Biomedical applications of a real-time terahertz color scanner
Schirmer, Markus; Fujio, Makoto; Minami, Masaaki; Miura, Jiro; Araki, Tsutomu; Yasui, Takeshi
2010-01-01
A real-time THz color scanner has the potential to further expand the application scope of THz spectral imaging based on its rapid image acquisition rate. We demonstrated three possible applications of a THz color scanner in the biomedical field: imaging of pharmaceutical tablets, human teeth, and human hair. The first application showed the scanner’s potential in total inspection for rapid quality control of pharmaceutical tablets moving on a conveyor belt. The second application demonstrated that the scanner can be used to identify a potential indicator for crystallinity of dental tissue. In the third application, the scanner was successfully used to visualize the drying process of wet hairs. These demonstrations indicated the high potential of the THz color scanner for practical applications in the biomedical field. PMID:21258472
Development studies of a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dooge, P.M.
1996-12-31
The objective of this study is to develop a novel catalytic chemical oxidation process that can be used to effectively treat multi-component wastes with a minimum of pretreatment characterization, thus providing a versatile, non-combustion method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. Although the DETOX{sup SM} process had been tested to a limited extent for potential application to mixed wastes, there had not been sufficient experience with the process to determine its range of application to multicomponent waste forms. The potential applications ofmore » the process needed to be better identified. Then, the process needed to be demonstrated on wastes and remediate types on a practical scale in order that data could be obtained on application range, equipment size, capital and operating costs, effectiveness, safety, reliability, permittability, and potential commercial applications of the process. The approach for the project was, therefore, to identify the potential range of applications of the process (Phase I), to choose demonstration sites and design a demonstration prototype (Phase II), to fabricate and shakedown the demonstration unit (Phase III), then finally to demonstrate the process on surrogate hazardous and mixed wastes, and on actual mixed wastes (Phase IV).« less
New developments in ophthalmic applications of ultrafast lasers
NASA Astrophysics Data System (ADS)
Spooner, Greg J. R.; Juhasz, Tibor; Ratkay-Traub, Imola; Djotyan, Gagik P.; Horvath, Christopher; Sacks, Zachary S.; Marre, Gabrielle; Miller, Doug L.; Williams, A. R.; Kurtz, Ron M.
2000-05-01
The eye is potentially an ideal target for high precision surgical procedures utilizing ultrafast lasers. We present progress on corneal applications now being tested in humans and proof of concept ex vivo demonstrations of new applications in the sclera and lens. Two corneal refractive procedures were tested in partially sighted human eyes: creation of corneal flaps prior to excimer ablation (Femto- LASIK) and creation of corneal channels and entry cuts for placement of intracorneal ring segments (Femto-ICRS). For both procedures, results were comparable to standard treatments, with the potential for improved safety, accuracy and reproducibility. For scleral applications, we evaluated the potential of femtosecond laser glaucoma surgery by demonstrating resections in ex vivo human sclera using dehydrating agents to induce tissue transparency. For lens applications, we demonstrate in an ex vivo model the use of photodisruptively-nucleated ultrasonic cavitation for local and non-invasive tissue interaction.
40 CFR 265.90 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... demonstrate that there is a low potential for migration of hazardous waste or hazardous waste constituents... establish the following: (1) The potential for migration of hazardous waste or hazardous waste constituents... the owner or operator can demonstrate that there is no potential for migration of hazardous wastes...
40 CFR 265.90 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... demonstrate that there is a low potential for migration of hazardous waste or hazardous waste constituents... establish the following: (1) The potential for migration of hazardous waste or hazardous waste constituents... the owner or operator can demonstrate that there is no potential for migration of hazardous wastes...
40 CFR 265.90 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... demonstrate that there is a low potential for migration of hazardous waste or hazardous waste constituents... establish the following: (1) The potential for migration of hazardous waste or hazardous waste constituents... the owner or operator can demonstrate that there is no potential for migration of hazardous wastes...
ENVIRONMENTAL APPLICATIONS OF RAMAN SPECTROSCOPY TO AQUEOUS SYSTEMS
The aim of this chapter is to demonstrate the great potential that the Raman spectroscopic technique offers for environmental applications, particularly to aqueous systems. We demonstrate the benefits of the technique relative to other information-rich spectroscopic techniques, i...
Supporting Collaboration and Creativity Through Mobile P2P Computing
NASA Astrophysics Data System (ADS)
Wierzbicki, Adam; Datta, Anwitaman; Żaczek, Łukasz; Rzadca, Krzysztof
Among many potential applications of mobile P2P systems, collaboration applications are among the most prominent. Examples of applications such as Groove (although not intended for mobile networks), collaboration tools for disaster recovery (the WORKPAD project), and Skype's collaboration extensions, all demonstrate the potential of P2P collaborative applications. Yet, the development of such applications for mobile P2P systems is still difficult because of the lack of middleware.
Stirling engine application study
NASA Technical Reports Server (NTRS)
Teagan, W. P.; Cunningham, D.
1983-01-01
A range of potential applications for Stirling engines in the power range from 0.5 to 5000 hp is surveyed. Over one hundred such engine applications are grouped into a small number of classes (10), with the application in each class having a high degree of commonality in technical performance and cost requirements. A review of conventional engines (usually spark ignition or Diesel) was then undertaken to determine the degree to which commercial engine practice now serves the needs of the application classes and to detemine the nature of the competition faced by a new engine system. In each application class the Stirling engine was compared to the conventional engines, assuming that objectives of ongoing Stirling engine development programs are met. This ranking process indicated that Stirling engines showed potential for use in all application classes except very light duty applications (lawn mowers, etc.). However, this potential is contingent on demonstrating much greater operating life and reliability than has been demonstrated to date by developmental Stirling engine systems. This implies that future program initiatives in developing Stirling engine systems should give more emphasis to life and reliability issues than has been the case in ongoing programs.
