and antidepressant effects in animal models discussed. Experiments with CBD demonstrated non-activation of neuroreceptors CB1 and CB2. Most of the studies demonstrated a good interaction between CBD and the 5-HT1A neuro-receptor.

  20. Recent progress in nanostructured next-generation field emission devices

    NASA Astrophysics Data System (ADS)

    Mittal, Gaurav; Lahiri, Indranil

    2014-08-01

    Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.

  1. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip

    NASA Astrophysics Data System (ADS)

    Lee, Hansuek; Chen, Tong; Li, Jiang; Yang, Ki Youl; Jeon, Seokmin; Painter, Oskar; Vahala, Kerry J.

    2012-06-01

    Ultrahigh-Q optical resonators are being studied across a wide range of fields, including quantum information, nonlinear optics, cavity optomechanics and telecommunications. Here, we demonstrate a new resonator with a record Q-factor of 875 million for on-chip devices. The fabrication of our device avoids the requirement for a specialized processing step, which in microtoroid resonators has made it difficult to control their size and achieve millimetre- and centimetre-scale diameters. Attaining these sizes is important in applications such as microcombs and potentially also in rotation sensing. As an application of size control, stimulated Brillouin lasers incorporating our device are demonstrated. The resonators not only set a new benchmark for the Q-factor on a chip, but also provide, for the first time, full compatibility of this important device class with conventional semiconductor processing. This feature will greatly expand the range of possible `system on a chip' functions enabled by ultrahigh-Q devices.

  2. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics

    PubMed Central

    Hanlon, Damien; Backes, Claudia; Doherty, Evie; Cucinotta, Clotilde S.; Berner, Nina C.; Boland, Conor; Lee, Kangho; Harvey, Andrew; Lynch, Peter; Gholamvand, Zahra; Zhang, Saifeng; Wang, Kangpeng; Moynihan, Glenn; Pokle, Anuj; Ramasse, Quentin M.; McEvoy, Niall; Blau, Werner J.; Wang, Jun; Abellan, Gonzalo; Hauke, Frank; Hirsch, Andreas; Sanvito, Stefano; O'Regan, David D.; Duesberg, Georg S.; Nicolosi, Valeria; Coleman, Jonathan N.

    2015-01-01

    Few-layer black phosphorus (BP) is a new two-dimensional material which is of great interest for applications, mainly in electronics. However, its lack of environmental stability severely limits its synthesis and processing. Here we demonstrate that high-quality, few-layer BP nanosheets, with controllable size and observable photoluminescence, can be produced in large quantities by liquid phase exfoliation under ambient conditions in solvents such as N-cyclohexyl-2-pyrrolidone (CHP). Nanosheets are surprisingly stable in CHP, probably due to the solvation shell protecting the nanosheets from reacting with water or oxygen. Experiments, supported by simulations, show reactions to occur only at the nanosheet edge, with the rate and extent of the reaction dependent on the water/oxygen content. We demonstrate that liquid-exfoliated BP nanosheets are potentially useful in a range of applications from ultrafast saturable absorbers to gas sensors to fillers for composite reinforcement. PMID:26469634

  3. Supramolecular latching system based on ultrastable synthetic binding pairs as versatile tools for protein imaging.

    PubMed

    Kim, Kyung Lock; Sung, Gihyun; Sim, Jaehwan; Murray, James; Li, Meng; Lee, Ara; Shrinidhi, Annadka; Park, Kyeng Min; Kim, Kimoon

    2018-04-27

    Here we report ultrastable synthetic binding pairs between cucurbit[7]uril (CB[7]) and adamantyl- (AdA) or ferrocenyl-ammonium (FcA) as a supramolecular latching system for protein imaging, overcoming the limitations of protein-based binding pairs. Cyanine 3-conjugated CB[7] (Cy3-CB[7]) can visualize AdA- or FcA-labeled proteins to provide clear fluorescence images for accurate and precise analysis of proteins. Furthermore, controllability of the system is demonstrated by treating with a stronger competitor guest. At low temperature, this allows us to selectively detach Cy3-CB[7] from guest-labeled proteins on the cell surface, while leaving Cy3-CB[7] latched to the cytosolic proteins for spatially conditional visualization of target proteins. This work represents a non-protein-based bioimaging tool which has inherent advantages over the widely used protein-based techniques, thereby demonstrating the great potential of this synthetic system.

  4. Quantification of Caffeoylquinic Acids in Coffee Brews by HPLC-DAD

    PubMed Central

    Moeenfard, Marzieh; Rocha, Lígia; Alves, Arminda

    2014-01-01

    The influence of different brewing conditions on the concentration of the main caffeoylquinic acids (3-caffeoylquinic acid (3-CQA), 4-caffeoylquinic acid (4-CQA), and 5-caffeoylquinic acid (5-CQA)) was investigated. For this purpose, twenty-four coffee brews were extracted and analyzed using HPLC-DAD at 325 nm. Our findings demonstrate the great impact of brewing techniques on the caffeoylquinic acids (CQAs) content. The major isomer was 3-CQA, accounting for about 50% of the total CQAs, followed by 5-CQA and 4-CQA, accounting for about 24–36% for each one. The total content of CQAs was in the range of 45.79 to 1662.01 mg/L, found in iced cappuccino and pod espresso, respectively. In conclusion, this study demonstrates that coffee brews, in particular those prepared using pressurized methods, can be considered as the potential sources of antioxidants such as CQAs. PMID:25587489

  5. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.

    PubMed

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-20

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ~75 F g(-1), ~987 kW kg(-1) and ~27 W h kg(-1), respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (~158 F g(-1)) and energy density (~53 W h kg(-1)). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. © 2012 IOP Publishing Ltd

  6. Instant, Visual, and Instrument-Free Method for On-Site Screening of GTS 40-3-2 Soybean Based on Body-Heat Triggered Recombinase Polymerase Amplification.

    PubMed

    Wang, Rui; Zhang, Fang; Wang, Liu; Qian, Wenjuan; Qian, Cheng; Wu, Jian; Ying, Yibin

    2017-04-18

    On-site monitoring the plantation of genetically modified (GM) crops is of critical importance in agriculture industry throughout the world. In this paper, a simple, visual and instrument-free method for instant on-site detection of GTS 40-3-2 soybean has been developed. It is based on body-heat recombinase polymerase amplification (RPA) and followed with naked-eye detection via fluorescent DNA dye. Combining with extremely simplified sample preparation, the whole detection process can be accomplished within 10 min and the fluorescent results can be photographed by an accompanied smart phone. Results demonstrated a 100% detection rate for screening of practical GTS 40-3-2 soybean samples by 20 volunteers under different ambient temperatures. This method is not only suitable for on-site detection of GM crops but also demonstrates great potential to be applied in other fields.

  7. Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model

    PubMed Central

    Ono, Mitsuaki; Oshima, Masamitsu; Ogawa, Miho; Sonoyama, Wataru; Hara, Emilio Satoshi; Oida, Yasutaka; Shinkawa, Shigehiko; Nakajima, Ryu; Mine, Atsushi; Hayano, Satoru; Fukumoto, Satoshi; Kasugai, Shohei; Yamaguchi, Akira; Tsuji, Takashi; Kuboki, Takuo

    2017-01-01

    Whole-organ regeneration has great potential for the replacement of dysfunctional organs through the reconstruction of a fully functional bioengineered organ using three-dimensional cell manipulation in vitro. Recently, many basic studies of whole-tooth replacement using three-dimensional cell manipulation have been conducted in a mouse model. Further evidence of the practical application to human medicine is required to demonstrate tooth restoration by reconstructing bioengineered tooth germ using a postnatal large-animal model. Herein, we demonstrate functional tooth restoration through the autologous transplantation of bioengineered tooth germ in a postnatal canine model. The bioengineered tooth, which was reconstructed using permanent tooth germ cells, erupted into the jawbone after autologous transplantation and achieved physiological function equivalent to that of a natural tooth. This study represents a substantial advancement in whole-organ replacement therapy through the transplantation of bioengineered organ germ as a practical model for future clinical regenerative medicine. PMID:28300208

  8. A cascaded silicon Raman laser

    NASA Astrophysics Data System (ADS)

    Rong, Haisheng; Xu, Shengbo; Cohen, Oded; Raday, Omri; Lee, Mindy; Sih, Vanessa; Paniccia, Mario

    2008-03-01

    One of the major advantages of Raman lasers is their ability to generate coherent light in wavelength regions that are not easily accessible with other conventional types of lasers. Recently, efficient Raman lasing in silicon in the near-infrared region has been demonstrated, showing great potential for realizing low-cost, compact, room-temperature lasers in the mid-infrared region. Such lasers are highly desirable for many applications, ranging from trace-gas sensing, environmental monitoring and biomedical analysis, to industrial process control, and free-space communications. Here we report the first experimental demonstration of cascaded Raman lasing in silicon, opening the path to extending the lasing wavelength from the near- to mid-infrared region. Using a 1,550-nm pump source, we achieve stable, continuous-wave, second-order cascaded lasing at 1,848 nm with an output power exceeding 5 mW. The laser operates in single mode, and the laser linewidth is measured to be <2.5 MHz.

  9. Efficient Storing Energy Harvested by Triboelectric Nanogenerators Using a Safe and Durable All-Solid-State Sodium-Ion Battery.

    PubMed

    Hou, Huidan; Xu, Qingkai; Pang, Yaokun; Li, Lei; Wang, Jiulin; Zhang, Chi; Sun, Chunwen

    2017-08-01

    Storing energy harvested by triboelectric nanogenerators (TENGs) from ambient mechanical motion is still a great challenge for achieving low-cost and environmental benign power sources. Here, an all-solid-state Na-ion battery with safe and durable performance used for efficient storing pulsed energy harvested by the TENG is demonstrated. The solid-state sodium-ion batteries are charged by galvanostatic mode and pulse mode with the TENG, respectively. The all-solid-state sodium-ion battery displays excellent cyclic performance up to 1000 cycles with a capacity retention of about 85% even at a high charge and discharge current density of 48 mA g -1 . When charged by the TENG, an energy conversion efficiency of 62.3% is demonstrated. The integration of TENGs with the safe and durable all-solid-state sodium-ion batteries is potential for providing more stable power output for self-powered systems.

  10. A case study detailing key considerations for implementing a telehealth approach to office ergonomics.

    PubMed

    Ritchie, Catherine L W; Miller, Linda L; Antle, David M

    2017-01-01

    Telehealth approaches to delivering ergonomics assessment hold great potential to improve service delivery in rural and remote settings. This case study describes a telehealth-based ergonomics service delivery process, and compares in-person and telehealth-based ergonomics approaches at an Alberta-based non-profit advocacy group. This project demonstrates that telehealth approaches to ergonomics do not lead to significantly different scoring outcomes for assessment of ergonomics issues, when compared to in-person assessments. This project also outlines the importance of live real-time video conferencing to improving communication, attaining key assessment information, and demonstrating ergonomic adjustments. However, some key considerations of bandwidth and hardware capabilities need to be taken into account. Key communication strategies are outlined to improve rapport, maintain employee confidentiality, and reduce client anxiety around telehealth ergonomics assessments. This project provides further support for telehealth approaches to office ergonomics, and outlines some key implementation strategies and barriers that should be considered.

  11. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites

    DOE PAGES

    Yang, Ye; Yang, Mengjin; Zhu, Kai; ...

    2016-08-31

    A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spinmore » state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Lastly, our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics.« less

  12. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors

    PubMed Central

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C. P.; Gelinck, Gerwin H.; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-01-01

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics. PMID:27762321

  13. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications

    NASA Astrophysics Data System (ADS)

    Liu, Chunsen; Yan, Xiao; Song, Xiongfei; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-05-01

    As conventional circuits based on field-effect transistors are approaching their physical limits due to quantum phenomena, semi-floating gate transistors have emerged as an alternative ultrafast and silicon-compatible technology. Here, we show a quasi-non-volatile memory featuring a semi-floating gate architecture with band-engineered van der Waals heterostructures. This two-dimensional semi-floating gate memory demonstrates 156 times longer refresh time with respect to that of dynamic random access memory and ultrahigh-speed writing operations on nanosecond timescales. The semi-floating gate architecture greatly enhances the writing operation performance and is approximately 106 times faster than other memories based on two-dimensional materials. The demonstrated characteristics suggest that the quasi-non-volatile memory has the potential to bridge the gap between volatile and non-volatile memory technologies and decrease the power consumption required for frequent refresh operations, enabling a high-speed and low-power random access memory.

  14. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors.

    PubMed

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C P; Gelinck, Gerwin H; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-10-20

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.

