ERIC Educational Resources Information Center
Bateman, Peter; And Others
The Cooperative Demonstration Program (High Technology) was the largest demonstration program supported under the Carl D. Perkins Vocational Education Act of 1984. The program funded projects to try new approaches, to increase access to high-quality programs for special populations, and to improve the overall quality of vocational education. An…
Active tuning of high-Q dielectric metasurfaces
Parry, Matthew; Komar, Andrei; Hopkins, Ben; ...
2017-08-02
Here, we demonstrate the active tuning of all-dielectric metasurfaces exhibiting high-quality factor (high-Q) resonances. The active control is provided by embedding the asymmetric silicon meta-atoms with liquid crystals, which allows the relative index of refraction to be controlled through heating. It is found that high quality factor resonances (Q = 270 ± 30) can be tuned over more than three resonance widths. Our results demonstrate the feasibility of using all-dielectric metasurfaces to construct tunable narrow-band filters.
[The evaluation of physical development of students].
2012-01-01
The article demonstrates that physical health of university students is conditioned by the aggregate of morpho-functional indices and depends on the development of physical qualities of students. The evaluation of mass/height indicators of female students demonstrates the increase of total body size and weakness of body build. The testing of physical readiness testified the ambiguity of high-speed and high-speed/power qualities and results of stamina evaluation.
High-frequency and high-quality silicon carbide optomechanical microresonators
Lu, Xiyuan; Lee, Jonathan Y.; Lin, Qiang
2015-01-01
Silicon carbide (SiC) exhibits excellent material properties attractive for broad applications. We demonstrate the first SiC optomechanical microresonators that integrate high mechanical frequency, high mechanical quality, and high optical quality into a single device. The radial-breathing mechanical mode has a mechanical frequency up to 1.69 GHz with a mechanical Q around 5500 in atmosphere, which corresponds to a fm · Qm product as high as 9.47 × 1012 Hz. The strong optomechanical coupling allows us to efficiently excite and probe the coherent mechanical oscillation by optical waves. The demonstrated devices, in combination with the superior thermal property, chemical inertness, and defect characteristics of SiC, show great potential for applications in metrology, sensing, and quantum photonics, particularly in harsh environments that are challenging for other device platforms. PMID:26585637
Broken symmetry dielectric resonators for high quality factor Fano metasurfaces
Campione, Salvatore; Liu, Sheng; Basilio, Lorena I.; ...
2016-10-25
We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple “bright” dipole modes to “dark” dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurfacemore » that achieves a quality factor of ~1300 at ~10.8 μm. Then, we present two experimental demonstrations operating in the near-infrared (~1 μm): a silicon-based implementation that achieves a quality factor of ~350; and a gallium arsenide-based structure that achieves a quality factor of ~600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. Here, we envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices.« less
Broken symmetry dielectric resonators for high quality factor Fano metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Liu, Sheng; Basilio, Lorena I.
We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple “bright” dipole modes to “dark” dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurfacemore » that achieves a quality factor of ~1300 at ~10.8 μm. Then, we present two experimental demonstrations operating in the near-infrared (~1 μm): a silicon-based implementation that achieves a quality factor of ~350; and a gallium arsenide-based structure that achieves a quality factor of ~600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. Here, we envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices.« less
High-performance flexible microwave passives on plastic
NASA Astrophysics Data System (ADS)
Ma, Zhenqiang; Seo, Jung-Hun; Cho, Sang June; Zhou, Weidong
2014-06-01
We report the demonstration of bendable inductors, capacitors and switches fabricated on a polyethylene terephthalate (PET) substrate that can operate at high microwave frequencies. By employing bendable dielectric and single crystalline semiconductor materials, spiral inductors and metal-insulator-metal (MIM) capacitors with high quality factors and high resonance frequencies and single-pole, single-throw (SPST) switches were archived. The effects of mechanical bending on the performance of inductors, capacitors and switches were also measured and analyzed. We further investigated the highest possible resonance frequencies and quality factors of inductors and capacitors and, high frequency responses and insertion loss. These demonstrations will lead to flexible radio-frequency and microwave systems in the future.
Automated water monitor system field demonstration test report. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Brooks, R. L.; Jeffers, E. L.; Perreira, J.; Poel, J. D.; Nibley, D.; Nuss, R. H.
1981-01-01
A system that performs water quality monitoring on-line and in real time much as it would be done in a spacecraft, was developed and demonstrated. The system has the capability to determine conformance to high effluent quality standards and to increase the potential for reclamation and reuse of water.
Student Engagement in the Scottish Quality Enhancement Framework
ERIC Educational Resources Information Center
Gvaramadze, Irakli
2011-01-01
The research addressed the interplay of student engagement and quality enhancement mechanisms in the Scottish higher education system. The paper demonstrates increasing focus on student learning, learning experience and high-quality learning in the current quality enhancement approaches. The student-university coproduction model is used to…
Space Technology 5 - A Successful Micro-Satellite Constellation Mission
NASA Technical Reports Server (NTRS)
Carlisle, Candace; Webb, Evan H.
2007-01-01
The Space Technology 5 (ST5) constellation of three micro-satellites was launched March 22, 2006. During the three-month flight demonstration phase, the ST5 team validated key technologies that will make future low-cost micro-sat constellations possible, demonstrated operability concepts for future micro-sat science constellation missions, and demonstrated the utility of a micro-satellite constellation to perform research-quality science. The ST5 mission was successfully completed in June 2006, demonstrating high-quality science and technology validation results.
Monitoring and modeling of microbial and biological water quality
USDA-ARS?s Scientific Manuscript database
Microbial and biological water quality informs on the health of water systems and their suitability for uses in irrigation, recreation, aquaculture, and other activities. Indicators of microbial and biological water quality demonstrate high spatial and temporal variability. Therefore, monitoring str...
Characteristics of High-Quality Teachers
ERIC Educational Resources Information Center
Jones, Jason E.; Gulek, James C.
2010-01-01
The purpose of this study was to examine the characteristics of high-quality teachers who used a structured mathematics program for teaching, namely the Math Achievement Program (MAP[superscript 2]D), which demonstrated significant gains on student achievement as measured by California's Standards Test (CST) in mathematics. Specifically, the…
Demonstration of a stable ultrafast laser based on a nonlinear microcavity
Peccianti, M.; Pasquazi, A.; Park, Y.; Little, B.E.; Chu, S.T.; Moss, D.J.; Morandotti, R.
2012-01-01
Ultrashort pulsed lasers, operating through the phenomenon of mode-locking, have had a significant role in many facets of our society for 50 years, for example, in the way we exchange information, measure and diagnose diseases, process materials, and in many other applications. Recently, high-quality resonators have been exploited to demonstrate optical combs. The ability to phase-lock their modes would allow mode-locked lasers to benefit from their high optical spectral quality, helping to realize novel sources such as precision optical clocks for applications in metrology, telecommunication, microchip-computing, and many other areas. Here we demonstrate the first mode-locked laser based on a microcavity resonator. It operates via a new mode-locking method, which we term filter-driven four-wave mixing, and is based on a CMOS-compatible high quality factor microring resonator. It achieves stable self-starting oscillation with negligible amplitude noise at ultrahigh repetition rates, and spectral linewidths well below 130 kHz. PMID:22473009
Emotional Experience, Expression, and Regulation of High-Quality Japanese Elementary School Teachers
ERIC Educational Resources Information Center
Hosotani, Rika; Imai-Matsumura, Kyoko
2011-01-01
The present study investigates the emotional experience, expression, and regulation processes of high-quality Japanese elementary school teachers while they interact with children, in terms of teachers' emotional competence. Qualitative analysis of interview data demonstrated that teachers had various emotional experiences including self-elicited…
ERIC Educational Resources Information Center
Smith, Charles; Akiva, Tom; McGovern, Gina; Peck, Stephen C.
2014-01-01
This chapter discusses efforts to define and improve the quality of afterschool services, highlighting areas of agreement and identifying leading-edge issues. We conclude that the afterschool field is especially well positioned to deliver high-quality services and demonstrate effectiveness at scale because a strong foundation has been built for…
Environmental education curriculum evaluation questionnaire: A reliability and validity study
NASA Astrophysics Data System (ADS)
Minner, Daphne Diane
The intention of this research project was to bridge the gap between social science research and application to the environmental domain through the development of a theoretically derived instrument designed to give educators a template by which to evaluate environmental education curricula. The theoretical base for instrument development was provided by several developmental theories such as Piaget's theory of cognitive development, Developmental Systems Theory, Life-span Perspective, as well as curriculum research within the area of environmental education. This theoretical base fueled the generation of a list of components which were then translated into a questionnaire with specific questions relevant to the environmental education domain. The specific research question for this project is: Can a valid assessment instrument based largely on human development and education theory be developed that reliably discriminates high, moderate, and low quality in environmental education curricula? The types of analyses conducted to answer this question were interrater reliability (percent agreement, Cohen's Kappa coefficient, Pearson's Product-Moment correlation coefficient), test-retest reliability (percent agreement, correlation), and criterion-related validity (correlation). Face validity and content validity were also assessed through thorough reviews. Overall results indicate that 29% of the questions on the questionnaire demonstrated a high level of interrater reliability and 43% of the questions demonstrated a moderate level of interrater reliability. Seventy-one percent of the questions demonstrated a high test-retest reliability and 5% a moderate level. Fifty-five percent of the questions on the questionnaire were reliable (high or moderate) both across time and raters. Only eight questions (8%) did not show either interrater or test-retest reliability. The global overall rating of high, medium, or low quality was reliable across both coders and time, indicating that the questionnaire can discriminate differences in quality of environmental education curricula. Of the 35 curricula evaluated, 6 were high quality, 14 were medium quality and 15 were low quality. The criterion-related validity of the instrument is at current time unable to be established due to the lack of comparable measures or a concretely usable set of multidisciplinary standards. Face and content validity were sufficiently demonstrated.
Determining the Measurement Quality of a Montessori High School Teacher Evaluation Survey
ERIC Educational Resources Information Center
Setari, Anthony Philip; Bradley, Kelly D.
2017-01-01
The purpose of this study was to conduct a psychometric validation of a course evaluation instrument, known as a student evaluation of teaching (SET), implemented in a Montessori high school. The authors demonstrate to the Montessori community how to rigorously examine the measurement and assessment quality of instruments used within Montessori…
NASA Astrophysics Data System (ADS)
Panigrahi, Asisa Kumar; Hemanth Kumar, C.; Bonam, Satish; Ghosh, Tamal; Rama Krishna Vanjari, Siva; Govind Singh, Shiv
2018-02-01
Enhanced Cu diffusion, Cu surface passivation, and smooth surface at the bonding interface are the key essentials for high quality Cu-Cu bonding. Previously, we have demonstrated optimized 3 nm thin Manganin metal-alloy passivation from oxidation and also helps to reduce the surface roughness to about 0.8 nm which substantially led to high quality Cu-Cu bonding. In this paper, we demonstrated an ultra fine-pitch (<25 µm) Cu-Cu bonding using an optimized Manganin metal-alloy passivation. This engineered surface passivation approach led to high quality bonding at sub 200 °C temperature and 0.4 MPa. Very low specific contact resistance of 1.4 × 10-7 Ω cm2 and the defect free bonded interface is clear indication of high quality bonding for future multilayer integrations. Furthermore, electrical characterization of the bonded structure was performed under various robust conditions as per International Technology Roadmap for Semiconductors (ITRS Roadmap) in order to satisfy the stability of the bonded structure.
Measuring edge-of-field water quality: Where we have been and the path forward
USDA-ARS?s Scientific Manuscript database
Heightened pressure to demonstrate the resource benefits of conservation practices and continued high-profile water quality impairments and concerns are increasing the need to quantify edge-of-field water quality. With this in mind, this manuscript summarizes previous developments in edge-of-field ...
Gardner, Andrew W; Wacker, David P; Boelter, Eric W
2009-01-01
The choice-making behavior of 2 typically developing children who engaged in problem behavior maintained by negative reinforcement was evaluated within a concurrent-operants assessment that varied the quality of attention across free-play and demand conditions. The results demonstrated that it was possible to bias responding towards academic demands for both participants by providing high-quality attention, despite the continuous availability of negative reinforcement. The current study extended brief clinical methods with typically developing children and demonstrated how different qualities of attention provided across concurrent schedules could bias responding. PMID:19949522
Fang, Zhiwei; Lin, Jintian; Wang, Min; Liu, Zhengming; Yao, Jinping; Qiao, Lingling; Cheng, Ya
2015-10-19
We demonstrate fabrication of a microtoroid resonator of a high-quality (high-Q) factor using femtosecond laser three-dimensional (3D) micromachining. A fiber taper is reliably assembled to the microtoroid using CO2 laser welding. Specifically, we achieve a high-Q-factor of 2.12 × 10(6) in the microresonator-fiber assembly by optimizing the contact position between the fiber taper and the microtoroid.
NASA Astrophysics Data System (ADS)
Miranda, Rommel Joseph
By employing qualitative methods, this study sought to determine the perceptions that urban stakeholders hold about what characteristics should distinguish a high school science teacher whom they would consider to demonstrate high quality in science teaching. A maximum variation sample of six science teachers, three school administrators, six parents and six students from a large urban public school district were interviewed using semi-structured, in-depth interview techniques. From these data, a list of observable characteristics which urban stakeholders hold as evidence of high quality in science teaching was generated. Observational techniques were utilized to determine the extent to which six urban high school science teachers, who meet the NCLB Act criteria for being "highly qualified", actually possessed the characteristics which these stakeholders hold as evidence of high quality in science teaching. Constant comparative analysis was used to analyze the data set. The findings suggest that urban stakeholders perceive that a high school science teacher who demonstrates high quality in science teaching should be knowledgeable about their subject matter, their student population, and should be resourceful; should possess an academic background in science and professional experience in science teaching; should exhibit professionalism, a passion for science and teaching, and a dedication to teaching and student learning; should be skillful in planning and preparing science lessons and in organizing the classroom, in presenting the subject matter to students, in conducting a variety of hands-on activities, and in managing a classroom; and should assess whether students complete class goals and objectives, and provide feedback about grades for students promptly. The findings further reveal that some of the urban high school science teachers who were deemed to be "highly qualified", as defined by the NCLB Act, engaged in practices that threatened quality in science teaching and often failed to display the characteristics which urban stakeholders hold as evidence of high quality in science teaching. Thus, the criteria for "highly qualified" prescribed by policy makers and politicians do not necessarily translate into effective science teaching in urban settings. These findings emphasize the importance of stakeholder involvement in the design of educational reform initiatives.
High beam quality and high energy short-pulse laser with MOPA
NASA Astrophysics Data System (ADS)
Jin, Quanwei; Pang, Yu; Jiang, JianFeng; Tan, Liang; Cui, Lingling; Wei, Bin; Sun, Yinhong; Tang, Chun
2018-03-01
A high energy, high beam quality short-pulse diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with two amplifier stages is demonstrated. The two-rod birefringence compensation was used as beam quality controlling methods, which presents a short-pulse energy of 40 mJ with a beam quality value of M2 = 1.2 at a repetition rate of 400Hz. The MOPA system delivers a short-pulse energy of 712.5 mJ with a pulse width of 12.4 ns.The method of spherical aberration compensation is improved the beam quality, a M2 factor of 2.3 and an optical-to-optical efficiency of 27.7% is obtained at the maximum laser out power.The laser obtained 1.4J out energy with polarization integration.
High quality factor single-crystal diamond mechanical resonators
NASA Astrophysics Data System (ADS)
Ovartchaiyapong, P.; Pascal, L. M. A.; Myers, B. A.; Lauria, P.; Bleszynski Jayich, A. C.
2012-10-01
Single-crystal diamond is a promising material for microelectromechanical systems (MEMs) because of its low mechanical loss, compatibility with extreme environments, and built-in interface to high-quality spin centers. But its use has been limited by challenges in processing and growth. We demonstrate a wafer bonding-based technique to form diamond on insulator, from which we make single-crystal diamond micromechanical resonators with mechanical quality factors as high as 338 000 at room temperature. Variable temperature measurements down to 10 K reveal a nonmonotonic dependence of quality factor on temperature. These resonators enable integration of single-crystal diamond into MEMs technology for classical and quantum applications.
Report: Strategic Agricultural Initiative Needs Revisions to Demonstrate Results
Report #2007-P-00040, September 26, 2007. The SAI program has not demonstrated how it fulfills its unique role of helping growers transition away from Food Quality Protection Act high-risk pesticides.
McKinney, Cliff; Stearns, Melanie; Szkody, Erica
2018-03-01
The current study examined the indirect effect of maternal and paternal emotional and physical maltreatment on affective and behavioral symptoms of oppositional defiant disorder (ODD) through parent-child relationship quality; gender and overall ODD symptoms were examined as moderators. Participants included 2,362 emerging adults who completed questionnaires about parental emotional and physical maltreatment, parent-child relationship quality, and affective and behavioral ODD symptoms. These characteristics were compared across parent and child gender (i.e., maternal and paternal effects as well as male and female differences) as well as participants reporting high and low ODD symptoms. In the low ODD group, indirect effects of emotional maltreatment occurred in all parent-child dyads except the mother-son dyad, whereas in the high ODD group, indirect effects occurred only in the father-son dyad. Indirect effects of physical maltreatment occurred only in the father-son dyad in the low ODD group, and only in the mother-daughter dyad on behavioral ODD symptoms in the high ODD group. The results suggest that specific parent-child gender dyads respond differently, warranting further investigation of gender effects. Moreover, emerging adults in the low ODD symptoms group demonstrated a positive association between parental maltreatment and ODD symptoms and a negative association between parent-child relationship quality and ODD symptoms, whereas those high in the high ODD symptoms group did not demonstrate these associations. That is, emerging adults reporting high ODD symptoms demonstrated no relationship between their ODD symptoms and harsh parenting, suggesting an ineffective coercive process.
Cardiac Vagal Control and Depressive Symptoms: The Moderating Role of Sleep Quality
Werner, Gabriela G.; Ford, Brett Q.; Mauss, Iris B.; Schabus, Manuel; Blechert, Jens; Wilhelm, Frank H.
2017-01-01
Lower cardiac vagal control (CVC) has been linked to greater depression. However, this link has not been consistently demonstrated, suggesting the presence of key moderators. Sleep plausibly is one such factor. Therefore, we investigated whether sleep quality moderates the link between CVC (quantified by high-frequency heart rate variability, HF-HRV) and depressive symptoms (assessed using established questionnaires) in 29 healthy women. Results revealed a significant interaction between HF-HRV and sleep quality in predicting depressive symptoms: participants with lower HF-HRV reported elevated depressive symptoms only when sleep quality was also low. In contrast, HF-HRV was not associated with depressive symptoms when sleep quality was high, suggesting a protective function of high sleep quality in the context of lower CVC. PMID:27149648
Pygmalion in Media-Based Learning: Effects of Quality Expectancies on Learning Outcomes
ERIC Educational Resources Information Center
Fries, Stefan; Horz, Holger; Haimerl, Charlotte
2006-01-01
Two studies investigated how quality expectations affect students' outcomes of media-based learning. Experiment 1 (N=62) demonstrated that students expecting a high-end computer-based training programme learned most, whereas students expecting a programme of ambiguous quality learned least and students having no expectations performed in between.…
Applications of flight control system methods to an advanced combat rotorcraft
NASA Technical Reports Server (NTRS)
Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.
1989-01-01
Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.
A no-reference image and video visual quality metric based on machine learning
NASA Astrophysics Data System (ADS)
Frantc, Vladimir; Voronin, Viacheslav; Semenishchev, Evgenii; Minkin, Maxim; Delov, Aliy
2018-04-01
The paper presents a novel visual quality metric for lossy compressed video quality assessment. High degree of correlation with subjective estimations of quality is due to using of a convolutional neural network trained on a large amount of pairs video sequence-subjective quality score. We demonstrate how our predicted no-reference quality metric correlates with qualitative opinion in a human observer study. Results are shown on the EVVQ dataset with comparison existing approaches.
Training time and quality of smartphone-based anterior segment screening in rural India.
Ludwig, Cassie A; Newsom, Megan R; Jais, Alexandre; Myung, David J; Murthy, Somasheila I; Chang, Robert T
2017-01-01
We aimed at evaluating the ability of individuals without ophthalmologic training to quickly capture high-quality images of the cornea by using a smartphone and low-cost anterior segment imaging adapter (the "EyeGo" prototype). Seven volunteers photographed 1,502 anterior segments from 751 high school students in Varni, India, by using an iPhone 5S with an attached EyeGo adapter. Primary outcome measures were median photograph quality of the cornea and anterior segment of the eye (validated Fundus Photography vs Ophthalmoscopy Trial Outcomes in the Emergency Department [FOTO-ED] study; 1-5 scale; 5, best) and the time required to take each photograph. Volunteers were surveyed on their familiarity with using a smartphone (1-5 scale; 5, very comfortable) and comfort in assessing problems with the eye (1-5 scale; 5, very comfortable). Binomial logistic regression was performed using image quality (low quality: <4; high quality: ≥4) as the dependent variable and age, comfort using a smartphone, and comfort in assessing problems with the eye as independent variables. Six of the seven volunteers captured high-quality (median ≥4/5) images with a median time of ≤25 seconds per eye for all the eyes screened. Four of the seven volunteers demonstrated significant reductions in time to acquire photographs ( P 1=0.01, P 5=0.01, P 6=0.01, and P 7=0.01), and three of the seven volunteers demonstrated significant improvements in the quality of photographs between the first 100 and last 100 eyes screened ( P 1<0.001, P 2<0.001, and P 6<0.01). Self-reported comfort using a smartphone (odds ratio [OR] =1.25; 95% CI =1.13 to 1.39) and self-reported comfort diagnosing eye conditions (OR =1.17; 95% CI =1.07 to 1.29) were significantly associated with an ability to take a high-quality image (≥4/5). There was a nonsignificant association between younger age and ability to take a high-quality image. Individuals without ophthalmic training were able to quickly capture a high-quality magnified view of the anterior segment of the eye by using a smartphone with an attached imaging adapter.
Report: Quality Control Review of EPA OIG Reports Issued in Fiscal Year 2015
Report #16-N-0223, July 18, 2016. OIG reports issued in FY 2015 demonstrated high levels of compliance with OIG quality assurance procedures, and received average compliance scores of 90 percent or greater.
Metals in Metal Salts: A Copper Mirror Demonstration
ERIC Educational Resources Information Center
Pike, Robert D.
2010-01-01
A simple lecture demonstration is described to show the latent presence of metal atoms in a metal salt. Copper(II) formate tetrahydrate is heated in a round-bottom flask forming a high-quality copper mirror.
The Importance of Quality in Ventilation-Perfusion Imaging.
Mann, April; DiDea, Mario; Fournier, France; Tempesta, Daniel; Williams, Jessica; LaFrance, Norman
2018-06-01
As the health care environment continues to change and morph into a system focusing on increased quality and evidence-based outcomes, nuclear medicine technologists must be reminded that they play a critical role in achieving high-quality, interpretable images used to drive patient care, treatment, and best possible outcomes. A survey performed by the Quality Committee of the Society of Nuclear Medicine and Molecular Imaging Technologist Section demonstrated that a clear knowledge gap exists among technologists regarding their understanding of quality, how it is measured, and how it should be achieved by all practicing technologists regardless of role and education level. Understanding of these areas within health care, in conjunction with the growing emphasis on evidence-based outcomes, quality measures, and patient satisfaction, will ultimately elevate the role of nuclear medicine technologists today and into the future. The nuclear medicine role now requires technologists to demonstrate patient assessment skills, practice safety procedures with regard to staff and patients, provide patient education and instruction, and provide physicians with information to assist with the interpretation and outcome of the study. In addition, the technologist must be able to evaluate images by performing technical analysis, knowing the demonstrated anatomy and pathophysiology, and assessing overall quality. Technologists must also be able to triage and understand the disease processes being evaluated and how nuclear medicine diagnostic studies may drive care and treatment. Therefore, it is imperative that nuclear medicine technologists understand their role in the achievement of a high-quality, interpretable study by applying quality principles and understanding and using imaging techniques beyond just basic protocols for every type of disease or system being imaged. This article focuses on quality considerations related to ventilation-perfusion imaging. It provides insight on appropriate imaging techniques and protocols, true imaging variants and tracer distributions versus artifacts that may result in a lower-quality or misinterpreted study, and the use of SPECT and SPECT/CT as an alternative providing a high-quality, interpretable study with better diagnostic accuracy and fewer nondiagnostic procedures than historical planar imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Chen, Jianyi; Guo, Yunlong; Jiang, Lili; Xu, Zhiping; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Wu, Bin; Hu, Wenping; Yu, Gui; Liu, Yunqi
2014-03-05
By using near-equilibrium chemical vapor deposition, it is demonstrated that high-quality single-crystal graphene can be grown on dielectric substrates. The maximum size is about 11 μm. The carrier mobility can reach about 5650 cm(2) V(-1) s(-1) , which is comparable to those of some metal-catalyzed graphene crystals, reflecting the good quality of the graphene lattice. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-quality poly-dispersed mixtures applied in additive 3D technologies.
NASA Astrophysics Data System (ADS)
Gerasimov, M. D.; Brazhnik, Yu V.; Gorshkov, P. S.; Latyshev, S. S.
2018-03-01
The paper describes the new mixer design to obtain high-quality poly-dispersed powders applied in additive 3D technologies. It also considers a new mixing principle of dry powder particles ensuring the distribution of such particles in the total volume, which is close to ideal. The paper presents the mathematical model of mixer operation providing for the quality assessment of the ready mixtures. Besides, it demonstrates experimental results and obtained rational values of mixer process parameters.
Plasma mirrors for short pulse KrF lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilicze, Barnabás; Szatmári, Sándor; Barna, Angéla
2016-08-15
It is demonstrated for the first time that plasma mirrors can be successfully applied for KrF laser systems. High reflectivity up to 70% is achieved by optimization of the beam quality on the plasma mirror. The modest spectral shift and the good reflected beam quality allow its applicability for high power laser systems for which a new arrangement is suggested.
Okada, Mitsuhiro; Miyauchi, Yuhei; Matsuda, Kazunari; Taniguchi, Takashi; Watanabe, Kenji; Shinohara, Hisanori; Kitaura, Ryo
2017-03-23
Monolayer transition metal dichalcogenides (TMDCs) including WS 2 , MoS 2 , WSe 2 and WS 2 , are two-dimensional semiconductors with direct bandgap, providing an excellent field for exploration of many-body effects in 2-dimensions (2D) through optical measurements. To fully explore the physics of TMDCs, the prerequisite is preparation of high-quality samples to observe their intrinsic properties. For this purpose, we have focused on high-quality samples, WS 2 grown by chemical vapor deposition method with hexagonal boron nitride as substrates. We observed sharp exciton emissions, whose linewidth is typically 22~23 meV, in photoluminescence spectra at room temperature, which result clearly demonstrates the high-quality of the current samples. We found that biexcitons formed with extremely low-excitation power (240 W/cm 2 ) at 80 K, and this should originate from the minimal amount of localization centers in the present high-quality samples. The results clearly demonstrate that the present samples can provide an excellent field, where one can observe various excitonic states, offering possibility of exploring optical physics in 2D and finding new condensates.
Additive Effects of Stimulus Quality and Word Frequency on Eye Movements during Chinese Reading
ERIC Educational Resources Information Center
Liu, Pingping; Li, Xingshan; Han, Buxin
2015-01-01
Eye movements of Chinese readers were recorded for sentences in which high- and low-frequency target words were presented normally or with reduced stimulus quality in two experiments. We found stimulus quality and word frequency produced strong additive effects on fixation durations for target words. The results demonstrate that stimulus quality…
Generating high-quality single droplets for optical particle characterization with an easy setup
NASA Astrophysics Data System (ADS)
Xu, Jie; Ge, Baozhen; Meng, Rui
2018-06-01
The high-performance and micro-sized single droplet is significant for optical particle characterization. We develop a single-droplet generator (SDG) based on a piezoelectric inkjet technique with advantages of low cost and easy setup. By optimizing the pulse parameters, we achieve various size single droplets. Further investigations reveal that SDG generates single droplets of high quality, demonstrating good sphericity, monodispersity and a stable length of several millimeters.
Kuperman, Gilad J; Boyer, Aurelia; Cole, Curt; Forman, Bruce; Stetson, Peter D; Cooper, Mary
2006-01-01
At NewYork-Presbyterian Hospital, we are committed to the delivery of high quality care. We have implemented a strategic planning process to determine the information technology initiatives that will best help us improve quality. The process began with the creation of a Clinical Quality and IT Committee. The Committee identified 2 high priority goals that would enable demonstrably high quality care: 1) excellence at data warehousing, and 2) optimal use of automated clinical documentation to capture encounter-related quality and safety data. For each high priority goal, a working group was created to develop specific recommendations. The Data Warehousing subgroup has recommended the implementation of an architecture management process and an improved ability for users to get access to aggregate data. The Structured Documentation subgroup is establishing recommendations for a documentation template creation process. The strategic planning process at times is slow, but assures that the organization is focusing on the information technology activities most likely to lead to improved quality.
Kuperman, Gilad J.; Boyer, Aurelia; Cole, Curt; Forman, Bruce; Stetson, Peter D.; Cooper, Mary
2006-01-01
At NewYork-Presbyterian Hospital, we are committed to the delivery of high quality care. We have implemented a strategic planning process to determine the information technology initiatives that will best help us improve quality. The process began with the creation of a Clinical Quality and IT Committee. The Committee identified 2 high priority goals that would enable demonstrably high quality care: 1) excellence at data warehousing, and 2) optimal use of automated clinical documentation to capture encounter-related quality and safety data. For each high priority goal, a working group was created to develop specific recommendations. The Data Warehousing subgroup has recommended the implementation of an architecture management process and an improved ability for users to get access to aggregate data. The Structured Documentation subgroup is establishing recommendations for a documentation template creation process. The strategic planning process at times is slow, but assures that the organization is focusing on the information technology activities most likely to lead to improved quality. PMID:17238381
Brosseau, Lucie; Taki, Jade; Desjardins, Brigit; Thevenot, Odette; Fransen, Marlene; Wells, George A; Imoto, Aline Mizusaki; Toupin-April, Karine; Westby, Marie; Gallardo, Inmaculada C Álvarez; Gifford, Wendy; Laferrière, Lucie; Rahman, Prinon; Loew, Laurianne; Angelis, Gino De; Cavallo, Sabrina; Shallwani, Shirin Mehdi; Aburub, Ala'; Bennell, Kim L; Van der Esch, Martin; Simic, Milena; McConnell, Sara; Harmer, Alison; Kenny, Glen P; Paterson, Gail; Regnaux, Jean-Philippe; Lefevre-Colau, Marie-Martine; McLean, Linda
2017-05-01
To identify effective mind-body exercise programs and provide clinicians and patients with updated, high-quality recommendations concerning non-traditional land-based exercises for knee osteoarthritis. A systematic search and adapted selection criteria included comparative controlled trials with mind-body exercise programs for patients with knee osteoarthritis. A panel of experts reached consensus on the recommendations using a Delphi survey. A hierarchical alphabetical grading system (A, B, C+, C, D, D+, D-) was used, based on statistical significance ( P < 0.5) and clinical importance (⩾15% improvement). The four high-quality studies identified demonstrated that various mind-body exercise programs are promising for improving the management of knee osteoarthritis. Hatha Yoga demonstrated significant improvement for pain relief (Grade B) and physical function (Grade C+). Tai Chi Qigong demonstrated significant improvement for quality of life (Grade B), pain relief (Grade C+) and physical function (Grade C+). Sun style Tai Chi gave significant improvement for pain relief (Grade B) and physical function (Grade B). Mind-body exercises are promising approaches to reduce pain, as well as to improve physical function and quality of life for individuals with knee osteoarthritis.
Automated water monitor system field demonstration test report. Volume 2: Technical summary
NASA Technical Reports Server (NTRS)
Brooks, R. L.; Jeffers, E. L.; Perreira, J.; Poel, J. D.; Nibley, D.; Nuss, R. H.
1981-01-01
The NASA Automatic Water Monitor System was installed in a water reclamation facility to evaluate the technical and cost feasibility of producing high quality reclaimed water. Data gathered during this field demonstration test are reported.
Growth of urea crystals by physical vapor transport
NASA Technical Reports Server (NTRS)
Feigelson, R. S.; Route, R. K.; Kao, T.-M.
1985-01-01
This work demonstrates that high optical quality crystals of urea can be grown by the physical vapor transport method. The unique features of this method are compared with growth from methanol/water solutions. High growth rates, exceeding 2.5 mm/day, were achieved, and cm-size optical quality single crystals were obtained. Details of the growth technique and the physical properties of the crystals are presented.
Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications
NASA Astrophysics Data System (ADS)
Melik, Rohat; Kosku Perkgoz, Nihan; Unal, Emre; Puttlitz, Christian; Demir, Hilmi Volkan
2008-11-01
One out of ten bone fractures does not heal properly due to improper load distribution and strain profiles during the healing process. To provide implantable tools for the assessment of bone fractures, we have designed novel, bio-implantable, passive, on-chip, RF-MEMS strain sensors that rely on the resonance frequency shift with mechanical deformation. For this purpose, we modeled, fabricated and experimentally characterized two on-chip sensors with high quality factors for in vivo implantation. One of the sensors has an area of ~0.12 mm2 with a quality factor of ~60 and the other has an area of ~0.07 mm2 with a quality factor of ~70. To monitor the mechanical deformation by measuring the change in the resonance frequencies with the applied load, we employed a controllable, point load applying experimental setup designed and constructed for in vitro characterization. In the case of the sensor with the larger area, when we apply a load of 3920 N, we obtain a frequency shift of ~330 MHz and a quality factor of ~76. For the smaller sensor, the frequency shift and the quality factor are increased to 360 MHz and 95, respectively. These data demonstrate that our sensor chips have the capacity to withstand relatively high physiologic loads, and that the concomitant and very large resonant frequency shift with the applied load is achieved while maintaining a high signal quality factor. These experiments demonstrate that these novel sensors have the capacity for producing high sensitivity strain readout, even when the total device area is considerably small. Also, we have demonstrated that our bio-implantable, passive sensors deliver a telemetric, real-time readout of the strain on a chip. Placing two more resonators on the sides of the sensor to serve as transmitter and receiver antennas, we achieved to transfer contactless power and read out loads in the absence of direct wiring to the sensor. With this model, where telemetric measurements become simpler due to the fact that all sensor system is built on the same chip, we obtain a frequency shift of ~190 MHz with an increase in the quality factor from ~38 to ~46 when a load of 3920 N is applied. Therefore, as a first proof of concept, we have demonstrated the feasibility of our on-chip strain sensors for monitoring the mechanical deformation using telemetry-based systems.
Lee, Sang Myeon; Park, Kwang Hyun; Jung, Seungon; Park, Hyesung; Yang, Changduk
2018-05-14
For a given π-conjugated polymer, the batch-to-batch variations in molecular weight (M w ) and polydispersity index (Ð) can lead to inconsistent process-dependent material properties and consequent performance variations in the device application. Using a stepwise-heating protocol in the Stille polycondensation in conjunction with optimized processing, we obtained an ultrahigh-quality PTB7 polymer having high M w and very narrow Ð. The resulting ultrahigh-quality polymer-based solar cells demonstrate up to 9.97% power conversion efficiencies (PCEs), which is over 24% enhancement from the control devices fabricated with commercially available PTB7. Moreover, we observe almost negligible batch-to-batch variations in the overall PCE values from ultrahigh-quality polymer-based devices. The proposed stepwise polymerization demonstrates a facile and effective strategy for synthesizing high-quality semiconducting polymers that can significantly improve device yield in polymer-based solar cells, an important factor for the commercialization of organic solar cells, by mitigating device-to-device variations.
NASA Astrophysics Data System (ADS)
Guo, Pengfei; Shen, Xia; Zhang, Baolong; Sun, Haibin; Zou, Zhijun; Yang, Wenchao; Gong, Ke; Luo, Yongsong
2018-05-01
A simple two-step CVD method is developed to realize the growth of high-quality tin-catalyzed CdSSe alloy nanowires. Microstructural characterizations demonstrate that these wires are high-quality crystalline nanostructures. Local photoluminescence investigation of these nanostructures shows a typical band edge emission at 656 nm with a full-width at half-maximum of 22.3 nm. Optical waveguide measurement along an individual nanowire indicates that the output signal of the guided light has a rapid linear decrease accompanied with maximum red-shift about 109 meV after the transmission of 102 μm. This obvious red-shift is caused by the intensive band-tail absorption during the optical transmission process. Moreover, optically pumped nanolasers are successfully realized at room temperature based on these unique wires, further demonstrating the achievement of stimulated emission from spontaneous emission, promoted by the pump power intensity. This work may find a simple route to the manufacture of superior nanowires for applications in waveguide and integrated photonic devices.
Guo, Pengfei; Shen, Xia; Zhang, Baolong; Sun, Haibin; Zou, Zhijun; Yang, Wenchao; Gong, Ke; Luo, Yongsong
2018-05-04
A simple two-step CVD method is developed to realize the growth of high-quality tin-catalyzed CdSSe alloy nanowires. Microstructural characterizations demonstrate that these wires are high-quality crystalline nanostructures. Local photoluminescence investigation of these nanostructures shows a typical band edge emission at 656 nm with a full-width at half-maximum of 22.3 nm. Optical waveguide measurement along an individual nanowire indicates that the output signal of the guided light has a rapid linear decrease accompanied with maximum red-shift about 109 meV after the transmission of 102 μm. This obvious red-shift is caused by the intensive band-tail absorption during the optical transmission process. Moreover, optically pumped nanolasers are successfully realized at room temperature based on these unique wires, further demonstrating the achievement of stimulated emission from spontaneous emission, promoted by the pump power intensity. This work may find a simple route to the manufacture of superior nanowires for applications in waveguide and integrated photonic devices.
High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator
NASA Astrophysics Data System (ADS)
Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.
2017-10-01
Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.
Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert
2017-02-01
In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80-100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes.
Development and evaluation of oral Cancer quality-of-life questionnaire (QOL-OC).
Nie, Min; Liu, Chang; Pan, Yi-Chen; Jiang, Chen-Xi; Li, Bao-Ru; Yu, Xi-Jie; Wu, Xin-Yu; Zheng, Shu-Ning
2018-05-03
In this study scales and items for the Oral Cancer Quality-of-life Questionnaire (QOL-OC) were designed and the instrument was evaluated. The QOL-OC was developed and modified using the international definition of quality of life (QOL) promulgated by the European Organization for Research and Treatment of Cancer (EORTC) and analysis of the precedent measuring instruments. The contents of each item were determined in the context of the specific characteristics of oral cancer. Two hundred thirteen oral cancer patients were asked to complete both the EORTC core quality of life questionnaire (EORTC QLC-C30) and the QOL-OC. Data collected was used to conduct factor analysis, test-retest reliability, internal consistency, and construct validity. Questionnaire compliance was relatively high. Fourteen of the 213 subjects accepted the same tests after 24 to 48 h demonstrating a high test-retest reliability for all five scales. Overall internal consistency surpasses 0.8. The outcome of the factor analysis coincides substantially with our theoretical conception. Each item shows a higher correlation coefficient within its own scale than the others which indicates high construct validity. QOL-OC demonstrates fairly good statistical reliability, validity, and feasibility. However, further tests and modification are needed to ensure its applicability to the quality-of-life assessment of Chinese oral cancer patients.
Training time and quality of smartphone-based anterior segment screening in rural India
Ludwig, Cassie A; Newsom, Megan R; Jais, Alexandre; Myung, David J; Murthy, Somasheila I; Chang, Robert T
2017-01-01
Objective We aimed at evaluating the ability of individuals without ophthalmologic training to quickly capture high-quality images of the cornea by using a smartphone and low-cost anterior segment imaging adapter (the “EyeGo” prototype). Methods Seven volunteers photographed 1,502 anterior segments from 751 high school students in Varni, India, by using an iPhone 5S with an attached EyeGo adapter. Primary outcome measures were median photograph quality of the cornea and anterior segment of the eye (validated Fundus Photography vs Ophthalmoscopy Trial Outcomes in the Emergency Department [FOTO-ED] study; 1–5 scale; 5, best) and the time required to take each photograph. Volunteers were surveyed on their familiarity with using a smartphone (1–5 scale; 5, very comfortable) and comfort in assessing problems with the eye (1–5 scale; 5, very comfortable). Binomial logistic regression was performed using image quality (low quality: <4; high quality: ≥4) as the dependent variable and age, comfort using a smartphone, and comfort in assessing problems with the eye as independent variables. Results Six of the seven volunteers captured high-quality (median ≥4/5) images with a median time of ≤25 seconds per eye for all the eyes screened. Four of the seven volunteers demonstrated significant reductions in time to acquire photographs (P1=0.01, P5=0.01, P6=0.01, and P7=0.01), and three of the seven volunteers demonstrated significant improvements in the quality of photographs between the first 100 and last 100 eyes screened (P1<0.001, P2<0.001, and P6<0.01). Self-reported comfort using a smartphone (odds ratio [OR] =1.25; 95% CI =1.13 to 1.39) and self-reported comfort diagnosing eye conditions (OR =1.17; 95% CI =1.07 to 1.29) were significantly associated with an ability to take a high-quality image (≥4/5). There was a nonsignificant association between younger age and ability to take a high-quality image. Conclusion Individuals without ophthalmic training were able to quickly capture a high-quality magnified view of the anterior segment of the eye by using a smartphone with an attached imaging adapter. PMID:28761328
Li, Xiu-Mei; Luo, Xue-Gang; Zhang, Chao-Zheng; Wang, Nan; Zhang, Tong-Cun
2015-02-01
In this paper, a heart-cutting two-dimensional high-performance liquid chromatography coupled with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was established for controlling the quality of different batches of Hypericum ascyron extract for the first time. In comparison with the common one-dimensional fingerprint, the second-dimensional fingerprint compiled additional spectral data and was hence more informative. The quality of H. ascyron extract was further evaluated by similarity measures and the same results were achieved, the correlation coefficients of the similarity of ten batches of H. ascyron extract were >0.99. Furthermore, we also evaluated the quality of the ten batches of H. ascyron extract by antibacterial activity. The result demonstrated that the quality of the ten batches of H. ascyron extract was not significantly different by MTT. Finally, we demonstrated that the second-dimensional fingerprint coupled with the MTT method was a more powerful tool to characterize the quality of samples of batch to batch. Therefore the proposed method could be used to comprehensively conduct the quality control of traditional Chinese medicines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.
2016-01-01
We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design. PMID:27412372
Muhammed, M M; Roldan, M A; Yamashita, Y; Sahonta, S-L; Ajia, I A; Iizuka, K; Kuramata, A; Humphreys, C J; Roqan, I S
2016-07-14
We demonstrate the high structural and optical properties of InxGa1-xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 10(7) cm(-2)) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1-xN epilayers can be achieved with high optical quality of InxGa1-xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.
High power far-infrared optical parametric oscillator with high beam quality
NASA Astrophysics Data System (ADS)
Qian, Chuan-Peng; Shen, Ying-Jie; Dai, Tong-Yu; Duan, Xiao-Ming; Yao, Bao-Quan
2016-11-01
A high power ZnGeP2 (ZGP) optical parametric oscillator (OPO) with good beam quality pumped by a Q-switched Ho:YAG laser was demonstrated. The maximum output power of the ZGP OPO with a four-mirror ring cavity was about 5.04 W around 8.1 μm with 83.9 W Ho incident pump power, corresponding to a slope efficiency of 9.2 %. The ZGP OPO produced 36.0 ns far-IR pulse laser in the 8.0-8.3 μm spectral regions. The beam quality was measured to be M2 1.6 at the highest output power.
ERIC Educational Resources Information Center
Smith, Bradley H.; Gahagan, James; McQuillin, Samuel; Haywood, Benjamin; Cole, Caroline Pender; Bolton, Clay; Wampler, Mary Katherine
2011-01-01
We describe six hallmarks of high quality service-learning and explain how these considerations guided the development of a Transitional Coaching Program (TCP) during the first three years of implementation. We have demonstrated that the TCP is acceptable, feasible, and sustainable. Improvements have been seen in the degree of impact on learning…
An "artificial retina" processor for track reconstruction at the full LHC crossing rate
NASA Astrophysics Data System (ADS)
Abba, A.; Bedeschi, F.; Caponio, F.; Cenci, R.; Citterio, M.; Cusimano, A.; Fu, J.; Geraci, A.; Grizzuti, M.; Lusardi, N.; Marino, P.; Morello, M. J.; Neri, N.; Ninci, D.; Petruzzo, M.; Piucci, A.; Punzi, G.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.; Walsh, J.
2016-07-01
We present the latest results of an R&D study for a specialized processor capable of reconstructing, in a silicon pixel detector, high-quality tracks from high-energy collision events at 40 MHz. The processor applies a highly parallel pattern-recognition algorithm inspired to quick detection of edges in mammals visual cortex. After a detailed study of a real-detector application, demonstrating that online reconstruction of offline-quality tracks is feasible at 40 MHz with sub-microsecond latency, we are implementing a prototype using common high-bandwidth FPGA devices.
An "artificial retina" processor for track reconstruction at the full LHC crossing rate
Abba, A.; F. Bedeschi; Caponio, F.; ...
2015-10-23
Here, we present the latest results of an R&D; study for a specialized processor capable of reconstructing, in a silicon pixel detector, high-quality tracks from high-energy collision events at 40 MHz. The processor applies a highly parallel pattern-recognition algorithm inspired to quick detection of edges in mammals visual cortex. After a detailed study of a real-detector application, demonstrating that online reconstruction of offline-quality tracks is feasible at 40 MHz with sub-microsecond latency, we are implementing a prototype using common high-bandwidth FPGA devices.
Atomically Precise Surface Engineering for Producing Imagers
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor); Greer, Frank (Inventor); Jones, Todd J. (Inventor)
2015-01-01
High-quality surface coatings, and techniques combining the atomic precision of molecular beam epitaxy and atomic layer deposition, to fabricate such high-quality surface coatings are provided. The coatings made in accordance with the techniques set forth by the invention are shown to be capable of forming silicon CCD detectors that demonstrate world record detector quantum efficiency (>50%) in the near and far ultraviolet (155 nm-300 nm). The surface engineering approaches used demonstrate the robustness of detector performance that is obtained by achieving atomic level precision at all steps in the coating fabrication process. As proof of concept, the characterization, materials, and exemplary devices produced are presented along with a comparison to other approaches.
Publishing Single-Case Research Design Studies That Do Not Demonstrate Experimental Control
ERIC Educational Resources Information Center
Tincani, Matt; Travers, Jason
2018-01-01
Demonstration of experimental control is considered a hallmark of high-quality single-case research design (SCRD). Studies that fail to demonstrate experimental control may not be published because researchers are unwilling to submit these papers for publication and journals are unlikely to publish negative results (i.e., the file drawer effect).…
Stalder, Aurelien F; Schmidt, Michaela; Quick, Harald H; Schlamann, Marc; Maderwald, Stefan; Schmitt, Peter; Wang, Qiu; Nadar, Mariappan S; Zenge, Michael O
2015-12-01
To integrate, optimize, and evaluate a three-dimensional (3D) contrast-enhanced sparse MRA technique with iterative reconstruction on a standard clinical MR system. Data were acquired using a highly undersampled Cartesian spiral phyllotaxis sampling pattern and reconstructed directly on the MR system with an iterative SENSE technique. Undersampling, regularization, and number of iterations of the reconstruction were optimized and validated based on phantom experiments and patient data. Sparse MRA of the whole head (field of view: 265 × 232 × 179 mm(3) ) was investigated in 10 patient examinations. High-quality images with 30-fold undersampling, resulting in 0.7 mm isotropic resolution within 10 s acquisition, were obtained. After optimization of the regularization factor and of the number of iterations of the reconstruction, it was possible to reconstruct images with excellent quality within six minutes per 3D volume. Initial results of sparse contrast-enhanced MRA (CEMRA) in 10 patients demonstrated high-quality whole-head first-pass MRA for both the arterial and venous contrast phases. While sparse MRI techniques have not yet reached clinical routine, this study demonstrates the technical feasibility of high-quality sparse CEMRA of the whole head in a clinical setting. Sparse CEMRA has the potential to become a viable alternative where conventional CEMRA is too slow or does not provide sufficient spatial resolution. © 2014 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Walker, Kathrin C.; Saito, Rebecca N.
2011-01-01
Research demonstrates that involvement in high-quality youth programs benefits young people personally, socially, and academically. Yet many families--particularly low-income and minority families--are unsatisfied with the quality, affordability, and availability of options in their communities. Participation rates are especially low for youth who…
Synthesis of quantum dots via microreaction: structure optimization for microreactor system
NASA Astrophysics Data System (ADS)
Yang, Hongwei; Luan, Weiling; Cheng, Rui; Chu, Haijian; Tu, Shan-tung
2011-08-01
Microreactor systems existed as a powerful tool for the continuous synthesis of quantum dots. However, the lack of structure optimization for the discrete units led to empirical determination of the length scale, and the properties of the formed products varied in different cases. In this article, the optimizations for the micromixer volume and capillary diameter were presented based on the synthesis of CdSe nanocrystals (NCs). Spectra investigation revealed that the application of a small convective mixer of 36 μL led to 1/3 increase of CdSe concentration in the crude solution. The enhanced mixing of the precursors in this case was also demonstrated favorable to achieve CdSe NCs with narrow PL width. Fast heating and uniform reaction condition achieved in a narrow channel favored the preparation of high quality CdSe NCs under short residence time. However, the application of wide channel did not necessarily result in CdSe NCs with poor quality. Here, we demonstrated that high-quality CdSe NCs with narrow full width at half maximum (FWHM) as 32 nm and high quantum yield (QY) 34.7% could be prepared using an 844 μm inner diameter capillary. Based on the obtained results, the scaled-up synthesis of CdSe NCs was demonstrated, and a high quantity of 0.8 g dry CdSe NCs powder (3.5 nm, σ 8.2%) was obtained within 1 h.