Polymer electrolyte fuel cells: Potential transportation and stationary applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
1993-01-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry's faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scalemore » transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.« less
Polymer electrolyte fuel cells: Potential transportation and stationary applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
1993-04-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry`s faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scalemore » transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.« less
30 CFR 253.13 - How much OSFR must I demonstrate?
Code of Federal Regulations, 2010 CFR
2010-07-01
...: COF worst case oil-spill discharge volume Applicable amount of OSFR Over 1,000 bbls but not more than... must demonstrate OSFR in accordance with the following table: COF worst case oil-spill discharge volume... applicable table in paragraph (b)(1) or (b)(2) for a facility with a potential worst case oil-spill discharge...
The Site Program demonstration of CF Systems' organics extraction technology was conducted to obtain specific operating and cost information that could be used in evaluating the potential applicability of the technology to Superfund sites. The demonstration was conducted concurr...
ERIC Educational Resources Information Center
Duchesne, Roddy; Sonnemann, Sabine S.
This report is intended to assist Canadian libraries in assessing potential library applications of optical disk technology. Part 1 provides a general outline of the technology and describes a number of library applications and projects. Descriptions are purposely general and illustrative in nature since the technology and its applications are…
Development and Application of Microfabricated Chemical Gas Sensors For Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, A.; Hammond, J.; Makel, D.;
1990-01-01
Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring and control, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. This paper discusses the needs of space applications and the point-contact sensor technology being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (Nox, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. Demonstration and application these sensor technologies will be described. The demonstrations range from use of a microsystem based hydrogen sensor on the Shuttle to engine demonstration of a nanocrystalline based sensor for NO, detection. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.
Eichler, Marko; Römer, Robert; Grodrian, Andreas; Lemke, Karen; Nagel, Krees; Klages, Claus‐Peter; Gastrock, Gunter
2017-01-01
Abstract Although the great potential of droplet based microfluidic technologies for routine applications in industry and academia has been successfully demonstrated over the past years, its inherent potential is not fully exploited till now. Especially regarding to the droplet generation reproducibility and stability, two pivotally important parameters for successful applications, there is still a need for improvement. This is even more considerable when droplets are created to investigate tissue fragments or cell cultures (e.g. suspended cells or 3D cell cultures) over days or even weeks. In this study we present microfluidic chips composed of a plasma coated polymer, which allow surfactants‐free, highly reproducible and stable droplet generation from fluids like cell culture media. We demonstrate how different microfluidic designs and different flow rates (and flow rate ratios) affect the reproducibility of the droplet generation process and display the applicability for a wide variety of bio(techno)logically relevant media. PMID:29399017
Direct quantum process tomography via measuring sequential weak values of incompatible observables.
Kim, Yosep; Kim, Yong-Su; Lee, Sang-Yun; Han, Sang-Wook; Moon, Sung; Kim, Yoon-Ho; Cho, Young-Wook
2018-01-15
The weak value concept has enabled fundamental studies of quantum measurement and, recently, found potential applications in quantum and classical metrology. However, most weak value experiments reported to date do not require quantum mechanical descriptions, as they only exploit the classical wave nature of the physical systems. In this work, we demonstrate measurement of the sequential weak value of two incompatible observables by making use of two-photon quantum interference so that the results can only be explained quantum physically. We then demonstrate that the sequential weak value measurement can be used to perform direct quantum process tomography of a qubit channel. Our work not only demonstrates the quantum nature of weak values but also presents potential new applications of weak values in analyzing quantum channels and operations.
Cloud-Based Speech Technology for Assistive Technology Applications (CloudCAST).
Cunningham, Stuart; Green, Phil; Christensen, Heidi; Atria, José Joaquín; Coy, André; Malavasi, Massimiliano; Desideri, Lorenzo; Rudzicz, Frank
2017-01-01
The CloudCAST platform provides a series of speech recognition services that can be integrated into assistive technology applications. The platform and the services provided by the public API are described. Several exemplar applications have been developed to demonstrate the platform to potential developers and users.
Lee, Ho Won; Jeong, Hyunjin; Kim, Young Kwan; Ha, Yunkyoung
2015-10-01
Recently, white organic light-emitting diodes (OLEDs) have aroused considerable attention because they have the potential of next-generation flexible displays and white illuminated applications. White OLED applications are particularly heading to the industry but they have still many problems both materials and manufacturing. Therefore, we proposed that the new iridium compounds of orange emitters could be demonstrated and also applied to flexible white OLEDs for verification of potential. First, we demonstrated the chemical properties of new orange iridium compounds. Secondly, conventional two kinds of white phosphorescent OLEDs were fabricated by following devices; indium-tin oxide coated glass substrate/4,4'-bis[N-(napthyl)-N-phenylamino]biphenyl/N,N'-dicarbazolyl-3,5-benzene doped with blue and new iridium compounds for orange emitting 8 wt%/1,3,5-tris[N-phenylbenzimidazole-2-yl]benzene/lithium quinolate/aluminum. In addition, we fabricated white OLEDs using these emitters to verify the potential on flexible substrate. Therefore, this work could be proposed that white light applications can be applied and could be extended to additional research on flexible applications.
