Flight demonstrator concept for key technologies enabling future reusable launch vehicles
NASA Astrophysics Data System (ADS)
Ishimoto, Shinji; Fujii, Kenji; Mori, Takeshi
2005-07-01
A research center in JAXA has recently started research on reusable launch vehicles according to its plan placing emphasis on advanced launch technology. It is planned to demonstrate key technologies using a rocket-powered winged vehicle, and concept studies on the flight demonstrator have been conducted. This paper describes the present research plan and introduces the most compact vehicle concept among some versions under consideration.
DOT National Transportation Integrated Search
2012-05-01
The purpose of this market readiness assessment is to identify next steps for USDOT to research, demonstrate and advance the objectives of EnableATIS. This will include demonstrating those key concepts that will be within the USDOT and agency sphere ...
NASA Technical Reports Server (NTRS)
Crumbly, Christopher M.; Craig, Kellie D.
2011-01-01
The intent of the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort is to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Key Concepts (1) Offerors must propose an Advanced Booster concept that meets SLS Program requirements (2) Engineering Demonstration and/or Risk Reduction must relate to the Offeror s Advanced Booster concept (3) NASA Research Announcement (NRA) will not be prescriptive in defining Engineering Demonstration and/or Risk Reduction
A Conceptual Analysis of Key Concepts in Inclusive Education
ERIC Educational Resources Information Center
Boston-Kemple, Thomas Ernest
2012-01-01
The concepts of an inclusive classroom, inclusion, co-teaching, and disability have been called poorly defined and in need of fresh conceptual analyses. In Chapter 1, I respond to this call for further analysis and then demonstrate, using current educational headlines, that these concepts of "an inclusive classroom,"…
Facilitating Student Experimentation with Statistical Concepts.
ERIC Educational Resources Information Center
Smith, Patricia K.
2002-01-01
Offers a Web page with seven Java applets allowing students to experiment with key concepts in an introductory statistics course. Indicates the applets can be used in three ways: to place links to the applets, to create in-class demonstrations of statistical concepts, and to lead students through experiments and discover statistical relationships.…
Proof of concept deployment plan.
DOT National Transportation Integrated Search
2008-02-01
The U.S. Department of Transportation (USDOT) Next Generation 9-1-1 (NG9-1-1) : Proof-of-Concept (POC) demonstration is envisioned to test key features and : functionalities of the NG9-1-1 system. The Interim POC System Design Document : defines the ...
ERIC Educational Resources Information Center
Mucherah, Winnie; Finch, W. Holmes; Keaikitse, Setlhomo
2012-01-01
Understanding adolescent self-concept is of great concern for educators, mental health professionals, and parents, as research consistently demonstrates that low self-concept is related to a number of problem behaviors and poor outcomes. Thus, accurate measurements of self-concept are key, and the validity of such measurements, including the…
NASA Technical Reports Server (NTRS)
Stevens, G. H.; Anzic, G.
1979-01-01
NASA is conducting a series of millimeter wave satellite communication systems and market studies to: (1) determine potential domestic 30/20 GHz satellite concepts and market potential, and (2) establish the requirements for a suitable technology verification payload which, although intended to be modest in capacity, would sufficiently demonstrate key technologies and experimentally address key operational issues. Preliminary results and critical issues of the current contracted effort are described. Also included is a description of a NASA-developed multibeam satellite payload configuration which may be representative of concepts utilized in a technology flight verification program.
Encryption key distribution via chaos synchronization
NASA Astrophysics Data System (ADS)
Keuninckx, Lars; Soriano, Miguel C.; Fischer, Ingo; Mirasso, Claudio R.; Nguimdo, Romain M.; van der Sande, Guy
2017-02-01
We present a novel encryption scheme, wherein an encryption key is generated by two distant complex nonlinear units, forced into synchronization by a chaotic driver. The concept is sufficiently generic to be implemented on either photonic, optoelectronic or electronic platforms. The method for generating the key bitstream from the chaotic signals is reconfigurable. Although derived from a deterministic process, the obtained bit series fulfill the randomness conditions as defined by the National Institute of Standards test suite. We demonstrate the feasibility of our concept on an electronic delay oscillator circuit and test the robustness against attacks using a state-of-the-art system identification method.
Visualizing Sound: Demonstrations to Teach Acoustic Concepts
NASA Astrophysics Data System (ADS)
Rennoll, Valerie
Interference, a phenomenon in which two sound waves superpose to form a resultant wave of greater or lower amplitude, is a key concept when learning about the physics of sound waves. Typical interference demonstrations involve students listening for changes in sound level as they move throughout a room. Here, new tools are developed to teach this concept that provide a visual component, allowing individuals to see changes in sound level on a light display. This is accomplished using a microcontroller that analyzes sound levels collected by a microphone and displays the sound level in real-time on an LED strip. The light display is placed on a sliding rail between two speakers to show the interference occurring between two sound waves. When a long-exposure photograph is taken of the light display being slid from one end of the rail to the other, a wave of the interference pattern can be captured. By providing a visual component, these tools will help students and the general public to better understand interference, a key concept in acoustics.
Nuclear thermal propulsion transportation systems for lunar/Mars exploration
NASA Technical Reports Server (NTRS)
Clark, John S.; Borowski, Stanley K.; Mcilwain, Melvin C.; Pellaccio, Dennis G.
1992-01-01
Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the 'next generation' of space propulsion systems - the key to space exploration.
Encryption key distribution via chaos synchronization
Keuninckx, Lars; Soriano, Miguel C.; Fischer, Ingo; Mirasso, Claudio R.; Nguimdo, Romain M.; Van der Sande, Guy
2017-01-01
We present a novel encryption scheme, wherein an encryption key is generated by two distant complex nonlinear units, forced into synchronization by a chaotic driver. The concept is sufficiently generic to be implemented on either photonic, optoelectronic or electronic platforms. The method for generating the key bitstream from the chaotic signals is reconfigurable. Although derived from a deterministic process, the obtained bit series fulfill the randomness conditions as defined by the National Institute of Standards test suite. We demonstrate the feasibility of our concept on an electronic delay oscillator circuit and test the robustness against attacks using a state-of-the-art system identification method. PMID:28233876
Design summary of a geostationary facility utilized as a communications platform
NASA Technical Reports Server (NTRS)
Barberis, N. J.; Brown, J. V.
1986-01-01
This paper describes the technical aspects of a geostationary platform facility that makes maximum use of the planned NASA space station and its elements, mainly the orbital maneuvering vehicle (OMV) and the orbital transfer vehicles (OTV). The platform design concept is described, with emphasis on the key technologies utilized to configure the platform. Key systems aspects include a design summary with discussion of the controls, telemetry, command and ranging, power, propulsion, control electronics, thermal control subsystems, and space station interfaces. The use of the facility as a communications platform is developed to demonstrate the attractiveness of the concept. The economic benefits are discussed, as well as the concept of servicing for payload upgrade.
75 Easy Life Science Demonstrations. Teacher Book.
ERIC Educational Resources Information Center
Kardos, Thomas
This book is a collection of life science classroom demonstrations. Explanations that review key concepts are included. Topics are: stimulus and response; gravitropism; phototropism; living organisms; carbon dioxide; gases emitted by plants; greenhouse effect; stomata; transpiration; leaf skeletons; seed growth; water evaporation in plants; carbon…
First-Day Demonstration for Social Psychology Courses
ERIC Educational Resources Information Center
LoSchiavo, Frank M.; Buckingham, Justin T.; Yurak, Tricia J.
2002-01-01
We describe an obedience demonstration that introduces social psychology in a new and interesting way. After students came to believe that a confederate was the course instructor, they complied with his request to provide him with personal information. Subsequent lecture introduced students to several key concepts, including obedience,…
Purple or Colorless--Which Way Up? An Entertaining Solubility Demonstration.
ERIC Educational Resources Information Center
Kitson, Trevor M.
2003-01-01
Presents an experiment that is quick and easy to prepare, visually striking, and amusing to students. Relates to several key chemical concepts including polarity, intermolecular forces, solubility, and spectrophotometry. (Author/NB)
Efficient optical cloud removal technique for earth observation based on MOEMs device
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Noell, Wilfried
2017-11-01
In Earth Observation instruments, observation of scenes including bright sources leads to an important degradation of the recorded signal. We propose a new concept to remove dynamically the bright sources and then obtain a field of view with an optically enhanced Signal-to-Noise Ratio (SNR). Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. MOEMS-based programmable slit masks will permit the straylight control in future Earth Observation instruments. Experimental demonstration of this concept has been conducted on a dedicated bench. This successful first demonstration shows the high potential of this new concept in future spectro-imager for Earth Observation.
Space Solar Power Concepts: Demonstrations to Pilot Plants
NASA Technical Reports Server (NTRS)
Carrington, Connie K.; Feingold, Harvey; Howell, Joe T. (Technical Monitor)
2002-01-01
The availability of abundant, affordable power where needed is a key to the future exploration and development of space as well as future sources of clean terrestrial power. One innovative approach to providing such power is the use of wireless power transmission (WPT). There are at least two possible WPT methods that appear feasible; microwave and laser. Microwave concepts have been generated, analyzed and demonstrated. Technologies required to provide an end-to-end system have been identified and roadmaps generated to guide technology development requirements. Recently, laser W T approaches have gained an increased interest. These approaches appear to be very promising and will possibly solve some of the major challenges that exist with the microwave option. Therefore, emphasis is currently being placed on the laser WPT activity. This paper will discuss the technology requirements, technology roadmaps and technology flight experiments demonstrations required to lead toward a pilot plant demonstration. Concepts will be discussed along with the modeling techniques that are used in developing them. Feasibility will be addressed along with the technology needs, issues and capabilities for particular concepts. Flight experiments and demonstrations will be identified that will pave the road from demonstrations to pilot plants and beyond.
How Students with Emotional Disturbance Demonstrate Historical Literacy across Various Forms of Text
ERIC Educational Resources Information Center
Ludwig, Martha L.
2012-01-01
This qualitative study increases the understanding of how students with emotional disturbance (ED) demonstrate their grasp of key elements of social studies instruction. While there is considerable research in the general education literature on how students grapple with various social studies concepts and methodology, there is a void in…
Demonstrating Experimenter "Ineptitude" as a Means of Teaching Internal and External Validity
ERIC Educational Resources Information Center
Treadwell, Kimberli R.H.
2008-01-01
Internal and external validity are key concepts in understanding the scientific method and fostering critical thinking. This article describes a class demonstration of a "botched" experiment to teach validity to undergraduates. Psychology students (N = 75) completed assessments at the beginning of the semester, prior to and immediately following…
High Resolution Visualization Applied to Future Heavy Airlift Concept Development and Evaluation
NASA Technical Reports Server (NTRS)
FordCook, A. B.; King, T.
2012-01-01
This paper explores the use of high resolution 3D visualization tools for exploring the feasibility and advantages of future military cargo airlift concepts and evaluating compatibility with existing and future payload requirements. Realistic 3D graphic representations of future airlifters are immersed in rich, supporting environments to demonstrate concepts of operations to key personnel for evaluation, feedback, and development of critical joint support. Accurate concept visualizations are reviewed by commanders, platform developers, loadmasters, soldiers, scientists, engineers, and key principal decision makers at various stages of development. The insight gained through the review of these physically and operationally realistic visualizations is essential to refining design concepts to meet competing requirements in a fiscally conservative defense finance environment. In addition, highly accurate 3D geometric models of existing and evolving large military vehicles are loaded into existing and proposed aircraft cargo bays. In this virtual aircraft test-loading environment, materiel developers, engineers, managers, and soldiers can realistically evaluate the compatibility of current and next-generation airlifters with proposed cargo.
Concept Design of Cryogenic Propellant Storage and Transfer for Space Exploration
NASA Technical Reports Server (NTRS)
Free, James M.; Motil, Susan M.; Kortes, Trudy F.; Meyer, Michael L.; taylor, William J.
2012-01-01
NASA is in the planning and investigation process of developing innovative paths for human space exploration that strengthen the capability to extend human and robotic presence beyond low Earth orbit and throughout the solar system. NASA is establishing the foundations to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs through technology and capability development. To achieve access to these destinations within a reasonable flight time will require the use of high performance cryogenic propulsion systems. Therefore NASA is examining mission concepts for a Cryogenic Propellant Storage and Transfer (CPST) Flight Demonstration which will test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots. The CPST project will perform key ground testing in fiscal year 2012 and execute project formulation and implementation leading to a flight demonstration in 2017.
An Exercise to Demonstrate Soil Microbial Diversity in Introductory Environmental Science Classrooms
ERIC Educational Resources Information Center
Yarwood, Stephanie A.; Sulzman, Elizabeth W.
2008-01-01
High diversity of microorganisms in the soil matrix has been the focus of extensive research in the fields of soil biology and microbial ecology, and is a key concept that students in the environmental or biological sciences should understand. Two activities to demonstrate diversity and highlight the challenges faced in studying soil microbial…
Preliminary concepts for a solar electric orbit raising experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, R.B.; Penn, J.P.; Janson, S.W.
1989-01-01
Some preliminary concepts for a solar electric orbit raising demonstration that will show technological readiness for the development of operational Electric Orbital Transfer Vehicles (EOTVs) are outlined. These ideas could serve as a template for the proposed Electric Insertion Transfer Experiment (ELITE). At this moment, ELITE is not a funded program. Concepts are presented for a solar electric orbit raising demonstration, for ELITE, and for the path from the proposed ELITE to a future operational EOTV. A brief discussion of the benefits to be derived from the use of EOTVs, the conceptual organization of the ELITE team, the key technologiesmore » for EOTV and ELITE, and some preliminary options for the orbit raising vehicle and representative missions are provided.« less
NASA Technical Reports Server (NTRS)
Wilson, K. E.; Antsos, D.; Roberts, L. C. Jr.,; Piazzolla, S.; Clare, L. P.; Croonquist, A. P.
2012-01-01
The Laser Communications Relay Demonstration (LCRD) project will demonstrate high bandwidth space to ground bi-directional optical communications links between a geosynchronous satellite and two LCRD optical ground stations located in the southwestern United States. The project plans to operate for two years with a possible extension to five. Objectives of the demonstration include the development of operational strategies to prototype optical link and relay services for the next generation tracking and data relay satellites. Key technologies to be demonstrated include adaptive optics to correct for clear air turbulence-induced wave front aberrations on the downlink, and advanced networking concepts for assured and automated data delivery. Expanded link availability will be demonstrated by supporting operations at small sun-Earth-probe angles. Planned optical modulation formats support future concepts of near-Earth satellite user services to a maximum of 1.244 Gb/s differential phase shift keying modulation and pulse position modulations formats for deep space links at data rates up to 311 Mb/s. Atmospheric monitoring instruments that will characterize the optical channel during the link include a sun photometer to measure atmospheric transmittance, a solar scintillometer, and a cloud camera to measure the line of sight cloud cover. This paper describes the planned development of the JPL optical ground station.
Springtails in the Classroom: Collembola as Model Organisms for Inquiry-based Laboratories.
ERIC Educational Resources Information Center
Moore, John C.; Tripp, Bradley B.; Simpson, Rod T.; Coleman, David C.
2000-01-01
Advocates the use of springtails (Collembola) in the K-12 classroom as a model invertebrate that can easily be reared and manipulated to demonstrate key concepts in biology. Describes experimental procedures using springtails. (SAH)
Photo stories, Ricoeur, and experiences from practice: a hermeneutic dialogue.
Sitvast, J E; Abma, T A; Lendemeijer, H H G M; Widdershoven, G A M
2008-01-01
The purpose of this article is to demonstrate how a particular narrative approach in nursing, namely the photo instrument can be connected with Ricoeur's hermeneutic philosophy. Ricoeur's concept of mimesis, when supplemented with the concept of performance, is shown relevant for understanding how patients construct and reformulate meaning in illness experiences. A single-case study is presented for a tentative exploration of how the key concepts of mimesis and performance can broaden our understanding of practice. More specifically it concerned the use of photographs in a group with psychiatric patients.
Formal Modeling and Analysis of a Preliminary Small Aircraft Transportation System (SATS)Concept
NASA Technical Reports Server (NTRS)
Carrreno, Victor A.; Gottliebsen, Hanne; Butler, Ricky; Kalvala, Sara
2004-01-01
New concepts for automating air traffic management functions at small non-towered airports raise serious safety issues associated with the software implementations and their underlying key algorithms. The criticality of such software systems necessitates that strong guarantees of the safety be developed for them. In this paper we present a formal method for modeling and verifying such systems using the PVS theorem proving system. The method is demonstrated on a preliminary concept of operation for the Small Aircraft Transportation System (SATS) project at NASA Langley.
NASA Technical Reports Server (NTRS)
Welge, H. Robert; Bonet, John; Magee, Todd; Tompkins, Daniel; Britt, Terry R.; Nelson, Chet; Miller, Gregory; Stenson, Douglas; Staubach, J. Brent; Bala, Naushir;
2011-01-01
Boeing, with Pratt & Whitney, General Electric, Rolls-Royce, M4 Engineering, Wyle Laboratories and Georgia Institute of Technology, conducted a study of supersonic commercial aircraft concepts and enabling technologies for the year 2030-2035 timeframe. The work defined the market and environmental/regulatory conditions that could evolve by the 2030/35 time period, from which vehicle performance goals were derived. Relevant vehicle concepts and technologies are identified that are anticipated to meet these performance and environmental goals. A series of multidisciplinary analyses trade studies considering vehicle sizing, mission performance and environmental conformity determined the appropriate concepts. Combinations of enabling technologies and the required technology performance levels needed to meet the desired goals were identified. Several high priority technologies are described in detail, including roadmaps with risk assessments that outline objectives, key technology challenges, detailed tasks and schedules and demonstrations that need to be performed. A representative configuration is provided for reference purposes, along with associated performance estimates based on these key technologies.
Mirror for the other: problem of the self in continental philosophy (from Hegel to Lacan).
Gasparyan, Diana
2014-03-01
This essay intends to explore the genesis of one of the key concepts in continental philosophy of personalism-the concept of the 'Other. It attempts to use most influential philosophical and psychological contexts to demonstrate how the Self is linked to the Other logically, notionally and conceptually. The present analysis employs two principal approaches to the problem-philosophical and psychological. From the stand point of the former, the key figure of the hereunder discourse is Hegel and his theory, while the later will be represented predominantly by Lacanian ideas. The present article will also discuss major influences of Hegel's philosophical ideas on the Lacan's theory.
Space Technology 5 - A Successful Micro-Satellite Constellation Mission
NASA Technical Reports Server (NTRS)
Carlisle, Candace; Webb, Evan H.
2007-01-01
The Space Technology 5 (ST5) constellation of three micro-satellites was launched March 22, 2006. During the three-month flight demonstration phase, the ST5 team validated key technologies that will make future low-cost micro-sat constellations possible, demonstrated operability concepts for future micro-sat science constellation missions, and demonstrated the utility of a micro-satellite constellation to perform research-quality science. The ST5 mission was successfully completed in June 2006, demonstrating high-quality science and technology validation results.
NASA Technical Reports Server (NTRS)
Bonet, John T.; Schellenger, Harvey G.; Rawdon, Blaine K.; Elmer, Kevin R.; Wakayama, Sean R.; Brown, Derrell L.; Guo, Yueping
2011-01-01
NASA has set demanding goals for technology developments to meet national needs to improve fuel efficiency concurrent with improving the environment to enable air transportation growth. A figure shows NASA's subsonic transport system metrics. The results of Boeing ERA N+2 Advanced Vehicle Concept Study show that the Blended Wing Body (BWB) vehicle, with ultra high bypass propulsion systems have the potential to meet the combined NASA ERA N+2 goals. This study had 3 main activities. 1) The development of an advanced vehicle concepts that can meet the NASA system level metrics. 2) Identification of key enabling technologies and the development of technology roadmaps and maturation plans. 3) The development of a subscale test vehicle that can demonstrate and mature the key enabling technologies needed to meet the NASA system level metrics. Technology maturation plans are presented and include key performance parameters and technical performance measures. The plans describe the risks that will be reduced with technology development and the expected progression of technical maturity.
NASA Astrophysics Data System (ADS)
Gonzalez, Elias; Kish, Laszlo B.
2016-03-01
As the utilization of sensor networks continue to increase, the importance of security becomes more profound. Many industries depend on sensor networks for critical tasks, and a malicious entity can potentially cause catastrophic damage. We propose a new key exchange trust evaluation for peer-to-peer sensor networks, where part of the network has unconditionally secure key exchange. For a given sensor, the higher the portion of channels with unconditionally secure key exchange the higher the trust value. We give a brief introduction to unconditionally secured key exchange concepts and mention current trust measures in sensor networks. We demonstrate the new key exchange trust measure on a hypothetical sensor network using both wired and wireless communication channels.
Deep Borehole Field Test Conceptual Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest L.
This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBDmore » concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.« less
Ultraviolet Communication for Medical Applications
2014-05-01
parent company Imaging Systems Technology (IST) demonstrated feasibility of several key concepts are being developed into a working prototype in the...program using multiple high-end GPUs ( NVIDIA Tesla K20). Finally, the Monte Carlo simulation task will be resumed after the Milestone 2 demonstration...is acceptable for automated printing and handling. Next, the option of having our shells electroded by an external company was investigated and DEI
Data acquisition and analysis plan.
DOT National Transportation Integrated Search
2008-03-01
The U.S. Department of Transportation (USDOT) Next Generation 9-1-1 (NG9-1-1) : Proof-of-Concept (POC) demonstration will test key features and functionalities of the : envisioned NG9-1-1 system. The POC will also serve as a test-bed to validate tech...
NASA Astrophysics Data System (ADS)
Gattis, Kenneth William
1995-01-01
The purpose was to investigate the acquisition and retrieval of physics concepts introduced to college physics students by classroom demonstrations. Three experimental groups of calculus-based physics classes were presented lessons on three different topics during the semester. The lessons, which were planned to deliver identical concepts and examples, were preceded by a short quiz and were followed by an identical posttest. One treatment group received "enhanced" demonstration lessons, which included a brief period of peer discussion prior to the demonstration lesson. The second treatment group received typical demonstration lessons, and the control group received traditional lectures. Both demonstration groups were found to have higher conceptual gains than the control group on the topic of force and motion, which featured an air track demonstration. No differences were found on the topic of conservation of energy. On the topic of angular momentum, the demonstration groups tended to have higher prediction gains and the control group had higher explanation gains. No differences were found between the gains of the two demonstration groups. Student interview responses recorded one to two weeks after the experimental lessons indicated that the lesson containing a "stool and dumbbell" demonstration in the treatment groups was more memorable than the corresponding angular momentum lesson seen by the control group. Demonstration group students who made conceptual gains on the quizzes were found to give more complete responses to problems; yet they used language that was similar to that used by demonstration group students making no gains. In recalling experimental lessons, the demonstration group students gave responses that were more complete and used more everyday language than the control group students. It was concluded that demonstrations may assist students on certain topics by (1) helping to make concepts more believable; (2) helping to explain concepts that have key spatial and temporal relationships; and (3) providing especially vivid visual images and physical examples that are useful in making analogies to other examples and generalizing to more abstract concepts. Further study is needed to test the hypothesis that demonstrations tend to enrich students' verbal descriptions of physics concepts and examples.
Evolution of Communicative Competence in Adolescents Growing up in Orphanages
ERIC Educational Resources Information Center
Ribakova, Laysan A.; Parfilova, Gulfia G.; Karimova, Lilya Sh.; Karimova, Raushan B.
2015-01-01
The article describes features of the communicative competence evolution in adolescents growing up in orphanages. The specificity is revealed and definition is given to key concept of the research, namely "communicative competence". Authors emphasize and demonstrate the evaluation peculiarities of the adolescents, growing up in…
USDA-ARS?s Scientific Manuscript database
Ecological Site Description (ESD) concepts are broadly applicable and provide a necessary framework to inform and guide rangeland management decisions. In this paper, we demonstrate how understanding and quantification of key vegetation, hydrology, and soil relationships in the ESD context can info...
Polytomous Rasch Models in Counseling Assessment
ERIC Educational Resources Information Center
Willse, John T.
2017-01-01
This article provides a brief introduction to the Rasch model. Motivation for using Rasch analyses is provided. Important Rasch model concepts and key aspects of result interpretation are introduced, with major points reinforced using a simulation demonstration. Concrete guidelines are provided regarding sample size and the evaluation of items.
Prototype Tool and Focus Group Evaluation for an Advanced Trajectory-Based Operations Concept
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.
2017-01-01
Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. NASA has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality of an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group activity.
Assessment Literacy: Building a Base for Better Teaching and Learning
ERIC Educational Resources Information Center
Rogler, Dawn
2014-01-01
This article presents principles and practices of effective assessment, outlining seven key concepts--usefulness, reliability, validity, practicality, washback, authenticity, and transparency--and demonstrating how to apply them in creating an exam blueprint. The article also discusses the importance of providing feedback after a test has been…
Data-Enhanced Leadership. The Soul of Educational Leadership Series. Volume 7
ERIC Educational Resources Information Center
Blankstein, Alan M.; Houston, Paul D.; Cole, Robert W.
2010-01-01
Offering key concepts about how the informed use of data can translate into highly effective school leadership, this seventh volume in "The Soul of Educational Leadership" series demonstrates how educational leaders can apply data strategically to strengthen school leadership and significantly improve professional learning, students' learning…
Story-Telling and Narrative: A Neurophilosophical Perspective.
ERIC Educational Resources Information Center
Liston, Delores D.
Theories of neuroscience are presented to demonstrate the significance of storytelling and narrative to education by relating brain function to learning. A few key concepts are reviewed to establish a common working vocabulary with regard to neural networks. The tensor network theory and the neurognosis theory are described to provide…
Gut Microbiota and Autism: Key Concepts and Findings
ERIC Educational Resources Information Center
Ding, Helen T.; Taur, Ying; Walkup, John T.
2017-01-01
There is an emerging body of evidence linking the intestinal microbiota with autism spectrum disorders (ASD). Studies have demonstrated differences in the composition of gut bacteria between children with ASD and controls. Certain intestinal bacteria have been observed in abundance and may be involved in the pathogenesis of ASD; including members…
Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Appa, Kari; Van Way, Craig B.; Lockyer, Allen J.
1995-05-01
New developments in smart structures and materials have made it possible to revisit earlier work in adaptive and flexible wing technology, and remove some of the limitations for technology transition to next-generation aircraft. Research performed by Northrop Grumman, under internal funding, has led to a new program sponsored by ARPA to investigate the application of smart structures and materials technologies to twist and adapt and aircraft wing. Conceptual designs are presented based on state-of-the-art materials, including shape memory alloys, piezoelectrics, and fiber optic sensors for incorporation in a proposed smart wing design. Plans are described to demonstrate proof-of-concept on a prototype 1/10 scale -18 model that will be tested in a wind tunnel for final validation. Highlights of the proposed program are summarized with respect to program objectives, requirements, key concept design features, demonstration testing, and smart wing technology payoffs and risks.
The Alabama Coalition for a Healthier Black belt: a proof of concept project.
Savage, Robert M; Dillon, Jacqueline M; Hammel, Jacinda C; Lewis, Tonia C; Johnson, Natasha C; Barlow, Lafon M; Brooms, Molly M; Moore, Patricia M; Parker, Henry E; Rodney, Kanini Z
2013-02-01
The Alabama Coalition for a Healthier Black was a demonstration of concept project. This paper is a descriptive and qualitative overview of this 2.5 year project. Limited key project results are reported here. Located in the rural Black Belt region of Alabama this coalition had several key aims: to develop a collaboration between primary care and mental health care through co-location of services; use of video-conferencing capability to provide mental health services more efficiently; enhanced training in rural healthcare; and development of stigma reduction campaigns along with other coalition partner specific initiatives. Co-location and telepsychiatry implementation produced the major challenges and resulting adaptations to original aims. Despite many challenges these new service patterns were put into place and appear to be sustainable.
Integrated therapy safety management system
Podtschaske, Beatrice; Fuchs, Daniela; Friesdorf, Wolfgang
2013-01-01
Aims The aim is to demonstrate the benefit of the medico-ergonomic approach for the redesign of clinical work systems. Based on the six layer model, a concept for an ‘integrated therapy safety management’ is drafted. This concept could serve as a basis to improve resilience. Methods The concept is developed through a concept-based approach. The state of the art of safety and complexity research in human factors and ergonomics forms the basis. The findings are synthesized to a concept for ‘integrated therapy safety management’. The concept is applied by way of example for the ‘medication process’ to demonstrate its practical implementation. Results The ‘integrated therapy safety management’ is drafted in accordance with the six layer model. This model supports a detailed description of specific work tasks, the corresponding responsibilities and related workflows at different layers by using the concept of ‘bridge managers’. ‘Bridge managers’ anticipate potential errors and monitor the controlled system continuously. If disruptions or disturbances occur, they respond with corrective actions which ensure that no harm results and they initiate preventive measures for future procedures. The concept demonstrates that in a complex work system, the human factor is the key element and final authority to cope with the residual complexity. The expertise of the ‘bridge managers’ and the recursive hierarchical structure results in highly adaptive clinical work systems and increases their resilience. Conclusions The medico-ergonomic approach is a highly promising way of coping with two complexities. It offers a systematic framework for comprehensive analyses of clinical work systems and promotes interdisciplinary collaboration. PMID:24007448
Design Concept for a Reusable/Propellantless MXER Tether Space Transportation System
NASA Technical Reports Server (NTRS)
McCandless, B., II; Kustas, F. m.; Marshall, L. S.; Lytle, W. B.; Hansen, N. P.
2005-01-01
The Momentum Exchange/Electrodynamic Reboost (MXER) tether facility is a transformational concept that significantly reduces the fuel requirements (and associated costs) in transferring payloads above low earth orbit (LEO). Facility reboost is accomplished without propellant by driving current against a voltage created by a conducting tether's interaction with the Earth's magnetic field (electrodynamic reboost). This system can be used for transferring a variety of payloads (scientific, cargo, and human space vehicles) to multiple destinations including geosynchronous transfer orbit, the Moon or Mars. MXER technology advancement requires development in two key areas: survivable, high tensile strength non-conducting tethers and reliable, lightweight payload catch/release mechanisms. Fundamental requirements associated with the MXER non-conducting strength tether and catch mechanism designs will be presented. Key requirements for the tether design include high specific-strength (tensile strength/material density), material survivability to the space environment (atomic oxygen and ultraviolet radiation), and structural survivability to micrometeoroid/orbital debris (MM/OD) impacts. The driving mechanism key,gequirements include low mass-to-capture-volume ratio, positional and velocity error tolerance, and operational reliability. Preliminary tether and catch mechanism design criteria are presented, which have been used as guidelines to "screen" and down-select initial concepts. Candidate tether materials and protective coatings are summarized along with their performance in simulated space environments (e.g., oxygen plasma, thermal cycling). A candidate catch mechanism design concept is presented along with examples of demonstration hardware.
Van Houdt, Sabine; Sermeus, Walter; Vanhaecht, Kris; De Lepeleire, Jan
2014-12-24
Strategies to improve care coordination between primary and hospital care do not always have the desired results. This is partly due to incomplete understanding of the key concepts of care coordination. An in-depth analysis of existing theoretical frameworks for the study of care coordination identified 14 interrelated key concepts. In another study, these 14 key concepts were further explored in patients' experiences. Additionally, "patient characteristics" was identified as a new key concept in patients' experiences and the previously identified key concept "quality of relationship" between healthcare professionals was extended to "quality of relationship" with the patient. Together, these 15 interrelated key concepts resulted in a new theoretical framework. The present study aimed at improving our understanding of the 15 previously identified key concepts and to explore potentially previous unidentified key concepts and the links between these by exploring how healthcare professionals experience care coordination. A qualitative design was used. Six focus groups were conducted including primary healthcare professionals involved in the care of patients who had breast cancer surgery at three hospitals in Belgium. Data were analyzed using constant comparative analysis. All 15 previously identified key concepts of care coordination were further explored in healthcare professionals' experiences. Links between these 15 concepts were identified, including 9 newly identified links. The concept "external factors" was linked with all 6 concepts relating to (inter)organizational mechanisms; "task characteristics", "structure", "knowledge and information technology", "administrative operational processes", "cultural factors" and "need for coordination". Five of these concepts related to 3 concepts of relational coordination; "roles", "quality of relationship" and "exchange of information". The concept of "task characteristics" was only linked with "roles" and "exchange of information". The concept "patient characteristics" related with the concepts "need for coordination" and "patient outcome". Outcome was influenced by "roles", "quality of relationship" and "exchange of information". External factors and the (inter)organizational mechanism should enhance "roles" and "quality of relationship" between healthcare professionals and with the patient as well as "exchange of information", and setting and sharing of common "goals" to improve care coordination and quality of care.
Total Quality Management in Education. Second Edition.
ERIC Educational Resources Information Center
Sallis, Edward
Quality is at the top of most agendas, and improving quality is probably the most important task facing any institution. In addition, quality is difficult to define or measure. This book, the second edition of "Total Quality Management in Education," introduces the key concepts of Total Quality Management (TQM) and demonstrates how they…
Using "Chromosomal Socks" to Demonstrate Ploidy in Mitosis and Meiosis
ERIC Educational Resources Information Center
Chinnici, Joseph P.; Neth, Somalin Zaroh; Sherman, Leah R.
2006-01-01
Today, many biology instructors use visual models to help students understand abstract concepts like cell division. For all biology instructors, dealing with student misconceptions of cell division may seem hopeless at times--even after using visual models. Although student errors in cell division are built around the three key events of cell…
Siphonic Concepts Examined: A Carbon Dioxide Gas Siphon and Siphons in Vacuum
ERIC Educational Resources Information Center
Ramette, Joshua J.; Ramette, Richard W.
2011-01-01
Misconceptions of siphon action include assumptions that intermolecular attractions play a key role and that siphons will operate in a vacuum. These are belied by the siphoning of gaseous carbon dioxide and behaviour of siphons under reduced pressure. These procedures are suitable for classroom demonstrations. The principles of siphon action are…
Learning to build large structures in space
NASA Technical Reports Server (NTRS)
Hagler, T.; Patterson, H. G.; Nathan, C. A.
1977-01-01
The paper examines some of the key technologies and forms of construction know-how that will have to be developed and tested for eventual application to building large structures in space. Construction of a shuttle-tended space construction/demonstration platform would comprehensively demonstrate large structure technology, develop construction capability, and furnish a construction platform for a variety of operational large structures. Completion of this platform would lead to demonstrations of the Satellite Power System (SPS) concept, including microwave transmission, fabrication of 20-m-deep beams, conductor installation, rotary joint installation, and solar blanket installation.
Grounding Abstractness: Abstract Concepts and the Activation of the Mouth
Borghi, Anna M.; Zarcone, Edoardo
2016-01-01
One key issue for theories of cognition is how abstract concepts, such as freedom, are represented. According to the WAT (Words As social Tools) proposal, abstract concepts activate both sensorimotor and linguistic/social information, and their acquisition modality involves the linguistic experience more than the acquisition of concrete concepts. We report an experiment in which participants were presented with abstract and concrete definitions followed by concrete and abstract target-words. When the definition and the word matched, participants were required to press a key, either with the hand or with the mouth. Response times and accuracy were recorded. As predicted, we found that abstract definitions and abstract words yielded slower responses and more errors compared to concrete definitions and concrete words. More crucially, there was an interaction between the target-words and the effector used to respond (hand, mouth). While responses with the mouth were overall slower, the advantage of the hand over the mouth responses was more marked with concrete than with abstract concepts. The results are in keeping with grounded and embodied theories of cognition and support the WAT proposal, according to which abstract concepts evoke linguistic-social information, hence activate the mouth. The mechanisms underlying the mouth activation with abstract concepts (re-enactment of acquisition experience, or re-explanation of the word meaning, possibly through inner talk) are discussed. To our knowledge this is the first behavioral study demonstrating with real words that the advantage of the hand over the mouth is more marked with concrete than with abstract concepts, likely because of the activation of linguistic information with abstract concepts. PMID:27777563
2018-04-01
Development Center along with Bob Pitt, Kathleen Harrison, Courtney Wilson, and Maggie McCormick for providing key technical assistance, design work...Southwest (NAVFACSW) staff to gain acceptance of the concepts and final design , and promote the technology demonstration up the chain of command. This effort...observations, with some metal loads over predicted and some under predicted. The results suggest that the modeling and design work can be used with
Survey and Method for Determination of Trajectory Predictor Requirements
NASA Technical Reports Server (NTRS)
Rentas, Tamika L.; Green, Steven M.; Cate, Karen Tung
2009-01-01
A survey of air-traffic-management researchers, representing a broad range of automation applications, was conducted to document trajectory-predictor requirements for future decision-support systems. Results indicated that the researchers were unable to articulate a basic set of trajectory-prediction requirements for their automation concepts. Survey responses showed the need to establish a process to help developers determine the trajectory-predictor-performance requirements for their concepts. Two methods for determining trajectory-predictor requirements are introduced. A fast-time simulation method is discussed that captures the sensitivity of a concept to the performance of its trajectory-prediction capability. A characterization method is proposed to provide quicker, yet less precise results, based on analysis and simulation to characterize the trajectory-prediction errors associated with key modeling options for a specific concept. Concept developers can then identify the relative sizes of errors associated with key modeling options, and qualitatively determine which options lead to significant errors. The characterization method is demonstrated for a case study involving future airport surface traffic management automation. Of the top four sources of error, results indicated that the error associated with accelerations to and from turn speeds was unacceptable, the error associated with the turn path model was acceptable, and the error associated with taxi-speed estimation was of concern and needed a higher fidelity concept simulation to obtain a more precise result
A practical guide to assessing clinical decision-making skills using the key features approach.
Farmer, Elizabeth A; Page, Gordon
2005-12-01
This paper in the series on professional assessment provides a practical guide to writing key features problems (KFPs). Key features problems test clinical decision-making skills in written or computer-based formats. They are based on the concept of critical steps or 'key features' in decision making and represent an advance on the older, less reliable patient management problem (PMP) formats. The practical steps in writing these problems are discussed and illustrated by examples. Steps include assembling problem-writing groups, selecting a suitable clinical scenario or problem and defining its key features, writing the questions, selecting question response formats, preparing scoring keys, reviewing item quality and item banking. The KFP format provides educators with a flexible approach to testing clinical decision-making skills with demonstrated validity and reliability when constructed according to the guidelines provided.
Austvoll-Dahlgren, Astrid; Nsangi, Allen; Semakula, Daniel
2016-12-29
People's ability to appraise claims about treatment effects is crucial for informed decision-making. Our objective was to systematically map this area of research in order to (a) provide an overview of interventions targeting key concepts that people need to understand to assess treatment claims and (b) to identify assessment tools used to evaluate people's understanding of these concepts. The findings of this review provide a starting point for decisions about which key concepts to address when developing new interventions, and which assessment tools should be considered. We conducted a systematic mapping review of interventions and assessment tools addressing key concepts important for people to be able to assess treatment claims. A systematic literature search was done by a reserach librarian in relevant databases. Judgement about inclusion of studies and data collection was done by at least two researchers. We included all quantitative study designs targeting one or more of the key concepts, and targeting patients, healthy members of the public, and health professionals. The studies were divided into four categories: risk communication and decision aids, evidence-based medicine and critical appraisal, understanding of controlled trials, and science education. Findings were summarised descriptively. We included 415 studies, of which the interventions and assessment tools we identified included only a handful of the key concepts. The most common key concepts in interventions were "Treatments usually have beneficial and harmful effects," "Treatment comparisons should be fair," "Compare like with like," and "Single studies can be misleading." A variety of assessment tools were identified, but only four assessment tools included 10 or more key concepts. There is great potential for developing learning and assessment tools targeting key concepts that people need to understand to assess claims about treatment effects. There is currently no instrument covering assessment of all these key concepts.
NASA Technical Reports Server (NTRS)
Moe, Karen L.; Perkins, Dorothy C.; Szczur, Martha R.
1987-01-01
The user support environment (USE) which is a set of software tools for a flexible standard interactive user interface to the Space Station systems, platforms, and payloads is described in detail. Included in the USE concept are a user interface language, a run time environment and user interface management system, support tools, and standards for human interaction methods. The goals and challenges of the USE are discussed as well as a methodology based on prototype demonstrations for involving users in the process of validating the USE concepts. By prototyping the key concepts and salient features of the proposed user interface standards, the user's ability to respond is greatly enhanced.
Organization and integration of biomedical knowledge with concept maps for key peroxisomal pathways.
Willemsen, A M; Jansen, G A; Komen, J C; van Hooff, S; Waterham, H R; Brites, P M T; Wanders, R J A; van Kampen, A H C
2008-08-15
One important area of clinical genomics research involves the elucidation of molecular mechanisms underlying (complex) disorders which eventually may lead to new diagnostic or drug targets. To further advance this area of clinical genomics one of the main challenges is the acquisition and integration of data, information and expert knowledge for specific biomedical domains and diseases. Currently the required information is not very well organized but scattered over biological and biomedical databases, basic text books, scientific literature and experts' minds and may be highly specific, heterogeneous, complex and voluminous. We present a new framework to construct knowledge bases with concept maps for presentation of information and the web ontology language OWL for the representation of information. We demonstrate this framework through the construction of a peroxisomal knowledge base, which focuses on four key peroxisomal pathways and several related genetic disorders. All 155 concept maps in our knowledge base are linked to at least one other concept map, which allows the visualization of one big network of related pieces of information. The peroxisome knowledge base is available from www.bioinformaticslaboratory.nl (Support-->Web applications). Supplementary data is available from www.bioinformaticslaboratory.nl (Research-->Output--> Publications--> KB_SuppInfo)
World views: Their nature and function in the biology classroom
NASA Astrophysics Data System (ADS)
Armstrong, Kerri Lynn
There has been sufficient research in the area of conceptual change that indicates that students' conceptions or alternative theories are much more resistant to change than was previously thought. The work of cultural anthropologists and, more recently science educators, points to the role of individual world views in the learning of science concepts. A world view is one's fundamental assumptions and presuppositions concerning perceptions of reality. The purpose of this ethnographic investigation was to shed light on the dynamic interaction of individual world views within the college biology classroom in relation to understanding key biological concepts in genetics, evolution and natural selection, and ecology and ecological relationships. The subjects for this study were 22 students enrolled in an introductory level non-majors biology class at the Community College of Philadelphia. Ten of these students participated in the interviews reported here. The outcomes of this investigation revealed that students do not view themselves as part of science or nature. The investigation also uncovered students' views of the self, nonself, relationship and causality that affect their learning and apprehension of key biological concepts. This investigation provides further demonstration of the influence of world views and the interplay of those views with the notion of scientific literacy.
Understanding critical health literacy: a concept analysis.
Sykes, Susie; Wills, Jane; Rowlands, Gillian; Popple, Keith
2013-02-18
Interest in and debates around health literacy have grown over the last two decades and key to the discussions has been the distinction made between basic functional health literacy, communicative/interactive health literacy and critical health literacy. Of these, critical health literacy is the least well developed and differing interpretations of its constituents and relevance exist. The aim of this study is to rigorously analyse the concept of critical health literacy in order to offer some clarity of definition upon which appropriate theory, well grounded practice and potential measurement tools can be based. The study uses a theoretical and colloquial evolutionary concept analysis method to systematically identify the features associated with this concept. A unique characteristic of this method is that it practically combines an analysis of the literature with in depth interviews undertaken with practitioners and policy makers who have an interest in the field. The study also analyses how the concept is understood across the contexts of time, place, discipline and use by health professionals, policy makers and academics. Findings revealed a distinct set of characteristics of advanced personal skills, health knowledge, information skills, effective interaction between service providers and users, informed decision making and empowerment including political action as key features of critical health literacy. The potential consequences of critical health literacy identified are in improving health outcomes, creating more effective use of health services and reducing inequalities in health thus demonstrating the relevance of this concept to public health and health promotion. While critical health literacy is shown to be a unique concept, there remain significant contextual variations in understanding particularly between academics, practitioners and policy makers. Key attributes presented as part of this concept when it was first introduced in the literature, particularly those around empowerment, social and political action and the existence of the concept at both an individual and population level, have been lost in more recent representations. This has resulted in critical health literacy becoming restricted to a higher order cognitive individual skill rather than a driver for political and social change. The paper argues that in order to retain the uniqueness and usefulness of the concept in practice efforts should be made to avoid this dilution of meaning.
NASA Technical Reports Server (NTRS)
Hinton, David A.
2001-01-01
A ground-based system has been developed to demonstrate the feasibility of automating the process of collecting relevant weather data, predicting wake vortex behavior from a data base of aircraft, prescribing safe wake vortex spacing criteria, estimating system benefit, and comparing predicted and observed wake vortex behavior. This report describes many of the system algorithms, features, limitations, and lessons learned, as well as suggested system improvements. The system has demonstrated concept feasibility and the potential for airport benefit. Significant opportunities exist however for improved system robustness and optimization. A condensed version of the development lab book is provided along with samples of key input and output file types. This report is intended to document the technical development process and system architecture, and to augment archived internal documents that provide detailed descriptions of software and file formats.
Planning assistance for the 30/20 GHz program, volume 2
NASA Technical Reports Server (NTRS)
Al-Kinani, G.; Frankfort, M.; Kaushal, D.; Markham, R.; Siperko, C.; Wall, M.
1981-01-01
In the baseline concept development the communications payload on Flight 1 was specified to consist of on-board trunking and emergency communications systems (ECS). On Flight 2 the communications payloads consisted of trunking and CPS on-board systems, the CPS capability replacing the Flight 1 ECS. No restriction was placed on the launch vehicle size. Constraints placed on multiple concept development effort were that launch vehicle size for Concept 1 was restricted to SUSS-D and for Concept 2 a SUSS-A. The design concept development was based on satisfying the baseline requirements set forth in the SOW for a single demonstration flight system. Key constraints on contractors were cost and launch vehicle size. Five major areas of new technology development were reviewed: (1) 30 GHz low noise receivers; (2) 20 GHz Power Amplifiers; (3) SS-TDMA switch; (4) Baseband Processor; (5) Multibeam Antennas.
"Key Concepts in ELT": Taking Stock
ERIC Educational Resources Information Center
Hall, Graham
2012-01-01
This article identifies patterns and trends within "Key Concepts in ELT", both since the inception of the feature in ELT Journal in 1993 and during the 17 years of the current editorship. After outlining the aims of the series, the article identifies key themes that have emerged over time, exploring the links between "Key Concepts" pieces and the…
Modular System to Enable Extravehicular Activity
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2011-01-01
The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space system (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower earth orbit (BLEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular extravehicular activity system (MEVAS) that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs and define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suitport technologies.
Exploring the Clapeyron Equation and the Phase Rule Using a Mechanical Drawing Toy
ERIC Educational Resources Information Center
Darvesh, Katherine V.
2013-01-01
The equilibrium between phases is a key concept from the introductory physical chemistry curriculum. Phase diagrams display which phase is the most stable at a given temperature and pressure. If more than one phase has the lowest Gibbs energy, then those phases are in equilibrium under those conditions. An activity designed to demonstrate the…
An Integrative Model of "Information Visibility" and "Information Seeking" on the Web
ERIC Educational Resources Information Center
Mansourian, Yazdan; Ford, Nigel; Webber, Sheila; Madden, Andrew
2008-01-01
Purpose: This paper aims to encapsulate the main procedure and key findings of a qualitative research on end-users' interactions with web-based search tools in order to demonstrate how the concept of "information visibility" emerged and how an integrative model of information visibility and information seeking on the web was constructed.…
ERIC Educational Resources Information Center
Green, Jasmine; Liem, Gregory Arief D.; Martin, Andrew J.; Colmar, Susan; Marsh, Herbert W.; McInerney, Dennis
2012-01-01
The study tested three theoretically/conceptually hypothesized longitudinal models of academic processes leading to academic performance. Based on a longitudinal sample of 1866 high-school students across two consecutive years of high school (Time 1 and Time 2), the model with the most superior heuristic value demonstrated: (a) academic motivation…
Communicating Our Science to Our Customers: Drug Discovery in Five Simple Experiments.