Femtosecond time-resolved MeV electron diffraction
Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; ...
2015-06-02
We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS 2 are obtained utilizing a 5 fC (~3 × 10 4 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated bymore » observing the evolution of Bragg and superlattice peaks of 1T-TaS 2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.« less
Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert
2017-01-01
In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80–100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes. PMID:28145513
2018-05-07
Watch NASA astronaut Scott Tingle demonstrate the importance of astronaut nutrition on the International Space Station! Do you have what it takes to stay healthy in space? Try developing your own astronaut menu by checking out https://www.nasa.gov/stemonstrations for a corresponding lesson plan and see more videos like these! For a high quality copy for download, visit: For a high quality copy for download, visit: https://archive.org/details/jsc2018m000319_STEMonstrations_Nutrition_MXF
Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulliford, Colwyn, E-mail: cg248@cornell.edu; Bartnik, Adam, E-mail: acb20@cornell.edu; Bazarov, Ivan
We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of deliveringmore » beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.« less
A spectrally tunable all-graphene-based flexible field-effect light-emitting device
NASA Astrophysics Data System (ADS)
Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling
2015-07-01
The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (~450 nm) to red (~750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole-Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays.
ERIC Educational Resources Information Center
Garcia-Rea, Elizabeth A.; LePage, James P.
2010-01-01
With the high number of homeless, there is a critical need for rapid and accurate assessment of quality of life to assess program outcomes. The World Health Organization's WHOQOL-100 has demonstrated promise in accurately assessing quality-of-life in this population. However, its length may make large scale use impractical for working with a…
[The significance of meat quality in marketing].
Kallweit, E
1994-07-01
Food quality in general and meat quality in particular are not only evaluated by means of objective quality traits but the entire production process is gaining more attention by the modern consumer. Due to this development quality programs were developed to define the majority of the processes in all production and marketing steps which are again linked by contracts. Not all of these items are quality relevant, but are concessions to ethic principles (animal welfare etc.). This is demonstrated by the example of Scharrel-pork production. The price differentiation at the pork market is still influenced predominantly by quantitative carcass traits. On the European market quality programs still are of minor significance. Premiums which are paid for high quality standards are more or less compensated by higher production costs and lower lean meat percentages, which must be expected in stress susceptible strains. The high efforts to establish quality programs, however, help to improve the quality level in general, and secure the market shares for local producers.
Yi, Junjie; Kebede, Biniam; Kristiani, Kristiani; Grauwet, Tara; Van Loey, Ann; Hendrickx, Marc
2018-05-30
Cloud loss, enzymatic browning, and flavor changes are important quality defects of cloudy fruit juices determining consumer acceptability. The development of clean label options to overcome such quality problems is currently of high interest. Therefore, this study investigated the effect of kiwifruit puree (clean label ingredient) and high pressure homogenization on quality changes of cloudy apple juice using a multivariate approach. The use of kiwifruit puree addition and high pressure homogenization resulted in a juice with improved uniformity and cloud stability by reducing particle size and increasing viscosity and yield stress (p < 0.01). Furthermore, kiwifruit puree addition reduced enzymatic browning (ΔE ∗ < 3), due to the increased ascorbic acid and contributed to a more saturated and bright yellow color, a better taste balance, and a more fruity aroma of juice. This work demonstrates that clean label options to control quality degradation of cloudy fruit juice might offer new opportunities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Improved power and efficiency for tapered lasers with optimized photonic crystal structures
NASA Astrophysics Data System (ADS)
Ma, Xiaolong; Qu, Hongwei; Zhao, Shaoyu; Zhou, Xuyan; Lin, Yuzhe; Zheng, Wanhua
2017-10-01
High power and high beam quality laser sources are required in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, material processing and others. Tapered lasers can provide a high output power while keeping a high beam quality. However, the conventional tapered lasers suffer from a large vertical beam divergence. We have demonstrated 2-mm long tapered lasers with photonic crystal structures. A high beam quality and a narrow vertical divergence are achieved. In this paper, we optimized the photonic crystal structure and fabricated a 4-mm long tapered laser to further increase the output power and the wall-plug efficiency. Compared with our precious wafer, the optimized structure has a lower doping level to reduce the internal loss. The period of the photonic crystal structure and the thickness of the upper cladding are also reduced. The device has a 1-mm long ridge-waveguide section and a 3-mm long tapered section. The taper angle is 4°. An output power of 7.3 W is achieved with a peak wall-plug efficiency of 46% in continuous-wave mode. The threshold current is around 500 mA and the slope efficiency is 0.93 W/A. In pulsed mode, the output power is 15.6 W and the maximum wall-plug efficiency is 48.1%. The far-field divergence with full width at half maximum is 6.3° for the lateral direction at 3 A. The vertical far-field beam divergence is around 11° at different injection levels. High beam qualities are demonstrated by beam quality factor M2 of 1.52 for the lateral direction and 1.54 for the vertical direction.
Strong Photoluminescence Enhancement in All-Dielectric Fano Metasurface with High Quality Factor.
Yuan, Shuai; Qiu, Xingzhi; Cui, Chengcong; Zhu, Liangqiu; Wang, Yuxi; Li, Yi; Song, Jinwen; Huang, Qingzhong; Xia, Jinsong
2017-11-28
All-dielectric metamaterials offer great flexibility for controlling light-matter interaction, owing to their strong electric and magnetic resonances with negligible loss at wavelengths above the material bandgap. Here, we propose an all-dielectric asymmetric metasurface structure exhibiting high quality factor and prominent Fano line shape. Over three-orders photoluminescence enhancement is demonstrated in the fabricated all-dielectric metasurface with record-high quality factor of 1011. We find this strong emission enhancement is attributed to the coherent Fano resonances, which originate from the destructive interferences of antisymmetric displacement currents in the asymmetric all-dielectric metasurface. Our observations show a promising approach to realize light emitters based on all-dielectric metasurfaces.
Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition.
Liu, Juanjuan; Kutty, R Govindan; Liu, Zheng
2016-11-29
Hexagonal boron nitrite (h-BN) is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.
Effect of crystal quality on performance of spin-polarized photocathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xiuguang; Ozdol, Burak; Yamamoto, Masahiro
2014-11-17
GaAs/GaAsP strain-compensated superlattices (SLs) with thickness up to 90-pair were fabricated. Transmission electron microscopy revealed the SLs are of high crystal quality and the introduced strain in SLs layers are fixed in the whole SL layers. With increasing SL pair number, the strain-compensated SLs show a less depolarization than the conventional strained SLs. In spite of the high crystal quality, the strain-compensated SLs also remain slightly depolarized with increasing SL pairs and the decrease in spin-polarization contributes to the spin relaxation time. 24-pair of GaAs/GaAsP strain-compensated SL demonstrates a maximum spin-polarization of 92% with a high quantum efficiency of 1.6%.
Fitness in paradise: quality of forensic reports submitted to the Hawaii judiciary.
Robinson, Richard; Acklin, Marvin W
2010-01-01
This paper examined quality of forensic reports submitted to the Hawaii Judiciary. Hawaii utilizes a three panel system for assessing fitness to proceed, where two psychologists and one psychiatrist submit independent reports to the Court. Utilizing a survey instrument based on previous research and nationally-derived quality standards, 150 competency to stand trial (CST) reports were examined. Reports demonstrated pervasive mediocrity with respect to quality (Mean QC=68.95, SD=15.21). One quarter (N=38) of the reports scored at or above 80% of the maximum possible score. Levels of CST agreement between evaluators and evaluators and judges were high. Report quality did not differ as a function of evaluator professional identity. Full-time employed evaluators submitted a greater number of reports above the quality criterion. For those evaluators who attended the March training, reports demonstrated significantly improved quality. Suggestions for enhancing report quality are offered with a special attention to inclusion of report elements, focus on inclusion of historical elements, and clearly described rationales supporting forensic opinions. (7664 words. Competency to stand trial, inter-rater agreement).
Advancing Achievement: Findings from an Independent Evaluation of a Major After-School Initiative
ERIC Educational Resources Information Center
Arbreton, Amy; Sheldon, Jessica; Bradshaw, Molly; Goldsmith, Julie
2008-01-01
This report presents outcomes from Public/Private Ventures research on CORAL, an eight-year, $58 million after-school initiative of The James Irvine Foundation. Findings described in the report demonstrate the relationship between high-quality literacy programming and academic gains and underscore the potential role that quality programs may play…
Water quality modeling based on landscape analysis: Importance of riparian hydrology
Thomas Grabs
2010-01-01
Several studies in high-latitude catchments have demonstrated the importance of near-stream riparian zones as hydrogeochemical hotspots with a substantial influence on stream chemistry. An adequate representation of the spatial variability of riparian-zone processes and characteristics is the key for modeling spatiotemporal variations of stream-water quality. This...
Circle Time Revisited: How Do Preschool Classrooms Use This Part of the Day?
ERIC Educational Resources Information Center
Bustamante, Andres S.; Hindman, Annemarie H.; Champagne, Carly R.; Wasik, Barbara A.
2018-01-01
Circle time is a near universally used preschool activity; however, little research has explored its nature, content, and quality. This study examined activity types, teacher and child talk, child engagement, and classroom quality in a sample of public preschool classrooms in an urban, high-poverty school district. Results demonstrated that…
Growth front nucleation of rubrene thin films for high mobility organic transistors
NASA Astrophysics Data System (ADS)
Hsu, C. H.; Deng, J.; Staddon, C. R.; Beton, P. H.
2007-11-01
We demonstrate a mode of thin film growth in which amorphous islands crystallize into highly oriented platelets. A cascade of crystallization is observed, in which platelets growing outward from a central nucleation point impinge on neighboring amorphous islands and provide a seed for further nucleation. Through control of growth parameters, it is possible to produce high quality thin films which are well suited to the formation of organic transistors. We demonstrate this through the fabrication of rubrene thin film transistors with high carrier mobility.
Radioactive Decay: Audio Data Collection
ERIC Educational Resources Information Center
Struthers, Allan
2009-01-01
Many phenomena generate interesting audible time series. This data can be collected and processed using audio software. The free software package "Audacity" is used to demonstrate the process by recording, processing, and extracting click times from an inexpensive radiation detector. The high quality of the data is demonstrated with a simple…
75 FR 41487 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-16
...: Electronic Health Records Demonstration System (EHRDS)--practice application and profile update system; Use... reward the delivery of high-quality care supported by the adoption and use of electronic health records... demonstration system was first developed with the intention of having practices applying to participate in Phase...
Convolutional Sparse Coding for RGB+NIR Imaging.
Hu, Xuemei; Heide, Felix; Dai, Qionghai; Wetzstein, Gordon
2018-04-01
Emerging sensor designs increasingly rely on novel color filter arrays (CFAs) to sample the incident spectrum in unconventional ways. In particular, capturing a near-infrared (NIR) channel along with conventional RGB color is an exciting new imaging modality. RGB+NIR sensing has broad applications in computational photography, such as low-light denoising, it has applications in computer vision, such as facial recognition and tracking, and it paves the way toward low-cost single-sensor RGB and depth imaging using structured illumination. However, cost-effective commercial CFAs suffer from severe spectral cross talk. This cross talk represents a major challenge in high-quality RGB+NIR imaging, rendering existing spatially multiplexed sensor designs impractical. In this work, we introduce a new approach to RGB+NIR image reconstruction using learned convolutional sparse priors. We demonstrate high-quality color and NIR imaging for challenging scenes, even including high-frequency structured NIR illumination. The effectiveness of the proposed method is validated on a large data set of experimental captures, and simulated benchmark results which demonstrate that this work achieves unprecedented reconstruction quality.
Development of an advanced pitch active control system for a wide body jet aircraft
NASA Technical Reports Server (NTRS)
Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.
1984-01-01
An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.
34 CFR 200.56 - Definition of “highly qualified teacher.”
Code of Federal Regulations, 2011 CFR
2011-07-01
... areas of the basic elementary school curriculum; or (3) At the public middle and high school levels, demonstrate a high level of competency by— (i) Passing a rigorous State test in each academic subject in which... teacher— (1) Receives high-quality professional development that is sustained, intensive, and classroom...
34 CFR 200.56 - Definition of “highly qualified teacher.”
Code of Federal Regulations, 2014 CFR
2014-07-01
... areas of the basic elementary school curriculum; or (3) At the public middle and high school levels, demonstrate a high level of competency by— (i) Passing a rigorous State test in each academic subject in which... teacher— (1) Receives high-quality professional development that is sustained, intensive, and classroom...
34 CFR 200.56 - Definition of “highly qualified teacher.”
Code of Federal Regulations, 2010 CFR
2010-07-01
... areas of the basic elementary school curriculum; or (3) At the public middle and high school levels, demonstrate a high level of competency by— (i) Passing a rigorous State test in each academic subject in which... teacher— (1) Receives high-quality professional development that is sustained, intensive, and classroom...
34 CFR 200.56 - Definition of “highly qualified teacher.”
Code of Federal Regulations, 2012 CFR
2012-07-01
... areas of the basic elementary school curriculum; or (3) At the public middle and high school levels, demonstrate a high level of competency by— (i) Passing a rigorous State test in each academic subject in which... teacher— (1) Receives high-quality professional development that is sustained, intensive, and classroom...
34 CFR 200.56 - Definition of “highly qualified teacher.”
Code of Federal Regulations, 2013 CFR
2013-07-01
... areas of the basic elementary school curriculum; or (3) At the public middle and high school levels, demonstrate a high level of competency by— (i) Passing a rigorous State test in each academic subject in which... teacher— (1) Receives high-quality professional development that is sustained, intensive, and classroom...
High-quality uniform dry transfer of graphene to polymers.
Lock, Evgeniya H; Baraket, Mira; Laskoski, Matthew; Mulvaney, Shawn P; Lee, Woo K; Sheehan, Paul E; Hines, Daniel R; Robinson, Jeremy T; Tosado, Jacob; Fuhrer, Michael S; Hernández, Sandra C; Walton, Scott G
2012-01-11
In this paper we demonstrate high-quality, uniform dry transfer of graphene grown by chemical vapor deposition on copper foil to polystyrene. The dry transfer exploits an azide linker molecule to establish a covalent bond to graphene and to generate greater graphene-polymer adhesion compared to that of the graphene-metal foil. Thus, this transfer approach provides a novel alternative route for graphene transfer, which allows for the metal foils to be reused. © 2011 American Chemical Society
ERIC Educational Resources Information Center
Packard, Richard D.
To assure accountability to educational policy developed by elected and appointed leaders, agencies and organizations must adopt high quality evaluation designs tailored to meet three basic tenets: (1) different processes for policy formation and demonstration of accountability; (2) clear accountability expectations built into policies; (3)…
Nanowire field-effect transistors for gas sensor applications
NASA Astrophysics Data System (ADS)
Constantinou, Marios
Sensing BTEX (Benzene, Ethylbenzene, Toluene, Xylene) pollutants is of utmost importance to reduce health risk and ensure public safety. The lack of sensitivity and selectivity of the current gas sensors and the limited number of available technologies in the field of BTEX-sensing raises the demand for the development of high-performance gas sensors for BTEX applications. The scope of this thesis is the fabrication and characterisation of high-quality field-effect transistors (FETs), with functionalised silicon nanowires (SiNWs), for the selective sensing of benzene vs. other BTEX gases. This research addresses three main challenges in SiNW FET-sensor device development: i) controllable and reproducible assembly of high-quality SiNWs for FET sensor devices using the method of dielectrophoresis (DEP), ii) almost complete elimination of harmful hysteresis effect in the SiNW FET current-voltage characteristics induced by surface states using DMF solvent, iii) selective sensing of benzene with up to ppb range of sensitivity using calix[4]arene-derivatives. It is experimentally demonstrated that frequency-controlled DEP is a powerful tool for the selection and collection of semiconducting SiNWs with advanced electrical and morphological properties, from a poly-disperse as-synthesised NWs. The DEP assembly method also leads to a controllable and reproducible fabrication of high-quality NW-based FETs. The results highlight the superiority of DEP, performed at high signal frequencies (5-20 MHz) to selectively assemble only high-quality NWs which can respond to such high DEP frequencies. The SiNW FETs, with NWs collected at high DEP frequencies, have high mobility (≈50 cm2 V-1 s-1), low sub-threshold-swing (≈1.26 V/decade), high on-current (up to 3 mA) and high on/off ratio (106-107). The DEP NW selection is also demonstrated using an industrially scalable method, to allow establishing of NW response characteristics to different DEP frequencies in a very short time window of about 60 seconds. The choice of solvent for the dispersion of the SiNW for the DEP process demonstrates a dramatic impact on their surface trap, with DMF solvent acting as a mild oxidising agent on the NW surface shell. This surface state passivation technique resulted in the fabrication of high-quality, hysteresis-free NW FET transducers for sensor applications. Finally, the proof-of-concept SiNW FET transducer decorated with calix[4]arene-derivative gas receptors exhibits selective detection of benzene vs. other BTEX gases up to 30 ppm concentrations, and up to sub-ppm benzene concentration. The demonstrated NW-sensors are low power and compact, and therefore can be easily mounted on a mobile device, providing instantaneous determination of hazardous gases in the surrounding atmosphere. The methodologies developed in this thesis, have a high potential to make a breakthrough in low-cost, selective gas sensors, which can be fabricated in line with printed and flexible electronic approaches.
Scalable graphene production from ethanol decomposition by microwave argon plasma torch
NASA Astrophysics Data System (ADS)
Melero, C.; Rincón, R.; Muñoz, J.; Zhang, G.; Sun, S.; Perez, A.; Royuela, O.; González-Gago, C.; Calzada, M. D.
2018-01-01
A fast, efficient and simple method is presented for the production of high quality graphene on a large scale by using an atmospheric pressure plasma-based technique. This technique allows to obtain high quality graphene in powder in just one step, without the use of neither metal catalysts and nor specific substrate during the process. Moreover, the cost for graphene production is significantly reduced since the ethanol used as carbon source can be obtained from the fermentation of agricultural industries. The process provides an additional benefit contributing to the revalorization of waste in the production of a high-value added product like graphene. Thus, this work demonstrates the features of plasma technology as a low cost, efficient, clean and environmentally friendly route for production of high-quality graphene.
Hudait, Mantu K.; Clavel, Michael; Goley, Patrick; Jain, Nikhil; Zhu, Yan
2014-01-01
Germanium-based materials and device architectures have recently appeared as exciting material systems for future low-power nanoscale transistors and photonic devices. Heterogeneous integration of germanium (Ge)-based materials on silicon (Si) using large bandgap buffer architectures could enable the monolithic integration of electronics and photonics. In this paper, we report on the heterogeneous integration of device-quality epitaxial Ge on Si using composite AlAs/GaAs large bandgap buffer, grown by molecular beam epitaxy that is suitable for fabricating low-power fin field-effect transistors required for continuing transistor miniaturization. The superior structural quality of the integrated Ge on Si using AlAs/GaAs was demonstrated using high-resolution x-ray diffraction analysis. High-resolution transmission electron microscopy confirmed relaxed Ge with high crystalline quality and a sharp Ge/AlAs heterointerface. X-ray photoelectron spectroscopy demonstrated a large valence band offset at the Ge/AlAs interface, as compared to Ge/GaAs heterostructure, which is a prerequisite for superior carrier confinement. The temperature-dependent electrical transport properties of the n-type Ge layer demonstrated a Hall mobility of 370 cm2/Vs at 290 K and 457 cm2/Vs at 90 K, which suggests epitaxial Ge grown on Si using an AlAs/GaAs buffer architecture would be a promising candidate for next-generation high-performance and energy-efficient fin field-effect transistor applications. PMID:25376723
Robertson, Dale M.; Rose, William J.; Fitzpatrick, Faith A.
2009-01-01
Silver Lake is typically an oligotrophic-to-mesotrophic, soft-water, terminal lake in northwestern Wisconsin. A terminal lake is a closed-basin lake with surface-water inflows but no surface-water outflows to other water bodies. After several years with above-normal precipitation, very high water levels caused flooding of several buildings near the lake and erosion of soil around much of the shoreline, which has been associated with a degradation in water quality (increased phosphorus and chlorophyll a concentrations and decreased water clarity). To gain a better understanding of what caused the very high water levels and degradation in water quality and collect information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. This report describes results of the study; specifically, lake-water quality, historical changes in water level, water and phosphorus budgets for the two years monitored in the study, results of model simulations that demonstrate how changes in phosphorus inputs affect lake-water quality, and the relative importance of changes in hydrology and changes in the watershed to the water quality of the lake. From 1987 to about 1996, water quality in Silver Lake was relatively stable. Since 1996, however, summer average total phosphorus concentrations increased from about 0.008 milligrams per liter (mg/L) to 0.018 mg/L in 2003, before decreasing to 0.011 mg/L in 2008. From 1996 to 2003, Secchi depths decreased from about 14 to 7.4 feet, before increasing to about 19 feet in 2008. Therefore, Silver Lake is typically classified as oligotrophic to mesotrophic; however, during 2002-4, the lake was classified as mesotrophic to eutrophic. Because productivity in Silver Lake is limited by phosphorus, phosphorus budgets for the lake were constructed for monitoring years 2005 and 2006. The average annual input of phosphorus was 216 pounds: 78 percent from tributary and nearshore runoff and 22 percent from atmospheric deposition. Because Silver Lake is hydraulically mounded above the local groundwater system, little or no input of phosphorus to the lake is from groundwater and septic systems. Silver Lake had previously been incorrectly described as a groundwater flowthrough lake. Phosphorus budgets were constructed for a series of dry years (low water levels) and a series of wet years (high water levels). About 6 times more phosphorus was input to the lake during wet years with high water levels than during the dry years. Phosphorus from erosion represented 13-20 percent of the phosphorus input during years with very high water levels. Results from the Canfield and Bachman eutrophication model and Carlson trophic state index equations demonstrated that water quality in Silver Lake directly responds to changes in external phosphorus input, with the percent change in chlorophyll a being about 80 percent of the percent change in total phosphorus input and the change in Secchi depth and total phosphorus concentrations being about 40 and 50 percent of the percent change in input, respectively. Therefore, changes in phosphorus input should impact water quality. Specific scenarios were simulated with the models to describe the effects of natural (climate-driven) and anthropogenic (human-induced) changes. Results of these scenarios demonstrated that several years of above-normal precipitation cause sustained high water levels and a degradation in water quality, part of which is due to erosion of the shoreline. Results also demonstrated that 1) changes in tributary and nearshore runoff have a dramatic effect on lake-water quality, 2) diverting water into the lake to increase the water level is expected to degrade the water quality, and 3) removal of water to decrease the water level of the lake is expected to have little effect on water quality. Fluctuations in water levels since 1967, when records began for the lake, are representative
NASA Astrophysics Data System (ADS)
Nyman, G.; Häkkinen, J.; Koivisto, E.-M.; Leisti, T.; Lindroos, P.; Orenius, O.; Virtanen, T.; Vuori, T.
2010-01-01
Subjective image quality data for 9 image processing pipes and 8 image contents (taken with mobile phone camera, 72 natural scene test images altogether) from 14 test subjects were collected. A triplet comparison setup and a hybrid qualitative/quantitative methodology were applied. MOS data and spontaneous, subjective image quality attributes to each test image were recorded. The use of positive and negative image quality attributes by the experimental subjects suggested a significant difference between the subjective spaces of low and high image quality. The robustness of the attribute data was shown by correlating DMOS data of the test images against their corresponding, average subjective attribute vector length data. The findings demonstrate the information value of spontaneous, subjective image quality attributes in evaluating image quality at variable quality levels. We discuss the implications of these findings for the development of sensitive performance measures and methods in profiling image processing systems and their components, especially at high image quality levels.
NASA Astrophysics Data System (ADS)
Seth, Sudipta; Samanta, Anunay
2016-11-01
A facile and highly reproducible room temperature, open atmosphere synthesis of cesium lead halide perovskite nanocrystals of six different morphologies is reported just by varying the solvent, ligand and reaction time. Sequential evolution of the quantum dots, nanoplates and nanobars in one medium and nanocubes, nanorods and nanowires in another medium is demonstrated. These perovskite nanoparticles are shown to be of excellent crystalline quality with high fluorescence quantum yield. A mechanism of the formation of nanoparticles of different shapes and sizes is proposed. Considering the key role of morphology in nanotechnology, this simple method of fabrication of a wide range of high quality nanocrystals of different shapes and sizes of all-inorganic lead halide perovskites, whose potential is already demonstrated in light emitting and photovoltaic applications, is likely to help widening the scope and utility of these materials in optoelectronic devices.
SUPERFUND INNOVATIVE TECHNOLOGIES EVALUATION ...
This task seeks to identify high priority needs of the Regions and Program Offices for innovative field sampling, characterization, monitoring, and measurement technologies. When an appropriate solution to a specific problem is identified, a field demonstration is conducted to document the performance and cost of the proposed technologies. The use of field analysis almost always provides a savings in time and cost over the usual sample and ship to a conventional laboratory for analysis approach to site characterization and monitoring. With improvements in technology and appropriate quality assurance/quality control, field analysis has been shown to provide high quality data, useful for most environmental monitoring or characterization projects. An emphasis of the program is to seek out innovative solutions to existing problems and to provide the cost and performance data a user would require to make an informed decision regarding the adequacy of a technology to address a specific environmental problem. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented performance and cost data obtained from field demonstrations.
Cruz, L. C.; Batista, J. E. S.; Zemolin, A. P. P.; Nunes, M. E. M.; Lippert, D. B.; Royes, L. F. F.; Soares, F. A.; Pereira, A. B.; Posser, T.; Franco, J. L.
2014-01-01
We characterized, for the first time, the quality and identity of Brazilian Pampa biome honey and its antioxidant properties in vitro (FRAP, DDPH and ABTS). The potential protective effect of honey against oxidative stress induced by iron (Fe) and paraquat, (PQ) in a Drosophila melanogaster model (in vivo) was also tested. The results indicated that all honey samples tested showed antioxidant activity in vitro. Flies treated with honey showed increased lifespan and were protected against oxidative stress induced by Fe and PQ. Despite the high concentration of sugars in honey (approximately 70–80%), our results demonstrate a hypoglycemic-like effect of honey in Drosophila. Thus, this study demonstrates the high quality of Brazilian Pampa biome honey as well as its significant antioxidant activity in vitro and in vivo, pointing to the potential use of this natural product as an alternative in the therapy of oxidative stress-associated diseases. PMID:26904632
Cruz, L C; Batista, J E S; Zemolin, A P P; Nunes, M E M; Lippert, D B; Royes, L F F; Soares, F A; Pereira, A B; Posser, T; Franco, J L
2014-01-01
We characterized, for the first time, the quality and identity of Brazilian Pampa biome honey and its antioxidant properties in vitro (FRAP, DDPH and ABTS). The potential protective effect of honey against oxidative stress induced by iron (Fe) and paraquat, (PQ) in a Drosophila melanogaster model (in vivo) was also tested. The results indicated that all honey samples tested showed antioxidant activity in vitro. Flies treated with honey showed increased lifespan and were protected against oxidative stress induced by Fe and PQ. Despite the high concentration of sugars in honey (approximately 70-80%), our results demonstrate a hypoglycemic-like effect of honey in Drosophila. Thus, this study demonstrates the high quality of Brazilian Pampa biome honey as well as its significant antioxidant activity in vitro and in vivo, pointing to the potential use of this natural product as an alternative in the therapy of oxidative stress-associated diseases.
Tessarek, C; Sarau, G; Kiometzis, M; Christiansen, S
2013-02-11
Self-assembled GaN rods were grown on sapphire by metal-organic vapor phase epitaxy using a simple two-step method that relies first on a nitridation step followed by GaN epitaxy. The mask-free rods formed without any additional catalyst. Most of the vertically aligned rods exhibit a regular hexagonal shape with sharp edges and smooth sidewall facets. Cathodo- and microphotoluminescence investigations were carried out on single GaN rods. Whispering gallery modes with quality factors greater than 4000 were measured demonstrating the high morphological and optical quality of the self-assembled GaN rods.
KrF laser amplifier with phase-conjugate Brillouin retroreflectors.
Gower, M C
1982-09-01
We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated.
NASA Astrophysics Data System (ADS)
Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan
2018-03-01
A novel fabrication method for high quality aspheric microlens array (MLA) was developed by combining the dose-modulated DMD-based lithography and surface thermal reflow process. In this method, the complex shape of aspheric microlens is pre-modeled via dose modulation in a digital micromirror device (DMD) based maskless projection lithography. And the dose modulation mainly depends on the distribution of exposure dose of photoresist. Then the pre-shaped aspheric microlens is polished by a following non-contact thermal reflow (NCTR) process. Different from the normal process, the reflow process here is investigated to improve the surface quality while keeping the pre-modeled shape unchanged, and thus will avoid the difficulties in generating the aspheric surface during reflow. Fabrication of a designed aspheric MLA with this method was demonstrated in experiments. Results showed that the obtained aspheric MLA was good in both shape accuracy and surface quality. The presented method may be a promising approach in rapidly fabricating high quality aspheric microlens with complex surface.
Álvarez, Rafael; Carvalho, Catarina P; Sierra, Jelver; Lara, Oscar; Cardona, David; Londoño-Londoño, Julian
2012-01-25
Clementines are especially appreciated for their delicious flavor, and recent years have seen a great increase in the consumption of clementine juice. In previous decades, antioxidant compounds have received particular attention because of widely demonstrated beneficial health effects. In this work, the organoleptic, volatile flavor, and antioxidant quality of clementine juice were studied with regard to the influence on them by different juice extraction systems: plug inside fruit and rotating cylinders. The results showed that juice extracted by the former method presented higher yields and hesperidin content, which was related to higher antioxidant activity, demonstrated by ORAC and LDL assays. The organoleptic quality was not affected by the processing technique, whereas there were significant differences in the chemical flavor profile. There are important differences in chemical and functional quality between juice extraction techniques, which must be taken into account when employing processing systems to produce high-quality products.
Dietary Supplements in Children.
Smolinske, Susan C
2017-12-01
High-quality systematic reviews of use of herbal or homeopathic remedies in children often suffer from design flaws, such as not following PRISMA guidelines, inconsistent outcome measurements, and paucity of high-quality studies. Herbal remedies have modest demonstrated benefits with insufficient evidence to recommend any particular supplement. Homeopathic remedies have no role in treatment of pediatric conditions, and have been associated with great harm in infants given homeopathic teething products. Two types of herbal supplements are associated with high risk in adolescents, energy drinks and adulterated weight-loss products. Parents should be counseled about risks of these products. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, C S; Lee, C H; Shin, J S; Chung, Y S; Hyung, N I
1997-03-01
Because DNA degradation is mediated by secondary plant products such as phenolic terpenoids, the isolation of high quality DNA from plants containing a high content of polyphenolics has been a difficult problem. We demonstrate an easy extraction process by modifying several existing ones. Using this process we have found it possible to isolate DNAs from four fruit trees, grape (Vitis spp.), apple (Malus spp.), pear (Pyrus spp.) and persimmon (Diospyros spp.) and four species of conifer, Pinus densiflora, Pinus koraiensis,Taxus cuspidata and Juniperus chinensis within a few hours. Compared with the existing method, we have isolated high quality intact DNAs (260/280 = 1.8-2.0) routinely yielding 250-500 ng/microl (total 7.5-15 microg DNA from four to five tissue discs).
Kim, C S; Lee, C H; Shin, J S; Chung, Y S; Hyung, N I
1997-01-01
Because DNA degradation is mediated by secondary plant products such as phenolic terpenoids, the isolation of high quality DNA from plants containing a high content of polyphenolics has been a difficult problem. We demonstrate an easy extraction process by modifying several existing ones. Using this process we have found it possible to isolate DNAs from four fruit trees, grape (Vitis spp.), apple (Malus spp.), pear (Pyrus spp.) and persimmon (Diospyros spp.) and four species of conifer, Pinus densiflora, Pinus koraiensis,Taxus cuspidata and Juniperus chinensis within a few hours. Compared with the existing method, we have isolated high quality intact DNAs (260/280 = 1.8-2.0) routinely yielding 250-500 ng/microl (total 7.5-15 microg DNA from four to five tissue discs). PMID:9023124
A Narrative Review of High-Quality Literature on the Effects of Resident Duty Hours Reforms.
Lin, Henry; Lin, Emery; Auditore, Stephanie; Fanning, Jon
2016-01-01
To summarize current high-quality studies evaluating the effect and efficacy of resident duty hours reforms (DHRs) on patient safety and resident education and well-being. The authors searched PubMed and Medline in August 2012 and again in May 2013 for literature (1987-2013) about the effects of DHRs. They assessed the quality of articles using the Medical Education Research Study Quality Instrument (MERSQI) scoring system. They considered randomized controlled trials (RCTs), partial RCTs, and all studies with a MERSQI score ≥ 14 to be "high-quality" methodology studies. A total of 72 high-quality studies met inclusion criteria. Most studies showed no change or slight improvement in mortality and complication rates after DHRs. Resident well-being was generally improved, but there was a perceived negative impact on education (knowledge acquisition, skills, and cognitive performance) following DHRs. Eleven high-quality studies assessed the impact of DHR interventions; all reported a neutral to positive impact. Seven high-quality studies assessed costs associated with DHRs and demonstrated an increase in hospital costs. The results of most studies that allow enough time for DHR interventions to take effect suggest a benefit to patient safety and resident well-being, but the effect on the quality of training remains unknown. Additional methodologically sound studies on the impact of DHRs are necessary. Priorities for future research include approaches to optimizing education and clinical proficiency and studies on the effect of intervention strategies on both education and patient safety. Such studies will provide additional information to help improve duty hours policies.
A spectrally tunable all-graphene-based flexible field-effect light-emitting device
Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling
2015-01-01
The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (∼450 nm) to red (∼750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole–Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays. PMID:26178323
Certified ion implantation fluence by high accuracy RBS.
Colaux, Julien L; Jeynes, Chris; Heasman, Keith C; Gwilliam, Russell M
2015-05-07
From measurements over the last two years we have demonstrated that the charge collection system based on Faraday cups can robustly give near-1% absolute implantation fluence accuracy for our electrostatically scanned 200 kV Danfysik ion implanter, using four-point-probe mapping with a demonstrated accuracy of 2%, and accurate Rutherford backscattering spectrometry (RBS) of test implants from our quality assurance programme. The RBS is traceable to the certified reference material IRMM-ERM-EG001/BAM-L001, and involves convenient calibrations both of the electronic gain of the spectrometry system (at about 0.1% accuracy) and of the RBS beam energy (at 0.06% accuracy). We demonstrate that accurate RBS is a definitive method to determine quantity of material. It is therefore useful for certifying high quality reference standards, and is also extensible to other kinds of samples such as thin self-supporting films of pure elements. The more powerful technique of Total-IBA may inherit the accuracy of RBS.
Joint Optics Structures Experiment (JOSE)
NASA Technical Reports Server (NTRS)
Founds, David
1987-01-01
The objectives of the JOSE program is to develop, demonstrate, and evaluate active vibration suppression techniques for Directed Energy Weapons (DEW). DEW system performance is highly influenced by the line-of-sight (LOS) stability and in some cases by the wave front quality. The missions envisioned for DEW systems by the Strategic Defense Initiative require LOS stability and wave front quality to be significantly improved over any current demonstrated capability. The Active Control of Space Structures (ACOSS) program led to the development of a number of promising structural control techniques. DEW structures are vastly more complex than any structures controlled to date. They will be subject to disturbances with significantly higher magnitudes and wider bandwidths, while holding higher tolerances on allowable motions and deformations. Meeting the performance requirements of the JOSE program requires upgrading the ACOSS techniques to meet new more stringent requirements, the development of requisite sensors and acturators, improved control processors, highly accurate system identification methods, and the integration of hardware and methodologies into a successful demonstration.
Broekhuizen, Martine L; Aken, Marcel A G van; Dubas, Judith S; Mulder, Hanna; Leseman, Paul P M
2015-08-01
The current study investigated whether the relation between child care quality and children's socio-emotional behavior depended on children's affective self-regulation skills and gender. Participants were 545 children (Mage=27 months) from 60 center-based child care centers in the Netherlands. Multi-level analyses showed that children with low affective self-regulation skills or who were male demonstrated less teacher-rated social competence when exposed to relatively low quality child care. In addition, children with low affective self-regulation skills also showed more social competence in the case of relatively high quality child care, suggesting mechanisms of differential susceptibility. No main effects of child care quality or interactions were found for teacher- and parent-rated externalizing behavior. These findings emphasize the importance of considering children's affective self-regulation skills and gender in understanding the effects of child care quality. High quality child care can be a means to strengthen children's social development. Copyright © 2015 Elsevier Inc. All rights reserved.
A Comparative Analysis of Competency Frameworks for Youth Workers in the Out-of-School Time Field
ERIC Educational Resources Information Center
Vance, Femi
2010-01-01
Research suggests that the quality of out-of-school time (OST) programs is related to positive youth outcomes and skilled staff are a critical component of high quality programming. This descriptive case study of competency frameworks for youth workers in the OST field demonstrates how experts and practitioners characterize a skilled youth worker.…
Ecosystems provide services to humans that support our well-being. Well-being is not only our health but also our quality of life. We rely upon the services provided by nature to help maintain good health and a high quality of life, including clean water, clean air, food and recr...
Hu, Song; Yao, Jian; Liu, Meng; Luo, Ai-Ping; Luo, Zhi-Chao; Xu, Wen-Cheng
2016-05-16
The ultrafast time-stretch microscopy has been proposed to enhance the temporal resolution of a microscopy system. The optical source is a key component for ultrafast time-stretch microscopy system. Herein, we reported on the gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy. By virtue of the excellent characteristics of the gain-guided soliton, the output power and the 3-dB bandwidth of the stable mode-locked soliton could be up to 3 mW and 33.7 nm with a high-quality rectangle shape, respectively. With the proposed robust optical source, the ultrafast time-stretch microscopy with the 49.6 μm resolution and a scan rate of 11 MHz was achieved without the external optical amplification. The obtained results demonstrated that the gain-guided soliton fiber laser could be used as an alternative high-quality optical source for ultrafast time-stretch microscopy and will introduce some applications in fields such as biology, chemical, and optical sensing.
Brosseau, Lucie; Taki, Jade; Desjardins, Brigit; Thevenot, Odette; Fransen, Marlene; Wells, George A; Mizusaki Imoto, Aline; Toupin-April, Karine; Westby, Marie; Álvarez Gallardo, Inmaculada C; Gifford, Wendy; Laferrière, Lucie; Rahman, Prinon; Loew, Laurianne; De Angelis, Gino; Cavallo, Sabrina; Shallwani, Shirin Mehdi; Aburub, Ala'; Bennell, Kim L; Van der Esch, Martin; Simic, Milena; McConnell, Sara; Harmer, Alison; Kenny, Glen P; Paterson, Gail; Regnaux, Jean-Philippe; Lefevre-Colau, Marie-Martine; McLean, Linda
2017-05-01
To identify effective aerobic exercise programs and provide clinicians and patients with updated, high-quality recommendations concerning traditional land-based exercises for knee osteoarthritis. A systematic search and adapted selection criteria included comparative controlled trials with strengthening exercise programs for patients with knee osteoarthritis. A panel of experts reached consensus on the recommendations using a Delphi survey. A hierarchical alphabetical grading system (A, B, C+, C, D, D+, or D-) was used, based on statistical significance ( P < 0.5) and clinical importance (⩾15% improvement). The five high-quality studies included demonstrated that various aerobic training exercises are generally effective for improving knee osteoarthritis within a 12-week period. An aerobic exercise program demonstrated significant improvement for pain relief (Grade B), physical function (Grade B) and quality of life (Grade C+). Aerobic exercise in combination with strengthening exercises showed significant improvement for pain relief (3 Grade A) and physical function (2 Grade A, 2 Grade B). A short-term aerobic exercise program with/without muscle strengthening exercises is promising for reducing pain, improving physical function and quality of life for individuals with knee osteoarthritis.
Ecological engineering helps maximize function in algal oil production.
Jackrel, Sara L; Narwani, Anita; Bentlage, Bastian; Levine, Robert B; Hietala, David C; Savage, Phillip E; Oakley, Todd H; Denef, Vincent J; Cardinale, Bradley J
2018-05-18
Algal biofuels have the potential to curb emissions of greenhouse gases from fossil fuels, but current growing methods fail to produce fuels that meet the multiple standards necessary for economical industrial use. For example, algae grown as monocultures for biofuel production have not simultaneously and economically achieved high yields of the high-quality, lipid-rich biomass desired for the industrial-scale production of bio-oil. Decades of study in the field of ecology have demonstrated that simultaneous increases in multiple functions, such as the quantity and quality of biomass, can occur in natural ecosystems by increasing biological diversity. Here we show that species consortia of algae can improve the production of bio-oil, which benefits from both high biomass yield and high quality of biomass rich in fatty acids. We explain the underlying causes of increased quantity and quality of algal biomass among species consortia by showing that, relative to monocultures, species consortia can differentially regulate lipid metabolism genes while growing to higher levels of biomass, in part due to greater utilization of nutrient resources. We identify multiple genes involved in lipid biosynthesis that are frequently upregulated in bicultures, and further show that these elevated levels of gene expression are highly predictive of the elevated levels in biculture relative to monoculture of multiple quality metrics of algal biomass. These results show that interactions between species can alter the expression of lipid metabolism genes, and further demonstrate that our understanding of diversity-function relationships from natural ecosystems can be harnessed to improve production of bio-oil. Importance section: Algal biofuels are one of the more promising forms of renewable energy. In our study, we investigate whether ecological interactions between species of microalgae regulate two important factors in cultivation - the biomass of the crop produced and quality of the biomass that is produced. We find that species interactions often improved production yields, especially the fatty acid content of the algal biomass, and that differentially expressed genes involved in fatty acid metabolism are predictive of improved quality metrics of bio-oil. Other studies have found that diversity often improves productivity and stability in agricultural and natural ecosystems. Our results provide further evidence that growing multi-species crops of microalgae may improve the production of high-quality biomass for bio-oil. Copyright © 2018 American Society for Microbiology.
Lactoferrin-derived resistance against plant pathogens in transgenic plants.
Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava
2013-12-04
Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications.
Yang, Yuanmu; Kravchenko, Ivan I.; Briggs, Dayrl P.; ...
2014-12-16
Fano-resonant plasmonic metamaterials and nanostructures have become a major focus of the nanophotonics fields over the past several years due their ability to produce high quality factor (Q-factor) resonances. The origin of such resonances is the interference between a broad and narrow resonance, ultimately allowing suppression of radiative damping. However, Fano-resonant plasmonic structures still suffer non-radiative damping due to Ohmic loss, ultimately limiting the achievable Q-factors to values less than ~10. Here, we report experimental demonstration of Fano-resonant silicon-based metamaterials that have a response that mimics the electromagnetically induced transparency (EIT) found in atomic systems. Due to extremely low absorptionmore » loss, a record-high quality factor (Q-factor) of 306 was experimentally observed. Furthermore, the unit cell of the metamaterial was designed with a feed-gap which results in strong local field enhancement in the surrounding medium resulting in strong light-matter interaction. This allows the metamaterial to serve as a refractive index sensor with a figure-of-merit (FOM) of 101, far exceeding the performance of previously demonstrated localized surface plasmon resonance sensors.« less
The influence of boron doping level on quality and stability of diamond film on Ti substrate
NASA Astrophysics Data System (ADS)
Wei, J. J.; Li, Ch. M.; Gao, X. H.; Hei, L. F.; Lvun, F. X.
2012-07-01
In this study, we investigate the influence of boron doping level on film quality and stability of boron doped diamond (BDD) film deposited on titanium substrate (Ti/BDD) using microwave plasma chemical vapor deposition system. The results demonstrate that high boron concentration will improve the film conductivity, whereas the diamond film quality and adhesion are deteriorated obviously. The increase of total internal stress in the film and the variation of components within the interlayer will weaken the coating adhesion. According to the analysis of electrode inactivation mechanism, high boron doping level will be harmful to the electrode stability in the view of diamond quality and adhesion deterioration. In this study, 5000 ppm B/C ratio in the reaction gas is optimized for Ti/BDD electrode preparation.
Real-time computer treatment of THz passive device images with the high image quality
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Trofimov, Vladislav V.
2012-06-01
We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.
Very high resolution aerial films
NASA Astrophysics Data System (ADS)
Becker, Rolf
1986-11-01
The use of very high resolution aerial films in aerial photography is evaluated. Commonly used panchromatic, color, and CIR films and their high resolution equivalents are compared. Based on practical experience and systematic investigations, the very high image quality and improved height accuracy that can be achieved using these films are demonstrated. Advantages to be gained from this improvement and operational restrictions encountered when using high resolution film are discussed.
NASA Astrophysics Data System (ADS)
Chu, Qiuhui; Zhao, Pengfei; Li, Chengyu; Wang, Bopeng; Lin, Honghuan; Guo, Chao; Liu, Yu; Jing, Feng; Tang, Chuanxiang
2018-03-01
A high power 1030 nm ytterbium-doped polarization maintained fiber laser with optimized parameters is presented in this paper. The master oscillator power amplifier system with counter-pumped amplifier is established. The output power is 900 W, along with a light-to-light efficiency of 64.2%. The amplified spontaneous emission suppression ratio of spectrum reaches to 40 dB with 3 dB linewidth of 0.14 nm. The polarization extinction ratio is 12 dB, and the beam quality factor is M2x=1.07, M2y=1.12. To the best of our knowledge, this is the first demonstration of 1030 nm high power fiber laser with narrow linewidth, near linear polarization, and neardiffraction-limited beam quality
Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio
2009-11-01
We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon-bone-muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18-30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data.
Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio
2009-01-01
We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon–bone–muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18–30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data. PMID:19678857
NASA Technical Reports Server (NTRS)
Tabib-Azar, M.; Akinwande, D.; Ponchak, George E.; LeClair, S. R.
1999-01-01
In this article we report the design, fabrication, and characterization of very high quality factor 10 GHz microstrip resonators on high-resistivity (high-rho) silicon substrates. Our experiments show that an external quality factor of over 13 000 can be achieved on microstripline resonators on high-rho silicon substrates. Such a high Q factor enables integration of arrays of previously reported evanescent microwave probe (EMP) on silicon cantilever beams. We also demonstrate that electron-hole pair recombination and generation lifetimes of silicon can be conveniently measured by illuminating the resonator using a pulsed light. Alternatively, the EMP was also used to nondestructively monitor excess carrier generation and recombination process in a semiconductor placed near the two-dimensional resonator.
Quality metrics in high-dimensional data visualization: an overview and systematization.
Bertini, Enrico; Tatu, Andrada; Keim, Daniel
2011-12-01
In this paper, we present a systematization of techniques that use quality metrics to help in the visual exploration of meaningful patterns in high-dimensional data. In a number of recent papers, different quality metrics are proposed to automate the demanding search through large spaces of alternative visualizations (e.g., alternative projections or ordering), allowing the user to concentrate on the most promising visualizations suggested by the quality metrics. Over the last decade, this approach has witnessed a remarkable development but few reflections exist on how these methods are related to each other and how the approach can be developed further. For this purpose, we provide an overview of approaches that use quality metrics in high-dimensional data visualization and propose a systematization based on a thorough literature review. We carefully analyze the papers and derive a set of factors for discriminating the quality metrics, visualization techniques, and the process itself. The process is described through a reworked version of the well-known information visualization pipeline. We demonstrate the usefulness of our model by applying it to several existing approaches that use quality metrics, and we provide reflections on implications of our model for future research. © 2010 IEEE
A top-down approach to fabrication of high quality vertical heterostructure nanowire arrays.
Wang, Hua; Sun, Minghua; Ding, Kang; Hill, Martin T; Ning, Cun-Zheng
2011-04-13
We demonstrate a novel top-down approach for fabricating nanowires with unprecedented complexity and optical quality by taking advantage of a nanoscale self-masking effect. We realized vertical arrays of nanowires of 20-40 nm in diameter with 16 segments of complex longitudinal InGaAsP/InP structures. The unprecedented high quality of etched wires is evidenced by the narrowest photoluminescence linewidth ever produced in similar wavelengths, indistinguishable from that of the corresponding wafer. This top-down, mask-free, large scale approach is compatible with the established device fabrication processes and could serve as an important alternative to the bottom-up approach, significantly expanding ranges and varieties of applications of nanowire technology.
Mangou, Apostolis; Grammatikopoulou, Maria G; Mirkopoulou, Daphne; Sailer, Nikolaos; Kotzamanidis, Charalambos; Tsigga, Maria
2012-02-01
Patients with type 2 diabetes (T2DM) demonstrate low dietary adherence and this is further aggravated with comorbid obesity. The aim of the present study was to assess diet quality in patients with T2DM and comorbid obesity compared to patients with T2DM alone and to examine the associations between comorbidities and diet quality. The sample consisted of 59 adult patients with diabesity (T2DM and comorbid obesity) and 94 patients with T2DM alone. All diabetes comorbidities and complications were recorded and diet quality was assessed with the Healthy Eating Index (HEI). Mean raw HEI of the diabese subjects was 81.9±7.1 and the diabetic subjects was 80.2±6.9. When HEI was adjusted to the sex, age and weight status, the diabese demonstrated a higher HEI. Among comorbidities, only renal disease decreased HEI. According to the principal component analysis of the total sample, adequate diet quality was explained by cardiovascular disease, cigarette smoking, alcohol consumption, peptic ulcer, sex, diabesity and diabetic foot syndrome. In the diabese, adequate HEI was explained by diabetic foot syndrome, smoking, drinking alcohol and having a family history of diabetes. Adult patients with T2DM demonstrate adequate diet quality. Different factors are associated with the adoption of a high quality diet between the diabese and the T2DM alone. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.
Workaholism and sleep quality among Japanese employees: a prospective cohort study.