  15. A survey of potential bald eagle nesting habitat along the Great Lakes shoreline

    Treesearch

    William W. Bowerman; Teryl G. Grubb; Allen J. Bath; John P. Giesy; D.V. Chip Weseloh

    2005-01-01

    We used fixed-wing aircraft to survey the entire shoreline and connecting channels of the five Great Lakes to determine potential nesting habitat for bald eagles (Haliaeetus leucocephalus) during 1992. Habitat was classified as either good, marginal, or unsuitable, based on six habitat attributes: (a) tree cover, (b) proximity and (c) type/amount...

  16. Record rates of pressurized gas-flow in the great horsetail, Equisetum telmateia. Were Carboniferous Calamites similarly aerated?

    PubMed

    Armstrong, Jean; Armstrong, William

    2009-01-01

    Significant pressurized (convective) ventilation has been demonstrated in some flowering wetland plants, for example water-lilies and reeds, but not previously in nonflowering plants. Here we investigated convective flows in the great horsetail, Equisetum telmateia, and the possibility that convections aerated the massive rhizomes of the Calamites, extinct giant horsetails of the Carboniferous. Convection in E. telmateia was examined in relation to induction sites, anatomical pathways, relative humidity (RH), external wind-speed, diurnal effects, rhizome resistance and pressure-gradients. A mathematical model, incorporating Calamite aeration anatomy, was applied in assessing potentials for convective aeration. Individual shoots of E. telmateia generated extremely high rates of humidity-induced convection: < or = 120 cm(3) min(-1) (internal wind-velocity: 10 cm s(-1)) with rates proportional to branch numbers and 1/RH. Flows passed through branches, stem and rhizome via low-resistance lacunae (vallecular canals) and vented via stubble. Stomata supported internal pressures up to 800 Pa. Anatomically, E. telmateia resembles the Calamites and modelling predicted possible flows of 70 l min(-1) per Calamite tree. This is the first demonstration of significant convective flow in a nonflowering species, indicating that plant ventilation by a type of 'molecular gas-pump' may date back 350 million yr or more. Stomatal form and low-resistance pathways may facilitate high flow rates.

  17. Testing for effects of climate change on competitive relationships and coexistence between two bird species.

    PubMed

    Stenseth, Nils Chr; Durant, Joël M; Fowler, Mike S; Matthysen, Erik; Adriaensen, Frank; Jonzén, Niclas; Chan, Kung-Sik; Liu, Hai; De Laet, Jenny; Sheldon, Ben C; Visser, Marcel E; Dhondt, André A

    2015-05-22

    Climate change is expected to have profound ecological effects, yet shifts in competitive abilities among species are rarely studied in this context. Blue tits (Cyanistes caeruleus) and great tits (Parus major) compete for food and roosting sites, yet coexist across much of their range. Climate change might thus change the competitive relationships and coexistence between these two species. Analysing four of the highest-quality, long-term datasets available on these species across Europe, we extend the textbook example of coexistence between competing species to include the dynamic effects of long-term climate variation. Using threshold time-series statistical modelling, we demonstrate that long-term climate variation affects species demography through different influences on density-dependent and density-independent processes. The competitive interaction between blue tits and great tits has shifted in one of the studied sites, creating conditions that alter the relative equilibrium densities between the two species, potentially disrupting long-term coexistence. Our analyses show that long-term climate change can, but does not always, generate local differences in the equilibrium conditions of spatially structured species assemblages. We demonstrate how long-term data can be used to better understand whether (and how), for instance, climate change might change the relationships between coexisting species. However, the studied populations are rather robust against competitive exclusion. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. UV-Enhanced Sacrificial Layer Stabilised Graphene Oxide Hollow Fibre Membranes for Nanofiltration

    NASA Astrophysics Data System (ADS)

    Chong, J. Y.; Aba, N. F. D.; Wang, B.; Mattevi, C.; Li, K.

    2015-11-01

    Graphene oxide (GO) membranes have demonstrated great potential in gas separation and liquid filtration. For upscale applications, GO membranes in a hollow fibre geometry are of particular interest due to the high-efficiency and easy-assembly features at module level. However, GO membranes were found unstable in dry state on ceramic hollow fibre substrates, mainly due to the drying-related shrinkage, which has limited the applications and post-treatments of GO membranes. We demonstrate here that GO hollow fibre membranes can be stabilised by using a porous poly(methyl methacrylate) (PMMA) sacrificial layer, which creates a space between the hollow fibre substrate and the GO membrane thus allowing stress-free shrinkage. Defect-free GO hollow fibre membrane was successfully determined and the membrane was stable in a long term (1200 hours) gas-tight stability test. Post-treatment of the GO membranes with UV light was also successfully accomplished in air, which induced the creation of controlled microstructural defects in the membrane and increased the roughness factor of the membrane surface. The permeability of the UV-treated GO membranes was greatly enhanced from 0.07 to 2.8 L m-2 h-1 bar-1 for water, and 0.14 to 7.5 L m-2 h-1 bar-1 for acetone, with an unchanged low molecular weight cut off (~250 Da).

  19. A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer

    PubMed Central

    Park, Daewon; Wu, Wei; Wang, Yadong

    2010-01-01

    Injectable reverse thermal gels have great potentials as biomaterials for tissue engineering and drug delivery. However, most existing gels lack functional groups that can be modified with biomolecules that can guide cell/material interactions. We created an amine-functionalized ABA block copolymer, poly(ethylene glycol)-poly(serinol hexamethylene urethane), or ESHU. This reverse thermal gel consists of a hydrophobic block (B): poly(serinol hexamethylene urethane) and a hydrophilic block (A): poly(ethylene glycol). The polymer was characterized by GPC, FTIR and 1H FTNMR. Rheological study demonstrated that ESHU solution in phosphate-buffered saline initiated phase transition at 32°C and reached maximum elastic modulus at 37°C. The in vitro degradation tests performed in PBS and cholesterol esterase solutions revealed that the polymer was hydrolyzable and the presence of cholesterol esterase greatly accelerated the hydrolysis. The in vitro cytotoxicity tests carried out using baboon smooth muscle cells demonstrated that ESHU had good cytocompatibility with cell viability indistinguishable from tissue culture treated polystyrene. Subcutaneous implantation in rats revealed well tolerated accurate inflammatory response with moderate ED-1 positive macrophages in the early stages, which largely resolved 4 weeks post-implantation. We functionalized ESHU with a hexapeptide, Ile-Lys-Val-Ala-Val-Ser (IKVAVS), which gelled rapidly at body temperature. We expect this new platform of functionalizable reverse thermal gels to provide versatile biomaterials in tissue engineering and regenerative medicine. PMID:20937526

  20. A review of the possible mechanisms of action of tocotrienol - a potential antiosteoporotic agent.

    PubMed

    Chin, Kok-Yong; Mo, Huanbiao; Soelaiman, Ima-Nirwana

    2013-12-01

    Osteoporosis is posing a tremendous healthcare problem globally. Much effort has been invested in finding novel antiosteoporotic agents to stop the progression of this disease. Tocotrienol, one of the isoforms of vitamin E, is poised as a potential antiosteoporotic agent. Previous studies showed that tocotrienol as a single isomer or as a mixture demonstrated both anabolic and antiresorptive effects in various rodent models of osteoporosis. In vitro experiments further demonstrated that tocotrienol could up-regulate genes related to osteoblastogenesis and modify receptor activator of nuclear factor kappa B signaling against osteoclastogenesis. Additionally, tocotrienol was also shown to be a strong 3- hydroxy-3-methyl-glutaryl-CoA reductase down-regulator with a mechanism different from that of statins. Inhibition of the mevalonate pathway affects both osteoblast and osteoclast formation in favor of the former. Tocopherol, a more commonly used isoform of vitamin E does not possess similar effects. Tocotrienol is also a potent antioxidant. It can scavenge free radicals and prevent oxidative damage on osteoblast thus promoting its survival. It may also up-regulate the antioxidant defense network in osteoclast and indirectly act against free radical signaling essential in osteoclastogenesis. The effects of tocotrienol on Wnt/β-catenin signaling essential in osteoblastogenesis have not been determined. More mechanistic studies need to be conducted to illustrate the antiosteoporotic effects of tocotrienol. Clinical trials are also required to confirm its effects in humans. In conclusion, tocotrienol demonstrates great potential as an antiosteoporotic agent and much research effort should be invested to develop it as an agent to curb osteoporosis.

  1. US EPA bioeffects monitoring under the Great Lakes Restoration Initiative: Overview of efforts to assess the biological impacts of CECs

    EPA Science Inventory

    Product Description:Concern exists regarding the potential biological effects of contaminants of emerging concern (CECs) in the Great Lakes. CECs arise from multiple sources, including agriculture, wastewater effluents, and urban nonpoint sources. The Great Lakes Restoration Init...

  2. Characterizing DNA preservation in degraded specimens of Amara alpina (Carabidae: Coleoptera).

    PubMed

    Heintzman, Peter D; Elias, Scott A; Moore, Karen; Paszkiewicz, Konrad; Barnes, Ian

    2014-05-01

    DNA preserved in degraded beetle (Coleoptera) specimens, including those derived from dry-stored museum and ancient permafrost-preserved environments, could provide a valuable resource for researchers interested in species and population histories over timescales from decades to millenia. However, the potential of these samples as genetic resources is currently unassessed. Here, using Sanger and Illumina shotgun sequence data, we explored DNA preservation in specimens of the ground beetle Amara alpina, from both museum and ancient environments. Nearly all museum specimens had amplifiable DNA, with the maximum amplifiable fragment length decreasing with age. Amplification of DNA was only possible in 45% of ancient specimens. Preserved mitochondrial DNA fragments were significantly longer than those of nuclear DNA in both museum and ancient specimens. Metagenomic characterization of extracted DNA demonstrated that parasite-derived sequences, including Wolbachia and Spiroplasma, are recoverable from museum beetle specimens. Ancient DNA extracts contained beetle DNA in amounts comparable to museum specimens. Overall, our data demonstrate that there is great potential for both museum and ancient specimens of beetles in future genetic studies, and we see no reason why this would not be the case for other orders of insect. © 2013 John Wiley & Sons Ltd.

  3. Controls on project proponents and environmental impact assessment effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortolano, L.

    The degree of effectiveness of environmental impact assessment (EIA) for particular projects is associated with the existence of mechanisms of organizational control. Five dimensions of EIA effectiveness are considered: procedural compliance, completeness of EIA documents, methods to assess impacts, influence on project decisions, and weight given to environmental factors. Six mechanisms of control are introduced and illustrated by programs and projects in several countries. Experience in the Philippines under President Marcos demonstrates that procedural control in the form of EIA regulations, when used without other control mechanisms, will lead at most to token compliance. Judicial control, as practiced in themore » US, yields high procedural compliance. Evaluative control can yield effective EIA, but some systems based on this form of control treat only a small fraction of the major projects proposed. Both control exerted by development assistance organizations and control by professionals have great potential for yielding effective EIA, but that potential has not been fully realized. Control exerted directly by citizens or agencies not otherwise involved in EIA is uncommon, but cases from Taiwan demonstrate that those controls can be significant. An understanding of relationships between control mechanisms and EIA effectiveness is useful in designing EIA policies and programs.« less

  4. Investigation of Free-Standing Plasmonic Mesoporous Ag/CMK-8-Nafion Composite Membrane for the Removal of Organic Pollutants with 254-nm UV Irradiation

    NASA Astrophysics Data System (ADS)

    Tseng, Chuan Ming; Chen, Hsin Liang; Lai, Sz Nian; Chen, Ming Shiung; Peng, Chien Jung; Li, Chia Jui; Hung, Wei Hsuan

    2017-05-01

    "Carbon-based material" has demonstrated a great potential on water purification due to its strong physical adsorption to organic pollutants in the water. Three-dimensional cubic ordered mesoporous carbon (CMK-8), one of the well-known ordered mesoporous carbons, was prepared by using nanocasting method with mesoporous silica (KIT-6) as the template. In this study, CMK-8 blended with Nafion polymer to form a free-standing mesoporous CMK-8-Nafion composite membrane. The synthesis of high crystallinity CMK-8 was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). More than 80% methyl orange (MO) removal efficiency was observed under 254-nm UV irradiation after 120 min. Ninety-two percent recycling performance was remained after four recycling tests, which indicated a reliable servicing lifetime for the water purification. Furthermore, an additional layer of plasmonic silver nanoparticles (Ag NPs) was integrated into this CMK-8-Nafion membrane for higher pollutant removal efficiency, attributing from the generation of plasmon-resonance hot electrons from Ag NPs. A 4-in. CMK-8-Nafion composite membrane was also fabricated for the demonstration of potential large-scale utilization.