Pearson, Lesley-Anne; Foley, David William
2017-02-09
The complexities of modern drug discovery-an interdisciplinary process that often takes years and costs billions-can be extremely challenging to explain to a public audience. We present details of a 30 minute demonstrative lecture that uses well-known experiments to illustrate key concepts in drug discovery including synthesis, assay and metabolism.
Overview of the NASA Dryden Flight Research Facility aeronautical flight projects
NASA Technical Reports Server (NTRS)
Meyer, Robert R., Jr.
1992-01-01
Several principal aerodynamics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.
Survey of Key Concepts in Enactivist Theory and Methodology
ERIC Educational Resources Information Center
Reid, David A.; Mgombelo, Joyce
2015-01-01
This article discusses key concepts within enactivist writing, focussing especially on concepts involved in the enactivist description of cognition as embodied action: perceptually guided action, embodiment, and structural coupling through recurrent sensorimotor patterns. Other concepts on which these concepts depend are also discussed, including…
GPS-based tracking system for TOPEX orbit determination
NASA Technical Reports Server (NTRS)
Melbourne, W. G.
1984-01-01
A tracking system concept is discussed that is based on the utilization of the constellation of Navstar satellites in the Global Positioning System (GPS). The concept involves simultaneous and continuous metric tracking of the signals from all visible Navstar satellites by approximately six globally distributed ground terminals and by the TOPEX spacecraft at 1300-km altitude. Error studies indicate that this system could be capable of obtaining decimeter position accuracies and, most importantly, around 5 cm in the radial component which is key to exploiting the full accuracy potential of the altimetric measurements for ocean topography. Topics covered include: background of the GPS, the precision mode for utilization of the system, past JPL research for using the GPS in precision applications, the present tracking system concept for high accuracy satellite positioning, and results from a proof-of-concept demonstration.
Evolving Systems: An Outcome of Fondest Hopes and Wildest Dreams
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2012-01-01
New theory is presented for evolving systems, which are autonomously controlled subsystems that self-assemble into a new evolved system with a higher purpose. Evolving systems of aerospace structures often require additional control when assembling to maintain stability during the entire evolution process. This is the concept of Adaptive Key Component Control that operates through one specific component to maintain stability during the evolution. In addition, this control must often overcome persistent disturbances that occur while the evolution is in progress. Theoretical results will be presented for Adaptive Key Component control for persistent disturbance rejection. An illustrative example will demonstrate the Adaptive Key Component controller on a system composed of rigid body and flexible body modes.
NASA Technical Reports Server (NTRS)
Brock, L. D.; Lala, J.
1986-01-01
The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles. The AIPS architecture also has attributes to enhance system effectiveness such as graceful degradation, growth and change tolerance, integrability, etc. Two key building blocks being developed by the AIPS program are a fault and damage tolerant processor and communication network. A proof-of-concept system is now being built and will be tested to demonstrate the validity and performance of the AIPS concepts.
NASA Technical Reports Server (NTRS)
Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.
1993-01-01
To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.
Engineering model system study for a regenerative fuel cell: Study report
NASA Technical Reports Server (NTRS)
Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.
1984-01-01
Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.
Trade Study of System Level Ranked Radiation Protection Concepts for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Cerro, Jeffrey A
2013-01-01
A strategic focus area for NASA is to pursue the development of technologies which support exploration in space beyond the current inhabited region of low earth orbit. An unresolved issue for crewed deep space exploration involves limiting crew radiation exposure to below acceptable levels, considering both solar particle events and galactic cosmic ray contributions to dosage. Galactic cosmic ray mitigation is not addressed in this paper, but by addressing credible, easily implemented, and mass efficient solutions for the possibility of solar particle events, additional margin is provided that can be used for cosmic ray dose accumulation. As a result, NASA s Advanced Engineering Systems project office initiated this Radiation Storm Shelter design activity. This paper reports on the first year results of an expected 3 year Storm Shelter study effort which will mature concepts and operational scenarios that protect exploration astronauts from solar particle radiation events. Large trade space definition, candidate concept ranking, and a planned demonstration comprised the majority of FY12 activities. A system key performance parameter is minimization of the required increase in mass needed to provide a safe environment. Total system mass along with operational assessments and other defined protection system metrics provide the guiding metrics to proceed with concept developments. After a downselect to four primary methods, the concepts were analyzed for dosage severity and the amount of shielding mass necessary to bring dosage to acceptable values. Besides analytical assessments, subscale models of several concepts and one full scale concept demonstrator were created. FY12 work terminated with a plan to demonstrate test articles of two selected approaches. The process of arriving at these selections and their current envisioned implementation are presented in this paper.
32 CFR 2001.26 - Automatic declassification exemption markings.
Code of Federal Regulations, 2010 CFR
2010-07-01
... human intelligence source, or key design concepts of weapons of mass destruction, the revised... or a human intelligence source, or key design concepts of weapons of mass destruction, are exempt... key design concepts of weapons of mass destruction, the marking shall be “50X2-WMD.” (3) In...
Li, Ping; Schloss, Benjamin; Follmer, D Jake
2017-10-01
In this article we report a computational semantic analysis of the presidential candidates' speeches in the two major political parties in the USA. In Study One, we modeled the political semantic spaces as a function of party, candidate, and time of election, and findings revealed patterns of differences in the semantic representation of key political concepts and the changing landscapes in which the presidential candidates align or misalign with their parties in terms of the representation and organization of politically central concepts. Our models further showed that the 2016 US presidential nominees had distinct conceptual representations from those of previous election years, and these patterns did not necessarily align with their respective political parties' average representation of the key political concepts. In Study Two, structural equation modeling demonstrated that reported political engagement among voters differentially predicted reported likelihoods of voting for Clinton versus Trump in the 2016 presidential election. Study Three indicated that Republicans and Democrats showed distinct, systematic word association patterns for the same concepts/terms, which could be reliably distinguished using machine learning methods. These studies suggest that given an individual's political beliefs, we can make reliable predictions about how they understand words, and given how an individual understands those same words, we can also predict an individual's political beliefs. Our study provides a bridge between semantic space models and abstract representations of political concepts on the one hand, and the representations of political concepts and citizens' voting behavior on the other.
Physical Oceanography: Project Earth Science. Material for Middle School Teachers in Earth Science.
ERIC Educational Resources Information Center
Ford, Brent A.; Smith, P. Sean
This book is one in a series of Earth science books and contains a collection of 18 hands-on activities/demonstrations developed for the middle/junior high school level. The activities are organized around three key concepts. First, students investigate the unique properties of water and how these properties shape the ocean and the global…
Learning Higher-Order Generalizations through Free Play: Evidence from 2- and 3-Year-Old Children
ERIC Educational Resources Information Center
Sim, Zi L.; Xu, Fei
2017-01-01
Constructivist views of cognitive development often converge on 2 key points: (1) the child's goal is to build large conceptual structures for understanding the world, and (2) the child plays an active role in developing these structures. While previous research has demonstrated that young children show a precocious capacity for concept and theory…
Methods utilized in evaluating the profitability of commercial space processing
NASA Technical Reports Server (NTRS)
Bloom, H. L.; Schmitt, P. T.
1976-01-01
Profitability analysis is applied to commercial space processing on the basis of business concept definition and assessment and the relationship between ground and space functions. Throughput analysis is demonstrated by analysis of the space manufacturing of surface acoustic wave devices. The paper describes a financial analysis model for space processing and provides key profitability measures for space processed isoenzymes.
Human Mars EDL Pathfinder Study: Assessment of Technology Development Gaps and Mitigations
NASA Technical Reports Server (NTRS)
Lillard, Randolph; Olejniczak, Joe; Polsgrove, Tara; Cianciolo, Alice Dwyer; Munk, Michelle; Whetsel, Charles; Drake, Bret
2017-01-01
This paper presents the results of a NASA initiated Agency-wide assessment to better characterize the risks and potential mitigation approaches associated with landing human class Entry, Descent, and Landing (EDL) systems on Mars. Due to the criticality and long-lead nature of advancing EDL techniques, it is necessary to determine an appropriate strategy to improve the capability to land large payloads. A key focus of this study was to understand the key EDL risks and with a focus on determining what "must" be tested at Mars. This process identified the various risks and potential risk mitigation strategies along with the key near term technology development efforts required and in what environment those technology demonstrations were best suited. The study identified key risks along with advantages to each entry technology. In addition, it was identified that provided the EDL concept of operations (con ops) minimized large scale transition events, there was no technology requirement for a Mars pre-cursor demonstration. Instead, NASA should take a direct path to a human-scale lander.
ERIC Educational Resources Information Center
Lee, Jae Hwa; Segev, Aviv
2012-01-01
Maps such as concept maps and knowledge maps are often used as learning materials. These maps have nodes and links, nodes as key concepts and links as relationships between key concepts. From a map, the user can recognize the important concepts and the relationships between them. To build concept or knowledge maps, domain experts are needed.…
Projected phase-change memory devices.
Koelmans, Wabe W; Sebastian, Abu; Jonnalagadda, Vara Prasad; Krebs, Daniel; Dellmann, Laurent; Eleftheriou, Evangelos
2015-09-03
Nanoscale memory devices, whose resistance depends on the history of the electric signals applied, could become critical building blocks in new computing paradigms, such as brain-inspired computing and memcomputing. However, there are key challenges to overcome, such as the high programming power required, noise and resistance drift. Here, to address these, we present the concept of a projected memory device, whose distinguishing feature is that the physical mechanism of resistance storage is decoupled from the information-retrieval process. We designed and fabricated projected memory devices based on the phase-change storage mechanism and convincingly demonstrate the concept through detailed experimentation, supported by extensive modelling and finite-element simulations. The projected memory devices exhibit remarkably low drift and excellent noise performance. We also demonstrate active control and customization of the programming characteristics of the device that reliably realize a multitude of resistance states.
Dy, Sydney M; Purnell, Tanjala S
2012-02-01
High-quality provider-patient decision-making is key to quality care for complex conditions. We performed an analysis of key elements relevant to quality and complex, shared medical decision-making. Based on a search of electronic databases, including Medline and the Cochrane Library, as well as relevant articles' reference lists, reviews of tools, and annotated bibliographies, we developed a list of key concepts and applied them to a decision-making example. Key concepts identified included provider competence, trustworthiness, and cultural competence; communication with patients and families; information quality; patient/surrogate competence; and roles and involvement. We applied this concept list to a case example, shared decision-making for live donor kidney transplantation, and identified the likely most important concepts as provider and cultural competence, information quality, and communication with patients and families. This concept list may be useful for conceptualizing the quality of complex shared decision-making and in guiding research in this area. Copyright © 2011 Elsevier Ltd. All rights reserved.
Understanding critical health literacy: a concept analysis
2013-01-01
Background Interest in and debates around health literacy have grown over the last two decades and key to the discussions has been the distinction made between basic functional health literacy, communicative/interactive health literacy and critical health literacy. Of these, critical health literacy is the least well developed and differing interpretations of its constituents and relevance exist. The aim of this study is to rigorously analyse the concept of critical health literacy in order to offer some clarity of definition upon which appropriate theory, well grounded practice and potential measurement tools can be based. Method The study uses a theoretical and colloquial evolutionary concept analysis method to systematically identify the features associated with this concept. A unique characteristic of this method is that it practically combines an analysis of the literature with in depth interviews undertaken with practitioners and policy makers who have an interest in the field. The study also analyses how the concept is understood across the contexts of time, place, discipline and use by health professionals, policy makers and academics. Results Findings revealed a distinct set of characteristics of advanced personal skills, health knowledge, information skills, effective interaction between service providers and users, informed decision making and empowerment including political action as key features of critical health literacy. The potential consequences of critical health literacy identified are in improving health outcomes, creating more effective use of health services and reducing inequalities in health thus demonstrating the relevance of this concept to public health and health promotion. Conclusions While critical health literacy is shown to be a unique concept, there remain significant contextual variations in understanding particularly between academics, practitioners and policy makers. Key attributes presented as part of this concept when it was first introduced in the literature, particularly those around empowerment, social and political action and the existence of the concept at both an individual and population level, have been lost in more recent representations. This has resulted in critical health literacy becoming restricted to a higher order cognitive individual skill rather than a driver for political and social change. The paper argues that in order to retain the uniqueness and usefulness of the concept in practice efforts should be made to avoid this dilution of meaning. PMID:23419015
Experimental Investigation of the Herschel-Quincke Tube Concept on the Honeywell TFE731-60
NASA Technical Reports Server (NTRS)
Smith, Jerome P.; Burdisso, Ricardo A.; Gerhold, Carl H. (Technical Monitor)
2002-01-01
This report summarizes the key results obtained by the Vibration and Acoustics Laboratories at Virginia Tech over the period from January 1999 to December 2000 on the project 'Investigation of an Adaptive Herschel-Quincke Tube Concept for the Reduction of Tonal and Broadband Noise from Turbofan Engines', funded by NASA Langley Research Center. The Herschel-Quincke (HQ) tube concept is a developing technique that consists of circumferential arrays of tubes around the duct. A fixed array of tubes is installed on the inlet duct of the Honeywell TFE731-60 engine. Two array designs are incorporated into the inlet treatment, each designed for a different circumferential mode order which is expected to be cut on in the duct. Far field and in-duct noise measurement data are presented which demonstrate the effectiveness of the HQ concept for array 1, array 2, and both operating simultaneously.
Formations of Tethered Spacecraft as Stable Platforms for Far IR and Sub-mm Astronomy
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Hadaegh, Fred Y.; Shao, Michael; Lorenzini, Enrico C.
2004-01-01
In this paper we describe current research in tethered formations for interferometry, and a roadmap to demonstrating the required key technologies via on-ground and in-orbit testing. We propose an integrated kilometer-size tethered spacecraft formation flying concept which enables Far IR and Sub-mm astronomy observations from space. A rather general model is used to predict the dynamics, control, and estimation performance of formations of spacecraft connected by tethers in LEO and deep space. These models include the orbital and tethered formation dynamics, environmental models, and models of the formation estimator/controller/commander. Both centralized and decentralized control/sensing/estimation schemes are possible, and dynamic ranges of interest for sensing/control are described. Key component/subsystem technologies are described which need both ground-based and in-orbit demonstration prior to their utilization in precision space interferometry missions using tethered formations. Defining an orbiting formation as an ensemble of orbiting spacecraft performing a cooperative task, recent work has demonstrated the validity of the tethering the spacecraft to provide both the required formation rigidity and satisfy the formation reconfiguration needs such as interferometer baseline control. In our concept, several vehicles are connected and move along the tether, so that to reposition them the connecting tether links must vary in length. This feature enables variable and precise baseline control while the system spins around the boresight. The control architecture features an interferometer configuration composed of one central combiner spacecraft and two aligned collector spacecraft. The combiner spacecraft acts as the formation leader and is also where the centralized sensing and estimation functions reside. Some of the issues analyzed with the model are: dynamic modes of deformation of the distributed structure, architecture of the formation sensor, and sources of dynamical perturbation that need to be mitigated for precision operation in space. Examples from numerical simulation of an envisioned scenario in heliocentric orbit demonstrate the potential of the concept for space interferometry.
Simon, Ted W; Simons, S Stoney; Preston, R Julian; Boobis, Alan R; Cohen, Samuel M; Doerrer, Nancy G; Fenner-Crisp, Penelope A; McMullin, Tami S; McQueen, Charlene A; Rowlands, J Craig
2014-08-01
The HESI RISK21 project formed the Dose-Response/Mode-of-Action Subteam to develop strategies for using all available data (in vitro, in vivo, and in silico) to advance the next-generation of chemical risk assessments. A goal of the Subteam is to enhance the existing Mode of Action/Human Relevance Framework and Key Events/Dose Response Framework (KEDRF) to make the best use of quantitative dose-response and timing information for Key Events (KEs). The resulting Quantitative Key Events/Dose-Response Framework (Q-KEDRF) provides a structured quantitative approach for systematic examination of the dose-response and timing of KEs resulting from a dose of a bioactive agent that causes a potential adverse outcome. Two concepts are described as aids to increasing the understanding of mode of action-Associative Events and Modulating Factors. These concepts are illustrated in two case studies; 1) cholinesterase inhibition by the pesticide chlorpyrifos, which illustrates the necessity of considering quantitative dose-response information when assessing the effect of a Modulating Factor, that is, enzyme polymorphisms in humans, and 2) estrogen-induced uterotrophic responses in rodents, which demonstrate how quantitative dose-response modeling for KE, the understanding of temporal relationships between KEs and a counterfactual examination of hypothesized KEs can determine whether they are Associative Events or true KEs.
NASA Technical Reports Server (NTRS)
Aponso, Bimal; Coppenbarger, Richard A.; Jung, Yoon; Quon, Leighton; Lohr, Gary; O’Connor, Neil; Engelland, Shawn
2015-01-01
NASA's Aeronautics Research Mission Directorate (ARMD) collaborates with the FAA and industry to provide concepts and technologies that enhance the transition to the next-generation air-traffic management system (NextGen). To facilitate this collaboration, ARMD has a series of Airspace Technology Demonstration (ATD) sub-projects that develop, demonstrate, and transitions NASA technologies and concepts for implementation in the National Airspace System (NAS). The second of these sub-projects, ATD-2, is focused on the potential benefits to NAS stakeholders of integrated arrival, departure, surface (IADS) operations. To determine the project objectives and assess the benefits of a potential solution, NASA surveyed NAS stakeholders to understand the existing issues in arrival, departure, and surface operations, and the perceived benefits of better integrating these operations. NASA surveyed a broad cross-section of stakeholders representing the airlines, airports, air-navigation service providers, and industry providers of NAS tools. The survey indicated that improving the predictability of flight times (schedules) could improve efficiency in arrival, departure, and surface operations. Stakeholders also mentioned the need for better strategic and tactical information on traffic constraints as well as better information sharing and a coupled collaborative planning process that allows stakeholders to coordinate IADS operations. To assess the impact of a potential solution, NASA sketched an initial departure scheduling concept and assessed its viability by surveying a select group of stakeholders for a second time. The objective of the departure scheduler was to enable flights to move continuously from gate to cruise with minimal interruption in a busy metroplex airspace environment using strategic and tactical scheduling enhanced by collaborative planning between airlines and service providers. The stakeholders agreed that this departure concept could improve schedule predictability and suggested several key attributes that were necessary to make the concept successful. The goals and objectives of the planned ATD-2 sub-project will incorporate the results of this stakeholder feedback.
The Remote Observing Working Group for the Asteroid Impact and Deflection Assessment (AIDA)
NASA Astrophysics Data System (ADS)
Rivkin, A. S.; Pravec, P.; Thomas, C. A.; Thirouin, A.; Snodgrass, C.; Green, S.; Licandro, J.; Sickafoose, A. A.; Erasmus, N.; Howell, E. S.; Osip, D.; Thomas-Osip, J.; Moskovitz, N.; Scheirich, P.; Oszkiewicz, D.; Richardson, D. C.; Polishook, D.; Ryan, W. H.; Busch, M. W.
2017-09-01
The Asteroid Impact and Deflection Assessment (AIDA) is a joint US-European mission concept designed to demonstrate the effectiveness of an kinetic impactor for planetary defense. Ground-based observing is a key component to AIDA and critical for its success. We present the observing campaign we have been conducting of the asteroid Didymos, the AIDA target, and plans for future work.
ERIC Educational Resources Information Center
Comer, Debra R.; Holbrook, Robert L., Jr.
2012-01-01
The authors present an efficient and easy-to-implement experiential exercise that reinforces for students key concepts about task groups (i.e., group cohesiveness, conflict within groups, group effectiveness, group norms, and group roles). The exercise, which uses a documentary about the making of Fleetwood Mac's "Rumours" album to demonstrate the…
ERIC Educational Resources Information Center
Cunningham, Kevin D.
2011-01-01
As demonstrated by their emphasis in the new, national, science education standards, learning progressions (LPs) have become a valuable means of informing teaching and learning. LPs serve this role by isolating the key components of central skills and understandings, and by describing how those abilities and concepts tend to develop over time…
Health Worker Focused Distributed Simulation for Improving Capability of Health Systems in Liberia.
Gale, Thomas C E; Chatterjee, Arunangsu; Mellor, Nicholas E; Allan, Richard J
2016-04-01
The main goal of this study was to produce an adaptable learning platform using virtual learning and distributed simulation, which can be used to train health care workers, across a wide geographical area, key safety messages regarding infection prevention control (IPC). A situationally responsive agile methodology, Scrum, was used to develop a distributed simulation module using short 1-week iterations and continuous synchronous plus asynchronous communication including end users and IPC experts. The module contained content related to standard IPC precautions (including handwashing techniques) and was structured into 3 distinct sections related to donning, doffing, and hazard perception training. Using Scrum methodology, we were able to link concepts applied to best practices in simulation-based medical education (deliberate practice, continuous feedback, self-assessment, and exposure to uncommon events), pedagogic principles related to adult learning (clear goals, contextual awareness, motivational features), and key learning outcomes regarding IPC, as a rapid response initiative to the Ebola outbreak in West Africa. Gamification approach has been used to map learning mechanics to enhance user engagement. The developed IPC module demonstrates how high-frequency, low-fidelity simulations can be rapidly designed using scrum-based agile methodology. Analytics incorporated into the tool can help demonstrate improved confidence and competence of health care workers who are treating patients within an Ebola virus disease outbreak region. These concepts could be used in a range of evolving disasters where rapid development and communication of key learning messages are required.
Quality assurance and stability reference (QUASAR) monitoring concept for calibration/validation
NASA Astrophysics Data System (ADS)
Teillet, Philippe M.; Horler, D. N.; O'Neill, Norman T.
1997-12-01
The paper introduces the concept that calibration/validation (cal/val) can play an essential role in bringing remote sensing to mainstream consumers in an information-based society, provided that cal/val is an integral part of a quality-assurance strategy. A market model for remote sensing is introduced and used to demonstrate that quality assurance is the key to bridging the gap between early adopters of technology and mainstream markets. The paper goes on to propose the semi-continuous monitoring of quality assurance and stability reference (QUASAR) sites as an important first step towards a cal/val infrastructure beneficial to mainstream users. Prospective QUASAR test sites are described.
Solar concentrator with diffuser segments
NASA Astrophysics Data System (ADS)
Esparza, Diego; Moreno, Ivan
2011-08-01
Solar energy systems use concentrating optics with photovoltaic cells for optimizing the performance. Advanced concentrators are designed to maximize both the light collection and the spatial uniformity of radiation. This is important because irradiance uniformity is critical for all types of photovoltaic cells. This is difficult to achieve with traditional concentrators, which are built with polished optical surfaces. In this work we propose a new concept of solar concentrator which uses small diffuser segments in key points to increase the irradiation uniformity. We experimentally demonstrate this new concept by analyzing the effects on both efficiency and irradiance uniformity due to the incorporation of scattering ribbons in a compound parabolic concentrator.
Proposed Solar Probe telecommunications system concept
NASA Astrophysics Data System (ADS)
Kellogg, K.; Devereaux, A.; Vacchione, J.; Kapoor, V.; Crist, R.
1992-01-01
A proposed telecommunications system concept for NASA's Solar Probe mission is described. Key system requirements include 70 kbps data rate at perihelion and operation at X-band (uplink/downlink) and Ka-band (downlink). A design control table is presented to demonstrate design compliance with telecommunication needs. The Ka-band feed is to be a hexagonal array of 37 active elements, each containing 1/4W HEMT amplifiers. The array is located at the Cassegrain point of a 0.75-m reflector. When compared to the TWTA-based system, the Ka-band active array feed provides advantages of reduced mass, increased dc power efficiency, enhanced reliability, graceful degradation, and reduced volume requirements.
A centennial tribute to G.K. Gilbert's Hydraulic Mining Débris in the Sierra Nevada
NASA Astrophysics Data System (ADS)
James, L. A.; Phillips, J. D.; Lecce, S. A.
2017-10-01
G.K. Gilbert's (1917) classic monograph, Hydraulic-Mining Débris in the Sierra Nevada, is described and put into the context of modern geomorphic knowledge. The emphasis here is on large-scale applied fluvial geomorphology, but other key elements-e.g., coastal geomorphology-are also briefly covered. A brief synopsis outlines key elements of the monograph, followed by discussions of highly influential aspects including the integrated watershed perspective, the extreme example of anthropogenic sedimentation, computation of a quantitative, semidistributed sediment budget, and advent of sediment-wave theory. Although Gilbert did not address concepts of equilibrium and grade in much detail, the rivers of the northwestern Sierra Nevada were highly disrupted and thrown into a condition of nonequilibrium. Therefore, concepts of equilibrium and grade-for which Gilbert's early work is often cited-are discussed. Gilbert's work is put into the context of complex nonlinear dynamics in geomorphic systems and how these concepts can be used to interpret the nonequilibrium systems described by Gilbert. Broad, basin-scale studies were common in the period, but few were as quantitative and empirically rigorous or employed such a range of methodologies as PP105. None demonstrated such an extreme case of anthropogeomorphic change.
Advanced composite structural concepts and material technologies for primary aircraft structures
NASA Technical Reports Server (NTRS)
Jackson, Anthony
1991-01-01
Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.
Modular System to Enable Extravehicular Activity
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2012-01-01
The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space systems (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower Earth orbit (LEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular EVA system that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs, and to define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Space Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suit port technologies.
Learning Outcomes as a Key Concept in Policy Documents throughout Policy Changes
ERIC Educational Resources Information Center
Prøitz, Tine Sophie
2015-01-01
Learning outcomes can be considered to be a key concept in a changing education policy landscape, enhancing aspects such as benchmarking and competition. Issues relating to concepts of performance have a long history of debate within the field of education. Today, the concept of learning outcomes has become central in education policy development,…
A Verification System for Distributed Objects with Asynchronous Method Calls
NASA Astrophysics Data System (ADS)
Ahrendt, Wolfgang; Dylla, Maximilian
We present a verification system for Creol, an object-oriented modeling language for concurrent distributed applications. The system is an instance of KeY, a framework for object-oriented software verification, which has so far been applied foremost to sequential Java. Building on KeY characteristic concepts, like dynamic logic, sequent calculus, explicit substitutions, and the taclet rule language, the system presented in this paper addresses functional correctness of Creol models featuring local cooperative thread parallelism and global communication via asynchronous method calls. The calculus heavily operates on communication histories which describe the interfaces of Creol units. Two example scenarios demonstrate the usage of the system.
Redox flow cell development and demonstration project, calendar year 1976
NASA Technical Reports Server (NTRS)
1977-01-01
The major focus of the effort was the key technology issues that directly influence the fundamental feasibility of the overall redox concept. These issues were the development of a suitable semipermeable separator membrane for the system, the screening and study of candidate redox couples to achieve optimum cell performance, and the carrying out of systems analysis and modeling to develop system performance goals and cost estimates.
[Genetic regulation of plant shoot stem cells].
Al'bert, E V; Ezhova, T A
2013-02-01
This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.
NASA Technical Reports Server (NTRS)
1978-01-01
The theoretical background for a coherent demodulator for minimum shift keying signals generated by the advanced data collection/position locating system breadboard is presented along with a discussion of the design concept. Various tests and test results, obtained with the breadboard system described, include evaluation of bit-error rate performance, acquisition time, clock recovery, recycle time, frequency measurement accuracy, and mutual interference.
Concept recognition for extracting protein interaction relations from biomedical text
Baumgartner, William A; Lu, Zhiyong; Johnson, Helen L; Caporaso, J Gregory; Paquette, Jesse; Lindemann, Anna; White, Elizabeth K; Medvedeva, Olga; Cohen, K Bretonnel; Hunter, Lawrence
2008-01-01
Background: Reliable information extraction applications have been a long sought goal of the biomedical text mining community, a goal that if reached would provide valuable tools to benchside biologists in their increasingly difficult task of assimilating the knowledge contained in the biomedical literature. We present an integrated approach to concept recognition in biomedical text. Concept recognition provides key information that has been largely missing from previous biomedical information extraction efforts, namely direct links to well defined knowledge resources that explicitly cement the concept's semantics. The BioCreative II tasks discussed in this special issue have provided a unique opportunity to demonstrate the effectiveness of concept recognition in the field of biomedical language processing. Results: Through the modular construction of a protein interaction relation extraction system, we present several use cases of concept recognition in biomedical text, and relate these use cases to potential uses by the benchside biologist. Conclusion: Current information extraction technologies are approaching performance standards at which concept recognition can begin to deliver high quality data to the benchside biologist. Our system is available as part of the BioCreative Meta-Server project and on the internet . PMID:18834500
What's so funny? Modelling incongruity in humour production.
Hull, Rachel; Tosun, Sümeyra; Vaid, Jyotsna
2017-04-01
Finding something humorous is intrinsically rewarding and may facilitate emotion regulation, but what creates humour has been underexplored. The present experimental study examined humour generated under controlled conditions with varying social, affective, and cognitive factors. Participants listed five ways in which a set of concept pairs (e.g. MONEY and CHOCOLATE) were similar or different in either a funny way (intentional humour elicitation) or a "catchy" way (incidental humour elicitation). Results showed that more funny responses were produced under the incidental condition, and particularly more for affectively charged than neutral concepts, for semantically unrelated than related concepts, and for responses highlighting differences rather than similarities between concepts. Further analyses revealed that funny responses showed a relative divergence in output dominance of the properties typically associated with each concept in the pair (that is, funny responses frequently highlighted a property high in output dominance for one concept but simultaneously low in output dominance for the other concept); by contrast, responses judged not funny did not show this pattern. These findings reinforce the centrality of incongruity resolution as a key cognitive ingredient for some pleasurable emotional elements arising from humour and demonstrate how it may operate within the context of humour generation.
Producing a socially accountable medical school: AMEE Guide No. 109.
Boelen, Charles; Pearson, David; Kaufman, Arthur; Rourke, James; Woollard, Robert; Marsh, David C; Gibbs, Trevor
2016-11-01
Health systems worldwide are confronted with challenges due to increased demand from their citizens, an aging population, a variety of health risks and limited resources. Key health stakeholders, including academic institutions and medical schools, are urged to develop a common vision for a more efficient and equitable health sector. It is in this environment that Boelen and Heck defined the concept of the "Social Accountability of Medical Schools" - a concept that encourages schools to produce not just highly competent professionals, but professionals who are equipped to respond to the changing challenges of healthcare through re-orientation of their education, research and service commitments, and be capable of demonstrating a positive effect upon the communities they serve. Social Accountability calls on the academic institution to demonstrate an impact on the communities served and thus make a contribution for a just and efficient health service, through mutually beneficial partnerships with other healthcare stakeholders. The purpose of this Guide is to explore the concept of Social Accountability, to explain it in more detail through examples and to identify ways to overcome obstacles to its development. Although in the Guide reference is frequently made to medical schools, the concept is equally applicable to all forms of education allied to healthcare.
An Overview of the StarLight Mission
NASA Technical Reports Server (NTRS)
Lay, Oliver; Blackwood, Gary; Dubovitsky, Serge; Duren, Riley
2004-01-01
An overview of the Starlight Mission is presented. Mission summary: June 2006 launch to heliocentric orbit; Nominal 6 month mission with option of additional 6 month extension; Validate autonomous formation flying system: range control to 10 cm bearing, control to 4 arcmin; Demonstrate formation flying optical interferometry.The original 3 spacecraft design did not fit the budget. 2 spacecraft concept demonstrates all key areas of formation flying interferometry. Collector flown on the surface of a virtual paraboloid, with combiner at the focus. It Gives a baseline of 125 m with a fixed delay of only 14 m.
High speed holographic digital recorder.
Roberts, H N; Watkins, J W; Johnson, R H
1974-04-01
Concepts, feasibility experiments, and key component developments are described for a holographic digital record/reproduce system with the potential for 1.0 Gbit/sec rates and higher. Record rates of 500 Mbits/sec have been demonstrated with a ten-channel acoustooptic modulator array and a mode-locked, cavity-dumped argon-ion laser. Acoustooptic device technology has been advanced notably during the development of mode lockers, cavity dumpers, beam deflectors, and multichannel modulator arrays. The development of high speed multichannel photodetector arrays for the readout subsystem requires special attention. The feasibility of 1.0 Gbits/sec record rates has been demonstrated.
2014-01-01
Introduction Translating government-funded cancer research into clinical practice can be accomplished via virtual communities of practice that include key players in the process: researchers, health care practitioners, and intermediaries. This study, conducted from November 2012 through January 2013, examined issues that key stakeholders believed should be addressed to create and sustain government-sponsored virtual communities of practice to integrate cancer control research, practice, and policy and demonstrates how concept mapping can be used to present relevant issues. Methods Key stakeholders brainstormed statements describing what is needed to create and sustain virtual communities of practice for moving cancer control research into practice. Participants rated them on importance and feasibility, selected most relevant statements, and sorted them into clusters. I used concept mapping to examine the issues identified and multidimensional scaling analyses to create a 2-dimensional conceptual map of the statement clusters. Results Participants selected 70 statements and sorted them into 9 major clusters related to creating and sustaining virtual communities of practice: 1) standardization of best practices, 2) external validity, 3) funding and resources, 4) social learning and collaboration, 5) cooperation, 6) partnerships, 7) inclusiveness, 8) social determinants and cultural competency, and 9) preparing the environment. Researchers, health care practitioners, and intermediaries were in relative agreement regarding issues of importance for creating these communities. Conclusion Virtual communities of practice can be created to address the needs of researchers, health care practitioners, and intermediaries by using input from these key stakeholders. Increasing linkages between these subgroups can improve the translation of research into practice. Similarities and differences between groups can provide valuable information to assist the government in developing virtual communities of practice. PMID:24762532
Vinson, Cynthia A
2014-04-24
Translating government-funded cancer research into clinical practice can be accomplished via virtual communities of practice that include key players in the process: researchers, health care practitioners, and intermediaries. This study, conducted from November 2012 through January 2013, examined issues that key stakeholders believed should be addressed to create and sustain government-sponsored virtual communities of practice to integrate cancer control research, practice, and policy and demonstrates how concept mapping can be used to present relevant issues. Key stakeholders brainstormed statements describing what is needed to create and sustain virtual communities of practice for moving cancer control research into practice. Participants rated them on importance and feasibility, selected most relevant statements, and sorted them into clusters. I used concept mapping to examine the issues identified and multidimensional scaling analyses to create a 2-dimensional conceptual map of the statement clusters. Participants selected 70 statements and sorted them into 9 major clusters related to creating and sustaining virtual communities of practice: 1) standardization of best practices, 2) external validity, 3) funding and resources, 4) social learning and collaboration, 5) cooperation, 6) partnerships, 7) inclusiveness, 8) social determinants and cultural competency, and 9) preparing the environment. Researchers, health care practitioners, and intermediaries were in relative agreement regarding issues of importance for creating these communities. Virtual communities of practice can be created to address the needs of researchers, health care practitioners, and intermediaries by using input from these key stakeholders. Increasing linkages between these subgroups can improve the translation of research into practice. Similarities and differences between groups can provide valuable information to assist the government in developing virtual communities of practice.
Novel secret key generation techniques using memristor devices
NASA Astrophysics Data System (ADS)
Abunahla, Heba; Shehada, Dina; Yeun, Chan Yeob; Mohammad, Baker; Jaoude, Maguy Abi
2016-02-01
This paper proposes novel secret key generation techniques using memristor devices. The approach depends on using the initial profile of a memristor as a master key. In addition, session keys are generated using the master key and other specified parameters. In contrast to existing memristor-based security approaches, the proposed development is cost effective and power efficient since the operation can be achieved with a single device rather than a crossbar structure. An algorithm is suggested and demonstrated using physics based Matlab model. It is shown that the generated keys can have dynamic size which provides perfect security. Moreover, the proposed encryption and decryption technique using the memristor based generated keys outperforms Triple Data Encryption Standard (3DES) and Advanced Encryption Standard (AES) in terms of processing time. This paper is enriched by providing characterization results of a fabricated microscale Al/TiO2/Al memristor prototype in order to prove the concept of the proposed approach and study the impacts of process variations. The work proposed in this paper is a milestone towards System On Chip (SOC) memristor based security.
Chip-based quantum key distribution
NASA Astrophysics Data System (ADS)
Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.
2017-02-01
Improvement in secure transmission of information is an urgent need for governments, corporations and individuals. Quantum key distribution (QKD) promises security based on the laws of physics and has rapidly grown from proof-of-concept to robust demonstrations and deployment of commercial systems. Despite these advances, QKD has not been widely adopted, and large-scale deployment will likely require chip-based devices for improved performance, miniaturization and enhanced functionality. Here we report low error rate, GHz clocked QKD operation of an indium phosphide transmitter chip and a silicon oxynitride receiver chip--monolithically integrated devices using components and manufacturing processes from the telecommunications industry. We use the reconfigurability of these devices to demonstrate three prominent QKD protocols--BB84, Coherent One Way and Differential Phase Shift--with performance comparable to state-of-the-art. These devices, when combined with integrated single photon detectors, pave the way for successfully integrating QKD into future telecommunications networks.
Chip-based quantum key distribution
Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.
2017-01-01
Improvement in secure transmission of information is an urgent need for governments, corporations and individuals. Quantum key distribution (QKD) promises security based on the laws of physics and has rapidly grown from proof-of-concept to robust demonstrations and deployment of commercial systems. Despite these advances, QKD has not been widely adopted, and large-scale deployment will likely require chip-based devices for improved performance, miniaturization and enhanced functionality. Here we report low error rate, GHz clocked QKD operation of an indium phosphide transmitter chip and a silicon oxynitride receiver chip—monolithically integrated devices using components and manufacturing processes from the telecommunications industry. We use the reconfigurability of these devices to demonstrate three prominent QKD protocols—BB84, Coherent One Way and Differential Phase Shift—with performance comparable to state-of-the-art. These devices, when combined with integrated single photon detectors, pave the way for successfully integrating QKD into future telecommunications networks. PMID:28181489
Cerebral Metabolism and the Role of Glucose Control in Acute Traumatic Brain Injury.
Buitrago Blanco, Manuel M; Prashant, Giyarpuram N; Vespa, Paul M
2016-10-01
This article reviews key concepts of cerebral glucose metabolism, neurologic outcomes in clinical trials, the biology of the neurovascular unit and its involvement in secondary brain injury after traumatic brain insults, and current scientific and clinical data that demonstrate a better understanding of the biology of metabolic dysfunction in the brain, a concept now known as cerebral metabolic energy crisis. The use of neuromonitoring techniques to better understand the pathophysiology of the metabolic crisis is reviewed and a model that summarizes the triphasic view of cerebral metabolic disturbance supported by existing scientific data is outlined. The evidence is summarized and a template for future research provided. Copyright © 2016 Elsevier Inc. All rights reserved.
Drozda, Joseph P; Roach, James; Forsyth, Thomas; Helmering, Paul; Dummitt, Benjamin; Tcheng, James E
2018-02-01
The US Food and Drug Administration (FDA) has recognized the need to improve the tracking of medical device safety and performance, with implementation of Unique Device Identifiers (UDIs) in electronic health information as a key strategy. The FDA funded a demonstration by Mercy Health wherein prototype UDIs were incorporated into its electronic information systems. This report describes the demonstration's informatics architecture. Prototype UDIs for coronary stents were created and implemented across a series of information systems, resulting in UDI-associated data flow from manufacture through point of use to long-term follow-up, with barcode scanning linking clinical data with UDI-associated device attributes. A reference database containing device attributes and the UDI Research and Surveillance Database (UDIR) containing the linked clinical and device information were created, enabling longitudinal assessment of device performance. The demonstration included many stakeholders: multiple Mercy departments, manufacturers, health system partners, the FDA, professional societies, the National Cardiovascular Data Registry, and information system vendors. The resulting system of systems is described in detail, including entities, functions, linkage between the UDIR and proprietary systems using UDIs as the index key, data flow, roles and responsibilities of actors, and the UDIR data model. The demonstration provided proof of concept that UDIs can be incorporated into provider and enterprise electronic information systems and used as the index key to combine device and clinical data in a database useful for device evaluation. Keys to success and challenges to achieving this goal were identified. Fundamental informatics principles were central to accomplishing the system of systems model. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T. K.; Grandy, C.; Natesan, K.
The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treatedmore » separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s, and the remaining critical paths and R&D needs are generally related to the completion of qualification of fuel and structural materials, validation of reactor design codes and methods, and support of the licensing frameworks. The LFR’s technology is instead less-mature compared to the SFR’s, and will be at the engineering demonstration stage by the early 2030s. Key LFR technology development activities will focus on resolving remaining design challenges and demonstrating the viability of systems and components in the integral system, which will be done in parallel with addressing the gaps shared with SFR technology. The approach and timeline presented here assume that, for the first module demonstration, vendors would pursue a two-step licensing process based on 10CFR Part 50.« less
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Wang, Easter Mayan Chan
2016-01-01
Airspace Technology Demonstration #3 (ATD-3) is part of NASA's Airspace Operations and Safety Program (AOSP) - specifically, its Airspace Technology Demonstrations (ATD) Project. ATD-3 is a multiyear research and development effort which proposes to develop and demonstrate automation technologies and operating concepts that enable air navigation service providers and airspace users to continuously assess weather, winds, traffic, and other information to identify, evaluate, and implement workable opportunities for flight plan route corrections that can result in significant flight time and fuel savings in en route airspace. In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders. This summary document and accompanying technology artifacts satisfy the first of three Research Transition Products (RTPs) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASA's legacy Dynamic Weather Routes (DWR) work for efficient routing for en-route weather avoidance. DWR is a ground-based trajectory automation system that continuously and automatically analyzes active airborne aircraft in en route airspace to identify opportunities for simple corrections to flight plan routes that can save significant flying time, at least five minutes wind-corrected, while avoiding weather and considering traffic conflicts, airspace sector congestion, special use airspace, and FAA routing restrictions. The key benefit of the DWR concept is to let automation continuously and automatically analyze active flights to find those where simple route corrections can save significant time and fuel. Operators are busy during weather events. It is more effective to let automation find the opportunities for high-value route corrections.
The C3PO project: a laser communication system concept for small satellites
NASA Astrophysics Data System (ADS)
d'Humières, Benoît; Esmiller, Bruno; Gouy, Yann; Steck, Emilie; Quintana, Crisanto; Faulkner, Graham; O'Brien, Dominic; Sproll, Fabian; Wagner, Paul; Hampf, Daniel; Riede, Wolfgang; Salter, Michael; Wang, Qin; Platt, Duncan; Jakonis, Darius; Piao, Xiaoyu; Karlsson, Mikael; Oberg, Olof; Petermann, Ingemar; Michalkiewicz, Aneta; Krezel, Jerzy; Debowska, Anna; Thueux, Yoann
2017-02-01
The satellite market is shifting towards smaller (micro and nanosatellites), lowered mass and increased performance platforms. Nanosatellites and picosatellites have been used for a number of new, innovative and unique payloads and missions. This trend requires new concepts for a reduced size, a better performance/weight ratio and a reduction of onboard power consumption. In this context, disruptive technologies, such as laser-optical communication systems, are opening new possibilities. This paper presents the C3PO1 system, "advanced Concept for laser uplink/ downlink CommuniCation with sPace Objects", and the first results of the development of its key technologies. This project targets the design of a communications system that uses a ground-based laser to illuminate a satellite, and a Modulating Retro-Reflector (MRR) to return a beam of light modulated by data to the ground. This enables a downlink, without a laser source on the satellite. This architecture suits well to small satellite applications so as high data rates are potentially provided with very low board mass. C3PO project aims to achieve data rates of 1Gbit/s between LEO satellites and Earth with a communication payload mass of less than 1kilogram. In this paper, results of the initial experiments and demonstration of the key technologies will be shown.
Teaching cultural competence using an exemplar from literary journalism.
Anderson, Kathryn L
2004-06-01
Fadiman's work of literary journalism, The Spirit Catches You and You Fall Down, was used as a case study to teach transcultural and other nursing concepts to undergraduate nursing students. Campinha-Bacote's model of cultural competence was used to organize transcultural nursing concepts in the course. Before and after the course, students completed assessments consisting of two cultural attitude questionnaires and a paper describing a personal experience with adherence and failure to adhere by a Mexican American client. After reading Fadiman's book and completing several short writing assignments examining key course concepts, student scores on the questionnaires were mostly unchanged. However, students demonstrated growth in cultural awareness and skill in their "after" papers. Results suggest that valid, reliable tools are needed to detect changes in cultural competence. Qualitative data suggest that students can begin the process of becoming culturally competent through the creative use of literature in nursing education.
EBM, HTA, and CER: clearing the confusion.
Luce, Bryan R; Drummond, Michael; Jönsson, Bengt; Neumann, Peter J; Schwartz, J Sanford; Siebert, Uwe; Sullivan, Sean D
2010-06-01
The terms evidence-based medicine (EBM), health technology assessment (HTA), comparative effectiveness research (CER), and other related terms lack clarity and so could lead to miscommunication, confusion, and poor decision making. The objective of this article is to clarify their definitions and the relationships among key terms and concepts. This article used the relevant methods and policy literature as well as the websites of organizations engaged in evidence-based activities to develop a framework to explain the relationships among the terms EBM, HTA, and CER. This article proposes an organizing framework and presents a graphic demonstrating the differences and relationships among these terms and concepts. More specific terminology and concepts are necessary for an informed and clear public policy debate. They are even more important to inform decision making at all levels and to engender more accountability by the organizations and individuals responsible for these decisions.
Satellite mirror systems for providing terrestrial power - System concept
NASA Technical Reports Server (NTRS)
Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.
1978-01-01
A system of orbiting reflectors, SOLARES, has been studied as a possible means of providing terrestrial power with a space system of minimum mass and complexity. The key impact that such a system, providing continuous and slightly concentrated insolation, makes on the economic viability of solar farming is demonstrated. New developments in solar sailing are incorporated to reduce mirror mass and transportation cost. The system is compatible with incremental implementation and continual expansion to produce the world's power needs. Key technology, environmental, and economic issues and payoffs are identified. SOLARES appears to be economically superior to other advanced, and even conventional, energy systems and could be scaled to completely abate our fossil fuel usage for power generation.
Key concepts in consumer and community engagement: a scoping meta-review.
Sarrami-Foroushani, Pooria; Travaglia, Joanne; Debono, Deborah; Braithwaite, Jeffrey
2014-06-13
Although consumer and community engagement (CCE) in health care is receiving increasing attention, research and practice in this area are hampered by the variability of concepts and terminology commonly employed. This scoping meta-review aims to identify key CCE concepts and examine terminology used to describe them. In a scoping meta-review, an extensive list of 47 phrases and 11 Medical Subject Headings (MeSH) was used to undertake a comprehensive and systematic search in PubMed Central, Embase, EBM reviews, CINAHL, APAPsycNET, and Scopus. 59 systematic reviews met the selection criteria and were included in the final analysis. The analysis identified nine different concepts related to CCE: shared decision making, self-management, CCE in health care systems, community-based health promotion, providing access to health care, rehabilitation, participation in research, collaboration in research design and conduct, and peer support. The identified concepts differ from each other in many aspects including the aim of the activity, the role of consumers and the type of professionals' involvement. Each concept was described by a range of terms, with some terms shared by different concepts. In addition, two overlapping concepts of patient-centeredness and patient empowerment were recognised. This study describes CCE-related key concepts and provides new insight into their relationship with different CCE-related terms. Identification of key CCE-related concepts and terms will be useful to focus future studies and initiatives and enhance production of CCE-related evidence.