Kubota, Kazumi; Shimazu, Akihito; Kawakami, Norito; Takahashi, Masaya
2014-02-01
This study focused on workaholism as a personal attitude toward work and examined its effects on sleep quality among Japanese employees from various occupations. The present study aimed to demonstrate the prospective association of workaholism (i.e., working excessively hard in a compulsive fashion) with sleep quality among Japanese employees. A Web-based prospective survey was conducted in October 2010 and May 2011 among registered monitors of a survey company. The questionnaire included workaholism, sleep quality, job characteristics, and demographics. Overall, 13,564 monitors were randomly invited to complete the first wave of the survey. The first 2,520 respondents were included in this study. The respondents who completed the first wave were invited to complete the second wave of the survey; 2,061 answered. A total of 364 respondents who changed their working conditions during the follow-up period were excluded. In addition, due to missing values, data from 14 respondents were excluded. Thus, the responses from 1,683 respondents were included in the analysis (859 males and 824 females). An analysis of covariance (ANCOVA) was conducted to compare adjusted sleep quality at follow-up among workaholism groups (low, middle, and high). To conduct the ANCOVA, we adjusted for demographics, sleep quality at baseline, and job characteristics. The high-workaholic group had significantly longer sleep latency at follow-up compared with the low- and middle-workaholic groups after adjusting for demographics, sleep latency at baseline, and job characteristics. In addition, the high-workaholic group demonstrated significantly higher levels of daytime dysfunction compared with the low-workaholic group. However, no significant differences were found among workaholic groups in terms of overall sleep quality, sleep duration, habitual sleep efficiency, sleep disturbance, and use of sleep medication. Workaholism was associated with poor sleep quality at the 7-month follow-up in terms of sleep latency and daytime dysfunction.
Portable Remote Imaging Spectrometer (PRISM): Laboratory and Field Calibration
NASA Technical Reports Server (NTRS)
Mouroulis, Pantazis; Van Gorp, Byron; Green, Robert O.; Eastwood, Michael; Boardman, Joseph; Richardson, Brandon S.; Rodriguez, Jose I.; Urquiza, Eugenio; Franklin, Brian D.; Gao, Bo-Cai
2012-01-01
We report the characteristics of the Portable Remote Imaging Spectrometer, an airborne sensor specifically designed for the challenges of coastal ocean research. PRISM has high signal to noise ratio and uniformity, as well as low polarization sensitivity. Acquisition of high quality data has been demonstrated with the first engineering flight.
High Energy 2-Micron Laser Developments
NASA Technical Reports Server (NTRS)
Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.
2007-01-01
A master oscillator power amplifier, high energy Q-switched 2-micron laser system has been recently demonstrated. The laser and amplifiers are all designed in side-pumped rod configuration, pumped by back-cooled conductive packaged GaAlAs diode laser arrays. This 2-micron laser system provides nearly transform limited beam quality.
Sasaki, Tsugihisa; Sounou, Tsutomu; Tsuji, Hideki; Sugiyama, Kazuhisa
2017-01-01
To facilitate the analysis of lacrimal conditions, we utilized high-definition dacryoendoscopy (HDD) and undertook observations with a pressure-controlled air-insufflation system. We report the safety and performance of HDD. In this retrospective, non-randomized clinical trial, 46 patients (14 males and 32 females; age range 39-91 years; mean age ± SD 70.3±12.0 years) who had lacrimal disorders were examined with HDD and conventional dacryoendoscopy (CD). The high-definition dacryoendoscope had 15,000 picture element image fibers and an advanced objective lens. Its outer diameter was 0.9-1.2 mm. Air insufflation was controlled at 0-20 kPa with a digital manometer-based pressure-controlled air-insufflation system to evaluate the quality of the image. The HDD had an air/saline irrigation channel between the outer sheath (outer diameter =1.2 mm) and the metal inner sheath of the endoscope. We used it and the CD in air, saline, and diluted milk saline with and without manual irrigation to quantitatively evaluate the effect of air pressure and saline irrigation on image quality. In vivo, the most significant improvement in image quality was demonstrated with air-insufflated (5-15 kPa) HDD, as compared with saline-irrigated HDD and saline-irrigated CD. No emphysema or damage was noted under observation with HDD. In vitro, no significant difference was demonstrated between air-insufflated HDD and saline-irrigated HDD. In vitro, the image quality of air-insufflated HDD was significantly improved as compared with that of saline-irrigated CD. Pressure-controlled (5-15 kPa) air-insufflated HDD is safe, and yields significantly better image quality than CD and saline-irrigated HDD.
Kline, Ronald M; Bazell, Carol; Smith, Erin; Schumacher, Heidi; Rajkumar, Rahul; Conway, Patrick H
2015-03-01
Cancer is a medically complex and expensive disease with costs projected to rise further as new treatment options increase and the United States population ages. Studies showing significant regional variation in oncology quality and costs and model tests demonstrating cost savings without adverse outcomes suggest there are opportunities to create a system of oncology care in the US that delivers higher quality care at lower cost. The Centers for Medicare and Medicaid Services (CMS) have designed an episode-based payment model centered around 6 month periods of chemotherapy treatment. Monthly per-patient care management payments will be made to practices to support practice transformation, including additional patient services and specific infrastructure enhancements. Quarterly reporting of quality metrics will drive continuous quality improvement and the adoption of best practices among participants. Practices achieving cost savings will also be eligible for performance-based payments. Savings are expected through improved care coordination and appropriately aligned payment incentives, resulting in decreased avoidable emergency department visits and hospitalizations and more efficient and evidence-based use of imaging, laboratory tests, and therapeutic agents, as well as improved end of life care. New therapies and better supportive care have significantly improved cancer survival in recent decades. This has come at a high cost, with cancer therapy consuming $124 billion in 2010. CMS has designed an episode-based model of oncology care that incorporates elements from several successful model tests. By providing care management and performance based payments in conjunction with quality metrics and a rapid learning environment, it is hoped that this model will demonstrate how oncology care in the US can transform into a high value, high quality system. Copyright © 2015 by American Society of Clinical Oncology.
Water Treatment: Can You Purify Water for Drinking?
ERIC Educational Resources Information Center
Harris, Mary E.
1996-01-01
Presents a three-day mini unit on purification of drinking water that uses the learning cycle approach. Demonstrates the typical technology that water companies use to provide high-quality drinking water. (JRH)
NWR (National Weather Service) voice synthesis project, phase 1
NASA Astrophysics Data System (ADS)
Sampson, G. W.
1986-01-01
The purpose of the NOAA Weather Radio (NWR) Voice Synthesis Project is to provide a demonstration of the current voice synthesis technology. Phase 1 of this project is presented, providing a complete automation of an hourly surface aviation observation for broadcast over NWR. In examining the products currently available on the market, the decision was made that synthetic voice technology does not have the high quality speech required for broadcast over the NWR. Therefore the system presented uses the phrase concatenation type of technology for a very high quality, versatile, voice synthesis system.
ERIC Educational Resources Information Center
Cooper, Donna; Costa, Kristina
2012-01-01
There is a mounting body of research demonstrating the impact of early learning on lifelong success. The quality of early child care is the most consistent predictor of young children's behavior, according to the National Institute of Child Health and Human Development Early Childcare Research Network. Children who receive high-quality child care…
Liew, S K; Carlson, N W
1992-05-20
A simple method for obtaining a collimated near-unity aspect ratio output beam from laser sources with extremely large (> 100:1) aspect ratios is demonstrated by using a distributed-feedback grating-surfaceemitting laser. Far-field power-in-the-bucket measurements of the laser indicate good beam quality with a high Strehl ratio.
Optical Fiber Design And Fabrication: Discussion On Recent Developments
NASA Astrophysics Data System (ADS)
Roy, Philippe; Devautour, Mathieu; Lavoute, Laure; Gaponov, Dmitry; Brasse, Gurvan; Hautreux, Stéphanie; Février, Sébastien; Restoin, Christine; Auguste, Jean-Louis; Gérôme, Frédéric; Humbert, Georges; Blondy, Jean-Marc
2008-10-01
Level of emitted power and beam quality of singlemode fiber lasers have been drastically increased at the expense of loss due to bend sensitivity, simplicity of manufacturing and packaging. Furthermore, the extension of the spectral coverage was primarily explored by exploiting non-linear effects, neglecting numerous possible transitions of rare earths. Through different research areas, we demonstrate the possibilities offered by new fiber designs and alternative methods of manufacturing. Photonic Band Gap fibers reconcile diffraction limited beam and large mode area with low bending loss. 80% slope efficiency is demonstrated together with a robust propagation allowing the fiber to be tightly bent until wounding radii as small as 6 cm. Highly ytterbium doped multimode core surrounded by high refractive index rods fiber exhibits a transverse singlemode behavior under continuous wave laser regime. A robust LP01 mode is observed and filtering effect is clearly observed. A non CVD process based on silica sand vitrification allows the synthesis of large and highly doped core with high index homogeneity, opening the way to design of efficient large mode area fiber lasers. 74% slope efficiency is measured, demonstrating the good quality of the core material. Finally, the use of rare earth (Er3+) doped zirconia nanocrystals in silica matrix offers a large panel of ignored energy transitions for visible or off-usual band of emission.
Single-electron random-number generator (RNG) for highly secure ubiquitous computing applications
NASA Astrophysics Data System (ADS)
Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu
2007-11-01
Since the security of all modern cryptographic techniques relies on unpredictable and irreproducible digital keys generated by random-number generators (RNGs), the realization of high-quality RNG is essential for secure communications. In this report, a new RNG, which utilizes single-electron phenomena, is proposed. A room-temperature operating silicon single-electron transistor (SET) having nearby an electron pocket is used as a high-quality, ultra-small RNG. In the proposed RNG, stochastic single-electron capture/emission processes to/from the electron pocket are detected with high sensitivity by the SET, and result in giant random telegraphic signals (GRTS) on the SET current. It is experimentally demonstrated that the single-electron RNG generates extremely high-quality random digital sequences at room temperature, in spite of its simple configuration. Because of its small-size and low-power properties, the single-electron RNG is promising as a key nanoelectronic device for future ubiquitous computing systems with highly secure mobile communication capabilities.
NASA Astrophysics Data System (ADS)
Slange, T. K.; Warnet, L. L.; Grouve, W. J. B.; Akkerman, R.
2018-05-01
Stamp forming is a rapid manufacturing technology used to shape flat blanks of thermoplastic composite material into three-dimensional components. The combination with rapid AFP as blank manufacturing technology can further extend the applicability of stamp forming by allowing rapid lay-up of tailored blanks and offering partial preconsolidation. In an experimental study it is demonstrated that high quality laminates with good flexural strength can be obtained by following this process route. The consolidation of ply-drop regions is demonstrated by flat laminates with a thickness step. The influence of fiber orientations, blank-tooling misalignments and AFP tolerances is investigated.
Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing.
Lai, Wei-Cheng; Chakravarty, Swapnajit; Zou, Yi; Chen, Ray T
2012-04-01
We experimentally demonstrated photonic crystal microcavity based resonant sensors coupled to photonic crystal waveguides in silicon nano-membrane on insulator for chemical and bio-sensing. Linear L-type microcavities are considered. In contrast to cavities with small mode volumes, but low quality factors for bio-sensing, we showed increasing the length of the microcavity enhances the quality factor of the resonance by an order of magnitude and increases the resonance wavelength shift while retaining compact device characteristics. Q~26760 and sensitivity down to 15 ng/ml and ~110 pg/mm2 in bio-sensing was experimentally demonstrated on silicon-on-insulator devices.
Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Chauhan, Bhagirath Singh; Khan, Fahad; Ihsan, Muhammad Zahid; Ullah, Abid; Wu, Chao; Bajwa, Ali Ahsan; Alharby, Hesham; Amanullah; Nasim, Wajid; Shahzad, Babar; Tanveer, Mohsin; Huang, Jianliang
2016-01-01
High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs) might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT) and high night temperatures (HNT) under controlled conditions. Four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan) prior to the high-temperature treatment. A Nothing applied Control (NAC) was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT). Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress. PMID:27472200
Coupled dictionary learning for joint MR image restoration and segmentation
NASA Astrophysics Data System (ADS)
Yang, Xuesong; Fan, Yong
2018-03-01
To achieve better segmentation of MR images, image restoration is typically used as a preprocessing step, especially for low-quality MR images. Recent studies have demonstrated that dictionary learning methods could achieve promising performance for both image restoration and image segmentation. These methods typically learn paired dictionaries of image patches from different sources and use a common sparse representation to characterize paired image patches, such as low-quality image patches and their corresponding high quality counterparts for the image restoration, and image patches and their corresponding segmentation labels for the image segmentation. Since learning these dictionaries jointly in a unified framework may improve the image restoration and segmentation simultaneously, we propose a coupled dictionary learning method to concurrently learn dictionaries for joint image restoration and image segmentation based on sparse representations in a multi-atlas image segmentation framework. Particularly, three dictionaries, including a dictionary of low quality image patches, a dictionary of high quality image patches, and a dictionary of segmentation label patches, are learned in a unified framework so that the learned dictionaries of image restoration and segmentation can benefit each other. Our method has been evaluated for segmenting the hippocampus in MR T1 images collected with scanners of different magnetic field strengths. The experimental results have demonstrated that our method achieved better image restoration and segmentation performance than state of the art dictionary learning and sparse representation based image restoration and image segmentation methods.
Top-down solid-phase fabrication of nanoporous cadmium oxide architectures.
Yu, Haidong; Wang, Deshen; Han, Ming-Yong
2007-02-28
In this article, we have demonstrated one-step solid-phase transformation from high-quality cadmium carbonate microcrystals into highly nanoporous cadmium oxide. The high crystal quality of cadmium carbonate is critical for the successful fabrication of porous nanoarchitectures with predetermined morphology and well-controlled internal structure. This novel strategy has a good potential to prepare nanoporous materials at a large scale by using perfect monolithic carbonate crystals, and it is also useful to synthesize different nanoporous materials on metal-oxide-coated substrates. Meanwhile, this simple thermal transformation of cadmium carbonate into porous structures has further been extended to convert calcium carbonate into such porous structures.
NASA Astrophysics Data System (ADS)
Ge, Xiaochen; Minkov, Momchil; Fan, Shanhui; Li, Xiuling; Zhou, Weidong
2018-04-01
We report here design and experimental demonstration of heterostructure photonic crystal cavities resonating near the Γ point with simultaneous strong lateral confinement and highly directional vertical radiation patterns. The lateral confinement is provided by a mode gap originating from a gradual modulation of the hole radii. High quality factor resonance is realized with a low index contrast between silicon nitride and quartz. The near surface-normal directional emission is preserved when the size of the core region is scaled down. The influence of the cavity size parameters on the resonant modes is also investigated theoretically and experimentally.
Beam control of high-power broad-area photonic crystal lasers using ladderlike groove structure
NASA Astrophysics Data System (ADS)
Wang, Tao; Wang, Lijie; Shu, Shili; Tian, Sicong; Lu, Zefeng; Hou, Guanyu; Lu, Huanyu; Tong, Cunzhu; Wang, Lijun
2017-06-01
The high-power broad-area (BA) photonic bandgap crystal (PBC) diode laser is promising as a high-brightness laser source, however, it suffers from poor lateral beam quality owing to the intrinsic drawback of BA lasers. In this paper, a ladderlike groove structure (LLGS) was proposed to improve both the lateral beam quality and emission power of BA PBC lasers. An approximately 15.4% improvement in output power and 25.2% decrease in the lateral beam parameter product (BPP) were realized and the underlying mechanism was discussed. On the basis of the one-dimensional PBC epitaxial structure, a stable vertical far field was demonstrated.
Weinstein, Dana; Bhave, Sunil A
2010-04-14
This paper introduces the resonant body transistor (RBT), a silicon-based dielectrically transduced nanoelectromechanical (NEM) resonator embedding a sense transistor directly into the resonator body. Combining the benefits of FET sensing with the frequency scaling capabilities and high quality factors (Q) of internal dielectrically transduced bar resonators, the resonant body transistor achieves >10 GHz frequencies and can be integrated into a standard CMOS process for on-chip clock generation, high-Q microwave circuits, fundamental quantum-state preparation and observation, and high-sensitivity measurements. An 11.7 GHz bulk-mode RBT is demonstrated with a quality factor Q of 1830, marking the highest frequency acoustic resonance measured to date on a silicon wafer.
Hellmann, Wolfgang
2017-12-01
Efficient quality management aiming to achieve high quality in patient care is crucial to the success of a surgery department. This requires the knowledge of relevant terms und contexts of quality management. Implementation remains difficult in the light of demographic change and skills shortage. If a hospital has an efficient internal quality management in place, this should be used as a supplementary instrument. Otherwise it is the (sole) task of a specialist department to ensure quality for patients, employees, and cooperative partners. This paper provides basic knowledge on quality management, risk management, and quality assurance in the context of relevant medical terms. It demonstrates new ways for implementation on the level of a surgery department, and introduces a new model of quality. Georg Thieme Verlag KG Stuttgart · New York.
Schröder, Christoph; Jacob, Anette; Tonack, Sarah; Radon, Tomasz P.; Sill, Martin; Zucknick, Manuela; Rüffer, Sven; Costello, Eithne; Neoptolemos, John P.; Crnogorac-Jurcevic, Tatjana; Bauer, Andrea; Fellenberg, Kurt; Hoheisel, Jörg D.
2010-01-01
Antibody microarrays have the potential to enable comprehensive proteomic analysis of small amounts of sample material. Here, protocols are presented for the production, quality assessment, and reproducible application of antibody microarrays in a two-color mode with an array of 1,800 features, representing 810 antibodies that were directed at 741 cancer-related proteins. In addition to measures of array quality, we implemented indicators for the accuracy and significance of dual-color detection. Dual-color measurements outperform a single-color approach concerning assay reproducibility and discriminative power. In the analysis of serum samples, depletion of high-abundance proteins did not improve technical assay quality. On the contrary, depletion introduced a strong bias in protein representation. In an initial study, we demonstrated the applicability of the protocols to proteins derived from urine samples. We identified differences between urine samples from pancreatic cancer patients and healthy subjects and between sexes. This study demonstrates that biomedically relevant data can be produced. As demonstrated by the thorough quality analysis, the dual-color antibody array approach proved to be competitive with other proteomic techniques and comparable in performance to transcriptional microarray analyses. PMID:20164060
J.Y. Zhu; C. Tim Scott; Roland Gleisner; Doreen Mann; D.P. Dykstra; G. Holton Quinn; Louis L. Edwards
2007-01-01
High-value, large-volume utilization of forest thinning materials from U.S. National Forests is a potentially important contributor to sustainable forest health. This study demonstrated the utilization of wood chips produced from thinnings for the production of thermomechanical pulp (TMP). Both whole-log chips (primarily from small-diameter logs, tops, and reject logs...
J.Y. Zhu; C. Tim Scott; Roland Gleisner; Doreen Mann; D.P. Dykstra; G. Holton Quinn; Louis L. Edwards
2007-01-01
High-value, large-volume utilization of forest thinning materials from U.S. national forests is a potentially important contributor to sustainable forest health. This study demonstrated the utilization of wood chips produced from thinnings for the production of thermomechanical pulp (TMP). Both whole-log chips (primarily from small-diameter logs, tops, and reject logs...
Robertson, Dale M.; Rose, William J.; Juckem, Paul F.
2009-01-01
Whitefish Lake, which is officially named Bardon Lake, is an oligotrophic, soft-water seepage lake in northwestern Wisconsin, and classified by the Wisconsin Department of Natural Resources as an Outstanding Resource Water. Ongoing monitoring of the lake demonstrated that its water quality began to degrade (increased phosphorus and chlorophyll a concentrations) around 2002 following a period of high water level. To provide a better understanding of what caused the degradation in water quality, and provide information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. The goals of the study were to describe the past and present water quality of the lake, quantify water and phosphorus budgets for the lake, simulate the potential effects of changes in phosphorus inputs on the lake's water quality, analyze changes in the water level in the lake since 1900, and relate the importance of changes in climate and changes in anthropogenic (human-induced) factors in the watershed to the water quality of the lake. Since 1998, total phosphorus concentrations increased from near the 0.005-milligrams per liter (mg/L) detection limit to about 0.010 mg/L in 2006, and then decreased slightly in 2007-08. During this time, chlorophyll a concentrations and Secchi depths remained relatively stable at about 1.5 micrograms per liter (ug/L) and 26 feet, respectively. Whitefish Lake is typically classified as oligotrophic. Because the productivity in Whitefish Lake is limited by phosphorus, phosphorus budgets were constructed for the lake. Because it was believed that much of its phosphorus comes from the atmosphere, phosphorus deposition was measured in this study. Phosphorus input from the atmosphere was greater than computed based on previously reported wetfall phosphorus concentrations. The concentrations and deposition rates can be used to estimate atmospheric loading in future lake studies. The average annual load of phosphorus to the lake was 232 pounds: 56 percent from precipitation, 27 percent from groundwater, and 16 percent from septic systems. During a series of dry years (low water levels) and wet years (high water levels), the inputs of water and phosphorus ranged by only 10-13 percent. Results from the Canfield and Bachmann eutrophication model and Carlson trophic-state-index equations demonstrated that the lake directly responds to changes in external phosphorus loading, with percent change in chlorophyll a being similar to the percent change in loading and the change in total phosphorus and Secchi depth being slightly smaller. Therefore, changes in phosphorus loading should affect the water quality of the lake. Specific scenarios that simulated the effects of anthropogenic (human-induced) and climatic (water level) changes demonstrated that: surface-water inflow (runoff) based on current development has little effect on pelagic water quality, changes in the inputs from septic systems and development in the watershed could have a large effect on water quality, and decreases in water and phosphorus loading during periods of low water level had little effect on water quality. Sustained high water levels, resulting from several wet years with relatively high water and phosphorus input, however, could cause a small degradation in water quality. Although high water levels may be associated with a degradation in water quality, it appears that anthropogenic changes in the watershed may be more important in affecting the future water quality of the lake. Fluctuations in water levels since 1998 are representative of what has occurred since 1900, with fluctuations of about 3 feet occurring about every 15 years. Based on total phosphorus concentrations inferred from sediment core analysis, there has been little long-term change in water quality and there has been a slight deterioration in water quality following most periods of high water levels. There
Optical Detection of Degraded Therapeutic Proteins.
Herrington, William F; Singh, Gajendra P; Wu, Di; Barone, Paul W; Hancock, William; Ram, Rajeev J
2018-03-23
The quality of therapeutic proteins such as hormones, subunit and conjugate vaccines, and antibodies is critical to the safety and efficacy of modern medicine. Identifying malformed proteins at the point-of-care can prevent adverse immune reactions in patients; this is of special concern when there is an insecure supply chain resulting in the delivery of degraded, or even counterfeit, drug product. Identification of degraded protein, for example human growth hormone, is demonstrated by applying automated anomaly detection algorithms. Detection of the degraded protein differs from previous applications of machine-learning and classification to spectral analysis: only example spectra of genuine, high-quality drug products are used to construct the classifier. The algorithm is tested on Raman spectra acquired on protein dilutions typical of formulated drug product and at sample volumes of 25 µL, below the typical overfill (waste) volumes present in vials of injectable drug product. The algorithm is demonstrated to correctly classify anomalous recombinant human growth hormone (rhGH) with 92% sensitivity and 98% specificity even when the algorithm has only previously encountered high-quality drug product.
Three-dimensional brain MRI for DBS patients within ultra-low radiofrequency power limits.
Sarkar, Subhendra N; Papavassiliou, Efstathios; Hackney, David B; Alsop, David C; Shih, Ludy C; Madhuranthakam, Ananth J; Busse, Reed F; La Ruche, Susan; Bhadelia, Rafeeque A
2014-04-01
For patients with deep brain stimulators (DBS), local absorbed radiofrequency (RF) power is unknown and is much higher than what the system estimates. We developed a comprehensive, high-quality brain magnetic resonance imaging (MRI) protocol for DBS patients utilizing three-dimensional (3D) magnetic resonance sequences at very low RF power. Six patients with DBS were imaged (10 sessions) using a transmit/receive head coil at 1.5 Tesla with modified 3D sequences within ultra-low specific absorption rate (SAR) limits (0.1 W/kg) using T2 , fast fluid-attenuated inversion recovery (FLAIR) and T1 -weighted image contrast. Tissue signal and tissue contrast from the low-SAR images were subjectively and objectively compared with routine clinical images of six age-matched controls. Low-SAR images of DBS patients demonstrated tissue contrast comparable to high-SAR images and were of diagnostic quality except for slightly reduced signal. Although preliminary, we demonstrated diagnostic quality brain MRI with optimized, volumetric sequences in DBS patients within very conservative RF safety guidelines offering a greater safety margin. © 2014 International Parkinson and Movement Disorder Society.
Adolescent mothers' relationships with their own mothers: impact on parenting outcomes.
Sellers, Katie; Black, Maureen M; Boris, Neil W; Oberlander, Sarah E; Myers, Leann
2011-02-01
This study examined the relationship between mother-grandmother relationship quality and adolescent mothers' parenting behaviors using longitudinal multimethod, multi-informant data. Participants were 181 urban, African American adolescent mothers. Self-report data on mother-grandmother relationship conflict and depressive symptoms were collected after delivery and at 6-, 13-, and 24-month follow-up visits. Videotaped observations were used to measure mother-grandmother relationship quality at baseline. Mother-child interactions were videotaped at 6, 13, and 24 months to operationalize parenting. Mixed-model regression methods were used to investigate the relation between mother-grandmother relationships and mother-child interactions. Mother-grandmother relationship quality predicted both negative control and nurturing parenting. Mothers whose own mothers were more direct (both demanding and clear) and who reported low relationship conflict demonstrated low negative control in their parenting. Mothers who demonstrated high levels of individuation (a balance of autonomy and mutuality) and reported low relationship conflict showed high nurturing parenting. The implications of these findings for adolescent health and emotional development are discussed. PsycINFO Database Record (c) 2011 APA, all rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS080949 and Philips Healthcare research grant C32.« less
High-Q microwave photonic filter with a tuned modulator.
Capmany, J; Mora, J; Ortega, B; Pastor, D
2005-09-01
We propose the use of tuned electro-optic or electroabsorption external modulators to implement high-quality (high-Q) factor, single-bandpass photonic filters for microwave signals. Using this approach, we experimentally demonstrate a transversal finite impulse response with a Q factor of 237. This is to our knowledge the highest value ever reported for a passive finite impulse-response microwave photonic filter.
Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.
Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young
2014-08-29
Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.
A proteome-scale map of the human interactome network
Rolland, Thomas; Taşan, Murat; Charloteaux, Benoit; Pevzner, Samuel J.; Zhong, Quan; Sahni, Nidhi; Yi, Song; Lemmens, Irma; Fontanillo, Celia; Mosca, Roberto; Kamburov, Atanas; Ghiassian, Susan D.; Yang, Xinping; Ghamsari, Lila; Balcha, Dawit; Begg, Bridget E.; Braun, Pascal; Brehme, Marc; Broly, Martin P.; Carvunis, Anne-Ruxandra; Convery-Zupan, Dan; Corominas, Roser; Coulombe-Huntington, Jasmin; Dann, Elizabeth; Dreze, Matija; Dricot, Amélie; Fan, Changyu; Franzosa, Eric; Gebreab, Fana; Gutierrez, Bryan J.; Hardy, Madeleine F.; Jin, Mike; Kang, Shuli; Kiros, Ruth; Lin, Guan Ning; Luck, Katja; MacWilliams, Andrew; Menche, Jörg; Murray, Ryan R.; Palagi, Alexandre; Poulin, Matthew M.; Rambout, Xavier; Rasla, John; Reichert, Patrick; Romero, Viviana; Ruyssinck, Elien; Sahalie, Julie M.; Scholz, Annemarie; Shah, Akash A.; Sharma, Amitabh; Shen, Yun; Spirohn, Kerstin; Tam, Stanley; Tejeda, Alexander O.; Trigg, Shelly A.; Twizere, Jean-Claude; Vega, Kerwin; Walsh, Jennifer; Cusick, Michael E.; Xia, Yu; Barabási, Albert-László; Iakoucheva, Lilia M.; Aloy, Patrick; De Las Rivas, Javier; Tavernier, Jan; Calderwood, Michael A.; Hill, David E.; Hao, Tong; Roth, Frederick P.; Vidal, Marc
2014-01-01
SUMMARY Just as reference genome sequences revolutionized human genetics, reference maps of interactome networks will be critical to fully understand genotype-phenotype relationships. Here, we describe a systematic map of ~14,000 high-quality human binary protein-protein interactions. At equal quality, this map is ~30% larger than what is available from small-scale studies published in the literature in the last few decades. While currently available information is highly biased and only covers a relatively small portion of the proteome, our systematic map appears strikingly more homogeneous, revealing a “broader” human interactome network than currently appreciated. The map also uncovers significant inter-connectivity between known and candidate cancer gene products, providing unbiased evidence for an expanded functional cancer landscape, while demonstrating how high quality interactome models will help “connect the dots” of the genomic revolution. PMID:25416956
Enhancing the quality of case studies in health services research.
Yin, R K
1999-01-01
OBJECTIVE: To provide guidance on improving the quality of case studies in health services research. DATA SOURCES: Secondary data, drawing from previous case study research. RESEARCH DESIGN: Guidance is provided to two audiences: potential case study investigators (eight items) and reviewers of case study proposals (four additional items). PRINCIPAL FINDINGS: The guidance demonstrates that many operational steps can be undertaken to improve the quality of case studies. These steps have been a hallmark of high-quality case studies in related fields but have not necessarily been practiced in health services research. CONCLUSIONS: Given higher-quality case studies, the case study method can become a valuable tool for health services research. Images Figure 3 PMID:10591280
Andreas, Afshin; Wilcox, Steve
2016-03-14
Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy National Renewable Energy Laboratory (NMREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar powered projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.
Quimbo, Stella A; Shimkhada, Riti; Woo, Kimberley; Solon, Orville
2008-01-01
It is unclear whether health provider accreditation ensures or promotes quality of care. Using baseline data from the Quality Improvement Demonstration Study (QIDS) in the Philippines we measured the quality of pediatric care provided by private and public doctors working at the district hospital level in the country’s central region. We found that national level accreditation by a national insurance programme influences quality of care. However, our data also show that insurance payments have a similar, strong impact on quality of care. These results suggest that accreditation alone may not be sufficient to promote high quality of care. Further improvements may be achieved with properly monitored and well-designed payment or incentive schemes. PMID:18534734
Fandakova, Yana; Sander, Myriam C; Grandy, Thomas H; Cabeza, Roberto; Werkle-Bergner, Markus; Shing, Yee Lee
2018-02-01
Older adults are more likely than younger adults to falsely recall past episodes that occurred differently or not at all. We examined whether older adults' propensity for false associative memory is related to declines in postretrieval monitoring processes and their modulation with varying memory representations. Younger (N = 20) and older adults (N = 32) studied and relearned unrelated scene-word pairs, followed by a final cued recall that was used to distribute the pairs for an associative recognition test 24 hours later. This procedure allowed individualized formation of rearranged pairs that were made up of elements of pairs that were correctly recalled in the final cued recall ("high-quality" pairs), and of pairs that were not correctly recalled ("low-quality" pairs). Both age groups falsely recognized more low-quality than high-quality rearranged pairs, with a less pronounced reduction in false alarms to high-quality pairs in older adults. In younger adults, cingulo-opercular activity was enhanced for false alarms and for low-quality correct rejections, consistent with its role in postretrieval monitoring. Older adults did not show such modulated recruitment, suggesting deficits in their selective engagement of monitoring processes given variability in the fidelity of memory representations. There were no age differences in hippocampal activity, which was higher for high-quality than low-quality correct rejections in both age groups. These results demonstrate that the engagement of cingulo-opercular monitoring mechanisms varies with memory representation quality and contributes to age-related deficits in false associative memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
A proteomics performance standard to support measurement quality in proteomics.
Beasley-Green, Ashley; Bunk, David; Rudnick, Paul; Kilpatrick, Lisa; Phinney, Karen
2012-04-01
The emergence of MS-based proteomic platforms as a prominent technology utilized in biochemical and biomedical research has increased the need for high-quality MS measurements. To address this need, National Institute of Standards and Technology (NIST) reference material (RM) 8323 yeast protein extract is introduced as a proteomics quality control material for benchmarking the preanalytical and analytical performance of proteomics-based experimental workflows. RM 8323 yeast protein extract is based upon the well-characterized eukaryote Saccharomyces cerevisiae and can be utilized in the design and optimization of proteomics-based methodologies from sample preparation to data analysis. To demonstrate its utility as a proteomics quality control material, we coupled LC-MS/MS measurements of RM 8323 with the NIST MS Quality Control (MSQC) performance metrics to quantitatively assess the LC-MS/MS instrumentation parameters that influence measurement accuracy, repeatability, and reproducibility. Due to the complexity of the yeast proteome, we also demonstrate how NIST RM 8323, along with the NIST MSQC performance metrics, can be used in the evaluation and optimization of proteomics-based sample preparation methods. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Weigl, M; Schneider, A; Hoffmann, F; Angerer, P
2015-09-01
Poor hospital work environments affect physicians' work stress. With a focus on hospital pediatricians, we sought to investigate associations between work stress, burnout, and quality of care. A cross-sectional study was conducted in N = 96 pediatricians of a German academic children's hospital (response rate = 73.8 %). All variables were assessed with standardized questionnaires. Multivariate regression analyses were applied to investigate associations after adjusting for potential confounders. Critically high work stress (effort/reward ratio, ERR > 1.0) was reported by N = 25 (28.4 %) participants. Pediatricians in inpatient wards had significantly more work stress than their colleagues in intensive care units and outpatient wards; 10.2 % of surveyed pediatricians reported critically high burnout. Again, inpatient ward staff reported significantly increased emotional exhaustion. After controlling for several confounders, we found that pediatricians with high work stress and emotional exhaustion reported reduced quality of care. Mediation analyses revealed that especially pediatricians' emotional exhaustion partially mediated the effect of work stress on quality of care. Results demonstrate close relationships between increased work stress and burnout as well as diminished quality of care. High work stress environments in pediatric care influence mental health of pediatricians as well as quality of patient care. • The quality of pediatricians' work environment in the hospital is associated with their work stress and burnout. • The consequences of pediatricians' work life for the quality of care need to be addressed in order to inform interventions to improve work life and care quality. • Our study shows associations between increased work stress and burnout with mitigated quality of care. • Beyond indirect effects of work stress through emotional exhaustion on quality of care we also observed direct detrimental effects of pediatricians' work stress on mitigated care quality.
ERIC Educational Resources Information Center
Cunnington, Marisol; Kantrowitz, Andrea; Harnett, Susanne; Hill-Ries, Aline
2014-01-01
The "Framing Student Success: Connecting Rigorous Visual Arts, Math and Literacy Learning" experimental demonstration project was designed to develop and test an instructional program integrating high-quality, standards-based instruction in the visual arts, math, and literacy. Developed and implemented by arts-in-education organization…
Carreer, William J.; Flight, Robert M.; Moseley, Hunter N. B.
2013-01-01
New metabolomics applications of ultra-high resolution and accuracy mass spectrometry can provide thousands of detectable isotopologues, with the number of potentially detectable isotopologues increasing exponentially with the number of stable isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics (SIRM) experiments. This huge increase in usable data requires software capable of correcting the large number of isotopologue peaks resulting from SIRM experiments in a timely manner. We describe the design of a new algorithm and software system capable of handling these high volumes of data, while including quality control methods for maintaining data quality. We validate this new algorithm against a previous single isotope correction algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct for the effects of natural abundance for both 13C and 15N isotopes on a set of raw isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a 13C/15N-tracing experiment. Finally, we demonstrate the algorithm on a full omics-level dataset. PMID:24404440
NASA Astrophysics Data System (ADS)
Roy, K.; Peltier, W. R.
2017-12-01
Our understanding of the Earth-Ice-Ocean interactions that have accompanied the large glaciation-deglaciation process characteristic of the last half of the Pleistocene has benefited significantly from the development of high-quality models of the Glacial Isostatic Adjustment (GIA) process. These models provide fundamental insight on the large changes in sea level and land ice cover over this time period, as well as key constraints on the viscosity structure of the Earth's interior. Their development has benefited from the recent availability of high-quality constraints from regions of forebulge collapse. In particular, over North America, the joint use of high-quality sea level data from the U.S. East coast, together with the vast network of precise space-geodetic observations of crustal motion existing over most of the interior of the continent, has led to the latest ICE-7G_NA (VM7) model (Roy & Peltier, GJI, 2017). In this paper, exciting opportunities provided by such high-quality observations related to the GIA process will be discussed, not only in the context of the continuing effort to refine global models of this phenomenon, but also in terms of the fundamental insight they may provide on outstanding issues in high-pressure geophysics, paleoclimatology or hydrogeology. Specific examples where such high-quality observations can be used (either separately, or using a combination of independent sources) will be presented, focusing particularly on constraints from the North American continent and from the Mediterranean basin. This work will demonstrate that, given the high-quality of currently available constraints on the GIA process, considerable further geophysical insight can be obtained based upon the use of spherically-symmetric models of the viscosity structure of the planet.
Mid-infrared ZGP OPO with divergence compensation and high beam quality.
Schellhorn, Martin; Spindler, Gerhard; Eichhorn, Marc
2018-01-22
Divergence compensation, optimization of the optical-to-optical efficiency, and high beam quality of signal and idler beams of a high-energy mid-infrared ZnGeP 2 (ZGP) optical parametric oscillator (OPO) have been demonstrated by use of a Galilean telescope inside the nonplanar fractional-image-rotation enhancement (FIRE) ring resonator. With a small variation of the distance between the lenses of the telescope, the divergences of signal and idler beams could be adjusted. Up to 36 mJ of mid-infrared pulse energy in the 3-5 µm wavelength range is obtained with 92 mJ of pump energy on crystal. The beam quality factors M 2 are < 1.5 for the resonant signal beam and the non-resonant idler beam, respectively. Actually, this is an improvement of the beam quality by a factor 3 for the signal and ~2.7 for the idler beam compared without using a telescope inside the FIRE ring resonator.
Four test-demonstrations of hardwood log grades in the Northeast
George E. Doverspike; Harry W., Jr. Camp
1951-01-01
Farmers don't sell prime steers for the same price per pound as canner cows. Lumber dealers don't sell top-quality boards for the same price as Number 3 Common. If you are a timber owner, why should you sell hardwood trees or logs without considering their quality? Logs that yield a high proportion of their volume in the better grades of lumber are certainly...
Interface engineering in epitaxial growth of layered oxides via a conducting layer insertion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Yu; Meng, Dechao; Wang, Jianlin
2015-07-06
There is a long-standing challenge in the fabrication of layered oxide epitaxial films due to their thermodynamic phase-instability and the large stacking layer number. Recently, the demand for high-quality thin films is strongly pushed by their promising room-temperature multiferroic properties. Here, we find that by inserting a conducting and lattice matched LaNiO{sub 3} buffer layer, high quality m = 5 Bi{sub 6}FeCoTi{sub 3}O{sub 18} epitaxial films can be fabricated using the laser molecular beam epitaxy, in which the atomic-scale sharp interface between the film and the metallic buffer layer explains the enhanced quality. The magnetic and ferroelectric properties of the high qualitymore » Bi{sub 6}FeCoTi{sub 3}O{sub 18} films are studied. This study demonstrates that insertion of the conducting layer is a powerful method in achieving high quality layered oxide thin films, which opens the door to further understand the underline physics and to develop new devices.« less
High Density Aerial Image Matching: State-Of and Future Prospects
NASA Astrophysics Data System (ADS)
Haala, N.; Cavegn, S.
2016-06-01
Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.
Murillo, Gabriel H; You, Na; Su, Xiaoquan; Cui, Wei; Reilly, Muredach P; Li, Mingyao; Ning, Kang; Cui, Xinping
2016-05-15
Single nucleotide variant (SNV) detection procedures are being utilized as never before to analyze the recent abundance of high-throughput DNA sequencing data, both on single and multiple sample datasets. Building on previously published work with the single sample SNV caller genotype model selection (GeMS), a multiple sample version of GeMS (MultiGeMS) is introduced. Unlike other popular multiple sample SNV callers, the MultiGeMS statistical model accounts for enzymatic substitution sequencing errors. It also addresses the multiple testing problem endemic to multiple sample SNV calling and utilizes high performance computing (HPC) techniques. A simulation study demonstrates that MultiGeMS ranks highest in precision among a selection of popular multiple sample SNV callers, while showing exceptional recall in calling common SNVs. Further, both simulation studies and real data analyses indicate that MultiGeMS is robust to low-quality data. We also demonstrate that accounting for enzymatic substitution sequencing errors not only improves SNV call precision at low mapping quality regions, but also improves recall at reference allele-dominated sites with high mapping quality. The MultiGeMS package can be downloaded from https://github.com/cui-lab/multigems xinping.cui@ucr.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications
NASA Astrophysics Data System (ADS)
Marcaud, Guillaume; Matzen, Sylvia; Alonso-Ramos, Carlos; Le Roux, Xavier; Berciano, Mathias; Maroutian, Thomas; Agnus, Guillaume; Aubert, Pascal; Largeau, Ludovic; Pillard, Valérie; Serna, Samuel; Benedikovic, Daniel; Pendenque, Christopher; Cassan, Eric; Marris-Morini, Delphine; Lecoeur, Philippe; Vivien, Laurent
2018-03-01
Functional oxides are considered as promising materials for photonic applications due to their extraordinary and various optical properties. Especially, yttria-stabilized zirconia (YSZ) has a high refractive index (˜2.15), leading to a good confinement of the optical mode in waveguides. Furthermore, YSZ can also be used as a buffer layer to expand toward a large family of oxides-based thin-films heterostructures. In this paper, we report a complete study of the structural properties of YSZ for the development of integrated optical devices on sapphire in telecom wavelength range. The substrate preparation and the epitaxial growth using pulsed-laser deposition technique have been studied and optimized. High-quality YSZ thin films with remarkably sharp x-ray diffraction rocking curve peaks in 10-3∘ range have then been grown on sapphire (0001). It was demonstrated that a thermal annealing of sapphire substrate before the YSZ growth allowed controlling the out-of-plane orientation of the YSZ thin film. Single-mode waveguides were finally designed, fabricated, and characterized for two different main orientations of high-quality YSZ (001) and (111). Propagation loss as low as 2 dB/cm at a wavelength of 1380 nm has been demonstrated for both orientations. These results pave the way for the development of a functional oxides-based photonics platform for numerous applications including on-chip optical communications and sensing.
Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.
Gao, Song; Sung, Wing-Kin; Nagarajan, Niranjan
2011-11-01
Scaffolding, the problem of ordering and orienting contigs, typically using paired-end reads, is a crucial step in the assembly of high-quality draft genomes. Even as sequencing technologies and mate-pair protocols have improved significantly, scaffolding programs still rely on heuristics, with no guarantees on the quality of the solution. In this work, we explored the feasibility of an exact solution for scaffolding and present a first tractable solution for this problem (Opera). We also describe a graph contraction procedure that allows the solution to scale to large scaffolding problems and demonstrate this by scaffolding several large real and synthetic datasets. In comparisons with existing scaffolders, Opera simultaneously produced longer and more accurate scaffolds demonstrating the utility of an exact approach. Opera also incorporates an exact quadratic programming formulation to precisely compute gap sizes (Availability: http://sourceforge.net/projects/operasf/ ).
Opera: Reconstructing Optimal Genomic Scaffolds with High-Throughput Paired-End Sequences
Gao, Song; Sung, Wing-Kin
2011-01-01
Abstract Scaffolding, the problem of ordering and orienting contigs, typically using paired-end reads, is a crucial step in the assembly of high-quality draft genomes. Even as sequencing technologies and mate-pair protocols have improved significantly, scaffolding programs still rely on heuristics, with no guarantees on the quality of the solution. In this work, we explored the feasibility of an exact solution for scaffolding and present a first tractable solution for this problem (Opera). We also describe a graph contraction procedure that allows the solution to scale to large scaffolding problems and demonstrate this by scaffolding several large real and synthetic datasets. In comparisons with existing scaffolders, Opera simultaneously produced longer and more accurate scaffolds demonstrating the utility of an exact approach. Opera also incorporates an exact quadratic programming formulation to precisely compute gap sizes (Availability: http://sourceforge.net/projects/operasf/). PMID:21929371
Electrically Injected UV-Visible Nanowire Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, George T.; Li, Changyi; Li, Qiming
2015-09-01
There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasersmore » emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.« less
Ting, Valeska P; Henry, Paul F; Schmidtmann, Marc; Wilson, Chick C; Weller, Mark T
2012-05-21
We demonstrate the extent to which modern detector technology, coupled with a high flux constant wavelength neutron source, can be used to obtain high quality diffraction data from short data collections, allowing the refinement of the full structures (including hydrogen positions) of hydrous compounds from in situ neutron powder diffraction measurements. The in situ thermodiffractometry and controlled humidity studies reported here reveal that important information on the reorientations of structural water molecules with changing conditions can be easily extracted, providing insight into the effects of hydrogen bonding on bulk physical properties. Using crystalline BaCl2·2H2O as an example system, we analyse the structural changes in the compound and its dehydration intermediates with changing temperature and humidity levels to demonstrate the quality of the dynamic structural information on the hydrogen atoms and associated hydrogen bonding that can be obtained without resorting to sample deuteration.
Generation and applications of an ultrahigh-fidelity four-photon Greenberger-Horne-Zeilinger state.
Zhang, Chao; Huang, Yun-Feng; Zhang, Cheng-Jie; Wang, Jian; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can
2016-11-28
High-quality entangled photon pairs generated via spontaneous parametric down-conversion have made great contributions to the modern quantum information science and the fundamental tests of quantum mechanics. However, the quality of the entangled states decreases sharply when moving from biphoton to multiphoton experiments, mainly due to the lack of interactions between photons. Here, for the first time, we generate a four-photon Greenberger-Horne-Zeilinger state with a fidelity of 98%, which is even comparable to the best fidelity of biphoton entangled states. Thus, it enables us to demonstrate an ultrahigh-fidelity entanglement swapping-the key ingredient in various quantum information tasks. Our results push the fidelity of multiphoton entanglement generation to a new level and would be useful in some demanding tasks, e.g., we successfully demonstrate the genuine multipartite nonlocality of the observed state in the nonsignaling scenario by violating a novel Hardy-like inequality, which requires very high state-fidelity.
A reliable sewage quality abnormal event monitoring system.
Li, Tianling; Winnel, Melissa; Lin, Hao; Panther, Jared; Liu, Chang; O'Halloran, Roger; Wang, Kewen; An, Taicheng; Wong, Po Keung; Zhang, Shanqing; Zhao, Huijun
2017-09-15
With closing water loop through purified recycled water, wastewater becomes a part of source water, requiring reliable wastewater quality monitoring system (WQMS) to manage wastewater source and mitigate potential health risks. However, the development of reliable WQMS is fatally constrained by severe contamination and biofouling of sensors due to the hostile analytical environment of wastewaters, especially raw sewages, that challenges the limit of existing sensing technologies. In this work, we report a technological solution to enable the development of WQMS for real-time abnormal event detection with high reliability and practicality. A vectored high flow hydrodynamic self-cleaning approach and a dual-sensor self-diagnostic concept are adopted for WQMS to effectively encounter vital sensor failing issues caused by contamination and biofouling and ensure the integrity of sensing data. The performance of the WQMS has been evaluated over a 3-year trial period at different sewage catchment sites across three Australian states. It has demonstrated that the developed WQMS is capable of continuously operating in raw sewage for a prolonged period up to 24 months without maintenance and failure, signifying the high reliability and practicality. The demonstrated WQMS capability to reliably acquire real-time wastewater quality information leaps forward the development of effective wastewater source management system. The reported self-cleaning and self-diagnostic concepts should be applicable to other online water quality monitoring systems, opening a new way to encounter the common reliability and stability issues caused by sensor contamination and biofouling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Correia, Mafalda; Provost, Jean; Chatelin, Simon; Villemain, Olivier; Tanter, Mickael; Pernot, Mathieu
2016-01-01
Transthoracic shear wave elastography of the myocardium remains very challenging due to the poor quality of transthoracic ultrafast imaging and the presence of clutter noise, jitter, phase aberration, and ultrasound reverberation. Several approaches, such as, e.g., diverging-wave coherent compounding or focused harmonic imaging have been proposed to improve the imaging quality. In this study, we introduce ultrafast harmonic coherent compounding (UHCC), in which pulse-inverted diverging-waves are emitted and coherently compounded, and show that such an approach can be used to enhance both Shear Wave Elastography (SWE) and high frame rate B-mode Imaging. UHCC SWE was first tested in phantoms containing an aberrating layer and was compared against pulse-inversion harmonic imaging and against ultrafast coherent compounding (UCC) imaging at the fundamental frequency. In-vivo feasibility of the technique was then evaluated in six healthy volunteers by measuring myocardial stiffness during diastole in transthoracic imaging. We also demonstrated that improvements in imaging quality could be achieved using UHCC B-mode imaging in healthy volunteers. The quality of transthoracic images of the heart was found to be improved with the number of pulse-inverted diverging waves with reduction of the imaging mean clutter level up to 13.8-dB when compared against UCC at the fundamental frequency. These results demonstrated that UHCC B-mode imaging is promising for imaging deep tissues exposed to aberration sources with a high frame-rate. PMID:26890730
High-Definition Infrared Spectroscopic Imaging
Reddy, Rohith K.; Walsh, Michael J.; Schulmerich, Matthew V.; Carney, P. Scott; Bhargava, Rohit
2013-01-01
The quality of images from an infrared (IR) microscope has traditionally been limited by considerations of throughput and signal-to-noise ratio (SNR). An understanding of the achievable quality as a function of instrument parameters, from first principals is needed for improved instrument design. Here, we first present a model for light propagation through an IR spectroscopic imaging system based on scalar wave theory. The model analytically describes the propagation of light along the entire beam path from the source to the detector. The effect of various optical elements and the sample in the microscope is understood in terms of the accessible spatial frequencies by using a Fourier optics approach and simulations are conducted to gain insights into spectroscopic image formation. The optimal pixel size at the sample plane is calculated and shown much smaller than that in current mid-IR microscopy systems. A commercial imaging system is modified, and experimental data are presented to demonstrate the validity of the developed model. Building on this validated theoretical foundation, an optimal sampling configuration is set up. Acquired data were of high spatial quality but, as expected, of poorer SNR. Signal processing approaches were implemented to improve the spectral SNR. The resulting data demonstrated the ability to perform high-definition IR imaging in the laboratory by using minimally-modified commercial instruments. PMID:23317676
High-definition infrared spectroscopic imaging.