  5. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    PubMed Central

    Xiao, Yunbin; Lin, Zuan Tao; Chen, Yanmei; Wang, He; Deng, Ya Li; Le, D Elizabeth; Bin, Jianguo; Li, Meiyu; Liao, Yulin; Liu, Yili; Jiang, Gangbiao; Bin, Jianping

    2015-01-01

    Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS) micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm) and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. PMID:25709439

  6. Chemopreventive role of food-derived proteins and peptides: A review.

    PubMed

    Hernández-Ledesma, Blanca; Hsieh, Chia-Chien

    2017-07-24

    Cancer is one of the leading causes of mortality and disability worldwide. Although great advances in cancer treatments such as chemotherapy, surgery, and radiation are currently being achieved, their application is associated with numerous and expensive adverse side effects. Epidemiological evidence has demonstrated that the consumption of certain foods potentially prevents up to 35% of cancer cases. Bioactive components are ubiquitous in nature, also in dietary food, providing an essential link in health maintenance, promotion, and prevention of chronic diseases, such as cancer. Development of bioactive proteins and peptides is a current and innovative strategy for cancer prevention/cure. A growing body of anticancer protein and peptides from natural sources has shown the ability to reduce tumor progression through multiple mechanisms including apoptotic, antiproliferative, antiangiogenic, and immunomodulatory activities. This review is focused on proteins and peptides from different food sources including plants, milk, egg, and marine organisms in which chemopreventive properties have been demonstrated. Other aspects such as mechanism of action, bioavailability, and identification and characterization of food-derived peptides by advance separated technologies are also included. This review highlights the potential application of food-derived peptides as functional food ingredients and pharmaceutical candidates in the auxiliary therapy of cancer.

  7. A 1H-NMR based metabolomics study of the intervention effect of mangiferin on hyperlipidemia hamsters induced by a high-fat diet.

    PubMed

    Guo, Fuchuan; Zi, Tianqi; Liu, Liyan; Feng, Rennan; Sun, Changhao

    2017-07-19

    It has been demonstrated that mangiferin can ameliorate hypertriglyceridemia by modulating the expression levels of genes involved in lipid metabolism in animal experiments, but its effects on the serum metabolic fingerprinting of hyperlipidemia animal models have not been reported. Thus, a NMR-based metabolomics approach was conducted to explore the effects of mangiferin on hyperlipidemia hamsters and to gain a better understanding of the involved metabolic pathways. Hamsters fed with a high-fat diet were orally administered with mangiferin 150 mg per kg BW once a day for 8 weeks. Serum samples were analysed by 1 H NMR, and multivariate statistical analysis was applied to the data to identify potential biomarkers. In total, 20 discriminating metabolites were identified. It turned out that mangiferin administration can partly reverse the metabolism disorders induced by a high-fat diet and exerted a good anti-hypertriglyceridemia effect. Mangiferin ameliorated hyperlipidemia by intervening in some major metabolic pathways, involving glycolysis, the TCA cycle, synthesis of ketone bodies, and BCAAs as well as choline and lipid metabolism. These findings provided new essential information on the effects of mangiferin and demonstrated the great potential of this nutrimetabolomics approach.

  8. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging.

    PubMed

    Xiao, Yunbin; Lin, Zuan Tao; Chen, Yanmei; Wang, He; Deng, Ya Li; Le, D Elizabeth; Bin, Jianguo; Li, Meiyu; Liao, Yulin; Liu, Yili; Jiang, Gangbiao; Bin, Jianping

    2015-01-01

    Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS) micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm) and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors.

  9. Raman spectroscopic analysis of gunshot residue offering great potential for caliber differentiation.

    PubMed

    Bueno, Justin; Sikirzhytski, Vitali; Lednev, Igor K

    2012-05-15

    Near-infrared (NIR) Raman microspectroscopy combined with advanced statistics was used to differentiate gunshot residue (GSR) particles originating from different caliber ammunition. The firearm discharge process is analogous to a complex chemical reaction. The reagents of this process are represented by the chemical composition of the ammunition, firearm, and cartridge case. The specific firearm parameters determine the conditions of the reaction and thus the subsequent product, GSR. We found that Raman spectra collected from these products are characteristic for different caliber ammunition. GSR particles from 9 mm and 0.38 caliber ammunition, collected under identical discharge conditions, were used to demonstrate the capability of confocal Raman microspectroscopy for the discrimination and identification of GSR particles. The caliber differentiation algorithm is based on support vector machines (SVM) and partial least squares (PLS) discriminant analyses, validated by a leave-one-out cross-validation method. This study demonstrates for the first time that NIR Raman microspectroscopy has the potential for the reagentless differentiation of GSR based upon forensically relevant parameters, such as caliber size. When fully developed, this method should have a significant impact on the efficiency of crime scene investigations.

  10. The design and fabrication of supramolecular semiconductor nanowires formed by benzothienobenzothiophene (BTBT)-conjugated peptides.

    PubMed

    Khalily, Mohammad Aref; Usta, Hakan; Ozdemir, Mehmet; Bakan, Gokhan; Dikecoglu, F Begum; Edwards-Gayle, Charlotte; Hutchinson, Jessica A; Hamley, Ian W; Dana, Aykutlu; Guler, Mustafa O

    2018-05-31

    π-Conjugated small molecules based on a [1]benzothieno[3,2-b]benzothiophene (BTBT) unit are of great research interest in the development of solution-processable semiconducting materials owing to their excellent charge-transport characteristics. However, the BTBT π-core has yet to be demonstrated in the form of electro-active one-dimensional (1D) nanowires that are self-assembled in aqueous media for potential use in bioelectronics and tissue engineering. Here we report the design, synthesis, and self-assembly of benzothienobenzothiophene (BTBT)-peptide conjugates, the BTBT-peptide (BTBT-C3-COHN-Ahx-VVAGKK-Am) and the C8-BTBT-peptide (C8-BTBT-C3-COHN-Ahx-VVAGKK-Am), as β-sheet forming amphiphilic molecules, which self-assemble into highly uniform nanofibers in water with diameters of 11-13(±1) nm and micron-size lengths. Spectroscopic characterization studies demonstrate the J-type π-π interactions among the BTBT molecules within the hydrophobic core of the self-assembled nanofibers yielding an electrical conductivity as high as 6.0 × 10-6 S cm-1. The BTBT π-core is demonstrated, for the first time, in the formation of self-assembled peptide 1D nanostructures in aqueous media for potential use in tissue engineering, bioelectronics and (opto)electronics. The conductivity achieved here is one of the highest reported to date in a non-doped state.

  11. Simultaneous Ionic Current and Potential Detection of Nanoparticles by a Multifunctional Nanopipette.

    PubMed

    Panday, Namuna; Qian, Gongming; Wang, Xuewen; Chang, Shuai; Pandey, Popular; He, Jin

    2016-12-27

    Nanopore sensing-based technologies have made significant progress for single molecule and single nanoparticle detection and analysis. In recent years, multimode sensing by multifunctional nanopores shows the potential to greatly improve the sensitivity and selectivity of traditional resistive-pulse sensing methods. In this paper, we showed that two label-free electric sensing modes could work cooperatively to detect the motion of 40 nm diameter spherical gold nanoparticles (GNPs) in solution by a multifunctional nanopipette. The multifunctional nanopipettes containing both nanopore and nanoelectrode (pyrolytic carbon) at the tip were fabricated quickly and cheaply. We demonstrated that the ionic current and local electrical potential changes could be detected simultaneously during the translocation of individual GNPs. We also showed that the nanopore/CNE tip geometry enabled the CNE not only to detect the translocation of single GNP but also to collectively detect several GNPs outside the nanopore entrance. The dynamic accumulation of GNPs near the nanopore entrance resulted in no detectable current changes, but was detected by the potential changes at the CNE. We revealed the motions of GNPs both outside and inside the nanopore, individually and collectively, with the combination of ionic current and potential measurements.

  12. Immunoblotting Quantification Approach for Identifying Potential Hypoallergenic Citrus Cultivars.

    PubMed

    Wu, Jinlong; Deng, Wenjun; Lin, Dingbo; Deng, Xiuxin; Ma, Zhaocheng

    2018-02-28

    The inherent allergens of citrus fruits, such as Cit s 1, Cit s 2, Cit s 3 can cause allergic reactions. A better understanding of the genetic factors (cultivar to cultivar) affecting the allergenic potential of citrus fruits would be beneficial for further identification of hypoallergenic genotypes. In the present study, an immunoblotting quantification approach was adopted to assess the potential allergenicity of 21 citrus cultivars, including nine subgroups (tangerine, satsuma, orange, pummelo, grapefruit, lemon, kumquat, tangor, and tangelo). To prepare highly sensitive and specific rabbit polyclonal antibodies, antigenicity of purified rCit s 1.01, rCit s 2.01, and rCit s 3.01 peptides were enhanced with high epitope density in a single protein molecule. The data integration of three citrus allergen quantifications demonstrated that the four pummelo cultivars (Kao Phuang Pummelo, Wanbai Pummelo, Shatian Pummelo, and Guanxi Pummelo) were potential hypoallergenic, compared with other 8 subgroups. Moreover, the immunological analyses with sera of allergic subjects revealed that Shatian Pummelo and Guanxi Pummelo showed the lowest immunoreactivity in 8 representative citrus cultivars. These potential hypoallergenic genotypes are of great significance to not only allergic consumers but also citrus breeders in the genetic improvement of hypoallergenic citrus as breeding resources.

  13. Fatal attraction: sexually cannibalistic invaders attract naive native mantids

    PubMed Central

    Fea, Murray P.; Stanley, Margaret C.; Holwell, Gregory I.

    2013-01-01

    Overlap in the form of sexual signals such as pheromones raises the possibility of reproductive interference by invasive species on similar, yet naive native species. Here, we test the potential for reproductive interference through heterospecific mate attraction and subsequent predation of males by females of a sexually cannibalistic invasive praying mantis. Miomantis caffra is invasive in New Zealand, where it is widely considered to be displacing the only native mantis species, Orthodera novaezealandiae, and yet mechanisms behind this displacement are unknown. We demonstrate that native males are more attracted to the chemical cues of introduced females than those of conspecific females. Heterospecific pairings also resulted in a high degree of mortality for native males. This provides evidence for a mechanism behind displacement that has until now been undetected and highlights the potential for reproductive interference to greatly influence the impact of an invasive species. PMID:24284560

  14. Amnion-derived stem cells: in quest of clinical applications

    PubMed Central

    2011-01-01

    In the promising field of regenerative medicine, human perinatal stem cells are of great interest as potential stem cells with clinical applications. Perinatal stem cells could be isolated from normally discarded human placentae, which are an ideal cell source in terms of availability, the fewer number of ethical concerns, less DNA damage, and so on. Numerous studies have demonstrated that some of the placenta-derived cells possess stem cell characteristics like pluripotent differentiation ability, particularly in amniotic epithelial (AE) cells. Term human amniotic epithelium contains a relatively large number of stem cell marker-positive cells as an adult stem cell source. In this review, we introduce a model theory of why so many AE cells possess stem cell characteristics. We also describe previous work concerning the therapeutic applications and discuss the pluripotency of the AE cells and potential pitfalls for amnion-derived stem cell research. PMID:21596003

  15. Ultrafast Imaging using Spectral Resonance Modulation

    NASA Astrophysics Data System (ADS)

    Huang, Eric; Ma, Qian; Liu, Zhaowei

    2016-04-01

    CCD cameras are ubiquitous in research labs, industry, and hospitals for a huge variety of applications, but there are many dynamic processes in nature that unfold too quickly to be captured. Although tradeoffs can be made between exposure time, sensitivity, and area of interest, ultimately the speed limit of a CCD camera is constrained by the electronic readout rate of the sensors. One potential way to improve the imaging speed is with compressive sensing (CS), a technique that allows for a reduction in the number of measurements needed to record an image. However, most CS imaging methods require spatial light modulators (SLMs), which are subject to mechanical speed limitations. Here, we demonstrate an etalon array based SLM without any moving elements that is unconstrained by either mechanical or electronic speed limitations. This novel spectral resonance modulator (SRM) shows great potential in an ultrafast compressive single pixel camera.

  16. High-Efficiency Polymer Solar Cells by Using Co-solvents 1-Chloronaphthalene and 1,8-Octanedithiol as Processing Additives

    NASA Astrophysics Data System (ADS)

    Gao, Bowen; Meng, Jing

    2018-07-01

    The copolymer poly-BDT-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (PC20BDTDPP) with the bulkier alkoxy on BDT and alkyl on DPP is widely used in organic photovoltaic cells as a potential donor material. Power conversion efficiency (PCE) of polymer solar cells fabricated withPC20BDTDPP as the electron donor blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the electron acceptor was improved from 4.90% to 9.10% by adding 1-5% of the co-solvents (1-chloronaphthalene and 1,8-octanedithiol) as processing additives. The enhanced PCE was attributed to optimized surface morphology and packed polymer chains leading to better phase separation morphology by the solvent additive. Furthermore, owing to its very narrow band gap, the synthesized polymer demonstrates a great potential for tandem or parallel-like solar cells.