Key concepts in consumer and community engagement: a scoping meta-review
2014-01-01
Background Although consumer and community engagement (CCE) in health care is receiving increasing attention, research and practice in this area are hampered by the variability of concepts and terminology commonly employed. This scoping meta-review aims to identify key CCE concepts and examine terminology used to describe them. Methods In a scoping meta-review, an extensive list of 47 phrases and 11 Medical Subject Headings (MeSH) was used to undertake a comprehensive and systematic search in PubMed Central, Embase, EBM reviews, CINAHL, APAPsycNET, and Scopus. Results 59 systematic reviews met the selection criteria and were included in the final analysis. The analysis identified nine different concepts related to CCE: shared decision making, self-management, CCE in health care systems, community-based health promotion, providing access to health care, rehabilitation, participation in research, collaboration in research design and conduct, and peer support. The identified concepts differ from each other in many aspects including the aim of the activity, the role of consumers and the type of professionals’ involvement. Each concept was described by a range of terms, with some terms shared by different concepts. In addition, two overlapping concepts of patient-centeredness and patient empowerment were recognised. Conclusions This study describes CCE-related key concepts and provides new insight into their relationship with different CCE-related terms. Identification of key CCE-related concepts and terms will be useful to focus future studies and initiatives and enhance production of CCE-related evidence. PMID:24923771
An Advanced Trajectory-Based Operations Prototype Tool and Focus Group Evaluation
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.; Rogers, Laura J.; Underwood, Matthew C.; Johnson, Sally C.
2017-01-01
Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. The National Aeronautics and Space Administration (NASA) has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality that may reside in an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. After viewing the interactive demonstration scenarios, the SMEs felt the operational capabilities demonstrated would be useful for performing TBO while maintaining situation awareness and low mental workload. The TBO concept demonstrated produced defined routings around weather which resulted in a more organized, consistent flow of traffic where it was clear to both the controller and pilot what route the aircraft was to follow. In general, the controller SMEs felt that traffic flow management should be responsible for generating and negotiating the operational constraints demonstrated, in cooperation with the Air Traffic Control System Command Center, while air traffic control should be responsible for the implementation of those constraints. The SMEs also indicated that digital data communications would be very beneficial for TBO operations and would result in less workload due to reduced communications, would eliminate issues due to language barriers and frequency problems, and would make receiving, loading, accepting, and executing clearances easier, less ambiguous, and more expeditious. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group evaluation.
Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Dickens, Kevin W.
2005-01-01
NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.
Schneider, T; Sommerfeld, W; Möller, J
2003-06-01
The Medizinischer Dienst der Krankenversicherung (MDK) is a non-profit medical consulting organisation serving the German Healthcare Insurance System. Despite its uniform commission throughout Germany, organisation and structure differ considerably between Provincial States which is reflected by differing results. A common nationwide system of key figures and indicators aims at analysing results and learning from one another. Development of an audit concept for analysing key figures and indicators within the MDK aiming at quality improvement. Development of a system of key figures and indicators covering five spheres (products, staff, costs, data analysis, structure). Analysis by means of audits carried out across provincial state borders in five steps (audit manual, training of auditors, visitation, audit report, repetition audit). The system of key figures and indicators assures relevant and comparable data. Audit manual, training of auditors, visitation, and audit report meet the needs of all people and institutions involved. Preparation of auditors as well as openness, and flow of information within audited organisations offer areas for improvement. There is as yet no assessment of the cost-benefit ratio of audits. The concept presented in this article consists of two parts: A system of key figures and indicators as well as a concept for audits. The concept is suitable for a) generating and analysing relevant key figures and indicators for each MDK, and b) providing information for benchmarking between different MDK. Further development of the concept to a comprehensive management concept is necessary.
Microfine coal firing results from a retrofit gas/oil-designed industrial boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, R.; Borio, R.W.; Liljedahl, G.
1995-12-31
The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronizedmore » coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.« less
Wang, Andong; Zhu, Long; Liu, Jun; Du, Cheng; Mo, Qi; Wang, Jian
2015-11-16
Mode-division multiplexing passive optical network (MDM-PON) is a promising scheme for next-generation access networks to further increase fiber transmission capacity. In this paper, we demonstrate the proof-of-concept experiment of hybrid mode-division multiplexing (MDM) and time-division multiplexing (TDM) PON architecture by exploiting orbital angular momentum (OAM) modes. Bidirectional transmissions with 2.5-Gbaud 4-level pulse amplitude modulation (PAM-4) downstream and 2-Gbaud on-off keying (OOK) upstream are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties for downstream and upstream transmissions at a bit-error rate (BER) of 2 × 10(-3) are less than 2.0 dB and 3.0 dB, respectively.
The data distribution satellite system
NASA Technical Reports Server (NTRS)
Bruno, Ronald C.; Weinberg, Aaron
1991-01-01
The Data Distributed Satellite (DDS) will be capable of providing the space research community with inexpensive and easy access to space payloads and space data. Furthermore, the DDS is shown to be a natural outgrowth of advances and evolution in both NASA's Space Network and commercial satellite communications. The roadmap and timescale for this evolution is described along with key demonstrations, proof-of-concept models, and required technology development that will support the projected system evolution toward the DDS.
ERIC Educational Resources Information Center
Aller, Curtis C.; And Others
An experimental and demonstration project was conducted over a five-year period in California to test the concept of lay-off time training to enable workers to qualify for promotion and increase their earnings. The canning industry was found to be a suitable area for this type of training since it had annual lay-offs followed by assured recalls to…
Termination of second messenger signaling in olfaction.
Boekhoff, I; Breer, H
1992-01-01
By using isolated rat olfactory cilia and a fast kinetics methodology, it has been demonstrated that odorant-induced second messenger signaling in the millisecond time range is terminated via phosphorylation reactions catalyzed by specific protein kinases. The cyclic adenosine nucleotide pathway is turned off by kinase A activity, whereas the inositol trisphosphate cascade is terminated by kinase C. The data support the concept that desensitization of odorant responses involves phosphorylation of key elements in the transduction cascade. PMID:1370581
Key Concepts and Terminology in Online Instruction: A Primer for School Psychology Programs
ERIC Educational Resources Information Center
Moy, Gregory; Robbins, Stacey; Fischer, Aaron
2018-01-01
The aim of this article is to provide a primer on the key concepts and terminology of online instruction to faculty considering the adoption of online instructional practices to increase accessibility to graduate students. These concepts and terms are neither specific to school psychology training nor to graduate education. This article is second…
Three Key Concepts of the Theory of Objectification: Knowledge, Knowing, and Learning
ERIC Educational Resources Information Center
Radford, Luis
2013-01-01
In this article I sketch three key concepts of a cultural-historical theory of mathematics teaching and learning--the theory of objectification. The concepts are: knowledge, knowing and learning. The philosophical underpinning of the theory revolves around the work of Georg W. F. Hegel and its further development in the philosophical works of K.…
ERIC Educational Resources Information Center
O'Toole, Catriona; Barnes-Holmes, Dermot
2009-01-01
The Implicit Association Test (IAT) examines the differential association of 2 target concepts with 2 attribute concepts. Responding is predicted to be faster on consistent trials, when concepts that are associated in memory share a response key, than on inconsistent trials, when less associated items share a key. In the current study,…
Airport Noise Tech Challenge Overview
NASA Technical Reports Server (NTRS)
Bridges, James
2011-01-01
The Supersonics Project, operating under NASA Aeronautics Mission Directorate#s Fundamental Aero Program, has been organized around the Technical Challenges that have historically precluded commercial supersonic flight. One of these Challenges is making aircraft that are capable of such high aerodynamic performance quiet enough around airports that they will not be objectionable. It is recognized that a successful civilian supersonic aircraft will be a system where many new technologies will come together, and for this to happen not only will new low noise propulsion concepts be required, but new engineering tools that predict the noise of the aircraft as these technologies are combined and compromised with the rest of the aircraft design. These are the two main objectives of the Airport Noise Tech Challenge. " ! As a Project in the Fundamental Aero Program, we work at a relatively low level of technology readiness. However, we have high level milestones which force us to integrate our efforts to impact systems-level activities. To keep the low-level work tied to delivering engineering tools and low-noise concepts, we have structured our milestones around development of the concepts and organized our activities around developing and applying our engineering tools to these concepts. The final deliverables in these milestones are noise prediction modules validated against the best embodiment of each concept. These will then be used in cross-disciplinary exercises to demonstrate the viability of aircraft designs to meet all the Technical Challenges. Some of the concepts being developed are shown: Fan Flow Diverters, Multi-jet Shielding, High-Aspect Ratio Embedded Nozzles, Plasma Actuated Instability Manipulation, Highly Variable Cycle Mixer- Ejectors, and Inverted Velocity Profiles. These concepts are being developed for reduced jet noise along with the design tools which describe how they perform when used in various aircraft configurations. Several key upcoming events are highlighted, including tests of the Highly Variable Cycle Mixer-Ejectors, and Inverted Velocity Profiles. Other key events are milestones to be delivered within the next calendar year.
Composite fuselage crown panel manufacturing technology
NASA Technical Reports Server (NTRS)
Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.
1992-01-01
Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, materials costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structure. Key technologies, such as large crown panel fabrication, were pursued for low cost. An intricate bond panel design and manufacturing concept were selected based on the efforts of the Design Build Team. The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and use of low cost materials forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing costs by 18 pct. and weight by 45 pct. relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.
Composite fuselage crown panel manufacturing technology
NASA Technical Reports Server (NTRS)
Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.
1992-01-01
Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.
Stress, deformation, conservation, and rheology: a survey of key concepts in continuum mechanics
Major, J.J.
2013-01-01
This chapter provides a brief survey of key concepts in continuum mechanics. It focuses on the fundamental physical concepts that underlie derivations of the mathematical formulations of stress, strain, hydraulic head, pore-fluid pressure, and conservation equations. It then shows how stresses are linked to strain and rates of distortion through some special cases of idealized material behaviors. The goal is to equip the reader with a physical understanding of key mathematical formulations that anchor continuum mechanics in order to better understand theoretical studies published in geomorphology.
ERIC Educational Resources Information Center
Clyde, Albert
"Key technologies" is an umbrella term for appropriate technologies applied to give maximum economic benefit in particular circumstances that may cross traditional disciplinary boundaries. Development of the concept is necessitated by the rate of change of technological development. Key technologies may be classified in three groups related to…
Felker's Five Keys to Self-Concept Enhancement: Secondary Classroom Research.
ERIC Educational Resources Information Center
Bernhoft, Franklin O.
A study incorporated Donald Felker's 5 Keys to Self-Concept Enhancement in 20 minutes of timed writing weekly or bi-weekly for three months using the Coopersmith Adult Form as pre-post measure. Felker's 5 Keys are: (1) adults, praise yourselves; (2) help children evaluate realistically; (3) teach children to set realistic goals; (4) teach children…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Brian; Huque, Aminul; Rogers, Lindsey
In 2011, EPRI began a four-year effort under the Department of Energy (DOE) SunShot Initiative Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) to demonstrate smart grid ready inverters with utility communication. The objective of the project was to successfully implement and demonstrate effective utilization of inverters with grid support functionality to capture the full value of distributed photovoltaic (PV). The project leveraged ongoing investments and expanded PV inverter capabilities, to enable grid operators to better utilize these grid assets. Developing and implementing key elements of PV inverter grid support capabilities will increase the distribution system’s capacity for highermore » penetration levels of PV, while reducing the cost. The project team included EPRI, Yaskawa-Solectria Solar, Spirae, BPL Global, DTE Energy, National Grid, Pepco, EDD, NPPT and NREL. The project was divided into three phases: development, deployment, and demonstration. Within each phase, the key areas included: head-end communications for Distributed Energy Resources (DER) at the utility operations center; methods for coordinating DER with existing distribution equipment; back-end PV plant master controller; and inverters with smart-grid functionality. Four demonstration sites were chosen in three regions of the United States with different types of utility operating systems and implementations of utility-scale PV inverters. This report summarizes the project and findings from field demonstration at three utility sites.« less
Phase I Report: DARPA Exoskeleton Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, J.F.
2004-01-21
The Defense Advanced Research Projects Agency (DARPA) inaugurated a program addressing research and development for an Exoskeleton for Human Performance Augmentation in FY!2001. A team consisting of Oak Ridge National Laboratory, the prime contractor, AeroVironment, Inc., the Army Research Laboratory, the University of Minnesota, and the Virginia Polytechnic Institute has recently completed an 18-month Phase I effort in support of this DARPA program. The Phase I effort focused on the development and proof-of-concept demonstrations for key enabling technologies, laying the foundation for subsequently building and demonstrating a prototype exoskeleton. The overall approach was driven by the need to optimize energymore » efficiency while providing a system that augmented the operator in as transparent manner as possible (non-impeding). These needs led to the evolution of two key distinguishing features of this team's approach. The first is the ''no knee contact'' concept. This concept is dependent on a unique Cartesian-based control scheme that uses force sensing at the foot and backpack attachments to allow the exoskeleton to closely follow the operator while avoiding the difficulty of connecting and sensing position at the knee. The second is an emphasis on energy efficiency manifested by an energetic, power, actuation and controls approach designed to enhance energy efficiency as well as a reconfigurable kinematic structure that provides a non-anthropomorphic configuration to support an energy saving long-range march/transport mode. The enabling technologies addressed in the first phase were controls and sensing, the soft tissue interface between the machine and the operator, the power system, and actuation. The controller approach was implemented and demonstrated on a test stand with an actual operator. Control stability, low operator fatigue, force amplification and the human interface were all successfully demonstrated, validating the controls approach. A unique, lightweight, low profile, multi-axis foot sensor (an integral element of the controls approach) was designed, fabricated, and its performance verified. A preliminary conceptual design of the human coupling and soft tissue interface, based on biomechanics research has been developed along with a test plan to support an iterative design process. The power system concept, a fuel cell hybrid power supply using chemical generated hydrogen, was successfully demonstrated and shown to be able to efficiently meet both steady-state and transient peak loads. Two actuator approaches, a piezoelectric actuator, with theoretical high power densities and an approach based on a high-performance, high-speed electric motor driving a miniature hydraulic pump have been investigated. The first shows great potential but will require further research before reaching that promise. The other approach has been modeled and simulated and shown to provide the possibility for significant energy savings (>30%) and improved power densities in comparison to conventional hydraulics. Biomechanics analysis and testing were also performed in support of these enabling technologies, to provide a basis for design criteria. An analysis was performed to determine baseline data for initial mechanical design and power supply sizing. Testing conducted to evaluate boot sole thickness found that thickness increases up to two inches could be accommodated without significant impact on human factors issues. This 18-month long Phase I effort has evaluated key enabling technologies and demonstrated advances in these technologies that have significantly increased the likelihood of building a functional prototype exoskeleton.« less
PDS4 Training: Key Concepts and Vocabulary
NASA Astrophysics Data System (ADS)
Gordon, M. K.; Guinness, E. A.; Neakrase, L. D. V.; Padams, J.; Raugh, A. C.
2017-06-01
Those planning to attend the PDS4 training session are strongly encouraged to review this poster prior to the training session. This poster briefly describes new vocabulary and a number of key concepts introduced with PDS4.
Service user involvement in mental health care: an evolutionary concept analysis.
Millar, Samantha L; Chambers, Mary; Giles, Melanie
2016-04-01
The concept of service user involvement is an evolving concept in the mental health-care literature. This study sought to explore and analyse the concept of service user involvement as used in within the field of mental health care. An evolutionary concept analysis was conducted using a literature-based sample extracted from an electronic database search. One hundred and thirty-four papers met the inclusion criteria and were analysed to discover key attributes, antecedents and consequences of service user involvement and to produce a definition of the concept. Five key attributes of service user involvement within the context of mental health care were identified: a person-centred approach, informed decision making, advocacy, obtaining service user views and feedback and working in partnership. Clarity of the attributes and definition of the concept of service user involvement aims to promote understanding of the concept among key stakeholders including mental health professionals, service users and community and voluntary organizations. The findings of the research have utility in the areas of theory and policy development, research on service user involvement in mental health care and service user involvement in mental health practice. Directions for further research regarding the concept are identified. © 2015 John Wiley & Sons Ltd.
A superconducting large-angle magnetic suspension
NASA Technical Reports Server (NTRS)
Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.
1992-01-01
SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.
A superconducting large-angle magnetic suspension
NASA Astrophysics Data System (ADS)
Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.
1992-12-01
SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.
Optical image encryption using QR code and multilevel fingerprints in gyrator transform domains
NASA Astrophysics Data System (ADS)
Wei, Yang; Yan, Aimin; Dong, Jiabin; Hu, Zhijuan; Zhang, Jingtao
2017-11-01
A new concept of GT encryption scheme is proposed in this paper. We present a novel optical image encryption method by using quick response (QR) code and multilevel fingerprint keys in gyrator transform (GT) domains. In this method, an original image is firstly transformed into a QR code, which is placed in the input plane of cascaded GTs. Subsequently, the QR code is encrypted into the cipher-text by using multilevel fingerprint keys. The original image can be obtained easily by reading the high-quality retrieved QR code with hand-held devices. The main parameters used as private keys are GTs' rotation angles and multilevel fingerprints. Biometrics and cryptography are integrated with each other to improve data security. Numerical simulations are performed to demonstrate the validity and feasibility of the proposed encryption scheme. In the future, the method of applying QR codes and fingerprints in GT domains possesses much potential for information security.
NASA Astrophysics Data System (ADS)
Dutheil, Sylvain; Pibarot, Julien; Tran, Dac; Vallee, Jean-Jacques; Tribot, Jean-Pierre
2016-07-01
With the aim of placing Europe among the world's space players in the strategic area of atmospheric re-entry, several studies on experimental vehicle concepts and improvements of critical re-entry technologies have paved the way for the flight of an experimental space craft. The successful flight of the Intermediate eXperimental Vehicle (IXV), under ESA's Future Launchers Preparatory Programme (FLPP), is definitively a significant step forward from the Atmospheric Reentry Demonstrator flight (1998), establishing Europe as a key player in this field. The IXV project objectives were the design, development, manufacture and ground and flight verification of an autonomous European lifting and aerodynamically controlled reentry system, which is highly flexible and maneuverable. The paper presents, the role of aerodynamics aerothermodynamics as part of the key technologies for designing an atmospheric re-entry spacecraft and securing a successful flight.
Zhou, Ming; Chang, Shoude; Grover, Chander
2004-06-28
Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.
Single service point: it's all in the design.
Bradigan, Pamela S; Rodman, Ruey L
2008-01-01
"Design thinking" principles from a leading design firm, IDEO, were key elements in the planning process for a one-desk service model, the ASK Desk, at the John A. Prior Health Sciences Library. The library administration and staff employed the methodology to enhance customer experiences, meet technology challenges, and compete in a changing education environment. The most recent renovations demonstrate how the principles were applied. The concept of "continuous design thinking" is important in the library's daily operations to serve customers most effectively.
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Masters, A. I.; Mitchell, J. C.
1991-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Student conceptions of the nature of science
NASA Astrophysics Data System (ADS)
Talbot, Amanda L.
Research has shown that students from elementary school to college have major misconceptions about the nature of science. While an appropriate understanding of the nature of science has been an objective of science education for a century, researchers using a variety of instruments, continue to document students' inadequate conceptions of what science is and how it operates as an enterprise. Current research involves methods to improve student understanding of the nature of science. Students often misunderstand the creative, subjective, empirical, and tentative nature of science. They do not realize the relationship between laws and theories, nor do they understand that science does not follow a prescribed method. Many do not appreciate the influence culture, society, and politics; nor do they have an accurate understanding of the types of questions addressed by science. This study looks at student understanding of key nature of science (NOS) concepts in order to examine the impact of implementing activities intended to help students better understand the process of science and to see if discussion of key NOS concepts following those activities will result in greater gains in NOS understanding. One class received an "activities only" treatment, while the other participated in the same activities followed by explicit discussion of key NOS themes relating to the activity. The interventions were implemented for one school year in two high school anatomy and physiology courses composed of juniors and seniors. Student views of the nature of science were measured using the Views of the Nature of Science-Form C (VNOS-C). Students in both classes demonstrated significant gains in NOS understanding. However, contrary to current research, the addition of explicit discussion did not result in significantly greater gains in NOS understanding. This suggests that perhaps students in higher-level science classes can draw the correlations between NOS related activities and important aspects of "real" science. Or perhaps that a curriculum with a varied approach my expose students to more aspects of science thus improving their NOS understanding.
Preliminary Assessment of Thrust Augmentation of NEP Based Missions
NASA Technical Reports Server (NTRS)
Chew, Gilbert; Pelaccio, Dennis G.; Chiroux, Robert; Pervan, Sherry; Rauwolf, Gerald A.; White, Charles
2005-01-01
Science Applications International Corporation (SAIC), with support from NASA Marshall Space Flight Center, has conducted a preliminary study to compare options for augmenting the thrust of a conventional nuclear electric propulsion (NEP) system. These options include a novel nuclear propulsion system concept known as Hybrid Indirect Nuclear Propulsion (HINP) and conventional chemical propulsion. The utility and technical feasibility of the HINP concept are assessed, and features and potential of this new in-space propulsion system concept are identified. As part of the study, SAIC developed top-level design tools to model the size and performance of an HINP system, as well as for several chemical propulsion options, including liquid and gelled propellants. A mission trade study was performed to compare a representative HINP system with chemical propulsion options for thrust augmentation of NEP systems for a mission to Saturn's moon Titan. Details pertaining to the approach, features, initial demonstration results for HINP model development, and the mission trade study are presented. Key technology and design issues associated with the HINP concept and future work recommendations are also identified.
Identifying Opportunities for Vertical Integration of Biochemistry and Clinical Medicine.
Wendelberger, Karen J.; Burke, Rebecca; Haas, Arthur L.; Harenwattananon, Marisa; Simpson, Deborah
1998-01-01
Objectives: Retention of basic science knowledge, as judged by National Board of Medical Examiners' (NBME) data, suffers due to lack of apparent relevance and isolation of instruction from clinical application, especially in biochemistry. However, the literature reveals no systematic process for identifying key biochemical concepts and associated clinical conditions. This study systematically identified difficult biochemical concepts and their common clinical conditions as a critical step towards enhancing relevance and retention of biochemistry.Methods: A multi-step/ multiple stakeholder process was used to: (1) identify important biochemistry concepts; (2) determine students' perceptions of concept difficulty; (3) assess biochemistry faculty, student, and clinical teaching scholars' perceived relevance of identified concepts; and (4) identify associated common clinical conditions for relevant and difficult concepts. Surveys and a modified Delphi process were used to gather data, subsequently analyzed using SPSS for Windows.Results: Sixteen key biochemical concepts were identified. Second year medical students rated 14/16 concepts as extremely difficult while fourth year students rated nine concepts as moderately to extremely difficult. On average, each teaching scholar generated common clinical conditions for 6.2 of the 16 concepts, yielding a set of seven critical concepts and associated clinical conditions.Conclusions: Key stakeholders in the instructional process struggle to identify biochemistry concepts that are critical, difficult to learn and associated with common clinical conditions. However, through a systematic process beginning with identification of concepts and associated clinical conditions, relevance of basic science instruction can be enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorres, K S
The overall accomplishments of the HYGAS program to date are that it has demonstrated the key process concepts and integrated unit operations of coal gasification. It has also demonstrated several methods of hydrogen generation, including catalytic steam reforming of natural gas, electrothermal gasification, and also steam-oxygen gasification. A total of 37 tests with lignite, including a total of 5500 tons of lignite processed, demonstrated the technical feasibility of a gasification process using lignite. A total of 17 tests with bituminous coal involved a total of 3100 tons. Some specific objectives of the HYGAS program for fiscal 1977 include tests tomore » be conducted with subbituminous coal. Data will be collected for use in the design of an effluent treatment and water reuse cycles in a commercial plant. New methanation catalysts will be tested. Materials testing will continue.« less
[Autonomy, Trust and Medical Ethics in Onora O'Neill's Work].
Jaramillo, Carlos Alberto López; Lew, Jorge Carlos Holguín
2013-03-01
Autonomy has become a key concept in bioethics. Onora O'neill is perhaps the most representative author and researcher in the philosophical and bioethical fields regrding the concept of autonomy. To review the concept of autonomy in Onora O'Neill's work so as to understand its relevance in current bioethics. The concept of bioethics is reviewed in relation to three fundamental quesions: 1) Which are the main limitations of the individualistic conception of autonomy? 2) How to understand the relations between trust and autonomy together with their implications? and 3) Which are the implications of principled autonomy for aspects such as doctor-patient relationship and informed consent. The main works by O'Neill are reviewed, specifically regarding medical bioethics. O'neill's approach is original and relates Kantian autonomy to her own conceptions about trust, and both the individual and social levels of bioethics. The author has developed a Kantian non indvidualistic view of autonomy. Her conceptulization of trust and the crises this concept is currently undergoing complement and strengthen the concept of principled autonomy. The implications of O'Neill's concepts go beyond theoretical discussions and in her work she uses examples and analyzes circumstances which demonstrate the applicability of her proposals. O'Neill's work contributes to dealing with the challenges posed by the socio-political context of cost-efficiency oriented health systems and of the so-called defensive medicine. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Key Terrain: Application to the Layers of Cyberspace
2017-03-01
in the early stages and exploration into better integrating military strategies could prove beneficial to those working to develop relevant and...200 words) The concept of key terrain is a common fixture in military strategy and tactics. The emergence of cyberspace, with characteristics unseen...concept of key terrain is a common fixture in military strategy and tactics. The emergence of cyberspace, with characteristics unseen in any
Kiyosawa, Naoki; Manabe, Sunao
2016-01-01
Pharmaceutical companies continuously face challenges to deliver new drugs with true medical value. R&D productivity of drug development projects depends on 1) the value of the drug concept and 2) data and in-depth knowledge that are used rationally to evaluate the drug concept's validity. A model-based data-intensive drug development approach is a key competitive factor used by innovative pharmaceutical companies to reduce information bias and rationally demonstrate the value of drug concepts. Owing to the accumulation of publicly available biomedical information, our understanding of the pathophysiological mechanisms of diseases has developed considerably; it is the basis for identifying the right drug target and creating a drug concept with true medical value. Our understanding of the pathophysiological mechanisms of disease animal models can also be improved; it can thus support rational extrapolation of animal experiment results to clinical settings. The Systems Biology approach, which leverages publicly available transcriptome data, is useful for these purposes. Furthermore, applying Systems Pharmacology enables dynamic simulation of drug responses, from which key research questions to be addressed in the subsequent studies can be adequately informed. Application of Systems Biology/Pharmacology to toxicology research, namely Systems Toxicology, should considerably improve the predictability of drug-induced toxicities in clinical situations that are difficult to predict from conventional preclinical toxicology studies. Systems Biology/Pharmacology/Toxicology models can be continuously improved using iterative learn-confirm processes throughout preclinical and clinical drug discovery and development processes. Successful implementation of data-intensive drug development approaches requires cultivation of an adequate R&D culture to appreciate this approach.
Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate.
Marchi, Enrico; Chung, Woodam; Visser, Rien; Abbas, Dalia; Nordfjell, Tomas; Mederski, Piotr S; McEwan, Andrew; Brink, Michal; Laschi, Andrea
2018-09-01
The effective implementation of sustainable forest management depends largely on carrying out forest operations in a sustainable manner. Climate change, as well as the increasing demand for forest products, requires a re-thinking of forest operations in terms of sustainability. In this context, it is important to understand the major driving factors for the future development of forest operations that promote economic, environmental and social well-being. The main objective of this paper is to identify important issues concerning forest operations and to propose a new paradigm towards sustainability in a changing climate, work and environmental conditions. Previously developed concepts of forest operations are reviewed, and a newly developed concept - Sustainable Forest Operations (SFO), is presented. Five key performance areas to ensure the sustainability of forest operations include: (i) environment; (ii) ergonomics; (iii) economics; (iv) quality optimization of products and production; and (v) people and society. Practical field examples are presented to demonstrate how these five interconnected principles are relevant to achieving sustainability, namely profit and wood quality maximization, ecological benefits, climate change mitigation, carbon sequestration, and forest workers' health and safety. The new concept of SFO provides integrated perspectives and approaches to effectively address ongoing and foreseeable challenges the global forest communities face, while balancing forest operations performance across economic, environmental and social sustainability. In this new concept, we emphasize the role of wood as a renewable and environmentally friendly material, and forest workers' safety and utilization efficiency and waste management as additional key elements of sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendriks, R.V.; Nolan, P.S.
1987-01-01
The paper describes and discusses the key design features of the retrofit of EPA's Limestone Injection Multistage Burner (LIMB) system to an operating, wall-fired utility boiler at Ohio Edison's Edgewater Station. It further describes results of the pertinent projects in EPA's LIMB program and shows how these results were used as the basis for the design of the system. The full-scale demonstration is expected to prove the effectiveness and cost of the LIMB concept for use on large-scale utility boilers. The equipment is now being installed at Edgewater, with system start-up scheduled for May 1987.
Stöggl, Thomas; Sperlich, Billy
2014-01-01
Endurance athletes integrate four conditioning concepts in their training programs: high-volume training (HVT), “threshold-training” (THR), high-intensity interval training (HIIT) and a combination of these aforementioned concepts known as polarized training (POL). The purpose of this study was to explore which of these four training concepts provides the greatest response on key components of endurance performance in well-trained endurance athletes. Methods: Forty eight runners, cyclists, triathletes, and cross-country skiers (peak oxygen uptake: (VO2peak): 62.6 ± 7.1 mL·min−1·kg−1) were randomly assigned to one of four groups performing over 9 weeks. An incremental test, work economy and a VO2peak tests were performed. Training intensity was heart rate controlled. Results: POL demonstrated the greatest increase in VO2peak (+6.8 ml·min·kg−1 or 11.7%, P < 0.001), time to exhaustion during the ramp protocol (+17.4%, P < 0.001) and peak velocity/power (+5.1%, P < 0.01). Velocity/power at 4 mmol·L−1 increased after POL (+8.1%, P < 0.01) and HIIT (+5.6%, P < 0.05). No differences in pre- to post-changes of work economy were found between the groups. Body mass was reduced by 3.7% (P < 0.001) following HIIT, with no changes in the other groups. With the exception of slight improvements in work economy in THR, both HVT and THR had no further effects on measured variables of endurance performance (P > 0.05). Conclusion: POL resulted in the greatest improvements in most key variables of endurance performance in well-trained endurance athletes. THR or HVT did not lead to further improvements in performance related variables. PMID:24550842
Nontraditional approach to algebra-based general physics
NASA Astrophysics Data System (ADS)
Meltzer, David E.
1997-03-01
In order to improve the degree of conceptual learning in our algebra-based general physics course, the second semester (of a two-semester sequence) has been taught in a nontraditional format during the past year. The key characteristics of this course were: 1) Intense and continuous use of interactive-engagement methods and cooperative learning; 2) coverage of less than half of the conventional number of topics, 3) heavy emphasis on qualitative questions as opposed to quantitative problems, 4) adjustment of the pacing of the course based on continuous (twice per week) formative assessment. The students enrolled in the course were relatively poorly prepared, with weak mathematical skills. Open-book quizzes stressing qualitative concepts in electricity and magnetism were given twice per week; most were given in "group quiz" format, allowing collaboration. Exams (also open-book) were all done individually. Most of the class time was taken up by quizzes, and by interactive discussion and group work related to quiz questions. New topics were not introduced until a majority of the class demonstrated competence in the topic under discussion. Despite lengthy and intensive focus on qualitative, conceptual questions and simple quantitative problems, only a small minority of the class ultimately demonstrated mastery of the targeted concepts. Frequent testing and re-testing of the students on basic concepts disclosed tenacious persistence of misconceptions.
Woollams, Anna M.
2012-01-01
Intuitively, an apple seems a fairly good example of a fruit, whereas an avocado seems less so. The extent to which an exemplar is representative of its category, referred to here as concept typicality, has long been thought to be a key dimension determining semantic representation. Concept typicality is, however, correlated with a number of other variables, in particular age of acquisition (AoA) and name frequency. Consideration of picture naming accuracy from a large case-series of semantic dementia (SD) patients demonstrated strong effects of concept typicality that were maximal in the moderately impaired patients, over and above the impact of AoA and name frequency. Induction of a temporary virtual lesion to the left anterior temporal lobe, the region most commonly affected in SD, via repetitive Transcranial Magnetic Stimulation produced an enhanced effect of concept typicality in the picture naming of normal participants, but did not affect the magnitude of the AoA or name frequency effects. These results indicate that concept typicality exerts its influence on semantic representations themselves, as opposed to the strength of connections outside the semantic system. To date, there has been little direct exploration of the dimension of concept typicality within connectionist models of intact and impaired conceptual representation, and these findings provide a target for future computational simulation. PMID:22529789
La coherence conceptuelle d'etudiants collegiaux en mecanique Newtonienne et en metrologie
NASA Astrophysics Data System (ADS)
Periard, Martin
This thesis evaluates the coherence of the conceptual network demonstrated by college students in life and applied sciences. This evaluation was based on the analysis of Burt tables issuing from multiple choice questionnaires, on the creation and careful examination of a novel tool, the matrix of specific discrimination coefficients, which will be described in the main text, and on the qualitative analysis of actual laboratory work of students doing an experimentation. At the completion of this project, four research axis have been explored. (1) What is the conceptual coherence demonstrated in Newtonian mechanics? (2) Is the mastery of uncertainty quantification related to the development of logical thinking or to mathematical competency? (3) What is the conceptual coherence demonstrated in the quantification of experimental uncertainty? (4) What are the concrete procedures utilized by students to quantify experimental uncertainty in a semi-directed laboratory context? The main conclusions that emerged from each axis of research can be summerized as follow. (1) The most prevalent erroneous conceptions are not solidly set in a rigid conceptual network. For example, a student successful in a question about Newton's third law (the most difficult subject of the Force Concept Inventory) is just slightly more likely to succeed in another related question than the other participants. Many pairs of questions displays a negative specific discrimination coefficient demonstrating a weak conceptual coherence in pre-test and a somewhat ameliorated conceptual coherence in post-test. (2) If a small proportion of students has demonstrated marked deficiencies in questions related with control of variable and in those related to the relationship between the graphical display of experimental data and a mathematical model, the majority of students can be considered as adequately mastering those subjects. However, almost every student demonstrated a lack of mastery of concepts underlying the quantification of experimental uncertainty and the propagation of uncertainty (heretofore referred to as metrology). No statistically significant correlation has been observed between the three main topics suggesting that they are largely independent cognitive abilities. Burt table has demonstrated a greater degree of conceptual coherence between control of variables questions than suggested by Pearson correlation coefficients. Equivalent question in the topic of metrology did not permit to demonstrate a clear conceptual coherence. (3) Analysis of a questionnaire entirely devoted to metrology has shown erroneous conceptions caused by prior learning (didactical obstacles), erroneous conceptions based on intuitive models and a lack of global comprehension of metrological concepts although some appear to be almost acquired. (4) When doing real experiments in semi-directed laboratory, students demonstrated the same difficulty identified in the questionnaire of 3) which could interpreted as corroborating previously obtained results. However, many unanticipated behaviors related to measurement were observed that could not have been anticipated solely by analyzing answers in the multiple-choice questionnaire. Interviews immediately following each semi-directed laboratory permitted the participants to detail certain aspects of their metrological methodology. Most notably, the use of repeated measurement strategies, their "spontaneous" strategies to quantify uncertainty, and their explanation of numerical estimates of reading uncertainties. Overall, uncertainty propagation algorithms were adequately employed. Many erroneous metrological conceptions seem to resist strongly to be modified by learning. Among others, assignation of the resolution of a digital scale as the uncertainty value and the lack of stacking strategies to diminish uncertainty. The conception that a numerical value cannot be more precise than the tolerance of an instrument seems firmly set. Key words. Burt tables, conceptual coherence, experimental uncertainty, laboratories, metrology, Newtonian mechanics, uncertainty propagation.
32 CFR 2001.26 - Automatic declassification exemption markings.
Code of Federal Regulations, 2011 CFR
2011-07-01
... human intelligence source, or key design concepts of weapons of mass destruction, the revised... or a human intelligence source, or key design concepts of weapons of mass destruction, are exempt... international organization, or a non-human intelligence source; or impair the effectiveness of an intelligence...
Trybou, Jeroen; Gemmel, Paul; Annemans, Lieven
2016-01-01
Hospital-physician relationships are critical to hospitals' organizational success. A distinction can be drawn between economic and noneconomic physician-hospital exchange. Physician senior leadership could be an important component of managerial strategies aimed at optimizing hospital-physician relationships. The purpose of this study was to investigate the moderating role of the quality of exchange with the Chief Medical Officer (CMO) in the relationship between economic and noneconomic exchange and physicians' key organizational attitudes. Self-employed physicians practicing at six Belgian hospitals were surveyed. Economic exchange was conceptualized by the concepts of distributive and procedural justice, whereas noneconomic exchange was conceptualized by the concepts of administrative and professional psychological contract. Our outcomes comprise three key organizational attitudes identified in the literature (job satisfaction, affective organizational commitment, and intention to leave). The moderating role of leader-member exchange with the CMO in these relationships was assessed. Our results showed a relationship between both psychological contract breach and organizational justice and physicians' organizational attitudes. The quality of exchange with the CMO buffered the negative effect of psychological contract breach and reinforced the positive effects of organizational justice with respect to physicians' organizational attitudes. Our results demonstrate that both economic and noneconomic aspects are important when considering physicians' key organizational attitudes. The reciprocity dynamic between physician and hospital can be enhanced by high-quality exchange with the CMO.
NASA Astrophysics Data System (ADS)
Black, Stephen T.; Eshleman, Wally
1997-01-01
This paper describes the VentureStar™ SSTO RLV and X-33 operations concepts. Applications of advanced technologies, automated ground support systems, advanced aircraft and launch vehicle lessons learned have been integrated to develop a streamlined vehicle and mission processing concept necessary to meet the goals of a commercial SSTO RLV. These concepts will be validated by the X-33 flight test program where financial and technical risk mitigation are required. The X-33 flight test program totally demonstrates the vehicle performance, technology, and efficient ground operations at the lowest possible cost. The Skunk Work's test program approach and test site proximity to the production plant are keys. The X-33 integrated flight and ground test program incrementally expands the knowledge base of the overall system allowing minimum risk progression to the next flight test program milestone. Subsequent X-33 turnaround processing flows will be performed with an aircraft operations philosophy. The differences will be based on research and development, component reliability and flight test requirements.
The production and use of evidence in health care service innovation: a qualitative study.
Vasileiou, Konstantina; Barnett, Julie; Young, Terry
2013-03-01
The focus of this article is on a range of concepts of evidence employed by health care innovators in pursuing service innovations and in demonstrating their success. In-depth, semi-structured interviews were conducted with 18 key informants in the United Kingdom who had won Health Service Journal awards for successfully implementing 15 service innovations. Four concepts of evidence were identified: (a) evidence of effectiveness-both direct and indirect, (b) evidence of efficiency, (c) evidence of innovation acceptance, and (d) evidence of relevance. The results suggest that the innovators articulated evidential concepts from the main approaches prevailing in the British National Health Service, namely clinical trials and improvement cycles. Most aspired to "better" evidence than they were able to obtain, while the approach to evidence gathering was very pragmatic and was more aligned with the improvement-cycle framework. Developing supporting mechanisms for assisting innovation evaluation is an important challenge if service innovation is to be routinely attempted and achieved in health care.
Heat transfer with hockey-stick steam generator. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, E; Gabler, M J
1977-11-01
The hockey-stick modular design concept is a good answer to future needs for reliable, economic LMFBR steam generators. The concept was successfully demonstrated in the 30 Mwt MSG test unit; scaled up versions are currently in fabrication for CRBRP usage, and further scaling has been accomplished for PLBR applications. Design and performance characteristics are presented for the three generations of hockey-stick steam generators. The key features of the design are presented based on extensive analytical effort backed up by extensive ancillary test data. The bases for and actual performance evaluations are presented with emphasis on the CRBRP design. The designmore » effort on these units has resulted in the development of analytical techniques that are directly applicable to steam generators for any LMFBR application. In conclusion, the hockey-stick steam generator concept has been proven to perform both thermally and hydraulically as predicted. The heat transfer characteristics are well defined, and proven analytical techniques are available as are personnel experienced in their use.« less
Semantic-gap-oriented active learning for multilabel image annotation.
Tang, Jinhui; Zha, Zheng-Jun; Tao, Dacheng; Chua, Tat-Seng
2012-04-01
User interaction is an effective way to handle the semantic gap problem in image annotation. To minimize user effort in the interactions, many active learning methods were proposed. These methods treat the semantic concepts individually or correlatively. However, they still neglect the key motivation of user feedback: to tackle the semantic gap. The size of the semantic gap of each concept is an important factor that affects the performance of user feedback. User should pay more efforts to the concepts with large semantic gaps, and vice versa. In this paper, we propose a semantic-gap-oriented active learning method, which incorporates the semantic gap measure into the information-minimization-based sample selection strategy. The basic learning model used in the active learning framework is an extended multilabel version of the sparse-graph-based semisupervised learning method that incorporates the semantic correlation. Extensive experiments conducted on two benchmark image data sets demonstrated the importance of bringing the semantic gap measure into the active learning process.
Jin, Seung-A Annie
2009-12-01
As exergames are increasingly being used as an interventional tool to fight the obesity epidemic in clinical studies, society is absorbing their impact to a more intense degree. Interactivity and immersion are key factors that attract exergame consumers. This research asks, What are the effects of priming the actual self versus the ideal self on users' perceived interactivity and immersion in avatar-based exergame playing? and What are important moderators that play a role in exergame users' self-concept perception? To answer these research questions, this study leveraged the Wii's avatar-creating function (Mii Channel) and exergame feature (Wii Fit) in a controlled, randomized experimental design (N = 126). The results of a 2 x 2 factorial design experiment demonstrated the significant main effect of self-priming on interactivity and the moderating role of the actual-ideal self-concept discrepancy in influencing immersion during exergame playing. Game players who created an avatar reflecting the ideal self reported greater perceived interactivity than those who created a replica avatar mirroring the actual self. A two-way ANOVA demonstrated the moderating role of the actual-ideal self-concept discrepancy in determining the effects of the primed regulatory focus on immersion in the exergame play. The underlying theoretical mechanism is derived from and explained by Higgins's self-concept discrepancy perspective. Practical implications for game developers and managerial implications for the exergame industry are discussed.
NASA Technical Reports Server (NTRS)
Ivancic, William; Stewart, Dave; Shell, Dan; Wood, Lloyd; Paulsen, Phil; Jackson, Chris; Hodgson, Dave; Notham, James; Bean, Neville; Miller, Eric
2005-01-01
This report documents the design of network infrastructure to support operations demonstrating the concept of network-centric operations and command and control of space-based assets. These demonstrations showcase major elements of the Transformal Communication Architecture (TCA), using Internet Protocol (IP) technology. These demonstrations also rely on IP technology to perform the functions outlined in the Consultative Committee for Space Data Systems (CCSDS) Space Link Extension (SLE) document. A key element of these demonstrations was the ability to securely use networks and infrastructure owned and/or controlled by various parties. This is a sanitized technical report for public release. There is a companion report available to a limited audience. The companion report contains detailed networking addresses and other sensitive material and is available directly from William Ivancic at Glenn Research Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A. L.; Brown, Nicholas R.; Betzler, Benjamin R.
The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF 2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologiesmore » include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR concept, and it will demonstrate key operational features of that design. The FHR DR will be closely scaled to the SmAHTR concept in power and flows, so any technologies demonstrated will be directly applicable to a reactor concept of that size. The FHR DR is not a commercial prototype design, but rather a DR that serves a cost and risk mitigation function for a later commercial prototype. It is expected to have a limited operational lifetime compared to a commercial plant. It is designed to be a low-cost reactor compared to more mature advanced prototype DRs. A primary reason to build the FHR DR is to learn about salt reactor technologies and demonstrate solutions to remaining technical gaps.« less
Key features of an EU health information system: a concept mapping study.
Rosenkötter, Nicole; Achterberg, Peter W; van Bon-Martens, Marja J H; Michelsen, Kai; van Oers, Hans A M; Brand, Helmut
2016-02-01
Despite the acknowledged value of an EU health information system (EU-HISys) and the many achievements in this field, the landscape is still heavily fragmented and incomplete. Through a systematic analysis of the opinions and valuations of public health stakeholders, this study aims to conceptualize key features of an EU-HISys. Public health professionals and policymakers were invited to participate in a concept mapping procedure. First, participants (N = 34) formulated statements that reflected their vision of an EU-HISys. Second, participants (N = 28) rated the relative importance of each statement and grouped conceptually similar ones. Principal Component and cluster analyses were used to condense these results to EU-HISys key features in a concept map. The number of key features and the labelling of the concept map were determined by expert consensus. The concept map contains 10 key features that summarize 93 statements. The map consists of a horizontal axis that represents the relevance of an 'organizational strategy', which deals with the 'efforts' to design and develop an EU-HISys and the 'achievements' gained by a functioning EU-HISys. The vertical axis represents the 'professional orientation' of the EU-HISys, ranging from the 'scientific' through to the 'policy' perspective. The top ranking statement expressed the need to establish a system that is permanent and sustainable. The top ranking key feature focuses on data and information quality. This study provides insights into key features of an EU-HISys. The results can be used to guide future planning and to support the development of a health information system for Europe. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
An Assessment Methodology to Evaluate In-Flight Engine Health Management Effectiveness
NASA Astrophysics Data System (ADS)
Maggio, Gaspare; Belyeu, Rebecca; Pelaccio, Dennis G.
2002-01-01
flight effectiveness of candidate engine health management system concepts. A next generation engine health management system will be required to be both reliable and robust in terms of anomaly detection capability. The system must be able to operate successfully in the hostile, high-stress engine system environment. This implies that its system components, such as the instrumentation, process and control, and vehicle interface and support subsystems, must be highly reliable. Additionally, the system must be able to address a vast range of possible engine operation anomalies through a host of different types of measurements supported by a fast algorithm/architecture processing capability that can identify "true" (real) engine operation anomalies. False anomaly condition reports for such a system must be essentially eliminated. The accuracy of identifying only real anomaly conditions has been an issue with the Space Shuttle Main Engine (SSME) in the past. Much improvement in many of the technologies to address these areas is required. The objectives of this study were to identify and demonstrate a consistent assessment methodology that can evaluate the capability of next generation engine health management system concepts to respond in a correct, timely manner to alleviate an operational engine anomaly condition during flight. Science Applications International Corporation (SAIC), with support from NASA Marshall Space Flight Center, identified a probabilistic modeling approach to assess engine health management system concept effectiveness using a deterministic anomaly-time event assessment modeling approach that can be applied in the engine preliminary design stage of development to assess engine health management system concept effectiveness. Much discussion in this paper focuses on the formulation and application approach in performing this assessment. This includes detailed discussion of key modeling assumptions, the overall assessment methodology approach identified, and the identification of key supporting engine health management system concept design/operation and fault mode information required to utilize this methodology. At the paper's conclusion, discussion focuses on a demonstration benchmark study that applied this methodology to the current SSME health management system. A summary of study results and lessons learned are provided. Recommendations for future work in this area are also identified at the conclusion of the paper. * Please direct all correspondence/communication pertaining to this paper to Dennis G. Pelaccio, Science
Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing
NASA Technical Reports Server (NTRS)
Moore, J. D.; Otto, J. M.; Cody, J. C.; Hastings, L. J.; Bryant, C. B.; Gautney, T. T.