MELODI: Mining Enriched Literature Objects to Derive Intermediates
Elsworth, Benjamin; Dawe, Karen; Vincent, Emma E; Langdon, Ryan; Lynch, Brigid M; Martin, Richard M; Relton, Caroline; Higgins, Julian P T; Gaunt, Tom R
2018-01-01
Abstract Background The scientific literature contains a wealth of information from different fields on potential disease mechanisms. However, identifying and prioritizing mechanisms for further analytical evaluation presents enormous challenges in terms of the quantity and diversity of published research. The application of data mining approaches to the literature offers the potential to identify and prioritize mechanisms for more focused and detailed analysis. Methods Here we present MELODI, a literature mining platform that can identify mechanistic pathways between any two biomedical concepts. Results Two case studies demonstrate the potential uses of MELODI and how it can generate hypotheses for further investigation. First, an analysis of ETS-related gene ERG and prostate cancer derives the intermediate transcription factor SP1, recently confirmed to be physically interacting with ERG. Second, examining the relationship between a new potential risk factor for pancreatic cancer identifies possible mechanistic insights which can be studied in vitro. Conclusions We have demonstrated the possible applications of MELODI, including two case studies. MELODI has been implemented as a Python/Django web application, and is freely available to use at [www.melodi.biocompute.org.uk]. PMID:29342271
Polymer electrolyte fuel cells for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, T.E.; Wilson, M.S.; Garzon, F.H.
1993-01-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received incrming attention during the last few years. This increased attention has been fueled by a combination of significant technical advances in this field and by the initiation of some projects for the demonstration of a complete, PEFC-based power system in a bus or in a passenger car. Such demonstration pretieds reflect an increased faith of industry in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential Nevertheless, large scalemore » transportation applications of PEFCs requim a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve cost effective, highly performing PEFC stack and power system. We describe in this contribution some recent results of work performed within the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed transportation applications of PEFCs.« less
Polymer electrolyte fuel cells for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, T.E.; Wilson, M.S.; Garzon, F.H.
1993-03-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received incrming attention during the last few years. This increased attention has been fueled by a combination of significant technical advances in this field and by the initiation of some projects for the demonstration of a complete, PEFC-based power system in a bus or in a passenger car. Such demonstration pretieds reflect an increased faith of industry in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential Nevertheless, large scalemore » transportation applications of PEFCs requim a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve cost effective, highly performing PEFC stack and power system. We describe in this contribution some recent results of work performed within the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed transportation applications of PEFCs.« less
Silicon Oxycarbide Waveguides for Photonic Applications
NASA Astrophysics Data System (ADS)
Memon, Faisal Ahmed; Morichetti, Francesco; Melloni, Andrea
2018-01-01
Silicon oxycarbide thin films deposited with rf reactive magnetron sputtering a SiC target are exploited to demonstrate photonic waveguides with a high refractive index of 1.82 yielding an index contrast of 18% with silica glass. The propagation losses of the photonic waveguides are measured at the telecom wavelength of 1.55 μm by cut-back technique. The results demonstrate the potential of silicon oxycarbide for photonic applications.
Characterization of Carbon Nano-Onions for Heavy Metal Ion Remediation
Carbonaceous nanomaterials, such as fullerene C60, carbon nanotubes, and their functionalized derivatives have been demonstrated to possess high sorption capacity for organic and heavy metal contaminants, indicating a potential for remediation application. The actual application ...
Electric Potential and Electric Field Imaging with Applications
NASA Technical Reports Server (NTRS)
Generazio, Ed
2016-01-01
The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
Gao, Lei; Wang, Tingting; Jia, Keke; Wu, Xuan; Yao, Chenhao; Shao, Wei; Zhang, Dongmei; Hu, Xiao-Yu; Wang, Leyong
2017-05-11
The stimuli-responsive behavior of supramolecular nanocarriers is crucial for their potential applications as smart drug delivery systems. We hereby constructed a glucose-responsive supramolecular drug delivery system based on the host-guest interaction between a water-soluble pillar[5]arene (WP5) and a pyridylboronic acid derivative (G) for insulin delivery and controlled release under physiological conditions. The approach represents the ideal treatment of diabetes mellitus. The drug loading and in vitro drug release experiments demonstrated that large molecular weight insulin could be encapsulated into the vesicles with high loading efficiency, which, to our knowledge, is the first example of small-size supramolecular vesicles with excellent encapsulation capacity of a large protein molecule. Moreover, FITC-labeled insulin was used to evaluate the release behavior of insulin, and it was demonstrated that high glucose concentration could facilitate the quick release of insulin, suggesting a smart drug delivery system for potential application in controlled insulin release only under hyperglycemic conditions. Finally, we demonstrated that these supramolecular nanocarriers have good cytocompatibility, which is essential for their further biomedical applications. The present study provides a novel strategy for the construction of glucose-responsive smart supramolecular drug delivery systems, which has potential applications for the treatment of diabetes mellitus. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure-based coarse-graining for inhomogeneous liquid polymer systems.