  17. Novel snapshot hyperspectral imager for fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chandler, Lynn; Chandler, Andrea; Periasamy, Ammasi

    2018-02-01

    Hyperspectral imaging has emerged as a new technique for the identification and classification of biological tissue1. Benefitting recent developments in sensor technology, the new class of hyperspectral imagers can capture entire hypercubes with single shot operation and it shows great potential for real-time imaging in biomedical sciences. This paper explores the use of a SnapShot imager in fluorescence imaging via microscope for the very first time. Utilizing the latest imaging sensor, the Snapshot imager is both compact and attachable via C-mount to any commercially available light microscope. Using this setup, fluorescence hypercubes of several cells were generated, containing both spatial and spectral information. The fluorescence images were acquired with one shot operation for all the emission range from visible to near infrared (VIS-IR). The paper will present the hypercubes obtained images from example tissues (475-630nm). This study demonstrates the potential of application in cell biology or biomedical applications for real time monitoring.

  18. Introductory review on `Flying Triangulation': a motion-robust optical 3D measurement principle

    NASA Astrophysics Data System (ADS)

    Ettl, Svenja

    2015-04-01

    'Flying Triangulation' (FlyTri) is a recently developed principle which allows for a motion-robust optical 3D measurement of rough surfaces. It combines a simple sensor with sophisticated algorithms: a single-shot sensor acquires 2D camera images. From each camera image, a 3D profile is generated. The series of 3D profiles generated are aligned to one another by algorithms, without relying on any external tracking device. It delivers real-time feedback of the measurement process which enables an all-around measurement of objects. The principle has great potential for small-space acquisition environments, such as the measurement of the interior of a car, and motion-sensitive measurement tasks, such as the intraoral measurement of teeth. This article gives an overview of the basic ideas and applications of FlyTri. The main challenges and their solutions are discussed. Measurement examples are also given to demonstrate the potential of the measurement principle.

  19. Surface-enhanced Raman spectroscopy for differentiation between benign and malignant thyroid tissues

    NASA Astrophysics Data System (ADS)

    Li, Zuanfang; Li, Chao; Lin, Duo; Huang, Zufang; Pan, Jianji; Chen, Guannan; Lin, Juqiang; Liu, Nenrong; Yu, Yun; Feng, Shangyuan; Chen, Rong

    2014-04-01

    The aim of this study was to evaluate the potential of applying silver nano-particle based surface-enhanced Raman scattering (SERS) to discriminate different types of human thyroid tissues. SERS measurements were performed on three groups of tissue samples including thyroid cancers (n = 32), nodular goiters (n = 20) and normal thyroid tissues (n = 25). Tentative assignments of the measured tissue SERS spectra suggest interesting cancer specific biomolecular differences. The principal component analysis (PCA) and linear discriminate analysis (LDA) together with the leave-one-out, cross-validated technique yielded diagnostic sensitivities of 92%, 75% and 87.5%; and specificities of 82.6%, 89.4% and 84.4%, respectively, for differentiation among normal, nodular and malignant thyroid tissue samples. This work demonstrates that tissue SERS spectroscopy associated with multivariate analysis diagnostic algorithms has great potential for detection of thyroid cancer at the molecular level.

  20. Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Zhang, Huijing; Lemke, Cornelius; König, Karsten

    2011-03-01

    Laser-assisted surgery based on multiphoton absorption of NIR laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. Here we apply femtosecond laser scanning microscopes for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) with an in situ pulse duration at the target ranging from 12 femtoseconds up to 3 picoseconds was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy (AFM) and electron microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery.

  1. Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Lessel, Matthias; Nietzsche, Sander; Zeitz, Christian; Jacobs, Karin; Lemke, Cornelius; König, Karsten

    2012-10-01

    Laser-assisted surgery based on multiphoton absorption of near-infrared laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. In this paper we describe usage of an ultrashort femtosecond laser scanning microscope for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) and an in situ pulse duration at the target ranging from 12 fs up to 3 ps was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery of cells and cellular organelles.

  2. Piezo‐Phototronic Effect Enhanced Flexible Solar Cells Based on n‐ZnO/p‐SnS Core–Shell Nanowire Array

    PubMed Central

    Zhu, Laipan; Wang, Longfei; Xue, Fei; Chen, Libo; Fu, Jianqiang; Feng, Xiaolong; Li, Tianfeng

    2016-01-01

    The piezo‐phototronic effect is about the enhanced separation, transport, and recombination of the photogenerated carriers using the piezoelectric polarization charges present in piezoelectric‐semiconductor materials. Here, it is presented that the piezo‐phototronic effect can be effectively applied to improve the relative conversion efficiency of a flexible solar cell based on n‐ZnO/p‐SnS core–shell nanowire array for 37.3% under a moderate vertical pressure. The performance of the solar cell can be effectively enhanced by a gentle bending of the device, showing its potential for application in curly geometries. This study not only adds further understanding about the concept of increasing solar energy conversion efficiency via piezo‐phototronic effect, but also demonstrates the great potential of piezo‐phototronic effect in the application of large‐scale, flexible, and lightweight nanowire array solar cells. PMID:28105394

  3. Piezo-Phototronic Effect Enhanced Flexible Solar Cells Based on n-ZnO/p-SnS Core-Shell Nanowire Array.

    PubMed

    Zhu, Laipan; Wang, Longfei; Xue, Fei; Chen, Libo; Fu, Jianqiang; Feng, Xiaolong; Li, Tianfeng; Wang, Zhong Lin

    2017-01-01

    The piezo-phototronic effect is about the enhanced separation, transport, and recombination of the photogenerated carriers using the piezoelectric polarization charges present in piezoelectric-semiconductor materials. Here, it is presented that the piezo-phototronic effect can be effectively applied to improve the relative conversion efficiency of a flexible solar cell based on n-ZnO/p-SnS core-shell nanowire array for 37.3% under a moderate vertical pressure. The performance of the solar cell can be effectively enhanced by a gentle bending of the device, showing its potential for application in curly geometries. This study not only adds further understanding about the concept of increasing solar energy conversion efficiency via piezo-phototronic effect, but also demonstrates the great potential of piezo-phototronic effect in the application of large-scale, flexible, and lightweight nanowire array solar cells.

  4. Salicylanilide Inhibitors of Toxoplasma gondii

    PubMed Central

    Fomovska, Alina; Wood, Richard D.; Mui, Ernest; Dubey, Jitenter P.; Ferriera, Leandra R.; Hickman, Mark R.; Lee, Patricia J.; Leed, Susan E.; Auschwitz, Jennifer M.; Welsh, William J.; Sommerville, Caroline; Woods, Stuart; Roberts, Craig; McLeod, Rima

    2012-01-01

    Toxoplasma gondii(T. gondii) is an apicomplexan parasite that can cause eye disease, brain disease, and death, especially in congenitally infected and immune-compromised people. Novel medicines effective against both active and latent forms of the parasite are greatly needed. The current study focused on the discovery of such medicines by exploring a family of potential inhibitors whose anti-apicomplexan activity has not been previously reported. Initial screening efforts revealed that niclosamide, a drug approved for anthelmintic use, possessed promising activity in vitro against T. gondii. This observation inspired the evaluation of the activity of a series of salicylanilides and derivatives. Several inhibitors with activities in the nanomolar range with no appreciable in vitro toxicity to human cells were identified. An initial structure-activity relationship was explored. Four compounds were selected for evaluation in an in vivo model of infection, and two derivatives with potentially enhanced pharmacological parameters demonstrated the best activity profiles. PMID:22970937

  5. High-Efficiency Polymer Solar Cells by Using Co-solvents 1-Chloronaphthalene and 1,8-Octanedithiol as Processing Additives

    NASA Astrophysics Data System (ADS)

    Gao, Bowen; Meng, Jing

    2018-04-01

    The copolymer poly-BDT-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (PC20BDTDPP) with the bulkier alkoxy on BDT and alkyl on DPP is widely used in organic photovoltaic cells as a potential donor material. Power conversion efficiency (PCE) of polymer solar cells fabricated withPC20BDTDPP as the electron donor blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the electron acceptor was improved from 4.90% to 9.10% by adding 1-5% of the co-solvents (1-chloronaphthalene and 1,8-octanedithiol) as processing additives. The enhanced PCE was attributed to optimized surface morphology and packed polymer chains leading to better phase separation morphology by the solvent additive. Furthermore, owing to its very narrow band gap, the synthesized polymer demonstrates a great potential for tandem or parallel-like solar cells.

  6. Three-Dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation.

    PubMed

    Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W Andy

    2016-11-30

    Glycoproteins have vast structural diversity that plays an important role in many biological processes and have great potential as disease biomarkers. Here, we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase glycoprotein array (polyGPA), to capture and profile glycoproteomes specifically, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture preoxidized glycans on glycoproteins from complex protein samples such as biofluids. The captured glycoproteins were subsequently detected using the same validated antibodies as in RPPA. We demonstrated the outstanding specificity, sensitivity, and quantitative capabilities of polyGPA by capturing and detecting purified as well as endogenous α-1-acid glycoprotein (AGP) in human plasma. We further applied quantitative N-glycoproteomics and the strategy to validate a panel of glycoproteins identified as potential biomarkers for bladder cancer by analyzing urine glycoproteins from bladder cancer patients or matched healthy individuals.

  7. β2-Microglobulin as a potential factor for the expansion of mesenchymal stem cells

    PubMed Central

    Zhu, Ying; Su, Yongping; Cheng, Tianmin; Chung, Leland W. K.

    2010-01-01

    Multipotent mesenchymal stem cells (MSCs) hold great promise in regenerative medicine, but one of the biggest challenges facing for their application is the ex vivo expansion to obtain enough undifferentiated cells. Fetal bovine serum (FBS), which can elicit possible contaminations of prion, virus, zoonosis or immunological reaction against xenogenic serum antigens, still remains essential to the culture formulations. There is an urgent need to identify potential factors for the undifferentiated expansion of MSCs to reduce the use of FBS or eventually replace it. A previously recognized housekeeping gene, β2-microglobulin (β2M), is demonstrated to act as a novel growth factor to stimulate the undifferentiated ex vivo expansion and preserve the pluripotency of adult MSCs from various sources. The use of β2M might have promising implications for future clinical application of MSCs. PMID:19466557

  8. Graphene oxide membranes with high permeability and selectivity for dehumidification of air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Yongsoon; Liu, Wei; Schwenzer, Birgit

    Hierarchically stacked 2D graphene oxide (GO) membranes are a fascinating and promising new class of materials with the potential for radically improved water vapor/gas separation with excellent selectivity and high permeability. This paper details dehumidification results from flowing gas mixtures through free-standing GO membrane samples prepared by a casting method. The first demonstrated use of free-standing GO membranes for water vapor separation reveals outstanding water vapor permeability and H2O/N2 selectivity. Free-standing GO membranes exhibit extremely high water vapor permeability of 1.82 x 105 Barrer and a water vapor permeance of 1.01 x 10-5 mol/m2sPa, while the nitrogen permeability was belowmore » the system’s detection limit, yielding a selectivity >104 in 80% relative humidity (RH) air at 30.8 °C. The results show great potential for a range of energy conversion and environmental applications« less

  9. Offshore Wind Initiatives at the U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Coastal and Great Lakes states account for nearly 80% of U.S. electricity demand, and the winds off the shores of these coastal load centers have a technical resource potential twice as large as the nation’s current electricity use. With the costs of offshore wind energy falling globally and the first U.S. offshore wind farm installed off the coast of Block Island, Rhode Island in 2016, offshore wind has the potential to contribute significantly to a clean, affordable, and secure national energy mix. To support the development of a world-class offshore wind industry, the U.S. Department of Energy has been supportingmore » a broad portfolio of offshore wind research, development, and demonstration projects since 2011 and released a new National Offshore Wind Strategy jointly with the U.S. Department of the Interior in 2016.« less

  10. Development of Next Generation Stevia Sweetener: Rebaudioside M

    PubMed Central

    Prakash, Indra; Markosyan, Avetik; Bunders, Cynthia

    2014-01-01

    This work aims to review and showcase the unique properties of rebaudioside M as a natural non-caloric potential sweetener in food and beverage products. To determine the potential of rebaudioside M, isolated from Stevia rebaudiana Bertoni, as a high potency sweetener, we examined it with the Beidler Model. This model estimated that rebaudioside M is 200–350 times more potent than sucrose. Numerous sensory evaluations of rebaudioside M’s taste attributes illustrated that this steviol glycoside possesses a clean, sweet taste with a slightly bitter or licorice aftertaste. The major reaction pathways in aqueous solutions (pH 2–8) for rebaudioside M are similar to rebaudioside A. Herein we demonstrate that rebaudioside M could be of great interest to the global food industry because it is well-suited for blending and is functional in a wide variety of food and beverage products. PMID:28234311

  11. Inorganic Polymers.

    DTIC Science & Technology

    1987-07-16

    inorganic plastics since the siloxanes . They have great potential and may in time prove to be even more useful than the polysiloxanes since many of these...important new class of seni-inorganic plastics since the siloxanes . They have great potential and may in time prove to be even more useful than the... biomedical qualities and useful engineering material parameters, toxicological, corrosion and fire resistance characteristics place many of the

  12. Winter navigation on the Great Lakes : a review of environmental studies

    DOT National Transportation Integrated Search

    1995-05-01

    In 1970, Congress authorized a three-part Great Lakes-St.Lawrence Seaway Navigation Season Extension Program. It authorized a winter navigation demonstration program, a detailed survey study of season extension feasibility and a study of insurance ra...