2015-01-01
High-energy cryogenic propellant is an essential element in future space exploration programs. Therefore, NASA and its industrial partners are committed to an advanced development/technology program that will broaden the experience base for the entire cryogenic fluid management community. Furthermore, the high cost of microgravity experiments has motivated NASA to establish government/aerospace industry teams to aggressively explore combinations of ground testing and analytical modeling to the greatest extent possible, thereby benefitting both industry and government entities. One such team consisting of ManTech SRS, Inc., Edwards Air Force Base, and Marshall Space Flight Center (MSFC) was formed to pursue a technology project designed to demonstrate technology readiness for an SRS liquid hydrogen (LH2) in-space propellant management concept. The subject testing was cooperatively performed June 21-30, 2000, through a partially reimbursable Space Act Agreement between SRS, MSFC, and the Air Force Research Laboratory. The joint statement of work used to guide the technical activity is presented in appendix A. The key elements of the SRS concept consisted of an LH2 storage and supply system that used all of the vented H2 for solar engine thrusting, accommodated pressure control without a thermodynamic vent system (TVS), and minimized or eliminated the need for a capillary liquid acquisition device (LAD). The strategy was to balance the LH2 storage tank pressure control requirements with the engine thrusting requirements to selectively provide either liquid or vapor H2 at a controlled rate to a solar thermal engine in the low-gravity environment of space operations. The overall test objective was to verify that the proposed concept could enable simultaneous control of LH2 tank pressure and feed system flow to the thruster without necessitating a TVS and a capillary LAD. The primary program objectives were designed to demonstrate technology readiness of the SRS concept at a system level as a first step toward actual flight vehicle demonstrations. More specific objectives included testing the pressure and feed control system concept hardware for functionality, operability, and performance. Valuable LH2 thermodynamic and fluid dynamics data were obtained for application to both the SRS concept and to future missions requiring space-based cryogen propellant management.
32 CFR 2001.26 - Automatic declassification exemption markings.
Code of Federal Regulations, 2012 CFR
2012-07-01
... human intelligence source, or key design concepts of weapons of mass destruction, the revised... or a human intelligence source, or key design concepts of weapons of mass destruction, are exempt... exemption. (5) Agencies need not apply a “25X” marking to individual documents contained in a file series...
32 CFR 2001.26 - Automatic declassification exemption markings.
Code of Federal Regulations, 2013 CFR
2013-07-01
... human intelligence source, or key design concepts of weapons of mass destruction, the revised... or a human intelligence source, or key design concepts of weapons of mass destruction, are exempt... exemption. (5) Agencies need not apply a “25X” marking to individual documents contained in a file series...
32 CFR 2001.26 - Automatic declassification exemption markings.
Code of Federal Regulations, 2014 CFR
2014-07-01
... human intelligence source, or key design concepts of weapons of mass destruction, the revised... or a human intelligence source, or key design concepts of weapons of mass destruction, are exempt... exemption. (5) Agencies need not apply a “25X” marking to individual documents contained in a file series...
Advancing Your Career: Concepts of Professional Nursing. Second Edition.
ERIC Educational Resources Information Center
Kearney, Rose
This textbook, intended for registered nurses (RN's) returning to school, is designed to provide practicing RN's with professional concepts to advance their careers. The book contains 22 chapters organized in five sections. Each chapter includes chapter objectives, key terms, key points, chapter exercises, references, and a bibliography. Section I…
Two Key Concepts in the Diagnosis of Learning Disabilities and the Habilitation of Learning.
ERIC Educational Resources Information Center
Reynolds, Cecil R.
1992-01-01
Two key concepts in diagnosing learning disabilities ("severe discrepancy" and "process dysfunction") are reviewed, and their relationship to the habilitation of learning is discussed. Guidelines are given for calculating a severe discrepancy, and the evaluation of processing skills is discussed. Strength models of remediation…
A Survey of the Neuro-Oncology Landscape
Wu, Jing; Dey, Mahua; Buerki, Robin A.; Byrne, Richard W.; Dohrmann, George J.
2018-01-01
The field of neuro-oncology is evolving rapidly. Many important advances have recently been reported, and other promising investigations have the potential to soon make substantial impacts in the field, especially in the areas of high-grade gliomas and brain metastases. We present an overview of the current status of this field, highlighting the key recent advances as well as representative work of key clinical investigations, since these concepts have the potential to influence clinical management if they are demonstrated to be safe and efficacious. This overview includes some work that has only appeared in abstract form in order to provide a timely understanding of how the field is actively changing and what may lie on the horizon. We focus on both medical and surgical neuro-oncology advances in this highly multidisciplinary subspecialty. PMID:29141278
Undergraduate students' initial conceptions of factorials
NASA Astrophysics Data System (ADS)
Lockwood, Elise; Erickson, Sarah
2017-05-01
Counting problems offer rich opportunities for students to engage in mathematical thinking, but they can be difficult for students to solve. In this paper, we present a study that examines student thinking about one concept within counting, factorials, which are a key aspect of many combinatorial ideas. In an effort to better understand students' conceptions of factorials, we conducted interviews with 20 undergraduate students. We present a key distinction between computational versus combinatorial conceptions, and we explore three aspects of data that shed light on students' conceptions (their initial characterizations, their definitions of 0!, and their responses to Likert-response questions). We present implications this may have for mathematics educators both within and separate from combinatorics.
UAS Integration into the NAS Project
NASA Technical Reports Server (NTRS)
Bauer, Jeff
2010-01-01
The goal of the UAS Integration in the NAS Project is to contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS This goal will be accomplished through a two-phased approach of system-level integration of key concepts, technologies and/or procedures, and demonstrations of integrated capabilities in an operationally relevant environment. Technical objectives include: PHASE 1: a) Validating the key technical areas identified by this project. System-level analyses, a State of the Art Analysis (SOAA), and a ConOps will identify the challenges and barriers preventing routine UAS access to the NAS. b) Developing a national roadmap and gap analysis identifying specific deliverables in the area of operations, procedures, and technologies that will impact future policy decisions. PHASE 2: a) Provide regulators with a methodology for developing airworthiness requirements for UAS and data to support development of certifications standards and regulatory guidance. b) Provide systems-level integrated testing of concepts and/or capabilities that address barriers to routine access to the NAS. Through simulation and flight testing, address issues including separation assurance, communications requirements, and Pilot Aircraft Interfaces (PAIs) in operationally relevant environments
Unifying hydrotropy under Gibbs phase rule.
Shimizu, Seishi; Matubayasi, Nobuyuki
2017-09-13
The task of elucidating the mechanism of solubility enhancement using hydrotropes has been hampered by the wide variety of phase behaviour that hydrotropes can exhibit, encompassing near-ideal aqueous solution, self-association, micelle formation, and micro-emulsions. Instead of taking a field guide or encyclopedic approach to classify hydrotropes into different molecular classes, we take a rational approach aiming at constructing a unified theory of hydrotropy based upon the first principles of statistical thermodynamics. Achieving this aim can be facilitated by the two key concepts: (1) the Gibbs phase rule as the basis of classifying the hydrotropes in terms of the degrees of freedom and the number of variables to modulate the solvation free energy; (2) the Kirkwood-Buff integrals to quantify the interactions between the species and their relative contributions to the process of solubilization. We demonstrate that the application of the two key concepts can in principle be used to distinguish the different molecular scenarios at work under apparently similar solubility curves observed from experiments. In addition, a generalization of our previous approach to solutes beyond dilution reveals the unified mechanism of hydrotropy, driven by a strong solute-hydrotrope interaction which overcomes the apparent per-hydrotrope inefficiency due to hydrotrope self-clustering.
Receiver concepts for data transmission at 10 microns
NASA Astrophysics Data System (ADS)
Scholtz, A. L.; Philipp, H. K.; Leeb, W. R.
1984-05-01
Receivers for digitally modulated CO2 laser signals are compared. Incoherent heterodyne receivers and coherent homodyne setups, including the linear phase locked loop (PLL) receiver, the low intermediate frequency translation loop, and the Costas loop receiver were studied. Experiments covered the homodyne systems, emphasizing the linear PLL receiver. Reliable phase lock of the receiver is achieved at carrier levels as low as 3 nW. Reception of signals phase shift keyed with a data rate of up to 150 Mbit/sec is demonstrated at subnanowatt sideband power levels.
Redox flow cell development and demonstration project, calendar year 1977
NASA Technical Reports Server (NTRS)
1979-01-01
Research and development on the redox flow cell conducted from January 1, 1977, to December 31, 1977, are described in this report. The major focus of the effort during 1977 was the key technology issues that directly influence the fundamental feasibility of the overall redox concept. These issues were the development of a suitable ion exchange membrane for the system, the screening and study of candidate redox couples to achieve optimum cell performance, and the carrying out of systems analysis and modeling to develop system performance goals and cost estimates.
Ultracompact electro-optic phase modulator based on III-V-on-silicon microdisk resonator.
Lloret, J; Kumar, R; Sales, S; Ramos, F; Morthier, G; Mechet, P; Spuesens, T; Van Thourhout, D; Olivier, N; Fédéli, J-M; Capmany, J
2012-06-15
A novel ultracompact electro-optic phase modulator based on a single 9 μm-diameter III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic waveguide is presented. Modulation is enabled by effective index modification through carrier injection. Proof-of-concept implementation involving binary phase shift keying modulation format is assembled. A power imbalance of ∼0.6 dB between both symbols and a modulation rate up to 1.8 Gbps are demonstrated without using any special driving technique.
2012-01-01
The Braess paradox, known for traffic and other classical networks, lies in the fact that adding a new route to a congested network in an attempt to relieve congestion can degrade counterintuitively the overall network performance. Recently, we have extended the concept of the Braess paradox to semiconductor mesoscopic networks, whose transport properties are governed by quantum physics. In this paper, we demonstrate theoretically that, alike in classical systems, congestion plays a key role in the occurrence of a Braess paradox in mesoscopic networks. PMID:22913510
Chiral poly-rare earth metal complexes in asymmetric catalysis
Shibasaki, Masakatsu
2006-01-01
Asymmetric catalysis is a powerful component of modern synthetic organic chemistry. To further broaden the scope and utility of asymmetric catalysis, new basic concepts for the design of asymmetric catalysts are crucial. Because most chemical reactions involve bond-formation between two substrates or moieties, high enantioselectivity and catalyst activity should be realized if an asymmetric catalyst can activate two reacting substrates simultaneously at defined positions. Thus, we proposed the concept of bifunctional asymmetric catalysis, which led us to the design of new asymmetric catalysts containing two functionalities (e.g. a Lewis acid and a Brønsted base or a Lewis acid and a Lewis base). These catalysts demonstrated broad reaction applicability with excellent substrate generality. Using our catalytic asymmetric reactions as keys steps, efficient total syntheses of pharmaceuticals and their biologically active lead natural products were achieved. PMID:25792774
Stanhope, Victoria; Solomon, Phyllis
2007-06-01
Research has shown that expressed emotion (EE) among families is a strong predictor of relapse for people with severe mental illness. Recent studies have also found the presence of EE in consumer-provider relationships. Despite high consistency in the findings related to EE and relapse, the concept has weak validity as little is known about how exactly it triggers relapse. Microsociological theory provides a framework with which to analyze social interaction and, more specifically, understand how interactions relate to the emotions of pride and shame. By identifying the components of interaction rituals, the theory provides insight into the key processes underlying EE and demonstrates how methodologies based on direct observation have the potential to measure EE with greater validity. This article describes how microsociological theory can be applied to the concept of EE.
Combining rules, background knowledge and change patterns to maintain semantic annotations.
Cardoso, Silvio Domingos; Chantal, Reynaud-Delaître; Da Silveira, Marcos; Pruski, Cédric
2017-01-01
Knowledge Organization Systems (KOS) play a key role in enriching biomedical information in order to make it machine-understandable and shareable. This is done by annotating medical documents, or more specifically, associating concept labels from KOS with pieces of digital information, e.g., images or texts. However, the dynamic nature of KOS may impact the annotations, thus creating a mismatch between the evolved concept and the associated information. To solve this problem, methods to maintain the quality of the annotations are required. In this paper, we define a framework based on rules, background knowledge and change patterns to drive the annotation adaption process. We evaluate experimentally the proposed approach in realistic cases-studies and demonstrate the overall performance of our approach in different KOS considering the precision, recall, F1-score and AUC value of the system.
Combining rules, background knowledge and change patterns to maintain semantic annotations
Cardoso, Silvio Domingos; Chantal, Reynaud-Delaître; Da Silveira, Marcos; Pruski, Cédric
2017-01-01
Knowledge Organization Systems (KOS) play a key role in enriching biomedical information in order to make it machine-understandable and shareable. This is done by annotating medical documents, or more specifically, associating concept labels from KOS with pieces of digital information, e.g., images or texts. However, the dynamic nature of KOS may impact the annotations, thus creating a mismatch between the evolved concept and the associated information. To solve this problem, methods to maintain the quality of the annotations are required. In this paper, we define a framework based on rules, background knowledge and change patterns to drive the annotation adaption process. We evaluate experimentally the proposed approach in realistic cases-studies and demonstrate the overall performance of our approach in different KOS considering the precision, recall, F1-score and AUC value of the system. PMID:29854115
Categorizing and Promoting Reversibility of Mathematical Concepts
ERIC Educational Resources Information Center
Simon, Martin A.; Kara, Melike; Placa, Nicora; Sandir, Hakan
2016-01-01
Reversibility of concepts, a key aspect of mathematical development, is often problematic for learners. In this theoretical paper, we present a typology we have developed for categorizing the different reverse concepts that can be related to a particular initial concept and explicate the relationship among these different reverse concepts. We…
Student Conceptions about Energy Transformations: Progression from General Chemistry to Biochemistry
ERIC Educational Resources Information Center
Wolfson, Adele J.; Rowland, Susan L.; Lawrie, Gwendolyn A.; Wright, Anthony H.
2014-01-01
Students commencing studies in biochemistry must transfer and build on concepts they learned in chemistry and biology classes. It is well established, however, that students have difficulties in transferring critical concepts from general chemistry courses; one key concept is "energy." Most previous work on students' conception of energy…
A revolute joint with linear load-displacement response for a deployable lidar telescope
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.
1996-01-01
NASA Langley Research Center is developing concepts for an advanced spacecraft, called LidarTechSat, to demonstrate key structures and mechanisms technologies necessary to deploy a segmented telescope reflector. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design, such as the revolute joint presented herein. The joint exhibits load-cycling response that is essentially linear with less than 2% hysteresis, and the joint rotates with less than 7 mN-m (1 in-oz) of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repected deployment and impulse loading. No other mechanically deployment structure found in the literature has been demonstrated to be this kinematically accurate.
Health Economics and the Management of Degenerative Cervical Myelopathy.
Witiw, Christopher D; Smieliauskas, Fabrice; Fehlings, Michael G
2018-01-01
Degenerative cervical myelopathy (DCM) is the leading cause of spinal cord impairment worldwide. Surgical intervention has been demonstrated to be effective and is becoming standard of care. Spine surgery, however, is costly and value needs to be demonstrated. This review serves to summarize the key health economic concepts as they relate to the assessment of the value of surgery for DCM. This is followed by a discussion of current health economic research on DCM, which suggests that surgery is likely to be cost effective. The review concludes with a summary of future questions that remain unanswered, such as which patient subgroups derive the most value from surgery and which surgical approaches are the most cost effective. Copyright © 2017 Elsevier Inc. All rights reserved.
Autonomous rendezvous and capture development infrastructure
NASA Technical Reports Server (NTRS)
Bryan, Thomas C.
1991-01-01
In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This need involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the Low Earth Orbit test facility. Using a reusable free-flying testbed carried in the Shuttle, as a technology demonstration test flight, can be structured to include a variety of sensors, control schemes, and operational approaches. This testbed and flight demonstration concept will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.
Total Quality Management Practices and Their Effects on Organizational Performance
ERIC Educational Resources Information Center
Hung, Richard Yu-Yuan; Lien, Bella Ya-Hui
2004-01-01
This paper reports a study designed to examine the key concepts of Total Quality Management (TQM) implementation and their effects on organizational performance. Process Alignment and People Involvement are two key concepts for successful implementation of TQM. The purpose of this paper is to discuss how these two constructs affect organizational…
Translation and Its Discontents: Key Concepts in English and German History Education
ERIC Educational Resources Information Center
Seixas, Peter
2016-01-01
Key terms and concepts are crucial tools in teaching and learning in the disciplines. Different linguistic traditions approach such tools in diverse ways. This paper offers an initial contribution by a monolingual Anglophone history educator in dialogue with German history educators. It presents three different scenarios for the potential of…
Mind Map Marketing: A Creative Approach in Developing Marketing Skills
ERIC Educational Resources Information Center
Eriksson, Lars Torsten; Hauer, Amie M.
2004-01-01
In this conceptual article, the authors describe an alternative course structure that joins learning key marketing concepts to creative problem solving. The authors describe an approach using a convergent-divergent-convergent (CDC) process: key concepts are first derived from case material to be organized in a marketing matrix, which is then used…
Executive Leadership Concepts for Higher Education.
ERIC Educational Resources Information Center
Satterlee, Brian
Several key concepts shed light on the traits and processes of leadership in educational settings. First, the term leadership can be understood as the act of persuading others to set aside individual concerns and pursue a common goal, with communication representing a key ability of leaders. The Communication Model provides a useful, open systems…
Review of key concepts in magnetic resonance physics.
Moore, Michael M; Chung, Taylor
2017-05-01
MR physics can be a challenging subject for practicing pediatric radiologists. Although many excellent texts provide very comprehensive reviews of the field of MR physics at various levels of understanding, the authors of this paper explain several key concepts in MR physics that are germane to clinical practice in a non-rigorous but practical fashion. With the basic understanding of these key concepts, practicing pediatric radiologists can build on their knowledge of current clinical MR techniques and future advances in MR applications. Given the challenges of both the increased need for rapid imaging in non-sedated children and the rapid physiological cardiovascular and respiratory motion in pediatric patients, many advances in complex MR techniques are being applied to imaging these children. The key concepts are as follows: (1) structure of a pulse sequence, (2) k-space, (3) "trade-off triangle" and (4) fat suppression. This review is the first of five manuscripts in a minisymposium on pediatric MR. The authors' goal for this review is to aid in understanding the MR techniques described in the subsequent manuscripts on brain imaging and body imaging in this minisymposium.
Digital games in medical education: Key terms, concepts, and definitions
Bigdeli, Shoaleh; Kaufman, David
2017-01-01
Introduction: Game-based education is fast becoming a key instrument in medical education. Method: In this study, papers related to games were filtered and limited to full-text peer-reviewed published in English. Results: To the best of researchers’ knowledge, the concepts used in the literature are varied and distinct, and the literature is not conclusive on the definition of educational games for medical education. Conclusion: This paper attempts to classify terms, concepts and definitions common to gamification in medical education. PMID:29445681
Digital games in medical education: Key terms, concepts, and definitions.
Bigdeli, Shoaleh; Kaufman, David
2017-01-01
Introduction: Game-based education is fast becoming a key instrument in medical education. Method: In this study, papers related to games were filtered and limited to full-text peer-reviewed published in English. Results: To the best of researchers' knowledge, the concepts used in the literature are varied and distinct, and the literature is not conclusive on the definition of educational games for medical education. Conclusion: This paper attempts to classify terms, concepts and definitions common to gamification in medical education.
Modelling students' knowledge organisation: Genealogical conceptual networks
NASA Astrophysics Data System (ADS)
Koponen, Ismo T.; Nousiainen, Maija
2018-04-01
Learning scientific knowledge is largely based on understanding what are its key concepts and how they are related. The relational structure of concepts also affects how concepts are introduced in teaching scientific knowledge. We model here how students organise their knowledge when they represent their understanding of how physics concepts are related. The model is based on assumptions that students use simple basic linking-motifs in introducing new concepts and mostly relate them to concepts that were introduced a few steps earlier, i.e. following a genealogical ordering. The resulting genealogical networks have relatively high local clustering coefficients of nodes but otherwise resemble networks obtained with an identical degree distribution of nodes but with random linking between them (i.e. the configuration-model). However, a few key nodes having a special structural role emerge and these nodes have a higher than average communicability betweenness centralities. These features agree with the empirically found properties of students' concept networks.
Reciprocity and Ethical Tuberculosis Treatment and Control.
Silva, Diego S; Dawson, Angus; Upshur, Ross E G
2016-03-01
This paper explores the notion of reciprocity in the context of active pulmonary and laryngeal tuberculosis (TB) treatment and related control policies and practices. We seek to do three things: First, we sketch the background to contemporary global TB care and suggest that poverty is a key feature when considering the treatment of TB patients. We use two examples from TB care to explore the role of reciprocity: isolation and the use of novel TB drugs. Second, we explore alternative means of justifying the use of reciprocity through appeal to different moral and political theoretical traditions (i.e., virtue ethics, deontology, and consequentialism). We suggest that each theory can be used to provide reasons to take reciprocity seriously as an independent moral concept, despite any other differences. Third, we explore general meanings and uses of the concept of reciprocity, with the primary intention of demonstrating that it cannot be simply reduced to other more frequently invoked moral concepts such as beneficence or justice. We argue that reciprocity can function as a mid-level principle in public health, and generally, captures a core social obligation arising once an individual or group is burdened as a result of acting for the benefit of others (even if they derive a benefit themselves). We conclude that while more needs to be explored in relation to the theoretical justification and application of reciprocity, sufficient arguments can be made for it to be taken more seriously as a key principle within public health ethics and bioethics more generally.
Adaption of G-TAG Software for Validating Touch and Go Asteroid Sample Return Design Methodology
NASA Technical Reports Server (NTRS)
Blackmore, Lars James C.; Acikmese, Behcet; Mandic, Milan
2012-01-01
A software tool is used to demonstrate the feasibility of Touch and Go (TAG) sampling for Asteroid Sample Return missions. TAG is a concept whereby a spacecraft is in contact with the surface of a small body, such as a comet or asteroid, for a few seconds or less before ascending to a safe location away from the small body. Previous work at JPL developed the G-TAG simulation tool, which provides a software environment for fast, multi-body simulations of the TAG event. G-TAG is described in Multibody Simulation Software Testbed for Small-Body Exploration and Sampling, (NPO-47196) NASA Tech Briefs, Vol. 35, No. 11 (November 2011), p.54. This current innovation adapts this tool to a mission that intends to return a sample from the surface of an asteroid. In order to demonstrate the feasibility of the TAG concept, the new software tool was used to generate extensive simulations that demonstrate the designed spacecraft meets key requirements. These requirements state that contact force and duration must be sufficient to ensure that enough material from the surface is collected in the brushwheel sampler (BWS), and that the spacecraft must survive the contact and must be able to recover and ascend to a safe position, and maintain velocity and orientation after the contact.
Balance and gait improved in patients with MS after physiotherapy based on the Bobath concept.
Smedal, Tori; Lygren, Hildegunn; Myhr, Kjell-Morten; Moe-Nilssen, Rolf; Gjelsvik, Bente; Gjelsvik, Olav; Strand, Liv Inger; Inger, Liv
2006-06-01
Patients with multiple sclerosis (MS) tend to have movement difficulties, and the effect of physiotherapy for this group of patients has been subjected to limited systematic research. In the present study physiotherapy based on the Bobath concept, applied to MS patients with balance and gait problems, was evaluated. The ability of different functional tests to demonstrate change was evaluated. A single-subject experimental study design with ABAA phases was used, and two patients with relapsing-remitting MS in stable phase were treated. Tests were performed 12 times, three at each phase: A (at baseline); B (during treatment); A (immediately after treatment); and A (after two months). The key feature of treatment was facilitation of postural activity and selective control of movement. Several performance and self report measures and interviews were used. After intervention, improved balance was shown by the Berg Balance Scale (BBS) in both patients, and improved quality of gait was indicated by the Rivermead Visual Gait Assessment (RVGA). The patients also reported improved balance and gait function in the interviews and scored their condition as 'much improved'. Gait parameters, recorded by an electronic walkway, changed, but differently in the two patients. Among the physical performance tests the BBS and the RVGA demonstrated the highest change, while no or minimal change was demonstrated by the Rivermead Mobility Index (RMI) and Ratings of Perceived Exertion (RPE). The findings indicate that balance and gait can be improved after physiotherapy based on the Bobath concept, but this should be further evaluated in larger controlled trials of patients with MS.
Towards an International Classification for Patient Safety: key concepts and terms
Runciman, William; Hibbert, Peter; Thomson, Richard; Van Der Schaaf, Tjerk; Sherman, Heather; Lewalle, Pierre
2009-01-01
Background Understanding the patient safety literature has been compromised by the inconsistent use of language. Objectives To identify key concepts of relevance to the International Patient Safety Classification (ICPS) proposed by the World Alliance For Patient Safety of the World Health Organization (WHO), and agree on definitions and preferred terms. Methods Six principles were agreed upon—that the concepts and terms should: be applicable across the full spectrum of healthcare; be consistent with concepts from other WHO Classifications; have meanings as close as possible to those in colloquial use; convey the appropriate meanings with respect to patient safety; be brief and clear, without unnecessary or redundant qualifiers; be fit-for-purpose for the ICPS. Results Definitions and preferred terms were agreed for 48 concepts of relevance to the ICPS; these were described and the relationships between them and the ICPS were outlined. Conclusions The consistent use of key concepts, definitions and preferred terms should pave the way for better understanding, for comparisons between facilities and jurisdictions, and for trends to be tracked over time. Changes and improvements, translation into other languages and alignment with other sets of patient safety definitions will be necessary. This work represents the start of an ongoing process of progressively improving a common international understanding of terms and concepts relevant to patient safety. PMID:19147597
Development of a Solar System Concept Inventory
NASA Astrophysics Data System (ADS)
Hornstein, Seth D.; Duncan, D.; S, C. A. T.
2009-01-01
Concept inventories can provide useful insight into students’ understanding of key physical concepts. Knowing what your students have learned during a course is a valuable tool for improving your own teaching. Unfortunately, current astronomy concept inventories are not suitable for an introductory solar system course because they either cover too broad of a range of topics (e.g. Astronomy Diagnostic Test) or are too narrowly focused (e.g. Greenhouse Effect Concept Inventory, Lunar Phase Concept Inventory). We have developed the Solar System Concept Inventory (SSCI) to cover those topics commonly taught in an introductory solar system course. The topics included on the SSCI were selected by having faculty identify the key concepts they address when teaching about the solar system. SSCI topics include formation mechanisms, planetary interiors, atmospheric effects, and small solar system bodies. Student interviews were conducted to identify common naive ideas and reasoning difficulties relating to these key topics. Preliminary development of the SSCI was completed at the University of Colorado and involved over 400 students. A larger, national, multi-institutional field test is planned for Spring 2009 as a Collaboration of Astronomy Teaching Scholars (CATS) research project. We present here the results from the preliminary development and proposed changes for the next stage of research. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.
NASA Technical Reports Server (NTRS)
Eppler, D. B.
2015-01-01
Lunar surface geological exploration should be founded on a number of key elements that are seemingly disparate, but which can form an integrated operational concept when properly conceived and deployed. If lunar surface geological exploration is to be useful, this integration of key elements needs to be undertaken throughout the development of both mission hardware, training and operational concepts. These elements include the concept of mission class, crew makeup and training, surface mobility assets that are matched with mission class, and field tools and IT assets that make data collection, sharing and archiving transparent to the surface crew.
A credit card verifier structure using diffraction and spectroscopy concepts
NASA Astrophysics Data System (ADS)
Sumriddetchkajorn, Sarun; Intaravanne, Yuttana
2008-04-01
We propose and experimentally demonstrate an angle-multiplexing based optical structure for verifying a credit card. Our key idea comes from the fact that the fine detail of the embossed hologram stamped on the credit card is hard to duplicate and therefore its key color features can be used for distinguishing between the real and counterfeit ones. As the embossed hologram is a diffractive optical element, we choose to shine one at a time a number of broadband lightsources, each at different incident angle, on the embossed hologram of the credit card in such a way that different color spectra per incident angle beam is diffracted and separated in space. In this way, the number of pixels of each color plane is investigated. Then we apply a feed forward back propagation neural network configuration to separate the counterfeit credit card from the real one. Our experimental demonstration using two off-the-shelf broadband white light emitting diodes, one digital camera, a 3-layer neural network, and a notebook computer can identify all 69 counterfeit credit cards from eight real credit cards.
Keyboards for the handicapped. A new concept.
Johnson, E L
1986-06-01
A keyboard has been designed and constructed for persons restricted to using a head or mouth stick. The keyboard is not a modification of existing keyboard technology but involves a completely new concept. The keyboard, called a 2DOF keyboard, requires only two degrees of freedom motion for actuation. The problems of simultaneous key requirements, accidental key strikes, and multiple strikes of the same key have been solved. The keyboard is transparent to the personal computer to which it is connected, allowing use of any available software.
The SupraThermal Ion Monitor for space weather predictions.
Allegrini, F; Desai, M I; Livi, S; McComas, D J; Ho, G C
2014-05-01
Measurement of suprathermal energy ions in the heliosphere has always been challenging because (1) these ions are situated in the energy regime only a few times higher than the solar wind plasma, where intensities are orders of magnitude higher and (2) ion energies are below or close to the threshold of state-of-art solid-state detectors. Suprathermal ions accelerated at coronal mass ejection-driven shocks propagate out ahead of the shocks. These shocks can cause geomagnetic storms in the Earth's magnetosphere that can affect spacecraft and ground-based power and communication systems. An instrument with sufficient sensitivity to measure these ions can be used to predict the arrival of the shocks and provide an advance warning for potentially geo-effective space weather. In this paper, we present a novel energy analyzer concept, the Suprathermal Ion Monitor (STIM) that is designed to measure suprathermal ions with high sensitivity. We show results from a laboratory prototype and demonstrate the feasibility of the concept. A list of key performances is given, as well as a discussion of various possible detectors at the back end. STIM is an ideal candidate for a future space weather monitor in orbit upstream of the near-earth environment, for example, around L1. A scaled-down version is suitable for a CubeSat mission. Such a platform allows proofing the concept and demonstrating its performance in the space environment.
SAFE Testing Nuclear Rockets Economically
NASA Astrophysics Data System (ADS)
Howe, Steven D.; Travis, Bryan; Zerkle, David K.
2003-01-01
Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.
A knowledge-driven approach to biomedical document conceptualization.
Zheng, Hai-Tao; Borchert, Charles; Jiang, Yong
2010-06-01
Biomedical document conceptualization is the process of clustering biomedical documents based on ontology-represented domain knowledge. The result of this process is the representation of the biomedical documents by a set of key concepts and their relationships. Most of clustering methods cluster documents based on invariant domain knowledge. The objective of this work is to develop an effective method to cluster biomedical documents based on various user-specified ontologies, so that users can exploit the concept structures of documents more effectively. We develop a flexible framework to allow users to specify the knowledge bases, in the form of ontologies. Based on the user-specified ontologies, we develop a key concept induction algorithm, which uses latent semantic analysis to identify key concepts and cluster documents. A corpus-related ontology generation algorithm is developed to generate the concept structures of documents. Based on two biomedical datasets, we evaluate the proposed method and five other clustering algorithms. The clustering results of the proposed method outperform the five other algorithms, in terms of key concept identification. With respect to the first biomedical dataset, our method has the F-measure values 0.7294 and 0.5294 based on the MeSH ontology and gene ontology (GO), respectively. With respect to the second biomedical dataset, our method has the F-measure values 0.6751 and 0.6746 based on the MeSH ontology and GO, respectively. Both results outperforms the five other algorithms in terms of F-measure. Based on the MeSH ontology and GO, the generated corpus-related ontologies show informative conceptual structures. The proposed method enables users to specify the domain knowledge to exploit the conceptual structures of biomedical document collections. In addition, the proposed method is able to extract the key concepts and cluster the documents with a relatively high precision. Copyright 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Hayashi, Yugo
2015-01-01
The present study investigates web-based learning activities of undergraduate students who generate explanations about a key concept taught in a large-scale classroom. The present study used an online system with Pedagogical Conversational Agent (PCA), asked to explain about the key concept from different points and provided suggestions and…
Teaching Tip: Utilizing Classroom Simulation to Convey Key Concepts in IT Portfolio Management
ERIC Educational Resources Information Center
Larson, Eric C.
2013-01-01
Managing a portfolio of IT projects is an important capability for firms and their managers. The classroom simulation described here provides students in an MBA information systems management/strategy course with the opportunity to deepen their understanding of the key concepts that should be considered in managing an IT portfolio and helps…
The Role of Gender in the Socialization of Emotion: Key Concepts and Critical Issues
ERIC Educational Resources Information Center
Root, Amy Kennedy; Denham, Susanne A.
2010-01-01
Given the omnipresent role of gender in children's and adolescents' development, it seems necessary to better understand how gender affects the process of emotion socialization. In this introductory chapter, the authors discuss the overarching themes and key concepts discussed in this volume, as well as outline the distinct contribution of each…
The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration.
Duda, Kevin R; Vasquez, Rebecca A; Middleton, Akil J; Hansberry, Mitchell L; Newman, Dava J; Jacobs, Shane E; West, John J
2015-01-01
The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a "viscous resistance" during movements against a specified direction of "down"-initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from "down" initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation.
Tung, James Y; Stead, Brent; Mann, William; Ba'Pham; Popovic, Milos R
2015-01-01
Pressure ulcers (PUs) in individuals with spinal cord injury (SCI) present a persistent and costly problem. Continuing effort in developing new technologies that support self-managed care is an important prevention strategy. Specifically, the aims of this scoping review are to review the key concepts and factors related to self-managed prevention of PUs in individuals with SCI and appraise the technologies available to assist patients in self-management of PU prevention practices. There is broad consensus that sustaining long-term adherence to prevention regimens is a major concern. Recent literature highlights the interactions between behavioral and physiological risk factors. We identify four technology categories that support self-management: computer-based educational technologies demonstrated improved short-term gains in knowledge (2 studies), interface pressure mapping technologies demonstrated improved adherence to pressure-relief schedules up to 3 mo (5 studies), electrical stimulation confirmed improvements in tissue tolerance after 8 wk of training (3 studies), and telemedicine programs demonstrated improvements in independence and reduced hospital visits over 6 mo (2 studies). Overall, self-management technologies demonstrated low-to-moderate effectiveness in addressing a subset of risk factors. However, the effectiveness of technologies in preventing PUs is limited due to a lack of incidence reporting. In light of the key findings, we recommend developing integrated technologies that address multiple risk factors.
Concept of operations for virtual weigh station
DOT National Transportation Integrated Search
2009-06-01
This document describes the concept of operations (ConOps) for the virtual weigh station (VWS). The ConOps describes the goals, functions, key concepts, architecture, operational scenarios, operational policies, and impacts of virtual weigh stations....
Freight advanced traveler information system : concept of operations.
DOT National Transportation Integrated Search
2012-08-01
This report describes a Concept of Operations (ConOps) for a Freight Advanced Traveler Information System (FRATIS). The ConOps describes the goals, functions, key concepts, user classes, high-level architecture, operational scenarios, operational pol...
Unraveling Mixed Hydrate Formation: Microscopic Insights into Early Stage Behavior.
Hall, Kyle Wm; Zhang, Zhengcai; Kusalik, Peter G
2016-12-29
The molecular-level details of mixed hydrate nucleation remain unclear despite the broad implications of this process for a variety of scientific domains. Through analysis of mixed hydrate nucleation in a prototypical CH 4 /H 2 S/H 2 O system, we demonstrate that high-level kinetic similarities between mixed hydrate systems and corresponding pure hydrate systems are not a reliable basis for estimating the composition of early stage mixed hydrate nuclei. Moreover, we show that solution compositions prior to and during nucleation are not necessarily effective proxies for the composition of early stage mixed hydrate nuclei. Rather, microscopic details, (e.g., guest-host interactions and previously neglected cage types) apparently play key roles in determining early stage behavior of mixed hydrates. This work thus provides key foundational concepts and insights for understanding mixed hydrate nucleation.
How Effective Is Example Generation for Learning Declarative Concepts?
ERIC Educational Resources Information Center
Rawson, Katherine A.; Dunlosky, John
2016-01-01
Declarative concepts (i.e., key terms and corresponding definitions for abstract concepts) represent foundational knowledge that students learn in many content domains. Thus, investigating techniques to enhance concept learning is of critical importance. Various theoretical accounts support the expectation that example generation will serve this…
NASA Technical Reports Server (NTRS)
Abbott, David; Batten, Adam; Carpenter, David; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter;
2008-01-01
This report describes the first phase of the implementation of the Concept Demonstrator. The Concept Demonstrator system is a powerful and flexible experimental test-bed platform for developing sensors, communications systems, and multi-agent based algorithms for an intelligent vehicle health monitoring system for deployment in aerospace vehicles. The Concept Demonstrator contains sensors and processing hardware distributed throughout the structure, and uses multi-agent algorithms to characterize impacts and determine an appropriate response to these impacts.
Students' Conceptions of the "Reality Status" of Electrons.
ERIC Educational Resources Information Center
Mashhadi, Azam; Woolnough, Brian
Science has many explanatory concepts that have been proposed to account for the observable features of things. Such explanatory concepts often have associated with them hidden or unseen "theoretical entities." The electron is a key concept in understanding phenomena described by science. The question arises, however, as to how students…
Essential Map Concepts for Young Children.
ERIC Educational Resources Information Center
Hatcher, Barbara
This paper discusses four key concepts to help preschool and primary grade children develop the ability to read and understand maps. Examples of student activities to develop each of the concepts are provided. The essential concepts are representation, symbolization, perspective, and scale. Representation is vital. Children must perceive that a…
Key concepts regarding the genetics of hypertension in humans.
Williams, R R
1991-11-01
More and more, genetic research is being used to investigate the problem of hypertension, especially as hypertension appears to be a population-wide phenomenon. This article discusses such key concepts as phenotypic variation within the hypertensive subpopulation, the importance of a family history for hypertension in predicting hypertension, the development of hypertension in youth, environmental considerations (nature v nurture), and gene linkage.
ERIC Educational Resources Information Center
Vendlinski, Terry P.; Hemberg, Bryan; Mundy, Chris; Phelan, Julia
2009-01-01
The authors' hypothesis is that if teachers (as experts) understand and teach concepts from the position of expertise teacher quality will improve. They believe that focusing on the key ideas will deepen both teacher and student understanding and allow learners to build the concepts necessary to form solid foundations for the application of…
NASA Technical Reports Server (NTRS)
Lee, Paul U.; Sheridan, Tom; Poage, james L.; Martin, Lynne Hazel; Jobe, Kimberly K.
2010-01-01
This report identifies key human-performance-related issues associated with Next Generation Air Transportation System (NextGen) research in the NASA NextGen-Airspace Project. Four Research Focus Areas (RFAs) in the NextGen-Airspace Project - namely Separation Assurance (SA), Airspace Super Density Operations (ASDO), Traffic Flow Management (TFM), and Dynamic Airspace Configuration (DAC) - were examined closely. In the course of the research, it was determined that the identified human performance issues needed to be analyzed in the context of NextGen operations rather than through basic human factors research. The main gaps in human factors research in NextGen were found in the need for accurate identification of key human-systems related issues within the context of specific NextGen concepts and better design of the operational requirements for those concepts. By focusing on human-system related issues for individual concepts, key human performance issues for the four RFAs were identified and described in this report. In addition, mixed equipage airspace with components of two RFAs were characterized to illustrate potential human performance issues that arise from the integration of multiple concepts.
Space Based Gravitational Wave Observatories (SGOs)
NASA Technical Reports Server (NTRS)
Livas, Jeff
2014-01-01
Space-based Gravitational-wave Observatories (SGOs) will enable the systematic study of the frequency band from 0.0001 - 1 Hz of gravitational waves, where a rich array of astrophysical sources is expected. ESA has selected The Gravitational Universe as the science theme for the L3 mission opportunity with a nominal launch date in 2034. This will be at a minimum 15 years after ground-based detectors and pulsar timing arrays announce their first detections and at least 18 years after the LISA Pathfinder Mission will have demonstrated key technologies in a dedicated space mission. It is therefore important to develop mission concepts that can take advantage of the momentum in the field and the investment in both technology development and a precision measurement community on a more near-term timescale than the L3 opportunity. This talk will discuss a mission concept based on the LISA baseline that resulted from a recent mission architecture study.
Availability: A Metric for Nucleic Acid Strand Displacement Systems.
Olson, Xiaoping; Kotani, Shohei; Padilla, Jennifer E; Hallstrom, Natalya; Goltry, Sara; Lee, Jeunghoon; Yurke, Bernard; Hughes, William L; Graugnard, Elton
2017-01-20
DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks.
Bubble memory module for spacecraft application
NASA Technical Reports Server (NTRS)
Hayes, P. J.; Looney, K. T.; Nichols, C. D.
1985-01-01
Bubble domain technology offers an all-solid-state alternative for data storage in onboard data systems. A versatile modular bubble memory concept was developed. The key module is the bubble memory module which contains all of the storage devices and circuitry for accessing these devices. This report documents the bubble memory module design and preliminary hardware designs aimed at memory module functional demonstration with available commercial bubble devices. The system architecture provides simultaneous operation of bubble devices to attain high data rates. Banks of bubble devices are accessed by a given bubble controller to minimize controller parts. A power strobing technique is discussed which could minimize the average system power dissipation. A fast initialization method using EEPROM (electrically erasable, programmable read-only memory) devices promotes fast access. Noise and crosstalk problems and implementations to minimize these are discussed. Flight memory systems which incorporate the concepts and techniques of this work could now be developed for applications.
Application of the Athlete's Performance Passport for Doping Control: A Case Report.
Iljukov, Sergei; Bermon, Stephane; Schumacher, Yorck O
2018-01-01
The efficient use of testing resources is a key issue in the fight against doping. The longitudinal tracking of sporting performances to identify unusual improvements possibly caused by doping, so-called "athlete's performance passport" (APP) is a new concept to improve targeted anti-doping testing. In fact, unusual performances by an athlete would trigger a more thorough testing program. In the present case report, performance data is modeled using the critical power concept for a group of athletes based on their past performances. By these means, an athlete with unusual deviations from his predicted performances was identified. Subsequent target testing using blood testing and the athlete biological passport resulted in an anti-doping rule violation procedure and suspension of the athlete. This case demonstrates the feasibility of the APP approach where athlete's performance is monitored and might serve as an example for the practical implementation of the method.
Application of the Athlete's Performance Passport for Doping Control: A Case Report
Iljukov, Sergei; Bermon, Stephane; Schumacher, Yorck O.
2018-01-01
The efficient use of testing resources is a key issue in the fight against doping. The longitudinal tracking of sporting performances to identify unusual improvements possibly caused by doping, so-called “athlete's performance passport” (APP) is a new concept to improve targeted anti-doping testing. In fact, unusual performances by an athlete would trigger a more thorough testing program. In the present case report, performance data is modeled using the critical power concept for a group of athletes based on their past performances. By these means, an athlete with unusual deviations from his predicted performances was identified. Subsequent target testing using blood testing and the athlete biological passport resulted in an anti-doping rule violation procedure and suspension of the athlete. This case demonstrates the feasibility of the APP approach where athlete's performance is monitored and might serve as an example for the practical implementation of the method. PMID:29651247
Materials learning from life: concepts for active, adaptive and autonomous molecular systems.
Merindol, Rémi; Walther, Andreas
2017-09-18
Bioinspired out-of-equilibrium systems will set the scene for the next generation of molecular materials with active, adaptive, autonomous, emergent and intelligent behavior. Indeed life provides the best demonstrations of complex and functional out-of-equilibrium systems: cells keep track of time, communicate, move, adapt, evolve and replicate continuously. Stirred by the understanding of biological principles, artificial out-of-equilibrium systems are emerging in many fields of soft matter science. Here we put in perspective the molecular mechanisms driving biological functions with the ones driving synthetic molecular systems. Focusing on principles that enable new levels of functionalities (temporal control, autonomous structures, motion and work generation, information processing) rather than on specific material classes, we outline key cross-disciplinary concepts that emerge in this challenging field. Ultimately, the goal is to inspire and support new generations of autonomous and adaptive molecular devices fueled by self-regulating chemistry.
Lessons from America? US magnet hospitals and their implications for UK nursing.
Buchan, J
1994-02-01
This paper examines possible implications of the US 'magnet hospital' concept for the UK nursing labour market. Magnet hospitals have been researched in the US and have been demonstrated to exhibit lower nurse turnover and higher levels of reported job satisfaction than other hospitals. Key characteristics include a decentralized organizational structure, a commitment to flexible working hours, an emphasis on professional autonomy and development, and systematic communication between management and staff. The paper examines the labour market characteristics of UK nurses and US nurses and finds many similarities. Detailed case studies of employment practice in 10 US hospitals and 10 Scottish hospitals are reported, with specific attention to remuneration practice, methods of organizing nursing care, establishment-setting and flexible hours. The paper concludes that there are features of the magnet hospital concept which are of relevance and applicable to the UK nursing labour market, but that piecemeal importation of ideas is unlikely to be beneficial.
Ageism and Autonomy in Health Care: Explorations Through a Relational Lens.
Pritchard-Jones, Laura
2017-03-01
Ageism within the context of care has attracted increasing attention in recent years. Similarly, autonomy has developed into a prominent concept within health care law and ethics. This paper explores the way that ageism, understood as a set of negative attitudes about old age or older people, may impact on an older person's ability to make maximally autonomous decisions within health care. In particular, by appealing to feminist constructions of autonomy as relational, I will argue that the key to establishing this link is the concept of self-relations such as self-trust, self-worth and self-esteem. This paper aims to demonstrate how these may be impacted by the internalisation of negative attitudes associated with old age and care. In light of this, any legal or policy response must be sensitive to and flexible enough to deal with the way in which ageism impacts autonomy.
Leisure and Pleasure: Science events in unusual locations
NASA Astrophysics Data System (ADS)
Bultitude, Karen; Margarida Sardo, Ana
2012-12-01
Building on concepts relating to informal science education, this work compares science-related activities which successfully engaged public audiences at three different 'generic' locations: a garden festival, a public park, and a music festival. The purpose was to identify what factors contribute to the perceived success of science communication activities occurring within leisure spaces. This article reports the results of 71 short (2-3 min) structured interviews with public participants at the events, and 18 structured observations sessions, demonstrating that the events were considered both novel and interesting by the participants. Audience members were found to perceive both educational and affective purposes from the events. Three key elements were identified as contributing to the success of the activities across the three 'generic venues': the informality of the surroundings, the involvement of 'real' scientists, and the opportunity to re-engage participants with scientific concepts outside formal education.
Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification
Danielson, Kathryn I.; Tanner, Kimberly D.
2015-01-01
Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563
A balloon-borne prototype for demonstrating the concept of JEM-EUSO
NASA Astrophysics Data System (ADS)
von Ballmoos, P.; Santangelo, A.; Adams, J. H.; Barrillon, P.; Bayer, J.; Bertaina, M.; Cafagna, F.; Casolino, M.; Dagoret, S.; Danto, P.; Distratis, G.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Evrard, J.; Gorodetzky, Ph.; Haungs, A.; Jung, A.; Kawasaki, Y.; Medina-Tanco, G.; Mot, B.; Osteria, G.; Parizot, E.; Park, I. H.; Picozza, P.; Prévôt, G.; Prieto, H.; Ricci, M.; Rodríguez Frías, M. D.; Roudil, G.; Scotti, V.; Szabelski, J.; Takizawa, Y.; Tusno, K.
2014-05-01
EUSO-BALLOON has been conceived as a pathfinder for JEM-EUSO, a mission concept for a space-borne wide-field telescope monitoring the Earth's nighttime atmosphere with the objective of recording the ultraviolet light from tracks initiated by ultra-high energy cosmic rays. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as a test-bench for the key technologies of JEM-EUSO. EUSO-BALLOON shall perform an end-to-end test of all subsystems and components, and prove the global detection chain while improving our knowledge of the atmospheric and terrestrial ultraviolet background. The balloon-instrument also has the potential to detect for the first time UV-light generated by atmospheric air-shower from above, marking a milestone in the development of UHECR science, and paving the way for any future large scale, space-based ultra-high energy cosmic ray observatory.
[Environmental impact assessment based on planning support system].
Chen, Wen-Bo; Carsjens, Gerrit-Jan
2011-02-01
How to assess environmental impact is one of the keys in land use planning. This article described in detail the concepts of activities, impact zones, functions, and sensitivities, as well as the development of STEPP (strategic tool for integrating environmental aspects in planning procedures) based on Avenue, the secondary developing language of ArcView GIS. The system makes it convenient for planning practitioners exchanging information, and can spatially, visually and quantitatively describe environmental impact and its change. In this study, the urban-rural combination area located between EDE and Veenendaal of The Netherlands was taken as case, and the results indicated that the environment was incorporated well in the planning procedure based on the concepts, and could also demonstrate the effects of planning measures on environment spatially, explicitly, and in real-time, facilitating the participation of planning practitioners and decision-making. Some proposals of how to promote STEEP application in China were suggested.