Fukuda, Motoo; Zhang, Hedong; Ishiguro, Takahiro; Fukuzawa, Kenji; Itoh, Shintaro
2013-08-07
The iterative Boltzmann inversion (IBI) method is used to derive interaction potentials for coarse-grained (CG) systems by matching structural properties of a reference atomistic system. However, because it depends on such thermodynamic conditions as density and pressure of the reference system, the derived CG nonbonded potential is probably not applicable to inhomogeneous systems containing different density regimes. In this paper, we propose a structure-based coarse-graining scheme to devise CG nonbonded potentials that are applicable to different density bulk systems and inhomogeneous systems with interfaces. Similar to the IBI, the radial distribution function (RDF) of a reference atomistic bulk system is used for iteratively refining the CG nonbonded potential. In contrast to the IBI, however, our scheme employs an appropriately estimated initial guess and a small amount of refinement to suppress transfer of the many-body interaction effects included in the reference RDF into the CG nonbonded potential. To demonstrate the application of our approach to inhomogeneous systems, we perform coarse-graining for a liquid perfluoropolyether (PFPE) film coated on a carbon surface. The constructed CG PFPE model favorably reproduces structural and density distribution functions, not only for bulk systems, but also at the liquid-vacuum and liquid-solid interfaces, demonstrating that our CG scheme offers an easy and practical way to accurately determine nonbonded potentials for inhomogeneous systems.
Application of Portfolio Theory in Recovery Planning for Pacific Salmon.
Ecological applications of portfolio theory demonstrate the utility of this analytical framework for understanding the stability of commercial and indigenous Pacific Salmon fisheries. Portfolio theory also has the potential to aid in recovery planning for threatened and endangere...
Photovoltaics as a terrestrial energy source. Volume 1: An introduction
NASA Technical Reports Server (NTRS)
Smith, J. L.
1980-01-01
Photovoltaic (PV) systems were examined their potential for terrestrial application and future development. Photovoltaic technology, existing and potential photovoltaic applications, and the National Photovoltaics Program are reviewed. The competitive environment for this electrical source, affected by the presence or absence of utility supplied power is evaluated in term of systems prices. The roles of technological breakthroughs, directed research and technology development, learning curves, and commercial demonstrations in the National Program are discussed. The potential for photovoltaics to displace oil consumption is examined, as are the potential benefits of employing PV in either central-station or non-utility owned, small, distributed systems.
NASA Technical Reports Server (NTRS)
Hidalgo, J. U.
1975-01-01
The applicability of remote sensing to transportation and traffic analysis, urban quality, and land use problems is discussed. Other topics discussed include preliminary user analysis, potential uses, traffic study by remote sensing, and urban condition analysis using ERTS.
Low cost carbon fiber technology development for carbon fiber composite applications.
DOT National Transportation Integrated Search
2012-04-01
The objective of this project was to further develop low cost carbon fiber for a variety of potential applications. Manufacturing feasi-bility of low cost carbon fibers/composites has been demonstrated. A number of technologies that are currently usi...
The Impact of eHealth on the Quality and Safety of Healthcare
NASA Astrophysics Data System (ADS)
Majeed, Azeem; Black, Ashly; Car, Josip; Anandan, Chantelle; Cresswell, Kathrin; McKinstry, Brian; Pagliari, Claudia; Procter, Rob; Sheikh, Aziz
There is considerable interest in using information technology (IT) to enhance the quality and safety of healthcare. We undertook a systematic literature review to assess the impact of eHealth applications on the quality and safety of healthcare. We retrieved 46,349 potentially relevant publications, from which we selected 67 relevant systematic reviews for inclusion. The literature was found to be poorly collated and of variable quality in its methodology, reporting and utility. We categorised eHealth applications into three main areas: i). storing, managing and transmission of data; ii). supporting clinical decision-making; and iii). facilitating care from a distance. We found that relative to the potential benefits noted within the literature, little empirical evidence exists in support of these applications. Of the few studies revealing the clearest evidence of benefits, many are from academic clinical centres where developers of new applications have also been directly associated with their evaluation. It is therefore unclear how effective these applications would be if deployed outside the environment in which they were developed. Our review of the impact of eHealth applications on quality and safety of healthcare demonstrated a vast gap between the postulated and empirically demonstrated benefits. In addition, there is a lack of robust research on risks and costs. Consequently, the cost-effectiveness of these interventions has yet to be demonstrated.
Interactive educational simulators in diabetes care.
Lehmann, E D
1997-01-01
Since the Diabetes Control and Complications Trial demonstrated the substantial benefits of tight glycaemic control there has been renewed interest in the application of information technology (IT) based techniques for improving the day-to-day care of patients with diabetes mellitus. Computer-based educational approaches have a great deal of potential for patients use, and may offer a means of training more health-care professionals to deliver such improved care. In this article the potential role of IT in diabetes education is reviewed, focusing in particular on the application of compartmental models in both computer-based interactive simulators and educational video games. Close attention is devoted to practical applications-available today-for use by patients, their relatives, students and health-care professionals. The novel features and potential benefits of such methodologies are highlighted and some of the limitations of currently available software are discussed. The need for improved graphical user interfaces, and for further efforts to evaluate such programs and demonstrate an educational benefit from their use are identified as hurdles to their more widespread application. The review concludes with a look to the future and the type of modelling features which should be provided in the next generation of interactive diabetes simulators and educational video games.
APPLICATION ANALYSIS REPORT: HORSEHEAD RESOURCE DEVELOPMENT COMPANY INC., FLAME REACTOR TECHNOLOGY
A SITE demonstration of the Horsehead Resource Development (HRD) company, Inc. Flame Reactor Technology was conducted in March 1991 at the HRD facility in Monaca, Pennsylvania. For this demonstration, secondary lead smelter soda slag was treated to produce a potentially recyclabl...