Reddy, Rohith K; Walsh, Michael J; Schulmerich, Matthew V; Carney, P Scott; Bhargava, Rohit
2013-01-01
The quality of images from an infrared (IR) microscope has traditionally been limited by considerations of throughput and signal-to-noise ratio (SNR). An understanding of the achievable quality as a function of instrument parameters, from first principals is needed for improved instrument design. Here, we first present a model for light propagation through an IR spectroscopic imaging system based on scalar wave theory. The model analytically describes the propagation of light along the entire beam path from the source to the detector. The effect of various optical elements and the sample in the microscope is understood in terms of the accessible spatial frequencies by using a Fourier optics approach and simulations are conducted to gain insights into spectroscopic image formation. The optimal pixel size at the sample plane is calculated and shown much smaller than that in current mid-IR microscopy systems. A commercial imaging system is modified, and experimental data are presented to demonstrate the validity of the developed model. Building on this validated theoretical foundation, an optimal sampling configuration is set up. Acquired data were of high spatial quality but, as expected, of poorer SNR. Signal processing approaches were implemented to improve the spectral SNR. The resulting data demonstrated the ability to perform high-definition IR imaging in the laboratory by using minimally-modified commercial instruments.
Sun, Xiaofei; Shi, Lin; Luo, Yishan; Yang, Wei; Li, Hongpeng; Liang, Peipeng; Li, Kuncheng; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng
2015-07-28
Intensity normalization is an important preprocessing step in brain magnetic resonance image (MRI) analysis. During MR image acquisition, different scanners or parameters would be used for scanning different subjects or the same subject at a different time, which may result in large intensity variations. This intensity variation will greatly undermine the performance of subsequent MRI processing and population analysis, such as image registration, segmentation, and tissue volume measurement. In this work, we proposed a new histogram normalization method to reduce the intensity variation between MRIs obtained from different acquisitions. In our experiment, we scanned each subject twice on two different scanners using different imaging parameters. With noise estimation, the image with lower noise level was determined and treated as the high-quality reference image. Then the histogram of the low-quality image was normalized to the histogram of the high-quality image. The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, for the high-quality reference image, the intensities of the image are first rescaled to a range between the low intensity region (LIR) value and the high intensity region (HIR) value; and (2) histogram normalization (HN),where the histogram of low-quality image as input image is stretched to match the histogram of the reference image, so that the intensity range in the normalized image will also lie between LIR and HIR. We performed three sets of experiments to evaluate the proposed method, i.e., image registration, segmentation, and tissue volume measurement, and compared this with the existing intensity normalization method. It is then possible to validate that our histogram normalization framework can achieve better results in all the experiments. It is also demonstrated that the brain template with normalization preprocessing is of higher quality than the template with no normalization processing. We have proposed a histogram-based MRI intensity normalization method. The method can normalize scans which were acquired on different MRI units. We have validated that the method can greatly improve the image analysis performance. Furthermore, it is demonstrated that with the help of our normalization method, we can create a higher quality Chinese brain template.
Sixty years of management on a small longleaf pine forest
Rebecca J. Barlow; John S. Kush; William D. Boyer
2013-01-01
A management demonstration in a 40-acre tract of second-growth longleaf pine (Pinus palustris Mill.) had its 60th anniversary in 2008. A demonstration was initiated by the U.S. Forest Service in 1948 on the Escambia Experimental Forest in south Alabama. At the time, the management goal for this Farm Forty was to produce high-quality poles and logs on...
Transitioning to a High-Value Health Care Model: Academic Accountability.
Johnson, Pamela T; Alvin, Matthew D; Ziegelstein, Roy C
2018-06-01
Health care spending in the United States has increased to unprecedented levels, and these costs have broken medical providers' promise to do no harm. Medical debt is the leading contributor to U.S. personal bankruptcy, more than 50% of household foreclosures are secondary to medical debt and illness, and patients are choosing to avoid necessary care because of its cost. Evidence that the health care delivery model is contributing to patient hardship is a call to action for the profession to transition to a high-value model, one that delivers the highest health care quality and safety at the lowest personal and financial cost to patients. As such, value improvement work is being done at academic medical centers across the country. To promote measurable improvements in practice on a national scale, academic institutions need to align efforts and create a new model for collaboration, one that transcends cross-institutional competition, specialty divisions, and geographical constraints. Academic institutions are particularly accountable because of the importance of research and education in driving this transition. Investigations that elucidate effective implementation methodologies and evaluate safety outcomes data can facilitate transformation. Engaging trainees in quality improvement initiatives will instill high-value care into their practice. This article charges academic institutions to go beyond dissemination of best practice guidelines and demonstrate accountability for high-value quality improvement implementation. By effectively transitioning to a high-value health care system, medical providers will convincingly demonstrate that patients are their most important priority.
NASA Astrophysics Data System (ADS)
Wu, Jixuan; Liu, Bo; Zhang, Hao; Song, Binbin
2017-11-01
A silica-capillary-based whispering gallery mode (WGM) microresonator has been proposed and experimentally demonstrated for the real-time monitoring of the polylysine adsorption process. The spectral characteristics of the WGM resonance dips with high quality factor and good wavelength selectivity have been investigated to evaluate the dynamic process for the binding of polylysine with a capillary surface. The WGM transmission spectrum shows a regular shift with increments of observation time, which could be exploited for the analysis of the polylysine adsorption process. The proposed WGM microresonator system possesses desirable qualities such as high sensitivity, fast response, label-free method, high detection resolution and compactness, which could find promising applications in histology and related bioengineering areas.
High Performance OLED Panel and Luminaire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spindler, Jeffrey
2017-02-20
In this project, OLEDWorks developed and demonstrated the technology required to produce OLED lighting panels with high energy efficiency and excellent light quality. OLED panels developed in this program produce high quality warm white light with CRI greater than 85 and efficacy up to 80 lumens per watt (LPW). An OLED luminaire employing 24 of the high performance panels produces practical levels of illumination for general lighting, with a flux of over 2200 lumens at 60 LPW. This is a significant advance in the state of the art for OLED solid-state lighting (SSL), which is expected to be a complementarymore » light source to the more advanced LED SSL technology that is rapidly replacing all other traditional forms of lighting.« less
Mechanisms of deterioration of nutrients. [freeze drying methods for space flight food
NASA Technical Reports Server (NTRS)
Karel, M.; Flink, J. M.
1974-01-01
Methods are reported by which freeze dried foods of improved quality will be produced. The applicability of theories of flavor retention has been demonstrated for a number of food polymers, both proteins and polysacchardies. Studies on the formation of structures during freeze drying have been continued for emulsified systems. Deterioration of organoleptic quality of freeze dried foods due to high temperature heating has been evaluated and improved procedures developed. The influence of water activity and high temperature on retention of model flavor materials and browning deterioration has been evaluated for model systems and food materials.
Full-color large-scaled computer-generated holograms using RGB color filters.
Tsuchiyama, Yasuhiro; Matsushima, Kyoji
2017-02-06
A technique using RGB color filters is proposed for creating high-quality full-color computer-generated holograms (CGHs). The fringe of these CGHs is composed of more than a billion pixels. The CGHs reconstruct full-parallax three-dimensional color images with a deep sensation of depth caused by natural motion parallax. The simulation technique as well as the principle and challenges of high-quality full-color reconstruction are presented to address the design of filter properties suitable for large-scaled CGHs. Optical reconstructions of actual fabricated full-color CGHs are demonstrated in order to verify the proposed techniques.
Badali, D. S.; Gengler, R. Y. N.; Miller, R. J. D.
2016-01-01
A compact electron source specifically designed for time-resolved diffraction studies of free-standing thin films and monolayers is presented here. The sensitivity to thin samples is achieved by extending the established technique of ultrafast electron diffraction to the “medium” energy regime (1–10 kV). An extremely compact design, in combination with low bunch charges, allows for high quality diffraction in a lensless geometry. The measured and simulated characteristics of the experimental system reveal sub-picosecond temporal resolution, while demonstrating the ability to produce high quality diffraction patterns from atomically thin samples. PMID:27226978
Evaluation of the low dose cardiac CT imaging using ASIR technique
NASA Astrophysics Data System (ADS)
Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter
2010-04-01
Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.
Growth and optical investigations of high quality individual CdTe/(Cd,Mg)Te core/shell nanowires.
Wojnar, P; Płachta, J; Kret, S; Kaleta, A; Zaleszczyk, W; Szymura, M; Wiater, M; Baczewski, L T; Pietruczik, A; Karczewski, G; Wojtowicz, T; Kossut, J
2017-01-27
CdTe nanowires with the average diameter of only 40 nm coated with (Cd,Mg)Te shells are grown using Au-catalyzed vapor-liquid-solid growth mechanism in a system for molecular beam epitaxy. High optical quality of individual nanowires is revealed by means of low temperature cathodoluminescence and micro-luminescence. It is found that, the optical emission spectrum consists mostly of the near band edge emission without any significant contribution of defect related luminescence. Moreover, the importance of surface passivation with (Cd,Mg)Te coating shells is demonstrated.
Carrell, Douglas T; Cartmill, Deborah; Jones, Kirtly P; Hatasaka, Harry H; Peterson, C Matthew
2002-07-01
To evaluate variability in donor semen quality between seven commercial donor sperm banks, within sperm banks, and between intracervical insemination and intrauterine insemination. Prospective, randomized, blind evaluation of commercially available donor semen samples. An academic andrology laboratory. Seventy-five cryopreserved donor semen samples were evaluated. Samples were coded, then blindly evaluated for semen quality. Standard semen quality parameters, including concentration, motility parameters, World Health Organization criteria morphology, and strict criteria morphology. Significant differences were observed between donor semen banks for most semen quality parameters analyzed in intracervical insemination samples. In general, the greatest variability observed between banks was in percentage progressive sperm motility (range, 8.8 +/- 5.8 to 42.4 +/- 5.5) and normal sperm morphology (strict criteria; range, 10.1 +/- 3.3 to 26.6 +/- 4.7). Coefficients of variation within sperm banks were generally high. These data demonstrate the variability of donor semen quality provided by commercial sperm banks, both between banks and within a given bank. No relationship was observed between the size or type of sperm bank and the degree of variability. The data demonstrate the lack of uniformity in the criteria used to screen potential semen donors and emphasize the need for more stringent screening criteria and strict quality control in processing samples.
The effect of water stress on super-high- density 'Koroneiki' olive oil quality.
Dag, Arnon; Naor, Amos; Ben-Gal, Alon; Harlev, Guy; Zipori, Isaac; Schneider, Doron; Birger, Reuven; Peres, Moti; Gal, Yoni; Kerem, Zohar
2015-08-15
Over the last two decades, the area of cultivated super-high-density olive orchards has increased rapidly. Water stress is an important tool in super-high-density orchards to reduce tree growth and promote suitability for overhead mechanical harvesters. Little is known regarding the effect of water stress in super-high-density orchards on oil quality parameters. In this study the effect of irrigation rate on oil quality parameters was evaluated in a six-year-old super-high-density 'Koreneiki' olive orchard for five consecutive seasons. Five water status levels, determined by irrigating in order to maintain various midday stem water potential threshold values (-1.5, -2, -2.5, -3 and -4 MPa), were applied during the oil accumulation stage. The MUFA/PUFA ratio and free fatty acid content generally decreased as a function of increasing tree water stress. In most seasons a reduction in polyphenols was found with decreasing irrigation level. Peroxide value was not affected by the water stress level. The present study demonstrates that limiting irrigation and exposure of olive trees to water stress in a super-high-density orchard lowers free fatty acid content and therefore benefits oil quality. However, the decreased MUFA/PUFA ratio and the reduction in polyphenol content that were also found under increased water stress negatively influence oil quality. © 2014 Society of Chemical Industry.
ERIC Educational Resources Information Center
Smith, Thomas M.; Desimone, Laura M.; Ueno, Koji
2005-01-01
The federal No Child Left Behind Act of 2001 (NCLB) calls for a highly qualified teacher in every classroom. According to the legislation, "highly qualified" is defined as full certification, a bachelor's degree, and demonstrated content knowledge in all core subjects taught. States, district, and schools are spending considerable…
Fast Batch Production of High-Quality Graphene Films in a Sealed Thermal Molecular Movement System.
Xu, Jianbao; Hu, Junxiong; Li, Qi; Wang, Rubing; Li, Weiwei; Guo, Yufen; Zhu, Yongbo; Liu, Fengkui; Ullah, Zaka; Dong, Guocai; Zeng, Zhongming; Liu, Liwei
2017-07-01
Chemical vapor deposition (CVD) growth of high-quality graphene has emerged as the most promising technique in terms of its integrated manufacturing. However, there lacks a controllable growth method for producing high-quality and a large-quantity graphene films, simultaneously, at a fast growth rate, regardless of roll-to-roll (R2R) or batch-to-batch (B2B) methods. Here, a stationary-atmospheric-pressure CVD (SAPCVD) system based on thermal molecular movement, which enables fast B2B growth of continuous and uniform graphene films on tens of stacked Cu(111) foils, with a growth rate of 1.5 µm s -1 , is demonstrated. The monolayer graphene of batch production is found to nucleate from arrays of well-aligned domains, and the films possess few defects and exhibit high carrier mobility up to 6944 cm 2 V -1 s -1 at room temperature. The results indicate that the SAPCVD system combined with single-domain Cu(111) substrates makes it possible to realize fast batch-growth of high-quality graphene films, which opens up enormous opportunities to use this unique 2D material for industrial device applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DEA-I: A Globally Configurable Open Source Software Package in Support of Air Quality Forecasts
NASA Astrophysics Data System (ADS)
Davies, J.; Strabala, K.; Pierce, R.; Huang, H.; Schiffer, E.
2012-12-01
During September 2003, a team of NASA, NOAA, and EPA researchers demonstrated a prototype for using Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth retrievals in daily air quality forecasts; this became known as IDEA (Infusing satellite Data into Environmental Applications). IDEA was part of the NASA Applied Sciences Program strategy to demonstrate practical uses of NASA-sponsored observations from space and predictions. Following its successful demonstration an export version of IDEA, known as IDEA International (IDEA-I), has now been released. IDEA-I supports the Global Earth Observation Systems of Systems (GEOSS) Group on Earth Observations (GEO) Health Societal Benefit Area (SBA) and is being developed within the framework of the GEO Earth Observations in Decision Support Call for Proposals. The vehicle for IDEA-I release is the International MODIS and AIRS (Atmospheric Infrared Sounder) Processing Package (IMAPP), developed at the Space Science and Engineering Center, University of Wisconsin-Madison (SSEC/UW-Madison). IMAPP is a NASA-funded and freely-distributed software package which allows any ground station capable of receiving direct broadcast from Terra or Aqua to produce calibrated and geolocated radiances, and a suite of environmental products, of which the IDEA-I 48-hour forward trajectory prediction of high aerosol events is now a part. IDEA-I provides a tool for linking ground-based and satellite capabilities to support international air quality forecasting activities and is to be demonstrated internationally through user training and impact evaluation via a series of IMAPP workshops. This presentation describes the IMAPP implementation of IDEA-I in terms of its simple installation and configuration, and through examples of its operation in several regions known for periodic high aerosol events.; Screen capture of the University of Wisconsin implementation of the real-time direct broadcast IDEA-I Air Quality monitoring website. This example uses Terra MODIS Aerosol Optical Depth retrievals to identify regions of high aerosol concentrations. A trajectory model is then run that provide a forecast of the horizontal and vertical movement of the aerosols over the next 48 hours.
High speed micromachining with high power UV laser
NASA Astrophysics Data System (ADS)
Patel, Rajesh S.; Bovatsek, James M.
2013-03-01
Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.
NASA JSC water monitor system: City of Houston field demonstration
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Jeffers, E. L.; Fricks, D. H.
1979-01-01
A water quality monitoring system with on-line and real time operation similar to the function in a spacecraft was investigated. A system with the capability to determine conformance to future high effluent quality standards and to increase the potential for reclamation and reuse of water was designed. Although all system capabilities were not verified in the initial field trial, fully automated operation over a sustained period with only routine manual adjustments was accomplished. Two major points were demonstrated: (1) the water monitor system has great potential in water monitoring and/or process control applications; and (2) the water monitor system represents a vast improvement over conventional (grab sample) water monitoring techniques.
Blind CT image quality assessment via deep learning strategy: initial study
NASA Astrophysics Data System (ADS)
Li, Sui; He, Ji; Wang, Yongbo; Liao, Yuting; Zeng, Dong; Bian, Zhaoying; Ma, Jianhua
2018-03-01
Computed Tomography (CT) is one of the most important medical imaging modality. CT images can be used to assist in the detection and diagnosis of lesions and to facilitate follow-up treatment. However, CT images are vulnerable to noise. Actually, there are two major source intrinsically causing the CT data noise, i.e., the X-ray photo statistics and the electronic noise background. Therefore, it is necessary to doing image quality assessment (IQA) in CT imaging before diagnosis and treatment. Most of existing CT images IQA methods are based on human observer study. However, these methods are impractical in clinical for their complex and time-consuming. In this paper, we presented a blind CT image quality assessment via deep learning strategy. A database of 1500 CT images is constructed, containing 300 high-quality images and 1200 corresponding noisy images. Specifically, the high-quality images were used to simulate the corresponding noisy images at four different doses. Then, the images are scored by the experienced radiologists by the following attributes: image noise, artifacts, edge and structure, overall image quality, and tumor size and boundary estimation with five-point scale. We trained a network for learning the non-liner map from CT images to subjective evaluation scores. Then, we load the pre-trained model to yield predicted score from the test image. To demonstrate the performance of the deep learning network in IQA, correlation coefficients: Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are utilized. And the experimental result demonstrate that the presented deep learning based IQA strategy can be used in the CT image quality assessment.
The contextualized self: how team-member exchange leads to coworker identification and helping OCB.
Farmer, Steven M; Van Dyne, Linn; Kamdar, Dishan
2015-03-01
This article develops the argument that team-member exchange (TMX) relationships operate at both between- and within-group levels of analysis to influence an employee's sense of identification with coworkers in the group and their helping organizational citizenship behavior (OCB) directed at coworkers. Specifically, we propose that relatively higher quality TMX relationships of an employee as compared with other members of the group influence an employee's sense of positive uniqueness, whereas higher average level of TMX quality in the group creates a greater sense of belonging. Multilevel modeling analysis of field data from 236 bank managers and their subordinates supports the hypotheses and demonstrates 3 key findings. First, team members identify more with their coworkers when they have high relative TMX quality compared with other group members and are also embedded in groups with higher average TMX. Second, identification with coworkers is positively related to helping OCB directed toward team members. Finally, identification with coworkers mediates the interactive effect of relative TMX quality and group average TMX quality on helping. When TMX group relations allow individuals to feel a valued part of the group, but still unique, they engage in higher levels of helping. Overall moderated mediation analysis demonstrates that the mediated relationship linking relative TMX quality with helping OCB via identification with coworkers is stronger when group average TMX is high, but not present when group average TMX is low. We discuss theoretical and practical implications and recommend future research on multilevel conceptualizations of TMX. PsycINFO Database Record (c) 2015 APA, all rights reserved.
High Dynamic Imaging for Photometry and Graphic Arts Evaluation
NASA Astrophysics Data System (ADS)
T. S., Sudheer Kumar; Kurian, Ciji Pearl; Shama, Kumara; K. R., Shailesh
2018-05-01
High Dynamic Range Imaging (HDRI) techniques for luminance measurement is gaining importance in recent years. This paper presents the application of the HDRI system for obtaining the photometric characteristics of lighting fixtures as well to assess the quality of lighting in colour viewing booth of a printing press. The process of quality control of prints in a printing press is known as graphic arts evaluation. This light booth plays a major role in the quality control of prints. In this work, Nikon D5100 camera was used to obtain the photometric characteristics of narrow beam spotlight. The results of this experiment are in agreement with photometric characteristics obtained from a standard industry grade Gonio-photometer. Similarly, Canon 60D camera was used to assess the quality of spatial luminance distribution of light in the colour viewing booth. This work demonstrates the usefulness of HDRI technology for photometric measurements and luminance distributions of illuminated interiors.
Fully Convolutional Architecture for Low-Dose CT Image Noise Reduction
NASA Astrophysics Data System (ADS)
Badretale, S.; Shaker, F.; Babyn, P.; Alirezaie, J.
2017-10-01
One of the critical topics in medical low-dose Computed Tomography (CT) imaging is how best to maintain image quality. As the quality of images decreases with lowering the X-ray radiation dose, improving image quality is extremely important and challenging. We have proposed a novel approach to denoise low-dose CT images. Our algorithm learns directly from an end-to-end mapping from the low-dose Computed Tomography images for denoising the normal-dose CT images. Our method is based on a deep convolutional neural network with rectified linear units. By learning various low-level to high-level features from a low-dose image the proposed algorithm is capable of creating a high-quality denoised image. We demonstrate the superiority of our technique by comparing the results with two other state-of-the-art methods in terms of the peak signal to noise ratio, root mean square error, and a structural similarity index.
Thin-slice vision: inference of confidence measure from perceptual video quality
NASA Astrophysics Data System (ADS)
Hameed, Abdul; Balas, Benjamin; Dai, Rui
2016-11-01
There has been considerable research on thin-slice judgments, but no study has demonstrated the predictive validity of confidence measures when assessors watch videos acquired from communication systems, in which the perceptual quality of videos could be degraded by limited bandwidth and unreliable network conditions. This paper studies the relationship between high-level thin-slice judgments of human behavior and factors that contribute to perceptual video quality. Based on a large number of subjective test results, it has been found that the confidence of a single individual present in all the videos, called speaker's confidence (SC), could be predicted by a list of features that contribute to perceptual video quality. Two prediction models, one based on artificial neural network and the other based on a decision tree, were built to predict SC. Experimental results have shown that both prediction models can result in high correlation measures.
Rational design of high-yield and superior-quality rice.
Zeng, Dali; Tian, Zhixi; Rao, Yuchun; Dong, Guojun; Yang, Yaolong; Huang, Lichao; Leng, Yujia; Xu, Jie; Sun, Chuan; Zhang, Guangheng; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Hu, Xingming; Guo, Longbiao; Xiong, Guosheng; Wang, Yonghong; Li, Jiayang; Qian, Qian
2017-03-20
Rice (Oryza sativa L.) is a staple food for more than half of the world's population. To meet the ever-increasing demand for food, because of population growth and improved living standards, world rice production needs to double by 2030 1 . The development of new elite rice varieties with high yield and superior quality is challenging for traditional breeding approaches, and new strategies need to be developed. Here, we report the successful development of new elite varieties by pyramiding major genes that significantly contribute to grain quality and yield from three parents over five years. The new varieties exhibit higher yield potential and better grain quality than their parental varieties and the China's leading super-hybrid rice, Liang-you-pai-jiu (LYP9 or Pei-ai 64S/93-11). Our results demonstrate that rational design is a powerful strategy for meeting the challenges of future crop breeding, particularly in pyramiding multiple complex traits.
ScanRanker: Quality Assessment of Tandem Mass Spectra via Sequence Tagging
Ma, Ze-Qiang; Chambers, Matthew C.; Ham, Amy-Joan L.; Cheek, Kristin L.; Whitwell, Corbin W.; Aerni, Hans-Rudolf; Schilling, Birgit; Miller, Aaron W.; Caprioli, Richard M.; Tabb, David L.
2011-01-01
In shotgun proteomics, protein identification by tandem mass spectrometry relies on bioinformatics tools. Despite recent improvements in identification algorithms, a significant number of high quality spectra remain unidentified for various reasons. Here we present ScanRanker, an open-source tool that evaluates the quality of tandem mass spectra via sequence tagging with reliable performance in data from different instruments. The superior performance of ScanRanker enables it not only to find unassigned high quality spectra that evade identification through database search, but also to select spectra for de novo sequencing and cross-linking analysis. In addition, we demonstrate that the distribution of ScanRanker scores predicts the richness of identifiable spectra among multiple LC-MS/MS runs in an experiment, and ScanRanker scores assist the process of peptide assignment validation to increase confident spectrum identifications. The source code and executable versions of ScanRanker are available from http://fenchurch.mc.vanderbilt.edu. PMID:21520941
Qubit Coupled Mechanical Resonator in an Electromechanical System
NASA Astrophysics Data System (ADS)
Hao, Yu
This thesis describes the development of a hybrid quantum electromechanical system. In this system the mechanical resonator is capacitively coupled to a superconducting transmon which is embedded in a superconducting coplanar waveguide (CPW) cavity. The difficulty of achieving high quality of superconducting qubit in a high-quality voltage-biased cavity is overcome by integrating a superconducting reflective T-filter to the cavity. Further spectroscopic and pulsed measurements of the hybrid system demonstrate interactions between the ultra-high frequency mechanical resonator and transmon qubit. The noise of mechanical resonator close to ground state is measured by looking at the spectroscopy of the transmon. At last, fabrication and tests of membrane resonators are discussed.
Using the New Postacute Care Quality Measures to Demonstrate the Value of Occupational Therapy.
Sandhu, Sharmila; Furniss, Jeremy; Metzler, Christina
As the health care system continues to evolve toward one based on quality not quantity, demonstrating the value of occupational therapy has never been more important. Providing high-quality services, achieving optimal outcomes, and identifying and promoting occupational therapy's distinct value are the responsibilities of all practitioners. In relation to the Improving Medicare Post-Acute Care Transformation (IMPACT) Act of 2014, the Centers for Medicare and Medicaid Services (CMS) is implementing new functional items and related outcome performance measures across postacute care (PAC) settings. Practitioners can demonstrate the role and value of occupational therapy services through their participation in data collection and the interpretation of the resulting performance measures. In this column, we review the objectives of the IMPACT Act, introduce the new self-care and mobility items and outcome performance measures being implemented in PAC settings, and describe ways to use these new data to advocate for occupational therapy. We also discuss American Occupational Therapy Association initiatives to provide materials and guidance for occupational therapy practitioners to contribute to PAC data collection. Copyright © 2018 by the American Occupational Therapy Association, Inc.
Learning the specific quality of taste reinforcement in larval Drosophila.
Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram
2015-01-27
The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing-in any brain.
Hassan, Ali H; Amer, Hala A; Maghrabi, Abdulhamaid A
2005-01-01
The objectives of this research were to assess the quality of dental services delivered in King Abdulaziz University and highlight the necessary recommendations that would improve it. The methods used were live photographs illustrating the structure of dental services of the faculty presented in the clinic buildings, waiting places, equipments, instruments and supplies, as well as the comfort and privacy. Review of official records of the faculty for the number, qualifications and training of the dental staff and auxiliary personnel, as well as the process of care (starting from patient registration until completion of treatment). Records also demonstrated the access and utilization of services delivered in the various departments, the quality of these services and of infection control measures and procedures. The results revealed the high quality of services delivered through evaluating the structure and process of care in the university dental clinics. Dental services of King Abdulaziz University conform to high quality standards, with implementation of some changes for improvement and development.
Image Quality Ranking Method for Microscopy
Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.
2016-01-01
Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics. PMID:27364703
Boccuni, Fabio; Gagliardi, Diana; Ferrante, Riccardo; Rondinone, Bruna Maria; Iavicoli, Sergio
2017-10-01
Nanotechnology offers many opportunities but there is still considerable uncertainty about the health risks and how to assess these.In the field of risk analysis for workers potentially exposed to nano-objects and their agglomerates and aggregates (NOAA) different methodological approaches to measure airborne NOAA have been proposed.This study proposes a systematic review of scientific literature on occupational exposure to NOAA in the workplace with the aim to identify techniques of exposure measurement to be recommended in low- and medium-income countries.We gathered scientific papers reporting techniques of NOAA exposure measurements in the workplace, we summarized the data for each eligible technique according to PRISMA guidelines, and we rated the quality of evidence following an adapted GRADE approach.We found 69 eligible studies to be included in qualitative synthesis: the majority of studies reported a moderate quality and only two studies demonstrated the use of a high quality exposure measurement technique.The review demonstrates that a basic exposure measurement, i.e. evidence for the presence or absence of NOAA in the workplace air, can be achieved with moderate (40 techniques) to high (2 techniques) quality; comprehensive exposure measurement, that allow the quantification of NOAA in the workplace, can be achieved with moderate (11 techniques) to high (2 techniques) quality.The findings of the study also allowed to finalize a list of requirements that must be fulfilled by an effective measurement technique (either basic or comprehensive) and to highlight the main weaknesses that need to be tackled for an effective affordability evaluation of measurement techniques to be recommended in low- and medium-income countries. Copyright © 2017 Elsevier GmbH. All rights reserved.
Darney, Blair G; Saavedra-Avendano, Biani; Sosa-Rubi, Sandra G; Lozano, Rafael; Rodriguez, Maria I
2016-07-01
Associations between age and patient-reported quality of family planning services were examined among young women in Mexico. A repeated cross-sectional analysis of survey data collected in 2006, 2009, and 2014 was performed. Data from women aged 15-29years who had not undergone sterilization and were currently using a modern contraceptive method were included. The primary outcome was high-quality care, defined as positive responses to all five quality items regarding contraceptive services included in the survey. Multivariable logistic regression and marginal probabilities were used to compare adolescents and women aged 20-29years. The responses of respondents using different contraceptive methods were compared. Data were included from 15 835 individuals. The multivariable analysis demonstrated lower odds of reporting high-quality care among women aged 15-19years (odds ratio 0.73; 95% confidence interval 0.60-0.88) and 20-24years (odds ratio 0.85; 95% confidence interval 0.75-0.96) compared with women aged 25-29years. Adolescents using hormonal and long-acting reversible contraception had significantly lower odds of reporting high-quality care compared with women aged 25-29. Adolescents in Mexico reported a lower quality of family planning services compared with young adult women. Continued research and policies are needed to improve the quality of contraceptive services. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.
2018-01-01
An arbitrary-order intensity differentiator for high-order microwave signal differentiation is proposed and experimentally demonstrated on a versatile transversal microwave photonic signal processing platform based on integrated Kerr combs. With a CMOS-compatible nonlinear micro-ring resonator, high quality Kerr combs with broad bandwidth and large frequency spacings are generated, enabling a larger number of taps and an increased Nyquist zone. By programming and shaping individual comb lines' power, calculated tap weights are realized, thus achieving a versatile microwave photonic signal processing platform. Arbitrary-order intensity differentiation is demonstrated on the platform. The RF responses are experimentally characterized, and systems demonstrations for Gaussian input signals are also performed.
NASA Technical Reports Server (NTRS)
Scott, D. W.
1994-01-01
This report describes efforts to use digital motion video compression technology to develop a highly portable device that would convert 1990-91 era IBM-compatible and/or MacIntosh notebook computers into full-color, motion-video capable multimedia training systems. An architecture was conceived that would permit direct conversion of existing laser-disk-based multimedia courses with little or no reauthoring. The project did not physically demonstrate certain critical video keying techniques, but their implementation should be feasible. This investigation of digital motion video has spawned two significant spaceflight projects at MSFC: one to downlink multiple high-quality video signals from Spacelab, and the other to uplink videoconference-quality video in realtime and high quality video off-line, plus investigate interactive, multimedia-based techniques for enhancing onboard science operations. Other airborne or spaceborne spinoffs are possible.
Focus-tunable low-power electrowetting lenses with thin parylene films.
Watson, Alexander M; Dease, Kevin; Terrab, Soraya; Roath, Christopher; Gopinath, Juliet T; Bright, Victor M
2015-07-10
Electrowetting lenses with record low power consumption (microwatts) have been demonstrated using high-quality parylene AF-4 dielectric layers and large dodecyl sulfate ions. Water and propylene glycol are interchanged as the polar liquid to enable diverging and converging lens operation achievable with the application of 15 V. The optical quality of the lenses is comparable to conventional microlenses and the tuning exhibits very little (<0.5°) contact angle hysteresis.
Telephone-quality pathological speech classification using empirical mode decomposition.
Kaleem, M F; Ghoraani, B; Guergachi, A; Krishnan, S
2011-01-01
This paper presents a computationally simple and effective methodology based on empirical mode decomposition (EMD) for classification of telephone quality normal and pathological speech signals. EMD is used to decompose continuous normal and pathological speech signals into intrinsic mode functions, which are analyzed to extract physically meaningful and unique temporal and spectral features. Using continuous speech samples from a database of 51 normal and 161 pathological speakers, which has been modified to simulate telephone quality speech under different levels of noise, a linear classifier is used with the feature vector thus obtained to obtain a high classification accuracy, thereby demonstrating the effectiveness of the methodology. The classification accuracy reported in this paper (89.7% for signal-to-noise ratio 30 dB) is a significant improvement over previously reported results for the same task, and demonstrates the utility of our methodology for cost-effective remote voice pathology assessment over telephone channels.
ERIC Educational Resources Information Center
Luft, Pamela
2015-01-01
Deaf and Hard of Hearing (DHH) adolescents and young adults with disabilities (DWD) are a highly diverse group who may also demonstrate a range of functional limitations. These present unique challenges to professional efforts to provide high-quality transition services. Despite these issues, a majority of this population has cognitive abilities…
A Synergistic Approach to Turning the Tide of Grade Inflation
ERIC Educational Resources Information Center
O'Halloran, Kim C.; Gordon, Michael E.
2014-01-01
Higher education in the United States is facing increasing demands for colleges and universities to demonstrate what students learn and that they are providing a high-quality education experience during the undergraduate years (Pascarealla et al. in "Chang Mag High Learn" 42(1):16-22, 2010). Despite evidence of the elevation of grades in…
TAP High School Symposium: Lessons Learned from Principals and Teachers
ERIC Educational Resources Information Center
Barnett, Joshua H.
2014-01-01
Since the 1999-2000 school year, TAP: The System for Teacher and Student Advancement (TAP) has been implemented in hundreds of schools across the nation and demonstrated an ability to raise student achievement, improve the quality of instruction and increase the ability of high-need schools to recruit, retain and support effective teachers. The…
The New Hampshire High School Career Education Model. Final Report.
ERIC Educational Resources Information Center
Keene State Coll., NH.
The purpose of this project was to improve the quality and demonstrate the most effective methods and techniques of career education in four high schools in the state of New Hampshire. The focus was to effect change at two points: the first was the academic curriculum, where committees in each of the project schools reviewed their existing…
Griebel, Jared J; Namnabat, Soha; Kim, Eui Tae; Himmelhuber, Roland; Moronta, Dominic H; Chung, Woo Jin; Simmonds, Adam G; Kim, Kyung-Jo; van der Laan, John; Nguyen, Ngoc A; Dereniak, Eustace L; Mackay, Michael E; Char, Kookheon; Glass, Richard S; Norwood, Robert A; Pyun, Jeffrey
2014-05-21
Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 μm) and mid-IR (3-5 μm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-brightness 1.3 μm InAs/GaAs quantum dot tapered laser with high temperature stability.
Cao, Yulian; Ji, Haiming; Xu, Pengfei; Gu, Yongxian; Ma, Wenquan; Yang, Tao
2012-10-01
We demonstrate high-brightness 1.3 μm tapered lasers with high temperature stability by using p-doped InAs/GaAs quantum dots (QDs) as the active region. It is found that the beam quality factor M(2) for the devices is almost unchanged as the light power and temperature increase. The almost constant M(2) results from the p-doped QD active region.
Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid.
Zhou, Yubing; Deng, Bing; Zhou, Yu; Ren, Xibiao; Yin, Jianbo; Jin, Chuanhong; Liu, Zhongfan; Peng, Hailin
2016-03-09
The growth of high-quality two-dimensional (2D) layered chalcogenide crystals is highly important for practical applications in future electronics, optoelectronics, and photonics. Current route for the synthesis of 2D chalcogenide crystals by vapor deposition method mainly involves an energy intensive high-temperature growth process on solid substrates, often suffering from inhomogeneous nucleation density and grain size distribution. Here, we first demonstrate a facile vapor-phase synthesis of large-area high-quality 2D layered chalcogenide crystals on liquid metal surface with relatively low surface energy at a growth temperature as low as ∼100 °C. Uniform and large-domain-sized 2D crystals of GaSe and GaxIn1-xSe were grown on liquid metal surface even supported on a polyimide film. As-grown 2D GaSe crystals have been fabricated to flexible photodetectors, showing high photoresponse and excellent flexibility. Our strategy of energy-sustainable low-temperature growth on liquid metal surface may open a route to the synthesis of high-quality 2D crystals of Ga-, In-, Bi-, Hg-, Pb-, or Sn-based chalcogenides and halides.
Enhancement of digital radiography image quality using a convolutional neural network.
Sun, Yuewen; Li, Litao; Cong, Peng; Wang, Zhentao; Guo, Xiaojing
2017-01-01
Digital radiography system is widely used for noninvasive security check and medical imaging examination. However, the system has a limitation of lower image quality in spatial resolution and signal to noise ratio. In this study, we explored whether the image quality acquired by the digital radiography system can be improved with a modified convolutional neural network to generate high-resolution images with reduced noise from the original low-quality images. The experiment evaluated on a test dataset, which contains 5 X-ray images, showed that the proposed method outperformed the traditional methods (i.e., bicubic interpolation and 3D block-matching approach) as measured by peak signal to noise ratio (PSNR) about 1.3 dB while kept highly efficient processing time within one second. Experimental results demonstrated that a residual to residual (RTR) convolutional neural network remarkably improved the image quality of object structural details by increasing the image resolution and reducing image noise. Thus, this study indicated that applying this RTR convolutional neural network system was useful to improve image quality acquired by the digital radiography system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodford, William
This document is the final technical report from 24M Technologies on the project titled: Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing. All of the program milestones and deliverables were completed during the performance of the award. Specific accomplishments are 1) 24M demonstrated the processability and electrochemical performance of semi-solid electrodes with active volume contents increased by 10% relative to the program baseline; 2) electrode-level metrics, quality, and yield were demonstrated at an 80 cm 2 electrode footprint; 3) these electrodes were integrated into cells with consistent capacities and impedances, including cells delivered to Argonne National Laboratory for independentmore » testing; 4) those processes were scaled to a large-format (> 260 cm 2) electrode footprint and quality and yield were demonstrated; 5) a high-volume manufacturing approach for large-format electrode fabrication was demonstrated; and 6) large-format cells (> 100 Ah capacity) were prototyped with consistent capacity and impedance, including cells which were delivered to Argonne National Laboratory for independent testing.« less
CMOS compatible fabrication process of MEMS resonator for timing reference and sensing application
NASA Astrophysics Data System (ADS)
Huynh, Duc H.; Nguyen, Phuong D.; Nguyen, Thanh C.; Skafidas, Stan; Evans, Robin
2015-12-01
Frequency reference and timing control devices are ubiquitous in electronic applications. There is at least one resonator required for each of this device. Currently electromechanical resonators such as crystal resonator, ceramic resonator are the ultimate choices. This tendency will probably keep going for many more years. However, current market demands for small size, low power consumption, cheap and reliable products, has divulged many limitations of this type of resonators. They cannot be integrated into standard CMOS (Complement metaloxide- semiconductor) IC (Integrated Circuit) due to material and fabrication process incompatibility. Currently, these devices are off-chip and they require external circuitries to interface with the ICs. This configuration significantly increases the overall size and cost of the entire electronic system. In addition, extra external connection, especially at high frequency, will potentially create negative impacts on the performance of the entire system due to signal degradation and parasitic effects. Furthermore, due to off-chip packaging nature, these devices are quite expensive, particularly for high frequency and high quality factor devices. To address these issues, researchers have been intensively studying on an alternative for type of resonator by utilizing the new emerging MEMS (Micro-electro-mechanical systems) technology. Recent progress in this field has demonstrated a MEMS resonator with resonant frequency of 2.97 GHz and quality factor (measured in vacuum) of 42900. Despite this great achievement, this prototype is still far from being fully integrated into CMOS system due to incompatibility in fabrication process and its high series motional impedance. On the other hand, fully integrated MEMS resonator had been demonstrated but at lower frequency and quality factor. We propose a design and fabrication process for a low cost, high frequency and a high quality MEMS resonator, which can be integrated into a standard CMOS IC. This device is expected to operate in hundreds of Mhz frequency range; quality factor surpasses 10000 and series motional impedance low enough that could be matching into conventional system without enormous effort. This MEMS resonator can be used in the design of many blocks in wireless and RF (Radio Frequency) systems such as low phase noise oscillator, band pass filter, power amplifier and in many sensing application.
Exploring Antarctic Land Surface Temperature Extremes Using Condensed Anomaly Databases
NASA Astrophysics Data System (ADS)
Grant, Glenn Edwin
Satellite observations have revolutionized the Earth Sciences and climate studies. However, data and imagery continue to accumulate at an accelerating rate, and efficient tools for data discovery, analysis, and quality checking lag behind. In particular, studies of long-term, continental-scale processes at high spatiotemporal resolutions are especially problematic. The traditional technique of downloading an entire dataset and using customized analysis code is often impractical or consumes too many resources. The Condensate Database Project was envisioned as an alternative method for data exploration and quality checking. The project's premise was that much of the data in any satellite dataset is unneeded and can be eliminated, compacting massive datasets into more manageable sizes. Dataset sizes are further reduced by retaining only anomalous data of high interest. Hosting the resulting "condensed" datasets in high-speed databases enables immediate availability for queries and exploration. Proof of the project's success relied on demonstrating that the anomaly database methods can enhance and accelerate scientific investigations. The hypothesis of this dissertation is that the condensed datasets are effective tools for exploring many scientific questions, spurring further investigations and revealing important information that might otherwise remain undetected. This dissertation uses condensed databases containing 17 years of Antarctic land surface temperature anomalies as its primary data. The study demonstrates the utility of the condensate database methods by discovering new information. In particular, the process revealed critical quality problems in the source satellite data. The results are used as the starting point for four case studies, investigating Antarctic temperature extremes, cloud detection errors, and the teleconnections between Antarctic temperature anomalies and climate indices. The results confirm the hypothesis that the condensate databases are a highly useful tool for Earth Science analyses. Moreover, the quality checking capabilities provide an important method for independent evaluation of dataset veracity.
Darwin Assembly: fast, efficient, multi-site bespoke mutagenesis
Cozens, Christopher
2018-01-01
Abstract Engineering proteins for designer functions and biotechnological applications almost invariably requires (or at least benefits from) multiple mutations to non-contiguous residues. Several methods for multiple site-directed mutagenesis exist, but there remains a need for fast and simple methods to efficiently introduce such mutations – particularly for generating large, high quality libraries for directed evolution. Here, we present Darwin Assembly, which can deliver high quality libraries of >108 transformants, targeting multiple (>10) distal sites with minimal wild-type contamination (<0.25% of total population) and which takes a single working day from purified plasmid to library transformation. We demonstrate its efficacy with whole gene codon reassignment of chloramphenicol acetyl transferase, mutating 19 codons in a single reaction in KOD DNA polymerase and generating high quality, multiple-site libraries in T7 RNA polymerase and Tgo DNA polymerase. Darwin Assembly uses commercially available enzymes, can be readily automated, and offers a cost-effective route to highly complex and customizable library generation. PMID:29409059
Zhang, Chenchu; Hu, Yanlei; Du, Wenqiang; Wu, Peichao; Rao, Shenglong; Cai, Ze; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Li, Jiawen; Zhao, Gang; Wu, Dong; Chu, Jiaru; Sugioka, Koji
2016-09-13
Rapid integration of high-quality functional devices in microchannels is in highly demand for miniature lab-on-a-chip applications. This paper demonstrates the embellishment of existing microfluidic devices with integrated micropatterns via femtosecond laser MRAF-based holographic patterning (MHP) microfabrication, which proves two-photon polymerization (TPP) based on spatial light modulator (SLM) to be a rapid and powerful technology for chip functionalization. Optimized mixed region amplitude freedom (MRAF) algorithm has been used to generate high-quality shaped focus field. Base on the optimized parameters, a single-exposure approach is developed to fabricate 200 × 200 μm microstructure arrays in less than 240 ms. Moreover, microtraps, QR code and letters are integrated into a microdevice by the advanced method for particles capture and device identification. These results indicate that such a holographic laser embellishment of microfluidic devices is simple, flexible and easy to access, which has great potential in lab-on-a-chip applications of biological culture, chemical analyses and optofluidic devices.
NASA Astrophysics Data System (ADS)
Zhang, Chenchu; Hu, Yanlei; Du, Wenqiang; Wu, Peichao; Rao, Shenglong; Cai, Ze; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Li, Jiawen; Zhao, Gang; Wu, Dong; Chu, Jiaru; Sugioka, Koji
2016-09-01
Rapid integration of high-quality functional devices in microchannels is in highly demand for miniature lab-on-a-chip applications. This paper demonstrates the embellishment of existing microfluidic devices with integrated micropatterns via femtosecond laser MRAF-based holographic patterning (MHP) microfabrication, which proves two-photon polymerization (TPP) based on spatial light modulator (SLM) to be a rapid and powerful technology for chip functionalization. Optimized mixed region amplitude freedom (MRAF) algorithm has been used to generate high-quality shaped focus field. Base on the optimized parameters, a single-exposure approach is developed to fabricate 200 × 200 μm microstructure arrays in less than 240 ms. Moreover, microtraps, QR code and letters are integrated into a microdevice by the advanced method for particles capture and device identification. These results indicate that such a holographic laser embellishment of microfluidic devices is simple, flexible and easy to access, which has great potential in lab-on-a-chip applications of biological culture, chemical analyses and optofluidic devices.
Pathak, Jyotishman; Bailey, Kent R; Beebe, Calvin E; Bethard, Steven; Carrell, David S; Chen, Pei J; Dligach, Dmitriy; Endle, Cory M; Hart, Lacey A; Haug, Peter J; Huff, Stanley M; Kaggal, Vinod C; Li, Dingcheng; Liu, Hongfang; Marchant, Kyle; Masanz, James; Miller, Timothy; Oniki, Thomas A; Palmer, Martha; Peterson, Kevin J; Rea, Susan; Savova, Guergana K; Stancl, Craig R; Sohn, Sunghwan; Solbrig, Harold R; Suesse, Dale B; Tao, Cui; Taylor, David P; Westberg, Les; Wu, Stephen; Zhuo, Ning; Chute, Christopher G
2013-01-01
Research objective To develop scalable informatics infrastructure for normalization of both structured and unstructured electronic health record (EHR) data into a unified, concept-based model for high-throughput phenotype extraction. Materials and methods Software tools and applications were developed to extract information from EHRs. Representative and convenience samples of both structured and unstructured data from two EHR systems—Mayo Clinic and Intermountain Healthcare—were used for development and validation. Extracted information was standardized and normalized to meaningful use (MU) conformant terminology and value set standards using Clinical Element Models (CEMs). These resources were used to demonstrate semi-automatic execution of MU clinical-quality measures modeled using the Quality Data Model (QDM) and an open-source rules engine. Results Using CEMs and open-source natural language processing and terminology services engines—namely, Apache clinical Text Analysis and Knowledge Extraction System (cTAKES) and Common Terminology Services (CTS2)—we developed a data-normalization platform that ensures data security, end-to-end connectivity, and reliable data flow within and across institutions. We demonstrated the applicability of this platform by executing a QDM-based MU quality measure that determines the percentage of patients between 18 and 75 years with diabetes whose most recent low-density lipoprotein cholesterol test result during the measurement year was <100 mg/dL on a randomly selected cohort of 273 Mayo Clinic patients. The platform identified 21 and 18 patients for the denominator and numerator of the quality measure, respectively. Validation results indicate that all identified patients meet the QDM-based criteria. Conclusions End-to-end automated systems for extracting clinical information from diverse EHR systems require extensive use of standardized vocabularies and terminologies, as well as robust information models for storing, discovering, and processing that information. This study demonstrates the application of modular and open-source resources for enabling secondary use of EHR data through normalization into standards-based, comparable, and consistent format for high-throughput phenotyping to identify patient cohorts. PMID:24190931
Ernst, E J; Speck, P M; Fitzpatrick, J J
2012-01-01
Digital photography is a valuable adjunct to document physical injuries after sexual assault. In order for a digital photograph to have high image quality, there must exist a high level of naturalness. Digital photo documentation has varying degrees of naturalness; however, for a photograph to be natural, specific technical elements for the viewer must be satisfied. No tool was available to rate the naturalness of digital photo documentation of female genital injuries after sexual assault. The Photo Documentation Image Quality Scoring System (PDIQSS) tool was developed to rate technical elements for naturalness. Using this tool, experts evaluated randomly selected digital photographs of female genital injuries captured following sexual assault. Naturalness of female genital injuries following sexual assault was demonstrated when measured in all dimensions.
High quality factor indium oxide mechanical microresonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartolomé, Javier, E-mail: j.bartolome@fis.ucm.es; Cremades, Ana; Piqueras, Javier
2015-11-09
The mechanical resonance behavior of as-grown In{sub 2}O{sub 3} microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than 10{sup 5} and minimum detectable forces of the order of 10{sup −16} N/Hz{sup 1/2} demonstrate their potential as mechanical microresonators for real applications. Measurements at low-vacuum using the SEM environmental operation mode were performed to study the effect ofmore » extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.« less
High-Q, in-plane modes of nanomechanical resonators operated in air
NASA Astrophysics Data System (ADS)
Waggoner, Philip S.; Tan, Christine P.; Bellan, Leon; Craighead, Harold G.
2009-05-01
Nanomechanical resonators have traditionally been limited to use in vacuum due to low quality factors that come as a result of viscous damping effects in air or liquid. We have fabricated arrays of 90 nm thick trampoline-shaped resonators, studied their resonant frequency spectrum as a function of pressure, and found that some high frequency modes exhibit quality factors over 2000 at atmospheric pressure. We have excited the in-plane resonances of these devices, verified their identities both experimentally and with finite element modeling, and demonstrated their advantageous characteristics for ambient sensing. Even after deposition of a relatively thick polymer layer, the in-plane resonant modes still boast quality factors on the order of 2000. These results show promise for the use of nanomechanical resonant sensors in real-time atmospheric sensing applications.