Investigation of Integrated Vehicle Health Management Approaches
NASA Technical Reports Server (NTRS)
Paris, Deidre
2005-01-01
This report is to present the work that was performed during the summer in the Advance Computing Application office. The NFFP (NASA Faculty Fellow Program) had ten summer faculty members working on IVHM (Integrated Vehicle Health Management) technologies. The objective of this project was two-fold: 1) to become familiar with IVHM concepts and key demonstrated IVHM technologies; and 2) to integrate the research that has been performed by IVHM faculty members into the MASTLAB (Marshall Avionic Software Test Lab). IVHM is a NASA-wide effort to coordinate, integrate and apply advanced software, sensors and design technologies to increase the level of intelligence, autonomy, and health state of future vehicles. IVHM is an important concept because it is consistent with the current plan for NASA to go to the moon, mars, and beyond. In order for NASA to become more involved in deep exploration, avionic systems will need to be highly adaptable and autonomous.
Children's strategies to solving additive inverse problems: a preliminary analysis
NASA Astrophysics Data System (ADS)
Ding, Meixia; Auxter, Abbey E.
2017-03-01
Prior studies show that elementary school children generally "lack" formal understanding of inverse relations. This study goes beyond lack to explore what children might "have" in their existing conception. A total of 281 students, kindergarten to third grade, were recruited to respond to a questionnaire that involved both contextual and non-contextual tasks on inverse relations, requiring both computational and explanatory skills. Results showed that children demonstrated better performance in computation than explanation. However, many students' explanations indicated that they did not necessarily utilize inverse relations for computation. Rather, they appeared to possess partial understanding, as evidenced by their use of part-whole structure, which is a key to understanding inverse relations. A close inspection of children's solution strategies further revealed that the sophistication of children's conception of part-whole structure varied in representation use and unknown quantity recognition, which suggests rich opportunities to develop students' understanding of inverse relations in lower elementary classrooms.
Green, Jasmine; Liem, Gregory Arief D; Martin, Andrew J; Colmar, Susan; Marsh, Herbert W; McInerney, Dennis
2012-10-01
The study tested three theoretically/conceptually hypothesized longitudinal models of academic processes leading to academic performance. Based on a longitudinal sample of 1866 high-school students across two consecutive years of high school (Time 1 and Time 2), the model with the most superior heuristic value demonstrated: (a) academic motivation and self-concept positively predicted attitudes toward school; (b) attitudes toward school positively predicted class participation and homework completion and negatively predicted absenteeism; and (c) class participation and homework completion positively predicted test performance whilst absenteeism negatively predicted test performance. Taken together, these findings provide support for the relevance of the self-system model and, particularly, the importance of examining the dynamic relationships amongst engagement factors of the model. The study highlights implications for educational and psychological theory, measurement, and intervention. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Development of the Solar System Concept Inventory
NASA Astrophysics Data System (ADS)
Hornstein, S.; Prather, E.
2009-12-01
Concept inventories can provide useful insight into students’ understanding of key physical concepts. Knowing what your students have learned during a course is a valuable tool for improving your own teaching. Unfortunately, current astronomy concept inventories are not suitable for an introductory solar system course because they either cover too broad of a range of topics (e.g. Astronomy Diagnostic Test) or are too narrowly focused (e.g. Greenhouse Effect Concept Inventory, Lunar Phase Concept Inventory). We have developed the Solar System Concept Inventory (SSCI) to cover those topics commonly taught in an introductory solar system course. The topics included on the SSCI were selected by having faculty identify the key concepts they address when teaching about the solar system. SSCI topics include formation mechanisms, planetary interiors, atmospheric effects, and small solar system bodies. Student interviews were conducted to identify common naive ideas and reasoning difficulties relating to these key topics. The SSCI has been through two semesters of national, multi-institutional field-testing, involving over 1500 students. After the first semester of testing, question statistics were used to flag ineffective questions and flagged questions were revised or eliminated. We will present an overall outline of the SSCI development as well as our question-flagging criteria and question analyses from the latest round of field-testing. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.
SPIRALE: early warning optical space demonstrator
NASA Astrophysics Data System (ADS)
Galindo, D.; Carucci, A.
2004-11-01
Thanks to its global coverage, its peacetime capabilities and its availability, ballistic missiles Early Warning (EW) space systems are identified as a key node of a global missile defence system. Since the Gulf war in 1991, several feasibility studies of such an Early Warning system have been conducted in France. The main conclusions are first that the most appropriate concept is to use infra-red (IR) sensors on geo- stationary orbit satellites and second that the required satellite performances are achievable and accessible to European industries, even if technological developments are necessary. Besides that, it was recommended to prepare the development of the EW operational system, by demonstrating its achievable performances on the basis of collected background images and available target IR signatures. This is the objective of the "EW optical space demonstrator", also named SPIRALE (this a French acronym which stands for "Preparatory IR Program for EW"). A contract has been awarded early 2004, by DGA/SPOTI (French Armament Procurement Agency), to EADS Astrium France, with a significant participation of Alcatel Space, to perform this demonstration.
Long, Yun; Zhou, Linjie; Wang, Jian
2016-01-01
Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach–Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated. PMID:26832305
Communities of solution: partnerships for population health.
Griswold, Kim S; Lesko, Sarah E; Westfall, John M
2013-01-01
Communities of solution (COSs) are the key principle for improving population health. The 1967 Folsom Report explains that the COS concept arose from the recognition that complex political and administrative structures often hinder problem solving by creating barriers to communication and compromise. A 2012 reexamination of the Folsom Report resurrects the idea of the COS and presents 13 grand challenges that define the critical links among community, public health, and primary care and call for ongoing demonstrations of COSs grounded in patient-centered care. In this issue, examples of COSs from around the country demonstrate core principles and propose visions of the future. Essential themes of each COS are the crossing of "jurisdictional boundaries," community-led or -oriented initiatives, measurement of outcomes, and creating durable connections with public health.
QIPS: quantum information and quantum physics in space
NASA Astrophysics Data System (ADS)
Schmitt-Manderbach, Tobias; Scheidl, Thomas; Ursin, Rupert; Tiefenbacher, Felix; Weier, Henning; Fürst, Martin; Jennewein, T.; Perdigues, J.; Sodnik, Z.; Rarity, J.; Zeilinger, Anton; Weinfurter, Harald
2017-11-01
The aim of the QIPS project (financed by ESA) is to explore quantum phenomena and to demonstrate quantum communication over long distances. Based on the current state-of-the-art a first study investigating the feasibility of space based quantum communication has to establish goals for mid-term and long-term missions, but also has to test the feasibility of key issues in a long distance ground-to-ground experiment. We have therefore designed a proof-of-concept demonstration for establishing single photon links over a distance of 144 km between the Canary Islands of La Palma and Tenerife to evaluate main limitations for future space experiments. Here we report on the progress of this project and present first measurements of crucial parameters of the optical free space link.
Propulsion system-flight control integration-flight evaluation and technology transition
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.
1990-01-01
Integration of propulsion and flight control systems and their optimization offering significant performance improvement are assessed. In particular, research programs conducted by NASA on flight control systems and propulsion system-flight control interactions on the YF-12 and F-15 aircraft are addressed; these programs have demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved aircraft performance. Focus is placed on altitude control, speed-Mach control, integrated controller design, as well as flight control systems and digital electronic engine control. A highly integrated digital electronic control program is analyzed and compared with a performance seeking control program. It is shown that the flight evaluation and demonstration of these technologies have been a key part in the transition of the concepts to production and operational use on a timely basis.
Heralded amplification of path entangled quantum states
NASA Astrophysics Data System (ADS)
Monteiro, F.; Verbanis, E.; Caprara Vivoli, V.; Martin, A.; Gisin, N.; Zbinden, H.; Thew, R. T.
2017-06-01
Device-independent quantum key distribution (DI-QKD) represents one of the most fascinating challenges in quantum communication, exploiting concepts of fundamental physics, namely Bell tests of nonlocality, to ensure the security of a communication link. This requires the loophole-free violation of a Bell inequality, which is intrinsically difficult due to losses in fibre optic transmission channels. Heralded photon amplification (HPA) is a teleportation-based protocol that has been proposed as a means to overcome transmission loss for DI-QKD. Here we demonstrate HPA for path entangled states and characterise the entanglement before and after loss by exploiting a recently developed displacement-based detection scheme. We demonstrate that by exploiting HPA we are able to reliably maintain high fidelity entangled states over loss-equivalent distances of more than 50 km.
XFEM-based modeling of successive resections for preoperative image updating
NASA Astrophysics Data System (ADS)
Vigneron, Lara M.; Robe, Pierre A.; Warfield, Simon K.; Verly, Jacques G.
2006-03-01
We present a new method for modeling organ deformations due to successive resections. We use a biomechanical model of the organ, compute its volume-displacement solution based on the eXtended Finite Element Method (XFEM). The key feature of XFEM is that material discontinuities induced by every new resection can be handled without remeshing or mesh adaptation, as would be required by the conventional Finite Element Method (FEM). We focus on the application of preoperative image updating for image-guided surgery. Proof-of-concept demonstrations are shown for synthetic and real data in the context of neurosurgery.
Advanced expander test bed engine
NASA Technical Reports Server (NTRS)
Mitchell, J. P.
1992-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Shortridge academy: positive youth development in action within a therapeutic community.
Baber, Kristine M; Rainer, Adam
2011-01-01
This chapter presents a case example of the implementation of Positive Youth Development (PYD) at a therapeutic boarding school including the theoretical, conceptual, and empirical information about PYD, adolescent brain development, authoritative communities, and youth-adult partnerships that guided this work. Specific examples demonstrate how key concepts and underlying principles of PYD were put into practice. The chapter provides information about parents' perceptions of the school's effectiveness and explains a theory of change approach used to develop the program evaluation. The chapter concludes with a discussion of challenges and opportunities experienced in the development and implementation of the program.
Xu, Lizhi; Gutbrod, Sarah R; Ma, Yinji; Petrossians, Artin; Liu, Yuhao; Webb, R Chad; Fan, Jonathan A; Yang, Zijian; Xu, Renxiao; Whalen, John J; Weiland, James D; Huang, Yonggang; Efimov, Igor R; Rogers, John A
2015-03-11
Advanced materials and fractal design concepts form the basis of a 3D conformal electronic platform with unique capabilities in cardiac electrotherapies. Fractal geometries, advanced electrode materials, and thin, elastomeric membranes yield a class of device capable of integration with the entire 3D surface of the heart, with unique operational capabilities in low power defibrillation. Co-integrated collections of sensors allow simultaneous monitoring of physiological responses. Animal experiments on Langendorff-perfused rabbit hearts demonstrate the key features of these systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced automation in space shuttle mission control
NASA Technical Reports Server (NTRS)
Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.
1991-01-01
The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.
NASA Technical Reports Server (NTRS)
Szuszczewicz, Edward P.
1996-01-01
We have carried out a proof-of-concept development and test effort that not only promises the reduction of parasitic effects of surface contamination (therefore increasing the integrity of 'in situ' measurements in the 60-130 km regime), but promises a uniquely expanded measurement set that includes electron densities, plasma conductivities, charged-particle mobilities, and mass discrimination of positive and negative ion distributions throughout the continuum to free-molecular-flow regimes. Three different sensor configurations were designed, built and tested, along with specialized driving voltage, electrometer and channeltron control electronics. The individual systems were tested in a variety of simulated space environments ranging from pressures near the continuum limit of 100 mTorr to the collisionless regime at 10(exp -6) Torr. Swept modes were initially employed to better understand ion optics and ion 'beam' losses to end walls and to control electrodes. This swept mode also helped better understand and mitigate the influences of secondary electrons on the overall performance of the PIMS design concept. Final results demonstrated the utility of the concept in dominant single-ion plasma environments. Accumulated information, including theoretical concepts and laboratory data, suggest that multi-ion diagnostics are fully within the instrument capabilities and that cold plasma tests with minimized pre-aperture sheath acceleration are the key ingredients to multi-ion success.
Stanvliet, R; Jackson, J; Davis, G; De Swardt, C; Mokhoele, J; Thom, Q; Lane, B D
2004-06-01
The Cape Town Case Study (CTCS) was a multi-institutional collaborative project initiated by CUBES, a knowledge networking initiative of UNESCO's Ecological Sciences Division and the Earth Institute at Columbia University. Cape Town was selected as a CUBES site on the basis of its high biological and cultural significance, together with its demonstrated leadership in promoting urban sustainability. The CTCS was conducted by the Cape Town Urban Biosphere Group, a cross-disciplinary group of specialists drawn from national, provincial, municipal, and civil society institutions, mandated to examine the potential value of the UNESCO Biosphere Reserve concept as a tool for environmental management, social inclusion, and poverty alleviation in Cape Town. This article provides a contextualization of the CTCS and its collaborative process. It also reviews the biosphere reserve concept relative to urban sustainability objectives and proposes a more functional application of that concept in an urban context. A detailed analysis of key initiatives at the interface of conservation and poverty alleviation is provided in table format. Drawing on an examination of successful sustainability initiatives in Cape Town, specific recommendations are made for future application of the biosphere reserve concept in an urban context, as well as a model by which urban areas might affiliate with the UNESCO World Network of Biosphere Reserves, and criteria for such affiliation.
Renting, H; Rossing, W A H; Groot, J C J; Van der Ploeg, J D; Laurent, C; Perraud, D; Stobbelaar, D J; Van Ittersum, M K
2009-05-01
In the last decade the multifunctional agriculture (MFA) concept has emerged as a key notion in scientific and policy debates on the future of agriculture and rural development. Broadly speaking, MFA refers to the fact that agricultural activity beyond its role of producing food and fibre may also have several other functions such as renewable natural resources management, landscape and biodiversity conservation and contribution to the socio-economic viability of rural areas. The use of the concept can be traced to a number of wider societal and political transformation processes, which have influenced scientific and policy approaches in different ways amongst countries and disciplines. This paper critically discusses various existing research approaches to MFA, both from natural and social sciences. To this aim different strands of literature are classified according to their focus on specific governance mechanisms and levels of analysis into four main categories of research approaches (market regulation, land-use approaches, actor-oriented and public regulation approaches). For each category an overview of the state-of-the-art of research is given and an assessment is made of its strengths and weaknesses. The review demonstrates that the multifunctionality concept has attracted a wealth of scientific contributions, which have considerably improved our understanding of key aspects of MFA. At the same time approaches in the four categories have remained fragmented and each has limitations to understand MFA in all its complexity due to inherent constraints of applied conceptualizations and associated disciplinary backgrounds. To go beyond these limitations, we contend, new meta-level frameworks of analysis are to be developed that enable a more integrated approach. The paper concludes by presenting the main lines of an integrative, transitional framework for the study of MFA, which analyses multifunctional agriculture against the background of wider societal change processes towards sustainability and identifies a number of key elements and research challenges for this.
Update on value-based medicine.
Brown, Melissa M; Brown, Gary C
2013-05-01
To update concepts in Value-Based Medicine, especially in view of the Patient Protection and Affordable Care Act. The Patient Protection and Affordable Care Act assures that some variant of Value-Based Medicine cost-utility analysis will play a key role in the healthcare system. It identifies the highest quality care, thereby maximizing the most efficacious use of healthcare resources and empowering patients and physicians.Standardization is critical for the creation and acceptance of a Value-Based Medicine, cost-utility analysis, information system, since 27 million different input variants can go into a cost-utility analysis. Key among such standards is the use of patient preferences (utilities), as patients best understand the quality of life associated with their health states. The inclusion of societal costs, versus direct medical costs alone, demonstrates that medical interventions are more cost effective and, in many instances, provide a net financial return-on-investment to society referent to the direct medical costs expended. Value-Based Medicine provides a standardized methodology, integrating critical, patient, quality-of-life preferences, and societal costs, to allow the highest quality, most cost-effective care. Central to Value-Based Medicine is the concept that all patients deserve the interventions that provide the greatest patient value (improvement in quality of life and/or length of life).
Novel Power Electronics Three-Dimensional Heat Exchanger: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.; Cousineau, J.; Lustbader, J.
2014-08-01
Electric drive systems for vehicle propulsion enable technologies critical to meeting challenges for energy, environmental, and economic security. Enabling cost-effective electric drive systems requires reductions in inverter power semiconductor area. As critical components of the electric drive system are made smaller, heat removal becomes an increasing challenge. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents,more » which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a heat flux improvement of a factor of two, and a package heat density improvement over 30%, which achieved the thermal performance targets.« less
"Disease entity" as the key theoretical concept of medicine.
Hucklenbroich, Peter
2014-12-01
Philosophical debates about the concept of disease, particularly of mental disease, might benefit from reconsideration and a closer look at the established terminology and conceptual structure of contemporary medical pathology and clinical nosology. The concepts and principles of medicine differ, to a considerable extent, from the ideas and notions of philosophical theories of disease. In medical theory, the concepts of disease entity and pathologicity are, besides the concept of disease itself, of fundamental importance, and they are essentially connected to the concepts cause of disease or etiological factor, natural course or natural history of disease, and pathological disposition. It is the concept of disease entity that is of key importance for understanding medical pathology and theory of disease. Its central role is shown by a short reconstruction of its main features and its intrinsic connection to the concept of pathologicity. The meaning of pathologicity is elucidated by explicating the underlying criteria. © The Author 2014. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Overview of the Small Aircraft Transportation System Project Four Enabling Operating Capabilities
NASA Technical Reports Server (NTRS)
Viken, Sally A.; Brooks, Frederick M.; Johnson, Sally C.
2005-01-01
It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand still steadily increasing. NASA, FAA, and the National Consortium for Aviation Mobility (NCAM) have partnered to aid in increasing the mobility throughout the United States through the Small Aircraft Transportation System (SATS) project. The SATS project has been a five-year effort to provide the technical and economic basis for further national investment and policy decisions to support a small aircraft transportation system. The SATS vision is to enable people and goods to have the convenience of on-demand point-to-point travel, anywhere, anytime for both personal and business travel. This vision can be obtained by expanding near all-weather access to more than 3,400 small community airports that are currently under-utilized throughout the United States. SATS has focused its efforts on four key operating capabilities that have addressed new emerging technologies, procedures, and concepts to pave the way for small aircraft to operate in nearly all weather conditions at virtually any runway in the United States. These four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. The SATS project culminated with the 2005 SATS Public Demonstration in Danville, Virginia on June 5th-7th, by showcasing the accomplishments achieved throughout the project and demonstrating that a small aircraft transportation system could be viable. The technologies, procedures, and concepts were successfully demonstrated to show that they were safe, effective, and affordable for small aircraft in near all weather conditions. The focus of this paper is to provide an overview of the technical and operational feasibility of the four operating capabilities, and explain how they can enable a small aircraft transportation system.
ERIC Educational Resources Information Center
Mabrouk, Patricia Ann
2013-01-01
High school and undergraduate research students were surveyed over the 10-week period of their summer research programs to investigate their understanding of key concepts in science ethics and whether their understanding changed over the course of their summer research experiences. Most of the students appeared to understand the issues relevant to…
Teaching Abstract Concepts: Keys to the World of Ideas.
ERIC Educational Resources Information Center
Flatley, Joannis K.; Gittinger, Dennis J.
1990-01-01
Specific teaching strategies to help hearing-impaired secondary students comprehend abstract concepts include (1) pinpointing facts and fallacies, (2) organizing information visually, (3) categorizing ideas, and (4) reinforcing new vocabulary and concepts. Figures provide examples of strategy applications. (DB)
Key Concepts in Microbial Oceanography
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A
2008-12-01
The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence (Santa Cruz Boardwalk); R Foster, S Mansergh and P Moisander (UC Santa Cruz); A Culley, K Doggett, J Edmonds, A Eiler, A Fong, D Hayakawa, D Karl, P Kemp, B Li, N Puniwai, B Wai, and S Wilson (U Hawaii); J Becker and M Nieto-Cid (WHOI); M McCaffrey (CIRES).
Solar Versus Fission Surface Power for Mars
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.;
2016-01-01
A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.
Rowland, Susan L; Smith, Christopher A; Gillam, Elizabeth M A; Wright, Tony
2011-07-01
A strong, recent movement in tertiary education is the development of conceptual, or "big idea" teaching. The emphasis in course design is now on promoting key understandings, core competencies, and an understanding of connections between different fields. In biochemistry teaching, this radical shift from the content-based tradition is being driven by the "omics" information explosion; we can no longer teach all the information we have available. Biochemistry is a core, enabling discipline for much of modern scientific research, and biochemistry teaching is in urgent need of a method for delivery of conceptual frameworks. In this project, we aimed to define the key concepts in biochemistry. We find that the key concepts we defined map well onto the core science concepts recommended by the Vision and Change project. We developed a new method to present biochemistry through the lenses of these concepts. This new method challenged the way we thought about biochemistry as teachers. It also stimulated the majority of the students to think more deeply about biochemistry and to make links between biochemistry and material in other courses. This method is applicable to the full spectrum of content usually taught in biochemistry. Copyright © 2011 Wiley Periodicals, Inc.
FacetGist: Collective Extraction of Document Facets in Large Technical Corpora.
Siddiqui, Tarique; Ren, Xiang; Parameswaran, Aditya; Han, Jiawei
2016-10-01
Given the large volume of technical documents available, it is crucial to automatically organize and categorize these documents to be able to understand and extract value from them. Towards this end, we introduce a new research problem called Facet Extraction. Given a collection of technical documents, the goal of Facet Extraction is to automatically label each document with a set of concepts for the key facets ( e.g. , application, technique, evaluation metrics, and dataset) that people may be interested in. Facet Extraction has numerous applications, including document summarization, literature search, patent search and business intelligence. The major challenge in performing Facet Extraction arises from multiple sources: concept extraction, concept to facet matching, and facet disambiguation. To tackle these challenges, we develop FacetGist, a framework for facet extraction. Facet Extraction involves constructing a graph-based heterogeneous network to capture information available across multiple local sentence-level features, as well as global context features. We then formulate a joint optimization problem, and propose an efficient algorithm for graph-based label propagation to estimate the facet of each concept mention. Experimental results on technical corpora from two domains demonstrate that Facet Extraction can lead to an improvement of over 25% in both precision and recall over competing schemes.
Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials
Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jie; Kitamura, Takayuki
2015-01-01
Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research. PMID:26424484
FacetGist: Collective Extraction of Document Facets in Large Technical Corpora
Siddiqui, Tarique; Ren, Xiang; Parameswaran, Aditya; Han, Jiawei
2017-01-01
Given the large volume of technical documents available, it is crucial to automatically organize and categorize these documents to be able to understand and extract value from them. Towards this end, we introduce a new research problem called Facet Extraction. Given a collection of technical documents, the goal of Facet Extraction is to automatically label each document with a set of concepts for the key facets (e.g., application, technique, evaluation metrics, and dataset) that people may be interested in. Facet Extraction has numerous applications, including document summarization, literature search, patent search and business intelligence. The major challenge in performing Facet Extraction arises from multiple sources: concept extraction, concept to facet matching, and facet disambiguation. To tackle these challenges, we develop FacetGist, a framework for facet extraction. Facet Extraction involves constructing a graph-based heterogeneous network to capture information available across multiple local sentence-level features, as well as global context features. We then formulate a joint optimization problem, and propose an efficient algorithm for graph-based label propagation to estimate the facet of each concept mention. Experimental results on technical corpora from two domains demonstrate that Facet Extraction can lead to an improvement of over 25% in both precision and recall over competing schemes. PMID:28210517
Titan exploration with advanced systems. A study of future mission concepts
NASA Technical Reports Server (NTRS)
1983-01-01
The requirements, capabilities, and programmatic issues associated with science-intensive mission concepts for the advanced exploration of Saturn's largest satellite are assessed. The key questions to be answered by a Titan exploratory mission are: (1) the atmospheric composition; (2) the atmospheric structure; (3) the nature of the surface; and (4) the nature of the interior of Titan. Five selected mission concepts are described in terms of their design requirements. Mission hardware concepts include balloons and/or blimps which will allow both atmospheric and surface observations for a long period of time. Key aspects of performance analysis are presented. Mission profiles and cost summaries are given. Candidate payloads are identified for imaging and nonimaging orbiters, a buoyant station, a haze probe, and a penetrator.
Does the Magnetosphere go to Sleep?
NASA Astrophysics Data System (ADS)
Hesse, M.; Moretto, T.; Friis-Christensen, E. A.; Kuznetsova, M.; Østgaard, N.; Tenfjord, P.; Opgenoorth, H. J.
2017-12-01
An interesting question in magnetospheric research is related to the transition between magnetospheric configurations under substantial solar wind driving, and a putative relaxed state after the driving ceases. While it is conceivable that the latter state may be unique and only dependent on residual solar wind driving, a more likely scenario has magnetospheric memory playing a key role. Memory processes may be manifold: constraints from conservation of flux tube entropy to neutral wind inertia in the upper atmosphere may all contribute. In this presentation, we use high-resolution, global, MHD simulations to begin to shed light on this transition, as well as on the concept of a quiet state of the magnetosphere. We will discuss key elements of magnetospheric memory, and demonstrate their influence, as well as the actual memory time scale, through simulations and analytical estimates. Finally, we will point out processes with the potential to effect magnetospheric memory loss.
Physical activity and physical self-concept in youth: systematic review and meta-analysis.
Babic, Mark J; Morgan, Philip J; Plotnikoff, Ronald C; Lonsdale, Chris; White, Rhiannon L; Lubans, David R
2014-11-01
Evidence suggests that physical self-concept is associated with physical activity in children and adolescents, but no systematic review of this literature has been conducted. The primary aim of this systematic review and meta-analysis was to determine the strength of associations between physical activity and physical self-concept (general and sub-domains) in children and adolescents. The secondary aim was to examine potential moderators of the association between physical activity and physical self-concept. A systematic search of six electronic databases (MEDLINE, CINAHL, SPORTDiscus, ERIC, Web of Science and Scopus) with no date restrictions was conducted. Random effects meta-analyses with correction for measurement were employed. The associations between physical activity and general physical self-concept and sub-domains were explored. A risk of bias assessment was conducted by two reviewers. The search identified 64 studies to be included in the meta-analysis. Thirty-three studies addressed multiple outcomes of general physical self-concept: 28 studies examined general physical self-concept, 59 examined perceived competence, 25 examined perceived fitness, and 55 examined perceived appearance. Perceived competence was most strongly associated with physical activity (r = 0.30, 95% CI 0.24-0.35, p < 0.001), followed by perceived fitness (r = 0.26, 95% CI 0.20-0.32, p < 0.001), general physical self-concept (r = 0.25, 95% CI 0.16-0.34, p < 0.001) and perceived physical appearance (r = 0.12, 95% CI 0.08-0.16, p < 0.001). Sex was a significant moderator for general physical self-concept (p < 0.05), and age was a significant moderator for perceived appearance (p ≤ 0.01) and perceived competence (p < 0.05). No significant moderators were found for perceived fitness. Overall, a significant association has been consistently demonstrated between physical activity and physical self-concept and its various sub-domains in children and adolescents. Age and sex are key moderators of the association between physical activity and physical self-concept.
Maia, Fabiana-Barros-Marinho; Sampaio, Fábio-Correia; Freitas, Cláudia-Helena-Soares-de Morais; Forte, Franklin-Delano-Soares
2018-01-01
Background This study aimed to explore the association between tooth loss and social determinants, health self-perceptions, OIDP and self-concept of dental treatment need in middle-aged adults with diabetes and hypertension. Material and Methods A cross-sectional study was developed with 212 hypertensive and diabetic middle-aged adults (50-65 years). Data were collected from clinical examinations (DMFT) and a questionnaire regarding socioeconomic status, dental health assistance, self-perceptions of oral and general health, OIDP, and the self-concept of dental treatment need. Tooth loss was dichotomized considering the cutoff point of 12 (Model I) or 24 missing teeth (Model II). Data were analyzed using Chi-square, Fisher’s exact test and logistic regression (p≤0.05). Results Tooth loss was significantly associated with variables such as last dental visit, reason for dental visit, OIDP, perception of dental treatment need, and general self-perception (Model I). Schooling, last dental visit, oral health self-perception and perception of dental treatment need were significantly associated with tooth loss in the Model II. When Model 1 and 2 were adjusted, they demonstrated that last dental visit and perception of dental treatment need were predictor variables. Conclusions The annual dental visit and the self-concept of dental treatment need were associated with tooth loss, demonstrating that these variables reduce the tooth loss prevalence. Key words:Access /barriers to care, Dental treatment, Geriatric dentistry. PMID:29476679
Real-time improvement of continuous glucose monitoring accuracy: the smart sensor concept.
Facchinetti, Andrea; Sparacino, Giovanni; Guerra, Stefania; Luijf, Yoeri M; DeVries, J Hans; Mader, Julia K; Ellmerer, Martin; Benesch, Carsten; Heinemann, Lutz; Bruttomesso, Daniela; Avogaro, Angelo; Cobelli, Claudio
2013-04-01
Reliability of continuous glucose monitoring (CGM) sensors is key in several applications. In this work we demonstrate that real-time algorithms can render CGM sensors smarter by reducing their uncertainty and inaccuracy and improving their ability to alert for hypo- and hyperglycemic events. The smart CGM (sCGM) sensor concept consists of a commercial CGM sensor whose output enters three software modules, able to work in real time, for denoising, enhancement, and prediction. These three software modules were recently presented in the CGM literature, and here we apply them to the Dexcom SEVEN Plus continuous glucose monitor. We assessed the performance of the sCGM on data collected in two trials, each containing 12 patients with type 1 diabetes. The denoising module improves the smoothness of the CGM time series by an average of ∼57%, the enhancement module reduces the mean absolute relative difference from 15.1 to 10.3%, increases by 12.6% the pairs of values falling in the A-zone of the Clarke error grid, and finally, the prediction module forecasts hypo- and hyperglycemic events an average of 14 min ahead of time. We have introduced and implemented the sCGM sensor concept. Analysis of data from 24 patients demonstrates that incorporation of suitable real-time signal processing algorithms for denoising, enhancement, and prediction can significantly improve the performance of CGM applications. This can be of great clinical impact for hypo- and hyperglycemic alert generation as well in artificial pancreas devices.
Teaching and Learning the Concept of Chemical Bonding
ERIC Educational Resources Information Center
Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Taber, Keith S.
2010-01-01
Chemical bonding is one of the key and basic concepts in chemistry. The learning of many of the concepts taught in chemistry, in both secondary schools as well as in the colleges, is dependent upon understanding fundamental ideas related to chemical bonding. Nevertheless, the concept is perceived by teachers, as well as by learners, as difficult,…
Automatic Scaffolding and Measurement of Concept Mapping for EFL Students to Write Summaries
ERIC Educational Resources Information Center
Yang, Yu-Fen
2015-01-01
An incorrect concept map may obstruct a student's comprehension when writing summaries if they are unable to grasp key concepts when reading texts. The purpose of this study was to investigate the effects of automatic scaffolding and measurement of three-layer concept maps on improving university students' writing summaries. The automatic…
The Power of Examples: Illustrative Examples Enhance Conceptual Learning of Declarative Concepts
ERIC Educational Resources Information Center
Rawson, Katherine A.; Thomas, Ruthann C.; Jacoby, Larry L.
2015-01-01
Declarative concepts (i.e., key terms with short definitions of the abstract concepts denoted by those terms) are a common kind of information that students are expected to learn in many domains. A common pedagogical approach for supporting learning of declarative concepts involves presenting students with concrete examples that illustrate how the…
The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration
Duda, Kevin R.; Vasquez, Rebecca A.; Middleton, Akil J.; Hansberry, Mitchell L.; Newman, Dava J.; Jacobs, Shane E.; West, John J.
2015-01-01
The “Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration” is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a “viscous resistance” during movements against a specified direction of “down”—initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from “down” initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation. PMID:25914631
ERIC Educational Resources Information Center
Ersanli, Ceylan Yangin
2016-01-01
This study aims to map the cognitive structure of pre-service English language (EL) teachers about three key concepts related to approaches and methods in language teaching so as to discover their learning process and misconceptions. The study involves both qualitative and quantitative data. The researcher administrated a Word Association Test…
NASA X-34 Technology in Motion
NASA Technical Reports Server (NTRS)
Beech, Geoffrey; Chandler, Kristie
1997-01-01
The X-34 technology development program is a joint industry/government project to develop, test, and operate a small, fully-reusable hypersonic flight vehicle. The objective is to demonstrate key technologies and operating concepts applicable to future reusable launch vehicles. Integrated in the vehicle are various systems to assure successful completion of mission objectives, including the Main Propulsion System (MPS). NASA-Marshall Space Flight Center (MSFC) is responsible for developing the X-34's MPS including the design and complete build package for the propulsion system components. The X-34 will be powered by the Fastrac Engine, which is currently in design and development at NASA-MSFC. Fastrac is a single-stage main engine, which burns a mixture of liquid oxygen (LOX) and kerosene(RP-1). The interface between the MPS and Fastrac engine are critical for proper system operation and technologies applicable to future reusable launch vehicles. Deneb's IGRIP software package with the Dynamic analysis option provided a key tool for conducting studies critical to this interface as well as a mechanism to drive the design of the LOX and RP-1 feedlines. Kinematic models were created for the Fastrac Engine and the feedlines for various design concepts. Based on the kinematic simulation within Envision, design and joint limits were verified and system interference controlled. It was also critical to the program to evaluate the effect of dynamic loads visually, providing a verification tool for dynamic analysis and in some cases uncovering areas that had not been considered. Deneb's software put the X-34 technology in motion and has been a key factor in facilitating the strenuous design schedule.
Techniques for Engaging the Public in Planetary Science
NASA Astrophysics Data System (ADS)
Shupla, Christine; Shaner, Andrew; Smith Hackler, Amanda
2017-10-01
Public audiences are often curious about planetary science. Scientists and education and public engagement specialists can leverage this interest to build scientific literacy. This poster will highlight research-based techniques the authors have tested with a variety of audiences, and are disseminating to planetary scientists through trainings.Techniques include:Make it personal. Audiences are interested in personal stories, which can capture the excitement, joy, and challenges that planetary scientists experience in their research. Audiences can learn more about the nature of science by meeting planetary scientists and hearing personal stories about their motivations, interests, and how they conduct research.Share relevant connections. Most audiences have very limited understanding of the solar system and the features and compositions of planetary bodies, but they enjoy learning about those objects they can see at night and factors that connect to their culture or local community.Demonstrate concepts. Some concepts can be clarified with analogies, but others can be demonstrated or modeled with materials. Demonstrations that are messy, loud, or that yield surprising results are particularly good at capturing an audience’s attention, but if they don’t directly relate to the key concept, they can serve as a distraction.Give them a role. Audience participation is an important engagement technique. In a presentation, scientists can invite the audience to respond to questions, pause to share their thoughts with a neighbor, or vote on an answer. Audiences can respond physically to prompts, raising hands, pointing, or clapping, or even moving to different locations in the room.Enable the audience to conduct an activity. People learn best by doing and by teaching others; simple hands-on activities in which the audience is discovering something themselves can be extremely effective at engaging audiences.This poster will cite examples of each technique, resources that can help planetary scientists develop presentations, demonstrations, and activities for public engagement events, and the research that supports the use of these techniques.
NASA Technical Reports Server (NTRS)
Mulqueen, J. A.; Addona, B. M.; Gwaltney, D. A.; Holt, K. A.; Hopkins, R. C.; Matis, J. A.; McRight, P. S.; Popp, C. G.; Sutherlin, S. G.; Thomas, H. D.;
2012-01-01
The primary purpose of this study was to define a point-of-departure prephase A mission concept for the cryogenic propellant storage and transfer technology demonstration mission to be conducted by the NASA Office of the Chief Technologist (OCT). The mission concept includes identification of the cryogenic propellant management technologies to be demonstrated, definition of a representative mission timeline, and definition of a viable flight system design concept. The resulting mission concept will serve as a point of departure for evaluating alternative mission concepts and synthesizing the results of industry- defined mission concepts developed under the OCT contracted studies
RemoveDEBRIS: An in-orbit active debris removal demonstration mission
NASA Astrophysics Data System (ADS)
Forshaw, Jason L.; Aglietti, Guglielmo S.; Navarathinam, Nimal; Kadhem, Haval; Salmon, Thierry; Pisseloup, Aurélien; Joffre, Eric; Chabot, Thomas; Retat, Ingo; Axthelm, Robert; Barraclough, Simon; Ratcliffe, Andrew; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.
2016-10-01
Since the beginning of the space era, a significant amount of debris has progressively been generated. Most of the objects launched into space are still orbiting the Earth and today these objects represent a threat as the presence of space debris incurs risk of collision and damage to operational satellites. A credible solution has emerged over the recent years: actively removing debris objects by capturing them and disposing of them. This paper provides an update to the mission baseline and concept of operations of the EC FP7 RemoveDEBRIS mission drawing on the expertise of some of Europe's most prominent space institutions in order to demonstrate key active debris remove (ADR) technologies in a low-cost ambitious manner. The mission will consist of a microsatellite platform (chaser) that ejects 2 CubeSats (targets). These targets will assist with a range of strategically important ADR technology demonstrations including net capture, harpoon capture and vision-based navigation using a standard camera and LiDAR. The chaser will also host a drag sail for orbital lifetime reduction. The mission baseline has been revised to take into account feedback from international and national space policy providers in terms of risk and compliance and a suitable launch option is selected. A launch in 2017 is targeted. The RemoveDEBRIS mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.
Organization culture and the marketing concept: diagnostic keys for hospitals.
Arnold, D R; Capella, L M; Sumrall, D A
1987-03-01
For successful adaptation to changing environmental conditions, hospital organizational cultures must incorporate the marketing concept to enhance flexibility and orientation toward the external environment. The authors propose procedures for diagnosing a hospital's culture and determining how well it has adopted and implemented the marketing concept.
Gliomagenesis and neural stem cells: Key role of hypoxia and concept of tumor "neo-niche".
Diabira, Sylma; Morandi, Xavier
2008-01-01
Gliomas represent the most common primary brain tumors and the most devastating pathology of the central nervous system. Despite progress in conventional treatments, the prognosis remains dismal. Recent studies have suggested that a glioma brain tumor may arise from a "cancer stem cell". To understand this theory we summarize studies of the concepts of neural stem cell, and its specialized microenvironment, namely the niche which can regulate balanced self-renewal, differentiation and stem cell quiescence. We summarize the molecular mechanism known or postulated to be involved in the disregulation of normal stem cells features allowing them to undergo neoplasic transformation. We seek data pointing out the key role of hypoxia in normal homeostasis of stem cells and in the initiation, development and aggressiveness of gliomas. We develop the concept of tumor special microenvironment and we propose the new concept of neo-niche, surrounding the glioma, in which hypoxia could be a key factor to recruit and deregulate different stem cells for gliogenesis process. Substantial advances in treatment would come from obtaining better knowledge of molecular impairs of this disease.
... have it? For more information... Acknowledgments Concept 15 : DNA and proteins are key molecules of the cell nucleus. Learn the basic chemistry of DNA and proteins. Concept 27 : Mutations are changes in ...
What Is Phenylketonuria (PKU)?
... have it? For more information... Acknowledgments Concept 15 : DNA and proteins are key molecules of the cell nucleus. Learn the basic chemistry of DNA and proteins. Concept 27 : Mutations are changes in ...
The NASA Advanced Communications Technology Satellite (ACTS)
NASA Astrophysics Data System (ADS)
Beck, G. A.
1984-10-01
Forecasts indicate that a saturation of the capacity of the satellite communications service will occur in the U.S. domestic market by the early 1990s. In order to prevent this from happening, advanced technologies must be developed. NASA has been concerned with such a development. One key is the exploitation of the Ka-band (30/20 GHz), which is much wider than C- and Ku-bands together. Another is the use of multiple narrow antenna beams in the satellite to achieve large frequency reuse factors with very high antenna gains. NASA has developed proof-of-concept hardware components which form the basis for a flight demonstration. The Advanced Communications Technology Satellite (ACTS) system will provide this demonstration. Attention is given to the ACTS Program definition, the ACTS Flight System, the Multibeam Communications Package, and the spacecraft bus.
ERIC Educational Resources Information Center
Abraham, Joel K.; Perez, Kathryn E.; Price, Rebecca M.
2014-01-01
Despite the impact of genetics on daily life, biology undergraduates understand some key genetics concepts poorly. One concept requiring attention is dominance, which many students understand as a fixed property of an allele or trait and regularly conflate with frequency in a population or selective advantage. We present the Dominance Concept…
ERIC Educational Resources Information Center
Zamary, Amanda; Rawson, Katherine A.
2018-01-01
Students in many courses are commonly expected to learn declarative concepts, which are abstract concepts denoted by key terms with short definitions that can be applied to a variety of scenarios as reported by Rawson et al. ("Educational Psychology Review" 27:483-504, 2015). Given that declarative concepts are common and foundational in…
ERIC Educational Resources Information Center
Green, David A.; Loertscher, Jennifer; Minderhout, Vicky; Lewis, Jennifer E.
2017-01-01
The process of identifying threshold concepts invites experts to reflect on their discipline in a new way with the ultimate goal of improving learning and teaching. During a workshop to identify threshold concepts in biochemistry, we asked a group of natural scientists to explore "signification," a threshold concept from the humanities,…
Branding a School-Based Campaign Combining Healthy Eating and Eco-friendliness.
Folta, Sara C; Koch-Weser, Susan; Tanskey, Lindsay A; Economos, Christina D; Must, Aviva; Whitney, Claire; Wright, Catherine M; Goldberg, Jeanne P
2018-02-01
To develop a branding strategy for a campaign to improve the quality of foods children bring from home to school, using a combined healthy eating and eco-friendly approach and for a control campaign focusing solely on nutrition. Formative research was conducted with third- and fourth-grade students in lower- and middle-income schools in Greater Boston and their parents. Phase I included concept development focus groups. Phase II included concept testing focus groups. A thematic analysis approach was used to identify key themes. In phase I, the combined nutrition and eco-friendly messages resonated; child preference emerged as a key factor affecting food from home. In phase II, key themes included fun with food and an element of mystery. Themes were translated into a concept featuring food face characters. Iterative formative research provided information necessary to create a brand that appealed to a specified target audience. Copyright © 2017. Published by Elsevier Inc.
Informed consent comprehension in African research settings.
Afolabi, Muhammed O; Okebe, Joseph U; McGrath, Nuala; Larson, Heidi J; Bojang, Kalifa; Chandramohan, Daniel
2014-06-01
Previous reviews on participants' comprehension of informed consent information have focused on developed countries. Experience has shown that ethical standards developed on Western values may not be appropriate for African settings where research concepts are unfamiliar. We undertook this review to describe how informed consent comprehension is defined and measured in African research settings. We conducted a comprehensive search involving five electronic databases: Medline, Embase, Global Health, EthxWeb and Bioethics Literature Database (BELIT). We also examined African Index Medicus and Google Scholar for relevant publications on informed consent comprehension in clinical studies conducted in sub-Saharan Africa. 29 studies satisfied the inclusion criteria; meta-analysis was possible in 21 studies. We further conducted a direct comparison of participants' comprehension on domains of informed consent in all eligible studies. Comprehension of key concepts of informed consent varies considerably from country to country and depends on the nature and complexity of the study. Meta-analysis showed that 47% of a total of 1633 participants across four studies demonstrated comprehension about randomisation (95% CI 13.9-80.9%). Similarly, 48% of 3946 participants in six studies had understanding about placebo (95% CI 19.0-77.5%), while only 30% of 753 participants in five studies understood the concept of therapeutic misconception (95% CI 4.6-66.7%). Measurement tools for informed consent comprehension were developed with little or no validation. Assessment of comprehension was carried out at variable times after disclosure of study information. No uniform definition of informed consent comprehension exists to form the basis for development of an appropriate tool to measure comprehension in African participants. Comprehension of key concepts of informed consent is poor among study participants across Africa. There is a vital need to develop a uniform definition for informed consent comprehension in low literacy research settings in Africa. This will be an essential step towards developing appropriate tools that can adequately measure informed consent comprehension. This may consequently suggest adequate measures to improve the informed consent procedure. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ding, Lin
2014-02-01
Discipline-based science concept assessments are powerful tools to measure learners' disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA) has been broadly used to gauge student conceptions of key electricity and magnetism (E&M) topics in college-level introductory physics courses. Differing from typical concept inventories that focus only on one topic of a subject area, BEMA covers a broad range of topics in the electromagnetism domain. In spite of this fact, prior studies exclusively used a single aggregate score to represent individual students' overall understanding of E&M without explicating the construct of this assessment. Additionally, BEMA has been used to compare traditional physics courses with a reformed course entitled Matter and Interactions (M&I). While prior findings were in favor of M&I, no empirical evidence was sought to rule out possible differential functioning of BEMA that may have inadvertently advantaged M&I students. In this study, we used Rasch analysis to seek two missing pieces regarding the construct and differential functioning of BEMA. Results suggest that although BEMA items generally can function together to measure the same construct of application and analysis of E&M concepts, several items may need further revision. Additionally, items that demonstrate differential functioning for the two courses are detected. Issues such as item contextual features and student familiarity with question settings may underlie these findings. This study highlights often overlooked threats in science concept assessments and provides an exemplar for using evidence-based reasoning to make valid inferences and arguments.
... have it? For more information... Acknowledgments Concept 15 : DNA and proteins are key molecules of the cell nucleus. Learn the basic chemistry of DNA and proteins. Concept 27 : Mutations are changes in ...
NASA Technical Reports Server (NTRS)
Johnson, Charles W.
2011-01-01
The vision of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) Project is "A global transportation system which allows routine access for all classes of UAS." The goal of the UAS Integration in the NAS Project is to "contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS." This goal will be accomplished through a two-phased approach based on development of system-level integration of key concepts, technologies and/or procedures, and demonstrations of integrated capabilities in an operationally relevant environment. Phase 1 will take place the first two years of the Project and Phase 2 will take place the following three years. The Phase 1 and 2 technical objectives are: Phase 1: Developing a gap analysis between current state of the art and the Next Generation Air Transportation System (NextGen) UAS Concept of Operations . Validating the key technical areas identified by this Project . Conducting initial modeling, simulation, and flight testing activities . Completing Sub-project Phase 1 deliverables (spectrum requirements, comparative analysis of certification methodologies, etc.) and continue Phase 2 preparation (infrastructure, tools, etc.) Phase 2: Providing regulators with a methodology for developing airworthiness requirements for UAS, and data to support development of certifications standards and regulatory guidance . Providing systems-level, integrated testing of concepts and/or capabilities that address barriers to routine access to the NAS. Through simulation and flight testing, address issues including separation assurance, communications requirements, and human systems integration in operationally relevant environments. The UAS in the NAS Project will demonstrate solutions in specific technology areas, which will address operational/safety issues related to UAS access to the NAS. Since the resource allocation for this Project is limited ($150M over the five years), the focus is on reducing the technical barriers where NASA has unique capabilities. As a result, technical areas, such as Sense and Avoid (SAA) and beyond line of sight command and control will not be addressed. While these are critical barriers to UAS access, currently, there is a great deal of global effort being exercised to address these challenge areas. Instead, specific technology development in areas where there is certainty that NASA can advance the research to high technology readiness levels will be the Project's focus. Specific sub-projects include Separation Assurance, Human Systems Integration, Communications, Certification, and Integrated Test and Evaluation. Each sub-project will transfer technologies to relevant key stakeholders and decision makers through research transition teams, technology forums, or through other analogous means.
A concept analysis of befriending.