13 CFR 124.107 - What is potential for success?
Code of Federal Regulations, 2010 CFR
2010-01-01
... eligibility is based have substantial business management experience; (ii) The applicant has demonstrated technical experience to carry out its business plan with a substantial likelihood for success if admitted to... will also consider the technical and managerial experience of the applicant concern's managers, the...
MELODI: Mining Enriched Literature Objects to Derive Intermediates.
Elsworth, Benjamin; Dawe, Karen; Vincent, Emma E; Langdon, Ryan; Lynch, Brigid M; Martin, Richard M; Relton, Caroline; Higgins, Julian P T; Gaunt, Tom R
2018-01-12
The scientific literature contains a wealth of information from different fields on potential disease mechanisms. However, identifying and prioritizing mechanisms for further analytical evaluation presents enormous challenges in terms of the quantity and diversity of published research. The application of data mining approaches to the literature offers the potential to identify and prioritize mechanisms for more focused and detailed analysis. Here we present MELODI, a literature mining platform that can identify mechanistic pathways between any two biomedical concepts. Two case studies demonstrate the potential uses of MELODI and how it can generate hypotheses for further investigation. First, an analysis of ETS-related gene ERG and prostate cancer derives the intermediate transcription factor SP1, recently confirmed to be physically interacting with ERG. Second, examining the relationship between a new potential risk factor for pancreatic cancer identifies possible mechanistic insights which can be studied in vitro. We have demonstrated the possible applications of MELODI, including two case studies. MELODI has been implemented as a Python/Django web application, and is freely available to use at [www.melodi.biocompute.org.uk]. © The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association
Portelli, Anthony J; Nasuto, Slawomir J
2017-01-01
For the advent of pervasive bio-potential monitoring, it will be necessary to utilize a combination of cheap, quick to apply, low-noise electrodes and compact electronics with wireless technologies. Once available, all electrical activity resulting from the processes of the human body could be actively and constantly monitored without the need for cumbersome application and maintenance. This could significantly improve the early diagnosis of a range of different conditions in high-risk individuals, opening the possibility for new treatments and interventions as conditions develop. This paper presents the design and implementation of compact, non-contact capacitive bio-potential electrodes utilising a low impedance current-to-voltage configuration and a bootstrapped voltage follower, demonstrating results applicable to research applications for capacitive electrocardiography and capacitive electromyography. The presented electrodes use few components, have a small surface area and are capable of acquiring a range of bio-potential signals.
Portelli, Anthony J.; Nasuto, Slawomir J.
2017-01-01
For the advent of pervasive bio-potential monitoring, it will be necessary to utilize a combination of cheap, quick to apply, low-noise electrodes and compact electronics with wireless technologies. Once available, all electrical activity resulting from the processes of the human body could be actively and constantly monitored without the need for cumbersome application and maintenance. This could significantly improve the early diagnosis of a range of different conditions in high-risk individuals, opening the possibility for new treatments and interventions as conditions develop. This paper presents the design and implementation of compact, non-contact capacitive bio-potential electrodes utilising a low impedance current-to-voltage configuration and a bootstrapped voltage follower, demonstrating results applicable to research applications for capacitive electrocardiography and capacitive electromyography. The presented electrodes use few components, have a small surface area and are capable of acquiring a range of bio-potential signals. PMID:28045439
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Schumacher, Daniel M.
2015-01-01
The NASA Marshall Space Flight Center Science and Technology Office is continuously exploring technology options to increase performance or reduce cost and risk to future NASA missions including science and exploration. Electric propulsion is a prevalent technology known to reduce mission costs by reduction in launch costs and spacecraft mass through increased post launch propulsion performance. The exploration of alternative propellants for electric propulsion continues to be of interest to the community. Iodine testing has demonstrated comparable performance to xenon. However, iodine has a higher storage density resulting in higher ?V capability for volume constrained systems. Iodine's unique properties also allow for unpressurized storage yet sublimation with minimal power requirements to produce required gas flow rates. These characteristics make iodine an ideal propellant for secondary spacecraft. A range of mission have been evaluated with a focus on low-cost applications. Results highlight the potential for significant cost reduction over state of the art. Based on the potential, NASA has been developing the iodine Satellite for a near-term iodine Hall propulsion technology demonstration. Mission applications and progress of the iodine Satellite project are presented.
Precision Blasting Techniques For Avalanche Control
NASA Astrophysics Data System (ADS)
Powell, Kevin M.
Experimental firings sponsored by the Center For Snow Science at Alta, Utah have demonstrated the potential of a unique prototype shaped charge device designed to stimulate snow pack and ice. These studies, conducted against stable snow pack, demonstrated a fourfold increase in crater volume yield and introduced a novel application of Shock Tube technology to facilitate position control, detonation and dud recovery of manually deployed charges. The extraordinary penetration capability of the shaped charge mechanism has been exploited in many non-military applications to meet a wide range of rapidpiercing and/or cutting requirements. The broader exploitation of the potential of the shaped charge mechanism has nevertheless remained confined to defence based applications. In the studies reported in this paper, the inimitable ability of the shaped charge mechanism to project shock energy, or a liner material, into a highly focussed energetic stream has been applied uniquely to the stimulation of snow pack. Recent research and development work, conducted within the UK, has resulted in the integration of shaped charge technology into a common Avalauncher and hand charge device. The potential of the common charge configuration and spooled Shock Tube fire and control system to improve the safety and cost effectiveness of explosives used in avalanche control operations was successfully demonstrated at Alta in March 2001. Future programmes of study will include focussed shock/blast mechanisms for suspended wire traverse techniques, application of the shaped charge mechanism to helibombing, and the desig n and development of non-fragmenting shaped charge ammunition formilitary artillery gun systems.