Helicity multiplexed broadband metasurface holograms.
Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong
2015-09-10
Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.
Helicity multiplexed broadband metasurface holograms
Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Yue Bun Pun, Edwin; Zhang, Shuang; Chen, Xianzhong
2015-01-01
Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices. PMID:26354497
Anwer, Muhammad A; Al-Fahed, Ousama B; Arif, Samir I; Amer, Yasser S; Titi, Maher A; Al-Rukban, Mohammed O
2018-02-01
Type 2 diabetes mellitus (T2DM) is a worldwide and national public health problem that has a great impact on the population in Saudi Arabia. High-quality clinical practice guidelines (CPGs) are cornerstones in improving the health care provided for patients with diabetes. This study evaluated the methodological rigour, transparency, and applicability of recently published CPGs. Our group conducted a systematic search for recently published CPGs for T2DM. The searching and screening for Source CPGs were guided by tools from the ADAPTE methods with specific inclusion/exclusion criteria. Five reviewers using the second version of the Appraisal of Guidelines for Research and Evaluation (AGREE II) Instrument independently assessed the quality of the retrieved Source CPGs. Domains of Scope and purpose and Clarity of presentation received the highest scores in all CPGs. Most of the assessed CPGs (86%) were considered with high overall quality and were recommended for use. Rigour of development and applicability domains were together highest in 3 CPGs (43%). The overall high quality of DM CPGs published in the last 3 years demonstrated the continuous development and improvement in CPG methodologies and standards. Health care professionals should consider the quality of any CPG for T2DM before deciding to use it in their daily clinical practice. Three CPGs have been identified, using the AGREE criteria, as high-quality and trustworthy. Ideally, the resources provided by the AGREE trust including the AGREE II Instrument should be used by a clinician to scan through the large number of published T2DM CPGs to identify the CPGs with high methodological quality and applicability. © 2017 John Wiley & Sons, Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-04
... equipment that could affect drug safety or effectiveness? 6. Training Is specialized, highly technical training essential to ensure proper compounding of the drug product? 7. Testing and Quality Assurance Is...
Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H
2016-02-21
This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x-ray photon flux.
NASA Astrophysics Data System (ADS)
Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.
2016-02-01
This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x-ray photon flux.
Li, T; Zhao, S; Liu, J; Yang, L; Huang, Z; Li, J; Luo, C; Li, X
2017-10-01
To investigate the use of second-generation dual-source high-pitch computed tomography in obtaining confident diagnostic image quality using a low radiation dose in young patients with congenital heart disease (CHD). From July 2014 to June 2016, 50 consecutive children <4 years with complex CHD underwent electrocardiography (ECG)-triggered dual-source computed tomography (CT). The patients were assigned randomly to two groups: high-pitch (pitch 3.4) spiral dual-source CT acquisition (group A) and retrospectively spiral dual-source CT acquisition (group B). The image quality, diagnostic accuracy, coronary artery origin, course demonstration, and radiation exposure were compared between the two groups. Fifty examinations were performed (group A, 25; group B, 25). There were no significant differences in image quality, diagnostic accuracy, coronary artery origin, and course demonstration between the two groups. The image quality scores were 1.3±0.4 in group A and 1.1±0.3 in group B (p=0.2). The diagnostic accuracy was 100% in both groups. The coronary arteries were traceable in 80% in group A and 84% in group B (p=0.7). A single coronary artery was identified in one case in group A and the left anterior descending (LAD) branch originated from the right coronary artery (RCA) in one case in group B. There were significant differences in the effective doses between the two groups (0.40±0.20 mSv in group A and 2.7±1.0 mSv in group B, p<0.05). Intra-cardiac and extra-cardiac malformation, coronary artery origin, and course malformation can be visualised clearly using a high-pitch ECG-triggered dual-source CT with a low radiation dose and good image quality in patients with CHD. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Enhanced gamma ray sensitivity in bismuth triiodide sensors through volumetric defect control
Johns, Paul M.; Baciak, James E.; Nino, Juan C.
2016-09-02
In some of the more attractive semiconducting compounds for ambient temperature radiation detector applications are impacted by low charge collection efficiency due to the presence of point and volumetric defects. This has been particularly true in the case of BiI 3, which features very attractive properties (density, atomic number, band gap, etc.) to serve as a gamma ray detector, but has yet to demonstrate its full potential. Here, we show that by applying growth techniques tailored to reduce defects, the spectral performance of this promising semiconductor can be realized. Gamma ray spectra from >100 keV source emissions are now obtainedmore » from high quality Sb:BiI 3 bulk crystals with limited concentrations of defects (point and extended). The spectra acquired in these high quality crystals feature photopeaks with resolution of 2.2% at 662 keV. Infrared microscopy is used to compare the local microstructure between radiation sensitive and non-responsive crystals. Our work demonstrates that BiI 3 can be prepared in melt-grown detector-grade samples with superior quality and can acquire the spectra from a variety of gamma ray sources.« less
Xu, Dongsheng; Cui, Jingjing; Wang, Jia; Zhang, Zhiyun; She, Chen; Bai, Wanzhu
2018-04-12
High molecular weight biotinylated dextran amine (BDA) has been used as a highly sensitive neuroanatomical tracer for many decades. Since the quality of its labeling was affected by various factors, here, we provide a refined protocol for the application of high molecular weight BDA for studying optimal neural labeling in the central nervous system. After stereotactic injection of BDA into the ventral posteromedial nucleus (VPM) of the thalamus in the rat through a delicate glass pipette, BDA was stained with fluorescent streptavidin-Alexa (AF) 594 and counterstained with fluorescent Nissl stain AF500/525. On the background of green Nissl staining, the red BDA labeling, including neuronal cell bodies and axonal terminals, was more distinctly demonstrated in the somatosensory cortex. Furthermore, double fluorescent staining for BDA and the calcium-binding protein parvalbumin (PV) was carried out to observe the correlation of BDA labeling and PV-positive interneurons in the cortical target, providing the opportunity to study the local neural circuits and their chemical characteristics. Thus, this refined method is not only suitable for visualizing high quality neural labeling with the high molecular weight BDA through reciprocal neural pathways between the thalamus and cerebral cortex, but also will permit the simultaneous demonstration of other neural markers with fluorescent histochemistry or immunochemistry.
NASA Astrophysics Data System (ADS)
Priebe, Elizabeth H.; Neville, C. J.; Rudolph, D. L.
2018-03-01
The spatial coverage of hydraulic conductivity ( K) values for large-scale groundwater investigations is often poor because of the high costs associated with hydraulic testing and the large areas under investigation. Domestic water wells are ubiquitous and their well logs represent an untapped resource of information that includes mandatory specific-capacity tests, from which K can be estimated. These specific-capacity tests are routinely conducted at such low pumping rates that well losses are normally insignificant. In this study, a simple and practical approach to augmenting high-quality K values with reconnaissance-level K values from water-well specific-capacity tests is assessed. The integration of lesser quality K values from specific-capacity tests with a high-quality K data set is assessed through comparisons at two different scales: study-area-wide (a 600-km2 area in Ontario, Canada) and in a single geological formation within a portion of the broader study area (200 km2). Results of the comparisons demonstrate that reconnaissance-level K estimates from specific-capacity tests approximate the ranges and distributions of the high-quality K values. Sufficient detail about the physical basis and assumptions that are invoked in the development of the approach are presented here so that it can be applied with confidence by practitioners seeking to enhance their spatial coverage of K values with specific-capacity tests.
NASA Astrophysics Data System (ADS)
Shaw, Amelia R.; Smith Sawyer, Heather; LeBoeuf, Eugene J.; McDonald, Mark P.; Hadjerioua, Boualem
2017-11-01
Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2 is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. The reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.
Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.; ...
2017-10-24
Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.
Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less
Metamorphic III–V Solar Cells: Recent Progress and Potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Ivan; France, Ryan M.; Geisz, John F.
Inverted metamorphic multijunction solar cells have been demonstrated to be a pathway to achieve the highest photovoltaic (PV) conversion efficiencies. Attaining high-quality lattice-mismatched (metamorphic) semiconductor devices is challenging. However, recent improvements to compositionally graded buffer epitaxy and junction structures have led to the achievement of high-quality metamorphic solar cells exhibiting internal luminescence efficiencies over 90%. For this high material quality, photon recycling is significant, and therefore, the optical environment of the solar cell becomes important. In this paper, we first present recent progress and performance results for 1- and 0.7-eV GaInAs solar cells grown on GaAs substrates. Then, an electroopticalmore » model is used to assess the potential performance improvements in current metamorphic solar cells under different realizable design scenarios. The results show that the quality of 1-eV subcells is such that further improving its electronic quality does not produce significant Voc increases in the four-junction inverted metamorphic subcells, unless a back reflector is used to enhance photon recycling, which would significantly complicate the structure. Conversely, improving the electronic quality of the 0.7-eV subcell would lead to significant Voc boosts, driving the progress of four-junction inverted metamorphic solar cells.« less
Ernst, E J; Speck, Patricia M; Fitzpatrick, Joyce J
2011-12-01
With the patient's consent, physical injuries sustained in a sexual assault are evaluated and treated by the sexual assault nurse examiner (SANE) and documented on preprinted traumagrams and with photographs. Digital imaging is now available to the SANE for documentation of sexual assault injuries, but studies of the image quality of forensic digital imaging of female genital injuries after sexual assault were not found in the literature. The Photo Documentation Image Quality Scoring System (PDIQSS) was developed to rate the image quality of digital photo documentation of female genital injuries after sexual assault. Three expert observers performed evaluations on 30 separate images at two points in time. An image quality score, the sum of eight integral technical and anatomical attributes on the PDIQSS, was obtained for each image. Individual image quality ratings, defined by rating image quality for each of the data, were also determined. The results demonstrated a high level of image quality and agreement when measured in all dimensions. For the SANE in clinical practice, the results of this study indicate that a high degree of agreement exists between expert observers when using the PDIQSS to rate image quality of individual digital photographs of female genital injuries after sexual assault. © 2011 International Association of Forensic Nurses.
Woods, Cindy; Carlisle, Karen; Larkins, Sarah; Thompson, Sandra Claire; Tsey, Komla; Matthews, Veronica; Bailie, Ross
2017-01-01
Continuous Quality Improvement is a process for raising the quality of primary health care (PHC) across Indigenous PHC services. In addition to clinical auditing using plan, do, study, and act cycles, engaging staff in a process of reflecting on systems to support quality care is vital. The One21seventy Systems Assessment Tool (SAT) supports staff to assess systems performance in terms of five key components. This study examines quantitative and qualitative SAT data from five high-improving Indigenous PHC services in northern Australia to understand the systems used to support quality care. High-improving services selected for the study were determined by calculating quality of care indices for Indigenous health services participating in the Audit and Best Practice in Chronic Disease National Research Partnership. Services that reported continuing high improvement in quality of care delivered across two or more audit tools in three or more audits were selected for the study. Precollected SAT data (from annual team SAT meetings) are presented longitudinally using radar plots for quantitative scores for each component, and content analysis is used to describe strengths and weaknesses of performance in each systems' component. High-improving services were able to demonstrate strong processes for assessing system performance and consistent improvement in systems to support quality care across components. Key strengths in the quality support systems included adequate and orientated workforce, appropriate health system supports, and engagement with other organizations and community, while the weaknesses included lack of service infrastructure, recruitment, retention, and support for staff and additional costs. Qualitative data revealed clear voices from health service staff expressing concerns with performance, and subsequent SAT data provided evidence of changes made to address concerns. Learning from the processes and strengths of high-improving services may be useful as we work with services striving to improve the quality of care provided in other areas.
Peck, Michelle A; Sturk-Andreaggi, Kimberly; Thomas, Jacqueline T; Oliver, Robert S; Barritt-Ross, Suzanne; Marshall, Charla
2018-05-01
Generating mitochondrial genome (mitogenome) data from reference samples in a rapid and efficient manner is critical to harnessing the greater power of discrimination of the entire mitochondrial DNA (mtDNA) marker. The method of long-range target enrichment, Nextera XT library preparation, and Illumina sequencing on the MiSeq is a well-established technique for generating mitogenome data from high-quality samples. To this end, a validation was conducted for this mitogenome method processing up to 24 samples simultaneously along with analysis in the CLC Genomics Workbench and utilizing the AQME (AFDIL-QIAGEN mtDNA Expert) tool to generate forensic profiles. This validation followed the Federal Bureau of Investigation's Quality Assurance Standards (QAS) for forensic DNA testing laboratories and the Scientific Working Group on DNA Analysis Methods (SWGDAM) validation guidelines. The evaluation of control DNA, non-probative samples, blank controls, mixtures, and nonhuman samples demonstrated the validity of this method. Specifically, the sensitivity was established at ≥25 pg of nuclear DNA input for accurate mitogenome profile generation. Unreproducible low-level variants were observed in samples with low amplicon yields. Further, variant quality was shown to be a useful metric for identifying sequencing error and crosstalk. Success of this method was demonstrated with a variety of reference sample substrates and extract types. These studies further demonstrate the advantages of using NGS techniques by highlighting the quantitative nature of heteroplasmy detection. The results presented herein from more than 175 samples processed in ten sequencing runs, show this mitogenome sequencing method and analysis strategy to be valid for the generation of reference data. Copyright © 2018 Elsevier B.V. All rights reserved.
The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film.
Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin
2018-03-01
Recently, lead-free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead-free double perovskite planar heterojunction solar cell with a high quality Cs 2 AgBiBr 6 film, fabricated by low-pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead-free perovskite solar cells.
Implementation of a Text-Based Content Intervention in Secondary Social Studies Classes.
Wanzek, Jeanne; Vaughn, Sharon
2016-12-01
We describe teacher fidelity (adherence to the components of the treatment as specified by the research team) based on a series of studies of a multicomponent intervention, Promoting Acceleration of Comprehension and Content Through Text (PACT), with middle and high school social studies teachers and their students. Findings reveal that even with highly specified materials and implementing practices that are aligned with effective reading comprehension and content instruction, teachers' fidelity was consistently low for some components and high for others. Teachers demonstrated consistently high implementation fidelity and quality for the instructional components of building background knowledge (comprehension canopy) and teaching key content vocabulary (essential words), whereas we recorded consistently lower fidelity and quality of implementation for the instructional components of critical reading and knowledge application. © 2016 Wiley Periodicals, Inc.
High quality adaptive optics zoom with adaptive lenses
NASA Astrophysics Data System (ADS)
Quintavalla, M.; Santiago, F.; Bonora, S.; Restaino, S.
2018-02-01
We present the combined use of large aperture adaptive lens with large optical power modulation with a multi actuator adaptive lens. The Multi-actuator Adaptive Lens (M-AL) can correct up to the 4th radial order of Zernike polynomials, without any obstructions (electrodes and actuators) placed inside its clear aperture. We demonstrated that the use of both lenses together can lead to better image quality and to the correction of aberrations of adaptive optics optical systems.
Validity and Reliability of Accelerometers in Patients With COPD: A SYSTEMATIC REVIEW.
Gore, Shweta; Blackwood, Jennifer; Guyette, Mary; Alsalaheen, Bara
2018-05-01
Reduced physical activity is associated with poor prognosis in chronic obstructive pulmonary disease (COPD). Accelerometers have greatly improved quantification of physical activity by providing information on step counts, body positions, energy expenditure, and magnitude of force. The purpose of this systematic review was to compare the validity and reliability of accelerometers used in patients with COPD. An electronic database search of MEDLINE and CINAHL was performed. Study quality was assessed with the Strengthening the Reporting of Observational Studies in Epidemiology checklist while methodological quality was assessed using the modified Quality Appraisal Tool for Reliability Studies. The search yielded 5392 studies; 25 met inclusion criteria. The SenseWear Pro armband reported high criterion validity under controlled conditions (r = 0.75-0.93) and high reliability (ICC = 0.84-0.86) for step counts. The DynaPort MiniMod demonstrated highest concurrent validity for step count using both video and manual methods. Validity of the SenseWear Pro armband varied between studies especially in free-living conditions, slower walking speeds, and with addition of weights during gait. A high degree of variability was found in the outcomes used and statistical analyses performed between studies, indicating a need for further studies to measure reliability and validity of accelerometers in COPD. The SenseWear Pro armband is the most commonly used accelerometer in COPD, but measurement properties are limited by gait speed variability and assistive device use. DynaPort MiniMod and Stepwatch accelerometers demonstrated high validity in patients with COPD but lack reliability data.
NASA Astrophysics Data System (ADS)
Rolfe, John; Windle, Jill
2011-12-01
Policymakers wanting to increase protection of the Great Barrier Reef from pollutants generated by agriculture need to identify when measures to improve water quality generate benefits to society that outweigh the costs involved. The research reported in this paper makes a contribution in several ways. First, it uses the improved science understanding about the links between management changes and reef health to bring together the analysis of costs and benefits of marginal changes, helping to demonstrate the appropriate way of addressing policy questions relating to reef protection. Second, it uses the scientific relationships to frame a choice experiment to value the benefits of improved reef health, with the results of mixed logit (random parameter) models linking improvements explicitly to changes in "water quality units." Third, the research demonstrates how protection values are consistent across a broader population, with some limited evidence of distance effects. Fourth, the information on marginal costs and benefits that are reported provide policymakers with information to help improve management decisions. The results indicate that while there is potential for water quality improvements to generate net benefits, high cost water quality improvements are generally uneconomic. A major policy implication is that cost thresholds for key pollutants should be set to avoid more expensive water quality proposals being selected.
Flight test experience with high-alpha control system techniques on the F-14 airplane
NASA Technical Reports Server (NTRS)
Gera, J.; Wilson, R. J.; Enevoldson, E. K.; Nguyen, L. T.
1981-01-01
Improved handling qualities of fighter aircraft at high angles of attack can be provided by various stability and control augmentation techniques. NASA and the U.S. Navy are conducting a joint flight demonstration of these techniques on an F-14 airplane. This paper reports on the flight test experience with a newly designed lateral-directional control system which suppresses such high angle of attack handling qualities problems as roll reversal, wing rock, and directional divergence while simultaneously improving departure/spin resistance. The technique of integrating a piloted simulation into the flight program was used extensively in this program. This technique had not been applied previously to high angle of attack testing and required the development of a valid model to simulate the test airplane at extremely high angles of attack.
Kim, Jong H; Liang, Po-Wei; Williams, Spencer T; Cho, Namchul; Chueh, Chu-Chen; Glaz, Micah S; Ginger, David S; Jen, Alex K-Y
2015-01-27
An effective approach to significantly increase the electrical conductivity of a NiOx hole-transporting layer (HTL) to achieve high-efficiency planar heterojunction perovskite solar cells is demonstrated. Perovskite solar cells based on using Cu-doped NiOx HTL show a remarkably improved power conversion efficiency up to 15.40% due to the improved electrical conductivity and enhanced perovskite film quality. General applicability of Cu-doped NiOx to larger bandgap perovskites is also demonstrated in this study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Thomas, Loren D.
2010-01-01
The New Jersey Department of Education has been stressing the value of early childhood education for the past 12 years. Research has clearly demonstrated the value of high-quality preschool programs for preparing children for school and even later life. Particularly in light of the Core Curriculum Content Standards and elementary curriculum, which…
Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro
2005-10-01
We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.
NASA Astrophysics Data System (ADS)
Zhou, Xu-Liang; Pan, Jiao-Qing; Yu, Hong-Yan; Li, Shi-Yan; Wang, Bao-Jun; Bian, Jing; Wang, Wei
2014-12-01
High-quality GaAs thin films grown on miscut Ge substrates are crucial for GaAs-based devices on silicon. We investigate the effect of different thicknesses and temperatures of GaAs buffer layers on the crystal quality and surface morphology of GaAs on Ge by metal-organic chemical vapor deposition. Through high resolution x-ray diffraction measurements, it is demonstrated that the full width at half maximum for the GaAs epilayer (Ge substrate) peak could achieve 19.3 (11.0) arcsec. The value of etch pit density could be 4×104 cm-2. At the same time, GaAs surfaces with no pyramid-shaped pits are obtained when the buffer layer growth temperature is lower than 360°C, due to effective inhibition of initial nucleation at terraces of the Ge surface. In addition, it is shown that large island formation at the initial stage of epitaxial growth is a significant factor for the final rough surface and that this initial stage should be carefully controlled when a device quality GaAs surface is desired.
The influence of ripening temperature on ‘Hass’ fruit quality
USDA-ARS?s Scientific Manuscript database
Previous research demonstrated the importance of temperature management during avocado (Persea americana Mill) fruit ripening; however this work was focused on maintaining the fruit at elevated temperatures continuously during the ripening process. We examined the influence of short duration high t...
Can online networks provide quality answers to questions about occupational safety and health?
Rhebergen, Martijn D F; Lenderink, Annet F; van Dijk, Frank J H; Hulshof, Carel T J
2012-05-01
To assess whether experts can provide high-quality answers to occupational safety and health (OSH) questions in online Question & Answer (Q&A) networks. The authors evaluated the quality of answers provided by qualified experts in two Dutch online networks: ArboAntwoord and the Helpdesk of the Netherlands Center for Occupational Diseases. A random sample of 594 answers was independently evaluated by two raters using nine answer quality criteria. An additional criterion, the agreement of answers with the best available evidence, was explored by peer review of a sample of 42 answers. Reviewers performed an evidence search in Medline. The median answer quality score of ArboAntwoord (N=295) and the Netherlands Center for Occupational Diseases Helpdesk (N=299) was 8 of 9 (IQR 2). The inter-rater reliability of the first nine quality criteria was high (κ 0.82-0.90, p<0.05). A question answered by two or more experts had a greater probability of a high-quality score than questions answered by one expert (OR 4.9, 95% CI 2.7 to 9.0). Answers most often scored insufficient on the use of evidence to underpin the answer (36% and 38% for the networks, respectively) and on conciseness (35% and 31%, respectively). Peer review demonstrated that 43%-72% of the answers in both online networks were in complete agreement with the best available evidence. OSH experts are able to provide quality answers in online OSH Q&A networks. Our answer quality appraisal instrument was feasible and provided information on how to improve answer quality.
Marino, Patricia; Roché, Henri; Moatti, Jean-Paul
2008-04-01
The benefit of high-dose chemotherapy (HDC) has not been clearly demonstrated. It may offer disease-free survival improvement at the expense of major toxicity and increasing cost. We evaluated the trade-offs between toxicity, relapse, and costs using a quality-adjusted time without symptoms or toxicity (Q-TWiST) analysis. The analysis was conducted in the context of a randomized trial (PEGASE 01) evaluating the benefit of HDC for 314 patients with high-risk breast cancer. A Q-TWiST analysis was first performed to compare HDC with standard chemotherapy. We then used the results of this Q-TWiST analysis to inform a cost per quality-adjusted life-year (QALY) comparison between treatments. Q-TWiST durations were in favor of HDC, whatever the weighting coefficients used for the analysis. This benefit was significant when the weighting coefficient related to the time spent after relapse was low (<0.38). For quite high values of this coefficient (>0.78), HDC offered no benefit. For intermediate values, the results depended on the weighting coefficient attributed to the toxicity period. The incremental cost per QALY ranged from 12,691euro/QALY to 26,439euro/QALY, according to the coefficients used to weight toxicity and relapse. The benefits of HDC outweigh the burdens of treatment for a wide range of utility coefficients. Economic impact is not a barrier to HDC diffusion in this situation. Nevertheless, no significant benefit was demonstrated for a certain range of utility values.
Isolation of high quality graphene from Ru by solution phase intercalation
NASA Astrophysics Data System (ADS)
Koren, E.; Sutter, E.; Bliznakov, S.; Ivars-Barcelo, F.; Sutter, P.
2013-09-01
We introduce a method for isolating graphene grown on epitaxial Ru(0001)/α-Al2O3. The strong graphene/Ru(0001) coupling is weakened by electrochemically driven intercalation of hydrogen underpotentially deposited in aqueous KOH solution, which allows the penetration of water molecules at the graphene/Ru(0001) interface. Following these electrochemically driven processes, the graphene can be isolated by electrochemical hydrogen evolution and transferred to arbitrary supports. Raman and transport measurements demonstrate the high quality of the transferred graphene. Our results show that intercalation, typically carried out in vacuum, can be extended to solution environments for graphene processing under ambient conditions.
Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments
Galliou, Serge; Goryachev, Maxim; Bourquin, Roger; Abbé, Philippe; Aubry, Jean Pierre; Tobar, Michael E.
2013-01-01
Low loss Bulk Acoustic Wave devices are considered from the point of view of the solid state approach as phonon-confining cavities. We demonstrate effective design of such acoustic cavities with phonon-trapping techniques exhibiting extremely high quality factors for trapped longitudinally-polarized phonons of various wavelengths. Quality factors of observed modes exceed 1 billion, with a maximum Q-factor of 8 billion and Q × f product of 1.6 · 1018 at liquid helium temperatures. Such high sensitivities allow analysis of intrinsic material losses in resonant phonon systems. Various mechanisms of phonon losses are discussed and estimated. PMID:23823569
All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001).
Kwoen, Jinkwan; Jang, Bongyong; Lee, Joohang; Kageyama, Takeo; Watanabe, Katsuyuki; Arakawa, Yasuhiko
2018-04-30
Directly grown III-V quantum dot (QD) laser on on-axis Si (001) is a good candidate for achieving monolithically integrated Si photonics light source. Nowadays, laser structures containing high quality InAs / GaAs QD are generally grown by molecular beam epitaxy (MBE). However, the buffer layer between the on-axis Si (001) substrate and the laser structure are usually grown by metal-organic chemical vapor deposition (MOCVD). In this paper, we demonstrate all MBE grown high-quality InAs/GaAs QD lasers on on-axis Si (001) substrates without using patterning and intermediate layers of foreign material.
Ultrashort electron pulses as a four-dimensional diagnosis of plasma dynamics.
Zhu, P F; Zhang, Z C; Chen, L; Li, R Z; Li, J J; Wang, X; Cao, J M; Sheng, Z M; Zhang, J
2010-10-01
We report an ultrafast electron imaging system for real-time examination of ultrafast plasma dynamics in four dimensions. It consists of a femtosecond pulsed electron gun and a two-dimensional single electron detector. The device has an unprecedented capability of acquiring a high-quality shadowgraph image with a single ultrashort electron pulse, thus permitting the measurement of irreversible processes using a single-shot scheme. In a prototype experiment of laser-induced plasma of a metal target under moderate pump intensity, we demonstrated its unique capability of acquiring high-quality shadowgraph images on a micron scale with a-few-picosecond time resolution.
Urea-assisted liquid-phase exfoliation of natural graphite into few-layer graphene
NASA Astrophysics Data System (ADS)
Hou, Dandan; Liu, Qinfu; Wang, Xianshuai; Qiao, Zhichuan; Wu, Yingke; Xu, Bohui; Ding, Shuli
2018-05-01
The mass production of graphene with high quality is desirable for its wide applications. Here, we demonstrated a facile method to exfoliate natural graphite into graphene in organic solvent by assisting of urea. The exfoliation of graphite may originate from the "molecular wedge" effect of urea, which can intercalate into the edge of natural graphite, thus facilitating the production of graphene dispersion with a high concentration up to 1.2 mg/mL. The obtained graphene is non-oxidized with negligible defects. Therefore, this approach has great promise in bulk production of graphene with superior quality for a variety of applications.
Porous silicon ring resonator for compact, high sensitivity biosensing applications
Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.
2015-01-01
A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 μm. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.
Anti-Stokes Luminescence in High Quality Quantum Wells
NASA Astrophysics Data System (ADS)
Vinattieri, A.; Bogani, F.; Miotto, A.; Ceccherini, S.
1997-11-01
We present a detailed investigation of the anti-Stokes (AS) luminescence which originates from exciton recombination when below gap excitation is used, in a set of high quality quantum well structures. We observe strong excitonic resonances in the AS signal as measured from photoluminescence and photoluminescence excitation spectra. We demonstrate that neither the electromagnetic coupling between the wells nor the morphological disorder can explain this up-conversion effect. Time-resolved luminescence data after ps excitation and fs correlation spectroscopy results provide clear evidence of the occurrence of a two-step absorption which is assisted by the exciton population resonantly excited by the first photon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovanski, Yuri; Carsley, John; Carlson, Blair
2014-01-15
A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.
Yoho, Michael; Porterfield, Donivan R.; Landsberger, Sheldon
2015-09-22
In this study, twenty-one high purity germanium (HPGe) background spectra were collected over 2 years at Los Alamos National Laboratory. A quality assurance methodology was developed to monitor spectral background levels from thermal and fast neutron flux levels and naturally occurring radioactive material decay series radionuclides. 238U decay products above 222Rn demonstrated minimal temporal variability beyond that expected from counting statistics. 238U and 232Th progeny below Rn gas displayed at most twice the expected variability. Further, an analysis of the 139 keV 74Ge(n, γ) and 691 keV 72Ge(n, n') spectral features demonstrated temporal stability for both thermal and fastmore » neutron fluxes.« less
Fluorescence-based visualization of autophagic activity predicts mouse embryo viability
NASA Astrophysics Data System (ADS)
Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Kito, Seiji; Minami, Naojiro; Kubota, Toshiro; Sato, Ken; Kokubo, Toshiaki
2014-03-01
Embryo quality is a critical parameter in assisted reproductive technologies. Although embryo quality can be evaluated morphologically, embryo morphology does not correlate perfectly with embryo viability. To improve this, it is important to understand which molecular mechanisms are involved in embryo quality control. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic materials sequestered by autophagosomes are degraded in lysosomes. We previously demonstrated that autophagy is highly activated after fertilization and is essential for further embryonic development. Here, we developed a simple fluorescence-based method for visualizing autophagic activity in live mouse embryos. Our method is based on imaging of the fluorescence intensity of GFP-LC3, a versatile marker for autophagy, which is microinjected into the embryos. Using this method, we show that embryonic autophagic activity declines with advancing maternal age, probably due to a decline in the activity of lysosomal hydrolases. We also demonstrate that embryonic autophagic activity is associated with the developmental viability of the embryo. Our results suggest that embryonic autophagic activity can be utilized as a novel indicator of embryo quality.
Reiner, Iris; Beutel, Manfred; Skaletz, Christian; Brähler, Elmar; Stöbel-Richter, Yve
2012-01-01
Research on psychosocial influences such as relationship characteristics has received increased attention in the clinical as well as social-psychological field. Several studies demonstrated that the quality of relationships, in particular with respect to the perceived support within intimate relationships, profoundly affects individuals' mental and physical health. There is, however, a limited choice of valid and internationally known assessments of relationship quality in Germany. We report the validation of the German version of the Quality of Relationships Inventory (QRI). First, we evaluated its factor structure in a representative German sample of 1.494 participants by means of confirmatory factor analysis. Our findings support the previously proposed three-factor structure. Second, importance and satisfaction with different relationship domains (family/children and relationship/sexuality) were linked with the QRI scales, demonstrating high construct validity. Finally, we report sex and age differences regarding the perceived relationship support, conflict and depth in our German sample. In conclusion, the QRI is a reliable and valid measurement to assess social support in romantic relationships in the German population. PMID:22662151
Temperature sensor based on high-Q polymethylmethacrylate optical microbubble
NASA Astrophysics Data System (ADS)
He, Chunhong; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan
2018-07-01
A new flexible method to fabricate a temperature sensor based on polymethylmethacrylate (PMMA) optical microbubbles, using a volume-controllable pipette, is demonstrated. The high quality factor of the cavity is guaranteed by the smooth wall of the microbubble. The shape and refractive index of the microbubbles change with the surrounding temperature, which leads to the obvious displacement of the whispering gallery mode transmission spectrum. As the surrounding temperature increases, the spectrum undergoes a significant blue shift, hence the microresonator can be used for temperature sensing. A sensitivity of 39 pm °C‑1 is obtained in a PMMA microbubble with a diameter of 740 µm. This work suggests a new convenient approach to achieving high-quality flexible microscale sensors.
High Efficiency InP Solar Cells from Low Toxicity Tertiarybutylphosphine
NASA Technical Reports Server (NTRS)
Hoffman, Richard W., Jr.; Fatemi, Navid S.; Wilt, David M.; Jenkins, Phillip P.; Brinker, David J.; Scheiman, David A.
1994-01-01
Large scale manufacture of phosphide based semiconductor devices by organo-metallic vapor phase epitaxy (OMVPE) typically requires the use of highly toxic phosphine. Advancements in phosphine substitutes have identified tertiarybutylphosphine (TBP) as an excellent precursor for OMVPE of InP. High quality undoped and doped InP films were grown using TBP and trimethylindium. Impurity doped InP films were achieved utilizing diethylzinc and silane for p and n type respectively. 16 percent efficient solar cells under air mass zero, one sun intensity were demonstrated with Voc of 871 mV and fill factor of 82.6 percent. It was shown that TBP could replace phosphine, without adversely affecting device quality, in OMVPE deposition of InP thus significantly reducing toxic gas exposure risk.
Effects of side-stick controllers on rotorcraft handling qualities for terrain flight
NASA Technical Reports Server (NTRS)
Aiken, E. W.
1985-01-01
Pertinent fixed and rotary-wing feasibility studies and handling-qualities research programs are reviewed and the effects of certain controller characteristics on handling qualities for specific rotorcraft flight tasks are summarized. The effects of the controller force-deflection relationship and the number of controlled axes that are integrated in a single controller are examined. Simulation studies were conducted which provide a significant part of the available handling qualities data. The studies demonstrate the feasibility of using a single, properly designed, limited-displacement, multiaxis controller for certain relatively routine flight tasks in a two-crew rotorcraft with nominal levels of stability and control augmentation with a high degree of reliability are incorporated, separated three or two-axis controller configurations are required for acceptable handling qualities.
All-optical switching in silicon-on-insulator photonic wire nano-cavities.
Belotti, Michele; Galli, Matteo; Gerace, Dario; Andreani, Lucio Claudio; Guizzetti, Giorgio; Md Zain, Ahmad R; Johnson, Nigel P; Sorel, Marc; De La Rue, Richard M
2010-01-18
We report on experimental demonstration of all-optical switching in a silicon-on-insulator photonic wire nanocavity operating at telecom wavelengths. The switching is performed with a control pulse energy as low as approximately 0.1 pJ on a cavity device that presents very high signal transmission, an ultra-high quality-factor, almost diffraction-limited modal volume and a footprint of only 5 microm(2). High-speed modulation of the cavity mode is achieved by means of optical injection of free carriers using a nanosecond pulsed laser. Experimental results are interpreted by means of finite-difference time-domain simulations. The possibility of using this device as a logic gate is also demonstrated.
Femtosecond fiber laser welding of dissimilar metals.
Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian
2014-10-01
In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahnke, Fred C.
FuelCell Energy and ACuPowder investigated and demonstrated the use of waste anode exhaust gas from a high temperature fuel cell for replacing the reducing gas in a metal processing furnace. Currently companies purchase high pressure or liquefied gases for the reducing gas which requires substantial energy in production, compression/liquefaction, and transportation, all of which is eliminated by on-site use of anode exhaust gas as reducing gas. We performed research on the impact of the gas composition on product quality and then demonstrated at FuelCell Energy’s manufacturing facility in Torrington, Connecticut. This demonstration project continues to operate even though the researchmore » program is completed as it provides substantial benefits to the manufacturing facility by supplying power, heat, and hydrogen.« less
Short-term Responses of Posidonia australis to Changes in Light Quality
Strydom, Simone; McMahon, Kathryn M.; Kendrick, Gary A.; Statton, John; Lavery, Paul S.
2018-01-01
Seagrass meadows are highly productive ecosystems that provide ecosystem services to the coastal zone but are declining globally, particularly due to anthropogenic activities that reduce the quantity of light reaching seagrasses, such as dredging, river discharge and eutrophication. Light quality (the spectral composition of the light) is also altered by these anthropogenic stressors as the differential attenuation of wavelengths of light is caused by materials within the water column. This study addressed the effect of altered light quality on different life-history stages of the seagrass Posidonia australis, a persistent, habitat-forming species in Australia. Aquarium-based experiments were conducted to determine how adult shoots and seedlings respond to blue (peak λ = 451 nm); green (peak λ = 522 nm); yellow (peak λ = 596 nm) and red (peak λ = 673 nm) wavelengths with a control of full-spectrum light (λ = 400 – 700 nm, at 200 μmol photons m-2 s-1). Posidonia australis adults did not respond to changes in light quality relative to full-spectrum light, demonstrating a capacity to obtain enough photons from a range of wavelengths across the visible spectrum to maintain short-term growth at high irradiances. Posidonia australis seedlings (<4 months old) grown in blue light showed a significant increase in xanthophyll concentrations when compared to plants grown in full-spectrum, demonstrating a pigment acclimation response to blue light. These results differed significantly from negative responses to changes in light quality recently described for Halophila ovalis, a colonizing seagrass species. Persistent seagrasses such as P. australis, appear to be better at tolerating short-term changes in light quality compared to colonizing species when sufficient PPFD is present. PMID:29387070
Rural Medicare Advantage Market Dynamics and Quality: Historical Context and Current Implications.
Kemper, Leah; Barker, Abigail R; Wilber, Lyndsey; McBride, Timothy D; Mueller, Keith
2016-07-01
Purpose. In this policy brief, we assess variation in Medicare’s star quality ratings of Medicare Advantage (MA) plans that are available to rural beneficiaries. Evidence from the recent Centers for Medicare & Medicaid Services (CMS) quality demonstration suggests that market dynamics, i.e., firms entering and exiting the MA marketplace, play a role in quality improvement. Therefore, we also discuss how market dynamics may impact the smaller and less wealthy populations that are characteristic of rural places. Key Data Findings. (1) Highly rated MA plans serving rural Medicare beneficiaries are more likely to be health maintenance organizations (HMOs) and local preferred provider organizations (PPOs), as opposed to regional PPOs. HMOs and local PPOs may be better able to improve their quality scores strategically in response to the bonus payment incentive due to existing internal monitoring mechanisms. (2) On average, the rural enrollment rate is lower in plans with higher quality scores (59 percent) than the corresponding urban rate (71 percent). This differential is likely due, in part, to lack of availability of highly rated plans in rural areas: 17.8 percent of rural counties lacked access to a plan with four or more (out of five) stars, while just 3.7 percent of urban counties lacked such access. (3) MA plans with high quality scores have been operating longer, on average, and have a lower percentage of rural counties within their contract service areas than plans with lower quality scores.
High-fidelity spin entanglement using optimal control.
Dolde, Florian; Bergholm, Ville; Wang, Ya; Jakobi, Ingmar; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Neumann, Philipp; Schulte-Herbrüggen, Thomas; Biamonte, Jacob; Wrachtrup, Jörg
2014-02-28
Precise control of quantum systems is of fundamental importance in quantum information processing, quantum metrology and high-resolution spectroscopy. When scaling up quantum registers, several challenges arise: individual addressing of qubits while suppressing cross-talk, entangling distant nodes and decoupling unwanted interactions. Here we experimentally demonstrate optimal control of a prototype spin qubit system consisting of two proximal nitrogen-vacancy centres in diamond. Using engineered microwave pulses, we demonstrate single electron spin operations with a fidelity F≈0.99. With additional dynamical decoupling techniques, we further realize high-quality, on-demand entangled states between two electron spins with F>0.82, mostly limited by the coherence time and imperfect initialization. Crosstalk in a crowded spectrum and unwanted dipolar couplings are simultaneously eliminated to a high extent. Finally, by high-fidelity entanglement swapping to nuclear spin quantum memory, we demonstrate nuclear spin entanglement over a length scale of 25 nm. This experiment underlines the importance of optimal control for scalable room temperature spin-based quantum information devices.
Exploring constructs of well-being, happiness and quality of life.
Medvedev, Oleg N; Landhuis, C Erik
2018-01-01
Existing definitions of happiness, subjective well-being, and quality of life suggest conceptual overlap between these constructs. This study explored the relationship between these well-being constructs by applying widely used measures with satisfactory psychometric properties. University students ( n = 180) completed widely used well-being measures including the Oxford Happiness Questionnaire (OHQ), the World Health Organization Quality of Life Questionnaire, the Satisfaction with Life Scale, and the Positive and Negative Affect Scale. We analyzed the data using correlation, regression, and exploratory factor analysis. All included well-being measures demonstrated high loadings on the global well-being construct that explains about 80% of the variance in the OHQ, the psychological domain of Quality of Life and subjective well-being. The results show high positive correlations between happiness, psychological and health domains of quality of life, life satisfaction, and positive affect. Social and environmental domains of quality of life were poor predictors of happiness and subjective well-being after controlling for psychological quality of life. Together, these data provide support for a global well-being dimension and interchangeable use of terms happiness, subjective well-being, and psychological quality of life with the current sample and measures. Further investigation with larger heterogeneous samples and other well-being measures is warranted.
Mosleh, Sultan M
2018-06-04
Understanding the factors associated with patients' health-related quality of life along with their social networks can help identify who may benefit from supportive programmes. This study sought to evaluate the impact of a cancer diagnosis on Jordanian cancer patients' health-related quality of life and its relationship with social support and emotional status. A descriptive design was utilized, and 226 clients were participated. Participants completed European Organization for Research and Treatment of cancer quality of life questionnaire (EORTC-version 3), the Hospice Comfort Questionnaire, and the Hospital Anxiety and Depression scale. The results revealed that participants demonstrated unsatisfactory quality of life and many complained of fatigue. A multiple linear regression analysis revealed that social support, hospitalization readmission and being a nonsmoker were significant predictors for poor global quality of life score. In addition, a high educational level, less rehospitalization and high anxiety and depression scores were significant predictors for comfort level. In conclusion, patients with cancer are at an elevated risk of impaired physical functioning and report unsatisfactory quality of life, particularly if they are anxious, depressed and lack social support. The associated factors with decreased quality of life or low comfort level could be amenable to change with appropriate interventions. © 2018 John Wiley & Sons Ltd.
Exploring constructs of well-being, happiness and quality of life
Landhuis, C. Erik
2018-01-01
Background Existing definitions of happiness, subjective well-being, and quality of life suggest conceptual overlap between these constructs. This study explored the relationship between these well-being constructs by applying widely used measures with satisfactory psychometric properties. Materials and Methods University students (n = 180) completed widely used well-being measures including the Oxford Happiness Questionnaire (OHQ), the World Health Organization Quality of Life Questionnaire, the Satisfaction with Life Scale, and the Positive and Negative Affect Scale. We analyzed the data using correlation, regression, and exploratory factor analysis. Results All included well-being measures demonstrated high loadings on the global well-being construct that explains about 80% of the variance in the OHQ, the psychological domain of Quality of Life and subjective well-being. The results show high positive correlations between happiness, psychological and health domains of quality of life, life satisfaction, and positive affect. Social and environmental domains of quality of life were poor predictors of happiness and subjective well-being after controlling for psychological quality of life. Conclusion Together, these data provide support for a global well-being dimension and interchangeable use of terms happiness, subjective well-being, and psychological quality of life with the current sample and measures. Further investigation with larger heterogeneous samples and other well-being measures is warranted. PMID:29876148
Režek Jambrak, Anet; Šimunek, Marina; Grbeš, Franjo; Mandura, Ana; Djekic, Ilija
2018-04-01
The objective of this paper was to demonstrate application of quality function deployment in analysing effects of high power ultrasound on quality properties of apple juices and nectars. In order to develop a quality function deployment model, joint with instrumental analysis of treated samples, a field survey was performed to identify consumer preferences towards quality characteristics of juices/nectar. Based on field research, the three most important characteristics were 'taste' and 'aroma' with 28.5% of relative absolute weight importance, followed by 'odour' (16.9%). The quality function deployment model showed that the top three 'quality scores' for apple juice were treatments with amplitude 90 µm, 9 min treatment time and sample temperature 40 °C; 60 µm, 9 min, 60 °C; and 90 µm, 6 min, 40 °C. For nectars, the top three were treatments 120 µm, 9 min, 20 °C; 60 µm, 9 min, 60 °C; and A2.16 60 µm, 9 min, 20 °C. This type of quality model enables a more complex measure of large scale of different quality parameters. Its simplicity should be understood as its practical advantage and, as such, this tool can be a part of design quality when using novel preservation technologies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Azmat, Syed Khurram; Ali, Moazzam; Hameed, Waqas; Awan, Muhammad Ali
2018-01-01
Studies have documented the impact of quality family planning services on improved contraceptive uptake and continuation, however, relatively little is known about their quality of service provision especially in the context of social franchising. This study examined the quality of clinical services and user experiences among two models in franchised service providers in rural Pakistan. This facility-based assessment was carried out during May-June 2015 at the 20 randomly selected social franchise providers from Chakwal and Faisalabad. In our case, a franchise health facility was a private clinic (mostly) run by a single provider, supported by an assistant. Within the selected health facilities, a total 39 user-provider interactions were observed and same users were interviewed separately. Most of the health facilities were in the private sector. Comparatively, service providers at Greenstar Social Marketing/Population Services International (GSM/PSI) model franchised facilities had higher number of rooms and staff employed, with more providers' ownership. Quality of service indices showed high scores for both Marie Stopes Society (MSS) and GSM/PSI franchised providers. MSS franchised providers demonstrated comparative edge in terms of clinical governance, better method mix and they were more user-focused, while PSI providers offered broader range of non-FP services. Quality of counselling services were similar among both models. Service providers performed well on all indicators of interpersonal care however overall low scores were noted in technical care. For both models, service providers attained an average score of 6.7 (out of the maximum value of 8) on waste disposal mechanism, supplies 12.5 (out of the maximum value of 15), user-centred facility 2.7 (out of the maximum value of 4), and clinical governance 6.5 (out of the maximum value of 11) and respecting clients' privacy. The exit interviews yielded high user satisfaction in both service models. The findings seem suggesting that the MSS and GSM/PSI service providers were maintaining high quality standards in provision of family planning information, services, and commodities but overall there was not much difference between the two models in terms of quality and satisfaction. The results demonstrate that service quality and client satisfaction are an important determinant of use of clinical contraceptive methods in Pakistan.
Fast Neutron Tomography of Low-Z Object in High-Z Material Shielding
NASA Astrophysics Data System (ADS)
Babai, Ruth Weiss; Sabo-Napadensky, Iris; Bar, Doron; Mor, Ilan; Tamim, Noam; Dangendorf, Volker; Tittelmeier, Kai; Bromberger, Benjamin; Weierganz, Mathias
The technique and first results of Fast Neutron Tomography (FNCT) experiments are presented which are performed at the accelerator facility of PTB, Germany. A high-intensity neutron beam of broad spectral distribution with an average energy of 5.5 MeV, was produced by 11.5 MeV deuterons impinging upon a thick beryllium target. The capability of FNCT for high contrast imaging of low-Z materials embedded in thick high-Z shielding materials is demonstrated, which is superior to more conventional high-energy X-ray imaging techniques. For demonstrating the method special test objects were prepared: One consisted of an assembled polyethylene cylinder with holes of various diameters and directions drilled in its surface and inner parts. The plastic phantom was inserted into lead cylinders of different thicknesses. The detector system consisted of a plastic scintillator along with a dedicated optics, image-intensifier and a CCD camera. Two scintillator screens were compared: a bulk plastic scintillator screen and a fibres optical scintillator screen. The tomographic scans were taken in two geometrical configurations: cone beam and semi-fan beam configuration. The image quality favours the semi-fan beam configuration which on the other hand is more time consuming The obtained tomographic images and a comparison of the imaging quality between the different experimental conditions will be presented.
Characterization of shallow groundwater quality in the Lower St. Johns River Basin: a case study.
Ouyang, Ying; Zhang, Jia-En; Parajuli, Prem
2013-12-01
Characterization of groundwater quality allows the evaluation of groundwater pollution and provides information for better management of groundwater resources. This study characterized the shallow groundwater quality and its spatial and seasonal variations in the Lower St. Johns River Basin, Florida, USA, under agricultural, forest, wastewater, and residential land uses using field measurements and two-dimensional kriging analysis. Comparison of the concentrations of groundwater quality constituents against the US EPA's water quality criteria showed that the maximum nitrate/nitrite (NO x ) and arsenic (As) concentrations exceeded the EPA's drinking water standard limits, while the maximum Cl, SO 4 (2-) , and Mn concentrations exceeded the EPA's national secondary drinking water regulations. In general, high kriging estimated groundwater NH 4 (+) concentrations were found around the agricultural areas, while high kriging estimated groundwater NO x concentrations were observed in the residential areas with a high density of septic tank distribution. Our study further revealed that more areas were found with high estimated NO x concentrations in summer than in spring. This occurred partially because of more NO x leaching into the shallow groundwater due to the wetter summer and partially because of faster nitrification rate due to the higher temperature in summer. Large extent and high kriging estimated total phosphorus concentrations were found in the residential areas. Overall, the groundwater Na and Mg concentration distributions were relatively more even in summer than in spring. Higher kriging estimated groundwater As concentrations were found around the agricultural areas, which exceeded the EPA's drinking water standard limit. Very small variations in groundwater dissolved organic carbon concentrations were observed between spring and summer. This study demonstrated that the concentrations of groundwater quality constituents varied from location to location, and impacts of land uses on groundwater quality variation were profound.
42 CFR 435.912 - Notice of agency's decision concerning eligibility.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accountability and consistency of high quality consumer experience among States and between insurance... information to determine and verify eligibility; (iii) The demonstrated performance and timeliness experience... preferences for mode of application (such as through an internet Web site, telephone, mail, in-person, or...
Student Apprenticeship Linkage in Vocational Education.
ERIC Educational Resources Information Center
Alabama State Dept. of Education, Montgomery. Div. of Vocational Education Services.
The Student Apprenticeship Linkage Program bridges skill training programs in secondary schools with high technology apprenticeship training programs in industry. The program returns quality to Alabama's Vocational Education System and meets work force needs of business and industry. The program has eight objectives: demonstrate a model for…
Diverging Influences of Money Priming on Choice.