Balaam, Marie-Clare
2015-01-01
To report an analysis of the concept of befriending. Befriending is an intervention used in a range of nursing, health and social care settings to provide support for individuals who are socially isolated or lack social support. However, in many cases befriending and its impact remains poorly understood and under researched. Concept analysis provides clarification of the concept and basis for further research and development. Concept analysis. AMED, Psyc Articles, Psych Info, Medline, MedlinePlus, Social Science Index and CINHAL databases were searched for literature published between 1993-2013 using the search term Befriending. Walker and Avant's method of concept analysis was chosen. This combined with insights from Risjord's work produced a theoretical concept analysis which focused on the concept in peer reviewed academic literature. There are currently several ways the mechanisms of befriending and its effects on individuals and communities are understood. It is possible however to identify key attributes which define the concept and differentiate it from related concepts, such as peer support and mentoring. Key attributes are that it is an organised intervention, involving the creation of an emotionally connected friend-like relationship, where there is a negotiation of power. This concept analysis has clarified current understandings and uses of befriending. It provides the basis for widening the focus of research into the effectiveness and impact of befriending on those who are befriended, those who befriend and the communities where befriending takes place. © 2014 John Wiley & Sons Ltd.
Gossip Revisited: A Game for Concept Review.
ERIC Educational Resources Information Center
Edwards, Barbara
1989-01-01
Describes a class activity based on the game of "Gossip" in which a group of students paraphrases a major concept in an instructional unit, then passes only the paraphrase to the next group. Notes that this activity encourages critical thinking and helps review and summarize key lesson concepts. (RS)
Preservice Mathematics Teachers' Conceptions of and Approaches to Learning: A Phenomenographic Study
ERIC Educational Resources Information Center
Erdogan, Ahmet
2012-01-01
Knowing the preservice mathematics teachers' conceptions of learning is one of the key factors of taking significant educational measures regarding the future. The purpose of this study was to investigate preservice mathematics teachers' conceptions of and approaches to learning. The phenomenographic qualitative research method was used to…
To support a paradigm shift in regulatory toxicology testing and risk assessment, the Adverse Outcome Pathway (AOP) concept has recently been proposed. This concept is similar to that for Mode of Action (MOA), describing a sequence of measurable key events triggered by a molecula...
Developing an Action Concept Inventory
ERIC Educational Resources Information Center
McGinness, Lachlan P.; Savage, C. M.
2016-01-01
We report on progress towards the development of an Action Concept Inventory (ACI), a test that measures student understanding of action principles in introductory mechanics and optics. The ACI also covers key concepts of many-paths quantum mechanics, from which classical action physics arises. We used a multistage iterative development cycle for…
Learning Portals: Analyzing Threshold Concept Theory for LIS Education
ERIC Educational Resources Information Center
Tucker, Virginia M.; Weedman, Judith; Bruce, Christine S.; Edwards, Sylvia L.
2014-01-01
This paper explores the theoretical framework of threshold concepts and its potential for LIS education. Threshold concepts are key ideas, often troublesome and counterintuitive, that are critical to profound understanding of a domain. Once understood, they allow mastery of significant aspects of the domain, opening up new, previously inaccessible…
The ESA Nanosatellite Beacons for Space Weather Monitoring Study
NASA Astrophysics Data System (ADS)
Hapgood, M.; Eckersley, S.; Lundin, R.; Kluge, M.
2008-09-01
This paper will present final results from this ESA-funded study that has investigated how current and emerging concepts for nanosats may be used to monitor space weather conditions and provide improved access to data needed for space weather services. The study has reviewed requirements developed in previous ESA space weather studies to establish a set of service and measurements requirements appropriate to nanosat solutions. The output is conveniently represented as a set of five distinct classes of nanosat constellations, each in different orbit locations and which can address a specific group of measurement requirements. One example driving requirement for several of the constellations was the need for real-time data reception. Given this background, the study then iterated a set of instrument and spacecraft solutions to address each of the nanosat constellations from the requirements. Indeed, iteration has proved to be a critical aspect of the study. The instrument solutions have driven a refinement of requirements through assessment of whether or not the physical parameters to be measured dictate instrument components too large for a nanosat. In addition, the study has also reviewed miniaturization trends for instruments relevant to space weather monitoring by nanosats, looking at the near, mid and far-term timescales. Within the spacecraft solutions the study reviewed key technology trends relevant to space weather monitoring by nanosats: (a) micro and nano-technology devices for spacecraft communications, navigation, propulsion and power, and (b) development and flight experience with nanosats for science and for engineering demonstration. These requirements and solutions were then subject to an iterative system and mission analysis including key mission design issues (e.g. launch/transfer, mission geometry, instrument accommodation, numbers of spacecraft, communications architectures, de-orbit, nanosat reliability and constellation robustness) and the impact of nanosat fundamental limitations (e.g. mass, volume/size, power, communications). As a result, top-level Strawman mission concepts were developed for each constellation, and ROM costs were derived for programme development, operation and maintenance over a ten-year period. Nanosat reliability and constellation robustness were shown to be a key driver in deriving mission costs. In parallel with the mission analysis the study results have been reviewed to identify key issues that determine the prospects for a space weather nanosat programme and to make recommendations on measures to enable implementation of such a programme. As a follow-on to this study, a student MSc project was initiated by Astrium at Cranfield University to analyse a potential space weather precursor demonstration mission in GTO (one of the recommendations from this ESA study), composing of a reduced constellation of nanosats, launched on ASAP or some other low cost method. The demonstration would include: 1/ Low cost multiple manufacture techniques for a fully industrial nanosat constellation programme 2/ Real time datalinks and fully operational mission for space weather 3/ Miniaturised payloads to fit in a nanosat for space weather monitoring: 4/ Other possible demonstrations of advanced technology The aim was to comply with ESA demonstration mission (i.e. PROBA-type) requirements, to be representative on issues such as cost and risk
Webb, Lucy
2012-07-01
This article reviews key arguments around evidence-based practice and outlines the methodological demands for effective adoption of recovery model principles. The recovery model is outlined and demonstrated as compatible with current needs in substance misuse service provision. However, the concepts of evidence-based practice and the recovery model are currently incompatible unless the current value system of evidence-based practice changes to accommodate the methodologies demanded by the recovery model. It is suggested that critical health psychology has an important role to play in widening the scope of evidence-based practice to better accommodate complex social health needs.
The LHCb Grid Simulation: Proof of Concept
NASA Astrophysics Data System (ADS)
Hushchyn, M.; Ustyuzhanin, A.; Arzymatov, K.; Roiser, S.; Baranov, A.
2017-10-01
The Worldwide LHC Computing Grid provides access to data and computational resources to analyze it for researchers with different geographical locations. The grid has a hierarchical topology with multiple sites distributed over the world with varying number of CPUs, amount of disk storage and connection bandwidth. Job scheduling and data distribution strategy are key elements of grid performance. Optimization of algorithms for those tasks requires their testing on real grid which is hard to achieve. Having a grid simulator might simplify this task and therefore lead to more optimal scheduling and data placement algorithms. In this paper we demonstrate a grid simulator for the LHCb distributed computing software.
Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris
2015-07-17
Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation.
Anomaly detection in reconstructed quantum states using a machine-learning technique
NASA Astrophysics Data System (ADS)
Hara, Satoshi; Ono, Takafumi; Okamoto, Ryo; Washio, Takashi; Takeuchi, Shigeki
2014-02-01
The accurate detection of small deviations in given density matrices is important for quantum information processing. Here we propose a method based on the concept of data mining. We demonstrate that the proposed method can more accurately detect small erroneous deviations in reconstructed density matrices, which contain intrinsic fluctuations due to the limited number of samples, than a naive method of checking the trace distance from the average of the given density matrices. This method has the potential to be a key tool in broad areas of physics where the detection of small deviations of quantum states reconstructed using a limited number of samples is essential.
Multichannel Baseband Processor for Wideband CDMA
NASA Astrophysics Data System (ADS)
Jalloul, Louay M. A.; Lin, Jim
2005-12-01
The system architecture of the cellular base station modem engine (CBME) is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA) signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.
Xu, Xiaoying; Lewis, Jennifer E.; Loertscher, Jennifer; Minderhout, Vicky; Tienson, Heather L.
2017-01-01
Multiple-choice assessments provide a straightforward way for instructors of large classes to collect data related to student understanding of key concepts at the beginning and end of a course. By tracking student performance over time, instructors receive formative feedback about their teaching and can assess the impact of instructional changes. The evidence of instructional effectiveness can in turn inform future instruction, and vice versa. In this study, we analyzed student responses on an optimized pretest and posttest administered during four different quarters in a large-enrollment biochemistry course. Student performance and the effect of instructional interventions related to three fundamental concepts—hydrogen bonding, bond energy, and pKa—were analyzed. After instructional interventions, a larger proportion of students demonstrated knowledge of these concepts compared with data collected before instructional interventions. Student responses trended from inconsistent to consistent and from incorrect to correct. The instructional effect was particularly remarkable for the later three quarters related to hydrogen bonding and bond energy. This study supports the use of multiple-choice instruments to assess the effectiveness of instructional interventions, especially in large classes, by providing instructors with quick and reliable feedback on student knowledge of each specific fundamental concept. PMID:28188280
Blakely-McClure, Sarah J; Ostrov, Jamie M
2016-02-01
When studying adolescent development, it is important to consider two key areas that are salient for teens, which are self-concept and peer relations. A secondary analysis of the National Institute of Health and Human Development Study of Early Child Care and Youth Development was conducted to examine the prospective bidirectional associations between self-concept and peer relations. To date, how social development broadly and peer relations in particular (e.g., relational aggression and victimization) affect self-concept domains is not fully understood. Using a large sample (N = 1063; 532 girls; M = 11.14 years; SD = .59) with multiple informants, the present study examined whether fifth grade relational aggression and sixth grade relational victimization was associated with adolescent self-concept in three key domains (i.e., academic, sports, physical appearance). A significant direct effect emerged, such that relational aggression in middle childhood was associated with decreases in academic self-concept and increases in sports self-concept in adolescence. Analyses also revealed that having higher levels of domain specific self-concept led to decreases in relational aggression across the transition to adolescence. The findings highlight the importance of examining bidirectional prospective associations between relational aggression, relational victimization, and domain specific self-concept. Implications for future research and clinical intervention are discussed.
Health Monitoring for Airframe Structural Characterization
NASA Technical Reports Server (NTRS)
Munns, Thomas E.; Kent, Renee M.; Bartolini, Antony; Gause, Charles B.; Borinski, Jason W.; Dietz, Jason; Elster, Jennifer L.; Boyd, Clark; Vicari, Larry; Ray, Asok;
2002-01-01
This study established requirements for structural health monitoring systems, identified and characterized a prototype structural sensor system, developed sensor interpretation algorithms, and demonstrated the sensor systems on operationally realistic test articles. Fiber-optic corrosion sensors (i.e., moisture and metal ion sensors) and low-cycle fatigue sensors (i.e., strain and acoustic emission sensors) were evaluated to validate their suitability for monitoring aging degradation; characterize the sensor performance in aircraft environments; and demonstrate placement processes and multiplexing schemes. In addition, a unique micromachined multimeasure and sensor concept was developed and demonstrated. The results show that structural degradation of aircraft materials could be effectively detected and characterized using available and emerging sensors. A key component of the structural health monitoring capability is the ability to interpret the information provided by sensor system in order to characterize the structural condition. Novel deterministic and stochastic fatigue damage development and growth models were developed for this program. These models enable real time characterization and assessment of structural fatigue damage.
Kinesthetic Activities for the Classroom
NASA Astrophysics Data System (ADS)
Mylott, Elliot; Dunlap, Justin; Lampert, Lester; Widenhorn, Ralf
2014-12-01
Educators have found that kinesthetic involvement in an experiment or demonstration can engage students in a powerful way.1-3 With that as our goal, we developed three activities that allow students to connect with and quantitatively explore key physics principles from mechanics with three fun physical challenges. By presenting these activities as competitions, we can challenge students to use what they know about the relevant physics to improve their performance and beat their own score or those of other students. Each activity uses an original, real-time data collecting program that offers students and educators a simple, clear method to demonstrate various physics concepts including: (1) impulse momentum, (2) center of mass (COM), and (3) kinematics. The user interface, written in LabVIEW, is intuitive to operate and only requires Vernier Force Plates,4 a Vernier LabQuest,5 a webcam, and a computer. In this article, we will describe each of these activities, all of which are well suited and readily available for other outreach events or classroom demonstrations.
Shim, Bong Sup; Chen, Wei; Doty, Chris; Xu, Chuanlai; Kotov, Nicholas A
2008-12-01
The idea of electronic yarns and textiles has appeared for quite some time, but their properties often do not meet practical expectations. In addition to chemicallmechanical durability and high electrical conductivity, important materials qualifications include weavablity, wearability, light weight, and "smart" functionalities. Here we demonstrate a simple process of transforming general commodity cotton threads into intelligent e-textiles using a polyelectrolyte-based coating with carbon nanotubes (CNTs). Efficient charge transport through the network of nanotubes (20 omega/cm) and the possibility to engineer tunneling junctions make them promising materials for many high-knowledge-content garments. Along with integrated humidity sensing, we demonstrate that CNT-cotton threads can be used to detect albumin, the key protein of blood, with high sensitivity and selectivity. Notwithstanding future challenges, these proof-of-concept demonstrations provide a direct pathway for the application of these materials as wearable biomonitoring and telemedicine sensors, which are simple, sensitive, selective, and versatile.
Thermally enhanced photoluminescence for heat harvesting in photovoltaics
Manor, Assaf; Kruger, Nimrod; Sabapathy, Tamilarasan; Rotschild, Carmel
2016-01-01
The maximal Shockley–Queisser efficiency limit of 41% for single-junction photovoltaics is primarily caused by heat dissipation following energetic-photon absorption. Solar-thermophotovoltaics concepts attempt to harvest this heat loss, but the required high temperatures (T>2,000 K) hinder device realization. Conversely, we have recently demonstrated how thermally enhanced photoluminescence is an efficient optical heat-pump that operates in comparably low temperatures. Here we theoretically and experimentally demonstrate such a thermally enhanced photoluminescence based solar-energy converter. Here heat is harvested by a low bandgap photoluminescent absorber that emits thermally enhanced photoluminescence towards a higher bandgap photovoltaic cell, resulting in a maximum theoretical efficiency of 70% at a temperature of 1,140 K. We experimentally demonstrate the key feature of sub-bandgap photon thermal upconversion with an efficiency of 1.4% at only 600 K. Experiments on white light excitation of a tailored Cr:Nd:Yb glass absorber suggest that conversion efficiencies as high as 48% at 1,500 K are in reach. PMID:27762271
Lasing in silicon–organic hybrid waveguides
Korn, Dietmar; Lauermann, Matthias; Koeber, Sebastian; Appel, Patrick; Alloatti, Luca; Palmer, Robert; Dumon, Pieter; Freude, Wolfgang; Leuthold, Juerg; Koos, Christian
2016-01-01
Silicon photonics enables large-scale photonic–electronic integration by leveraging highly developed fabrication processes from the microelectronics industry. However, while a rich portfolio of devices has already been demonstrated on the silicon platform, on-chip light sources still remain a key challenge since the indirect bandgap of the material inhibits efficient photon emission and thus impedes lasing. Here we demonstrate a class of infrared lasers that can be fabricated on the silicon-on-insulator (SOI) integration platform. The lasers are based on the silicon–organic hybrid (SOH) integration concept and combine nanophotonic SOI waveguides with dye-doped organic cladding materials that provide optical gain. We demonstrate pulsed room-temperature lasing with on-chip peak output powers of up to 1.1 W at a wavelength of 1,310 nm. The SOH approach enables efficient mass-production of silicon photonic light sources emitting in the near infrared and offers the possibility of tuning the emission wavelength over a wide range by proper choice of dye materials and resonator geometry. PMID:26949229
ERIC Educational Resources Information Center
Koponen, Ismo; Nousiainen, Maija
2013-01-01
Good conceptual understanding of physics is based on understanding what the key concepts are and how they are related. This kind of understanding is especially important for physics teachers in planning how and in what order to introduce concepts in teaching; connections which tie concepts to each other give direction of progress--there is "flux…
ERIC Educational Resources Information Center
Verbickas, Sarah
2002-01-01
Introduces the Classroom Space project aimed at revitalizing science education at Key Stages 3 and 4 by using exciting examples from Space Science and Astronomy to illustrate key science concepts. (Author/YDS)
Health care in the developing world: the role of economists and economics.
Lee, K
1983-01-01
This paper does not address itself to high theory or to complex methodologies; nor does it offer any detailed illumination of key economic concepts. Rather, it focuses on the role of economists and economics (not the same thing) in the formulation of health policies, and in influencing an evaluation of health strategies appropriate to the requirements of the developing world. The paper argues that the 'climate' has changed sufficiently in the developing world to promote a close interest in the economics of health and health care. Evidence exists of a growing willingness to employ economists and economic analysis to resource allocation issues within the health sector. Accordingly, a glossary of economic concepts in presented to demonstrate that economics does possess certain ideas, distinct from other disciplines, which can be of considerable value to health planners and health managers alike. The text also sets out, in tabular form, many of the key questions that should be of close interest to policy-makers, and indicates the economic concepts and techniques that can be applied. At the same time, it is noted that there are very real conceptual and methodological problems likely to be faced by those wishing to apply economic reasoning to the health sector. The paper then moves on from analysis to consider implementation, and investigates the political constraints and institutional barriers to the acceptance of economic analysis in the health sector. In the past, the nature of the economics of health has sometimes been considered improper, i.e. views have been expressed that services should be made available to those for whom they may be beneficial, as a matter of right without regard to economics.(ABSTRACT TRUNCATED AT 250 WORDS)
MacKean, Gail; Spragins, Wendy; L'Heureux, Laura; Popp, Janice; Wilkes, Chris; Lipton, Harold
2012-01-01
Family-centred care (FCC) is a key factor in increasing health and related system responsiveness to the needs of children and families; unfortunately, it is an unfamiliar service model in children's mental health. This critical review of the literature addresses three key questions: What are the concepts, characteristics and principles of FCC in the context of delivering mental health services to children? What are the enablers, barriers and demonstrated benefits to using a family-centred approach to care in children's mental health? And how can we facilitate moving an FCC model forward in children's mental health? A range of databases was searched for the years 2000–2011, for children ages zero to 18 years. Articles were selected for inclusion if a family-centred approach to care was articulated and the context was the intervention and treatment side of the mental healthcare system. This literature review uncovered a multiplicity of terms and concepts, all closely related to FCC. Two of the most frequently used terms in children's mental health are family centred and family focused, which have important differences, particularly in regard to how the family is viewed. Initial benefits to FCC include improved child and family management skills and function, an increased stability of living situation, improved cost-effectiveness, increased consumer and family satisfaction and improved child and family health and well-being. Significant challenges exist in evaluating FCC because of varying interpretations of its core concepts and applications. Nonetheless, a shared understanding of FCC in a children's mental health context seems possible, and examples can be found of best practices, enablers and strategies, including opportunities for innovative policy change to overcome barriers.
Thermally Simulated Testing of a Direct-Drive Gas-Cooled Nuclear Reactor
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Bragg-Sitton, Shannon; VanDyke, Melissa
2003-01-01
This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet-sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrical thermal simulation of reactor components and concepts.
Direct-Drive Gas-Cooled Reactor Power System: Concept and Preliminary Testing
NASA Technical Reports Server (NTRS)
Wright, S. A.; Lipinski, R. J.; Godfroy, T. J.; Bragg-Sitton, S. M.; VanDyke, M. K.
2002-01-01
This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet- sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrically heated testing of simulated reactor components.
Holloway, Laura; Humphrey, Louise; Heron, Louise; Pilling, Claire; Kitchen, Helen; Højbjerre, Lise; Strandberg-Larsen, Martin; Hansen, Brian Bekker
2014-07-22
Despite overall progress in treatment of autoimmune diseases, patients with systemic lupus erythematosus (SLE) experience many inflammatory symptoms representing an unmet medical need. This study aimed to create a conceptual model of the humanistic and economic burden of SLE, and review the patient-reported outcomes (PROs) used to measure such concepts in SLE clinical trials. A conceptual model for SLE was developed from structured review of published articles from 2007 to August 2013 identified from literature databases (MEDLINE, EMBASE, PsycINFO, EconLit) plus other sources (PROLabels, FDA/EMA websites, Clinicaltrials.gov). PROs targeting key symptoms/impacts were identified from the literature. They were reviewed in the context of available guidance and assessed for face and content validity and psychometric properties to determine appropriateness for use in SLE trials. The conceptual model identified fatigue, pain, cognition, daily activities, emotional well-being, physical/social functioning and work productivity as key SLE concepts. Of the 68 articles reviewed, 38 reported PRO data. From these and the other sources, 15 PROs were selected for review, including SLE-specific health-related quality of life (HRQoL) measures (n = 5), work productivity (n = 1), and generic measures of fatigue (n = 3), pain (n = 2), depression (n = 2) and HRQoL (n = 2). The Functional Assessment of Chronic Illness Therapy - Fatigue Scale (FACIT-Fatigue), Brief Pain Inventory (BPI-SF) and LupusQoL demonstrated the strongest face validity, conceptual coverage and psychometric properties measuring key concepts in the conceptual model. All PROs reviewed, except for three Lupus-specific measures, lacked qualitative SLE patient involvement during development. The Hospital Anxiety and Depression Scale (HADS), Short Form [36 item] Health Survey version 2 (SF-36v2), EuroQoL 5-dimensions (EQ-5D-3L and EQ-5D-5L) and Work Productivity and Activity Impairment Questionnaire: Lupus (WPAI:Lupus) showed suitability for SLE economic models. Based on the identification of key symptoms and impacts of SLE using a scientifically sound conceptual model, we conclude that SLE is a condition associated with high unmet need and considerable burden to patients. This review highlights the availability and need for disease-specific and generic patient-reported measures of relevant domains of disease signs and symptoms, HRQoL and work productivity, providing useful insight for SLE clinical trial design.
A Demonstration of the Analysis of Variance Using Physical Movement and Space
ERIC Educational Resources Information Center
Owen, William J.; Siakaluk, Paul D.
2011-01-01
Classroom demonstrations help students better understand challenging concepts. This article introduces an activity that demonstrates the basic concepts involved in analysis of variance (ANOVA). Students who physically participated in the activity had a better understanding of ANOVA concepts (i.e., higher scores on an exam question answered 2…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mawet, D.; Ruane, G.; Xuan, W.
2017-04-01
High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolutionmore » spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.« less
NASA Astrophysics Data System (ADS)
Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wallace, J. K.; Wang, J.; Vasisht, G.; Dekany, R.; Mennesson, B.; Choquet, E.; Delorme, J.-R.; Serabyn, E.
2017-04-01
High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.
Proposed biomimetic molecular sensor array for astrobiology applications
NASA Astrophysics Data System (ADS)
Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.
2001-08-01
A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.
I’m Positive, But I’m Negative
Lindegger, Graham; Slack, Catherine; Wallace, Melissa; Newman, Peter
2015-01-01
HIV vaccine trials (HVTs) are ethically complex, and sound informed consent processes should facilitate optimal decision-making for participants. This study aimed to explore representations of critical HVT-related concepts to enhance the consent process. Four focus group discussions were conducted with participants from key constituencies at a South African HVT site. Thematic analysis was employed to identify representations of key HVT-related concepts. The findings suggest that (potential) participants may negotiate multiple, competing versions of HVT-related concepts in a somewhat unrecognized process, which may have significant implications for the consent process. Stakeholders involved in consent and engagement activities at sites should be assisted to elicit, engage, and resolve competing representations of HVT-related concepts. More empirical research is needed to explore how such stakeholders address competing representations in their interactions with potential participants. PMID:25819758
Graphic representations: keys to disclose the codex of nature
NASA Astrophysics Data System (ADS)
Caramelo, Liliana; Gonçalves, Norberto; Pereira, Mário; Soares, Armando; Naia, Marco
2010-05-01
Undergraduate and university level students present some difficulties to understand and interpret many of the geosciences concepts, in particular those represented by vector and scalar fields. Our experience reveals that these difficulties are associated with a lack in the development of their abstraction and mental picturing abilities. On the other hand, these students have easy access to communication and information technology software which can be used to built graphic representations of experimental data, time series and vector and scalar fields. This transformation allows an easiest extraction, interpretation and summary of the most important characteristics in the data. There is already commercial and open source software with graphical tools that can be used for this purpose but commercial software packs with user friendly interfaces but their price is not negligible. Open source software can circumvent this difficulty even if, in general, their graphical user interface hasn't reached the desirable level of the commercial ones. We will show a simple procedure to generate an image from the data that characterizes the generation of the suitable images illustrating the key concepts in study, using a freeware code, exactly as it is presented to the students in our open teaching sessions to the general student community. Our experience demonstrated that the students are very enthusiastic using this approach. Furthermore, the use of this software can easily be adopted by teachers and students of secondary schools as part of curricular activities.
The Hands-On Optics Project: a demonstration of module 3-magnificent magnifications
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.
2014-07-01
The Hands-On Optics project offers an example of a set of instructional modules that foster active prolonged engagement. Developed by SPIE, OSA, and NOAO through funding from the U.S. National Science Foundation, the modules were originally designed for afterschool settings and museums. However, because they were based on national standards in mathematics, science, and technology, they were easily adapted for use in classrooms. The philosophy and implementation strategies of the six modules will be described as well as lessons learned in training educators. The modules were implementing with the help of optics industry professionals who served as expert volunteers to assist educators. A key element of the modules was that they were developed around an understanding of optics misconceptions and used culminating activities in each module as a form of authentic assessment. Thus student achievement could be measured by evaluating the actual product created by each student in applying key concepts, tools, and applications together at the end of each module. The program used a progression of disciplinary core concepts to build an integrated sequence and crosscutting ideas and practices to infuse the principles of the modern electro-optical field into the modules. Whenever possible, students were encouraged to experiment and to create, and to pursue inquiry-based approaches. The result was a program that had high appeal to regular as well as gifted students.
2007-12-01
impact of economic change might include a closing factory, market manipulation, the signing of international trade 17 treaties, or the global...Refinement System Intergration System Demonstration Concept Decision BA C LRIP Full-Rate Production & Deployment System Development and Demonstration...BLOCK III Concept Exploration Component Advanced Development Concept and Technology Development System Intergration System Demonstration Decision Review
Elastic Multi-scale Mechanisms: Computation and Biological Evolution.
Diaz Ochoa, Juan G
2018-01-01
Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.
Cooperativity governs the size and structure of biological interfaces.
Qin, Zhao; Buehler, Markus J
2012-11-15
Interfaces, defined as the surface of interactions between two parts of a system at a discontinuity, are very widely found in nature. While it is known that the specific structure of an interface plays an important role in defining its properties, it is less clear whether or not there exist universal scaling laws that govern the structural evolution of a very broad range of natural interfaces. Here we show that cooperativity of interacting elements, leading to great strength at low material use, is a key concept that governs the structural evolution of many natural interfaces. We demonstrate this concept for the cases of β-sheet proteins in spider silk, gecko feet, legs of caterpillars, and self-assembling of penguins into huddles, which range in scales from the submolecular to the macroscopic level. A general model is proposed that explains the size and structure of biological interfaces from a fundamental point of view. Copyright © 2012 Elsevier Ltd. All rights reserved.
Keller, Vera; Penman, Leigh T I
2015-03-01
Many historians have traced the accumulation of scientific archives via communication networks. Engines for communication in early modernity have included trade, the extrapolitical Republic of Letters, religious enthusiasm, and the centralization of large emerging information states. The communication between Samuel Hartlib, John Dury, Duke Friedrich III of Gottorf-Holstein, and his key agent in England, Frederick Clodius, points to a less obvious but no less important impetus--the international negotiations of smaller states. Smaller states shaped communication networks in an international (albeit politically and religiously slanted) direction. Their networks of negotiation contributed to the internationalization of emerging science through a political and religious concept of shared interest. While interest has been central to social studies of science, interest itself has not often been historicized within the history of science. This case study demonstrates the co-production of science and society by tracing how period concepts of interest made science international.
Availability: A Metric for Nucleic Acid Strand Displacement Systems
2016-01-01
DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks. PMID:26875531
Safety climate and culture: Integrating psychological and systems perspectives.
Casey, Tristan; Griffin, Mark A; Flatau Harrison, Huw; Neal, Andrew
2017-07-01
Safety climate research has reached a mature stage of development, with a number of meta-analyses demonstrating the link between safety climate and safety outcomes. More recently, there has been interest from systems theorists in integrating the concept of safety culture and to a lesser extent, safety climate into systems-based models of organizational safety. Such models represent a theoretical and practical development of the safety climate concept by positioning climate as part of a dynamic work system in which perceptions of safety act to constrain and shape employee behavior. We propose safety climate and safety culture constitute part of the enabling capitals through which organizations build safety capability. We discuss how organizations can deploy different configurations of enabling capital to exert control over work systems and maintain safe and productive performance. We outline 4 key strategies through which organizations to reconcile the system control problems of promotion versus prevention, and stability versus flexibility. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Entropy for the Complexity of Physiological Signal Dynamics.
Zhang, Xiaohua Douglas
2017-01-01
Recently, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of biological dynamics. Portable noninvasive medical devices are crucial to capture individual characteristics of biological dynamics. The wearable noninvasive medical devices and the analysis/management of related digital medical data will revolutionize the management and treatment of diseases, subsequently resulting in the establishment of a new healthcare system. One of the key features that can be extracted from the data obtained by wearable noninvasive medical device is the complexity of physiological signals, which can be represented by entropy of biological dynamics contained in the physiological signals measured by these continuous monitoring medical devices. Thus, in this chapter I present the major concepts of entropy that are commonly used to measure the complexity of biological dynamics. The concepts include Shannon entropy, Kolmogorov entropy, Renyi entropy, approximate entropy, sample entropy, and multiscale entropy. I also demonstrate an example of using entropy for the complexity of glucose dynamics.
Producing primate embryonic stem cells by somatic cell nuclear transfer.
Byrne, J A; Pedersen, D A; Clepper, L L; Nelson, M; Sanger, W G; Gokhale, S; Wolf, D P; Mitalipov, S M
2007-11-22
Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.
Hydra multiple head star sensor and its in-flight self-calibration of optical heads alignment
NASA Astrophysics Data System (ADS)
Majewski, L.; Blarre, L.; Perrimon, N.; Kocher, Y.; Martinez, P. E.; Dussy, S.
2017-11-01
HYDRA is EADS SODERN new product line of APS-based autonomous star trackers. The baseline is a multiple head sensor made of three separated optical heads and one electronic unit. Actually the concept which was chosen offers more than three single-head star trackers working independently. Since HYDRA merges all fields of view the result is a more accurate, more robust and completely autonomous multiple-head sensor, releasing the AOCS from the need to manage the outputs of independent single-head star trackers. Specific to the multiple head architecture and the underlying data fusion, is the calibration of the relative alignments between the sensor optical heads. The performance of the sensor is related to its estimation of such alignments. HYDRA design is first reminded in this paper along with simplification it can bring at system level (AOCS). Then self-calibration of optical heads alignment is highlighted through descriptions and simulation results, thus demonstrating the performances of a key part of HYDRA multiple-head concept.
MEMS Deformable Mirror Technology Development for Space-Based Exoplanet Detection
NASA Astrophysics Data System (ADS)
Bierden, Paul; Cornelissen, S.; Ryan, P.
2014-01-01
In the search for earth-like extrasolar planets that has become an important objective for NASA, a critical technology development requirement is to advance deformable mirror (DM) technology. High-actuator-count DMs are critical components for nearly all proposed coronagraph instrument concepts. The science case for exoplanet imaging is strong, and rapid recent advances in test beds with DMs made using microelectromechanical system (MEMS) technology have motivated a number of compelling mission concepts that set technical specifications for their use as wavefront controllers. This research will advance the technology readiness of the MEMS DMs components that are currently at the forefront of the field, and the project will be led by the manufacturer of those components, Boston Micromachines Corporation (BMC). The project aims to demonstrate basic functionality and performance of this key component in critical test environments and in simulated operational environments, while establishing model-based predictions of its performance relative to launch and space environments. Presented will be the current status of the project with modeling and initial test results.
Toward Head-Up and Head-Worn Displays for Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Arthur, Jarvis J.; Bailey, Randall E.; Shelton, Kevin J.; Kramer, Lynda J.; Jones, Denise R.; Williams, Steven P.; Harrison, Stephanie J.; Ellis, Kyle K.
2015-01-01
A key capability envisioned for the future air transportation system is the concept of equivalent visual operations (EVO). EVO is the capability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. Enhanced Flight Vision Systems (EFVS) offer a path to achieve EVO. NASA has successfully tested EFVS for commercial flight operations that has helped establish the technical merits of EFVS, without reliance on natural vision, to runways without category II/III ground-based navigation and lighting requirements. The research has tested EFVS for operations with both Head-Up Displays (HUDs) and "HUD equivalent" Head-Worn Displays (HWDs). The paper describes the EVO concept and representative NASA EFVS research that demonstrate the potential of these technologies to safely conduct operations in visibilities as low as 1000 feet Runway Visual Range (RVR). Future directions are described including efforts to enable low-visibility approach, landing, and roll-outs using EFVS under conditions as low as 300 feet RVR.
Propellant injection systems and processes
NASA Technical Reports Server (NTRS)
Ito, Jackson I.
1995-01-01
The previous 'Art of Injector Design' is maturing and merging with the more systematic 'Science of Combustion Device Analysis.' This technology can be based upon observation, correlation, experimentation and ultimately analytical modeling based upon basic engineering principles. This methodology is more systematic and far superior to the historical injector design process of 'Trial and Error' or blindly 'Copying Past Successes.' The benefit of such an approach is to be able to rank candidate design concepts for relative probability of success or technical risk in all the important combustion device design requirements and combustion process development risk categories before committing to an engine development program. Even if a single analytical design concept cannot be developed to predict satisfying all requirements simultaneously, a series of risk mitigation key enabling technologies can be identified for early resolution. Lower cost subscale or laboratory experimentation to demonstrate proof of principle, critical instrumentation requirements, and design discriminating test plans can be developed based on the physical insight provided by these analyses.
ERIC Educational Resources Information Center
Visser-Wijnveen, Gerda J.; Van Driel, Jan H.; Van Der Rijst, Roeland M.; Verloop, Nico; Visser, Anthonya
2009-01-01
Universities are supposed to be institutes where research and teaching are closely related. To understand this relationship fully, it is necessary to learn how academics perceive these key components. Different conceptions among academics may stem from varying conceptions of knowledge. Thirty academics were interviewed by means of metaphors about…
ERIC Educational Resources Information Center
Regnier, Stephen J., Comp.; Petkovsek, Marian, Comp.
Twenty-five articles from the bimonthly journal "Rehabilitation Literature" (1959-1984) are presented. The articles were chosen to represent key concepts, principles, and perspectives in rehabilitation. The following authors and titles are represented: "A Concept of Rehabilitation" (H. Talbot); "Rehabilitation: Prospect and Retrospect" (H.…
Needs and Beliefs in Construct Accessibility: Keys to New Understanding.
ERIC Educational Resources Information Center
Culbertson, Hugh M.; Denbow, Carl J.; Stempel, Guido H., III
1998-01-01
Surveyed 390 Ohioans who rated five concepts as to closeness of linkage with osteopathic medicine. Finds, as suggested by the storage-bin concept in construct accessibility theory, that those who had experience with these concepts were most apt to use them in assessing osteopathic medicine--this held even though most respondents reported no…
Exploring High School Students' Perceptions of Solar Energy and Solar Cells
ERIC Educational Resources Information Center
Kishore, Padmini; Kisiel, James
2013-01-01
Although studies examining student understanding of key concepts are common throughout the science education literature, few have examined science concepts linked to conservation or environmental issues such as global warming and alternative energy. How students make sense of these complex concepts has the potential to influence their role as…
Connecting the Dots: A Discussion on Key Concepts in Contemporary Entrepreneurship Education
ERIC Educational Resources Information Center
Hägg, Gustav; Kurczewska, Agnieszka
2016-01-01
Purpose: The purpose of this paper is to justify, elaborate and elucidate the concepts of action, experience and reflection, and how they are intertwined when discussing contemporary entrepreneurship education. These concepts have been given a meaning in entrepreneurship education, but have not been discussed in-depth, and by that have been…
ERIC Educational Resources Information Center
Gidley, Jennifer M.; Hampson, Gary P.; Wheeler, Leone; Bereded-Samuel, Elleni
2010-01-01
Equitable access, success and quality in higher education are examined from a variety of ideological perspectives. "Quality" is positioned as a complex generic concept while "access" and "success" are identified as key concepts in the social inclusion domain, supplemented by the concept of "participation."…
ERIC Educational Resources Information Center
Nanna, Robert J.
2016-01-01
Algorithms and representations have been an important aspect of the work of mathematics, especially for understanding concepts and communicating ideas about concepts and mathematical relationships. They have played a key role in various mathematics standards documents, including the Common Core State Standards for Mathematics. However, there have…
Developing Governmentality: Conduct [to the third power] and Education Policy
ERIC Educational Resources Information Center
Gillies, Donald
2008-01-01
This article examines education policy and the policy process in the light of two key concepts. The first is the concept of "governmentality" from the work of Michel Foucault (1991). The second is the concept of "political spectacle" from the work of Murray Edelman (1985, 1988). Taking note, further, of recent work by…
Plastic Solar Cells: A Multidisciplinary Field to Construct Chemical Concepts from Current Research
ERIC Educational Resources Information Center
Gomez, Rafael; Segura, Jose L.
2007-01-01
Examples of plastic solar-cell technology to illustrate core concepts in chemistry are presented. The principles of operations of a plastic solar cell could be used to introduce key concepts, which are fundamentally important to understand photosynthesis and the basic process that govern most novel optoelectronic devices.
ERIC Educational Resources Information Center
Abate, Marie A.; Meyer-Stout, Paula J.; Stamatakis, Mary K.; Gannett, Peter M.; Dunsworth, Teresa S.; Nardi, Anne H.
2000-01-01
Describes development and evaluation of eight computerized problem-based learning (PBL) cases in medicinal chemistry and pharmaceutics concepts. Case versions either incorporated concept maps emphasizing key ideas or did not. Student performance on quizzes did not differ between the different case versions and was similar to that of students who…
Crossing the Threshold: Bringing Biological Variation to the Foreground
ERIC Educational Resources Information Center
Batzli, Janet M.; Knight, Jennifer K.; Hartley, Laurel M.; Maskiewicz, April Cordero; Desy, Elizabeth A.
2016-01-01
Threshold concepts have been referred to as "jewels in the curriculum": concepts that are key to competency in a discipline but not taught explicitly. In biology, researchers have proposed the idea of threshold concepts that include such topics as variation, randomness, uncertainty, and scale. In this essay, we explore how the notion of…
Lockheed Martin approach to a Reusable Launch Vehicle (RLV)
NASA Astrophysics Data System (ADS)
Elvin, John D.
1996-03-01
This paper discusses Lockheed Martin's perspective on the development of a cost effective Reusable Launch Vehicle (RLV). Critical to a successful Single Stage To Orbit (SSTO) program are; an economic development plan sensitive to fiscal constraints; a vehicle concept satisfying present and future US launch needs; and an operations concept commensurate with a market driven program. Participation in the economic plan by government, industry, and the commercial sector is a key element of integrating our development plan and funding profile. The RLV baseline concept design, development evolution and several critical trade studies illustrate the superior performance achieved by our innovative approach to the problem of SSTO. Findings from initial aerodynamic and aerothermodynamic wind tunnel tests and trajectory analyses on this concept confirm the superior characteristics of the lifting body shape combined with the Linear Aerospike rocket engine. This Aero Ballistic Rocket (ABR) concept captures the essence of The Skunk Works approach to SSTO RLV technology integration and system engineering. These programmatic and concept development topics chronicle the key elements to implementing an innovative market driven next generation RLV.
Sensing design and workmanship: the haptic skills of shoppers in eighteenth-century London.
Smith, Kate
2012-01-01
This article explores how eighteenth-century shoppers understood the material world around them. It argues that retail experiences exposed shoppers to different objects, which subsequently shaped their understanding of this world. This article builds on recent research that highlights the importance of shop environments and browsing in consumer choice. More particularly, it differentiates itself by examining the practice of handling goods in shops and arguing that sensory interaction with multiple goods was one of the key means by which shoppers comprehended concepts of design and workmanship. In doing so, it affirms the importance of sensory research to design history. The article focuses on consumer purchases of ceramic objects and examines a variety of sources to demonstrate the role of haptic skills in this act. It shows how different literary sources described browsing for goods in gendered and satirical terms and then contrasts these readings against visual evidence to illustrate how handling goods was also represented as a positive act. It reads browsing as a valued practice requiring competence, patience and haptic skills. Through an examination of diary sources, letters and objects this article asks what information shoppers gained from touching various objects. It concludes by demonstrating how repetitive handling in search of quality meant that shoppers acquired their own conception of what constituted workmanship and design.
ERIC Educational Resources Information Center
Muhammad, Amin Umar; Bala, Dauda; Ladu, Kolomi Mutah
2016-01-01
This study investigated the Effectiveness of Demonstration and Lecture Methods in Learning concepts in Economics among Secondary School Students in Borno state, Nigeria. Five objectives: to determine the effectiveness of demonstration method in learning economics concepts among secondary school students in Borno state, determine the effectiveness…
A lightweight vibro-acoustic metamaterial demonstrator: Numerical and experimental investigation
NASA Astrophysics Data System (ADS)
Claeys, C.; Deckers, E.; Pluymers, B.; Desmet, W.
2016-03-01
In recent years metamaterials gained a lot of attention due to their superior noise and vibration insulation properties, be it at least in some targeted and tuneable frequency ranges, referred to as stopbands. These are frequency zones for which free wave propagation is prevented throughout the metamaterial, resulting in frequency zones of pronounced wave attenuation. Metamaterials are achieved due to addition of an, often periodic, grid of resonant structures to a host material or structure. The interaction between resonant inclusions and host structure can lead to a performance which is superior to the ones of any of the constituent materials. A key element in this concept is that waves can be affected by incorporating structural resonant elements of sub-wavelength sizes, i.e. features that are actually smaller than the wavelength of the waves to be affected. This paves the way towards compact and light vibro-acoustic solutions in the lower frequency ranges. This paper discusses the numerical design and experimental validation of acoustic insulation based on the concept of metamaterials: a hollow core periodic sandwich structure with added local resonant structures. In order to investigate the sensitivity to specific parameters in the metamaterial design and the robustness of the design, a set of variations on the nominal design are investigated. The stop bands are numerically predicted through unit cell modelling after which a full vibro-acoustic finite element model is applied to predict the insertion loss of the demonstrator. The results of these analyses are compared with measurements; both indicate that this metamaterials concept can be applied to combine light weight, compact volume and good acoustic behaviour.
Using conceptual spaces to fuse knowledge from heterogeneous robot platforms
NASA Astrophysics Data System (ADS)
Kira, Zsolt
2010-04-01
As robots become more common, it becomes increasingly useful for many applications to use them in teams that sense the world in a distributed manner. In such situations, the robots or a central control center must communicate and fuse information received from multiple sources. A key challenge for this problem is perceptual heterogeneity, where the sensors, perceptual representations, and training instances used by the robots differ dramatically. In this paper, we use Gärdenfors' conceptual spaces, a geometric representation with strong roots in cognitive science and psychology, in order to represent the appearance of objects and show how the problem of heterogeneity can be intuitively explored by looking at the situation where multiple robots differ in their conceptual spaces at different levels. To bridge low-level sensory differences, we abstract raw sensory data into properties (such as color or texture categories), represented as Gaussian Mixture Models, and demonstrate that this facilitates both individual learning and the fusion of concepts between robots. Concepts (e.g. objects) are represented as a fuzzy mixture of these properties. We then treat the problem where the conceptual spaces of two robots differ and they only share a subset of these properties. In this case, we use joint interaction and statistical metrics to determine which properties are shared. Finally, we show how conceptual spaces can handle the combination of such missing properties when fusing concepts received from different robots. We demonstrate the fusion of information in real-robot experiments with a Mobile Robots Amigobot and Pioneer 2DX with significantly different cameras and (on one robot) a SICK lidar.ÿÿÿÿ
Propulsion issues, options and trades
NASA Technical Reports Server (NTRS)
Forsythe, Doug J.
1986-01-01
Several different types of propulsion concepts are discussed: pulsed fission; continuous nuclear fission; chemical; and chemical boost with advanced nuclear fission. Some of the key characteristics of each type are provided, and typical concepts of each are shown.
ERIC Educational Resources Information Center
Croft, Michael; de Berg, Kevin
2014-01-01
This paper selects six key alternative conceptions identified in the literature on student understandings of chemical bonding and illustrates how a historical analysis and a textbook analysis can inform these conceptions and lead to recommendations for improving the teaching and learning of chemical bonding at the secondary school level. The…
ERIC Educational Resources Information Center
David, Miriam E.
2011-01-01
This paper is about changing concepts of equity in UK higher education. In particular, it charts the moves from concepts about gender equality as about women's education as a key issue in twentieth century higher education to questions of men's education in the twenty-first century. These changing concepts of equity are linked to wider social and…
Automatic definition of the oncologic EHR data elements from NCIT in OWL.
Cuggia, Marc; Bourdé, Annabel; Turlin, Bruno; Vincendeau, Sebastien; Bertaud, Valerie; Bohec, Catherine; Duvauferrier, Régis
2011-01-01
Semantic interoperability based on ontologies allows systems to combine their information and process them automatically. The ability to extract meaningful fragments from ontology is a key for the ontology re-use and the construction of a subset will help to structure clinical data entries. The aim of this work is to provide a method for extracting a set of concepts for a specific domain, in order to help to define data elements of an oncologic EHR. a generic extraction algorithm was developed to extract, from the NCIT and for a specific disease (i.e. prostate neoplasm), all the concepts of interest into a sub-ontology. We compared all the concepts extracted to the concepts encoded manually contained into the multi-disciplinary meeting report form (MDMRF). We extracted two sub-ontologies: sub-ontology 1 by using a single key concept and sub-ontology 2 by using 5 additional keywords. The coverage of sub-ontology 2 to the MDMRF concepts was 51%. The low rate of coverage is due to the lack of definition or mis-classification of the NCIT concepts. By providing a subset of concepts focused on a particular domain, this extraction method helps at optimizing the binding process of data elements and at maintaining and enriching a domain ontology.
Power Management and Distribution System Developed for Thermionic Power Converters
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.
1998-01-01
A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.
NASA Astrophysics Data System (ADS)
Wasser, L. A.; Gram, W.; Goehring, L.
2014-12-01
"Big Data" are becoming increasingly common in many fields. The National Ecological Observatory Network (NEON) will be collecting data over the 30 years, using consistent, standardized methods across the United States. These freely available new data provide an opportunity for increased understanding of continental- and global scale processes such as changes in vegetation structure and condition, biodiversity and landuse. However, while "big data" are becoming more accessible and available, integrating big data into the university courses is challenging. New and potentially unfamiliar data types and associated processing methods, required to work with a growing diversity of available data, may warrant time and resources that present a barrier to classroom integration. Analysis of these big datasets may further present a challenge given large file sizes, and uncertainty regarding best methods to properly statistically summarize and analyze results. Finally, teaching resources, in the form of demonstrative illustrations, and other supporting media that might help teach key data concepts, take time to find and more time to develop. Available resources are often spread widely across multi-online spaces. This presentation will overview the development of NEON's collaborative University-focused online education portal. Portal content will include 1) videos and supporting graphics that explain key concepts related to NEON data products including collection methods, key metadata to consider and consideration of potential error and uncertainty surrounding data analysis; and 2) packaged "lab" activities that include supporting data to be used in an ecology, biology or earth science classroom. To facilitate broad use in classrooms, lab activities will take advantage of freely and commonly available processing tools, techniques and scripts. All NEON materials are being developed in collaboration with existing labs and organizations.