A hyperpolarized equilibrium for magnetic resonance
Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik
2013-01-01
Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10−3 Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application. PMID:24336292
A hyperpolarized equilibrium for magnetic resonance.
Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B; Mewis, Ryan E; Highton, Louise A R; Kenny, Stephen M; Green, Gary G R; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; von Elverfeldt, Dominik
2013-01-01
Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all ¹H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10⁻³ Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application.
Anerobic soil disinfestation efficacy associated with altered soil microbiome and metabolome
USDA-ARS?s Scientific Manuscript database
Anaerobic soil disinfestation (ASD) has demonstrated potential to control numerous soil-borne pathogens in a diversity of production systems. A variety of environmental, biological and application attributes have potential to determine the overall capacity of ASD to provide effective disease control...
USDA-ARS?s Scientific Manuscript database
The impact of different spray tank modifiers into an active ingredient spray mixture on spray atomization and in-field behavior under aerial application conditions were examined. Wind tunnel tests demonstrated that active ingredient solutions potentially results in significantly different atomizati...
Electric potential and electric field imaging
NASA Astrophysics Data System (ADS)
Generazio, E. R.
2017-02-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for "illuminating" volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e-Sensor enhancements (ephemeral e-Sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
Remote sensing in hydrology: A survey of applications with selected bibliography and abstracts
NASA Technical Reports Server (NTRS)
Sers, S. W. (Compiler)
1971-01-01
Remote infrared sensing as a water exploration technique is demonstrated. Various applications are described, demonstrating that infrared sensors can locate aquifers, geothermal water, water trapped by faults, springs and water in desert regions. The potentiality of airborne IR sensors as a water prospecting tool is considered. Also included is a selected bibliography with abstracts concentrating on those publications which will better acquaint the hydrologist with investigations using thermal remote sensors as applied to water exploration.
U.S. EPA National Stormwater Calculator Mobile Web Application
This presentation gives a brief overview of the new mobile web application version of EPA's National Stormwater Calculator. It is meant to give an overview of the development of the mobile web app and to demonstrate potential uses of the new version of the National Stormwater Cal...
Solar energy for process heat: Design/cost studies of four industrial retrofit applications
NASA Technical Reports Server (NTRS)
French, R. L.; Bartera, R. E.
1978-01-01
Five specific California plants with potentially attractive solar applications were identified in a process heat survey. These five plants were visited, process requirements evaluated, and conceptual solar system designs were generated. Four DOE (ERDA) sponsored solar energy system demonstration projects were also reviewed and compared to the design/cost cases included in this report. In four of the five cases investigated, retrofit installations providing significant amounts of thermal energy were found to be feasible. The fifth was rejected because of the condition of the building involved, but the process (soap making) appears to be an attractive potential solar application. Costs, however, tend to be high. Several potential areas for cost reduction were identified including larger collector modules and higher duty cycles.
Potential of plant proteins for medical applications.
Reddy, Narendra; Yang, Yiqi
2011-10-01
Various natural and synthetic polymers are being explored to develop biomaterials for tissue engineering and drug delivery. Although proteins are preferable over carbohydrates and synthetic polymers, biomaterials developed from proteins lack the mechanical properties and/or biocompatibilities required for medical applications. Plant proteins are widely available, have low potential to be immunogenic and can be made into fibers, films, hydrogels and micro- and nano-particles for medical applications. Studies, mostly with zein, have demonstrated the potential of using plant proteins for tissue engineering and drug delivery. Although other plant proteins such as wheat gluten and soyproteins have also shown biocompatibility using in vitro studies, fabricating biomaterials such as nano-fibers and nano-particles from soy and wheat proteins offers considerable challenges. Copyright © 2011. Published by Elsevier Ltd.
Silver metal nanoparticles study for biomedical and green house applications
NASA Astrophysics Data System (ADS)
Rauwel, E.; Simón-Gracia, L.; Guha, M.; Rauwel, P.; Kuunal, S.; Wragg, D.
2017-02-01
Metallic nanoparticles (MNP) with diameters ranging from 2 to 100nm have received extensive attention during the past decades due to their many potential applications. This paper presents a structural and cytotoxicity study of silver metal nanoparticles targeted towards biomedical applications. Spherical Ag MNPs of diameter from 20 to 50 nm have been synthesized. The encapsulation of Ag MNPs inside pH-sensitive polymersomes has been also studied for the development of biomedical applications. A cytotoxicity study of the Ag MNPs against primary prostatic cancer cell line (PPC-1) has demonstrated a high mortality rate for concentrations ranging from 100 to 200mg/L. The paper will discuss the potential for therapeutic treatments of these Ag MNPs.
Finite difference methods for the solution of unsteady potential flows
NASA Technical Reports Server (NTRS)
Caradonna, F. X.
1982-01-01
Various problems which are confronted in the development of an unsteady finite difference potential code are reviewed mainly in the context of what is done for a typical small disturbance and full potential method. The issues discussed include choice of equations, linearization and conservation, differencing schemes, and algorithm development. A number of applications, including unsteady three dimensional rotor calculations, are demonstrated.
Optical Intrabuilding and Interbuilding Distribution Networks.
ERIC Educational Resources Information Center
Hull, Joseph A.