Kim, Hee Jin
2017-01-01
Prior research on money priming has suggested two seemingly contradicting findings. On the one hand, money has been shown to highlight the importance of cost saving, leading to the choice of a low-quality/low-price option. On the other hand, individuals primed with money as a symbol of social status, and capabilities may focus on social value of money, e.g., higher spending symbolizes higher status and prefer an option with high quality/high price. Current research proposes and demonstrates that whether money priming will lead different choices depends on the nature of the consumption context. Specifically, when the product is to be consumed privately, money priming will highlight the importance of cost, thus increasing the preference for lower price at a lower quality. However, when the product is to be consumed publicly, reversed pattern of consumer preference will be found.
Root, Jenny R; Stevenson, Bradley S; Davis, Luann Ley; Geddes-Hall, Jennifer; Test, David W
2017-02-01
Computer-assisted instruction (CAI) is growing in popularity and has demonstrated positive effects for students with disabilities, including those with autism spectrum disorder (ASD). In this review, criteria for group experimental and single case studies were used to determine quality (Horner et al., Exceptional Children 71:165-179, 2005; Gersten et al., Exceptional Children 71:149-164, 2005; National Technical Assistance Center on Transition Center 2015). Included studies of high and adequate quality were further analyzed in terms of content, context, and specific instructional practices. Based on the NTACT criteria, this systematic review has established CAI as an evidence-based practice for teaching academics to students with ASD with support from 10 single-case and two group design studies of high or adequate quality. Suggestions for future research and implications for practice are discussed.
Electron-beam induced nano-etching of suspended graphene
Sommer, Benedikt; Sonntag, Jens; Ganczarczyk, Arkadius; Braam, Daniel; Prinz, Günther; Lorke, Axel; Geller, Martin
2015-01-01
Besides its interesting physical properties, graphene as a two-dimensional lattice of carbon atoms promises to realize devices with exceptional electronic properties, where freely suspended graphene without contact to any substrate is the ultimate, truly two-dimensional system. The practical realization of nano-devices from suspended graphene, however, relies heavily on finding a structuring method which is minimally invasive. Here, we report on the first electron beam-induced nano-etching of suspended graphene and demonstrate high-resolution etching down to ~7 nm for line-cuts into the monolayer graphene. We investigate the structural quality of the etched graphene layer using two-dimensional (2D) Raman maps and demonstrate its high electronic quality in a nano-device: A 25 nm-wide suspended graphene nanoribbon (GNR) that shows a transport gap with a corresponding energy of ~60 meV. This is an important step towards fast and reliable patterning of suspended graphene for future ballistic transport, nano-electronic and nano-mechanical devices. PMID:25586495
High Quality 3D Photonics using Nano Imprint Lithography of Fast Sol-gel Materials.
Bar-On, Ofer; Brenner, Philipp; Siegle, Tobias; Gvishi, Raz; Kalt, Heinz; Lemmer, Uli; Scheuer, Jacob
2018-05-18
A method for the realization of low-loss integrated optical components is proposed and demonstrated. This approach is simple, fast, inexpensive, scalable for mass production, and compatible with both 2D and 3D geometries. The process is based on a novel dual-step soft nano imprint lithography process for producing devices with smooth surfaces, combined with fast sol-gel technology providing highly transparent materials. As a concrete example, this approach is demonstrated on a micro ring resonator made by direct laser writing (DLW) to achieve a quality factor improvement from one hundred thousand to more than 3 million. To the best of our knowledge this also sets a Q-factor record for UV-curable integrated micro-ring resonators. The process supports the integration of many types of materials such as light-emitting, electro-optic, piezo-electric, and can be readily applied to a wide variety of devices such as waveguides, lenses, diffractive elements and more.
Non-Enhanced MR Imaging of Cerebral Arteriovenous Malformations at 7 Tesla.
Wrede, Karsten H; Dammann, Philipp; Johst, Sören; Mönninghoff, Christoph; Schlamann, Marc; Maderwald, Stefan; Sandalcioglu, I Erol; Ladd, Mark E; Forsting, Michael; Sure, Ulrich; Umutlu, Lale
2016-03-01
To evaluate prospectively 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) and 7 Tesla non-contrast-enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of intracerebral arteriovenous malformations (AVMs) in comparison to 1.5 Tesla TOF MRA and digital subtraction angiography (DSA). Twenty patients with single or multifocal AVMs were enrolled in this trial. The study protocol comprised 1.5 and 7 Tesla TOF MRA and 7 Tesla non-contrast-enhanced MPRAGE sequences. All patients underwent an additional four-vessel 3D DSA. Image analysis of the following five AVM features was performed individually by two radiologists on a five-point scale: nidus, feeder(s), draining vein(s), relationship to adjacent vessels, and overall image quality and presence of artefacts. A total of 21 intracerebral AVMs were detected. Both sequences at 7 Tesla were rated superior over 1.5 Tesla TOF MRA in the assessment of all considered AVM features. Image quality at 7 Tesla was comparable with DSA considering both sequences. Inter-observer accordance was good to excellent for the majority of ratings. This study demonstrates excellent image quality for depiction of intracerebral AVMs using non-contrast-enhanced 7 Tesla MRA, comparable with DSA. Assessment of untreated AVMs is a promising clinical application of ultra-high-field MRA. • Non-contrast-enhanced 7 Tesla MRA demonstrates excellent image quality for intracerebral AVM depiction. • Image quality at 7 Tesla was comparable with DSA considering both sequences. • Assessment of intracerebral AVMs is a promising clinical application of ultra-high-field MRA.
Fernando, Shannon M; Vaillancourt, Christian; Morrow, Stanley; Stiell, Ian G
2018-07-01
Little is known regarding the quality of cardiopulmonary resuscitation (CPR) performed by bystanders in out-of-hospital cardiac arrest (OHCA). We sought to determine quality of bystander CPR provided during OHCA using CPR quality data stored by Automated External Defibrillators (AEDs). We used the Resuscitation Outcomes Consortium database to identify OHCA cases of presumed cardiac etiology where an AED was utilized. We then matched AED data to each case identified. AED data was analyzed using manufacturer software in order to determine overall measures of bystander CPR quality, changes in bystander CPR quality over time, and adherence to existing 2010 Resuscitation Quality Guidelines. 100 cases of OHCA of presumed cardiac etiology involving bystander CPR and with corresponding AED data. Mean age was 62.3 years, and 75% were male. Bystanders demonstrated high-quality CPR over all minutes of resuscitation, with a chest compression fraction of 76%, a compression depth of 5.3 cm, and a compression rate of 111.2 compressions/min. Mean perishock pause was 26.8 s. Adherence rates to 2010 Resuscitation Guidelines for compression rate and depth were found to be 66% and 55%, respectively. CPR quality was lowest in the first minute, resulting from increased delay to rhythm analysis (mean 40.7 s). In cases involving shock delivery, latency from initiation of AED to shock delivery was 59.2 s. We found that bystanders perform high-quality CPR, with strong adherence rates to existing Resuscitation Guidelines. High-quality CPR is maintained over the first five minutes of resuscitation, but was lowest in the first minute. Copyright © 2018 Elsevier B.V. All rights reserved.
78 FR 51730 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... Evaluation of the Medicare Health Care Quality (MHCQ) Demonstration Evaluation: Focus Group and Interview... Collection: Evaluation of the Medicare Health Care Quality (MHCQ) Demonstration Evaluation: Focus Group and Interview Protocols; Use: The Medicare Health Care Quality (MHCQ) Demonstration was developed to address...
Effect of high hydrostatic pressure on overall quality parameters of watermelon juice.
Liu, Y; Zhao, X Y; Zou, L; Hu, X S
2013-06-01
High hydrostatic pressure as a kind of non-thermal processing might maintain the quality of thermo-sensitive watermelon juice. So, the effect of high hydrostatic pressure treatment on enzymes and quality of watermelon juice was investigated. After high hydrostatic pressure treatment, the activities of polyphenol oxidase, peroxidase, and pectin methylesterase of juice decreased significantly with the pressure (P < 0.05). Inactivation of polyphenol oxidase and peroxidase could be fitted by two-fraction model and that of pectin methylesterase could be described by first-order reaction model. Titratable acidity, pH, and total soluble solid of juice did not change significantly (P > 0.05). No significant difference was observed in lycopene and total phenolics after high hydrostatic pressure treatment when compared to the control (P > 0.05). Cloudiness and viscosity increased with pressure (P < 0.05) but did not change significantly with treatment time (P > 0.05). a*- and b*-value both unchanged after high hydrostatic pressure treatment (P > 0.05) while L*-value increased but the values had no significant difference among treated juices. Browning degree after high hydrostatic pressure treatment decreased with increase in pressure and treatment time (P < 0.05). Through the comparison of total color difference values, high hydrostatic pressure had little effect on color of juice. The results of this study demonstrated the efficacy of high hydrostatic pressure in inactivating enzymes and maintaining the quality of watermelon juice.
The Application of Remote Sensing Techniques to Urban Data Acquisition
NASA Technical Reports Server (NTRS)
Horton, F. E.
1971-01-01
The application of remote sensing techniques useful in acquiring data concerning housing quality is discussed. Conclusions reached from the investigation were: (1) Use of individuals with a higher degree of training in photointerpretation should significantly increase the percentage of successful classifications. (2) Small area classification of urban housing quality can definitely be accomplished via high resolution aerial photography. Such surveys, at the levels of accuracy demonstrated, can be of major utility in quick look surveys. (3) Survey costs should be significantly reduced.
High-Density, High-Resolution, Low-Cost Air Quality Sensor Networks for Urban Air Monitoring
NASA Astrophysics Data System (ADS)
Mead, M. I.; Popoola, O. A.; Stewart, G.; Bright, V.; Kaye, P.; Saffell, J.
2012-12-01
Monitoring air quality in highly granular environments such as urban areas which are spatially heterogeneous with variable emission sources, measurements need to be made at appropriate spatial and temporal scales. Current routine air quality monitoring networks generally are either composed of sparse expensive installations (incorporating e.g. chemiluminescence instruments) or higher density low time resolution systems (e.g. NO2 diffusion tubes). Either approach may not accurately capture important effects such as pollutant "hot spots" or adequately capture spatial (or temporal) variability. As a result, analysis based on data from traditional low spatial resolution networks, such as personal exposure, may be inaccurate. In this paper we present details of a sophisticated, low-cost, multi species (gas phase, speciated PM, meteorology) air quality measurement network methodology incorporating GPS and GPRS which has been developed for high resolution air quality measurements in urban areas. Sensor networks developed in the Centre for Atmospheric Science (University of Cambridge) incorporated electrochemical gas sensors configured for use in urban air quality studies operating at parts-per-billion (ppb) levels. It has been demonstrated that these sensors can be used to measure key air quality gases such as CO, NO and NO2 at the low ppb mixing ratios present in the urban environment (estimated detection limits <4ppb for CO and NO and <1ppb for NO2. Mead et al (submitted Aug., 2012)). Based on this work, a state of the art multi species instrument package for deployment in scalable sensor networks has been developed which has general applicability. This is currently being employed as part of a major 3 year UK program at London Heathrow airport (the Sensor Networks for Air Quality (SNAQ) Heathrow project). The main project outcome is the creation of a calibrated, high spatial and temporal resolution data set for O3, NO, NO2, SO2, CO, CO2, VOCstotal, size-speciated PM, temperature, relative humidity, wind speed and direction. The network incorporates existing GPRS infrastructures for real time sending of data with low overheads in terms of cost, effort and installation. In this paper we present data from the SNAQ Heathrow project as well as previous deployments showing measurement capability at the ppb level for NO, NO2 and CO. We show that variability can be observed and measured quantitatively using these sensor networks over widely differing time scales from individual emission events, diurnal variability associated with traffic and meteorological conditions, through to longer term synoptic weather conditions and seasonal behaviour. This work demonstrates a widely applicable generic capability to urban areas, airports as well as other complex emissions environments making this sensor system methodology valuable for scientific, policy and regulatory issues. We conclude that the low-cost high-density network philosophy has the potential to provide a more complete assessment of the high-granularity air quality structure generally observed in the environment. Further, when appropriately deployed, has the potential to offer a new paradigm in air quality quantification and monitoring.
Low-dose fixed-target serial synchrotron crystallography.
Owen, Robin L; Axford, Danny; Sherrell, Darren A; Kuo, Anling; Ernst, Oliver P; Schulz, Eike C; Miller, R J Dwayne; Mueller-Werkmeister, Henrike M
2017-04-01
The development of serial crystallography has been driven by the sample requirements imposed by X-ray free-electron lasers. Serial techniques are now being exploited at synchrotrons. Using a fixed-target approach to high-throughput serial sampling, it is demonstrated that high-quality data can be collected from myoglobin crystals, allowing room-temperature, low-dose structure determination. The combination of fixed-target arrays and a fast, accurate translation system allows high-throughput serial data collection at high hit rates and with low sample consumption.
Mitra, Aditee; Flynn, Kevin J
2007-05-01
Ingestion kinetics of animals are controlled by both external food availability and feedback from the quantity of material already within the gut. The latter varies with gut transit time (GTT) and digestion of the food. Ingestion, assimilation efficiency, and thus, growth dynamics are not related in a simple fashion. For the first time, the important linkage between these processes and GTT is demonstrated; this is achieved using a biomass-based, mechanistic multinutrient model fitted to experimental data for zooplankton growth dynamics when presented with food items of varying quality (stoichiometric composition) or quantity. The results show that trophic transfer dynamics will vary greatly between the extremes of feeding on low-quantity/high-quality versus high-quantity/low-quality food; these conditions are likely to occur in nature. Descriptions of consumer behavior that assume a constant relationship between the kinetics of grazing and growth irrespective of food quality and/or quantity, with little or no recognition of the combined importance of these factors on consumer behavior, may seriously misrepresent consumer activity in dynamic situations.
An Improved Power Quality BIBRED Converter-Based VSI-Fed BLDC Motor Drive
NASA Astrophysics Data System (ADS)
Singh, Bhim; Bist, Vashist
2014-01-01
This paper presents an IHQRR (integrated high-quality rectifier regulator) BIBRED (boost integrated buck rectifier energy storage DC-DC) converter-based VSI (voltage source inverter)-fed BLDC (brushless DC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the VSI using a single voltage sensor. This allows VSI to operate in fundamental frequency switching mode for electronic commutation of BLDC motor which reduces the switching losses due to high-frequency switching used in conventional approach of PWM (pulse width modulation)-based VSI-fed BLDC motor drive. A BIBRED converter is operated in a dual-DCM (discontinuous conduction mode) thus using a voltage follower approach for PFC (power factor correction) and DC link voltage control. The performance of the proposed drive is evaluated for improved power quality over a wide range of speed control and supply voltage variation for demonstrating the behavior of proposed drive. The power quality indices thus obtained are within the recommended limits by international PQ (power quality) standards such as IEC 61000-3-2.
Case-based learning in education of Traditional Chinese Medicine: a systematic review.
Chen, Ji; Li, Ying; Tang, Yong; Zeng, Fang; Wu, Xi; Liang, Fanrong
2013-10-01
To assess the effect of case-based learning (CBL) in the education of Traditional Chinese Medicine (TCM). The studies concerning TCM courses designed with CBL were included by searching the databases of EBSCO, Pubmed, Science Citation Index, China National Knowledge Infrastructure, Chongqing VIP database. The valid data was extracted in accordance with the included criteria. The quality of the studies was assessed with Gemma Flores-Masteo. A total of 22 articles were retrieved that met the selection criteria: one was of high quality; two were of low quality; the rest were categorized as moderate quality. The majority of the studies demonstrated the better effect produced by CBL, while a few studies showed no difference, compared with the didactic format. All included studies confirmed the favorable effect on learners' attitude, skills and ability. CBL showed the desirable results in achieving the goal of learning. Compared to didactic approach, it played a more active role in promoting students' competency. Since the quality of the articles on which the study was based was not so high, the findings still need further research to become substantiated.
Rasch analysis of the carers quality of life questionnaire for parkinsonism.
Pillas, Marios; Selai, Caroline; Schrag, Anette
2017-03-01
To assess the psychometric properties of the Carers Quality of Life Questionnaire for Parkinsonism using a Rasch modeling approach and determine the optimal cut-off score. We performed a Rasch analysis of the survey answers of 430 carers of patients with atypical parkinsonism. All of the scale items demonstrated acceptable goodness of fit to the Rasch model. The scale was unidimensional and no notable differential item functioning was detected in the items regarding age and disease type. Rating categories were functioning adequately in all scale items. The scale had high reliability (.95) and construct validity and a high degree of precision, distinguishing between 5 distinct groups of carers with different levels of quality of life. A cut-off score of 62 was found to have the optimal screening accuracy based on Hospital Anxiety and Depression Scale subscores. The results suggest that the Carers Quality of Life Questionnaire for Parkinsonism is a useful scale to assess carers' quality of life and allows analyses requiring interval scaling of variables. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Saberkari, Hamidreza; Ghavifekr, Habib Badri; Shamsi, Mousa
2015-01-01
In recent years, demand for biological sensors which are capable of fast and accurate detection of minor amounts of pathogens in real-time form has been intensified. Acoustic wave (AW) devices whose performance is determined by mass sensitivity parameters and quality factor are used in biological sensors as platforms with high quality. Yet, current AW devices are facing many challenges such as the low value of their quality factor in practical applications and also their difficulty to use in liquids. The main focus of this article is to study on the magnetostrictive sensors which include milli/microcantilever (MSMC) type. In comparison with AW devices, MSMC has a lot of advantages; (1) its actuation and sensing unit is wirelessly controlled. (2) Its fabrication process is easy. (3) It works well in liquids. (4) It has a high-quality factor (in the air > 500). Simulation results demonstrate that the amount of quality factor depends on environment properties (density and viscosity), MSMC geometry, and its resonant behavior of harmonic modes. PMID:26120566
Foraging behavior by Daphnia in stoichiometric gradients of food quality.
Schatz, Greg S; McCauley, Edward
2007-10-01
Mismatches in the elemental composition of herbivores and their resources can impact herbivore growth and reproduction. In aquatic systems, the ratio of elements, such as C, P, and N, is used to characterize the food quality of algal prey. For example, large increases in the C:P ratio of edible algae can decrease rates of growth and reproduction in Daphnia. Current theory emphasizes that Daphnia utilize only assimilation and respiration processes to maintain an optimal elemental composition, yet studies of terrestrial herbivores implicate behavioral processes in coping with local variation in food quality. We tested the ability of juvenile and adult Daphnia to locate regions of high-quality food within a spatial gradient of algal prey differing in C:P ratio, while holding food density constant over space. Both juveniles and adults demonstrated similar behavior by quickly locating (i.e., <10 min) the region of high food quality. Foraging paths were centred on regions of high food quality and these differed significantly from paths of individuals exposed to a homogeneous environment of both food density and food quality. Ingestion rate experiments on algal prey of differing stoichiometric ratio show that individuals can adjust their intake rate over fast behavioral time-scales, and we use these data to examine how individuals choose foraging locations when presented with a spatial gradient that trades off food quality and food quantity. Daphnia reared under low food quality conditions chose to forage in regions of high food quality even though they could attain the same C ingestion rate elsewhere along a spatial gradient. We argue that these aspects of foraging behavior by Daphnia have important implications for how these herbivores manage their elemental composition and our understanding of the dynamics of these herbivore-plant systems in lakes and ponds where spatial variation in food quality is present.
A novel high-frequency encoding algorithm for image compression
NASA Astrophysics Data System (ADS)
Siddeq, Mohammed M.; Rodrigues, Marcos A.
2017-12-01
In this paper, a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the discrete cosine transform (DCT) together with a high-frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) divide the image into blocks and apply DCT to each block; (2) apply a high-frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a minimized array; (3) build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) apply a delta or differential operator to the list of DC-components; and (5) apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high-frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000.
HIV, self-transcendence, and quality of life.
Mellors, M P; Riley, T A; Erlen, J A
1997-01-01
Self-transcendence is a developmental characteristic that expands one's boundaries of the self to take on broader life perspectives, activities, and purposes that help one discover or make meaning of one's life. However, no quantitative studies were found in the research literature that focused on self-transcendence or on the relationship between self-transcendence and quality of life in people infected with HIV. To examine these variables in this population, 46 HIV-positive subjects completed Reed's Self-Transcendence Scale and Ferrans and Powers' Quality of Life Index. The results demonstrated that overall self-transcendence for this sample was relatively high; quality of life was higher than that reported in previous research; and there were some significant group differences among the three HIV clinical categories.
Ultrafast Silicon-based Modulators using Optical Switching of Vanadium Dioxide
2014-12-04
demonstrated by using photothermal heating to induce the VO2 semiconductor-to- metal phase transition and modulate the transmitted optical signal...speeds. By utilizing the sub-picosecond semiconductor-to- metal transition (SMT) in VO2 as the active switching mechanism that enables direct... metallic phases. The steep slope, high contrast, and relatively narrow hysteresis exhibited by these reflectivity measurements indicate the high quality
ERIC Educational Resources Information Center
Moore, Michael G.
2016-01-01
A systems methodology was employed to design and deliver a highly successful demonstration of the effectiveness of distance education as a means of providing high quality training to tens of thousands of teachers in the most remote areas of Brazil. Key elements in the success of the program were significant funding, top political buy-in, and…
The GeoEye Satellite Constellation
NASA Technical Reports Server (NTRS)
Dial, Gene; Cole, Aaron; Lutes, James; McKune, John; Martinez, Mike; Rao, R. S.; Taylor, Martin
2007-01-01
The GeoEye Constellation consists of: a) IKONOS and OrbView-3 for high resolution; b) GeoEye with higher resolution 1Q2007; c) RESOUCESAT-1 for global crop assessment; d) OrbView-2 for ocean research and fish. IKONOS performance in 2005 included stable image quality, radiometry and geometric accuracy. reliability is 80% to 2008. Demonstrated capacity for high-volume, quick-response collection and production.
NASA Astrophysics Data System (ADS)
Ma, Xing; Wang, Jun; Cheng, Zhuo; Yang, Zeyuan; Hu, Haiyang; Wang, Wei; Yin, Haiying; Huang, Yongqing; Ren, Xiaomin
2018-07-01
We report a structure design of 1.55 μm square microcavity lasers monolithically integrated on GaAs substrates. The mode characteristics of the microcavity lasers are numerically investigated by three-dimensional finite-difference time-domain method. The dependences of the high-quality factor modes on the side length of the microcavity, the width of the output waveguide and the etching depth are investigated in detail. The results demonstrate, for the microcavity structure with the side length of 12 μm, the output waveguide width of 1.0 μm and the etching depth of 3.55 μm, it is optimal to excite high-quality factor modes around wavelength of 1.55 μm. The mode wavelength and the mode quality factor are 1547.46 nm and 2416.28, respectively. The quality factor degrades rapidly with the waveguide width increasing, and increases with increasing etching depth.
Fourier transform near-infrared spectroscopy application for sea salt quality evaluation.
Galvis-Sánchez, Andrea C; Lopes, João Almeida; Delgadillo, Ivonne; Rangel, António O S S
2011-10-26
Near-infrared (NIR) spectroscopy in diffuse reflectance mode was explored with the objective of discriminating sea salts according to their quality type (traditional salt vs "flower of salt") and geographical origin (Atlantic vs Mediterranean). Sea salts were also analyzed in terms of Ca(2+), Mg(2+), K(+), alkalinity, and sulfate concentrations to support spectroscopic results. High concentrations of Mg(2+) and K(+) characterized Atlantic samples, while a high Ca(2+) content was observed in traditional sea salts. A partial least-squares discriminant analysis model considering the 8500-7500 cm(-1) region permitted the discrimination of salts by quality types. The regions 4650-4350 and 5900-5500 cm(-1) allowed salts classification according to their geographical origin. It was possible to classify correctly 85.3 and 94.8% of the analyzed samples according to the salt type and to the geographical origin, respectively. These results demonstrated that NIR spectroscopy is a suitable and very efficient tool for sea salt quality evaluation.
Evans, Steven T; Stewart, Kevin D; Afdahl, Chris; Patel, Rohan; Newell, Kelcy J
2017-07-14
In this paper, we discuss the optimization and implementation of a high throughput process development (HTPD) tool that utilizes commercially available micro-liter sized column technology for the purification of multiple clinically significant monoclonal antibodies. Chromatographic profiles generated using this optimized tool are shown to overlay with comparable profiles from the conventional bench-scale and clinical manufacturing scale. Further, all product quality attributes measured are comparable across scales for the mAb purifications. In addition to supporting chromatography process development efforts (e.g., optimization screening), comparable product quality results at all scales makes this tool is an appropriate scale model to enable purification and product quality comparisons of HTPD bioreactors conditions. The ability to perform up to 8 chromatography purifications in parallel with reduced material requirements per run creates opportunities for gathering more process knowledge in less time. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Ultra-slim flexible glass for roll-to-roll electronic device fabrication
NASA Astrophysics Data System (ADS)
Garner, Sean; Glaesemann, Scott; Li, Xinghua
2014-08-01
As displays and electronics evolve to become lighter, thinner, and more flexible, the choice of substrate continues to be critical to their overall optimization. The substrate directly affects improvements in the designs, materials, fabrication processes, and performance of advanced electronics. With their inherent benefits such as surface quality, optical transmission, hermeticity, and thermal and dimensional stability, glass substrates enable high-quality and long-life devices. As substrate thicknesses are reduced below 200 μm, ultra-slim flexible glass continues to provide these inherent benefits to high-performance flexible electronics such as displays, touch sensors, photovoltaics, and lighting. In addition, the reduction in glass thickness also allows for new device designs and high-throughput, continuous manufacturing enabled by R2R processes. This paper provides an overview of ultra-slim flexible glass substrates and how they enable flexible electronic device optimization. Specific focus is put on flexible glass' mechanical reliability. For this, a combination of substrate design and process optimizations has been demonstrated that enables R2R device fabrication on flexible glass. Demonstrations of R2R flexible glass processes such as vacuum deposition, photolithography, laser patterning, screen printing, slot die coating, and lamination have been made. Compatibility with these key process steps has resulted in the first demonstration of a fully functional flexible glass device fabricated completely using R2R processes.
A liquid-crystal-on-silicon color sequential display using frame buffer pixel circuits
NASA Astrophysics Data System (ADS)
Lee, Sangrok
Next generation liquid-crystal-on-silicon (LCOS) high definition (HD) televisions and image projection displays will need to be low-cost and high quality to compete with existing systems based on digital micromirror devices (DMDs), plasma displays, and direct view liquid crystal displays. In this thesis, a novel frame buffer pixel architecture that buffers data for the next image frame while displaying the current frame, offers such a competitive solution is presented. The primary goal of the thesis is to demonstrate the LCOS microdisplay architecture for high quality image projection displays and at potentially low cost. The thesis covers four main research areas: new frame buffer pixel circuits to improve the LCOS performance, backplane architecture design and testing, liquid crystal modes for the LCOS microdisplay, and system integration and demonstration. The design requirements for the LCOS backplane with a 64 x 32 pixel array are addressed and measured electrical characteristics matches to computer simulation results. Various liquid crystal (LC) modes applicable for LCOS microdisplays and their physical properties are discussed. One- and two-dimensional director simulations are performed for the selected LC modes. Test liquid crystal cells with the selected LC modes are made and their electro-optic effects are characterized. The 64 x 32 LCOS microdisplays fabricated with the best LC mode are optically tested with interface circuitry. The characteristics of the LCOS microdisplays are summarized with the successful demonstration.
High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.
Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan
2012-04-01
We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.
NASA Astrophysics Data System (ADS)
Shin, Junsoo; Goyal, Amit; Jesse, Stephen; Kim, Dae Ho
2009-06-01
Epitaxial, c-axis oriented BaTiO3 thin films were deposited using pulsed laser ablation on flexible, polycrystalline Ni alloy tape with biaxially textured oxide buffer multilayers. The high quality of epitaxial BaTiO3 thin films with P4mm group symmetry was confirmed by x-ray diffraction. The microscopic ferroelectric domain structure and the piezoelectric domain switching in these films were confirmed via spatially resolved piezoresponse mapping and local hysteresis loops. Macroscopic measurements demonstrate that the films have well-saturated hysteresis loops with a high remanent polarization of ˜11.5 μC/cm2. Such high-quality, single-crystal-like BaTiO3 films on low-cost, polycrystalline, flexible Ni alloy substrates are attractive for applications in flexible lead-free ferroelectric devices.
The Dawn of Lead‐Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film
Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan
2017-01-01
Abstract Recently, lead‐free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead‐free double perovskite planar heterojunction solar cell with a high quality Cs2AgBiBr6 film, fabricated by low‐pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead‐free perovskite solar cells. PMID:29593974
Learning the specific quality of taste reinforcement in larval Drosophila
Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram
2015-01-01
The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing—in any brain. DOI: http://dx.doi.org/10.7554/eLife.04711.001 PMID:25622533
NASA Astrophysics Data System (ADS)
Kwon, Seyong; Cho, Chang Hyun; Kwon, Youngmee; Lee, Eun Sook; Park, Je-Kyun
2017-04-01
Immunohistochemistry (IHC) plays an important role in biomarker-driven cancer therapy. Although there has been a high demand for standardized and quality assured IHC, it has rarely been achieved due to the complexity of IHC testing and the subjective validation-based process flow of IHC quality control. We present here a microfluidic immunostaining system for the standardization of IHC by creating a microfluidic linearly graded antibody (Ab)-staining device and a reference cell microarray. Unlike conventional efforts, our system deals primarily with the screening of biomarker staining conditions for quantitative quality assurance testing in IHC. We characterized the microfluidic matching of Ab staining intensity using three HER2 Abs produced by different manufacturers. The quality of HER2 Ab was also validated using tissues of breast cancer patients, demonstrating that our system is an efficient and powerful tool for the standardization and quality assurance of IHC.
Image quality classification for DR screening using deep learning.
FengLi Yu; Jing Sun; Annan Li; Jun Cheng; Cheng Wan; Jiang Liu
2017-07-01
The quality of input images significantly affects the outcome of automated diabetic retinopathy (DR) screening systems. Unlike the previous methods that only consider simple low-level features such as hand-crafted geometric and structural features, in this paper we propose a novel method for retinal image quality classification (IQC) that performs computational algorithms imitating the working of the human visual system. The proposed algorithm combines unsupervised features from saliency map and supervised features coming from convolutional neural networks (CNN), which are fed to an SVM to automatically detect high quality vs poor quality retinal fundus images. We demonstrate the superior performance of our proposed algorithm on a large retinal fundus image dataset and the method could achieve higher accuracy than other methods. Although retinal images are used in this study, the methodology is applicable to the image quality assessment and enhancement of other types of medical images.
Preminger, Jill E; Meeks, Suzanne
2010-04-01
The purpose of this research was to investigate the congruent/incongruent perceptions of hearing-loss related quality of life between members of couples and to determine how incongruence was affected by individual psychosocial characteristics, specifically measures of mood (negative affect and positive affect), stress, and communication in the marriage. An exploratory correlational analysis was performed on data for 52 couples in which only one member had a hearing loss. In the regression analyses the independent variables were hearing-loss related quality of life scores measured in people with hearing loss, measured in significant others, and differences in hearing-loss related quality of life among members of a couple. The results demonstrate that both in people with hearing loss and their significant others, perceptions of hearing-loss related quality of life is highly correlated with negative mood scores. Incongruence in hearing-loss related quality of life scores reported by members of a couple were highly correlated with negative affect measured within each individual. Future research evaluating the effectiveness of audiologic rehabilitation can use measures of mood as an outcome variable.
Image resolution enhancement via image restoration using neural network
NASA Astrophysics Data System (ADS)
Zhang, Shuangteng; Lu, Yihong
2011-04-01
Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.
High-quality infrared imaging with graphene photodetectors at room temperature.
Guo, Nan; Hu, Weida; Jiang, Tao; Gong, Fan; Luo, Wenjin; Qiu, Weicheng; Wang, Peng; Liu, Lu; Wu, Shiwei; Liao, Lei; Chen, Xiaoshuang; Lu, Wei
2016-09-21
Graphene, a two-dimensional material, is expected to enable broad-spectrum and high-speed photodetection because of its gapless band structure, ultrafast carrier dynamics and high mobility. We demonstrate a multispectral active infrared imaging by using a graphene photodetector based on hybrid response mechanisms at room temperature. The high-quality images with optical resolutions of 418 nm, 657 nm and 877 nm and close-to-theoretical-limit Michelson contrasts of 0.997, 0.994, and 0.996 have been acquired for 565 nm, 1550 nm, and 1815 nm light imaging measurements by using an unbiased graphene photodetector, respectively. Importantly, by carefully analyzing the results of Raman mapping and numerical simulations for the response process, the formation of hybrid photocurrents in graphene detectors is attributed to the synergistic action of photovoltaic and photo-thermoelectric effects. The initial application to infrared imaging will help promote the development of high performance graphene-based infrared multispectral detectors.
First refraction contrast imaging via Laser-Compton Scattering X-ray at KEK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaue, Kazuyuki; Aoki, Tatsuro; Washio, Masakazu
2012-07-31
Laser-Compton Scattering (LCS) is one of the most feasible techniques for high quality, high brightness, and compact X-ray source. High energy electron beam produced by accelerators scatters off the laser photon at a small spot. As a laser target, we have been developing a pulsedlaser storage cavity for increasing an X-ray flux. The X-ray flux was still inadequate that was 2.1 Multiplication-Sign 10{sup 5}/sec, however, we performed first refraction contrast imaging in order to evaluate the quality of LCS X-ray. Edge enhanced contrast imaging was achieved by changing the distance from sample to detector. The edge enhancement indicates that themore » LCS X-ray has small source size, i.e. high brightness. We believe that the result has demonstrated good feasibility of linac-based high brightness X-ray sources via laser-electron Compton scatterings.« less
Beam shaping in high-power broad-area quantum cascade lasers using optical feedback
Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric
2017-01-01
Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources. PMID:28287175
Beam shaping in high-power broad-area quantum cascade lasers using optical feedback.
Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric
2017-03-13
Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources.
Fang, Ruogu; Karlsson, Kolbeinn; Chen, Tsuhan; Sanelli, Pina C.
2014-01-01
Blood-brain-barrier permeability (BBBP) measurements extracted from the perfusion computed tomography (PCT) using the Patlak model can be a valuable indicator to predict hemorrhagic transformation in patients with acute stroke. Unfortunately, the standard Patlak model based PCT requires excessive radiation exposure, which raised attention on radiation safety. Minimizing radiation dose is of high value in clinical practice but can degrade the image quality due to the introduced severe noise. The purpose of this work is to construct high quality BBBP maps from low-dose PCT data by using the brain structural similarity between different individuals and the relations between the high- and low-dose maps. The proposed sparse high-dose induced (shd-Patlak) model performs by building a high-dose induced prior for the Patlak model with a set of location adaptive dictionaries, followed by an optimized estimation of BBBP map with the prior regularized Patlak model. Evaluation with the simulated low-dose clinical brain PCT datasets clearly demonstrate that the shd-Patlak model can achieve more significant gains than the standard Patlak model with improved visual quality, higher fidelity to the gold standard and more accurate details for clinical analysis. PMID:24200529
NASA Astrophysics Data System (ADS)
Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.
2018-04-01
We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.
Gray, Allan; Wright, Alex; Jackson, Pete; Hale, Mike; Treanor, Darren
2015-03-01
Histochemical staining of tissue is a fundamental technique in tissue diagnosis and research, but it suffers from significant variability. Efforts to address this include laboratory quality controls and quality assurance schemes, but these rely on subjective interpretation of stain quality, are laborious and have low reproducibility. We aimed (1) to develop a method for histochemical stain quantification using whole slide imaging and image analysis and (2) to demonstrate its usefulness in measuring staining variation. A method to quantify the individual stain components of histochemical stains on virtual slides was developed. It was evaluated for repeatability and reproducibility, then applied to control sections of an appendix to quantify H&E staining (H/E intensities and H:E ratio) between automated staining machines and to measure differences between six regional diagnostic laboratories. The method was validated with <0.5% variation in H:E ratio measurement when using the same scanner for a batch of slides (ie, it was repeatable) but was not highly reproducible between scanners or over time, where variation of 7% was found. Application of the method showed H:E ratios between three staining machines varied from 0.69 to 0.93, H:E ratio variation over time was observed. Interlaboratory comparison demonstrated differences in H:E ratio between regional laboratories from 0.57 to 0.89. A simple method using whole slide imaging can be used to quantify and compare histochemical staining. This method could be deployed in routine quality assurance and quality control. Work is needed on whole slide imaging devices to improve reproducibility. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
A practical workflow for making anatomical atlases for biological research.
Wan, Yong; Lewis, A Kelsey; Colasanto, Mary; van Langeveld, Mark; Kardon, Gabrielle; Hansen, Charles
2012-01-01
The anatomical atlas has been at the intersection of science and art for centuries. These atlases are essential to biological research, but high-quality atlases are often scarce. Recent advances in imaging technology have made high-quality 3D atlases possible. However, until now there has been a lack of practical workflows using standard tools to generate atlases from images of biological samples. With certain adaptations, CG artists' workflow and tools, traditionally used in the film industry, are practical for building high-quality biological atlases. Researchers have developed a workflow for generating a 3D anatomical atlas using accessible artists' tools. They used this workflow to build a mouse limb atlas for studying the musculoskeletal system's development. This research aims to raise the awareness of using artists' tools in scientific research and promote interdisciplinary collaborations between artists and scientists. This video (http://youtu.be/g61C-nia9ms) demonstrates a workflow for creating an anatomical atlas.
NASA Astrophysics Data System (ADS)
Lin, Chang-Yu; Huang, I.-Yu; Lan, Je-Wei
2013-01-01
Conventional flexural plate-wave (FPW) transducers have limited applications in biomedical sensing due to their disadvantages such as high insertion loss and low quality factor. To overcome these shortcomings, we propose a FPW transducer on a low phase velocity insulator membrane (5-μm-thick SiO2) with a novel groove-type reflective grating structure design. Additionally, a cystamine self-assembly monolayer and a glutaraldehyde cross-linking layer are implemented on the backside of the FPW device to immobilize alpha-fetoprotein (AFP) antibody. A FPW-based AFP biosensor with low detection limit (5 ng/mL) can be achieved and used to measure the extreme low concentration of AFP antigen in human serum for early detection of hepatocellular carcinoma. The proposed FPW-based AFP biosensor also demonstrates a very high quality factor (206), low insertion loss (-40.854 dB), low operating frequency (6.388 MHz), and high sensing linearity (90.7%).
A demonstration that the adaptation of electronic instrumentation and towed survey strategies are effective in providing rapid, spatially extensive, and cost effective data for assessment of the Great Lakes.
CdS-Nanowires Flexible Photo-detector with Ag-Nanowires Electrode Based on Non-transfer Process
Pei, Yanli; Pei, Ruihan; Liang, Xiaoci; Wang, Yuhao; Liu, Ling; Chen, Haibiao; Liang, Jun
2016-01-01
In this study, UV-visible flexible resistivity-type photo-detectors were demonstrated with CdS-nanowires (NWs) percolation network channel and Ag-NWs percolation network electrode. The devices were fabricated on Mixed Cellulose Esters (MCE) membrane using a lithographic filtration method combined with a facile non-transfer process. The photo-detectors demonstrated strong adhesion, fast response time, fast decay time, and high photo sensitivity. The high performance could be attributed to the high quality single crystalline CdS-NWs, encapsulation of NWs in MCE matrix and excellent interconnection of the NWs. Furthermore, the sensing performance was maintained even the device was bent at an angle of 90°. This research may pave the way for the facile fabrication of flexible photo-detectors with high performances. PMID:26899726
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R
2017-11-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.
Rivera, Manuel; Rahaman, Mostafizur; Zhou, Andrew F.; Mohammed Alzuraiqi, Waleed; Feng, Peter
2017-01-01
High-quality two-dimensional (2D) crystalline boron nitride nanosheets (BNNSs) were grown on silicon wafers by using pulsed plasma beam deposition techniques. Self-powered deep ultraviolet (DUV) photodetectors (PDs) based on BNNSs with Schottky contact structures are designed and fabricated. By connecting the fabricated DUV photodetector to an ammeter, the response strength, response time and recovery time to different DUV wavelengths at different intensities have been characterized using the output short circuit photocurrent without a power supply. Furthermore, effects of temperature and plasma treatment on the induced photocurrent response of detectors have also been investigated. The experimental data clearly indicate that plasma treatment would significantly improve both induced photocurrent and response time. The BNNS-based DUV photodetector is demonstrated to possess excellent performance at a temperature up to 400 °C, including high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high stability, which is better than almost all reported semiconducting nanomaterial-based self-powered photodetectors. PMID:29257098
Determinants of impaired quality of life in patients with fibrous dysplasia.
Majoor, Bas C J; Andela, Cornelie D; Bruggemann, Jens; van de Sande, Michiel A J; Kaptein, Ad A; Hamdy, Neveen A T; Dijkstra, P D Sander; Appelman-Dijkstra, Natasha M
2017-04-27
Fibrous dysplasia is a rare bone disorder, commonly associated with pain, deformity and fractures, which may significantly impact on quality of life. In this study we evaluate quality of life in patients with fibrous dysplasia using the Short Form-36 and the Brief Pain Inventory questionnaires. Data were compared with those of the general Dutch population. Out of 138 patients from a cohort of 255 patients with fibrous dysplasia that were sent questionnaires assessing quality of life and pain, the response rate was 70.3%, with 97 patients, predominantly female (65%), completing the questionnaires. Monostotic fibrous dysplasia was predominant (n = 62, 64%). Fibrous dysplasia patients had significantly lower quality of life outcome scores than the general Dutch population for all tested domains of the Short Form-36 except for the "Mental health" and the "Role emotional" domains. More severe forms of fibrous dysplasia, had the more severe Short-Form-36 quality of life outcomes, but there was no significant difference in Brief Pain Inventory domains between different subtypes of fibrous dysplasia. Quality of life was lower in patients with higher disease burden, as reflected by high skeletal burden scores (p = 0.003) and high levels of P1NP (p = 0.002). We demonstrate impairments in all domains of quality of life, except for 'Mental health' and 'Role emotional' domains, across the wide spectrum of fibrous dysplasia including its milder forms. We identified high skeletal burden scores, reflecting disease severity, as the most consistent predictor of impaired quality of life. Our findings hold significant clinical implications as they draw attention to the clinically unmet need to address quality of life issues in the management of patients with all subtypes of fibrous dysplasia, including its milder forms.
Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope
NASA Technical Reports Server (NTRS)
Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.
NASA Technical Reports Server (NTRS)
Stoliker, Patrick C.; Bosworth, John T.
1996-01-01
The X-31A aircraft gross-acquisition and fine-tracking handling qualities have been evaluated using standard evaluation maneuvers developed by Wright Laboratory, Wright-Patterson Air Force Base. The emphasis of the testing is in the angle-of-attack range between 30 deg and 70 deg. Longitudinal gross-acquisition handling qualities results show borderline Level 1/Level 2 performance. Lateral gross-acquisition testing results in Level 1/Level 2 ratings below 45 deg angle of attack, degrading into Level 3 as angle of attack increases. The fine-tracking performance in both longitudinal and lateral axes also receives Level 1 ratings near 30 deg angle of attack, with the ratings tending towards Level 3 at angles of attack greater than 50 deg. These ratings do not match the expectations from the extensive close-in combat testing where the X-31A aircraft demonstrated fair to good handling qualities maneuvering for high angles of attack. This paper presents the results of the high-angle-of-attack handling qualities flight testing of the X-31A aircraft. Discussion of the preparation for the maneuvers, the pilot ratings, and selected pilot comments are included. Evaluation of the results is made in conjunction with existing Neal-Smith, bandwidth, Smith-Geddes, and military specifications.
NASA Technical Reports Server (NTRS)
Stoliker, Patrick C.; Bosworth, John T.
1997-01-01
The X-31A aircraft gross-acquisition and fine-tracking handling qualities have been evaluated using standard evaluation maneuvers developed by Wright Laboratory, Wright Patterson Air Force Base. The emphasis of the testing is in the angle-of-attack range between 30 deg. and 70 deg. Longitudinal gross-acquisition handling qualities results show borderline Level l/Level 2 performance. Lateral gross-acquisition testing results in Level l/Level 2 ratings below 45 deg. angle of attack, degrading into Level 3 as angle of attack increases. The fine tracking performance in both longitudinal and lateral axes also receives Level 1 ratings near 30 deg. angle of attack, with the ratings tending towards Level 3 at angles of attack greater than 50 deg. These ratings do not match the expectations from the extensive close-in combat testing where the X-31A aircraft demonstrated fair to good handling qualities maneuvering for high angles of attack. This paper presents the results of the high-angle-of-attack handling qualities flight testing of the X-31A aircraft. Discussion of the preparation for the maneuvers, the pilot ratings, and selected pilot comments are included. Evaluation of the results is made in conjunction with existing Neal Smith, bandwidth, Smith-Geddes, and military specifications.
Financial and quality impacts of the Medicare physician group practice demonstration.
Pope, Gregory; Kautter, John; Leung, Musetta; Trisolini, Michael; Adamache, Walter; Smith, Kevin
2014-01-01
To examine the impact of the Medicare Physician Group Practice (PGP) demonstration on expenditure, utilization, and quality outcomes. Secondary data analysis of 2001-2010 Medicare claims for 1,776,387 person years assigned to the ten participating provider organizations and 1,579,080 person years in the corresponding local comparison groups. We used a pre-post comparison group observational design consisting of four pre-demonstration years (1/01-12/04) and five demonstration years (4/05-3/10). We employed a propensity-weighted difference-in-differences regression model to estimate demonstration effects, adjusting for demographics, health status, geographic area, and secular trends. The ten demonstration sites combined saved $171 (2.0%) per assigned beneficiary person year (p<0.001) during the five-year demonstration period. Medicare paid performance bonuses to the participating PGPs that averaged $102 per person year. The net savings to the Medicare program were $69 (0.8%) per person year. Demonstration savings were achieved primarily from the inpatient setting. The demonstration improved quality of care as measured by six of seven claims-based process quality indicators. The PGP demonstration, which used a payment model similar to the Medicare Accountable Care Organization (ACO) program, resulted in small reductions in Medicare expenditures and inpatient utilization, and improvements in process quality indicators. Judging from this demonstration experience, it is unlikely that Medicare ACOs will initially achieve large savings. Nevertheless, ACOs paid through shared savings may be an important first step toward greater efficiency and quality in the Medicare fee-for-service program.
The 3D Elevation Program: summary for Missouri
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Montana
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The new 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Louisiana
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Tennessee
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for New York
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
3D Elevation Program: summary for Vermont
Carswell, William J.
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Maryland
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Ohio
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation's natural and constructed features.
The 3D Elevation Program: summary for Indiana
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation's natural and constructed features.
The 3D Elevation Program: summary for Maine
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Kentucky
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Oregon
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for North Dakota
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios.The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Florida
Carswell, William J.
2013-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios.The new 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the OMB Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
3D Elevation Program: summary for Nebraska
Carswell, William J.
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Alabama
Carswell, William J.
2013-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The new 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A-16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
Zhang, Chenchu; Hu, Yanlei; Du, Wenqiang; Wu, Peichao; Rao, Shenglong; Cai, Ze; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Li, Jiawen; Zhao, Gang; Wu, Dong; Chu, Jiaru; Sugioka, Koji
2016-01-01
Rapid integration of high-quality functional devices in microchannels is in highly demand for miniature lab-on-a-chip applications. This paper demonstrates the embellishment of existing microfluidic devices with integrated micropatterns via femtosecond laser MRAF-based holographic patterning (MHP) microfabrication, which proves two-photon polymerization (TPP) based on spatial light modulator (SLM) to be a rapid and powerful technology for chip functionalization. Optimized mixed region amplitude freedom (MRAF) algorithm has been used to generate high-quality shaped focus field. Base on the optimized parameters, a single-exposure approach is developed to fabricate 200 × 200 μm microstructure arrays in less than 240 ms. Moreover, microtraps, QR code and letters are integrated into a microdevice by the advanced method for particles capture and device identification. These results indicate that such a holographic laser embellishment of microfluidic devices is simple, flexible and easy to access, which has great potential in lab-on-a-chip applications of biological culture, chemical analyses and optofluidic devices. PMID:27619690
Grouped and Multistep Nanoheteroepitaxy: Toward High-Quality GaN on Quasi-Periodic Nano-Mask.
Feng, Xiaohui; Yu, Tongjun; Wei, Yang; Ji, Cheng; Cheng, Yutian; Zong, Hua; Wang, Kun; Yang, Zhijian; Kang, Xiangning; Zhang, Guoyi; Fan, Shoushan
2016-07-20
A novel nanoheteroepitaxy method, namely, the grouped and multistep nanoheteroepitaxy (GM-NHE), is proposed to attain a high-quality gallium nitride (GaN) epilayer by metal-organic vapor phase epitaxy. This method combines the effects of sub-100 nm nucleation and multistep lateral growth by using a low-cost but unique carbon nanotube mask, which consists of nanoscale growth windows with a quasi-periodic 2D fill factor. It is found that GM-NHE can facilely reduce threading dislocation density (TDD) and modulate residual stress on foreign substrate without any regrowth. As a result, high-quality GaN epilayer is produced with homogeneously low TDD of 4.51 × 10(7) cm(-2) and 2D-modulated stress, and the performance of the subsequent 410 nm near-ultraviolet light-emitting diode is greatly boosted. In this way, with the facile fabrication of nanomask and the one-off epitaxy procedure, GaN epilayer is prominently improved with the assistance of nanotechnology, which demonstrates great application potential for high-efficiency TDD-sensitive optoelectronic and electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-05-01
This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less
Design and development of a prototype platform for gait analysis
NASA Astrophysics Data System (ADS)
Diffenbaugh, T. E.; Marti, M. A.; Jagani, J.; Garcia, V.; Iliff, G. J.; Phoenix, A.; Woolard, A. G.; Malladi, V. V. N. S.; Bales, D. B.; Tarazaga, P. A.