  13. Microwave and Millimeter Wave Imaging Using Synthetic Aperture Focusing and Holographical Techniques

    NASA Technical Reports Server (NTRS)

    Case, Joseph Tobias

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods have shown great potential for determining material composition in composite structures, determining material thickness or debond thickness between two layers, and determining the location and size of flaws, defects, and anomalies. The same testing methods have also shown great potential to produce relatively high-resolution images of voids inside Spray On Foam Insulation (SOFI) test panels using real focused methods employing lens antennas. An alternative to real focusing methods are synthetic focusing methods. The essence of synthetic focusing is to match the phase of the scattered signal to measured points spaced regularly on a plane. Many variations of synthetic focusing methods have already been developed for radars, ultrasonic testing applications, and microwave concealed weapon detection. Two synthetic focusing methods were investigated; namely, a) frequency-domain synthetic aperture focusing technique (FDSAFT), and b) wide-band microwave holography. These methods were applied towards materials whose defects were of low dielectric contrast like air void in SOFI. It is important to note that this investigation used relatively low frequencies from 8.2 GHz to 26.5 GHz that are not conducive for direct imaging of the SOFI. The ultimate goal of this work has been to demonstrate the capability of these methods before they are applied to much higher frequencies such as the millimeter wave frequency spectrum (e.g., 30-300 GHz).

  14. Closed-loop thrust and pressure profile throttling of a nitrous oxide/hydroxyl-terminated polybutadiene hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Peterson, Zachary W.

    Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.

  15. Response of CH4 emissions to straw and biochar applications in double-rice cropping systems: Insights from observations and modeling.

    PubMed

    Chen, Dan; Wang, Cong; Shen, Jianlin; Li, Yong; Wu, Jinshui

    2018-04-01

    Paddy soil plays an essential role in contributing to the emission of methane (CH 4 ), a potent greenhouse gas, to the atmosphere. This study aimed to demonstrate the effects of straw incorporation and straw-derived biochar amendment on CH 4 emissions from double-rice cropping fields and to explore their potential mechanisms based on in-situ field measurements conducted for a period of three years (2012-2014) and model analysis. The results showed that the improved soil aeration due to biochar amendment resulted in low CH 4 emissions and that sufficient substrate carbon availability in straw amendment treatments caused high CH 4 emissions. The newly developed CH 4 emission module for the water and nitrogen management model (WNMM), a process-based biophysical model, performed well when simulating both daily CH 4 fluxes and the annual cumulative CH 4 emissions under straw incorporation and biochar amendment. Results of our study indicate that the model has a great potential for upscaling and could benefit mechanism analyses about the factors regulating CH 4 emissions. Application of biochar into paddy fields provides a great opportunity to reduce CH 4 emissions, and the decrease in CH 4 emissions following biochar amendment with repeated crop cycles would sustain for a prolonged period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy.

    PubMed

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Ma, Peter X

    2017-06-27

    Mimicking the anisotropic cardiac structure and guiding 3D cellular orientation play a critical role in designing scaffolds for cardiac tissue regeneration. Significant advances have been achieved to control cellular alignment and elongation, but it remains an ongoing challenge for engineering 3D cardiac anisotropy using these approaches. Here, we present a 3D hybrid scaffold based on aligned conductive nanofiber yarns network (NFYs-NET, composition: polycaprolactone, silk fibroin, and carbon nanotubes) within a hydrogel shell for mimicking the native cardiac tissue structure, and further demonstrate their great potential for engineering 3D cardiac anisotropy for cardiac tissue engineering. The NFYs-NET structures are shown to control cellular orientation and enhance cardiomyocytes (CMs) maturation. 3D hybrid scaffolds were then fabricated by encapsulating NFYs-NET layers within hydrogel shell, and these 3D scaffolds performed the ability to promote aligned and elongated CMs maturation on each layer and individually control cellular orientation on different layers in a 3D environment. Furthermore, endothelialized myocardium was constructed by using this hybrid strategy via the coculture of CMs on NFYs-NET layer and endothelial cells within hydrogel shell. Therefore, these 3D hybrid scaffolds, containing NFYs-NET layer inducing cellular orientation, maturation, and anisotropy and hydrogel shell providing a suitable 3D environment for endothelialization, has great potential in engineering 3D cardiac anisotropy.

  17. Osteogenesis potential of different titania nanotubes in oxidative stress microenvironment.

    PubMed

    Yu, Yonglin; Shen, Xinkun; Luo, Zhong; Hu, Yan; Li, Menghuan; Ma, Pingping; Ran, Qichun; Dai, Liangliang; He, Ye; Cai, Kaiyong

    2018-06-01

    Oxidative stress is commonly existed in bone degenerative disease (osteoarthritis, osteoporosis etc.) and some antioxidants had great potential to enhance osteogenesis. In this study, we aim to investigate the anti-oxidative properties of various TiO 2 nanotubes (TNTs) so to screen the desirable size for improved osteogenesis and reveal the underlying molecular mechanism in vitro. Comparing cellular behaviors under normal and oxidative stress conditions, an interesting conclusion was obtained. In normal microenvironment, small TNTs were beneficial for adhesion and proliferation of osteoblasts, but large TNTs greatly increased osteogenic differentiation. However, after H 2 O 2 (300 μM) treatment (mimicking oxidative stress), only large TNTs samples demonstrated superior cellular behaviors of increased osteoblasts' adhesion, survival and differentiation when comparing with those of native titanium (control). Molecular results revealed that oxidative stress resistance of large nanotubes was closely related to the high expression of integrin α5β1 (ITG α5β1), which further up-regulated the production of anti-apoptotic proteins (p-FAK, p-Akt, p-FoxO3a and Bcl2) and down-regulated the expression of pro-apoptotic protein (Bax). Moreover, we found that Wnt signals (Wnt3a, Wnt5a, Lrp5, Lrp6 and β-catenin) played an important role in promoting osteogenic differentiation of osteoblasts under oxidative condition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Robotic Single-Site Sacrocolpopexy Using Barbed Suture Anchoring and Peritoneal Tunneling Technique: Tips and Tricks.

    PubMed

    Guan, Xiaoming; Ma, Yingchun; Gisseman, Jordan; Kleithermes, Christopher; Liu, Juan

    2017-01-01

    To demonstrate the tips and tricks of a simpler technique for single-site sacrocolpopexy using barbed suture anchoring and retroperitoneal tunneling to make the procedure more efficient and reproducible. Step-by-step description of surgical tutorial using a narrated video (Canadian Task Force classification III). Academic tertiary care hospital. Patient with Stage III uterine prolapse. Sacrocolpopexy is increasing utilized since the FDA warning about complications of vaginal mesh surgery. It is the gold standard for repair of apical prolapse. However, there is great variation in the sacrocolpopexy procedure techniques and they have not been standardized. Traditional single-site laparoscopic sacrocolpopexy is very challenging as the procedure time is long and suturing is difficult. The advantages of suturing with wristed needle drivers in robotic single-site surgery simplify this complex procedure. Furthermore, using barbed suture anchoring and peritoneal tunneling technique potentially decreases the surgeon's learning curve and makes the procedure reproducible. In this video, we demonstrate a supracervial hysterectomy with a stepwise explanation of the correct technique for performing a robotic single incision sacrocolpopexy. Sacrocolpopexy is increasing used since the US Food and Drug Administration warning about complications of vaginal mesh surgery. It is the gold standard for repair of apical prolapse. However, a great variation exists in the sacrocolpopexy procedure techniques that need to be standardized. Traditional single-site laparoscopic sacrocolpopexy is very challenging because the procedure time is long and suturing is difficult. The advantages of suturing with wristed needle drivers in robotic single-site surgery simplify this complex procedure. Furthermore, using the barbed suture anchoring and peritoneal tunneling technique potentially decreases the surgeon's learning curve and makes the procedure reproducible. In this video, we demonstrate a supracervical hysterectomy with a stepwise explaation of the correct technique for performing a robotic single-incision sacrocolpopexy. The possibility of using the barbed suture and peritoneal tunneling technique with wristed needle drivers in robotic single-site sacrocolpopexy offers the possibility of an effective, safe, reproducible, and cosmetic surgical option. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  19. Integrating Climate Change into Great Lakes Protection

    NASA Astrophysics Data System (ADS)

    Hedman, S.

    2012-12-01

    Climate change is now recognized as one of the greatest threats to the Great Lakes. Projected climate change impacts to the Great Lakes include increases in surface water and air temperature; decreases in ice cover; shorter winters, early spring, and longer summers; increased frequency of intense storms; more precipitation falling as rain in the winter; less snowfall; and variations in water levels, among other effects. Changing climate conditions may compromise efforts to protect and restore the Great Lakes ecosystem and may lead to irrevocable impacts on the physical, chemical, and biological integrity of the Great Lakes. Examples of such potential impacts include the transformation of coastal wetlands into terrestrial ecosystems; reduced fisheries; increased beach erosion; change in forest species composition as species migrate northward; potential increase in toxic substance concentrations; potential increases in the frequency and extent of algal blooms; degraded water quality; and a potential increase in invasive species. The Great Lakes Restoration Initiative, signed into law by President Obama in 2010, represents the commitment of the federal government to protect, restore, and maintain the Great Lakes ecosystem. The GLRI Action Plan, issued in February 2010, identifies five focus areas: - Toxic Substances and Areas of Concern - Invasive Species - Nearshore Health and Nonpoint Source Pollution - Habitat and Wildlife Protection and Restoration - Accountability, Education, Monitoring, Evaluation, Communication, and Partnerships The Action Plan recognizes that the projected impacts of climate change on the Great Lakes have implications across all focus areas and encourages incorporation of climate change considerations into GLRI projects and programs as appropriate. Under the GLRI, EPA has funded climate change-related work by states, tribes, federal agencies, academics and NGOs through competitive grants, state and tribal capacity grants, and Interagency Agreements. EPA has provided GLRI funding for a diverse suite of climate change-related projects including Great Lakes climate change research and modeling; adaptation plan development and implementation; ecosystem vulnerability assessments; outreach and education programs; habitat restoration and protection projects that will increase ecosystem resilience; and other projects that address climate change impacts. This presentation will discuss how the GLRI is helping to improve the climate change science needed to support the Action Plan. It will further describe how the GLRI is helping coordinate climate change efforts among Great Lakes states, tribes, Federal agencies, and other stakeholders. Finally, it will discuss how the GLRI is facilitating adaptation planning by our Great Lakes partners. The draft Lake Superior Ecosystem Climate Change Adaptation Plan serves as a case study for an integrated, collaborative, and coordinated climate change effort.

  20. Managed aquifer recharge through off-season irrigation in agricultural regions

    USGS Publications Warehouse

    Niswonger, Richard; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-01-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7–13%, increase crop consumptive use by 9–12%, and increase natural vegetation consumption by 20–30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  1. Application of L1-norm regularization to epicardial potential reconstruction based on gradient projection.