Evaluation of a prototype interactive consent program for pediatric clinical trials: a pilot study
Voepel-Lewis, Terri; McGonegal, Maureen; Levine, Robert
2011-01-01
Standard written methods of presenting research information may be difficult for many parents and children to understand. This pilot study was designed to examine the use of a novel prototype interactive consent program for describing a hypothetical pediatric asthma trial to parents and children. Parents and children were interviewed to examine their baseline understanding of key elements of a clinical trial, eg, randomization, placebo, and blinding. Subjects then reviewed age-appropriate versions of an interactive computer program describing an asthma trial, and their understanding of key research concepts was again tested along with their understanding of the details of the trial. Parents and children also completed surveys to examine their perceptions and satisfaction with the program. Both parents and children demonstrated improved understanding of key research concepts following administration of the consent program. For example, the percentage of parents and children who could correctly define the terms clinical trials and placebo improved from 60% to 80%, and 80% to 100% among parents and 25% to 50% and 0% to 50% among children, respectively, following review of the interactive programs. Parents and children's overall understanding of the details of the asthma trial were 14.2±0.84 and 9.25±4.9 (0–15 scale, where 15 is complete understanding), respectively. Results also suggest that the interactive programs were easy to use and facilitated understanding of the clinical trial among parents and children. Interactive media may offer an effective means of presenting understandable information to parents and children regarding participation in clinical trials. Further work to examine this novel approach appears warranted. PMID:21803924
Post Landsat-D advanced concept evaluation /PLACE/
NASA Technical Reports Server (NTRS)
Alexander, L. D.; Alvarado, U. R.; Flatow, F. S.
1979-01-01
The aim of the Post Landsat-D Advanced Concept Evaluation (PLACE) program was to identify the key technology requirements of earth resources satellite systems for the 1985-2000 period. The program involved four efforts: (1) examination of future needs in the earth resources area, (2) creation of a space systems technology model capable of satisfying these needs, (3) identification of key technology requirements posed by this model, and (4) development of a methodology (PRISM) to assist in the priority structuring of the resulting technologies.
Baseband processor development/test performance for 30/20 GHz SS-TDMA communication system
NASA Technical Reports Server (NTRS)
Brown, L.; Sabourin, D.; Attwood, S.
1984-01-01
The baseband processor (BBP) development for the 30/20 GHz Satellite Communication System is described. The SS-TDMA concept for future satellite communications is reviewed, describing the overall system, the satellite payload, and the frequency plan. A brief general description of the BBP is given, and the proof-of-concept model of the BBP is summarized. Key technologies and custom LSI developed for the BBP are listed. Finally, key technology developments and test data are reported for the BBP.
Vehicle performance impact on space shuttle design and concept evaluation
NASA Technical Reports Server (NTRS)
Craig, M. K.
1972-01-01
The continuing examination of widely varied space shuttle concepts makes an understanding of concept interaction with vehicle performance imperative. The estimation of vehicle performance is highly appurtenant to all aspects of shuttle design and hence performance has classically been a key indicator of overall concept desirability and potential. Vehicle performance assumes the added role of defining interactions between specific design characteristics, the sum total of which define a specific concept. Special attention is given to external tank effects.
Extraction of Volatiles from Regolith or Soil on Mars, the Moon, and Asteroids
NASA Technical Reports Server (NTRS)
Linne, Diane; Kleinhenz, Julie; Trunek, Andrew; Hoffman, Stephen; Collins, Jacob
2017-01-01
NASA's Advanced Exploration Systems ISRU Technology Project is evaluating concepts to extract water from all resource types Near-term objectives: Produce high-fidelity mass, power, and volume estimates for mining and processing systems Identify critical challenges for development focus Begin demonstration of component and subsystem technologies in relevant environment Several processor types: Closed processors either partially or completely sealed during processing Open air processors operates at Mars ambient conditions In-situ processors Extract product directly without excavation of raw resource Design features Elimination of sweep gas reduces dust particles in water condensate Pressure maintained by height of soil in hopper Model developed to evaluate key design parameters Geometry: conveyor diameter, screw diameter, shaft diameter, flight spacing and pitch Operational: screw speed vs. screw length (residence time) Thermal: Heat flux, heat transfer to soil Testing to demonstrate feasibility and performance Agglomeration, clogging Pressure rise forced flow to condenser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs aremore » discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.« less
On Per-Phase Topology Control and Switching in Emerging Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mousavi, Mirrasoul J.
This paper presents a new concept and approach for topology control and switching in distribution systems by extending the traditional circuit switching to laterals and single-phase loads. Voltage unbalance and other key performance indicators including voltage magnitudes, line loading, and energy losses are used to characterize and demonstrate the technical value of optimizing system topology on a per-phase basis in response to feeder conditions. The near-optimal per-phase topology control is defined as a series of hierarchical optimization problems. The proposed approach is respectively applied to IEEE 13-bus and 123-bus test systems for demonstration, which included the impact of integrating electricmore » vehicles (EVs) in the test circuit. It is concluded that the proposed approach can be effectively leveraged to improve voltage profiles with electric vehicles, the extent of which depends upon the performance of the base case without EVs.« less
Unresponsiveness ≠ Unconsciousness
Sanders, Robert D.; Tononi, Giulio; Laureys, Steven; Sleigh, Jamie
2012-01-01
Consciousness is subjective experience. During both sleep and anesthesia consciousness is common, evidenced by dreaming. A defining feature of dreaming is that, while conscious, we do not experience our environment – we are disconnected. Besides inducing behavioral unresponsiveness, a key goal of anesthesia is to prevent the experience of surgery (connected consciousness), by inducing either unconsciousness or disconnection of consciousness from the environment. Review of the isolated forearm technique demonstrates that consciousness, connectedness and responsiveness uncouple during anesthesia; in clinical conditions, a median 37% of patients demonstrate connected consciousness. We describe potential neurobiological constructs that can explain this phenomenon: during light anesthesia the subcortical mechanisms subserving spontaneous behavioral responsiveness are disabled but information integration within the corticothalamic network continues to produce consciousness, and unperturbed norepinephrinergic signaling maintains connectedness. These concepts emphasize the need for developing anesthetic regimens and depth of anesthesia monitors that specifically target mechanisms of consciousness, connectedness and responsiveness. PMID:22314293
Shrink-film microfluidic education modules: Complete devices within minutes
Nguyen, Diep; McLane, Jolie; Lew, Valerie; Pegan, Jonathan; Khine, Michelle
2011-01-01
As advances in microfluidics continue to make contributions to diagnostics and life sciences, broader awareness of this expanding field becomes necessary. By leveraging low-cost microfabrication techniques that require no capital equipment or infrastructure, simple, accessible, and effective educational modules can be made available for a broad range of educational needs from middle school demonstrations to college laboratory classes. These modules demonstrate key microfluidic concepts such as diffusion and separation as well as “laboratory on-chip” applications including chemical reactions and biological assays. These modules are intended to provide an interdisciplinary hands-on experience, including chip design, fabrication of functional devices, and experiments at the microscale. Consequently, students will be able to conceptualize physics at small scales, gain experience in computer-aided design and microfabrication, and perform experiments—all in the context of addressing real-world challenges by making their own lab-on-chip devices. PMID:21799715
Shrink-film microfluidic education modules: Complete devices within minutes.
Nguyen, Diep; McLane, Jolie; Lew, Valerie; Pegan, Jonathan; Khine, Michelle
2011-06-01
As advances in microfluidics continue to make contributions to diagnostics and life sciences, broader awareness of this expanding field becomes necessary. By leveraging low-cost microfabrication techniques that require no capital equipment or infrastructure, simple, accessible, and effective educational modules can be made available for a broad range of educational needs from middle school demonstrations to college laboratory classes. These modules demonstrate key microfluidic concepts such as diffusion and separation as well as "laboratory on-chip" applications including chemical reactions and biological assays. These modules are intended to provide an interdisciplinary hands-on experience, including chip design, fabrication of functional devices, and experiments at the microscale. Consequently, students will be able to conceptualize physics at small scales, gain experience in computer-aided design and microfabrication, and perform experiments-all in the context of addressing real-world challenges by making their own lab-on-chip devices.
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - A forklift is used at the Kennedy Space Center in Florida to unload NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is inspected after unloading at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - Wheels are assembled for transporting NASA's Morpheus lander, a vertical test bed vehicle after its arrival at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is uncrated after unloading at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - A crane supports unloading of NASA's Morpheus lander, a vertical test bed vehicle, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry.
Godlewska, Beata R; Clare, Stuart; Cowen, Philip J; Emir, Uzay E
2017-01-01
The advantages of ultra-high-field (UHF ≥ 7T) MR have been demonstrated in a variety of MR acquisition modalities. Magnetic resonance spectroscopy (MRS) can particularly benefit from substantial gains in signal-to-noise ratio (SNR) and spectral resolution at UHF, enabling the quantification of numerous metabolites, including glutamate, glutamine, glutathione, and γ-aminobutyric acid that are relevant to psychiatric disorders. The aim of this review is to give an overview about the advantages and advances of UHF MRS and its application to psychiatric disorders. In order to provide a practical guide for potential applications of MRS at UHF, a literature review is given, surveying advantages and disadvantages of MRS at UHF. Key concepts, emerging technologies, practical considerations, and applications of UHF MRS are provided. Second, the strength of UHF MRS is demonstrated using some examples of its application in psychiatric disorders.
Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry
Godlewska, Beata R.; Clare, Stuart; Cowen, Philip J.; Emir, Uzay E.
2017-01-01
The advantages of ultra-high-field (UHF ≥ 7T) MR have been demonstrated in a variety of MR acquisition modalities. Magnetic resonance spectroscopy (MRS) can particularly benefit from substantial gains in signal-to-noise ratio (SNR) and spectral resolution at UHF, enabling the quantification of numerous metabolites, including glutamate, glutamine, glutathione, and γ-aminobutyric acid that are relevant to psychiatric disorders. The aim of this review is to give an overview about the advantages and advances of UHF MRS and its application to psychiatric disorders. In order to provide a practical guide for potential applications of MRS at UHF, a literature review is given, surveying advantages and disadvantages of MRS at UHF. Key concepts, emerging technologies, practical considerations, and applications of UHF MRS are provided. Second, the strength of UHF MRS is demonstrated using some examples of its application in psychiatric disorders. PMID:28744229
Single-electron detection and spectroscopy via relativistic cyclotron radiation
Asner, D. M.; Bradley, R. F.; de Viveiros, L.; ...
2015-04-20
Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precisemore » electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.« less
Planetary CubeSats Come of Age
NASA Technical Reports Server (NTRS)
Sherwood, Brent; Spangelo, Sara; Frick, Andreas; Castillo-Rogez, Julie; Klesh, Andrew; Wyatt, E. Jay; Reh, Kim; Baker, John
2015-01-01
Jet Propulsion Laboratory initiatives in developing and formulating planetary CubeSats are described. Six flight systems already complete or underway now at JPL for missions to interplanetary space, the Moon, a near-Earth asteroid, and Mars are described at the subsystem level. Key differences between interplanetary nanospacecraft and LEO CubeSats are explained, as well as JPL's adaptation of vendor components and development of system solutions to meet planetary-mission needs. Feasible technology-demonstration and science measurement objectives are described for multiple modes of planetary mission implementation. Seven planetary-science demonstration mission concepts, already proposed to NASA by Discovery-2014 PIs partnered with JPL, are described for investigations at Sun-Earth L5, Venus, NEA 1999 FG3, comet Tempel 2, Phobos, main-belt asteroid 24 Themis, and metal asteroid 16 Psyche. The JPL staff and facilities resources available to PIs for analysis, design, and development of planetary nanospacecraft are catalogued.
Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures
Lei, Na; Devolder, Thibaut; Agnus, Guillaume; Aubert, Pascal; Daniel, Laurent; Kim, Joo-Von; Zhao, Weisheng; Trypiniotis, Theodossis; Cowburn, Russell P.; Chappert, Claude; Ravelosona, Dafiné; Lecoeur, Philippe
2013-01-01
The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices. PMID:23340418
Data publication and dissemination of interactive keys under the open access model
USDA-ARS?s Scientific Manuscript database
The concepts of publication, citation and dissemination of interactive keys and other online keys are discussed and illustrated by a sample paper published in the present issue (doi: 10.3897/zookeys.21.271). The present model is based on previous experience with several existing examples of publishi...
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.
2014-01-01
In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.
The role of organizational structure in readiness for change: A conceptual integration.
Benzer, Justin K; Charns, Martin P; Hamdan, Sami; Afable, Melissa
2017-02-01
The purpose of this review is to extend extant conceptualizations of readiness for change as an individual-level phenomenon. This review-of-reviews focuses on existing conceptual frameworks from the dissemination, implementation, quality improvement, and organizational transformation literatures in order to integrate theoretical rationales for how organization structure, a key dimension of the organizational context, may impact readiness for change. We propose that the organization structure dimensions of differentiation and integration impact readiness for change at the individual level of analysis by influencing four key concepts of relevance, legitimacy, perceived need for change, and resource allocation. We identify future research directions that focus on these four key concepts.
ERIC Educational Resources Information Center
Quilez, Juan
2009-01-01
With this paper, our main aim is to contribute to the realisation of the chemical reactivity concept, tracing the historical evolution of the concept of chemical affinity that eventually supported the concept of chemical equilibrium. We will concentrate on searching for the theoretical grounds of three key chemical equilibrium ideas: "incomplete…
Assessing Children's Understanding of Length Measurement: A Focus on Three Key Concepts
ERIC Educational Resources Information Center
Bush, Heidi
2009-01-01
In this article, the author presents three different tasks that can be used to assess students' understanding of the concept of length. Three important measurement concepts for students to understand are transitive reasoning, use of identical units, and iteration. In any teaching and learning process it is important to acknowledge students'…
ERIC Educational Resources Information Center
Ding, Lin
2014-01-01
Discipline-based science concept assessments are powerful tools to measure learners' disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA) has been broadly used to gauge student conceptions of key electricity and magnetism (E&M) topics in college-level introductory physics courses.…
Changes in Geologic Time Understanding in a Class for Preservice Teachers
ERIC Educational Resources Information Center
Teed, Rebecca; Slattery, William
2011-01-01
The paradigm of geologic time is built on complex concepts, and students master it in multiple steps. Concepts in Geology is an inquiry-based geology class for preservice teachers at Wright State University. The instructors used the Geoscience Concept Inventory (GCI) to determine if students' understanding of key ideas about geologic time and…
The Self-Concept of Spanish Young Adults with Retinitis Pigmentosa
ERIC Educational Resources Information Center
Lopez-Justicia, Maria Dolores; Cordoba, Inmaculada Nieto
2006-01-01
Retinitis pigmentosa (RP) is a degenerative disease of the retina that causes the severe impairment of visual functioning similar to low vision, leading, in many cases, to blindness. Because the construct of self-concept plays a key role in personality, this study was designed to measure self-concept in a group of young adults with RP. The…
A Comparison of Key Concepts in Data Analytics and Data Science
ERIC Educational Resources Information Center
McMaster, Kirby; Rague, Brian; Wolthuis, Stuart L.; Sambasivam, Samuel
2018-01-01
This research study provides an examination of the relatively new fields of Data Analytics and Data Science. We compare word rates in Data Analytics and Data Science documents to determine which concepts are mentioned most often. The most frequent concept in both fields is "data." The word rate for "data" is more than twice the…
Using Concept Mapping as as Tool for Program Theory Development
ERIC Educational Resources Information Center
Orsi, Rebecca
2011-01-01
The purpose of this methodological study is to explore how well a process called "concept mapping" (Trochim, 1989) can articulate the theory which underlies a social program. Articulation of a program's theory is a key step in completing a sound theory based evaluation (Weiss, 1997a). In this study, concept mapping is used to…
Investigating the Use of ICT-Based Concept Mapping Techniques on Creativity in Literacy Tasks
ERIC Educational Resources Information Center
Riley, Nigel R.; Ahlberg, Mauri
2004-01-01
The key research question in this small-scale study focuses on the effects that an ICT (information and communications technologies)-based concept mapping intervention has on creativity and writing achievement in 10-11-year-old primary age pupils. The data shows that pupils using a concept mapping intervention significantly improve their NFER…
ERIC Educational Resources Information Center
Arthurs, Leilani A.; Van Den Broeke, Matthew S.
2016-01-01
The ability to explain scientific phenomena is a key feature of scientific literacy, and engaging students' prior knowledge, especially their alternate conceptions, is an effective strategy for enhancing scientific literacy and developing expertise. The gap in knowledge about the alternate conceptions that novices have about many of Earth's…
Mediating Content Area Learning through the Use of Flip-Flop Study Guides.
ERIC Educational Resources Information Center
Chalmers, Lynne
1995-01-01
Students with learning disabilities may gain from use of "flip-flop" study guides to gain key vocabulary and concepts. Rather than providing definitions for terms, the student provides terms for definitions and concepts in the study guide. Such guides allow the teacher to focus on particular concepts and provide repetition of information for…
Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Spray
2007-09-30
The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less
Integration of the concepts of sustainability into teaching at post-secondary institutions
NASA Astrophysics Data System (ADS)
Davis, Sara Allison
The purpose of this study was to examine the incorporation of the concepts of sustainability into teaching at two post-secondary public education residential institutions, Northern Arizona University (NAU) and the University of South Carolina (USC). A total of 17 faculty members, six administrators, and 31 students were interviewed in the study. An individual case record for each participating institution was developed. The two case records were then qualitatively cross-case analyzed to derive crosscutting themes and patterns at the two participating institutions. Based on the findings of this study, several major themes emerged across the two post-secondary public institutions. Sustainability was consistently viewed by faculty members, administrators, and students as a very broad term. While faculty members and administrators differentiated between the ecological, economic, and social dimensions of sustainability, students commonly associated sustainability more narrowly with an ecological meaning. Several common factors that influenced faculty members' and administrators' understanding of sustainability included literature, campus-wide training, personal influences, and professional networking. Common methods used by faculty to incorporate the concepts of sustainability into teaching included assigned readings, class discussions, and class projects. Key benefits of incorporating the concepts of sustainability into teaching included increased student awareness, collaboration, vision development, and social implications, while key challenges included time, support, assessment, student understanding, and more realistic classroom experiences. Key driving forces for faculty members and administrators for incorporating the concepts of sustainability into teaching were the initiatives specifically developed at the institutions. Based on the common themes at the two institutions studied, it is recommended that post-secondary institutions desiring to deploy the concepts of sustainability into teaching include the multiple dimensions of sustainability in their campus-wide initiatives, faculty and student development, and policies. In addition, it is recommended that campus-wide sustainability initiatives emphasize the key benefits of increased student awareness, collaboration, social implications, and vision development, and that they consider the challenges of time, support, assessment, and student understanding, while rewarding faculty members for their efforts to incorporate the concepts of sustainability into teaching.
Something Old, Something New: Army Leader Development in a Dynamic Environment
2006-01-01
Army leadership concepts , as represented in doctrinal publications and Army traditions. These concepts reflect the service’s established formulation...years to represent fundamental qualities that officers and leaders should have, year in and year out, in any environment. As such, these concepts are...the Army’s concept . Finally, in the third section of this chapter we present our own viewpoint and synthesis, focusing on key skills and attributes that
Fission Surface Power System Initial Concept Definition
NASA Technical Reports Server (NTRS)
2010-01-01
Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk Reduction the team develops hardware prototypes and conducts laboratory-based testing.
Rectangular QPSK for generation of optical eight-ary phase-shift keying.
Lu, Guo-Wei; Sakamoto, Takahide; Kawanishi, Tetsuya
2011-09-12
Quadrature phase-shift keying (QPSK) is usually generated using an in-phase/quadrature (IQ) modulator in a balanced driving-condition, showing a square-shape constellation in complex plane. This conventional QPSK is referred to as square QPSK (S-QPSK) in this paper. On the other hand, when an IQ modulator is driven in an un-balanced manner with different amplitudes in in-phase (I) and quadrature (Q) branches, a rectangular QPSK (R-QPSK) could be synthesized. The concept of R-QPSK is proposed for the first time and applied to optical eight-ary phase-shift keying (8PSK) transmitter. By cascading an S-QPSK and an R-QPSK, an optical 8PSK could be synthesized. The transmitter configuration is based on two cascaded IQ modulators, which also could be used to generate other advanced multi-level formats like quadrature amplitude modulation (QAM) when different driving and bias conditions are applied. Therefore, the proposed transmitter structure has potential to be deployed as a versatile transmitter for synthesis of several different multi-level modulation formats for the future dynamic optical networks. A 30-Gb/s optical 8PSK is experimentally demonstrated using the proposed solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less
Chen, Hsiao-Yu; Wu, Tzu-Jung; Cheng, Mei-Li; Sung, Hsi-Hui
2012-01-01
The purpose of this study was to integrate and evaluate the spinal cord injury rehabilitation nursing theory named Super-Link System Theory using participatory action research. Data were collected from October 2007 to September 2008 in a rehabilitation hospital by means of interviews, participant observations, documentary resources, case conferences and reports, and participants' self-reflective inquiries. The Super-Link System Theory was introduced to 31 rehabilitation nurses. The nurses selected a key reference group including the researcher to facilitate the participatory action research process to implement and evaluate the theory. Data were analyzed using content analysis. The findings shows that several key concepts were clarified and specific nursing interventions were identified. Furthermore, an integrated link system from the hospital to the community through both rehabilitation nurses and discharge planners was established. The study demonstrated an evidence base for an evolving theory of care, and empowered nurses to make sustainable changes to their practice. © 2012 Association of Rehabilitation Nurses.
Unconditional security of entanglement-based continuous-variable quantum secret sharing
NASA Astrophysics Data System (ADS)
Kogias, Ioannis; Xiang, Yu; He, Qiongyi; Adesso, Gerardo
2017-01-01
The need for secrecy and security is essential in communication. Secret sharing is a conventional protocol to distribute a secret message to a group of parties, who cannot access it individually but need to cooperate in order to decode it. While several variants of this protocol have been investigated, including realizations using quantum systems, the security of quantum secret sharing schemes still remains unproven almost two decades after their original conception. Here we establish an unconditional security proof for entanglement-based continuous-variable quantum secret sharing schemes, in the limit of asymptotic keys and for an arbitrary number of players. We tackle the problem by resorting to the recently developed one-sided device-independent approach to quantum key distribution. We demonstrate theoretically the feasibility of our scheme, which can be implemented by Gaussian states and homodyne measurements, with no need for ideal single-photon sources or quantum memories. Our results contribute to validating quantum secret sharing as a viable primitive for quantum technologies.
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; Qu, Ge; Zhang, Fengjiao; Zhao, Xikang; Mei, Jianguo; Zuo, Jian-Min; Shukla, Diwakar; Diao, Ying
2017-01-01
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results in highly aligned, highly crystalline donor–acceptor polymer thin films over large area (>1 cm2) and promoted charge transport along both the polymer backbone and the π–π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment. PMID:28703136
A qualitative study of the role of dental therapy in New Zealand.
Tane, Helen R
2009-09-01
To investigate the role of the dental therapy profession in New Zealand, identifying the foundation of the profession, and the influences that have shaped its role. Qualitative study incorporating transcripts from oral archives, national questionnaires, and semi-structured interviews with key people of influence among the oral health professions. A selection of data was ordered into a written sequence and presented, to demonstrate key influencing factors in the introduction, training and work of New Zealand's dental nurses. Education for the dental therapy profession was preceded by the school dental nurse vocation and, despite the intention for the dental nurse's role to be one of 'forestalling disease' and 'prevention', the eventual role was very different. The study provides evidence of the valuable role of Dental Therapy in New Zealand's public health sector, but whether the role has been utilised most effectively is questionable, particularly when considering the original objectives that were given when the School Dental Nurse concept was first introduced.
Optical penetration-based silkworm pupa gender sensor structure.
Sumriddetchkajorn, Sarun; Kamtongdee, Chakkrit
2012-02-01
This paper proposes and experimentally demonstrates for what is believed to be the first time a highly sought-after optical structure for highly-accurate identification of the silkworm pupa gender. The key idea is to exploit a long wavelength optical beam in the red or near infrared spectrum that can effectively and safely penetrate the body of a silkworm pupa. Later on, simple image processing operations via image thresholding, blob filtering, and image inversion processes are applied in order to eliminate the unwanted image noises and at the same time highlight the gender gland. Experimental proof of concept using three 636 nm wavelength light emitting diodes, a two-dimensional web camera, an 8 bit microcontroller board, and a notebook computer shows a very high 95.6% total accuracy in identifying the gender of 45 silkworm pupae with a measured fast identification time of 96.6 ms. Other key features include low cost, low component counts, and ease of implementation and control.
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; ...
2017-07-13
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less
Nakaima, April; Sridharan, Sanjeev
2017-05-08
This paper discusses what was learned about evaluation capacity building with community organizations who deliver services to individuals with neurological disorders. Evaluation specialists engaged by the Ontario Brain Institute Evaluation Support Program were paired with community organizations, such as Dancing With Parkinson's. Some of the learning included: relationship building is key for this model of capacity building; community organizations often have had negative experiences with evaluation and the idea that evaluations can be friendly tools in implementing meaningful programs is one key mechanism by which such an initiative can work; community organizations often need evaluation most to be able to demonstrate their value; a strength of this initiative was that the focus was not just on creating products but mostly on developing a learning process in which capacities would remain; evaluation tools and skills that organizations found useful were developing a theory of change and the concept of heterogeneous mechanisms (informed by a realist evaluation lens). Copyright © 2017. Published by Elsevier Ltd.
Tsai, Cheng-Yu; Jiang, Jhih-Shan
2018-01-01
A micro-projection enabled short-range communication (SRC) approach using red-, green- and blue-based light-emitting diodes (RGB-LEDs) has experimentally demonstrated recently that micro-projection and high-speed data transmission can be performed simultaneously. In this research, a reconfigurable design of a polarization modulated image system based on the use of a Liquid Crystal on Silicon based Spatial Light Modulator (LCoS-based SLM) serving as a portable optical terminal capable of micro-projection and bidirectional multi-wavelength communications is proposed and experimentally demonstrated. For the proof of concept, the system performance was evaluated through a bidirectional communication link at a transmission distance over 0.65 m. In order to make the proposed communication system architecture compatible with the data modulation format of future possible wireless communication system, baseband modulation scheme, i.e., Non-Return-to-Zero On-Off-Keying (NRZ_OOK), M-ary Phase Shift Keying (M-PSK) and M-ary Quadrature Amplitude Modulation (M-QAM) were used to investigate the system transmission performance. The experimental results shown that an acceptable BER (satisfying the limitation of Forward Error Correction, FEC standard) and crosstalk can all be achieved in the bidirectional multi-wavelength communication scenario. PMID:29587457
One Small Step for Manuals: Computer-Assisted Training in Twelve-Step Facilitation*
Sholomskas, Diane E.; Carroll, Kathleen M.
2008-01-01
Objective The burgeoning number of empirically validated therapies has not been met with systematic evaluation of practical, inexpensive means of teaching large numbers of clinicians to use these treatments effectively. An interactive, computer-assisted training program that sought to impart skills associated with the Project MATCH (Matching Alcoholism Treatments to Client Heterogeneity) Twelve-Step Facilitation (TSF) manual was developed to address this need. Method Twenty-five community-based substance use-treatment clinicians were randomized to one of two training conditions: (1) access to the computer-assisted training program plus the TSF manual or (2) access to the manual only. The primary outcome measure was change from pre- to posttraining in the clinicians' ability to demonstrate key TSF skills. Results The data suggested that the clinicians' ability to implement TSF, as assessed by independent ratings of adherence and skill for the key TSF interventions, was significantly higher after training for those who had access to the computerized training condition than those who were assigned to the manual-only condition. Those assigned to the computer-assisted training condition also demonstrated greater gains in a knowledge test assessing familiarity with concepts presented in the TSF manual. Conclusions Computer-based training may be a feasible and effective means of training larger numbers of clinicians in empirically supported, manual-guided therapies. PMID:17061013
One small step for manuals: Computer-assisted training in twelve-step facilitation.
Sholomskas, Diane E; Carroll, Kathleen M
2006-11-01
The burgeoning number of empirically validated therapies has not been met with systematic evaluation of practical, inexpensive means of teaching large numbers of clinicians to use these treatments effectively. An interactive, computer-assisted training program that sought to impart skills associated with the Project MATCH (Matching Alcoholism Treatments to Client Heterogeneity) Twelve-Step Facilitation (TSF) manual was developed to address this need. Twenty-five community-based substance use-treatment clinicians were randomized to one of two training conditions: (1) access to the computer- assisted training program plus the TSF manual or (2) access to the manual only. The primary outcome measure was change from preto posttraining in the clinicians' ability to demonstrate key TSF skills. The data suggested that the clinicians' ability to implement TSF, as assessed by independent ratings of adherence and skill for the key TSF interventions, was significantly higher after training for those who had access to the computerized training condition than those who were assigned to the manual-only condition. Those assigned to the computer-assisted training condition also demonstrated greater gains in a knowledge test assessing familiarity with concepts presented in the TSF manual. Computer-based training may be a feasible and effective means of training larger numbers of clinicians in empirically supported, manual-guided therapies.
Key challenges in future Li-battery research.
Tarascon, J-M
2010-07-28
Batteries are a major technological challenge in this new century as they are a key method to make more efficient use of energy. Although today's Li-ion technology has conquered the portable electronic markets and is still improving, it falls short of meeting the demands dictated by the powering of both hybrid electric vehicles and electric vehicles or by the storage of renewable energies (wind, solar). There is room for optimism as long as we pursue paradigm shifts while keeping in mind the concept of materials sustainability. Some of these concepts, relying on new ways to prepare electrode materials via eco-efficient processes, on the use of organic rather than inorganic materials or new chemistries will be discussed. Achieving these concepts will require the inputs of multiple disciplines.
USDOT guidance summary for connected vehicle deployments : safety management.
DOT National Transportation Integrated Search
2016-07-01
This document provides guidance material in regards to safety management plan for the CV Pilots DeploymentConcept Development Phase. This guidance provides key concepts and references in developing the SafetyManagement Plan in Task 4, lists relevant ...
NASA Astrophysics Data System (ADS)
Hand, K. P.; Murray, A. E.; Garvin, J.; Horst, S.; Brinckerhoff, W.; Edgett, K.; Hoehler, T.; Russell, M.; Rhoden, A.; Yingst, R. A.; German, C.; Schmidt, B.; Paranicas, C.; Smith, D.; Willis, P.; Hayes, A.; Ehlmann, B.; Lunine, J.; Templeton, A.; Nealson, K.; Christner, B.; Cable, M.; Craft, K.; Pappalardo, R.; Hofmann, A.; Nordheim, T.; Phillips, C.
2018-06-01
The Europa Lander mission concept would address key questions regarding ice properties and surface activity, including characterizing any plume deposits, understanding local topography, searching for evidence of interactions with liquid water.
Active learning reduces annotation time for clinical concept extraction.
Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony
2017-10-01
To investigate: (1) the annotation time savings by various active learning query strategies compared to supervised learning and a random sampling baseline, and (2) the benefits of active learning-assisted pre-annotations in accelerating the manual annotation process compared to de novo annotation. There are 73 and 120 discharge summary reports provided by Beth Israel institute in the train and test sets of the concept extraction task in the i2b2/VA 2010 challenge, respectively. The 73 reports were used in user study experiments for manual annotation. First, all sequences within the 73 reports were manually annotated from scratch. Next, active learning models were built to generate pre-annotations for the sequences selected by a query strategy. The annotation/reviewing time per sequence was recorded. The 120 test reports were used to measure the effectiveness of the active learning models. When annotating from scratch, active learning reduced the annotation time up to 35% and 28% compared to a fully supervised approach and a random sampling baseline, respectively. Reviewing active learning-assisted pre-annotations resulted in 20% further reduction of the annotation time when compared to de novo annotation. The number of concepts that require manual annotation is a good indicator of the annotation time for various active learning approaches as demonstrated by high correlation between time rate and concept annotation rate. Active learning has a key role in reducing the time required to manually annotate domain concepts from clinical free text, either when annotating from scratch or reviewing active learning-assisted pre-annotations. Copyright © 2017 Elsevier B.V. All rights reserved.
Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris
2015-01-01
Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation. PMID:26182891
NASA Astrophysics Data System (ADS)
Zaburdaev, V.; Denisov, S.; Klafter, J.
2015-04-01
Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Lévy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Lévy walks, surveys their existing applications, including latest advances, and outlines further perspectives.
Teaching Introductory Physics with an Environmental Focus
NASA Astrophysics Data System (ADS)
Martinuk, Mathew ``Sandy''; Moll, Rachel F.; Kotlicki, Andrzej
2010-09-01
Throughout North America the curriculum of introductory physics courses is nearly standardized. In 1992, Tobias wrote that four texts dominate 90% of the introductory physics market and current physics education research is focusing on how to sustain educational reforms.2 The instructional team at the University of British Columbia (UBC) recently implemented some key curriculum and pedagogical changes in Physics 100, their algebra-based introductory course for non-physics majors. These changes were aimed at improving their students' attitudes toward physics and their ability to apply physics concepts to useful real-life situations. In order to demonstrate that physics is relevant to real life, a theme of energy and environment was incorporated into the course.
CubeSat Launch Initiative Overview and CubeSat 101
NASA Technical Reports Server (NTRS)
Higginbotham, Scott
2017-01-01
The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results. This presentation will also provide high level CubeSat 101 information for prospective CubeSat developers, describing the development process from concept through mission operations while highlighting key points that developers need to be mindful of.
Coal gasifier cogeneration powerplant project
NASA Technical Reports Server (NTRS)
Shure, L. I.; Bloomfield, H. S.
1980-01-01
Industrial cogeneration and utility pr systems were analyzed and a conceptual design study was conducted to evaluate the economic feasibility of a coal gasifier power plant for NASA Lewis Research Center. Site location, plant size, and electric power demand were considered in criteria developed for screening and selecting candidates that could use a wide variety of coals, including that from Ohio. A fluidized bed gasifier concept was chosen as the baseline design and key components of the powerplant were technically assessed. No barriers to environmental acceptability are foreseen. If funded, the powerplant will not only meet the needs of the research center, but will reduce the commercial risk for utilities and industries by fully verifying and demonstrating the technology, thus accelerating commercialization.
NASA Technical Reports Server (NTRS)
Pinnick, Veronica; Buch, Arnaud; VanAmerom, Friso H. W.; Danell, Ryan M.; Brinckerhoff, William; Mahaffy, Paul; Cotter, Robert J.
2011-01-01
The Mars Organic Molecule Analyzer (MOMA) is a joint venture by NASA and the European Space Agency (ESA) to develop a sensitive, light-weight, low-power mass spectrometer for chemical analysis on Mars. MOMA is a key analytical instrument aboard the 2018 ExoMars rover mission seeking signs of past or present life. The current prototype was built to demonstrate operation of gas chromatography (OC) and laser desorption (LD) mass spectrometry under martian ambient conditions (5-7 Torr of CO2-rich atmosphere). Recent reports have discussed the MO MA concept, design and performance. Here, we update the current prototype performance, focusing specifically on the GCMS mode.
Control Design and Performance Analysis for Autonomous Formation Flight Experimentss
NASA Astrophysics Data System (ADS)
Rice, Caleb Michael
Autonomous Formation Flight is a key approach for reducing greenhouse gas emissions and managing traffic in future high density airspace. Unmanned Aerial Vehicles (UAV's) have made it possible for the physical demonstration and validation of autonomous formation flight concepts inexpensively and eliminates the flight risk to human pilots. This thesis discusses the design, implementation, and flight testing of three different formation flight control methods, Proportional Integral and Derivative (PID); Fuzzy Logic (FL); and NonLinear Dynamic Inversion (NLDI), and their respective performance behavior. Experimental results show achievable autonomous formation flight and performance quality with a pair of low-cost unmanned research fixed wing aircraft and also with a solo vertical takeoff and landing (VTOL) quadrotor.
Role of CFD in propulsion design - Government perspective
NASA Technical Reports Server (NTRS)
Schutzenhofer, L. A.; Mcconnaughey, H. V.; Mcconnaughey, P. K.
1990-01-01
Various aspects of computational fluid dynamics (CFD), as it relates to design applications in rocket propulsion activities from the government perspective, are discussed. Specific examples are given that demonstrate the application of CFD to support hardware development activities, such as Space Shuttle Main Engine flight issues, and the associated teaming strategy used for solving such problems. In addition, select examples that delineate the motivation, methods of approach, goals and key milestones for several space flight progams are cited. An approach is described toward applying CFD in the design environment from the government perspective. A discussion of benchmark validation, advanced technology hardware concepts, accomplishments, needs, future applications, and near-term expectations from the flight-center perspective is presented.
Learning STEM Through Integrative Visual Representations
NASA Astrophysics Data System (ADS)
Virk, Satyugjit Singh
Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with integrated animations of the key neural signal transmission subcomponents where the interrelationships between subcomponents are visually and verbally explicit, were hypothesized to perform significantly better on free response and diagram labeling questions, than students presented with isolated animations of these subcomponents. This is because the internal attentional cognitive load of chunking these concepts is greatly reduced and hence the overall cognitive load is less for the integrated visuals group than the isolated group, despite the higher external load for the integrated group of having the interrelationships between subcomponents presented explicitly. Experiment 1 demonstrated that integrating the subcomponents of the neuron significantly enhanced comprehension of the interconnections between cellular subcomponents and approached significance for enhancing comprehension of the layered molecular correlates of the cellular structures and their interconnections. Experiment 2 corrected time on task confounds from Experiment 1 and focused on the cellular subcomponents of the neuron only. Results from the free response essay subcomponent subscores did demonstrate significant differences in favor of the integrated group as well as some evidence from the diagram labeling section. Results from free response, short answer and What-If (problem solving), and diagram labeling detailed interrelationship subscores demonstrated the integrated group did indeed learn the extra material they were presented with. This data demonstrating the integrated group learned the extra material they were presented with provides some initial support for the assertion that chunking mediated the greater gains in learning for the neural subcomponent concepts over the control.
Using Food to Demonstrate Earth Science Concepts
NASA Astrophysics Data System (ADS)
Walter, J.; Francek, M.
2001-12-01
One way to better engage K-16 students with the earth sciences is through classroom demonstrations with food. We summarize references from journals and the world wide web that use food to illustrate earth science concepts. Examples of how edible substances have been used include using candy bars to demonstrate weathering concepts, ice cream to mimic glaciers, and grapes to demonstrate evaporation. We also categorize these demonstrations into geology, weather, space science, and oceanography categories. We further categorize the topics by grade level, web versus traditional print format, amount of time necessary to prepare a lesson plan, and whether the activity is better used as a demonstration or hands on activity.
High Altitude Venus Operational Concept (HAVOC): Proofs of Concept
NASA Technical Reports Server (NTRS)
Jones, Christopher A.; Arney, Dale C.; Bassett, George Z.; Clark, James R.; Hennig, Anthony I.; Snyder, Jessica C.
2015-01-01
The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus's atmosphere at 50 kilometers. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEP-Teflon (Fluorinated Ethylene Propylene-Teflon) to maintain 90 percent transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.
ERIC Educational Resources Information Center
Erickson, H. Lynn; Lanning, Lois A.; French, Rachel
2017-01-01
Knowing the facts is not enough. If we want students to develop intellectually, creatively problem-solve, and grapple with complexity, the key is in "conceptual understanding." A Concept-Based curriculum recaptures students' innate curiosity about the world and provides the thrilling feeling of engaging one's mind. This updated edition…
Adaptive management of natural resources: theory, concepts, and management institutions.
George H. Stankey; Roger N. Clark; Bernard T. Bormann
2005-01-01
This report reviews the extensive and growing literature on the concept and application of adaptive management. Adaptive management is a central element of the Northwest Forest Plan and there is a need for an informed understanding of the key theories, concepts, and frameworks upon which it is founded. Literature from a diverse range of fields including social learning...
The Teaching of Sight Words: Ways and Means. Instructional Concept Guide No. 7.
ERIC Educational Resources Information Center
Strader, Susan; And Others
The instructional concept guide is part of a system developed for tutor training and support. It is primarily designed for volunteers, but it can also be adapted to the training of paraprofessional tutors for any type of adult literacy program. A key component in the system is the Tutor Support Library, consisting of Instructional Concept Guides…
ERIC Educational Resources Information Center
Selinski, Natalie E.; Rasmussen, Chris; Wawro, Megan; Zandieh, Michelle
2014-01-01
The central goals of most introductory linear algebra courses are to develop students' proficiency with matrix techniques, to promote their understanding of key concepts, and to increase their ability to make connections between concepts. In this article, we present an innovative method using adjacency matrices to analyze students' interpretation…
The Multi-Sector Sustainability Browser (MSSB): A Tool for ...
The MSSB is the first and only decision support tool containing information from scientific literature and technical reports that can be used to develop and implement sustainability initiatives. The MSSB is designed to assist individuals and communities in understanding the impacts that the four key dimensions of sustainability - Land Use, Buildings and Infrastructure, Transportation, and Materials Management - can have on human health, the economy, the built environment and natural environments. The MSSB has the following capabilities: a. Displays and describes linkages between the four major sustainability concepts (Land Use, Buildings and Infrastructure, Transportation, and Materials Management) and their subordinate concepts. b. Displays and lists literature sources and references (including weblinks where applicable) providing information about each major sustainability concept and its associated subordinate concepts. c. Displays and lists quantitative data related to each major sustainability concept and its associated subordinate concepts, with weblinks where applicable.The MSSB serves as a ‘visual database’, allowing users to: investigate one or more of the four key sustainability dimensions; explore available scientific literature references, and; assess potential impacts of sustainability activities. The MSSB reduces the amount of time and effort required to assess the state of sustainability science and engineering research pertaining
Technology needs for high-speed rotorcraft, volume 1
NASA Technical Reports Server (NTRS)
Wilkerson, J. B.; Schneider, J. J.; Bartie, K. M.
1991-01-01
High-speed rotorcraft concepts and the technology needed to extend rotorcraft cruise speeds up to 450 knots (while retaining the helicopter attributes of low downwash velocities) were identified. Task I identified 20 concepts with high-speed potential. These concepts were qualitatively evaluated to determine the five most promising ones. These five concepts were designed with optimum wing loading and disk loading to a common NASA-defined military transport mission. The optimum designs were quantitatively compared against 11 key criteria and ranked accordingly. The two highest ranking concepts were selected for the further study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, R.
2011-03-02
It is widely recognized that the results of safety assessment calculations provide an important contribution to the safety arguments for a disposal facility, but cannot in themselves adequately demonstrate the safety of the disposal system. The safety assessment and a broader range of arguments and activities need to be considered holistically to justify radioactive waste disposal at any particular site. Many programs are therefore moving towards the production of what has become known as a Safety Case, which includes all of the different activities that are conducted to demonstrate the safety of a disposal concept. Recognizing the growing interest inmore » the concept of a Safety Case, the International Atomic Energy Agency (IAEA) is undertaking an intercomparison and harmonization project called PRISM (Practical Illustration and use of the Safety Case Concept in the Management of Near-surface Disposal). The PRISM project is organized into four Task Groups that address key aspects of the Safety Case concept: Task Group 1 - Understanding the Safety Case; Task Group 2 - Disposal facility design; Task Group 3 - Managing waste acceptance; and Task Group 4 - Managing uncertainty. This paper addresses the work of Task Group 4, which is investigating approaches for managing the uncertainties associated with near-surface disposal of radioactive waste and their consideration in the context of the Safety Case. Emphasis is placed on identifying a wide variety of approaches that can and have been used to manage different types of uncertainties, especially non-quantitative approaches that have not received as much attention in previous IAEA projects. This paper includes discussions of the current results of work on the task on managing uncertainty, including: the different circumstances being considered, the sources/types of uncertainties being addressed and some initial proposals for approaches that can be used to manage different types of uncertainties.« less
Nutrition, frailty, and sarcopenia.
Cruz-Jentoft, Alfonso J; Kiesswetter, Eva; Drey, Michael; Sieber, Cornel C
2017-02-01
Frailty and sarcopenia are important concepts in the quest to prevent physical dependence, as geriatrics are shifting towards identifications of early stages of disability. Definitions of both sarcopenia and frailty are still developing, and both concepts clearly overlap in their physical aspects. Malnutrition (both undernutrition and obesity) plays a key role in the pathogenesis of frailty and sarcopenia. The quality of the diet along the lifespan has a close relation with the incidence of both entities, and nutritional interventions may be able to reduce the incidence or revert either of them. This brief review explores the role of energy and protein intake and other key nutrients on muscle function. Nutrition may be a key element of multimodal interventions for frailty and sarcopenia. The results of the "Sarcopenia and Physical fRailty IN older people: multi-componenT Treatment strategies" (SPRINTT) trial will offer key insights on the effect of such interventions in frail, sarcopenic older individuals.
Status of the Planet Formation Imager (PFI) concept
NASA Astrophysics Data System (ADS)
Ireland, Michael J.; Monnier, John D.; Kraus, Stefan; Isella, Andrea; Minardi, Stefano; Petrov, Romain; ten Brummelaar, Theo; Young, John; Vasisht, Gautam; Mozurkewich, David; Rinehart, Stephen; Michael, Ernest A.; van Belle, Gerard; Woillez, Julien
2016-08-01
The Planet Formation Imager (PFI) project aims to image the period of planet assembly directly, resolving structures as small as a giant planet's Hill sphere. These images will be required in order to determine the key mechanisms for planet formation at the time when processes of grain growth, protoplanet assembly, magnetic fields, disk/planet dynamical interactions and complex radiative transfer all interact - making some planetary systems habitable and others inhospitable. We will present the overall vision for the PFI concept, focusing on the key technologies and requirements that are needed to achieve the science goals. Based on these key requirements, we will define a cost envelope range for the design and highlight where the largest uncertainties lie at this conceptual stage.
ERIC Educational Resources Information Center
Eckenrode, Jeffrey; Prather, Edward E.; Wallace, Colin S.
2016-01-01
This article reports on an investigation into the correlations between students' understandings of introductory astronomy concepts and the correctness and coherency of their written responses to targeted Lecture-Tutorial questions.
ERIC Educational Resources Information Center
Ward, Robin E.; Wandersee, James
2000-01-01
Students must understand key concepts through reasoning, searching out related concepts, and making connections within multiple systems to learn science. The Roundhouse diagram was developed to be a concise, holistic, graphic representation of a science topic, process, or activity. Includes sample Roundhouse diagrams, a diagram checklist, and…
The role of gender in the socialization of emotion: key concepts and critical issues.
Root, Amy Kennedy; Denham, Susanne A
2010-01-01
Given the omnipresent role of gender in children's and adolescents' development, it seems necessary to better understand how gender affects the process of emotion socialization. In this introductory chapter, the authors discuss the overarching themes and key concepts discussed in this volume, as well as outline the distinct contribution of each individual chapter. Each chapter within this volume underscores the important role that parents play in the socialization of emotion, and the impact gender-typed emotion socialization may have on later socioemotional adjustment. (c) Wiley Periodicals, Inc.
Practical and Theoretical interactions of Buddhism and Psychiatry : a view from the West.
Osborne, Thomas R.; Bhugra, Dinesh
2003-01-01
One of the greatest religions in the world. Buddhism and its tenets have been used for understanding the pain and human emotions. Using these tenets social and psychological development of the individuals can be encouraged.They key constructs of Buddhism can be employed in cognitive therapy. In this paper we provide an overview of the key principles embedded in Buddhism and also place these in the context of Western concepts of psychotherapy. We link the Buddhist concepts with anxiety, obsessive compulsive disorders, addictions and chronic illness. PMID:21206843
The Electrochemical Flow Capacitor: Capacitive Energy Storage in Flowable Media
NASA Astrophysics Data System (ADS)
Dennison, Christopher R.