2017-04-01
The field of event classification and localization in building environments using accelerometers has grown significantly due to its implications for energy, security, and emergency protocols. Virginia Tech's Goodwin Hall (VT-GH) provides a robust testbed for such work, but a reduced scale testbed could provide significant benefits by allowing algorithm development to occur in a simplified environment. Environments such as VT-GH have high human traffic that contributes external noise disrupting test signals. This paper presents a design solution through the development of an isolated platform for data collection, portable demonstrations, and the development of localization and classification algorithms. The platform's success was quantified by the resulting transmissibility of external excitation sources, demonstrating the capabilities of the platform to isolate external disturbances while preserving gait information. This platform demonstrates the collection of high-quality gait information in otherwise noisy environments for data collection or demonstration purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Gwanghui; Cho, Moo-Hyun; Conde, Manoel
Emittance exchange (EEX) based longitudinal current profile shaping is the one of the promising current profile shaping technique. This method can generate high quality arbitrary current profiles under the ideal conditions. The double dog-leg EEX beam line was recently installed at the Argonne Wakefield Accelerator (AWA) to explore the shaping capability and confirm the quality of this method. To demonstrate the arbitrary current profile generation, several different transverse masks are applied to generate different final current profiles. The phase space slopes and the charge of incoming beam are varied to observe and suppress the aberrations on the ideal profile. Wemore » present current profile shaping results, aberrations on the shaped profile, and its suppression.« less
Behavioral intervention for problem behavior in children with fragile X syndrome.
Moskowitz, Lauren J; Carr, Edward G; Durand, V Mark
2011-11-01
Parents and professionals typically report problem behavior as a significant concern for children with fragile X syndrome. In the present study, the authors explored whether behaviorally based interventions would result in a reduction in problem behavior and an improvement in quality of life for 3 children with fragile X syndrome and their families. A multiple baseline design was used to demonstrate intervention effects for specific high-priority contexts (i.e., bedtime, running errands, and toileting). A multicomponent intervention plan was developed to teach the parents and child to effectively cope with the particular context. After intervention, there were substantial improvements in problem behavior and family quality of life within the given contexts. Results of this study demonstrated the effectiveness of behavioral intervention for children with fragile X syndrome.
Molecular-beam epitaxy of 7-8 μm range quantum-cascade laser heterostructures
NASA Astrophysics Data System (ADS)
Babichev, A. V.; Denisov, D. V.; Filimonov, A. V.; Nevedomsky, V. N.; Kurochkin, A. S.; Gladyshev, A. G.; Karachinsky, L. Ya; Sokolovskii, G. S.; Novikov, I. I.; Bousseksou, A.; Egorov, A. Yu
2017-11-01
The method of molecular beam epitaxy demonstrates the possibility to create high quality heterostructures of quantum cascade lasers in a spectral range of 7-8 μm containing 50 quantum cascades in an active region. Design based on the principle of two-phonon resonant scattering is used. X-ray diffraction and transmission electron microscopy experiments confirm high structural properties of the created heterostructures, e.g. the identity of the composition and thickness of epitaxial layers in all 50 cascades. Edge-emitting lasers based on the grown heterostructure demonstrate lasing with threshold current density of 2.8 kA/cm2 at a temperature of 78 K.
42 CFR 475.104 - Requirements for demonstrating ability to perform review.
Code of Federal Regulations, 2010 CFR
2010-10-01
... review. 475.104 Section 475.104 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) QUALITY IMPROVEMENT ORGANIZATIONS QUALITY IMPROVEMENT ORGANIZATIONS Utilization and Quality Control Quality Improvement Organizations § 475.104 Requirements for demonstrating...
Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system
NASA Astrophysics Data System (ADS)
Zhang, C.; Man, B. Y.; Yang, C.; Jiang, S. Z.; Liu, M.; Chen, C. S.; Xu, S. C.; Sun, Z. C.; Gao, X. G.; Chen, X. J.
2013-10-01
Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene.
Nitrogen-Polar (000 1 ¯ ) GaN Grown on c-Plane Sapphire with a High-Temperature AlN Buffer.
Song, Jie; Han, Jung
2017-03-02
We demonstrate growing nitrogen-polar (N-polar) GaN epilayer on c-plane sapphire using a thin AlN buffer layer by metalorganic chemical vapor deposition. We have studied the influence of the AlN buffer layer on the polarity, crystalline quality, and surface morphology of the GaN epilayer and found that the growth temperature of the AlN buffer layer played a critical role in the growth of the GaN epilayer. The low growth temperature of the AlN buffer results in gallium-polar GaN. Even a nitridation process has been conducted. High growth temperature for an AlN buffer layer is required to achieve pure N-polarity, high crystalline quality, and smooth surface morphology for a GaN epilayer.
Mixed Element Type Unstructured Grid Generation for Viscous Flow Applications
NASA Technical Reports Server (NTRS)
Marcum, David L.; Gaither, J. Adam
2000-01-01
A procedure is presented for efficient generation of high-quality unstructured grids suitable for CFD simulation of high Reynolds number viscous flow fields. Layers of anisotropic elements are generated by advancing along prescribed normals from solid boundaries. The points are generated such that either pentahedral or tetrahedral elements with an implied connectivity can be be directly recovered. As points are generated they are temporarily attached to a volume triangulation of the boundary points. This triangulation allows efficient local search algorithms to be used when checking merging layers, The existing advancing-front/local-reconnection procedure is used to generate isotropic elements outside of the anisotropic region. Results are presented for a variety of applications. The results demonstrate that high-quality anisotropic unstructured grids can be efficiently and consistently generated for complex configurations.
Metamorphic Epitaxy for Multijunction Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
France, Ryan M.; Dimroth, Frank; Grassman, Tyler J.
Multijunction solar cells have proven to be capable of extremely high efficiencies by combining multiple semiconductor materials with bandgaps tuned to the solar spectrum. Reaching the optimum set of semiconductors often requires combining high-quality materials with different lattice constants into a single device, a challenge particularly suited for metamorphic epitaxy. In this article, we describe different approaches to metamorphic multijunction solar cells, including traditional upright metamorphic, state-of-the-art inverted metamorphic, and forward-looking multijunction designs on silicon. We also describe the underlying materials science of graded buffers that enables metamorphic subcells with low dislocation densities. Following nearly two decades of research, recentmore » efforts have demonstrated high-quality lattice-mismatched multijunction solar cells with very little performance loss related to the mismatch, enabling solar-to-electric conversion efficiencies over 45%.« less
Toronto area ozone: Long-term measurements and modeled sources of poor air quality events
NASA Astrophysics Data System (ADS)
Whaley, C. H.; Strong, K.; Jones, D. B. A.; Walker, T. W.; Jiang, Z.; Henze, D. K.; Cooke, M. A.; McLinden, C. A.; Mittermeier, R. L.; Pommier, M.; Fogal, P. F.
2015-11-01
The University of Toronto Atmospheric Observatory and Environment Canada's Centre for Atmospheric Research Experiments each has over a decade of ground-based Fourier transform infrared (FTIR) spectroscopy measurements in southern Ontario. We present the Toronto area FTIR time series from 2002 to 2013 of two tropospheric trace gases—ozone and carbon monoxide—along with surface in situ measurements taken by government monitoring programs. We interpret their variability with the GEOS-Chem chemical transport model and determine the atmospheric conditions that cause pollution events in the time series. Our analysis includes a regionally tagged O3 model of the 2004-2007 time period, which quantifies the geographical contributions to Toronto area O3. The important emission types for 15 pollution events are then determined with a high-resolution adjoint model. Toronto O3, during pollution events, is most sensitive to southern Ontario and U.S. fossil fuel NOx emissions and natural isoprene emissions. The sources of Toronto pollution events are found to be highly variable, and this is demonstrated in four case studies representing local, short-, middle-, and long-range transport scenarios. This suggests that continental-scale emission reductions could improve air quality in the Toronto region. We also find that abnormally high temperatures and high-pressure systems are common to all pollution events studied, suggesting that climate change may impact Toronto O3. Finally, we quantitatively compare the sensitivity of the surface and column measurements to anthropogenic NOx emissions and show that they are remarkably similar. This work thus demonstrates the usefulness of FTIR measurements in an urban area to assess air quality.
NASA Astrophysics Data System (ADS)
Ghose, Susmita; Rahman, Shafiqur; Hong, Liang; Rojas-Ramirez, Juan Salvador; Jin, Hanbyul; Park, Kibog; Klie, Robert; Droopad, Ravi
2017-09-01
The growth of high quality epitaxial beta-gallium oxide (β-Ga2O3) using a compound source by molecular beam epitaxy has been demonstrated on c-plane sapphire (Al2O3) substrates. The compound source provides oxidized gallium molecules in addition to oxygen when heated from an iridium crucible in a high temperature effusion cell enabling a lower heat of formation for the growth of Ga2O3, resulting in a more efficient growth process. This source also enabled the growth of crystalline β-Ga2O3 without the need for additional oxygen. The influence of the substrate temperatures on the crystal structure and quality, chemical bonding, surface morphology, and optical properties has been systematically evaluated by x-ray diffraction, scanning transmission electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, spectroscopic ellipsometry, and UV-vis spectroscopy. Under optimized growth conditions, all films exhibited pure (" separators="|2 ¯01 ) oriented β-Ga2O3 thin films with six-fold rotational symmetry when grown on a sapphire substrate. The thin films demonstrated significant absorption in the deep-ultraviolet (UV) region with an optical bandgap around 5.0 eV and a refractive index of 1.9. A deep-UV photodetector fabricated on the high quality β-Ga2O3 thin film exhibits high resistance and small dark current (4.25 nA) with expected photoresponse for 254 nm UV light irradiation suggesting that the material grown using the compound source is a potential candidate for deep-ultraviolet photodetectors.
Development and flight test results of an autothrottle control system at Mach 3 cruise
NASA Technical Reports Server (NTRS)
Gilyard, G. B.; Burken, J. J.
1980-01-01
Flight test results obtained with the original Mach hold autopilot designed the YF-12C airplane which uses elevator control and a newly developed Mach hold system having an autothrottle integrated with an altitude hold autopilot system are presented. The autothrottle tests demonstrate good speed control at high Mach numbers and high altitudes while simultaneously maintaining control over altitude and good ride qualities. The autothrottle system was designed to control either Mach number or knots equivalent airspeed (KEAS). Excellent control of Mach number or KEAS was obtained with the autothrottle system when combined with altitude hold. Ride qualities were significantly better than with the conventional Mach hold system.
Jeon, Seung-Woo; Han, Jin-Kyu; Song, Bong-Shik; Noda, Susumu
2010-08-30
To enhance the mechanical stability of a two-dimensional photonic crystal slab structure and maintain its excellent performance, we designed a glass-embedded silicon photonic crystal device consisting of a broad bandwidth waveguide and a nanocavity with a high quality (Q) factor, and then fabricated the structure using spin-on glass (SOG). Furthermore, we showed that the refractive index of the SOG could be tuned from 1.37 to 1.57 by varying the curing temperature of the SOG. Finally, we demonstrated a glass-embedded heterostructured cavity with an ultrahigh Q factor of 160,000 by adjusting the refractive index of the SOG.
NASA Astrophysics Data System (ADS)
Yu, Yan-mei; Sahoo, B. K.
2018-04-01
The Ni12 +, Cu13 +, Pd12 +, and Ag13 + highly charged ions (HCIs) are proposed for making very accurate optical clocks with the fractional uncertainties below 10-19 level. These HCIs have simple atomic energy levels, clock transitions with quality factors larger than 1015, and optical magnetic-dipole (M 1 ) transitions that can be used for laser cooling and detecting quantum jumps on the clock transitions by the shelving method. To demonstrate the projected fractional uncertainties, we estimate orders of magnitude of the Zeeman, Stark, blackbody radiation, and electric quadrupole shifts of the clock transitions by performing calculations of the relevant atomic properties in the above HCIs.
Can the national surgical quality improvement program provide surgeon-specific outcomes?
Kuhnen, Angela H; Marcello, Peter W; Roberts, Patricia L; Read, Thomas E; Schoetz, David J; Rusin, Lawrence C; Hall, Jason F; Ricciardi, Rocco
2015-02-01
Efforts to improve the quality of surgical care and reduce morbidity and mortality have resulted in outcomes reporting at the service and institutional level. Surgeon-specific outcomes are not readily available. The aim of this study is to compare surgeon-specific outcomes from the National Surgical Quality Improvement Program and 100% capture institutional quality data. We conducted a cohort study evaluating institutional and surgeon-specific outcomes following colorectal surgery procedures at 1 institution over 5 years. All patients who underwent an operation by a colorectal surgeon at Lahey Hospital & Medical Center from January 1, 2008 through December 31, 2012 were identified. Thirty-day mortality, reoperation, urinary tract infection, deep vein thrombosis, pneumonia, superficial surgical site infection, and organ space infection were the primary outcomes measured. We compared annual and 5-year institutional and surgeon-specific adverse event rates between the data sets. In addition, we categorized individual surgeons as low-outlier, average, or high-outlier in relation to aggregate averages and determined the concordance between the data sets in identifying outliers. Concordance was designated if the 2 databases classified outlier status similarly for the same adverse event category. In the 100% capture institutional data, 6459 operative encounters were identified in comparison with 1786 National Surgical Quality Improvement Program encounters (28% sampled). Annual aggregate adverse event rates were similar between the institutional data and the National Surgical Quality Improvement Program. For annual surgeon-specific comparisons, concordance in identifying outliers between the 2 data sets was 51.4%, and gross discordance between outlier status was in 8.2%. Five-year surgeon-specific comparisons demonstrated 59% concordance in identifying outlier status with 8.2% gross discordance for the group. The inclusion of data from only 1 academic referral center is a limitation of this study. Each surgeon was identified as a "high outlier" in at least 1 adverse event category. Comparisons at the annual and 5-year points demonstrated poor concordance between our 100% capture institutional data and the National Surgical Quality Improvement Program data.
Overview of CMC Development Activities in NASA's Ultra-Efficient Engine Technology (UEET) Program
NASA Technical Reports Server (NTRS)
Brewer, Dave
2001-01-01
The primary objective of the UEET (Ultra-Efficient Engine Technology) Program is to address two of the most critical propulsion issues: performance/efficiency and reduced emissions. High performance, low emissions engine systems will lead to significant improvement in local air quality, minimum impact on ozone depletion and level to an overall reduction in aviation contribution to global warming. The Materials and Structures for High Performance project will develop and demonstrate advanced high temperature materials to enable high-performance, high efficiency, and environmentally compatible propulsion systems.
[Phantom studies of ultrasound equipment for quality improvement in breast diagnosis].
Madjar, H; Mundinger, A; Lattermann, U; Gufler, H; Prömpeler, H J
1996-04-01
According to the German guidelines for quality control of ultrasonic equipment, the following conditions are required for breast ultrasound: A transducer frequency between 5-7.5 MHz and a minimum field of view of 5 cm. Satisfactory images must be obtained in a depth between 0.5 and 4 cm with a wide tolerance of the focal zones. This allows the use of poor quality equipment which does not produce satisfactory image quality and it excludes a number of high frequency and high resolution transducers with a field of view below 5 cm. This study with a test phantom was performed to define image quality objectively. Sixteen ultrasound instruments in different price categories were used to perform standardized examinations on a breast phantom model 550 (ATS Laboratories, Bridgeport, USA). Contrast and spatial resolution in different penetration depths were investigated on cyst phantoms from 1-4 mm diameter and wire targets with defined distances between 0.5-3 mm 4 investigations reported the images. A positive correlation was seen between price category and image quality. This study demonstrates that transducer frequency and image geometry do not allow sufficient quality control. An improvement of ultrasound diagnosis is only possible if equipment guidelines are based on standard examinations with test phantoms.
Rapid determination of nanowires electrical properties using a dielectrophoresis-well based system
NASA Astrophysics Data System (ADS)
Constantinou, Marios; Hoettges, Kai F.; Krylyuk, Sergiy; Katz, Michael B.; Davydov, Albert; Rigas, Grigorios-Panagiotis; Stolojan, Vlad; Hughes, Michael P.; Shkunov, Maxim
2017-03-01
The use of high quality semiconducting nanomaterials for advanced device applications has been hampered by the unavoidable growth variability of electrical properties of one-dimensional nanomaterials, such as nanowires and nanotubes, thus highlighting the need for the characterization of efficient semiconducting nanomaterials. In this study, we demonstrate a low-cost, industrially scalable dielectrophoretic (DEP) nanowire assembly method for the rapid analysis of the electrical properties of inorganic single crystalline nanowires, by identifying key features in the DEP frequency response spectrum from 1 kHz to 20 MHz in just 60 s. Nanowires dispersed in anisole were characterized using a three-dimensional DEP chip (3DEP), and the resultant spectrum demonstrated a sharp change in nanowire response to DEP signal in 1-20 MHz frequency range. The 3DEP analysis, directly confirmed by field-effect transistor data, indicates that nanowires of higher quality are collected at high DEP signal frequency range above 10 MHz, whereas lower quality nanowires, with two orders of magnitude lower current per nanowire, are collected at lower DEP signal frequencies. These results show that the 3DEP platform can be used as a very efficient characterization tool of the electrical properties of rod-shaped nanoparticles to enable dielectrophoretic selective deposition of nanomaterials with superior conductivity properties.
NASA Astrophysics Data System (ADS)
Peters, Brian; Blum, Christian; Woodward, Patrick; Wurmehl, Sabine; Yang, Fengyuan
2013-03-01
A number of Heusler alloys have been predicted to be half-metallic and are thus ideal candidates for use in spintronics. Co2FeAlxSi1-x has been predicted and shown to have some of the highest Tc, saturation magnetization and lowest magnetic damping constant among Heusler half-metals. Here we outline the growth and characterization of the highest crystalline quality epitaxial Heusler films using a novel off-axis UHV sputtering technique. We grow these films onto a closely lattice matched MgAl2O4(001) substrate, without the need for a Cr-buffer layer or post annealing, as has been done previously. This eliminates the diffusion of Cr across the interface, thus improving the purity and crystallinity of the films at the interface. X-ray diffraction results demonstrate epitaxial films with distinct Laue oscillations and rocking curves of FWHM as low as 0.0035°, which demonstrates the highest crystalline quality for Heusler films reported to date. Magnetic measurements show highly square hysteresis loops with a remanence of 95-98%, near ideal saturation magnetization, very small coercivities - between 3-8 Oe, pronounced magnetocrystalline anisotropy. Department of Chemistry, The Ohio State University
Searching for a business case for quality in Medicaid managed care.
Greene, Sandra B; Reiter, Kristin L; Kilpatrick, Kerry E; Leatherman, Sheila; Somers, Stephen A; Hamblin, Allison
2008-01-01
Despite the prevalence of evidence-based interventions to improve quality in health care systems, there is a paucity of documented evidence of a financial return on investment (ROI) for these interventions from the perspective of the investing entity. To report on a demonstration project designed to measure the business case for selected quality interventions in high-risk high-cost patient populations in 10 Medicaid managed care organizations across the United States. Using claims and enrollment data gathered over a 3-year period and data on the costs of designing, implementing, and operating the interventions, ROIs were computed for 11 discrete evidence-based quality-enhancing interventions. A complex case management program to treat adults with multiple comorbidities achieved the largest ROI of 12.21:1. This was followed by an ROI of 6.35:1 for a program which treated children with asthma with a history of high emergency room (ER) use and/or inpatient admissions for their disease. An intervention for high-risk pregnant mothers produced a 1.26:1 ROI, and a program for adult patients with diabetes resulted in a 1.16:1 return. The remaining seven interventions failed to show positive returns, although four sites came close to realizing sufficient savings to offset investment costs. Evidence-based interventions designed to improve the quality of patient care may have the best opportunity to yield a positive financial return if it is focused on high-risk high-cost populations and conditions associated with avoidable emergency and inpatient utilization. Developing the necessary tracking systems for the claims and financial investments is critical to perform accurate financial ROI analyses.
Hong, Xinguo; Newville, Matthew; Prakapenka, Vitali B; Rivers, Mark L; Sutton, Stephen R
2009-07-01
We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within +/-3 degrees relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO2 recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO2 glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO2 glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, X.; Newville, M.; Prakapenka, V.B.
We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over amore » small angular range of DAC orientation, e.g., within {+-}3{sup o} relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO{sub 2} recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO{sub 2} glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO{sub 2} glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.« less
Linking Dynamic Habitat Selection with Wading Bird Foraging Distributions across Resource Gradients
Beerens, James M.; Noonburg, Erik G.; Gawlik, Dale E.
2015-01-01
Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species’ ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches. PMID:26107386
Brosseau, Lucie; Taki, Jade; Desjardins, Brigit; Thevenot, Odette; Fransen, Marlene; Wells, George A; Mizusaki Imoto, Aline; Toupin-April, Karine; Westby, Marie; Álvarez Gallardo, Inmaculada C; Gifford, Wendy; Laferrière, Lucie; Rahman, Prinon; Loew, Laurianne; De Angelis, Gino; Cavallo, Sabrina; Shallwani, Shirin Mehdi; Aburub, Ala'; Bennell, Kim L; Van der Esch, Martin; Simic, Milena; McConnell, Sara; Harmer, Alison; Kenny, Glen P; Paterson, Gail; Regnaux, Jean-Philippe; Lefevre-Colau, Marie-Martine; McLean, Linda
2017-05-01
To identify effective strengthening exercise programs and provide rehabilitation teams and patients with updated, high-quality recommendations concerning traditional land-based exercises for knee osteoarthritis. A systematic search and adapted selection criteria included comparative controlled trials with strengthening exercise programs for patients with knee osteoarthritis. A panel of experts reached consensus on the recommendations using a Delphi survey. A hierarchical alphabetical grading system (A, B, C+, C, D, D+ or D-) was based on statistical significance ( p < 0.5) and clinical importance (⩾15% improvement). The 26 high-quality studies identified demonstrated that various strengthening exercise programs with/without other types of therapeutic exercises are generally effective for improving knee osteoarthritis management within a six-month period. Strengthening exercise programs demonstrated a significant improvement for pain relief (four Grade A, ten Grade B, two Grade C+), physical function (four Grade A, eight Grade B) and quality of life (three Grade B). Strengthening in combination with other types of exercises (coordination, balance, functional) showed a significant improvement in pain relief (three Grade A, 11 Grade B, eight Grade C+), physical function (two Grade A, four Grade B, three Grade C+) and quality of life (one Grade A, one Grade C+). There are a variety of choices for strengthening exercise programs with positive recommendations for healthcare professionals and knee osteoarthritis patients. There is a need to develop combined behavioral and muscle-strengthening strategies to improve long-term maintenance of regular strengthening exercise programs.
Linking dynamic habitat selection with wading bird foraging distributions across resource gradients
Beerens, James M.; Noonberg, Erik G.; Gawlik, Dale E.
2015-01-01
Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species' ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches.
Vohra, Varun; Anzai, Takuya; Inaba, Shusei; Porzio, William; Barba, Luisa
2016-01-01
Abstract Polymer solar cells (PSCs) are greatly influenced by both the vertical concentration gradient in the active layer and the quality of the various interfaces. To achieve vertical concentration gradients in inverted PSCs, a sequential deposition approach is necessary. However, a direct approach to sequential deposition by spin-coating results in partial dissolution of the underlying layers which decreases the control over the process and results in not well-defined interfaces. Here, we demonstrate that by using a transfer-printing process based on polydimethylsiloxane (PDMS) stamps we can obtain increased control over the thickness of the various layers while at the same time increasing the quality of the interfaces and the overall concentration gradient within the active layer of PSCs prepared in air. To optimize the process and understand the influence of various interlayers, our approach is based on surface free energy, spreading parameters and work of adhesion calculations. The key parameter presented here is the insertion of high quality hole transporting and electron transporting layers, respectively above and underneath the active layer of the inverted structure PSC which not only facilitates the transfer process but also induces the adequate vertical concentration gradient in the device to facilitate charge extraction. The resulting non-encapsulated devices (active layer prepared in air) demonstrate over 40% increase in power conversion efficiency with respect to the reference spin-coated inverted PSCs. PMID:27877901
High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd
2007-01-01
A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence < 1 J/sq cm for most beams. The pump beam quality of the Nd:YAG pump laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.
Reilly, Karen E; Mueller, Christine; Zimmerman, David R
2007-01-01
This paper presents the first comprehensive account of a major national demonstration designed to integrate skilled nursing facilities (SNF) prospective case-mix payment and quality of care. It describes the Centers for Medicare and Medicaid Services' Nursing Home Case-Mix and Quality (NHCMQ) Demonstration-the template for Medicare's SNF Prospective Payment System (PPS) implemented July 1998. The NHCMQ Demonstration provided the basis for one of the most significant changes in SNF reimbursement and quality monitoring policies to date. Prospective reimbursement policies created positive incentive for providers to admit Medicare residents under more equitable payment rates. However, controversy regarding unanticipated perverse provider incentives remains. The quality management system designed under the NHCMQDemonstration is currently used in over 17,000 nursing homes. Furthermore, under the NHCMQ Demonstration, one standardized assessment tool-the MDS-was used to assess a resident's clinical condition, to monitor quality, and to calculate provider reimbursement. Experiences from the NHCMQ Demonstration and continued evaluation of the current national PPS, along with state systems, provide a rich information source regarding prospective, case-mix reimbursement, and provider incentives.
Defining geo-habitats for groundwater ecosystem assessments: an example from England and Wales (UK)
NASA Astrophysics Data System (ADS)
Weitowitz, Damiano C.; Maurice, Louise; Lewis, Melinda; Bloomfield, John P.; Reiss, Julia; Robertson, Anne L.
2017-12-01
Groundwater ecosystems comprising micro-organisms and metazoans provide an important contribution to global biodiversity. Their complexity depends on geology, which determines the physical habitat available, and the chemical conditions within it. Despite this, methods of classifying groundwater habitats using geological data are not well established and researchers have called for higher resolution habitat frameworks. A novel habitat typology for England and Wales (UK) is proposed, which distinguishes 11 geological habitats (geo-habitats) on hydrogeological principles and maps their distribution. Hydrogeological and hydrochemical data are used to determine the characteristics of each geo-habitat, and demonstrate their differences. Using these abiotic parameters, a new method to determine abiotic habitat quality is then developed. The geo-habitats had significantly different characteristics, validating the classification system. All geo-habitats were highly heterogeneous, containing both high quality habitat patches that are likely to be suitable for fauna, and areas of low quality that may limit faunal distributions. Karstic and porous habitats generally were higher quality than fractured habitats. Overall, 70% of England and Wales are covered by lower quality fractured habitats, with only 13% covered by higher quality habitats. The main areas of high quality habitats occur in central England as north-south trending belts, possibly facilitating dispersal along this axis. They are separated by low quality geo-habitats that may prevent east-west dispersal of fauna. In south-west England and Wales suitable geo-habitats occur as small isolated patches. Overall, this paper provides a new national-scale typology that is adaptable for studies in other geographic areas.
Meier, Frederick A; Badrick, Tony C; Sikaris, Kenneth A
2018-02-17
For 50 years, structure, process, and outcomes measures have assessed health care quality. For clinical laboratories, structural quality has generally been assessed by inspection. For assessing process, quality indicators (QIs), statistical monitors of steps in the clinical laboratory total testing, have proliferated across the globe. Connections between structural and process laboratory measures and patient outcomes, however, have rarely been demonstrated. To inform further development of clinical laboratory quality systems, we conducted a selective but worldwide review of publications on clinical laboratory quality assessment. Some QIs, like seven generic College of American Pathologists Q-Tracks monitors, have demonstrated significant process improvement; other measures have uncovered critical opportunities to improve test selection and result management. The College of Pathologists of Australasia Key Indicator Monitoring and Management System has deployed risk calculations, introduced from failure mode effects analysis, as surrogate measures for outcomes. Showing economic value from clinical laboratory testing quality is a challenge. Clinical laboratories should converge on fewer (7-14) rather than more (21-35) process monitors; monitors should cover all steps of the testing process under laboratory control and include especially high-risk specimen-quality QIs. Clinical laboratory stewardship, the combination of education interventions among clinician test orderers and report consumers with revision of test order formats and result reporting schemes, improves test ordering, but improving result reception is more difficult. Risk calculation reorders the importance of quality monitors by balancing three probabilities: defect frequency, weight of potential harm, and detection difficulty. The triple approach of (1) a more focused suite of generic consensus quality indicators, (2) more active clinical laboratory testing stewardship, and (3) integration of formal risk assessment, rather than competing with economic value, enhances it.
The Costs of Small Drinking Water Systems Removing Arsenic from Groundwater
Between 2003 and 2011, EPA conducted an Arsenic Demonstration Program whereby the Agency purchased, installed and evaluated the performance and cost of 50 small water treatment systems scattered across the USA. A major goal of the program was to collect high-quality cost data (c...
ERIC Educational Resources Information Center
Nebbergall, Allison
2012-01-01
As technology increasingly transforms our daily lives, educators too are seeking strategies and resources that leverage technology to improve student learning. Research demonstrates that high-quality professional development, digital standards-based content, and personalized learning plans can increase student achievement, engagement, and…
Effect of maternal obesity on fetal bone development in the rat
USDA-ARS?s Scientific Manuscript database
Epidemiological studies show that quality of nutrition during intrauterine and postnatal early life impact the risk of low bone mass and fracture later in life. Maternal consumption of high-fat diets has been demonstrated to affect health outcomes, such as: brain development; obesity; insulin resist...
Epigenetic control of fetal bone development through HoxA10 in the rat
USDA-ARS?s Scientific Manuscript database
Epidemiological studies show that quality of nutrition during intrauterine and early postnatal life impact the risk of low bone mass and fracture later in life. Maternal consumption of high-fat diets has been demonstrated to affect health outcomes, such as: brain development; obesity; insulin resist...
Early Childhood Education: The Long-Term Benefits
ERIC Educational Resources Information Center
Bakken, Linda; Brown, Nola; Downing, Barry
2017-01-01
This study was designed to substantiate the positive, long-term outcomes demonstrated by children from economically disadvantaged homes who received a high-quality, early education. Children who attended The Opportunity Project (TOP) Early Learning Centers in a midwestern city in the United States were matched with a like control sample from a…
Using Computer Conferencing Techniques To Maximize Student Learning.
ERIC Educational Resources Information Center
Norton, Robert E.; Stammen, Ronald M.
The Consortium for the Development of Professional Materials for Vocational Education at Ohio State University was organized in 1978 for the purpose of developing high-quality curriculum materials for training leadership personnel in vocational and technical education in the United States, and to pilot test and demonstrate new instructional…
Soil Moisture Active Passive (SMAP) Calibration and validation plan and current activities
USDA-ARS?s Scientific Manuscript database
The primary objective of the SMAP calibration and validation (Cal/Val) program is demonstrating that the science requirements (product accuracy and bias) have been met over the mission life. This begins during pre-launch with activities that contribute to high quality products and establishing post-...
75 FR 22810 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... System (EHRDS)--practice application and profile update system; Use: In 2008, the Secretary of the... new demonstration initiative using Medicare waiver authority to reward the delivery of high-quality... system was first developed with the intention of having practices applying to participate in Phase 2 of...
New tools for sculpting cranial implants in a shared haptic augmented reality environment.
Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary
2006-01-01
New volumetric tools were developed for the design and fabrication of high quality cranial implants from patient CT data. These virtual tools replace time consuming physical sculpting, mold making and casting steps. The implant is designed by medical professionals in tele-immersive collaboration. Virtual clay is added in the virtual defect area on the CT data using the adding tool. With force feedback the modeler can feel the edge of the defect and fill only the space where no bone is present. A carving tool and a smoothing tool are then used to sculpt and refine the implant. To make a physical evaluation, the skull with simulated defect and the implant are fabricated via stereolithography to allow neurosurgeons to evaluate the quality of the implant. Initial tests demonstrate a very high quality fit. These new haptic volumetric sculpting tools are a critical component of a comprehensive tele-immersive system.
Mathieu, John E; Rapp, Tammy L
2009-01-01
This study examined the influences of team charters and performance strategies on the performance trajectories of 32 teams of master's of business administration students competing in a business strategy simulation over time. The authors extended existing theory on team development by demonstrating that devoting time to laying a foundation for both teamwork (i.e., team charters) and taskwork (performance strategies) can pay dividends in terms of more effective team performance over time. Using random coefficients growth modeling techniques, they found that teams with high-quality performance strategies outperformed teams with poorer quality strategies. However, a significant interaction between quality of the charters of teams and their performance strategies was found, such that the highest sustained performances were exhibited by teams that were high on both features. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
2013-01-01
The evaluation of a membrane bioreactor (MBR) for pretreatment of reverse osmosis (RO) in order to reuse and reclamation of industrial town wastewater treatment plant was investigated in this study. Performance of MBR effluent through water quality in term of parameters such as chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN) and total coliform (TC) were measured. Also Silt density index (SDI) was used as indicator for RO feed water. The results of this study demonstrated that MBR produce a high quality permeate water. Approximately 75%, 98%, 74% and 99.9% removal of COD, TSS, TN and TC were recorded, respectively. Also SDI of the permeate effluent from membrane was below 3 for most of the times. It means that pilot yield a high quality treated effluent from the membrane module which can be used as RO feed water. PMID:24355199
Efficient high-quality volume rendering of SPH data.
Fraedrich, Roland; Auer, Stefan; Westermann, Rüdiger
2010-01-01
High quality volume rendering of SPH data requires a complex order-dependent resampling of particle quantities along the view rays. In this paper we present an efficient approach to perform this task using a novel view-space discretization of the simulation domain. Our method draws upon recent work on GPU-based particle voxelization for the efficient resampling of particles into uniform grids. We propose a new technique that leverages a perspective grid to adaptively discretize the view-volume, giving rise to a continuous level-of-detail sampling structure and reducing memory requirements compared to a uniform grid. In combination with a level-of-detail representation of the particle set, the perspective grid allows effectively reducing the amount of primitives to be processed at run-time. We demonstrate the quality and performance of our method for the rendering of fluid and gas dynamics SPH simulations consisting of many millions of particles.
Hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Tuocheng; Jia, Zhenzhao; Yan, Baoming
2015-01-05
We demonstrate hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC. Compared with the conventional thermal decomposition technique, the size of the growth domain by this method is substantially increased and the thickness variation is reduced. Based on the morphology of epitaxial graphene, the role of hydrogen is revealed. It is found that hydrogen acts as a carbon etchant. It suppresses the defect formation and nucleation of graphene. It also improves the kinetics of carbon atoms via hydrocarbon species. These effects lead to increase of the domain size and the structure quality. The consequent capping effectmore » results in smooth surface morphology and suppression of multilayer growth. Our method provides a viable route to fine tune the growth kinetics of epitaxial graphene on SiC.« less
Akyol, Murat; Ulger, Eda; Alacacioglu, Ahmet; Kucukzeybek, Yuksel; Yildiz, Yasar; Bayoglu, Vedat; Gumus, Zehra; Yildiz, Ibrahim; Salman, Tarık; Varol, Umut; Ayakdas, Semra; Tarhan, Mustafa Oktay
2015-07-01
Determination of psychological problems will shed light on the terms of solution and provide support to patients about these problems will ensure the patients' coherence to the treatment and will enhance the benefits they receive from treatment. In this study, we aimed to determine these psychosocial problems and the interactions with each other in colon cancer patients. In this study, 105 patients with colorectal cancer were included. The forms consist of sociodemographic features, Hospital Anxiety and Depression Scale, European Organization for Research on Treatment of Cancer Questionnaires Quality of Life-C30 and Golombok-Rust Inventory of Sexual Satisfaction questionnaires. Male patients had significantly higher European Organization for Research on Treatment of Cancer Questionnaires Quality of Life-C30 function scales and global quality-of-life scores than female patients. Golombok-Rust Inventory of Sexual Satisfaction scores of female patients were significantly higher than that of male patients. European Organization for Research on Treatment of Cancer Questionnaires Quality of Life-C30 function scales and global quality-of-life scores of the patients with high depression scores were significantly lower, conversely symptom scale scores of the patients with high depression scores were significantly higher than that of the patients with low depression scores. Patients with low anxiety scores had significantly higher European Organization for Research on Treatment of Cancer Questionnaires Quality of Life-C30 function scales and global quality-of-life scores than the patients with high anxiety scores. Symptom scale scores of the patients with high anxiety scores were significantly higher than that of the patients with low anxiety scores. The scores of Golombok-Rust Inventory of Sexual Satisfaction except premature ejaculation and vaginismus were significantly higher in patients with high anxiety scores and a significant difference was determined in touch, avoidance and anorgasm. This study demonstrates that there is a significant association with anxiety/depression symptoms and quality-of-life scores, sexual dysfunction. Sexual dysfunction is significantly more common in patients with high anxiety and depression scores. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Velicu, S.; Bommena, R.; Morley, M.; Zhao, J.; Fahey, S.; Cowan, V.; Morath, C.
2013-09-01
The development of a broadband IR focal plane array poses several challenges in the area of detector design, material, device physics, fabrication process, hybridization, integration and testing. The purpose of our research is to address these challenges and demonstrate a high-performance IR system that incorporates a HgCdTe-based detector array with high uniformity and operability. Our detector architecture, grown using molecular beam epitaxy (MBE), is vertically integrated, leading to a stacked detector structure with the capability to simultaneously detect in two spectral bands. MBE is the method of choice for multiplelayer HgCdTe growth because it produces material of excellent quality and allows composition and doping control at the atomic level. Such quality and control is necessary for the fabrication of multicolor detectors since they require advanced bandgap engineering techniques. The proposed technology, based on the bandgap-tunable HgCdTe alloy, has the potential to extend the broadband detector operation towards room temperature. We present here our modeling, MBE growth and device characterization results, demonstrating Auger suppression in the LWIR band and diffusion limited behavior in the MWIR band.
ERIC Educational Resources Information Center
Bert, Greg
2010-01-01
The six national content standards from NASPE define what a student should know and be able to do as a result of a high quality physical education program. The "NASPE SIX" serve as a North Star to guide teachers as they prepare and implement programs. Simply stated, the NASPE Standards for Physical Education are all about six simple…
Richard W. Haynes; Roger D. Fight
2004-01-01
Grade-specific price projections were once again developed for Douglas-fir, coast hem-fir, inland hem-fir, and ponderosa pine lumber. These grade-specific price projections can be used to demonstrate the returns to land management of practices that lead to high-quality logs that produce a larger proportion of high grades of lumber. The price ratios among low, medium,...
Formation of high-quality self-assembled monolayers of conjugated dithiols on gold: base matters.
Valkenier, Hennie; Huisman, Everardus H; van Hal, Paul A; de Leeuw, Dago M; Chiechi, Ryan C; Hummelen, Jan C
2011-04-06
This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases and studied the quality of the resulting SAMs on gold. We found that the optimal conditions to reproducibly form dense, high-quality monolayers are 9-15% triethylamine (Et(3)N) in THF. The deprotection base tetrabutylammonium hydroxide (Bu(4)NOH) leads to less dense SAMs and the incorporation of Bu(4)N into the monolayer. Furthermore, our results show the importance of the equilibrium concentrations of (di)thiolate in solution on the quality of the SAM. To demonstrate the relevance of these results for molecular electronics applications, large-area molecular junctions were fabricated using no base, Et(3)N, and Bu(4)NOH. The magnitude of the current-densities in these devices is highly dependent on the base. A value of β=0.15 Å(-1) for the exponential decay of the current-density of OPEs of varying length formed using Et(3)N was obtained. © 2011 American Chemical Society
Designing "Real-World" trials to meet the needs of health policy makers at marketing authorization.
Calvert, Melanie; Wood, John; Freemantle, Nick
2011-07-01
There is increasing interest in conducting "Real-World" trials that go beyond traditional assessment of efficacy and safety to examine market access and value for money questions before marketing authorization of a new pharmaceutical product or health technology. This commentary uses practical examples to demonstrate how high-quality evidence of the cost-effectiveness of an intervention may be gained earlier in the development process. Issues surrounding the design and analysis of "Real-World" trials to demonstrate relative cost-effectiveness early in the life of new technologies are discussed. The modification of traditional phase III trial designs, de novo trial designs, the combination of trial-based and epidemiological data, and the use of simulation model-based approaches to address reimbursement questions are described. Modest changes to a phase III trial protocol and case report form may be undertaken at the design stage to provide valid estimates of health care use and the benefits accrued; however, phase III designs often preclude "real-life" practice. Relatively small de novo trials may be used to address adherence to therapy or patient preference, although simply designed studies with active comparators enrolling large numbers of patients may provide evidence on long-term safety and rare adverse events. Practical examples demonstrate that it is possible to provide high-quality evidence of the cost-effectiveness of an intervention earlier in the development process. Payers and decision makers should preferentially adopt treatments with such evidence than treatments for which evidence is lacking or of lower quality. Copyright © 2011 Elsevier Inc. All rights reserved.
Schmitt, John; Beller, Justin; Russell, Brian; Quach, Anthony; Hermann, Elizabeth; Lyon, David; Breit, Jeffrey
2017-01-01
As the biopharmaceutical industry evolves to include more diverse protein formats and processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain processing flexibility without compromising quality. Active control of CQAs has been demonstrated using model predictive control techniques, which allow development of processes which are robust against disturbances associated with raw material variability and other potentially flexible operating conditions. Wide adoption of model predictive control in biopharmaceutical cell culture processes has been hampered, however, in part due to the large amount of data and expertise required to make a predictive model of controlled CQAs, a requirement for model predictive control. Here we developed a highly automated, perfusion apparatus to systematically and efficiently generate predictive models using application of system identification approaches. We successfully created a predictive model of %galactosylation using data obtained by manipulating galactose concentration in the perfusion apparatus in serialized step change experiments. We then demonstrated the use of the model in a model predictive controller in a simulated control scenario to successfully achieve a %galactosylation set point in a simulated fed‐batch culture. The automated model identification approach demonstrated here can potentially be generalized to many CQAs, and could be a more efficient, faster, and highly automated alternative to batch experiments for developing predictive models in cell culture processes, and allow the wider adoption of model predictive control in biopharmaceutical processes. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1647–1661, 2017 PMID:28786215
[QUIPS: quality improvement in postoperative pain management].
Meissner, Winfried
2011-01-01
Despite the availability of high-quality guidelines and advanced pain management techniques acute postoperative pain management is still far from being satisfactory. The QUIPS (Quality Improvement in Postoperative Pain Management) project aims to improve treatment quality by means of standardised data acquisition, analysis of quality and process indicators, and feedback and benchmarking. During a pilot phase funded by the German Ministry of Health (BMG), a total of 12,389 data sets were collected from six participating hospitals. Outcome improved in four of the six hospitals. Process indicators, such as routine pain documentation, were only poorly correlated with outcomes. To date, more than 130 German hospitals use QUIPS as a routine quality management tool. An EC-funded parallel project disseminates the concept internationally. QUIPS demonstrates that patient-reported outcomes in postoperative pain management can be benchmarked in routine clinical practice. Quality improvement initiatives should use outcome instead of structural and process parameters. The concept is transferable to other fields of medicine. Copyright © 2011. Published by Elsevier GmbH.
Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest.
Li, Hongjian; Leung, Kwong-Sak; Wong, Man-Hon; Ballester, Pedro J
2015-06-12
Docking scoring functions can be used to predict the strength of protein-ligand binding. It is widely believed that training a scoring function with low-quality data is detrimental for its predictive performance. Nevertheless, there is a surprising lack of systematic validation experiments in support of this hypothesis. In this study, we investigated to which extent training a scoring function with data containing low-quality structural and binding data is detrimental for predictive performance. We actually found that low-quality data is not only non-detrimental, but beneficial for the predictive performance of machine-learning scoring functions, though the improvement is less important than that coming from high-quality data. Furthermore, we observed that classical scoring functions are not able to effectively exploit data beyond an early threshold, regardless of its quality. This demonstrates that exploiting a larger data volume is more important for the performance of machine-learning scoring functions than restricting to a smaller set of higher data quality.
Shao, Feng; Li, Kemeng; Lin, Weisi; Jiang, Gangyi; Yu, Mei; Dai, Qionghai
2015-10-01
Quality assessment of 3D images encounters more challenges than its 2D counterparts. Directly applying 2D image quality metrics is not the solution. In this paper, we propose a new full-reference quality assessment for stereoscopic images by learning binocular receptive field properties to be more in line with human visual perception. To be more specific, in the training phase, we learn a multiscale dictionary from the training database, so that the latent structure of images can be represented as a set of basis vectors. In the quality estimation phase, we compute sparse feature similarity index based on the estimated sparse coefficient vectors by considering their phase difference and amplitude difference, and compute global luminance similarity index by considering luminance changes. The final quality score is obtained by incorporating binocular combination based on sparse energy and sparse complexity. Experimental results on five public 3D image quality assessment databases demonstrate that in comparison with the most related existing methods, the devised algorithm achieves high consistency with subjective assessment.
Documentation Resources on the ESIP Wiki
NASA Technical Reports Server (NTRS)
Habermann, Ted; Kozimor, John; Gordon, Sean
2017-01-01
The ESIP community includes data providers and users that communicate with one another through datasets and metadata that describe them. Improving this communication depends on consistent high-quality metadata. The ESIP Documentation Cluster and the wiki play an important central role in facilitating this communication. We will describe and demonstrate sections of the wiki that provide information about metadata concept definitions, metadata recommendation, metadata dialects, and guidance pages. We will also describe and demonstrate the ISO Explorer, a tool that the community is developing to help metadata creators.
Lee, Kang Hyuck; Shin, Hyeon-Jin; Lee, Jinyeong; Lee, In-yeal; Kim, Gil-Ho; Choi, Jae-Young; Kim, Sang-Woo
2012-02-08
Hexagonal boron nitride (h-BN) has received a great deal of attention as a substrate material for high-performance graphene electronics because it has an atomically smooth surface, lattice constant similar to that of graphene, large optical phonon modes, and a large electrical band gap. Herein, we report the large-scale synthesis of high-quality h-BN nanosheets in a chemical vapor deposition (CVD) process by controlling the surface morphologies of the copper (Cu) catalysts. It was found that morphology control of the Cu foil is much critical for the formation of the pure h-BN nanosheets as well as the improvement of their crystallinity. For the first time, we demonstrate the performance enhancement of CVD-based graphene devices with large-scale h-BN nanosheets. The mobility of the graphene device on the h-BN nanosheets was increased 3 times compared to that without the h-BN nanosheets. The on-off ratio of the drain current is 2 times higher than that of the graphene device without h-BN. This work suggests that high-quality h-BN nanosheets based on CVD are very promising for high-performance large-area graphene electronics. © 2012 American Chemical Society
Cho, Ick Hyun; Lee, Nayoung; Song, Dami; Jung, Seong Young; Bou-Assaf, George; Sosic, Zoran; Zhang, Wei; Lyubarskaya, Yelena
2016-01-01
ABSTRACT A biosimilar is a biological medicinal product that is comparable to a reference medicinal product in terms of quality, safety, and efficacy. SB4 was developed as a biosimilar to Enbrel® (etanercept) and was approved as Benepali®, the first biosimilar of etanercept licensed in the European Union (EU). The quality assessment of SB4 was performed in accordance with the ICH comparability guideline and the biosimilar guidelines of the European Medicines Agency and Food and Drug Administration. Extensive structural, physicochemical, and biological testing was performed with state-of-the-art technologies during a side-by-side comparison of the products. Similarity of critical quality attributes (CQAs) was evaluated on the basis of tolerance intervals established from quality data obtained from more than 60 lots of EU-sourced and US-sourced etanercept. Additional quality assessment was focused on a detailed investigation of immunogenicity-related quality attributes, including hydrophobic variants, high-molecular-weight (HMW) species, N-glycolylneuraminic acid (NGNA), and α-1,3-galactose. This comprehensive characterization study demonstrated that SB4 is highly similar to the reference product, Enbrel®, in structural, physicochemical, and biological quality attributes. In addition, the levels of potential immunogenicity-related quality attributes of SB4 such as hydrophobic variants, HMW aggregates, and α-1,3-galactose were less than those of the reference product. PMID:27246928
Real-time demonstration hardware for enhanced DPCM video compression algorithm
NASA Technical Reports Server (NTRS)
Bizon, Thomas P.; Whyte, Wayne A., Jr.; Marcopoli, Vincent R.
1992-01-01
The lack of available wideband digital links as well as the complexity of implementation of bandwidth efficient digital video CODECs (encoder/decoder) has worked to keep the cost of digital television transmission too high to compete with analog methods. Terrestrial and satellite video service providers, however, are now recognizing the potential gains that digital video compression offers and are proposing to incorporate compression systems to increase the number of available program channels. NASA is similarly recognizing the benefits of and trend toward digital video compression techniques for transmission of high quality video from space and therefore, has developed a digital television bandwidth compression algorithm to process standard National Television Systems Committee (NTSC) composite color television signals. The algorithm is based on differential pulse code modulation (DPCM), but additionally utilizes a non-adaptive predictor, non-uniform quantizer and multilevel Huffman coder to reduce the data rate substantially below that achievable with straight DPCM. The non-adaptive predictor and multilevel Huffman coder combine to set this technique apart from other DPCM encoding algorithms. All processing is done on a intra-field basis to prevent motion degradation and minimize hardware complexity. Computer simulations have shown the algorithm will produce broadcast quality reconstructed video at an average transmission rate of 1.8 bits/pixel. Hardware implementation of the DPCM circuit, non-adaptive predictor and non-uniform quantizer has been completed, providing realtime demonstration of the image quality at full video rates. Video sampling/reconstruction circuits have also been constructed to accomplish the analog video processing necessary for the real-time demonstration. Performance results for the completed hardware compare favorably with simulation results. Hardware implementation of the multilevel Huffman encoder/decoder is currently under development along with implementation of a buffer control algorithm to accommodate the variable data rate output of the multilevel Huffman encoder. A video CODEC of this type could be used to compress NTSC color television signals where high quality reconstruction is desirable (e.g., Space Station video transmission, transmission direct-to-the-home via direct broadcast satellite systems or cable television distribution to system headends and direct-to-the-home).