    PubMed

    Wang, Liansheng; Qin, Jing; Wong, Tien Tsin; Heng, Pheng Ann

    2011-10-07

    The epicardial potential (EP)-targeted inverse problem of electrocardiography (ECG) has been widely investigated as it is demonstrated that EPs reflect underlying myocardial activity. It is a well-known ill-posed problem as small noises in input data may yield a highly unstable solution. Traditionally, L2-norm regularization methods have been proposed to solve this ill-posed problem. But the L2-norm penalty function inherently leads to considerable smoothing of the solution, which reduces the accuracy of distinguishing abnormalities and locating diseased regions. Directly using the L1-norm penalty function, however, may greatly increase computational complexity due to its non-differentiability. We propose an L1-norm regularization method in order to reduce the computational complexity and make rapid convergence possible. Variable splitting is employed to make the L1-norm penalty function differentiable based on the observation that both positive and negative potentials exist on the epicardial surface. Then, the inverse problem of ECG is further formulated as a bound-constrained quadratic problem, which can be efficiently solved by gradient projection in an iterative manner. Extensive experiments conducted on both synthetic data and real data demonstrate that the proposed method can handle both measurement noise and geometry noise and obtain more accurate results than previous L2- and L1-norm regularization methods, especially when the noises are large.

  2. The potential of heart rate variability for exploring dental anxiety in mandibular third molar surgery.

    PubMed

    Le, S H; Tonami, K; Umemori, S; Nguyen, L T-B; Ngo, L T-Q; Mataki, S

    2018-06-01

    An objective method to recognize patient psychology using heart rate variability (HRV) has recently been developed and is increasingly being used in medical practice. This study compared the potential of this new method with the use of conventional surveys measuring anxiety levels in patients undergoing impacted third molar (ITM) surgery. Patient anxiety was examined before treatment in 64 adults who required ITM surgery, using two methods: measurement of HRV and conventional questionnaire surveys (state section of the State-Trait Anxiety Inventory (STAI-S) and Dental Fear Survey (DFS)). Both methods were assessed for their respective abilities to determine the impact of personal background, the amount of information provided, and the surgical procedure on patient psychology. Questionnaires and HRV yielded the same finding: dental experience was the single background factor that correlated with patient anxiety; the other factors remain unclear. The STAI-S showed a significant relationship between the information provided to the patient and their anxiety level, while the DFS and HRV did not. In addition, HRV demonstrated its ability to assess the effects of the surgical procedure on patient psychology. HRV demonstrated great potential as an objective method for evaluating patient stress, especially for providing real-time information on the patient's status. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Managed aquifer recharge through off-season irrigation in agricultural regions

    NASA Astrophysics Data System (ADS)

    Niswonger, Richard G.; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-08-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7-13%, increase crop consumptive use by 9-12%, and increase natural vegetation consumption by 20-30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  4. Music-of-light stethoscope: a demonstration of the photoacoustic effect

    NASA Astrophysics Data System (ADS)

    Nikitichev, D. I.; Xia, W.; Hill, E.; Mosse, C. A.; Perkins, T.; Konyn, K.; Ourselin, S.; Desjardins, A. E.; Vercauteren, T.

    2016-07-01

    In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on combining light excitation with ultrasound reception. Our brief was to present and explain PA imaging in a public-friendly way suitable for a variety of ages and backgrounds. We developed a simple, accessible demonstration unit using readily available materials. We used a modulated light emitting diode (LED) torch and an electronic stethoscope. The output of a music player was used for light modulation and the chest piece of the stethoscope covered by a black tape was used as an absorbing target and an enclosed chamber. This demonstration unit was presented to the public at the Bloomsbury Festival On Light in October 2015. Our stall was visited by over 100 people of varying ages. Twenty families returned in-depth evaluation questionnaires, which show that our explanations of the photoacoustic effect were well understood. Their interest in biomedical engineering was increased.

  5. Music-of-light stethoscope: a demonstration of the photoacoustic effect

    PubMed Central

    Nikitichev, D I; Xia, W; Hill, E; Mosse, C A; Perkins, T; Konyn, K; Ourselin, S; Desjardins, A E; Vercauteren, T

    2016-01-01

    Abstract In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on combining light excitation with ultrasound reception. Our brief was to present and explain PA imaging in a public-friendly way suitable for a variety of ages and backgrounds. We developed a simple, accessible demonstration unit using readily available materials. We used a modulated light emitting diode (LED) torch and an electronic stethoscope. The output of a music player was used for light modulation and the chest piece of the stethoscope covered by a black tape was used as an absorbing target and an enclosed chamber. This demonstration unit was presented to the public at the Bloomsbury Festival On Light in October 2015. Our stall was visited by over 100 people of varying ages. Twenty families returned in-depth evaluation questionnaires, which show that our explanations of the photoacoustic effect were well understood. Their interest in biomedical engineering was increased. PMID:29249838

  6. Music-of-light stethoscope: a demonstration of the photoacoustic effect.

    PubMed

    Nikitichev, D I; Xia, W; Hill, E; Mosse, C A; Perkins, T; Konyn, K; Ourselin, S; Desjardins, A E; Vercauteren, T

    2016-07-01

    In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on combining light excitation with ultrasound reception. Our brief was to present and explain PA imaging in a public-friendly way suitable for a variety of ages and backgrounds. We developed a simple, accessible demonstration unit using readily available materials. We used a modulated light emitting diode (LED) torch and an electronic stethoscope. The output of a music player was used for light modulation and the chest piece of the stethoscope covered by a black tape was used as an absorbing target and an enclosed chamber. This demonstration unit was presented to the public at the Bloomsbury Festival On Light in October 2015. Our stall was visited by over 100 people of varying ages. Twenty families returned in-depth evaluation questionnaires, which show that our explanations of the photoacoustic effect were well understood. Their interest in biomedical engineering was increased.

  7. Mechanics of biting in great white and sandtiger sharks.

    PubMed

    Ferrara, T L; Clausen, P; Huber, D R; McHenry, C R; Peddemors, V; Wroe, S

    2011-02-03

    Although a strong correlation between jaw mechanics and prey selection has been demonstrated in bony fishes (Osteichthyes), how jaw mechanics influence feeding performance in cartilaginous fishes (Chondrichthyes) remains unknown. Hence, tooth shape has been regarded as a primary predictor of feeding behavior in sharks. Here we apply Finite Element Analysis (FEA) to examine form and function in the jaws of two threatened shark species, the great white (Carcharodon carcharias) and the sandtiger (Carcharias taurus). These species possess characteristic tooth shapes believed to reflect dietary preferences. We show that the jaws of sandtigers and great whites are adapted for rapid closure and generation of maximum bite force, respectively, and that these functional differences are consistent with diet and dentition. Our results suggest that in both taxa, insertion of jaw adductor muscles on a central tendon functions to straighten and sustain muscle fibers to nearly orthogonal insertion angles as the mouth opens. We argue that this jaw muscle arrangement allows high bite forces to be maintained across a wider range of gape angles than observed in mammalian models. Finally, our data suggest that the jaws of sub-adult great whites are mechanically vulnerable when handling large prey. In addition to ontogenetic changes in dentition, further mineralization of the jaws may be required to effectively feed on marine mammals. Our study is the first comparative FEA of the jaws for any fish species. Results highlight the potential of FEA for testing previously intractable questions regarding feeding mechanisms in sharks and other vertebrates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Understanding the Effectiveness of Demonstration Programs

    ERIC Educational Resources Information Center

    Price, Allison; Boeving, Emily R.; Shender, Marisa A.; Ross, Stephen R.

    2015-01-01

    This project sought to understand guest engagement during great ape demonstrations conducted at the "Regenstein Center for African Apes" in the Lincoln Park Zoo. We were interested in how these demonstrations engaged audiences, relative to a non-demonstration-viewing experience, as well as how they compared to each other. In 2012 and…

  9. Bromelain Reversibly Inhibits Invasive Properties of Glioma Cells

    PubMed Central

    Tysnes, Berit B; Maurer, H Rainer; Porwol, Torsten; Probst, Beatrice; Bjerkvig, Rolf; Hoover, Frank

    2001-01-01

    Abstract Bromelain is an aqueous extract from pineapple stem that contains proteinases and exhibits pleiotropic therapeutic effects, i.e., antiedematous, antiinflammatory, antimetastatic, antithrombotic, and fibrinolytic activities. In this study, we tested bromelain's effects on glioma cells to assess whether bromelain could be a potential contributor to new antiinvasive strategies for gliomas. Several complementary assays demonstrated that bromelain significantly and reversibly reduced glioma cell adhesion, migration, and invasion without affecting cell viability, even after treatment periods extending over several months. Immunohistochemistry and immunoblotting experiments demonstrated that α3 and β1 integrin subunits and hyaluronan receptor CD44 protein levels were reduced within 24 hours of bromelain treatment. These effects were not reflected at the RNA level because RNA profiling did not show any significant effects on gene expression. Interestingly, metabolic labelling with 35-S methionine demonstrated that de novo protein synthesis was greatly attenuated by bromelain, in a reversible manner. By using a trans-activating signaling assay, we found that CRE-mediated signaling processes were suppressed. These results indicate that bromelain exerts its antiinvasive effects by proteolysis, signaling cascades, and translational attenuation. PMID:11774029

  10. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility

    PubMed Central

    Zaloga, Jan; Janko, Christina; Nowak, Johannes; Matuszak, Jasmin; Knaup, Sabine; Eberbeck, Dietmar; Tietze, Rainer; Unterweger, Harald; Friedrich, Ralf P; Duerr, Stephan; Heimke-Brinck, Ralph; Baum, Eva; Cicha, Iwona; Dörje, Frank; Odenbach, Stefan; Lyer, Stefan; Lee, Geoffrey; Alexiou, Christoph

    2014-01-01

    The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical application. The synthesis is straightforward and reproducible and thus easily translatable into a good manufacturing practice environment. PMID:25364244

  11. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction

    NASA Astrophysics Data System (ADS)

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan

    2017-02-01

    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials’ high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs).

  12. In-situ synthesis of SiO2@MOF composites for high-efficiency removal of aniline from aqueous solution

    NASA Astrophysics Data System (ADS)

    Han, Tongtong; Li, Caifeng; Guo, Xiangyu; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-12-01

    A series of SiO2@aluminum-MOF(MIL-68) composites with different SiO2 loadings have been synthesized by a simple and mild compositing strategy for high-efficiency removal of aniline. As evidenced from SEM and TEM images as well as the particle size distribution, the incorporation of SiO2 can improve the dispersity of MIL-68(Al) in composites, and result in the smaller particle size than that of pristine MIL-68(Al). Besides, the adsorption of aniline over SiO2, MIL-68(Al), the physical mixture of these two materials, and SiO2@MIL-68(Al) composites was investigated comparatively, demonstrating a relatively high adsorption capacity (531.9 mg g-1) of 7% SiO2@MIL-68(Al) towards aniline. Combining the ultrafast adsorption dynamics (reaching equilibrium within 40 s) and great reusability, 7% SiO2@MIL-68(Al) shows excellent adsorption performance. This indicates that the SiO2@MIL-68(Al) composites possess great potential applications as a kind of fascinating adsorbent in water pollution protection.

  13. Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking

    PubMed Central

    Zhang, Pengfei; Wang, Li; Yang, Shize; Schott, Jennifer A.; Liu, Xiaofei; Mahurin, Shannon M.; Huang, Caili; Zhang, Yu; Fulvio, Pasquale F.; Chisholm, Matthew F.; Dai, Sheng

    2017-01-01

    Ordered mesoporous carbons (OMCs) have demonstrated great potential in catalysis, and as supercapacitors and adsorbents. Since the introduction of the organic–organic self-assembly approach in 2004/2005 until now, the direct synthesis of OMCs is still limited to the wet processing of phenol-formaldehyde polycondensation, which involves soluble toxic precursors, and acid or alkali catalysts, and requires multiple synthesis steps, thus restricting the widespread application of OMCs. Herein, we report a simple, general, scalable and sustainable solid-state synthesis of OMCs and nickel OMCs with uniform and tunable mesopores (∼4–10 nm), large pore volumes (up to 0.96 cm3 g−1) and high-surface areas exceeding 1,000 m2 g−1, based on a mechanochemical assembly between polyphenol-metal complexes and triblock co-polymers. Nickel nanoparticles (∼5.40 nm) confined in the cylindrical nanochannels show great thermal stability at 600 °C. Moreover, the nickel OMCs offer exceptional activity in the hydrogenation of bulky molecules (∼2 nm). PMID:28452357

  14. Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells.

    PubMed

    Wang, Yifei; Narayanan, S R; Wu, Wei

    2017-08-22

    Owing to the low conductivity of pure water, using an electrolyte is common for achieving efficient water electrolysis. In this paper, we have fundamentally broken through this common sense by using deep-sub-Debye-length nanogap electrochemical cells to achieve efficient electrolysis of pure water (without any added electrolyte) at room temperature. A field-assisted effect resulted from overlapped electrical double layers can greatly enhance water molecules ionization and mass transport, leading to electron-transfer limited reactions. We have named this process "virtual breakdown mechanism" (which is completely different from traditional mechanisms) that couples the two half-reactions together, greatly reducing the energy losses arising from ion transport. This fundamental discovery has been theoretically discussed in this paper and experimentally demonstrated in a group of electrochemical cells with nanogaps between two electrodes down to 37 nm. On the basis of our nanogap electrochemical cells, the electrolysis current density from pure water can be significantly larger than that from 1 mol/L sodium hydroxide solution, indicating the much better performance of pure water splitting as a potential for on-demand clean hydrogen production.