Fiber optics communication technology is a potential competitive alternative to coaxial cable and shielded twisted pairlines as a wide-band communications medium. Pilot demonstrations by public institutions such as the health care delivery system can test the application of this new technology. Fiber optic networks may have the potential to be…
Commentary: Using Potential Outcomes to Understand Causal Mediation Analysis
ERIC Educational Resources Information Center
Imai, Kosuke; Jo, Booil; Stuart, Elizabeth A.
2011-01-01
In this commentary, we demonstrate how the potential outcomes framework can help understand the key identification assumptions underlying causal mediation analysis. We show that this framework can lead to the development of alternative research design and statistical analysis strategies applicable to the longitudinal data settings considered by…
Small-scale heat detection using catalytic microengines irradiated by laser
NASA Astrophysics Data System (ADS)
Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng
2013-01-01
We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f
Characterizing Orthostatic Tremor Using a Smartphone Application.
Balachandar, Arjun; Fasano, Alfonso
2017-01-01
Orthostatic tremor is one of the few tremor conditions requiring an electromyogram for definitive diagnosis since leg tremor might not be visible to the naked eye. An iOS application (iSeismometer, ObjectGraph LLC, New York) using an Apple iPhone 5 (Cupertino, CA, USA) inserted into the patient's sock detected a tremor with a frequency of 16.4 Hz on both legs. The rapid and straightforward accelerometer-based recordings accomplished in this patient demonstrate the ease with which quantitative analysis of orthostatic tremor can be conducted and, importantly, demonstrates the potential application of this approach in the assessment of any lower limb tremor.
Application of Micro-Electro-Mechanical Sensors Contactless NDT of Concrete Structures.
Ham, Suyun; Popovics, John S
2015-04-17
The utility of micro-electro-mechanical sensors (MEMS) for application in air-coupled (contactless or noncontact) sensing to concrete nondestructive testing (NDT) is studied in this paper. The fundamental operation and characteristics of MEMS are first described. Then application of MEMS sensors toward established concrete test methods, including vibration resonance, impact-echo, ultrasonic surface wave, and multi-channel analysis of surface waves (MASW), is demonstrated. In each test application, the performance of MEMS is compared with conventional contactless and contact sensing technology. Favorable performance of the MEMS sensors demonstrates the potential of the technology for applied contactless NDT efforts. To illustrate the utility of air-coupled MEMS sensors for concrete NDT, as compared with conventional sensor technology.
Cellular Radio Telecommunication for Health Care: Benefits and Risks
Sneiderman, Charles A.; Ackerman, Michael J.
2004-01-01
Cellular radio telecommunication has increased exponentially with many applications to health care reported. The authors attempt to summarize published applications with demonstrated effect on health care, review briefly the rapid evolution of hardware and software standards, explain current limitations and future potential of data quality and security, and discuss issues of safety. PMID:15298996
Mobile-IT Education (MIT.EDU): M-Learning Applications for Classroom Settings
ERIC Educational Resources Information Center
Sung, M.; Gips, J.; Eagle, N.; Madan, A.; Caneel, R.; DeVaul, R.; Bonsen, J.; Pentland, A.
2005-01-01
In this paper, we describe the Mobile-IT Education (MIT.EDU) system, which demonstrates the potential of using a distributed mobile device architecture for rapid prototyping of wireless mobile multi-user applications for use in classroom settings. MIT.EDU is a stable, accessible system that combines inexpensive, commodity hardware, a flexible…
NASA Technical Reports Server (NTRS)
Generazio, Ed
2017-01-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
Thermoelectric Waste Heat Recovery Program for Passenger Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jovovic, Vladimir
2015-12-31
Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed moremore » modest potential.« less
From POEM to POET: Applications and perspectives for submucosal tunnel endoscopy.
Chiu, Philip W Y; Inoue, Haruhiro; Rösch, Thomas
2016-12-01
Recent advances in submucosal endoscopy have unlocked a new horizon for potential development in diagnostic and therapeutic endoscopy. Increasing evidence has demonstrated that peroral endoscopic myotomy (POEM) is not only clinically feasible and safe, but also has excellent results in symptomatic relief of achalasia. The success of submucosal endoscopy in performance of tumor resection has confirmed the potential of this new area in diagnostic and therapeutic endoscopy. This article reviews the current applications and evidence, from POEM to peroral endoscopic tunnel resection (POET), while exploring the possible future clinical applications in this field. © Georg Thieme Verlag KG Stuttgart · New York.
Dynamic P-Technique for Modeling Patterns of Data: Applications to Pediatric Psychology Research
Aylward, Brandon S.; Rausch, Joseph R.
2011-01-01
Objective Dynamic p-technique (DPT) is a potentially useful statistical method for examining relationships among dynamic constructs in a single individual or small group of individuals over time. The purpose of this article is to offer a nontechnical introduction to DPT. Method An overview of DPT analysis, with an emphasis on potential applications to pediatric psychology research, is provided. To illustrate how DPT might be applied, an example using simulated data is presented for daily pain and negative mood ratings. Results The simulated example demonstrates the application of DPT to a relevant pediatric psychology research area. In addition, the potential application of DPT to the longitudinal study of adherence is presented. Conclusion Although it has not been utilized frequently within pediatric psychology, DPT could be particularly well-suited for research in this field because of its ability to powerfully model repeated observations from very small samples. PMID:21486938
Dynamic p-technique for modeling patterns of data: applications to pediatric psychology research.