Land, Sally; Zhou, Julian; Cunningham, Philip; Sohn, Annette H; Singtoroj, Thida; Katzenstein, David; Mann, Marita; Sayer, David; Kantor, Rami
2013-01-01
Background The TREAT Asia Quality Assessment Scheme (TAQAS) was developed as a quality assessment programme through expert education and training, for laboratories in the Asia-Pacific and Africa that perform HIV drug-resistance (HIVDR) genotyping. We evaluated the programme performance and factors associated with high-quality HIVDR genotyping. Methods Laboratories used their standard protocols to test panels of human immunodeficiency virus (HIV)-positive plasma samples or electropherograms. Protocols were documented and performance was evaluated according to a newly developed scoring system, agreement with panel-specific consensus sequence, and detection of drug-resistance mutations (DRMs) and mixtures of wild-type and resistant virus (mixtures). High-quality performance was defined as detection of ≥95% DRMs. Results Over 4.5 years, 23 participating laboratories in 13 countries tested 45 samples (30 HIV-1 subtype B; 15 non-B subtypes) in nine panels. Median detection of DRMs was 88–98% in plasma panels and 90–97% in electropherogram panels. Laboratories were supported to amend and improve their test outcomes as appropriate. Three laboratories that detected <80% DRMs in early panels demonstrated subsequent improvement. Sample complexity factors – number of DRMs (p<0.001) and number of DRMs as mixtures (p<0.001); and laboratory performance factors – detection of mixtures (p<0.001) and agreement with consensus sequence (p<0.001), were associated with high performance; sample format (plasma or electropherogram), subtype and genotyping protocol were not. Conclusion High-quality HIVDR genotyping was achieved in the TAQAS collaborative laboratory network. Sample complexity and detection of mixtures were associated with performance quality. Laboratories conducting HIVDR genotyping are encouraged to participate in quality assessment programmes. PMID:23845227
Long-term health implications of school quality.
Dudovitz, Rebecca N; Nelson, Bergen B; Coker, Tumaini R; Biely, Christopher; Li, Ning; Wu, Lynne C; Chung, Paul J
2016-06-01
Individual academic achievement is a well-known predictor of adult health, and addressing education inequities may be critical to reducing health disparities. Disparities in school quality are well documented. However, we lack nationally representative studies evaluating the impact of school quality on adult health. We aim to determine whether high school quality predicts adult health outcomes after controlling for baseline health, socio-demographics and individual academic achievement. We analyzed data from 7037 adolescents who attended one of 77 high schools in the Unites States and were followed into adulthood from the National Longitudinal Study of Adolescent to Adult Health. Selected school-level quality measures-average daily attendance, school promotion rate, parental involvement, and teacher experience-were validated based on ability to predict high school graduation and college attendance. Individual adult health outcomes included self-rated health, diagnosis of depression, and having a measured BMI in the obese range. Logistic regressions controlling for socio-demographics, baseline health, health insurance, and individual academic performance demonstrated that school quality significantly predicted all health outcomes. As hypothesized, attending a school with lower average daily attendance predicted lower self-rated health (Adjusted Odds Ratio (AOR) 1.59, p = 0.003) and higher odds of depression diagnosis (AOR 1.35, p = 0.03); and attending a school with higher parent involvement predicted lower odds of obesity (AOR 0.69, p = 0.001). However, attending a school with higher promotion rate also predicted lower self-rated health (AOR1.20, p < 0.001). High school quality may be an important, but complex, social determinant of health. These findings highlight the potential inter-dependence of education and health policy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evidence of dilute ferromagnetism in rare-earth doped yttrium aluminium garnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farr, Warrick G.; Goryachev, Maxim; Le Floch, Jean-Michel
This work demonstrates strong coupling regime between an erbium ion spin ensemble and microwave hybrid cavity-whispering gallery modes in a yttrium aluminium garnet dielectric crystal. Coupling strengths of 220 MHz and mode quality factors in excess of 10{sup 6} are demonstrated. Moreover, the magnetic response of high-Q modes demonstrates behaviour which is unusual for paramagnetic systems. This behaviour includes hysteresis and memory effects. Such qualitative change of the system's magnetic field response is interpreted as a phase transition of rare earth ion impurities. This phenomenon is similar to the phenomenon of dilute ferromagnetism in semiconductors. The clear temperature dependence of themore » phenomenon is demonstrated.« less
Uyà, Marc; Bulleri, Fabio; Gribben, Paul E
2018-04-01
Invasion success is regulated by multiple factors. While the roles of disturbance and propagule pressure in regulating the establishment of non-native species are widely acknowledged, that of propagule morphology (a proxy for quality) is poorly known. By means of a multi-factorial field experiment, we tested how the number (5 vs. 10) and quality (intact, without fronds or without rhizoids) of fragments of the clonal invasive seaweed, Caulerpa cylindracea, influenced its ability to establish in patches of the native seagrass, Posidonia oceanica, exposed to different intensities of disturbance (0, 50, or 100% reduction in canopy cover). We hypothesized that the ability of fragments to establish would be greater for intact fragments (high quality) and reduced more by frond removal (low quality) than rhizoid removal (intermediate quality). At low propagule pressure or quality, fragment establishment was predicted to increase with increasing disturbance, whereas, at high propagule pressure or quality, it was predicted to be high regardless of disturbance intensity. Disturbance intensity, fragment number and quality had independent effects on C. cylindracea establishment success. Disturbance always facilitated fragment establishment. However, fragments retaining fronds, either intact or deprived of rhizoids, had higher establishment success than fragments deprived of fronds. Increasing propagule number had weak effects on the cover of C. cylindracea. Our results demonstrate that propagule traits enabling the acquisition of resources made available by disturbance can be more important than propagule number in determining the establishment and spread of clonal non-native plants. More generally, our study suggests that propagule quality is a key, yet underexplored, determinant of invasion success. © 2018 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiRenzo, J.F.; Rubin, R.B.
1978-03-01
In accordance with the Clean Air Act Amendments of 1977, the Environmental Protection Agency is evaluating the use and cost-effectiveness of alternative short-range transit fare and service improvement strategies, carpool and vanpool strategies, and strategies involving the preferential treatment of high occupancy vehicles to improve air quality in urban areas. The evaluation of individual strategies and combinations of the above strategies includes their emission and air quality impacts and their related energy, noise, and economic impacts. A comprehensive literature review was also conducted, as part of this evaluation, to identify both observed and projected travel, emission, air quality, energy, noise,more » and economic impacts of the short-range low-cost strategies of interest.« less
Simulation reduction using the Taguchi method
NASA Technical Reports Server (NTRS)
Mistree, Farrokh; Lautenschlager, Ume; Erikstad, Stein Owe; Allen, Janet K.
1993-01-01
A large amount of engineering effort is consumed in conducting experiments to obtain information needed for making design decisions. Efficiency in generating such information is the key to meeting market windows, keeping development and manufacturing costs low, and having high-quality products. The principal focus of this project is to develop and implement applications of Taguchi's quality engineering techniques. In particular, we show how these techniques are applied to reduce the number of experiments for trajectory simulation of the LifeSat space vehicle. Orthogonal arrays are used to study many parameters simultaneously with a minimum of time and resources. Taguchi's signal to noise ratio is being employed to measure quality. A compromise Decision Support Problem and Robust Design are applied to demonstrate how quality is designed into a product in the early stages of designing.
Ahmadi, Seyed-Foad; Baradaran, Hamid R; Ahmadi, Emad
2015-01-01
Despite the widespread teaching of evidence-based medicine (EBM) to medical students, the relevant literature has not been synthesized appropriately as to its value and effectiveness. To systematically review the literature regarding the impact of teaching EBM to medical students on their EBM knowledge, attitudes, skills and behaviors. MEDLINE, SCOPUS, Web of science, ERIC, CINAHL and Current Controlled Trials up to May 2011 were searched; backward and forward reference checking of included and relevant studies was also carried out. Two investigators independently extracted data and assessed the quality of the studies. 10,111 potential studies were initially found, of which 27 were included in the review. Six studies examined the effect of clinically integrated methods, of which five had a low quality and the other one used no validated assessment tool. Twelve studies evaluated the effects of seminars, workshops and short courses, of which 11 had a low quality and the other one lacked a validated assessment tool. Six studies examined e-learning, of which five having a high or acceptable quality reported e-learning to be as effective as traditional teaching in improving knowledge, attitudes and skills. One robust study found problem-based learning less effective compared to usual teaching. Two studies with high or moderate quality linked multicomponent interventions to improved knowledge and attitudes. No included study assessed the long-term effects of the teaching of EBM. Our findings indicated that some EBM teaching strategies have the potential to improve knowledge, attitudes and skills in undergraduate medical students, but the evidenced base does not demonstrate superiority of one method. There is no evidence demonstrating transfer to clinical practice.
Sexual selection is influenced by both developmental and adult environments.
Gillespie, Stephanie R; Scarlett Tudor, M; Moore, Allen J; Miller, Christine W
2014-12-01
Sexual selection is often assumed to be strong and consistent, yet increasing research shows it can fluctuate over space and time. Few experimental studies have examined changes in sexual selection in response to natural environmental variation. Here, we use a difference in resource quality to test for the influence of past environmental conditions and current environmental conditions on male and female mate choice and resulting selection gradients for leaf-footed cactus bugs, Narnia femorata. We raised juveniles on natural high- and low-quality diets, cactus pads with and without ripe cactus fruits. New adults were again assigned a cactus pad with or without fruit, paired with a potential mate, and observed for mating behaviors. We found developmental and adult encounter environments affected mating decisions and the resulting patterns of sexual selection for both males and females. Males were not choosy in the low-quality encounter environment, cactus without fruit, but they avoided mating with small females in the high-quality encounter environment. Females were choosy in both encounter environments, avoiding mating with small males. However, they were the choosiest when they were in the low-quality encounter environment. Female mate choice was also context dependent by male developmental environment. Females were more likely to mate with males that had developed on cactus with fruit when they were currently in the cactus with fruit environment. This pattern disappeared when females were in the cactus without fruit environment. Altogether, these results experimentally demonstrate context-dependent mate choice by both males and females. Furthermore, we demonstrate that simple, seasonal changes in resources can lead to fluctuations in sexual selection. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Assessment of "YouTube" Content for Distal Radius Fracture Immobilization.
Addar, Abdullah; Marwan, Yousef; Algarni, Nizar; Berry, Gregory
Distal radius fractures (DRFs) are the most common orthopedic fractures, with >70% of cases treated by closed immobilization using a short arm cast or a sugar tong splint. However, inadequate immobilization is a risk factor for loss of reduction requiring repeat reduction or surgical treatment. Therefore, education of clinical skills for appropriate immobilization of DRFs is important. With the increasing use of web-based information by medical learners, our aim was to assess the quality and quantity of videos regarding closed immobilization of DRFs on YouTube. Retrospective review of YouTube videos on distal radius fracture immobilization using specific search terms. Identified videos were analyzed for their educational value, quality of the technical skill demonstrated, and overall metrics. Educational value was scored on a 5-point scale, with "1" indicative of low quality and "5" of high quality. Not applicable. Among the 68,366 videos identified, 16 met our inclusion criteria of being in English; performed by a health care professional or institution; and with casting being the major theme of the educational information provided. Of these 16 videos, 6 had an educational value score of 4 or 5, with the remaining 10 having a score ≤3. Although immobilization was demonstrated by cast technician specialized in orthopedics, skills were also performed by orthopedic attendants, urgent care physicians, orthopedic residents, and nurse practitioners. The credentials of the performer in 3 videos were not identified. There is a need to promote high-quality educational videos produced by established medical school faculty members on open, web-based, portals. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Developing a multidisciplinary robotic surgery quality assessment program.
Gonsenhauser, Iahn; Abaza, Ronney; Mekhjian, Hagop; Moffatt-Bruce, Susan D
2012-01-01
The objective of this study was to test the feasibility of a novel quality-improvement (QI) program designed to incorporate multiple robotic surgical sub-specialties in one health care system. A robotic surgery quality assessment program was developed by The Ohio State University College of Medicine (OSUMC) in conjunction with The Ohio State University Medical Center Quality Improvement and Operations Department. A retrospective review of cases was performed using data interrogated from the OSUMC Information Warehouse from January 2007 through August 2009. Robotic surgery cases (n=2200) were assessed for operative times, length of stay (LOS), conversions, returns to surgery, readmissions and cancellations as potential quality indicators. An actionable and reproducible framework for the quality measurement and assessment of a multidisciplinary and interdepartmental robotic surgery program was successfully completed demonstrating areas for improvement opportunities. This report supports that standard quality indicators can be applied to multiple specialties within a health care system to develop a useful quality tracking and assessment tool in the highly specialized area of robotic surgery. © 2012 National Association for Healthcare Quality.
Ultra-high Q terahertz whispering-gallery modes in a silicon resonator
NASA Astrophysics Data System (ADS)
Vogt, Dominik Walter; Leonhardt, Rainer
2018-05-01
We report on the first experimental demonstration of terahertz (THz) whispering-gallery modes (WGMs) with an ultra-high quality factor of 1.5 × 104 at 0.62 THz. The WGMs are observed in a high resistivity float zone silicon spherical resonator coupled to a sub-wavelength silica waveguide. A detailed analysis of the coherent continuous wave THz spectroscopy measurements combined with a numerical model based on Mie-Debye-Aden-Kerker theory allows us to unambiguously identify the observed higher order radial THz WGMs.
State-of-the-Art for Small Satellite Propulsion Systems
NASA Technical Reports Server (NTRS)
Parker, Khary I.
2016-01-01
SmallSats are a low cost access to space with an increasing need for propulsion systems. NASA, and other organizations, will be using SmallSats that require propulsion systems to: a) Conduct high quality near and far reaching on-orbit research and b) Perform technology demonstrations. Increasing call for high reliability and high performing for SmallSat components. Many SmallSat propulsion technologies are currently under development: a) Systems at various levels of maturity and b) Wide variety of systems for many mission applications.
Wang, Peng; Chung, Tai-Shung
2012-09-01
The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ravikumar, Vasulinga T; Kumar, R Krishna; Capaldi, Daniel C; Cole, Douglas L
2003-01-01
Detritylation of a 5'-O-DMT-2'-deoxyadenosine moiety attached to solid support under acidic condition leads to depurination during oligonucleotide synthesis. Deprotection followed by reversed phase HPLC purification leads to desired oligonucleotide contaminated with significant levels of 3'-terminal phosphorothiaote (3'-TPT) monoester (n-1)-mer. However, it is demonstrated that attachment of dA nucleoside through its exocyclic amino group to solid support leads to substantial reduction of 3'-TPT formation thereby improving the quality of oligonucleotide synthesized.
Rehosting of Bacterial Chaperones for High-Quality Protein Production▿
Martínez-Alonso, Mónica; Toledo-Rubio, Verónica; Noad, Rob; Unzueta, Ugutz; Ferrer-Miralles, Neus; Roy, Polly; Villaverde, Antonio
2009-01-01
Coproduction of DnaK/DnaJ in Escherichia coli enhances solubility but promotes proteolytic degradation of their substrates, minimizing the yield of unstable polypeptides. Higher eukaryotes have orthologs of DnaK/DnaJ but lack the linked bacterial proteolytic system. By coexpression of DnaK and DnaJ in insect cells with inherently misfolding-prone recombinant proteins, we demonstrate simultaneous improvement of soluble protein yield and quality and proteolytic stability. Thus, undesired side effects of bacterial folding modulators can be avoided by appropriate rehosting in heterologous cell expression systems. PMID:19820142
Jet printing of convex and concave polymer micro-lenses.
Blattmann, M; Ocker, M; Zappe, H; Seifert, A
2015-09-21
We describe a novel approach for fabricating customized convex as well as concave micro-lenses using substrates with sophisticated pinning architecture and utilizing a drop-on-demand jet printer. The polymeric lens material deposited on the wafer is cured by UV light irradiation yielding lenses with high quality surfaces. Surface shape and roughness of the cured polymer lenses are characterized by white light interferometry. Their optical quality is demonstrated by imaging an USAF1951 test chart. The evaluated modulation transfer function is compared to Zemax simulations as a benchmark for the fabricated lenses.
Prototyping of Dental Structures Using Laser Milling
NASA Astrophysics Data System (ADS)
Andreev, A. O.; Kosenko, M. S.; Petrovskiy, V. N.; Mironov, V. D.
2016-02-01
The results of experimental studies of the effect of an ytterbium fiber laser radiation parameters on processing efficiency and quality of ZrO2 ceramics widely used in stomatology are presented. Laser operating conditions with optimum characteristics for obtaining high quality final surfaces and rapid material removal of dental structures are determined. The ability of forming thin-walled ceramic structures by laser milling technology (a minimum wall thickness of 50 μm) is demonstrated. The examples of three-dimensional dental structures created in computer 3D-models of human teeth using laser milling are shown.
Thackray, Benjamin D; Thomas, Philip A; Auton, Gregory H; Rodriguez, Francisco J; Marshall, Owen P; Kravets, Vasyl G; Grigorenko, Alexander N
2015-05-13
We present extremely narrow collective plasmon resonances observed in gold nanostripe arrays fabricated on a thin gold film, with the spectral line full width at half-maximum (fwhm) as low as 5 nm and quality factors Q reaching 300, at important fiber-optic telecommunication wavelengths around 1.5 μm. Using these resonances, we demonstrate a hybrid graphene-plasmonic modulator with the modulation depth of 20% in reflection operated by gating of a single layer graphene, the largest measured so far.
The Role of Value-Based Care in Patients with Cirrhosis.
Volk, Michael L
2017-02-01
Value-based care means delivering high-quality care while keeping costs at a reasonable level. Many physicians have long viewed quality care and the responsible utilization of resources to be an integral part of their professional responsibilities. As the health care system changes, however, physicians are increasingly being asked to objectively demonstrate value. In this review article, the author describes the reimbursement and regulatory shift toward value-based care, and provides specific strategies for meeting this care. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Ridenour, Ty A; Reynolds, Maureen; Ahlqvist, Ola; Zhai, Zu Wei; Kirisci, Levent; Vanyukov, Michael M; Tarter, Ralph E
2013-05-01
Knowledge of where substance use and other such behavioral problems frequently occur has aided policing, public health, and urban planning strategies to reduce such behaviors. Identifying locales characterized by high childhood neurobehavioral disinhibition (ND), a strong predictor of substance use and consequent disorder (SUD), may likewise improve prevention efforts. The distribution of ND in 10-12-year olds was mapped to metropolitan Pittsburgh, PA, and tested for clustering within locales. The 738 participating families represented the population in terms of economic status, race, and population distribution. ND was measured using indicators of executive cognitive function, emotion regulation, and behavior control. Innovative geospatial analyzes statistically tested clustering of ND within locales while accounting for geographic barriers (large rivers, major highways), parental SUD severity, and neighborhood quality. Clustering of youth with high and low ND occurred in specific locales. Accounting for geographic barriers better delineated where high ND is concentrated, areas which also tended to be characterized by greater parental SUD severity and poorer neighborhood quality. Offering programs that have been demonstrated to improve inhibitory control in locales where youth have high ND on average may reduce youth risk for SUD and other problem behaviors. As demonstrated by the present results, geospatial analysis of youth risk factors, frequently used in community coalition strategies, may be improved with greater statistical and measurement rigor.
Construction and commissioning of the compact energy-recovery linac at KEK
NASA Astrophysics Data System (ADS)
Akemoto, Mitsuo; Arakawa, Dai; Asaoka, Seiji; Cenni, Enrico; Egi, Masato; Enami, Kazuhiro; Endo, Kuninori; Fukuda, Shigeki; Furuya, Takaaki; Haga, Kaiichi; Hajima, Ryoichi; Hara, Kazufumi; Harada, Kentaro; Honda, Tohru; Honda, Yosuke; Honma, Teruya; Hosoyama, Kenji; Kako, Eiji; Katagiri, Hiroaki; Kawata, Hiroshi; Kobayashi, Yukinori; Kojima, Yuuji; Kondou, Yoshinari; Tanaka, Olga; Kume, Tatsuya; Kuriki, Masao; Matsumura, Hiroshi; Matsushita, Hideki; Michizono, Shinichiro; Miura, Takako; Miyajima, Tsukasa; Nagahashi, Shinya; Nagai, Ryoji; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakamura, Norio; Nakanishi, Kota; Nigorikawa, Kazuyuki; Nishimori, Nobuyuki; Nogami, Takashi; Noguchi, Shuichi; Obina, Takashi; Qiu, Feng; Sagehashi, Hidenori; Sakai, Hiroshi; Sakanaka, Shogo; Sasaki, Shinichi; Satoh, Kotaro; Sawamura, Masaru; Shimada, Miho; Shinoe, Kenji; Shishido, Toshio; Tadano, Mikito; Takahashi, Takeshi; Takai, Ryota; Takenaka, Tateru; Tanimoto, Yasunori; Uchiyama, Takashi; Ueda, Akira; Umemori, Kensei; Watanabe, Ken; Yamamoto, Masahiro
2018-01-01
Energy-recovery linacs (ERLs) are promising for advanced synchrotron light sources, high-power free electron lasers (FELs), high-brightness gamma-ray sources, and electron-ion colliders. To demonstrate the critical technology of ERL-based light sources, we have designed and constructed a test accelerator, the compact ERL (cERL). Using advanced technology that includes a photocathode direct current (DC) electron gun and two types of 1.3-GHz-frequency superconducting cavities, the cERL was designed to be capable of recirculating low emittance (≤1 mm ṡ mrad) and high average-current (≥10 mA) electron beams while recovering the beam energy. During initial commissioning, the cERL demonstrated successful recirculation of high-quality beams with normalized transverse emittance of ∼0.14 mm ṡ mrad and momentum spread of ∼1.2 × 10-4 (rms) at a beam energy of 20 MeV and bunch charge below 100 fC. Energy recovery in the superconducting main linac was also demonstrated for high-average-current continuous-wave beams. These results constitute an important milestone toward realizing ERL-based light sources.
Harris, Katherine M
2002-06-01
To investigate the impact of quality information on the willingness of consumers to enroll in health plans that restrict provider access. A survey administered to respondents between the ages of 25 and 64 in the West Los Angeles area with private health insurance. An experimental approach is used to measure the effect of variation in provider network features and information about the quality of network physicians on hypothetical plan choices. Conditional logit models are used to analyze the experimental choice data. Next, choice model parameter estimates are used to simulate the impact of changes in plan features on the market shares of competing health plans and to calculate the quality level required to make consumers indifferent to changes in provider access. The presence of quality information reduced the importance of provider network features in plan choices as hypothesized. However, there were not statistically meaningful differences by type of quality measure (i.e., consumer assessed versus expert assessed). The results imply that large quality differences are required to make consumers indifferent to changes in provider access. The impact of quality on plan choices depended more on the particular measure and less on the type of measure. Quality ratings based on the proportion of survey respondents "extremely satisfied with results of care" had the greatest impact on plan choice while the proportion of network doctors "affiliated with university medical centers" had the least. Other consumer and expert assessed measures had more comparable effects. Overall the results provide empirical evidence that consumers are willing to trade high quality for restrictions on provider access. This willingness to trade implies that relatively small plans that place restrictions on provider access can successfully compete against less restrictive plans when they can demonstrate high quality. However, the results of this study suggest that in many cases, the level of quality required for consumers to accept access restrictions may be so high as to be unattainable. The results provide empirical support for the current focus of decision support efforts on consumer assessed quality measures. At the same time, however, the results suggest that consumers would also value quality measures based on expert assessments. This finding is relevant given the lack of comparative quality information based on expert judgment and research suggesting that consumers have apprehensions about their ability to meaningfully interpret performance-based quality measures.
Lam, Fan; Li, Yudu; Clifford, Bryan; Liang, Zhi-Pei
2018-05-01
To develop a practical method for mapping macromolecule distribution in the brain using ultrashort-TE MRSI data. An FID-based chemical shift imaging acquisition without metabolite-nulling pulses was used to acquire ultrashort-TE MRSI data that capture the macromolecule signals with high signal-to-noise-ratio (SNR) efficiency. To remove the metabolite signals from the ultrashort-TE data, single voxel spectroscopy data were obtained to determine a set of high-quality metabolite reference spectra. These spectra were then incorporated into a generalized series (GS) model to represent general metabolite spatiospectral distributions. A time-segmented algorithm was developed to back-extrapolate the GS model-based metabolite distribution from truncated FIDs and remove it from the MRSI data. Numerical simulations and in vivo experiments have been performed to evaluate the proposed method. Simulation results demonstrate accurate metabolite signal extrapolation by the proposed method given a high-quality reference. For in vivo experiments, the proposed method is able to produce spatiospectral distributions of macromolecules in the brain with high SNR from data acquired in about 10 minutes. We further demonstrate that the high-dimensional macromolecule spatiospectral distribution resides in a low-dimensional subspace. This finding provides a new opportunity to use subspace models for quantification and accelerated macromolecule mapping. Robustness of the proposed method is also demonstrated using multiple data sets from the same and different subjects. The proposed method is able to obtain macromolecule distributions in the brain from ultrashort-TE acquisitions. It can also be used for acquiring training data to determine a low-dimensional subspace to represent the macromolecule signals for subspace-based MRSI. Magn Reson Med 79:2460-2469, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Davenport, Paul B; Carter, Kimberly F; Echternach, Jeffrey M; Tuck, Christopher R
2018-02-01
High-reliability organizations (HROs) demonstrate unique and consistent characteristics, including operational sensitivity and control, situational awareness, hyperacute use of technology and data, and actionable process transformation. System complexity and reliance on information-based processes challenge healthcare organizations to replicate HRO processes. This article describes a healthcare organization's 3-year journey to achieve key HRO features to deliver high-quality, patient-centric care via an operations center powered by the principles of high-reliability data and software to impact patient throughput and flow.
Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping
2017-03-17
A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing.
Process service quality evaluation based on Dempster-Shafer theory and support vector machine.
Pei, Feng-Que; Li, Dong-Bo; Tong, Yi-Fei; He, Fei
2017-01-01
Human involvement influences traditional service quality evaluations, which triggers an evaluation's low accuracy, poor reliability and less impressive predictability. This paper proposes a method by employing a support vector machine (SVM) and Dempster-Shafer evidence theory to evaluate the service quality of a production process by handling a high number of input features with a low sampling data set, which is called SVMs-DS. Features that can affect production quality are extracted by a large number of sensors. Preprocessing steps such as feature simplification and normalization are reduced. Based on three individual SVM models, the basic probability assignments (BPAs) are constructed, which can help the evaluation in a qualitative and quantitative way. The process service quality evaluation results are validated by the Dempster rules; the decision threshold to resolve conflicting results is generated from three SVM models. A case study is presented to demonstrate the effectiveness of the SVMs-DS method.
The 3D Elevation Program: summary for Connecticut
Carswell, William J.
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Mississippi
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios.The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Georgia
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios.The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Iowa
Carswell, William J.
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Oklahoma
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment (NEEA; Dewberry, 2011) evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Kansas
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Nevada
Carswell, William J.
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Illinois
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Colorado
Carswell, William J.
2013-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Utah
Carswell, William J.
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Delaware
Carswell, William J.
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Massachusetts
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for West Virginia
Carswell, William J.
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for South Carolina
Carswell, William
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for North Carolina
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment (NEEA; Dewberry, 2011) evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the use community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for South Dakota
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment (NEEA; Dewberry, 2011) evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios.The new 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: Summary for New Jersey
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Washington
Carswell, William J.
2013-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for New Mexico
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 (table 1) for the conterminous United States and quality level 5 ifsar data (table 1) for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios.The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Wyoming
Carswell, William J.
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios.The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Arizona
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for New Hampshire
Carswell, William J.
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Pennsylvania
Carswell, William J.
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Arkansas
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios.The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
Muller-Juge, Virginie; Cullati, Stéphane; Blondon, Katherine S; Hudelson, Patricia; Maître, Fabienne; Vu, Nu V; Savoldelli, Georges L; Nendaz, Mathieu R
2014-01-01
Effective teamwork is necessary for optimal patient care. There is insufficient understanding of interactions between physicians and nurses on internal medicine wards. To describe resident physicians' and nurses' actual behaviours contributing to teamwork quality in the setting of a simulated internal medicine ward. A volunteer sample of 14 pairs of residents and nurses in internal medicine was asked to manage one non-urgent and one urgent clinical case in a simulated ward, using a high-fidelity manikin. After the simulation, participants attended a stimulated-recall session during which they viewed the videotape of the simulation and explained their actions and perceptions. All simulations were transcribed, coded, and analyzed, using a qualitative method (template analysis). Quality of teamwork was assessed, based on patient management efficiency and presence of shared management goals and of team spirit. Most resident-nurse pairs tended to interact in a traditional way, with residents taking the leadership and nurses executing medical prescriptions and assuming their own specific role. They also demonstrated different types of interactions involving shared responsibilities and decision making, constructive suggestions, active communication and listening, and manifestations of positive team building. The presence of a leader in the pair or a truly shared leadership between resident and nurse contributed to teamwork quality only if both members of the pair demonstrated sufficient autonomy. In case of a lack of autonomy of one member, the other member could compensate for it, if his/her own autonomy was sufficiently strong and if there were demonstrations of mutual listening, information sharing, and positive team building. Although they often relied on traditional types of interaction, residents and nurses also demonstrated readiness for increased sharing of responsibilities. Interprofessional education should insist on better redefinition of respective roles and reinforce behaviours shown to enhance teamwork quality.
Muller-Juge, Virginie; Cullati, Stéphane; Blondon, Katherine S.; Hudelson, Patricia; Maître, Fabienne; Vu, Nu V.; Savoldelli, Georges L.; Nendaz, Mathieu R.
2014-01-01
Background Effective teamwork is necessary for optimal patient care. There is insufficient understanding of interactions between physicians and nurses on internal medicine wards. Objective To describe resident physicians’ and nurses’ actual behaviours contributing to teamwork quality in the setting of a simulated internal medicine ward. Methods A volunteer sample of 14 pairs of residents and nurses in internal medicine was asked to manage one non-urgent and one urgent clinical case in a simulated ward, using a high-fidelity manikin. After the simulation, participants attended a stimulated-recall session during which they viewed the videotape of the simulation and explained their actions and perceptions. All simulations were transcribed, coded, and analyzed, using a qualitative method (template analysis). Quality of teamwork was assessed, based on patient management efficiency and presence of shared management goals and of team spirit. Results Most resident-nurse pairs tended to interact in a traditional way, with residents taking the leadership and nurses executing medical prescriptions and assuming their own specific role. They also demonstrated different types of interactions involving shared responsibilities and decision making, constructive suggestions, active communication and listening, and manifestations of positive team building. The presence of a leader in the pair or a truly shared leadership between resident and nurse contributed to teamwork quality only if both members of the pair demonstrated sufficient autonomy. In case of a lack of autonomy of one member, the other member could compensate for it, if his/her own autonomy was sufficiently strong and if there were demonstrations of mutual listening, information sharing, and positive team building. Conclusions Although they often relied on traditional types of interaction, residents and nurses also demonstrated readiness for increased sharing of responsibilities. Interprofessional education should insist on better redefinition of respective roles and reinforce behaviours shown to enhance teamwork quality. PMID:24769672
Permenter, Jessalyn; Ishwar, Arjun; Rounsavall, Angie; Smith, Maddie; Faske, Jennifer; Sailey, Charles J; Alfaro, Maria P
2015-12-01
Proper storage of whole blood is crucial for isolating nucleic acids from leukocytes and to ensure adequate performance of downstream assays in the molecular diagnostic laboratory. Short-term and long-term storage recommendations are lacking for successful isolation of genomic DNA (gDNA). Container type (EDTA or heparin), temperature (4 °C and room temperature) and time (1-130 days) were assessed as criterion for sample acceptance policies. The percentage of integrated area (%Ti) between 150 and 10,000 bp from the 2200 TapeStation electropherogram was calculated to measure gDNA degradation. Refrigerated EDTA samples yielded gDNA with low %Ti (high quality). Heparinized samples stored at room temperature yielded gDNA of worst quality. Downstream analysis demonstrated that the quality of the gDNA correlated with the quality of the data; samples with high %Ti generated significantly lower levels of high molecular weight amplicons. Recommendations from these analyses include storing blood samples intended for nucleic acid isolation in EDTA tubes at 4 °C for long term storage (>10 days). gDNA should be extracted within 3 days when blood is stored at room temperature regardless of the container. Finally, refrigerated heparinized samples should not be stored longer than 9 days if expecting high quality gDNA isolates. Laboratories should consider many factors, in addition to the results obtained herein, to update their policies for sample acceptance for gDNA extraction intended for molecular genetic testing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Software archeology: a case study in software quality assurance and design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macdonald, John M; Lloyd, Jane A; Turner, Cameron J
2009-01-01
Ideally, quality is designed into software, just as quality is designed into hardware. However, when dealing with legacy systems, demonstrating that the software meets required quality standards may be difficult to achieve. As the need to demonstrate the quality of existing software was recognized at Los Alamos National Laboratory (LANL), an effort was initiated to uncover and demonstrate that legacy software met the required quality standards. This effort led to the development of a reverse engineering approach referred to as software archaeology. This paper documents the software archaeology approaches used at LANL to document legacy software systems. A case studymore » for the Robotic Integrated Packaging System (RIPS) software is included.« less
Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating.
Rickey, Kelly M; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S Venkataprasad; Wu, Yue; Cheng, Gary J; Ruan, Xiulin
2015-11-03
We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~10(5) Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films.
Customer focus in breast cancer screening services.
Buttimer, Andreas
2009-01-01
The purpose of the paper is to demonstrate how a generic value chain and customer focused system as demonstrated by the Scottish and Irish breast screening programmes can be used to provide a high quality health service. Literature relevant to aligning the entire operating model--the companies' culture, business processes, management systems to serve one value discipline, i.e. customer intimacy, is reviewed and considered in the context of the NHS Scottish Breast Screening Programme in Edinburgh and BreastCheck--the National Breast Screening Programme in Ireland. This paper demonstrates how an emphasis on customer focus and operational excellence, as used in other service industries, can help to provide a better health service. It uses the Scottish and Irish breast screening programmes as illustrative examples. The paper applies the key requirements in the delivery of a quality service including an understanding of the characteristics of a service industry, the management of discontinuities involved in its delivery and the environment in which it operates. System failure is commonly the cause of quality failure in the health system. Breast screening programmes are designed to prevent such a failure. This paper promotes and describes the use of the generic value chain by using the knowledge gained in delivering a mammography-screening programme.
Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating
Rickey, Kelly M.; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S. Venkataprasad; Wu, Yue; Cheng, Gary J.; Ruan, Xiulin
2015-01-01
We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~105 Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films. PMID:26527570
NASA Astrophysics Data System (ADS)
Leigh, Roland J.; Whyte, C.; Cutter, M. A.; Lobb, D. R.; Monks, P. S.
2017-11-01
Under the first phase of the Centre for Earth Observation Instrumentation (CEOI), a breadboard demonstrator of a novel UV/VIS spectrometer has been developed. Using designs from Surrey Satellite Technology Ltd (SSTL) the demonstrator has been constructed and tested at the University of Leicester's Space Research Centre. This spectrometer provides an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. Measurement of atmo spheric compounds with climate change or air quality implications is a key driver for the ground and space-based Earth Observation communities. Techniques using UV/VIS spectroscopy such as DOAS provide measurements of ozone profiles, aerosol optical depth, certain Volatile Organic Compounds, halogenated species, and key air quality parameters including tropospheric nitrogen dioxide. Compact instruments providing the necessary optical performance and spectral resolution are therefore a key enabling technology. The Compact Air Quality Spectrometer (CompAQS) features a concentric arrangement of a spherical meniscus lens, a concave spherical mirror and a suitable curved diffraction grating. This compact design provides efficiency and performance benefits over traditional concepts, improving the precision and spatial resolution available from space borne instruments with limited weight and size budgets. The breadboard spectrometer currently operating at the University of Leicester offers high throughput with a spectral range from 310 to 450 nm at 0.5nm(UV) to 1.0nm (visible) resolution, suitable for DOAS applications. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called `smile' - the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. In this presentation, the design of the spectrometer is detailed, with results from instrument characterisations undertaken at the University of Leicester, including demonstrations of DOAS fits for key air quality species.
Horwood, Christiane M; Youngleson, Michele S; Moses, Edward; Stern, Amy F; Barker, Pierre M
2015-07-01
Achieving long-term retention in HIV care is an important challenge for HIV management and achieving elimination of mother-to-child transmission. Sustainable, affordable strategies are required to achieve this, including strengthening of community-based interventions. Deployment of community-based health workers (CHWs) can improve health outcomes but there is a need to identify systems to support and maintain high-quality performance. Quality-improvement strategies have been successfully implemented to improve quality and coverage of healthcare in facilities and could provide a framework to support community-based interventions. Four community-based quality-improvement projects from South Africa, Malawi and Mozambique are described. Community-based improvement teams linked to the facility-based health system participated in learning networks (modified Breakthrough Series), and used quality-improvement methods to improve process performance. Teams were guided by trained quality mentors who used local data to help nurses and CHWs identify gaps in service provision and test solutions. Learning network participants gathered at intervals to share progress and identify successful strategies for improvement. CHWs demonstrated understanding of quality-improvement concepts, tools and methods, and implemented quality-improvement projects successfully. Challenges of using quality-improvement approaches in community settings included adapting processes, particularly data reporting, to the education level and first language of community members. Quality-improvement techniques can be implemented by CHWs to improve outcomes in community settings but these approaches require adaptation and additional mentoring support to be successful. More research is required to establish the effectiveness of this approach on processes and outcomes of care.
Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications
Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun
2016-01-01
Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968
Hong, Xutao; Chen, Jing; Liu, Lin; Wu, Huan; Tan, Haiqin; Xie, Guangfa; Xu, Qian; Zou, Huijun; Yu, Wenjing; Wang, Lan; Qin, Nan
2016-01-01
Chinese Rice Wine (CRW) is a common alcoholic beverage in China. To investigate the influence of microbial composition on the quality of CRW, high throughput sequencing was performed for 110 wine samples on bacterial 16S rRNA gene and fungal Internal Transcribed Spacer II (ITS2). Bioinformatic analyses demonstrated that the quality of yeast starter and final wine correlated with microbial taxonomic composition, which was exemplified by our finding that wine spoilage resulted from a high proportion of genus Lactobacillus. Subsequently, based on Lactobacillus abundance of an early stage, a model was constructed to predict final wine quality. In addition, three batches of 20 representative wine samples selected from a pool of 110 samples were further analyzed in metagenomics. The results revealed that wine spoilage was due to rapid growth of Lactobacillus brevis at the early stage of fermentation. Gene functional analysis indicated the importance of some pathways such as synthesis of biotin, malolactic fermentation and production of short-chain fatty acid. These results led to a conclusion that metabolisms of microbes influence the wine quality. Thus, nurturing of beneficial microbes and inhibition of undesired ones are both important for the mechanized brewery. PMID:27241862
Hong, Xutao; Chen, Jing; Liu, Lin; Wu, Huan; Tan, Haiqin; Xie, Guangfa; Xu, Qian; Zou, Huijun; Yu, Wenjing; Wang, Lan; Qin, Nan
2016-05-31
Chinese Rice Wine (CRW) is a common alcoholic beverage in China. To investigate the influence of microbial composition on the quality of CRW, high throughput sequencing was performed for 110 wine samples on bacterial 16S rRNA gene and fungal Internal Transcribed Spacer II (ITS2). Bioinformatic analyses demonstrated that the quality of yeast starter and final wine correlated with microbial taxonomic composition, which was exemplified by our finding that wine spoilage resulted from a high proportion of genus Lactobacillus. Subsequently, based on Lactobacillus abundance of an early stage, a model was constructed to predict final wine quality. In addition, three batches of 20 representative wine samples selected from a pool of 110 samples were further analyzed in metagenomics. The results revealed that wine spoilage was due to rapid growth of Lactobacillus brevis at the early stage of fermentation. Gene functional analysis indicated the importance of some pathways such as synthesis of biotin, malolactic fermentation and production of short-chain fatty acid. These results led to a conclusion that metabolisms of microbes influence the wine quality. Thus, nurturing of beneficial microbes and inhibition of undesired ones are both important for the mechanized brewery.
Wang, Junlin; Kan, Shuling; Chen, Tong; Liu, Jianping
2015-03-01
The aim of this research was to apply quality by design (QbD) to the development of naproxen loaded core pellets which can be used as the potential core for colon-specific pellets. In the early stages of this study, prior knowledge and preliminary studies were systematically incorporated into the risk assessment using failure mode and effect analysis (FMEA) and fishbone diagram. Then Plackett-Burman design was used to screen eight potential high risk factors (spheronization speed, spheronization time, extrusion speed, drying method, CCMC-Na concentration, lactose concentration, water concentration and Tween 80 concentration) obtained from the above risk assessment. It was discovered that out of the eight potential high risk factors only three factors (spheronization speed, extrusion speed and CCMC-Na concentration) had significant effects on the quality of the pellets. This allowed the use of Box-Behnken design (BBD) to fully elucidate the relationship between the variables and critical quality attribute (CQA). Finally, the final control space was established within which the quality of the pellets can meet the requirement of colon-specific drug delivery system. This study demonstrated that naproxen loaded core pellets were successfully designed using QbD principle.
Mesh quality oriented 3D geometric vascular modeling based on parallel transport frame.
Guo, Jixiang; Li, Shun; Chui, Yim Pan; Qin, Jing; Heng, Pheng Ann
2013-08-01
While a number of methods have been proposed to reconstruct geometrically and topologically accurate 3D vascular models from medical images, little attention has been paid to constantly maintain high mesh quality of these models during the reconstruction procedure, which is essential for many subsequent applications such as simulation-based surgical training and planning. We propose a set of methods to bridge this gap based on parallel transport frame. An improved bifurcation modeling method and two novel trifurcation modeling methods are developed based on 3D Bézier curve segments in order to ensure the continuous surface transition at furcations. In addition, a frame blending scheme is implemented to solve the twisting problem caused by frame mismatch of two successive furcations. A curvature based adaptive sampling scheme combined with a mesh quality guided frame tilting algorithm is developed to construct an evenly distributed, non-concave and self-intersection free surface mesh for vessels with distinct radius and high curvature. Extensive experiments demonstrate that our methodology can generate vascular models with better mesh quality than previous methods in terms of surface mesh quality criteria. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stodola, Kirk W; Ward, Michael P
2017-06-01
Multiple biotic, abiotic, and evolutionary constraints interact to determine a species' range. However, most species are not present in all suitable and accessible locations. Dispersal ability may explain why many species do not occupy all suitable habitat, but highly mobile species also exhibit a mismatch. Habitat selection behavior where individuals are site faithful and settle near conspecifics could create a social pressure that make a species' geographic range resistant to change. We investigated this possibility by using an individual-based model of habitat selection where habitat quality moved each year. Our model demonstrated the benefits of conspecific attraction in relatively stable environments and its detrimental influence when habitat quality shifted rapidly. These results were most apparent when adult survival was high, because site fidelity led to more individuals occupying poor-quality habitat areas as habitat quality changed. These individuals attracted other dispersing individuals, thereby decreasing the ability to track shifts in habitat quality, which we refer to as "social inertia." Consequently, social inertia may arise for species that exhibit site fidelity and conspecific attraction, which may have conservation implications in light of climate change and widespread alteration of natural habitats.
NASA Astrophysics Data System (ADS)
Hromadka, J.; Korposh, S.; Partridge, M. C.; James, S.; Davis, F.; Crump, D.; Lee, S.-W.; Tatam, R. P.
2017-04-01
An array of three long period gratings (LPGs) fabricated in a single optical fibre and multiplexed in the wavelength domain was used to measure simultaneously temperature, relative humidity (RH) and volatile organic compounds (VOCs). Each LPG sensor was designed to optimize its response to a desired measurand. The LPGs were fabricated with periods such that they operated at or near the phase matching turning point. The sensors were calibrated in the laboratory and the simultaneous measurement of the key indoor air quality parameters was undertaken in laboratory and office environments. It was demonstrated successfully that the data produced by the LPG sensor array under real conditions was in a good agreement with that produced by commercially available sensors. Further, the potential application of fibre optic sensors for VOCs detection at high levels has been demonstrated.
The Role of Mindfulness in Reducing the Adverse Effects of Childhood Stress and Trauma
Ortiz, Robin; Sibinga, Erica M.
2017-01-01
Research suggests that many children are exposed to adverse experiences in childhood. Such adverse childhood exposures may result in stress and trauma, which are associated with increased morbidity and mortality into adulthood. In general populations and trauma-exposed adults, mindfulness interventions have demonstrated reduced depression and anxiety, reduced trauma-related symptoms, enhanced coping and mood, and improved quality of life. Studies in children and youth also demonstrate that mindfulness interventions improve mental, behavioral, and physical outcomes. Taken together, this research suggests that high-quality, structured mindfulness instruction may mitigate the negative effects of stress and trauma related to adverse childhood exposures, improving short- and long-term outcomes, and potentially reducing poor health outcomes in adulthood. Future work is needed to optimize implementation of youth-based mindfulness programs and to study long-term outcomes into adulthood. PMID:28264496
Enhancing imagined contact to reduce prejudice against people with schizophrenia
West, Keon; Holmes, Emily; Hewstone, Miles
2015-01-01
Four studies investigated the effect of imagining intergroup contact on prejudice against people with schizophrenia. Experiments 1 and 2 demonstrated that a neutral imagined contact task can have negative effects, compared to a control condition, even when paired with incidental positive information (Experiment 2). Experiments 3 and 4 demonstrated, however, that an integrated positive imagined contact scenario does result in less intergroup anxiety and more positive attitudes, even toward this challenging group. Analyses of participants’ descriptions of the imagined interactions in and across the first three studies confirm that positive and high quality imagined contact is important for reducing prejudice, but failing to ensure that imagined contact is positive may have deleterious consequences. We emphasize the importance of investigating the quality of the imagined contact experience, and discuss the implications for using imagined contact as a prejudice-reducing intervention. PMID:26435686
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R.
2017-01-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues. PMID:29188089
High-quality JPEG compression history detection for fake uncompressed images
NASA Astrophysics Data System (ADS)
Zhang, Rong; Wang, Rang-Ding; Guo, Li-Jun; Jiang, Bao-Chuan
2017-05-01
Authenticity is one of the most important evaluation factors of images for photography competitions or journalism. Unusual compression history of an image often implies the illicit intent of its author. Our work aims at distinguishing real uncompressed images from fake uncompressed images that are saved in uncompressed formats but have been previously compressed. To detect the potential image JPEG compression, we analyze the JPEG compression artifacts based on the tetrolet covering, which corresponds to the local image geometrical structure. Since the compression can alter the structure information, the tetrolet covering indexes may be changed if a compression is performed on the test image. Such changes can provide valuable clues about the image compression history. To be specific, the test image is first compressed with different quality factors to generate a set of temporary images. Then, the test image is compared with each temporary image block-by-block to investigate whether the tetrolet covering index of each 4×4 block is different between them. The percentages of the changed tetrolet covering indexes corresponding to the quality factors (from low to high) are computed and used to form the p-curve, the local minimum of which may indicate the potential compression. Our experimental results demonstrate the advantage of our method to detect JPEG compressions of high quality, even the highest quality factors such as 98, 99, or 100 of the standard JPEG compression, from uncompressed-format images. At the same time, our detection algorithm can accurately identify the corresponding compression quality factor.
Remote sensing of water quality and contaminants in the California Bay-Delta
NASA Astrophysics Data System (ADS)
Fichot, C. G.; Downing, B. D.; Windham-Myers, L.; Marvin-DiPasquale, M. C.; Bergamaschi, B. A.; Thompson, D. R.; Gierach, M. M.
2014-12-01
The California Bay-Delta is a highly altered ecosystem largely reclaimed from wetlands for agriculture, and millions of acres of farmland and Californians rely on the Bay-Delta for their water supply. The Bay-Delta also harbors important habitats for many organisms, including commercial and endangered species. Recently, the Delta Stewardship Council developed a two component mission (coequal goals) to 1) provide a more reliable water supply for California while 2) protecting, restoring, and enhancing the Bay-Delta ecosystem. Dissolved organic carbon, turbidity, and contaminants such as methylmercury represent important water quality issues for water management and in the context of wetland restoration in the Bay-Delta, and can threaten the achievement of the coequal goals. Here, we use field measurements of optical properties, chemical analyses, and remotely sensed data acquired with the airborne Portable Remote Imaging SpectroMeter (PRISM ; http://prism.jpl.nasa.gov/index.html) to demonstrate these water quality parameters and the study of their dynamics in the Bay-Delta are amenable to remote sensing. PRISM provides high signal-to-noise, high spatial resolution (~2 m), hyperspectral measurements of remote-sensing reflectance in the 350-1050 nm range, and therefore has the adequate resolutions for water quality monitoring in inland, optically complex waters. Remote sensing of water quality will represent a valuable complement to existing in situ water quality monitoring programs in this region and will help with decision-making to achieve the co-equal goals.
Teach on Purpose! Responsive Teaching for Student Success
ERIC Educational Resources Information Center
Burns, Leslie David; Botzakis, Stergios
2016-01-01
Great teaching is not just a matter of talent or creativity or passion. Teachers are made, not born, and great teachers know "why" they do what they do in their classrooms. They do it strategically and purposefully based on technique. "Teach on Purpose!" demonstrates a high-quality research-based and practical approach to…
An employer's experience with infertility coverage: a case study.
Silverberg, Kaylen; Meletiche, Dennis; Del Rosario, Gina
2009-12-01
A case study of Southwest Airlines, a Fortune 500 company, demonstrates that a well-designed infertility coverage plan can control resource use. This successful model could be used by employers who wish to ensure that their employees have access to high-quality, cost-effective infertility services in a managed-care environment.