  15. Group Health Coaching: Strengths, Challenges, and Next Steps

    PubMed Central

    Wolever, Ruth Q.; Manning, Linda; Elam, Roy; Moore, Margaret; Frates, Elizabeth Pegg; Duskey, Heidi; Anderson, Chelsea; Curtis, Rebecca L.; Masemer, Susan; Lawson, Karen

    2013-01-01

    There is great need for cost effective approaches to increase patient engagement and improve health and well-being. Health and wellness coaching has recently demonstrated great promise, but the majority of studies to date have focused on individual coaching (ie, one coach with one client). Newer initiatives are bringing a group coaching model from corporate leadership development and educational settings into the healthcare arena. A group approach potentially increases cost-effective access to a larger number of clients and brings the possible additional benefit of group support. This article highlights some of the group coaching approaches currently being conducted across the United States. The group coaching interventions included in this overview are offered by a variety of academic and private sector institutions, use both telephonic and in-person coaching, and are facilitated by professionally trained health and wellness coaches as well as trained peer coaches. Strengths and challenges experienced in these efforts are summarized, as are recommendations to address those challenges. A working definition of “Group Health and Wellness Coaching” is proposed, and important next steps for research and for the training of group coaches are presented. PMID:24416678

  16. A Highly Sensitive Resistive Pressure Sensor Based on a Carbon Nanotube-Liquid Crystal-PDMS Composite.

    PubMed

    Pan, Jin; Liu, Shiyu; Yang, Yicheng; Lu, Jiangang

    2018-06-08

    Resistive pressure sensors generally employ microstructures such as pores and pyramids in the active layer or on the electrodes to reduce the Young’s modulus and improve the sensitivity. However, such pressure sensors always exhibit complex fabrication process and have difficulties in controlling the uniformity of microstructures. In this paper, we demonstrated a highly sensitive resistive pressure sensor based on a composite comprising of low-polarity liquid crystal (LPLC), multi-walled carbon nanotube (MWCNT), and polydimethylsiloxane (PDMS) elastomer. The LPLC in the PDMS forms a polymer-dispersed liquid crystal (PDLC) structure which can not only reduce the Young’s modulus but also contribute to the construction of conductive paths in the active layer. By optimizing the concentration of LC in PDMS elastomer, the resistive pressure sensor shows a high sensitivity of 5.35 kPa −1 , fast response (<150 ms), and great durability. Fabrication process is also facile and the uniformity of the microstructures can be readily controlled. The pressure sensor offers great potential for applications in emerging wearable devices and electronic skins.

  17. Nano/micromotors for security/defense applications. A review.

    PubMed

    Singh, Virendra V; Wang, Joseph

    2015-12-14

    The new capabilities of man-made micro/nanomotors open up considerable opportunities for diverse security and defense applications. This review highlights new micromotor-based strategies for enhanced security monitoring and detoxification of chemical and biological warfare agents (CBWA). The movement of receptor-functionalized nanomotors offers great potential for sensing and isolating target bio-threats from complex samples. New mobile reactive materials based on zeolite or activated carbon offer considerable promise for the accelerated removal of chemical warfare agents. A wide range of proof-of-concept motor-based approaches, including the detection and destruction of anthrax spores, 'on-off' nerve-agent detection or effective neutralization of chemical warfare agents have thus been demonstrated. The propulsion of micromotors and their corresponding bubble tails impart significant mixing that greatly accelerates such detoxification processes. These nanomotors will thus empower sensing and destruction where stirring large quantities of decontaminating reagents and controlled mechanical agitation are impossible or undesired. New technological breakthroughs and greater sophistication of micro/nanoscale machines will lead to rapid translation of the micromotor research activity into practical defense applications, addressing the escalating threat of CBWA.

  18. A Robust Epoxy Resins @ Stearic Acid-Mg(OH)2 Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications.

    PubMed

    Si, Yifan; Guo, Zhiguang; Liu, Weimin

    2016-06-29

    Superhydrophobic coating has extremely high application value and practicability. However, some difficult problems such as weak mechanical strength, the need for expensive toxic reagents, and a complex preparation process are all hard to avoid, and these problems have impeded the superhydrophobic coating's real-life application for a long time. Here, we demonstrate one kind of omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating via a simple antideposition route and one-step superhydrophobization process. The whole preparation process is facile, and expensive toxic reagents needed. This omnipotent coating can be applied on any solid substrate with great waterproof ability, excellent mechanical stability, and chemical durability, which can be stored in a realistic environment for more than 1 month. More significantly, this superhydrophobic coating also has four protective abilities, antifouling, anticorrosion, anti-icing, and flame-retardancy, to cope with a variety of possible extreme natural environments. Therefore, this omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating not only satisfies real-life need but also has great application potential in many respects.

  19. Nano/micromotors for security/defense applications. A review

    NASA Astrophysics Data System (ADS)

    Singh, Virendra V.; Wang, Joseph

    2015-11-01

    The new capabilities of man-made micro/nanomotors open up considerable opportunities for diverse security and defense applications. This review highlights new micromotor-based strategies for enhanced security monitoring and detoxification of chemical and biological warfare agents (CBWA). The movement of receptor-functionalized nanomotors offers great potential for sensing and isolating target bio-threats from complex samples. New mobile reactive materials based on zeolite or activated carbon offer considerable promise for the accelerated removal of chemical warfare agents. A wide range of proof-of-concept motor-based approaches, including the detection and destruction of anthrax spores, `on-off' nerve-agent detection or effective neutralization of chemical warfare agents have thus been demonstrated. The propulsion of micromotors and their corresponding bubble tails impart significant mixing that greatly accelerates such detoxification processes. These nanomotors will thus empower sensing and destruction where stirring large quantities of decontaminating reagents and controlled mechanical agitation are impossible or undesired. New technological breakthroughs and greater sophistication of micro/nanoscale machines will lead to rapid translation of the micromotor research activity into practical defense applications, addressing the escalating threat of CBWA.

  20. Novel Integration of Perovskite Solar Cell and Supercapacitor Based on Carbon Electrode for Hybridizing Energy Conversion and Storage.

    PubMed

    Liu, Zhiyong; Zhong, Yan; Sun, Bo; Liu, Xingyue; Han, Jinghui; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2017-07-12

    Power packs integrating both photovoltaic parts and energy storage parts have gained great scientific and technological attention due to the increasing demand for green energy and the tendency for miniaturization and multifunctionalization in electronics industry. In this study, we demonstrate novel integration of perovskite solar cell and solid-state supercapacitor for power packs. The perovskite solar cell is integrated with the supercapacitor based on common carbon electrodes to hybridize photoelectric conversion and energy storage. The power pack achieves a voltage of 0.84 V when the supercapacitor is charged by the perovskite solar cell under the AM 1.5G white light illumination with a 0.071 cm 2 active area, reaching an energy storage proportion of 76% and an overall conversion efficiency of 5.26%. When the supercapacitor is precharged at 1.0 V, an instant overall output efficiency of 22.9% can be achieved if the perovskite solar cell and supercapacitor are connected in series, exhibiting great potential in the applications of solar energy storage and flexible electronics such as portable and wearable devices.

  1. Geocode of River Networks in Global Plateaus

    NASA Astrophysics Data System (ADS)

    Ni, J.; Wang, Y.; Wang, T.

    2017-12-01

    As typical hierarchical systems, river networks are of great significance to aquatic organisms and its diversity. Different aspects of river networks have been investigated in previous studies such as network structure, formation cause, material transport, nutrient cycle and habitat variation. Nevertheless, river networks function as biological habitat is far from satisfactory in plateau areas. This paper presents a hierarchical method for habitat characterization of plateau river networks with the geocode extracted from abiotic factors including historical geologic period, climate zone, water source and geomorphic process at different spatial scales. As results, characteristics of biological response with vertical differentiation within typical plateau river networks are elucidated. Altitude, climate and landform are of great influence to habitat and thereby structure of aquatic community, while diverse water source and exogenic action would influence biological abundance or spatiotemporal distribution. Case studies are made in the main stream of the Yellow River and the Yangtze River, respectively extended to the river source to Qinghai-Tibet Plateau, which demonstrate high potentials for decision making support to river protection, ecological rehabilitation and sustainable management of river ecosystems.

  2. Sharing Neuron Data: Carrots, Sticks, and Digital Records.

    PubMed

    Ascoli, Giorgio A

    2015-10-01

    Routine data sharing is greatly benefiting several scientific disciplines, such as molecular biology, particle physics, and astronomy. Neuroscience data, in contrast, are still rarely shared, greatly limiting the potential for secondary discovery and the acceleration of research progress. Although the attitude toward data sharing is non-uniform across neuroscience subdomains, widespread adoption of data sharing practice will require a cultural shift in the community. Digital reconstructions of axonal and dendritic morphology constitute a particularly "sharable" kind of data. The popularity of the public repository NeuroMorpho.Org demonstrates that data sharing can benefit both users and contributors. Increased data availability is also catalyzing the grassroots development and spontaneous integration of complementary resources, research tools, and community initiatives. Even in this rare successful subfield, however, more data are still unshared than shared. Our experience as developers and curators of NeuroMorpho.Org suggests that greater transparency regarding the expectations and consequences of sharing (or not sharing) data, combined with public disclosure of which datasets are shared and which are not, may expedite the transition to community-wide data sharing.

  3. Grouped and Multistep Nanoheteroepitaxy: Toward High-Quality GaN on Quasi-Periodic Nano-Mask.

    PubMed

    Feng, Xiaohui; Yu, Tongjun; Wei, Yang; Ji, Cheng; Cheng, Yutian; Zong, Hua; Wang, Kun; Yang, Zhijian; Kang, Xiangning; Zhang, Guoyi; Fan, Shoushan

    2016-07-20

    A novel nanoheteroepitaxy method, namely, the grouped and multistep nanoheteroepitaxy (GM-NHE), is proposed to attain a high-quality gallium nitride (GaN) epilayer by metal-organic vapor phase epitaxy. This method combines the effects of sub-100 nm nucleation and multistep lateral growth by using a low-cost but unique carbon nanotube mask, which consists of nanoscale growth windows with a quasi-periodic 2D fill factor. It is found that GM-NHE can facilely reduce threading dislocation density (TDD) and modulate residual stress on foreign substrate without any regrowth. As a result, high-quality GaN epilayer is produced with homogeneously low TDD of 4.51 × 10(7) cm(-2) and 2D-modulated stress, and the performance of the subsequent 410 nm near-ultraviolet light-emitting diode is greatly boosted. In this way, with the facile fabrication of nanomask and the one-off epitaxy procedure, GaN epilayer is prominently improved with the assistance of nanotechnology, which demonstrates great application potential for high-efficiency TDD-sensitive optoelectronic and electronic devices.

  4. Coherent changes of wintertime surface air temperatures over North Asia and North America.

    PubMed

    Yu, Bin; Lin, Hai

    2018-03-29

    The surface temperature variance and its potential change with global warming are most prominent in winter over Northern Hemisphere mid-high latitudes. Consistent wintertime surface temperature variability has been observed over large areas in Eurasia and North America on a broad range of time scales. However, it remains a challenge to quantify where and how the coherent change of temperature anomalies occur over the two continents. Here we demonstrate the coherent change of wintertime surface temperature anomalies over North Asia and the central-eastern parts of North America for the period from 1951 to 2015. This is supported by the results from the empirical orthogonal function analysis of surface temperature and temperature trend anomalies over the Northern Hemisphere extratropical lands and the timeseries analysis of the regional averaged temperature anomalies over North Asia and the Great Plains and Great Lakes. The Asian-Bering-North American (ABNA) teleconnection provides a pathway to connect the regional temperature anomalies over the two continents. The ABNA is also responsible for the decadal variation of the temperature relationship between North Asia and North America.

  5. Group health coaching: strengths, challenges, and next steps.

    PubMed

    Armstrong, Colin; Wolever, Ruth Q; Manning, Linda; Elam, Roy; Moore, Margaret; Frates, Elizabeth Pegg; Duskey, Heidi; Anderson, Chelsea; Curtis, Rebecca L; Masemer, Susan; Lawson, Karen

    2013-05-01

    There is great need for cost effective approaches to increase patient engagement and improve health and well-being. Health and wellness coaching has recently demonstrated great promise, but the majority of studies to date have focused on individual coaching (ie, one coach with one client). Newer initiatives are bringing a group coaching model from corporate leadership development and educational settings into the healthcare arena. A group approach potentially increases cost-effective access to a larger number of clients and brings the possible additional benefit of group support. This article highlights some of the group coaching approaches currently being conducted across the United States. The group coaching interventions included in this overview are offered by a variety of academic and private sector institutions, use both telephonic and in-person coaching, and are facilitated by professionally trained health and wellness coaches as well as trained peer coaches. Strengths and challenges experienced in these efforts are summarized, as are recommendations to address those challenges. A working definition of "Group Health and Wellness Coaching" is proposed, and important next steps for research and for the training of group coaches are presented.