Electrical energy storage (EES) has emerged as a necessary aspect of grid infrastructure to address the increasing problem of grid instability imposed by the large scale implementation of renewable energy sources (such as wind or solar) on the grid. Rapid energy recovery and storage is critically important to enable immediate and continuous utilization of these resources, and provides other benefits to grid operators and consumers as well. In past decades, there has been significant progress in the development of electrochemical EES technologies which has had an immense impact on the consumer and micro-electronics industries. However, these advances primarily address small-scale storage, and are often not practical at the grid-scale. A new energy storage concept called "the electrochemical flow capacitor (EFC)" has been developed at Drexel which has significant potential to be an attractive technology for grid-scale energy storage. This new concept exploits the characteristics of both supercapacitors and flow batteries, potentially enabling fast response rates with high power density, high efficiency, and long cycle lifetime, while decoupling energy storage from power output (i.e., scalable energy storage capacity). The unique aspect of this concept is the use of flowable carbon-electrolyte slurry ("flowable electrode") as the active material for capacitive energy storage. This dissertation work seeks to lay the scientific groundwork necessary to develop this new concept into a practical technology, and to test the overarching hypothesis that energy can be capacitively stored and recovered from a flowable media. In line with these goals, the objectives of this Ph.D. work are to: i) perform an exploratory investigation of the operating principles and demonstrate the technical viability of this new concept and ii) establish a scientific framework to assess the key linkages between slurry composition, flow cell design, operating conditions and system performance. To achieve these goals, a combined experimental and computational approach is undertaken. The technical viability of the technology is demonstrated, and in-depth studies are performed to understand the coupling between flow rate and slurry conductivity, and localized effects arising within the cell. The outlook of EFCs and other flowable electrode technologies is assessed, and opportunities for future work are discussed.
Advanced Technology Composite Fuselage - Repair and Damage Assessment Supporting Maintenance
NASA Technical Reports Server (NTRS)
Flynn, B. W.; Bodine, J. B.; Dopker, B.; Finn, S. R.; Griess, K. H.; Hanson, C. T.; Harris, C. G.; Nelson, K. M.; Walker, T. H.; Kennedy, T. C.;
1997-01-01
Under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC), Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure. Included in the study is the incorporation of maintainability and repairability requirements of composite primary structure into the design. This contractor report describes activities performed to address maintenance issues in composite fuselage applications. A key aspect of the study was the development of a maintenance philosophy which included consideration of maintenance issues early in the design cycle, multiple repair options, and airline participation in design trades. Fuselage design evaluations considered trade-offs between structural weight, damage resistance/tolerance (repair frequency), and inspection burdens. Analysis methods were developed to assess structural residual strength in the presence of damage, and to evaluate repair design concepts. Repair designs were created with a focus on mechanically fastened concepts for skin/stringer structure and bonded concepts for sandwich structure. Both a large crown (skintstringer) and keel (sandwich) panel were repaired. A compression test of the keel panel indicated the demonstrated repairs recovered ultimate load capability. In conjunction with the design and manufacturing developments, inspection methods were investigated for their potential to evaluate damaged structure and verify the integrity of completed repairs.
Neville, Timothy J; Salmon, Paul M
2016-07-01
As sport becomes more complex, there is potential for ergonomics concepts to help enhance the performance of sports officials. The concept of Situation Awareness (SA) appears pertinent given the requirement for officials to understand what is going on in order to make decisions. Although numerous models exist, none have been applied to examine officials, and only several recent examples have been applied to sport. This paper examines SA models and methods to identify if any have applicability to officials in sport (OiS). Evaluation of the models and methods identified potential applications of individual, team and systems models of SA. The paper further demonstrates that the Distributed Situation Awareness model is suitable for studying officials in fastball sports. It is concluded that the study of SA represents a key area of multidisciplinary research for both ergonomics and sports science in the context of OiS. Practitioner Summary: Despite obvious synergies, applications of cognitive ergonomics concepts in sport are sparse. This is especially so for Officials in Sport (OiS). This article presents an evaluation of Situation Awareness models and methods, providing practitioners with guidance on which are the most suitable for OiS system design and evaluation.
Kolb, Florian; Schmoltner, Kerstin; Huth, Michael; Hohenau, Andreas; Krenn, Joachim; Klug, Andreas; List, Emil J W; Plank, Harald
2013-08-02
The development of simple gas sensing concepts is still of great interest for science and technology. The demands on an ideal device would be a single-step fabrication method providing a device which is sensitive, analyte-selective, quantitative, and reversible without special operating/reformation conditions such as high temperatures or special environments. In this study we demonstrate a new gas sensing concept based on a nanosized PtC metal-matrix system fabricated in a single step via focused electron beam induced deposition (FEBID). The sensors react selectively on polar H2O molecules quantitatively and reversibly without any special reformation conditions after detection events, whereas non-polar species (O2, CO2, N2) produce no response. The key elements are isolated Pt nanograins (2-3 nm) which are embedded in a dielectric carbon matrix. The electrical transport in such materials is based on tunneling effects in the correlated variable range hopping regime, where the dielectric carbon matrix screens the electric field between the particles, which governs the final conductivity. The specific change of these dielectric properties by the physisorption of polar gas molecules (H2O) can change the tunneling probability and thus the overall conductivity, allowing their application as a simple and straightforward sensing concept.
Mesh-type acoustic vector sensor
NASA Astrophysics Data System (ADS)
Zalalutdinov, M. K.; Photiadis, D. M.; Szymczak, W. G.; McMahon, J. W.; Bucaro, J. A.; Houston, B. H.
2017-07-01
Motivated by the predictions of a theoretical model developed to describe the acoustic flow force exerted on closely spaced nano-fibers in a viscous medium, we have demonstrated a novel concept for a particle velocity-based directional acoustic sensor. The central element of the concept exploits the acoustically induced normal displacement of a fine mesh as a measure of the collinear projection of the particle velocity in the sound wave. The key observations are (i) the acoustically induced flow force on an individual fiber within the mesh is nearly independent of the fiber diameter and (ii) the mesh-flow interaction can be well-described theoretically by a nearest neighbor coupling approximation. Scaling arguments based on these two observations indicate that the refinement of the mesh down to the nanoscale leads to significant improvements in performance. The combination of the two dimensional nature of the mesh together with the nanoscale dimensions provides a dramatic gain in the total length of fiber exposed to the flow, leading to a sensitivity enhancement by orders of magnitude. We describe the fabrication of a prototype mesh sensor equipped with optical readout. Preliminary measurements carried out over a considerable bandwidth together with the results of numerical simulations are in good agreement with the theory, thus providing a proof of concept.
Price, Rebecca M.; Andrews, Tessa C.; McElhinny, Teresa L.; Mead, Louise S.; Abraham, Joel K.; Thanukos, Anna; Perez, Kathryn E.
2014-01-01
Understanding genetic drift is crucial for a comprehensive understanding of biology, yet it is difficult to learn because it combines the conceptual challenges of both evolution and randomness. To help assess strategies for teaching genetic drift, we have developed and evaluated the Genetic Drift Inventory (GeDI), a concept inventory that measures upper-division students’ understanding of this concept. We used an iterative approach that included extensive interviews and field tests involving 1723 students across five different undergraduate campuses. The GeDI consists of 22 agree–disagree statements that assess four key concepts and six misconceptions. Student scores ranged from 4/22 to 22/22. Statements ranged in mean difficulty from 0.29 to 0.80 and in discrimination from 0.09 to 0.46. The internal consistency, as measured with Cronbach's alpha, ranged from 0.58 to 0.88 across five iterations. Test–retest analysis resulted in a coefficient of stability of 0.82. The true–false format means that the GeDI can test how well students grasp key concepts central to understanding genetic drift, while simultaneously testing for the presence of misconceptions that indicate an incomplete understanding of genetic drift. The insights gained from this testing will, over time, allow us to improve instruction about this key component of evolution. PMID:24591505
Defining resilience within a risk-informed assessment framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coles, Garill A.; Unwin, Stephen D.; Holter, Gregory M.
2011-08-01
The concept of resilience is the subject of considerable discussion in academic, business, and governmental circles. The United States Department of Homeland Security for one has emphasised the need to consider resilience in safeguarding critical infrastructure and key resources. The concept of resilience is complex, multidimensional, and defined differently by different stakeholders. The authors contend that there is a benefit in moving from discussing resilience as an abstraction to defining resilience as a measurable characteristic of a system. This paper proposes defining resilience measures using elements of a traditional risk assessment framework to help clarify the concept of resilience andmore » as a way to provide non-traditional risk information. The authors show various, diverse dimensions of resilience can be quantitatively defined in a common risk assessment framework based on the concept of loss of service. This allows the comparison of options for improving the resilience of infrastructure and presents a means to perform cost-benefit analysis. This paper discusses definitions and key aspects of resilience, presents equations for the risk of loss of infrastructure function that incorporate four key aspects of resilience that could prevent or mitigate that loss, describes proposed resilience factor definitions based on those risk impacts, and provides an example that illustrates how resilience factors would be calculated using a hypothetical scenario.« less
Hege, Inga; Kononowicz, Andrzej A; Berman, Norman B; Lenzer, Benedikt; Kiesewetter, Jan
2018-01-01
Background: Clinical reasoning is a complex skill students have to acquire during their education. For educators it is difficult to explain their reasoning to students, because it is partly an automatic and unconscious process. Virtual Patients (VPs) are used to support the acquisition of clinical reasoning skills in healthcare education. However, until now it remains unclear which features or settings of VPs optimally foster clinical reasoning. Therefore, our aims were to identify key concepts of the clinical reasoning process in a qualitative approach and draw conclusions on how each concept can be enhanced to advance the learning of clinical reasoning with virtual patients. Methods: We chose a grounded theory approach to identify key categories and concepts of learning clinical reasoning and develop a framework. Throughout this process, the emerging codes were discussed with a panel of interdisciplinary experts. In a second step we applied the framework to virtual patients. Results: Based on the data we identified the core category as the "multifactorial nature of learning clinical reasoning". This category is reflected in the following five main categories: Psychological Theories, Patient-centeredness, Context, Learner-centeredness, and Teaching/Assessment. Each category encompasses between four and six related concepts. Conclusions: With our approach we were able to elaborate how key categories and concepts of clinical reasoning can be applied to virtual patients. This includes aspects such as allowing learners to access a large number of VPs with adaptable levels of complexity and feedback or emphasizing dual processing, errors, and uncertainty.
Hege, Inga; Kononowicz, Andrzej A.; Berman, Norman B.; Lenzer, Benedikt; Kiesewetter, Jan
2018-01-01
Background: Clinical reasoning is a complex skill students have to acquire during their education. For educators it is difficult to explain their reasoning to students, because it is partly an automatic and unconscious process. Virtual Patients (VPs) are used to support the acquisition of clinical reasoning skills in healthcare education. However, until now it remains unclear which features or settings of VPs optimally foster clinical reasoning. Therefore, our aims were to identify key concepts of the clinical reasoning process in a qualitative approach and draw conclusions on how each concept can be enhanced to advance the learning of clinical reasoning with virtual patients. Methods: We chose a grounded theory approach to identify key categories and concepts of learning clinical reasoning and develop a framework. Throughout this process, the emerging codes were discussed with a panel of interdisciplinary experts. In a second step we applied the framework to virtual patients. Results: Based on the data we identified the core category as the "multifactorial nature of learning clinical reasoning". This category is reflected in the following five main categories: Psychological Theories, Patient-centeredness, Context, Learner-centeredness, and Teaching/Assessment. Each category encompasses between four and six related concepts. Conclusions: With our approach we were able to elaborate how key categories and concepts of clinical reasoning can be applied to virtual patients. This includes aspects such as allowing learners to access a large number of VPs with adaptable levels of complexity and feedback or emphasizing dual processing, errors, and uncertainty. PMID:29497697
NASA Astrophysics Data System (ADS)
Wasser, L. A.; Gram, W.; Lunch, C. K.; Petroy, S. B.; Elmendorf, S.
2013-12-01
'Big Data' are becoming increasingly common in many fields. The National Ecological Observatory Network (NEON) will be collecting data over the 30 years, using consistent, standardized methods across the United States. Similar efforts are underway in other parts of the globe (e.g. Australia's Terrestrial Ecosystem Research Network, TERN). These freely available new data provide an opportunity for increased understanding of continental- and global scale processes such as changes in vegetation structure and condition, biodiversity and landuse. However, while 'big data' are becoming more accessible and available, integrating big data into the university courses is challenging. New and potentially unfamiliar data types and associated processing methods, required to work with a growing diversity of available data, may warrant time and resources that present a barrier to classroom integration. Analysis of these big datasets may further present a challenge given large file sizes, and uncertainty regarding best methods to properly statistically summarize and analyze results. Finally, teaching resources, in the form of demonstrative illustrations, and other supporting media that might help teach key data concepts, take time to find and more time to develop. Available resources are often spread widely across multi-online spaces. This presentation will overview the development of NEON's collaborative University-focused online education portal. Portal content will include 1) interactive, online multi-media content that explains key concepts related to NEON's data products including collection methods, key metadata to consider and consideration of potential error and uncertainty surrounding data analysis; and 2) packaged 'lab' activities that include supporting data to be used in an ecology, biology or earth science classroom. To facilitate broad use in classrooms, lab activities will take advantage of freely and commonly available processing tools, techniques and scripts. All NEON materials are being developed in collaboration with labs and organizations across the globe. Integrating data analysis and processing techniques, early in student's careers will support and facilitate student advancement in the sciences - contributing to a larger body of knowledge and understanding of continental and global scale issues. Facilitating understanding of data use and empowering young ecologists with the tools required to process the data, is thus as integral to the observatory as the data itself. In this presentation, we discuss the integral role of freely available education materials that demonstrate the use of big data to address ecological questions and concepts. We also review gaps in existing educational resources related to big data and associated tools. Further, we address the great potential for big data inclusion into both an existing ecological, physical and environmental science courses and self-paced learning model through engaging and interactive multi-media presentation. Finally, we present beta-versions of the interactive, multi-media modules and results from feedback following early piloting and review.
ERIC Educational Resources Information Center
Renshaw, Simon; Wood, Phil
2011-01-01
This article reports the results of a small-scale curriculum development project focusing on two of the seven "key concepts" identified in the revised Key Stage 3 (KS3) National Curriculum programme of study for geography, introduced into schools in 2007. The study used "interdependence" and "physical processes" as…
ERIC Educational Resources Information Center
Webb, P. Taylor
2014-01-01
This article places Michel Foucault's concept of "problematization" in relation to educational policy research. My goal is to examine a key assumption of policy related to "solving problems" through such technologies. I discuss the potential problematization has to alter conceptions of policy research; and, through this…
Allones, J L; Martinez, D; Taboada, M
2014-10-01
Clinical terminologies are considered a key technology for capturing clinical data in a precise and standardized manner, which is critical to accurately exchange information among different applications, medical records and decision support systems. An important step to promote the real use of clinical terminologies, such as SNOMED-CT, is to facilitate the process of finding mappings between local terms of medical records and concepts of terminologies. In this paper, we propose a mapping tool to discover text-to-concept mappings in SNOMED-CT. Name-based techniques were combined with a query expansion system to generate alternative search terms, and with a strategy to analyze and take advantage of the semantic relationships of the SNOMED-CT concepts. The developed tool was evaluated and compared to the search services provided by two SNOMED-CT browsers. Our tool automatically mapped clinical terms from a Spanish glossary of procedures in pathology with 88.0% precision and 51.4% recall, providing a substantial improvement of recall (28% and 60%) over other publicly accessible mapping services. The improvements reached by the mapping tool are encouraging. Our results demonstrate the feasibility of accurately mapping clinical glossaries to SNOMED-CT concepts, by means a combination of structural, query expansion and named-based techniques. We have shown that SNOMED-CT is a great source of knowledge to infer synonyms for the medical domain. Results show that an automated query expansion system overcomes the challenge of vocabulary mismatch partially.
Matthews, Lynn T; Beyeza-Kashesya, Jolly; Cooke, Ian; Davies, Natasha; Heffron, Renee; Kaida, Angela; Kinuthia, John; Mmeje, Okeoma; Semprini, Augusto E; Weber, Shannon
2018-06-01
Safer conception interventions reduce HIV incidence while supporting the reproductive goals of people living with or affected by HIV. We developed a consensus statement to address demand, summarize science, identify information gaps, outline research and policy priorities, and advocate for safer conception services. This statement emerged from a process incorporating consultation from meetings, literature, and key stakeholders. Three co-authors developed an outline which was discussed and modified with co-authors, working group members, and additional clinical, policy, and community experts in safer conception, HIV, and fertility. Co-authors and working group members developed and approved the final manuscript. Consensus across themes of demand, safer conception strategies, and implementation were identified. There is demand for safer conception services. Access is limited by stigma towards PLWH having children and limits to provider knowledge. Efficacy, effectiveness, safety, and acceptability data support a range of safer conception strategies including ART, PrEP, limiting condomless sex to peak fertility, home insemination, male circumcision, STI treatment, couples-based HIV testing, semen processing, and fertility care. Lack of guidelines and training limit implementation. Key outstanding questions within each theme are identified. Consumer demand, scientific data, and global goals to reduce HIV incidence support safer conception service implementation. We recommend that providers offer services to HIV-affected men and women, and program administrators integrate safer conception care into HIV and reproductive health programs. Answers to outstanding questions will refine services but should not hinder steps to empower people to adopt safer conception strategies to meet reproductive goals.
Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Price, Laura L.
This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth ofmore » about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.« less
NASA Astrophysics Data System (ADS)
Carter, Andrew C.; Wale, Michael J.; Simmons, T.; Whitbread, Neil; Asghari, M.
2003-06-01
A key attribute emerging in the optoelectronic component supply industry is the ability to deliver 'solution level' products rather than discrete optical components to equipment manufacturers. This approach is primarily aimed at reducing cost for the equipment manufacturer both in engineering and assembly. Such 'solutions' must be designed to be cost effective - offering costs substantially below discrete components - and must be compatible with subcontract board manufacture without the traditional and expensive skills of fibre handling, splicing and management. Examples of 'solutions' in this context may be the core of a multifunctional OADM or a DWDM laser transmitter subsystem, with modulation, wavelength and power management all included in a simple to use module. Essential to the cost effective production of such solutions is a high degree of optical/optoelectronic integration. Co-packaging of discrete components and electronics into modules will not deliver the cost reduction demanded. At Bookham Technology we have brought together what we believe to be the three key integration technologies - InP for monolithic tunable sources, GaAs for high performance integrated modulation and ASOC for smart passives and hybrid platforms - which can deliver this cost reduction, together with performance enhancement, over a wide range of applications. In the paper we will demonstrate and compare our above integration approaches with the competing alternatives and seek to show how the power of integration is finally being harnessed in optoelectronics, delivering radical cost reduction as well as enabling system concepts virtually impossible to achieve with discrete components. In the paper we will demonstrate and compare our above integration approaches with the competing alternatives and seek to show how the power of integration is finally being harnessed in optoelectronics, delivering radical cost reduction as well as enabling system concepts virtually impossible to achieve with discrete components.
ERIC Educational Resources Information Center
Connolly, Heather; Spiller, Dorothy
2016-01-01
This paper reports on and evaluates the use of concept mapping as a learning tool in a large first year Management course. The goal was to help students make personal sense of course learning and to build their understanding of links and relationships between key course ideas. Concept mapping was used for three summative assessment pieces,…
ERIC Educational Resources Information Center
Whitley, Jessica; Rawana, Edward; Brownlee, Keith
2014-01-01
Self-concept has been found to play a key role in academic and psychosocial outcomes for students. Appreciating the factors that have a bearing upon self-concept may be of particular importance for Aboriginal students, many of whom experience poorer outcomes than non-Aboriginal Canadians. In this study, we conducted a quantitative analysis of the…
ERIC Educational Resources Information Center
Rossouw, Ammeret; Hacker, Michael; de Vries, Marc J.
2011-01-01
Inspired by a similar study by Osborne et al. we have conducted a Delphi study among experts to identify key concepts to be taught in engineering and technology education and relevant and meaningful contexts through which these concepts can be taught and learnt. By submitting the outcomes of the Delphi study to a panel of experts in a two-day…
Franzel, Brigitte; Schwiegershausen, Martina; Heusser, Peter; Berger, Bettina
2013-06-03
Personalised (or individualised) medicine in the days of genetic research refers to molecular biologic specifications in individuals and not to a response to individual patient needs in the sense of person-centred medicine. Studies suggest that patients often wish for authentically person-centred care and personal physician-patient interactions, and that they therefore choose Complementary and Alternative medicine (CAM) as a possibility to complement standard care and ensure a patient-centred approach. Therefore, to build on the findings documented in these qualitative studies, we investigated the various concepts of individualised medicine inherent in patients' reasons for using CAM. We used the technique of meta-ethnography, following a three-stage approach: (1) A comprehensive systematic literature search of 67 electronic databases and appraisal of eligible qualitative studies related to patients' reasons for seeking CAM was carried out. Eligibility for inclusion was determined using defined criteria. (2) A meta-ethnographic study was conducted according to Noblit and Hare's method for translating key themes in patients' reasons for using CAM. (3) A line-of-argument approach was used to synthesize and interpret key concepts associated with patients' reasoning regarding individualized medicine. (1) Of a total of 9,578 citations screened, 38 studies were appraised with a quality assessment checklist and a total of 30 publications were included in the study. (2) Reasons for CAM use evolved following a reciprocal translation. (3) The line-of-argument interpretations of patients' concepts of individualised medicine that emerged based on the findings of our multidisciplinary research team were "personal growth", "holism", "alliance", "integrative care", "self-activation" and "wellbeing". The results of this meta-ethnographic study demonstrate that patients' notions of individualised medicine differ from the current idea of personalised genetic medicine. Our study shows that the "personal" patients' needs are not identified with a specific high-risk group or with a unique genetic profile in the sense of genome-based "personalised" or "individualised" medicine. Thus, the concept of individualised medicine should include the humanistic approach of individualisation as expressed in concepts such as "personal growth", "holistic" or "integrative care", doctor-patient "alliance", "self-activation" and "wellbeing" needs. This should also be considered in research projects and the allocation of healthcare resources.
2013-01-01
Background Personalised (or individualised) medicine in the days of genetic research refers to molecular biologic specifications in individuals and not to a response to individual patient needs in the sense of person-centred medicine. Studies suggest that patients often wish for authentically person-centred care and personal physician-patient interactions, and that they therefore choose Complementary and Alternative medicine (CAM) as a possibility to complement standard care and ensure a patient-centred approach. Therefore, to build on the findings documented in these qualitative studies, we investigated the various concepts of individualised medicine inherent in patients’ reasons for using CAM. Methods We used the technique of meta-ethnography, following a three-stage approach: (1) A comprehensive systematic literature search of 67 electronic databases and appraisal of eligible qualitative studies related to patients’ reasons for seeking CAM was carried out. Eligibility for inclusion was determined using defined criteria. (2) A meta-ethnographic study was conducted according to Noblit and Hare's method for translating key themes in patients’ reasons for using CAM. (3) A line-of-argument approach was used to synthesize and interpret key concepts associated with patients’ reasoning regarding individualized medicine. Results (1) Of a total of 9,578 citations screened, 38 studies were appraised with a quality assessment checklist and a total of 30 publications were included in the study. (2) Reasons for CAM use evolved following a reciprocal translation. (3) The line-of-argument interpretations of patients’ concepts of individualised medicine that emerged based on the findings of our multidisciplinary research team were “personal growth”, “holism”, “alliance”, “integrative care”, “self-activation” and “wellbeing”. Conclusions The results of this meta-ethnographic study demonstrate that patients’ notions of individualised medicine differ from the current idea of personalised genetic medicine. Our study shows that the “personal” patients’ needs are not identified with a specific high-risk group or with a unique genetic profile in the sense of genome-based “personalised” or “individualised” medicine. Thus, the concept of individualised medicine should include the humanistic approach of individualisation as expressed in concepts such as “personal growth”, “holistic” or “integrative care”, doctor-patient “alliance”, “self-activation” and “wellbeing” needs. This should also be considered in research projects and the allocation of healthcare resources. PMID:23731970
Loop Group Parakeet Virtual Cable Concept Demonstrator
NASA Astrophysics Data System (ADS)
Dowsett, T.; McNeill, T. C.; Reynolds, A. B.; Blair, W. D.
2002-07-01
The Parakeet Virtual Cable (PVC) concept demonstrator uses the Ethernet Local Area Network (LAN) laid for the Battle Command Support System (BCSS) to connect the Parakeet DVT(DA) (voice terminal) to the Parakeet multiplexer. This currently requires pairs of PVC interface units to be installed for each DVT(DA) . To reduce the cost of a PVC installation, the concept of a Loop Group Parakeet Virtual Cable (LGPVC) was proposed. This device was designed to replace the up to 30 PVC boxes and the multiplexer at the multiplexer side of a PVC installation. While the demonstrator is largely complete, testing has revealed an incomplete understanding of how to emulate the proprietary handshaking occurring between the circuit switch and the multiplexer. The LGPVC concept cannot yet be demonstrated.
NASA Astrophysics Data System (ADS)
Fulker, D. W.; Pearlman, F.; Pearlman, J.; Arctur, D. K.; Signell, R. P.
2016-12-01
A major challenge for geoscientists—and a key motivation for the National Science Foundation's EarchCube initiative—is to integrate data across disciplines, as is necessary for complex Earth-system studies such as climate change. The attendant technical and social complexities have led EarthCube participants to devise a system-of-systems architectural concept. Its centerpiece is a (virtual) interoperability workbench, around which a learning community can coalesce, supported in their evolving quests to join data from diverse sources, to synthesize new forms of data depicting Earth phenomena, and to overcome immense obstacles that arise, for example, from mismatched nomenclatures, projections, mesh geometries and spatial-temporal scales. The full architectural concept will require significant time and resources to implement, but this presentation describes a (minimal) starter kit. With a keep-it-simple mantra this workbench starter kit can fulfill the following four objectives: 1) demonstrate the feasibility of an interoperability workbench by mid-2017; 2) showcase scientifically useful examples of cross-domain interoperability, drawn, e.g., from funded EarthCube projects; 3) highlight selected aspects of EarthCube's architectural concept, such as a system of systems (SoS) linked via service interfaces; 4) demonstrate how workflows can be designed and used in a manner that enables sharing, promotes collaboration and fosters learning. The outcome, despite its simplicity, will embody service interfaces sufficient to construct—from extant components—data-integration and data-synthesis workflows involving multiple geoscience domains. Tentatively, the starter kit will build on the Jupyter Notebook web application, augmented with libraries for interfacing current services (at data centers involved in EarthCube's Council of Data Facilities, e.g.) and services developed specifically for EarthCube and spanning most geoscience domains.
NASA Astrophysics Data System (ADS)
Wang, Jeremy Yi-Ming
This dissertation examines the thesis that implicit learning plays a role in learning about scientific phenomena, and subsequently, in conceptual change. Decades of research in learning science demonstrate that a primary challenge of science education is overcoming prior, naive knowledge of natural phenomena in order to gain scientific understanding. Until recently, a key assumption of this research has been that to develop scientific understanding, learners must abandon their prior scientific intuitions and replace them with scientific concepts. However, a growing body of research shows that scientific intuitions persist, even among science experts. This suggests that naive intuitions are suppressed, not supplanted, as learners gain scientific understanding. The current study examines two potential roles of implicit learning processes in the development of scientific knowledge. First, implicit learning is a source of cognitive structures that impede science learning. Second, tasks that engage implicit learning processes can be employed to activate and suppress prior intuitions, enhancing the likelihood that scientific concepts are adopted and applied. This second proposal is tested in two experiments that measure training-induced changes in intuitive and conceptual knowledge related to sinking and floating objects in water. In Experiment 1, an implicit learning task was developed to examine whether implicit learning can induce changes in performance on near and far transfer tasks. The results of this experiment provide evidence that implicit learning tasks activate and suppress scientific intuitions. Experiment 2 examined the effects of combining implicit learning with traditional, direct instruction to enhance explicit learning of science concepts. This experiment demonstrates that sequencing implicit learning task before and after direct instruction has different effects on intuitive and conceptual knowledge. Together, these results suggest a novel approach for enhancing learning for conceptual change in science education.
Agile hardware and software systems engineering for critical military space applications
NASA Astrophysics Data System (ADS)
Huang, Philip M.; Knuth, Andrew A.; Krueger, Robert O.; Garrison-Darrin, Margaret A.
2012-06-01
The Multi Mission Bus Demonstrator (MBD) is a successful demonstration of agile program management and system engineering in a high risk technology application where utilizing and implementing new, untraditional development strategies were necessary. MBD produced two fully functioning spacecraft for a military/DOD application in a record breaking time frame and at dramatically reduced costs. This paper discloses the adaptation and application of concepts developed in agile software engineering to hardware product and system development for critical military applications. This challenging spacecraft did not use existing key technology (heritage hardware) and created a large paradigm shift from traditional spacecraft development. The insertion of new technologies and methods in space hardware has long been a problem due to long build times, the desire to use heritage hardware, and lack of effective process. The role of momentum in the innovative process can be exploited to tackle ongoing technology disruptions and allowing risk interactions to be mitigated in a disciplined manner. Examples of how these concepts were used during the MBD program will be delineated. Maintaining project momentum was essential to assess the constant non recurring technological challenges which needed to be retired rapidly from the engineering risk liens. Development never slowed due to tactical assessment of the hardware with the adoption of the SCRUM technique. We adapted this concept as a representation of mitigation of technical risk while allowing for design freeze later in the program's development cycle. By using Agile Systems Engineering and Management techniques which enabled decisive action, the product development momentum effectively was used to produce two novel space vehicles in a fraction of time with dramatically reduced cost.
A Day in the Life of the Laser Communications Relay Demonstration Project
NASA Technical Reports Server (NTRS)
Edwards, Bernard; Israel, David; Caroglanian, Armen; Spero, James; Roberts, Tom; Moores, John
2016-01-01
This paper provides an overview of the planned concept of operations for the Laser Communications Relay Demonstration Project (LCRD), a joint project among NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). LCRD will provide at least two years of bi-directional optical communications at user data rates of up to 1.244 Gbps in an operational environment. The project lays the groundwork for establishing communications architecture and protocols, and developing the communications hardware and support infrastructure, concluding in a demonstration of optical communications' potential to meet NASA's growing need for higher data rates for future science and exploration missions. A pair of flight optical communications terminals will reside on a single commercial communications satellite in geostationary orbit; the two ground optical communications terminals will be located in Southern California and Hawaii. This paper summarizes the current LCRD architecture and key systems for the demonstration, focusing on what it will take to operate an optical communications relay that can support space-to-space, space-to-air, and space-to-ground optical links.
A Day in the Life of the Laser Communications Relay Demonstration (LCRD) Project.
NASA Technical Reports Server (NTRS)
Israel, David; Caroglanian, Armen; Edwards, Bernard; Spero, James; Roberts, Tom; Moores, John
2016-01-01
This presentation provides an overview of the planned concept of operations for the Laser Communications Relay Demonstration Project (LCRD), a joint project among NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MITLL). LCRD will provide at least two years of bi-directional optical communications at user data rates of up to 1.244 Gbps in an operational environment. The project lays the ground work for establishing communications architecture and protocols, and developing the communications hardware and support infrastructure, concluding in a demonstration of optical communications potential to meet NASAs growing need for higher data rates for future science and exploration missions. A pair of flight optical communications terminals will reside on a single commercial communications satellite in geostationary orbit; the two ground optical communications terminals will be located in Southern California and Hawaii. This paper summarizes the current LCRD architecture and key systems for the demonstration, focusing on what it will take to operate an optical communications relay that can support space-to-space, space-to-air, and space-to-ground optical links.
Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator
NASA Technical Reports Server (NTRS)
Oostdyk, Rebecca L.; Perotti, Jose M.
2011-01-01
The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.
Non-Venting Thermal and Humidity Control for EVA Suits
NASA Technical Reports Server (NTRS)
Izenson, Mike; Chen, Weibo; Bue, Grant
2011-01-01
Future EVA suits need processes and systems to control internal temperature and humidity without venting water to the environment. This paper describes an absorption-based cooling and dehumidification system as well as laboratory demonstrations of the key processes. There are two main components in the system: an evaporation cooling and dehumidification garment (ECDG) that removes both sensible heat and latent heat from the pressure garment, and an absorber radiator that absorbs moisture and rejects heat to space by thermal radiation. This paper discusses the overall design of both components, and presents recent data demonstrating their operation. We developed a design and fabrication approach to produce prototypical heat/water absorbing elements for the ECDG, and demonstrated by test that these elements could absorb heat and moisture at a high flux. Proof-of-concept tests showed that an ECDG prototype absorbs heat and moisture at a rate of 85 W/ft under conditions that simulate operation in an EVA suit. The heat absorption was primarily due to direct absorption of water vapor. It is possible to construct large, flexible, durable cooling patches that can be incorporated into a cooling garment with this system. The proof-of-concept test data was scaled to calculate area needed for full metabolic loads, thus showing that it is feasible to use this technology in an EVA suit. Full-scale, lightweight absorber/radiator modules have also been built and tested. They can reject heat at a flux of 33 W/ft while maintaining ECDG operation at conditions that will provide a cool and dry environment inside the EVA suit.
NASA Astrophysics Data System (ADS)
Leigh, Roland J.; Whyte, C.; Cutter, M. A.; Lobb, D. R.; Monks, P. S.
2017-11-01
Under the first phase of the Centre for Earth Observation Instrumentation (CEOI), a breadboard demonstrator of a novel UV/VIS spectrometer has been developed. Using designs from Surrey Satellite Technology Ltd (SSTL) the demonstrator has been constructed and tested at the University of Leicester's Space Research Centre. This spectrometer provides an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. Measurement of atmo spheric compounds with climate change or air quality implications is a key driver for the ground and space-based Earth Observation communities. Techniques using UV/VIS spectroscopy such as DOAS provide measurements of ozone profiles, aerosol optical depth, certain Volatile Organic Compounds, halogenated species, and key air quality parameters including tropospheric nitrogen dioxide. Compact instruments providing the necessary optical performance and spectral resolution are therefore a key enabling technology. The Compact Air Quality Spectrometer (CompAQS) features a concentric arrangement of a spherical meniscus lens, a concave spherical mirror and a suitable curved diffraction grating. This compact design provides efficiency and performance benefits over traditional concepts, improving the precision and spatial resolution available from space borne instruments with limited weight and size budgets. The breadboard spectrometer currently operating at the University of Leicester offers high throughput with a spectral range from 310 to 450 nm at 0.5nm(UV) to 1.0nm (visible) resolution, suitable for DOAS applications. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called `smile' - the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. In this presentation, the design of the spectrometer is detailed, with results from instrument characterisations undertaken at the University of Leicester, including demonstrations of DOAS fits for key air quality species.
Applying ``intelligent`` materials for materials education: The Labless Lab{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade, J.D.; Scheer, R.
1994-12-31
A very large number of science and engineering courses taught in colleges and universities today do not involve laboratories. Although good instructors incorporate class demonstrations, hands on homework, and various teaching aids, including computer simulations, the fact is that students in such courses often accept key concepts and experimental results without discovering them for themselves. The only partial solution to this problem has been increasing use of class demonstrations and computer simulations. The authors feel strongly that many complex concepts can be observed and assimilated through experimentation with properly designed materials. They propose the development of materials and specimens designedmore » specifically for education purposes. Intelligent and communicative materials are ideal for this purpose. Specimens which respond in an observable fashion to new environments and situations provided by the students/experimenter provide a far more effective materials science and engineering experience than readouts and data generated by complex and expensive machines, particularly in an introductory course. Modern materials can be designed to literally communicate with the observer. The authors embarked on a project to develop a series of Labless Labs{trademark} utilizing various degrees and levels of intelligence in materials. It is expected that such Labless Labs{trademark} would be complementary to textbooks and computer simulations and to be used to provide a reality for students in courses and other learning situations where access to a laboratory is non-existent or limited.« less
'Visual’ parsing can be taught quickly without visual experience during critical periods
Reich, Lior; Amedi, Amir
2015-01-01
Cases of invasive sight-restoration in congenital blind adults demonstrated that acquiring visual abilities is extremely challenging, presumably because visual-experience during critical-periods is crucial for learning visual-unique concepts (e.g. size constancy). Visual rehabilitation can also be achieved using sensory-substitution-devices (SSDs) which convey visual information non-invasively through sounds. We tested whether one critical concept – visual parsing, which is highly-impaired in sight-restored patients – can be learned using SSD. To this end, congenitally blind adults participated in a unique, relatively short (~70 hours), SSD-‘vision’ training. Following this, participants successfully parsed 2D and 3D visual objects. Control individuals naïve to SSDs demonstrated that while some aspects of parsing with SSD are intuitive, the blind’s success could not be attributed to auditory processing alone. Furthermore, we had a unique opportunity to compare the SSD-users’ abilities to those reported for sight-restored patients who performed similar tasks visually, and who had months of eyesight. Intriguingly, the SSD-users outperformed the patients on most criteria tested. These suggest that with adequate training and technologies, key high-order visual features can be quickly acquired in adulthood, and lack of visual-experience during critical-periods can be somewhat compensated for. Practically, these highlight the potential of SSDs as standalone-aids or combined with invasive restoration approaches. PMID:26482105
NASA Technical Reports Server (NTRS)
Burns, Jack O.; Kring, David; Norris, Scott; Hopkins, Josh; Lazio, Joseph; Kasper, Justin
2012-01-01
A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such missions would validate the Orion MPCV's life support systems, would demonstrate the high-speed re-entry capability needed for return from deep space, and would measure astronauts' radiation dose from cosmic rays and solar flares to verify that Orion would provide sufficient protection, as it is designed to do. On this proposed mission, the astronauts would teleoperate landers and rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitkin basin (one of the oldest impact basins in the solar system) is a key science objective of the 2011 Planetary Science Decadal Survey. Observations of the Universe's first stars/galaxies at low radio frequencies are a priority of the 2010 Astronomy & Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions.
A flowsheet concept for an Am/Ln separation based on Am{sup VI} solvent extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mincher, B.J.; Law, J.D.
2013-07-01
The separation of Am from the lanthanides and curium is a key step in proposed advanced fuel cycle scenarios. The partitioning and transmutation of Am is desirable to minimize the long-term radiotoxicity of material interred in a future high-level waste repository. However, a separation amenable to process scale-up remains elusive. Higher oxidation states of americium have recently been used to demonstrate solvent extraction-based separations using conventional fuel cycle ligands. Here, the successful partitioning of Am{sup VI} from the bulk of lanthanides and curium using diamyl-amyl-phosphonate (DAAP) extraction is reported. Due to the instability of Am{sup VI} in the organic phasemore » it was readily selectively stripped to a new acidic aqueous phase to provide separation from co-extracted Ce{sup IV}. The use of NaBiO{sub 3} as an oxidant to separate Am from the lanthanides and Cm by solvent extraction has been successfully demonstrated on the bench scale. Based on these results, flowsheet concepts can be designed that result in 96 % Am recovery in the presence of a few percent of the remaining Cm and the lanthanides in two extraction contacts. Preliminary results also indicate that the DAAP extractant is robust toward γ- irradiation under realistic conditions of acidity and dissolved oxygen concentration.« less
Prebiotic Evolution of Nitrogen Compounds
NASA Technical Reports Server (NTRS)
Arrhenius, G.
1999-01-01
Support from this four year grant has funded our research on two general problems. One involves attempts to model the abiotic formation of simple source compounds for functional biomolecules, their concentration from dilute state in the hydrosphere and, in several cases, surface induced reactions to form precursor monomers for bioactive end products (refs. 1-5). Because of the pervasiveness and antiquity of phosphate based biochemistry and the catalytic activity of RNA we have exploring the hypothesis of an RNA World as an early stage in the emergence of life. This concept is now rather generally considered, but has been questioned due to the earlier lack of an experimentally demonstrated successful scheme for the spontaneous formation of ribose phosphate, the key backbone molecule in RNA. That impediment has now been removed. This has been achieved by demonstrating probable sources of activated (condensed) highly soluble and strongly sorbed phosphates in nature (Refs. 1,2) and effective condensation of aldehyde phosphates to form ribose phosphate in high yield (ref.6), thereby placing the RNA World concept on a somewhat safer experimental footing. Like all work in this field these experiments are oversimplifications that largely ignore competing side reactions with other compounds expected to be present. None the less our choice of experimental conditions aim at selective processes that eliminate interfering reactions. We have also sought to narrow the credibility gap by simulating geophysically and geochemically plausible conditions surrounding the putative prebiotic reactions.
Integrated Technology Assessment Center (ITAC) Update
NASA Technical Reports Server (NTRS)
Taylor, J. L.; Neely, M. A.; Curran, F. M.; Christensen, E. R.; Escher, D.; Lovell, N.; Morris, Charles (Technical Monitor)
2002-01-01
The Integrated Technology Assessment Center (ITAC) has developed a flexible systems analysis framework to identify long-term technology needs, quantify payoffs for technology investments, and assess the progress of ASTP-sponsored technology programs in the hypersonics area. For this, ITAC has assembled an experienced team representing a broad sector of the aerospace community and developed a systematic assessment process complete with supporting tools. Concepts for transportation systems are selected based on relevance to the ASTP and integrated concept models (ICM) of these concepts are developed. Key technologies of interest are identified and projections are made of their characteristics with respect to their impacts on key aspects of the specific concepts of interest. Both the models and technology projections are then fed into the ITAC's probabilistic systems analysis framework in ModelCenter. This framework permits rapid sensitivity analysis, single point design assessment, and a full probabilistic assessment of each concept with respect to both embedded and enhancing technologies. Probabilistic outputs are weighed against metrics of interest to ASTP using a multivariate decision making process to provide inputs for technology prioritization within the ASTP. ITAC program is currently finishing the assessment of a two-stage-to-orbit (TSTO), rocket-based combined cycle (RBCC) concept and a TSTO turbine-based combined cycle (TBCC) concept developed by the team with inputs from NASA. A baseline all rocket TSTO concept is also being developed for comparison. Boeing has recently submitted a performance model for their Flexible Aerospace System Solution for Tomorrow (FASST) concept and the ISAT program will provide inputs for a single-stage-to-orbit (SSTO) TBCC based concept in the near-term. Both of these latter concepts will be analyzed within the ITAC framework over the summer. This paper provides a status update of the ITAC program.
GOClonto: an ontological clustering approach for conceptualizing PubMed abstracts.
Zheng, Hai-Tao; Borchert, Charles; Kim, Hong-Gee
2010-02-01
Concurrent with progress in biomedical sciences, an overwhelming of textual knowledge is accumulating in the biomedical literature. PubMed is the most comprehensive database collecting and managing biomedical literature. To help researchers easily understand collections of PubMed abstracts, numerous clustering methods have been proposed to group similar abstracts based on their shared features. However, most of these methods do not explore the semantic relationships among groupings of documents, which could help better illuminate the groupings of PubMed abstracts. To address this issue, we proposed an ontological clustering method called GOClonto for conceptualizing PubMed abstracts. GOClonto uses latent semantic analysis (LSA) and gene ontology (GO) to identify key gene-related concepts and their relationships as well as allocate PubMed abstracts based on these key gene-related concepts. Based on two PubMed abstract collections, the experimental results show that GOClonto is able to identify key gene-related concepts and outperforms the STC (suffix tree clustering) algorithm, the Lingo algorithm, the Fuzzy Ants algorithm, and the clustering based TRS (tolerance rough set) algorithm. Moreover, the two ontologies generated by GOClonto show significant informative conceptual structures.
1969-02-20
S69-19794 (February 1969) --- Composite of two artist's concepts illustrating key events, tasks and activities on the third day of the Apollo 9 mission, including crew transfer and Lunar Module system evaluation. The Apollo 9 mission will evaluate spacecraft lunar module systems performance during manned Earth-orbital flight.
ERIC Educational Resources Information Center
Ivie, Stanley D.
1987-01-01
Analysis of the key educational concepts of behaviorism contrasts those concepts with parallel thoughts drawn from more humanistic educators and concludes that behaviorist psychology's attempts to reduce complex human learning to simple animal learning prevents educators from recognizing and helping humans to develop their unique inner resources.…
Two-Dimensional Chirality in Three-Dimensional Chemistry.
ERIC Educational Resources Information Center
Wintner, Claude E.
1983-01-01
The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)
NASA System Safety Framework and Concepts for Implementation
NASA Technical Reports Server (NTRS)
Dezfuli, Homayoon
2012-01-01
This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team knowledge capture forums.. This document provides a point-in-time, cumulative, summary of actionable key lessons learned in safety framework and concepts.
Implementing Diffie-Hellman key exchange using quantum EPR pairs
NASA Astrophysics Data System (ADS)
Mandal, Sayonnha; Parakh, Abhishek
2015-05-01
This paper implements the concepts of perfect forward secrecy and the Diffie-Hellman key exchange using EPR pairs to establish and share a secret key between two non-authenticated parties and transfer messages between them without the risk of compromise. Current implementations of quantum cryptography are based on the BB84 protocol, which is susceptible to siphoning attacks on the multiple photons emitted by practical laser sources. This makes BB84-based quantum cryptography protocol unsuitable for network computing environments. Diffie-Hellman does not require the two parties to be mutually authenticated to each other, yet it can provide a basis for a number of authenticated protocols, most notably the concept of perfect forward secrecy. The work proposed in this paper provides a new direction in utilizing quantum EPR pairs in quantum key exchange. Although, classical cryptography boasts of efficient and robust protocols like the Diffie-Hellman key exchange, in the current times, with the advent of quantum computing they are very much vulnerable to eavesdropping and cryptanalytic attacks. Using quantum cryptographic principles, however, these classical encryption algorithms show more promise and a more robust and secure structure for applications. The unique properties of quantum EPR pairs also, on the other hand, go a long way in removing attacks like eavesdropping by their inherent nature of one particle of the pair losing its state if a measurement occurs on the other. The concept of perfect forward secrecy is revisited in this paper to attribute tighter security to the proposed protocol.
2014-01-01
Background Despite overall progress in treatment of autoimmune diseases, patients with systemic lupus erythematosus (SLE) experience many inflammatory symptoms representing an unmet medical need. This study aimed to create a conceptual model of the humanistic and economic burden of SLE, and review the patient-reported outcomes (PROs) used to measure such concepts in SLE clinical trials. Methods A conceptual model for SLE was developed from structured review of published articles from 2007 to August 2013 identified from literature databases (MEDLINE, EMBASE, PsycINFO, EconLit) plus other sources (PROLabels, FDA/EMA websites, Clinicaltrials.gov). PROs targeting key symptoms/impacts were identified from the literature. They were reviewed in the context of available guidance and assessed for face and content validity and psychometric properties to determine appropriateness for use in SLE trials. Results The conceptual model identified fatigue, pain, cognition, daily activities, emotional well-being, physical/social functioning and work productivity as key SLE concepts. Of the 68 articles reviewed, 38 reported PRO data. From these and the other sources, 15 PROs were selected for review, including SLE-specific health-related quality of life (HRQoL) measures (n = 5), work productivity (n = 1), and generic measures of fatigue (n = 3), pain (n = 2), depression (n = 2) and HRQoL (n = 2). The Functional Assessment of Chronic Illness Therapy - Fatigue Scale (FACIT-Fatigue), Brief Pain Inventory (BPI-SF) and LupusQoL demonstrated the strongest face validity, conceptual coverage and psychometric properties measuring key concepts in the conceptual model. All PROs reviewed, except for three Lupus-specific measures, lacked qualitative SLE patient involvement during development. The Hospital Anxiety and Depression Scale (HADS), Short Form [36 item] Health Survey version 2 (SF-36v2), EuroQoL 5-dimensions (EQ-5D-3L and EQ-5D-5L) and Work Productivity and Activity Impairment Questionnaire: Lupus (WPAI:Lupus) showed suitability for SLE economic models. Conclusions Based on the identification of key symptoms and impacts of SLE using a scientifically sound conceptual model, we conclude that SLE is a condition associated with high unmet need and considerable burden to patients. This review highlights the availability and need for disease-specific and generic patient-reported measures of relevant domains of disease signs and symptoms, HRQoL and work productivity, providing useful insight for SLE clinical trial design. PMID:25048687