  6. Development of a spectroscopic Mueller matrix imaging ellipsometer for nanostructure metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiuguo; Du, Weichao; Yuan, Kui

    2016-05-15

    In this paper, we describe the development of a spectroscopic Mueller matrix imaging ellipsometer (MMIE), which combines the great power of Mueller matrix ellipsometry with the high spatial resolution of optical microscopy. A dual rotating-compensator configuration is adopted to collect the full 4 × 4 imaging Mueller matrix in a single measurement. The light wavelengths are scanned in the range of 400–700 nm by a monochromator. The instrument has measurement accuracy and precision better than 0.01 for all the Mueller matrix elements in both the whole image and the whole spectral range. The instrument was then applied for the measurementmore » of nanostructures combined with an inverse diffraction problem solving technique. The experiment performed on a photoresist grating sample has demonstrated the great potential of MMIE for accurate grating reconstruction from spectral data collected by a single pixel of the camera and for efficient quantification of geometrical profile of the grating structure over a large area with pixel resolution. It is expected that MMIE will be a powerful tool for nanostructure metrology in future high-volume nanomanufacturing.« less

  7. Multifunctional Co₀.₈₅Se/graphene hybrid nanosheets: controlled synthesis and enhanced performances for the oxygen reduction reaction and decomposition of hydrazine hydrate.

    PubMed

    Zhang, Lin-fei; Zhang, Chun-yang

    2014-01-01

    Ultrathin nanosheets possess novel electronic structures and physical properties as compared with their corresponding bulk samples. However, the controlled synthesis of ultrathin monolayer nanosheets still remains a great challenge due to the lack of an intrinsic driving force for anisotropic growth of two-dimensional (2D) structures. Here we demonstrate, for the first time to our knowledge, the in situ synthesis of large-scale ultrathin single-crystalline Co₀.₈₅Se nanosheets on graphene oxide (GO) sheets, with a thickness of 3 nm. Owing to the synergetic chemical coupling effects between GO and Co₀.₈₅Se, the Co₀.₈₅Se/graphene hybrid nanosheets exhibit the highest catalytic performance among the available cobalt chalcogenide-based catalysts for the oxygen reduction reaction (ORR). Moreover, Co₀.₈₅Se/graphene hybrid nanosheets can catalyze the decomposition of hydrazine hydrate rapidly, with 97% of hydrazine hydrate being degraded in 12 min and the degradation rate remaining constant over 10 consecutive cycles, thus having great potential as long-term catalysts in wastewater treatment.

  8. Preparation of steppogenin and ascorbic acid, vitamin E, butylated hydroxytoluene oil-in-water microemulsions: Characterization, stability, and antibrowning effects for fresh apple juice.

    PubMed

    Tao, Jing; Zhu, Qin; Qin, Fang; Wang, Mingfu; Chen, Jie; Zheng, Zong-Ping

    2017-06-01

    Oil-in-water microemulsions (O/W MEs) allow the preparation of insoluble compounds into liquid. In this study, we prepared O/W MEs to improve the solubility and stability of steppogenin (S) in aqueous liquid, and studied their ability to inhibit fresh apple juice browning. The ME technique greatly increased steppogenin solubility up to 3000-fold higher than that in water. All SMEs demonstrated good stability after acceleration and long-term storage. In particular, 0.01% SME was associated with dramatic inhibition of fresh apple juice browning after 24h at room temperature and 7days at 4°C, and its antibrowning effects were further improved when combined with 0.05% ascorbic acid. On the other hand, simultaneous encapsulation of steppogenin with vitamin E or butylated hydroxytoluene into ME did not greatly improve SME antibrowning effects. Taken together, these results suggested that steppogenin might serve as a potential antibrowning agent to preserve fresh apple juice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors.

    PubMed

    Gao, Chao; Guo, Zheng; Liu, Jin-Huai; Huang, Xing-Jiu

    2012-03-21

    Since the discovery of carbon nanotubes (CNTs), they have drawn considerable research attention and have shown great potential application in many fields due to their unique structural, mechanical, and electronic properties. However, their native insolubility severely holds back the process of application. In order to overcome this disadvantage and broaden the scope of their application, chemical functionalization of CNTs has attracted great interest over the past several decades and produced various novel hybrid materials with specific applications. Notably, the rapid development of functionalized CNTs used as electrochemical sensors has been successfully witnessed. In this featured article, the recent progress of electrochemical sensors based on functionalized CNTs is discussed and classified according to modifiers covering organic (oxygen functional groups, small organic molecules, polymers, DNA, protein, etc.), inorganic (metal nanoparticles, metal oxide, etc.) and organic-inorganic hybrids. By employing some representative examples, it will be demonstrated that functionalized CNTs as templates, carriers, immobilizers and transducers are promising for the construction of electrochemical sensors. This journal is © The Royal Society of Chemistry 2012

  10. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    PubMed

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-02-08

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  11. Diketopyrrolopyrrole-based carbon dots for photodynamic therapy.

    PubMed

    He, Haozhe; Zheng, Xiaohua; Liu, Shi; Zheng, Min; Xie, Zhigang; Wang, Yong; Yu, Meng; Shuai, Xintao

    2018-06-01

    The development of a simple and straightforward strategy to synthesize multifunctional carbon dots for photodynamic therapy (PDT) has been an emerging focus. In this work, diketopyrrolopyrrole-based fluorescent carbon dots (DPP CDs) were designed and synthesized through a facile one-pot hydrothermal method by using diketopyrrolopyrrole (DPP) and chitosan (CTS) as raw materials. DPP CDs not only maintained the ability of DPP to generate singlet oxygen (1O2) but also have excellent hydrophilic properties and outstanding biocompatibility. In vitro and in vivo experiments demonstrated that DPP CDs greatly inhibited the growth of tumor cells under laser irradiation (540 nm). This study highlights the potential of the rational design of CDs for efficient cancer therapy.

  12. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  13. AlN metal-semiconductor field-effect transistors using Si-ion implantation

    NASA Astrophysics Data System (ADS)

    Okumura, Hironori; Suihkonen, Sami; Lemettinen, Jori; Uedono, Akira; Zhang, Yuhao; Piedra, Daniel; Palacios, Tomás

    2018-04-01

    We report on the electrical characterization of Si-ion implanted AlN layers and the first demonstration of metal-semiconductor field-effect transistors (MESFETs) with an ion-implanted AlN channel. The ion-implanted AlN layers with Si dose of 5 × 1014 cm-2 exhibit n-type characteristics after thermal annealing at 1230 °C. The ion-implanted AlN MESFETs provide good drain current saturation and stable pinch-off operation even at 250 °C. The off-state breakdown voltage is 2370 V for drain-to-gate spacing of 25 µm. These results show the great potential of AlN-channel transistors for high-temperature and high-power applications.

  14. Synthesis of PLGA-Lipid Hybrid Nanoparticles for siRNA Delivery Using the Emulsion Method PLGA-PEG-Lipid Nanoparticles for siRNA Delivery.

    PubMed

    Wang, Lei; Griffel, Benjamin; Xu, Xiaoyang

    2017-01-01

    The effective delivery of small interfering RNA (siRNA) to tumor cells remains a challenge for applications in cancer therapy. The development of polymeric nanoparticles with high siRNA loading efficacy has shown great potential for cancer targets. Double emulsion solvent evaporation technique is a useful tool for encapsulation of hydrophilic molecules (e.g., siRNA). Here we describe a versatile platform for siRNA delivery based on PLGA-PEG-cationic lipid nanoparticles by using the double emulsion method. The resulting nanoparticles show high encapsulation efficiency for siRNA (up to 90%) and demonstrate effective downregulation of the target genes in vitro and vivo.

  15. Synthesis of branched iminosugars through a hypervalent iodine(III)-mediated radical-polar crossover reaction.

    PubMed

    Santana, Andrés G; Paz, Nieves R; Francisco, Cosme G; Suárez, Ernesto; González, Concepción C

    2013-08-02

    The synthesis of a novel type of branched iminosugars is described. This synthetic strategy is based on two key reactions: first, an aldol reaction with formaldehyde in order to introduce selectively the hydroxymethyl branch, and second, a tandem β-fragmentation-intramolecular cyclization reaction. The combination of both reactions afforded a battery of compounds exhibiting a great structural complexity, with the concomitant formation of a quaternary center, starting from readily available aldoses. With this approach we have demonstrated the usefulness of the fragmentation of anomeric alkoxyl radicals (ARF) promoted by the PhIO/I2 system for the preparation of new compounds with potential interest for both medicinal and synthetic chemists.

  16. Protective activity of Lentinan in experimental tuberculosis.

    PubMed

    Markova, Nadya; Kussovski, Vesselin; Drandarska, Ivanka; Nikolaeva, Sascha; Georgieva, Neli; Radoucheva, Tatyana

    2003-10-01

    Protective effects of Lentinan (Ajinomoto, Japan) against Mycobacterium tuberculosis infection were studied by in vitro and in vivo mouse models. The effectiveness of Lentinan administrated intraperitoneally (i.p.) before infection at a dose of 1 mg/kg three times at 2-day intervals was monitored in vivo by several parameters (body temperature; spleen weight; CFU counts of M. tuberculosis in spleen, liver and lung; and histomorphological observations). Peritoneal macrophages obtained from animals treated with Lentinan were greatly stimulated, as assayed by establishing their number, acid phosphatase activity, H2O2 production and killing ability against M. tuberculosis in vitro. The in vivo model demonstrated that administration of Lentinan before infection can mobilize host defense potential and reduce mycobacterial infection.

  17. Optimized mounting of a polyethylene naphthalate scintillation material in a radiation detector.

    PubMed

    Nakamura, Hidehito; Yamada, Tatsuya; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Shidara, Zenichiro; Yokozuka, Takayuki; Nguyen, Philip; Kanayama, Masaya; Takahashi, Sentaro

    2013-10-01

    Polyethylene naphthalate (PEN) has great potential as a scintillation material for radiation detection. Here the optimum mounting conditions to maximize the light collection efficiency from PEN in a radiation detector are discussed. To this end, we have determined light yields emitted from irradiated PEN for various optical couplings between the substrate and the photodetector, and for various substrate surface treatments. The results demonstrate that light extraction from PEN is more sensitive to the optical couplings due to its high refractive index. We also assessed the extent of radioactive impurities in PEN as background sources and found that the impurities are equivalent to the environmental background level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure.

    PubMed

    Liu, Zongbin; Huang, Fei; Du, Jinghui; Shu, Weiliang; Feng, Hongtao; Xu, Xiaoping; Chen, Yan

    2013-01-01

    This work reports a microfluidic device with deterministic lateral displacement (DLD) arrays allowing rapid and label-free cancer cell separation and enrichment from diluted peripheral whole blood, by exploiting the size-dependent hydrodynamic forces. Experiment data and theoretical simulation are presented to evaluate the isolation efficiency of various types of cancer cells in the microfluidic DLD structure. We also demonstrated the use of both circular and triangular post arrays for cancer cell separation in cell solution and blood samples. The device was able to achieve high cancer cell isolation efficiency and enrichment factor with our optimized design. Therefore, this platform with DLD structure shows great potential on fundamental and clinical studies of circulating tumor cells.

  19. Adrenomedullin and Pregnancy: Perspectives from Animal Models to Humans

    PubMed Central

    Lenhart, Patricia M.; Caron, Kathleen M.

    2012-01-01

    A healthy pregnancy requires strict coordination of genetic, physiologic, and environmental factors. The relatively common incidence of infertility and pregnancy complications has resulted in increased interest in understanding the mechanisms that underlie normal versus abnormal pregnancy. The peptide hormone adrenomedullin has recently been the focus of some exciting breakthroughs in the pregnancy field. Supported by mechanistic studies in genetic animal models, there continues to be a growing body of evidence demonstrating the importance of adrenomedullin protein levels in a variety of human pregnancy complications. With more extensive mechanistic studies and improved consistency in clinical measurements of adrenomedullin, there is great potential for the development of adrenomedullin as a clinically-relevant biomarker in pregnancy and pregnancy complications. PMID:22425034

  20. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    PubMed Central

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-01-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials. PMID:26831759

Top