Nelson, Timothy D; Aylward, Brandon S; Rausch, Joseph R
2011-10-01
Dynamic p-technique (DPT) is a potentially useful statistical method for examining relationships among dynamic constructs in a single individual or small group of individuals over time. The purpose of this article is to offer a nontechnical introduction to DPT. An overview of DPT analysis, with an emphasis on potential applications to pediatric psychology research, is provided. To illustrate how DPT might be applied, an example using simulated data is presented for daily pain and negative mood ratings. The simulated example demonstrates the application of DPT to a relevant pediatric psychology research area. In addition, the potential application of DPT to the longitudinal study of adherence is presented. Although it has not been utilized frequently within pediatric psychology, DPT could be particularly well-suited for research in this field because of its ability to powerfully model repeated observations from very small samples.
Satellite-aided mobile communications, experiments, applications and prospects
NASA Technical Reports Server (NTRS)
Anderson, R. E.; Frey, R. L.; Lewis, J. R.; Milton, R. T.
1980-01-01
NASA's ATS-series of satellites were used in a series of communications and position fixing experiments with automotive vehicles, ships and aircraft. Applications of the communications were demonstrated and evaluated for public services including law enforcement, search and rescue, and medical emergency, and for commercial uses in the land and maritime transportation industries. The technical success of the experiments and the demonstrated potential value of the communications prompted a study that concluded an operational satellite-aided system would be a valuable augmentation of planned trunking or cellular type terrestrial mobile radio telephone systems.
Advanced scanning probe lithography.
Garcia, Ricardo; Knoll, Armin W; Riedo, Elisa
2014-08-01
The nanoscale control afforded by scanning probe microscopes has prompted the development of a wide variety of scanning-probe-based patterning methods. Some of these methods have demonstrated a high degree of robustness and patterning capabilities that are unmatched by other lithographic techniques. However, the limited throughput of scanning probe lithography has prevented its exploitation in technological applications. Here, we review the fundamentals of scanning probe lithography and its use in materials science and nanotechnology. We focus on robust methods, such as those based on thermal effects, chemical reactions and voltage-induced processes, that demonstrate a potential for applications.
Photonic-crystal diplexers for terahertz-wave applications.
Yata, Masahiro; Fujita, Masayuki; Nagatsuma, Tadao
2016-04-04
A compact diplexer is designed using a silicon photonic-crystal directional coupler of length comparable to the incident wavelength. The diplexer theoretically and experimentally exhibits a cross state bandwidth as broad as 2% of the operation frequency, with over 40-dB isolation between the cross and bar ports. We also demonstrate 1.5-Gbit/s frequency-division communication in the 0.32- and 0.33-THz bands using a single-wavelength-sized diplexer, and discuss the transmission bandwidth. Our study demonstrates the potential for application of photonic crystals as terahertz-wave integration platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2011-09-01
This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.
Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.
2016-01-01
We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2–based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology. PMID:26880381
NASA Astrophysics Data System (ADS)
Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.
2016-02-01
We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology.
Amenabar, Iban; Poly, Simon; Goikoetxea, Monika; Nuansing, Wiwat; Lasch, Peter; Hillenbrand, Rainer
2017-01-01
Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm−1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine. PMID:28198384
NASA Astrophysics Data System (ADS)
Amenabar, Iban; Poly, Simon; Goikoetxea, Monika; Nuansing, Wiwat; Lasch, Peter; Hillenbrand, Rainer
2017-02-01
Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm-1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine.
ERIC Educational Resources Information Center
Howard-Jones, Paul; Ott, Michela; van Leeuwen, Theo; De Smedt, Bert
2015-01-01
There is increasing interest in the application of cognitive neuroscience in educational thinking and practice, and here we review findings from neuroscience that demonstrate its potential relevance to technology-enhanced learning (TEL). First, we identify some of the issues in integrating neuroscientific concepts into TEL research. We caution…
ERIC Educational Resources Information Center
Coakes, Elayne
2006-01-01
Purpose: The purpose of this paper is to indicate and illustrate the potential for use of different types of technologies to support knowledge process in transnational organisations. Design/methodology/approach: The paper uses a standard literature review plus illustrations from case organisations to demonstrate the potential applications and…
Mid-Infrared Laser Absorption Diagnostics for Combustion and Propulsion Applications
2010-12-01
Combustion and Propulsion Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-07-1-0844 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew A...Institute Mechancial, Aerospace, and Nuclear Engineering Dept Troy NY 12180-3590 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING...absorption sensors based on quantum cascade laser (QCL) technology for combustion and propulsion applications. To demonstrate the potential of mid-IR QCL
Qu, Liangti; Vaia, Rich A; Dai, Liming
2011-02-22
A simple multiple contact transfer technique has been developed for controllable fabrication of multilevel, multicomponent microarchitectures of vertically aligned carbon nanotubes (VA-CNTs). Three dimensional (3-D) multicomponent micropatterns of aligned single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs) have been fabricated, which can be used to develop a newly designed touch sensor with reversible electrical responses for potential applications in electronic devices, as demonstrated in this study. The demonstrated dependence of light diffraction on structural transfiguration of the resultant CNT micropattern also indicates their potential for optical devices. Further introduction of various components with specific properties (e.g., ZnO nanorods) into the CNT micropatterns enabled us to tailor such surface characteristics as wettability and light response. Owing to the highly generic nature of the multiple contact transfer strategy, the methodology developed here could provide a general approach for interposing a large variety of multicomponent elements (e.g., nanotubes, nanorods/wires, photonic crystals, etc.) onto a single chip for multifunctional device applications.
Wang, Yeliang; Li, Linfei; Yao, Wei; Song, Shiru; Sun, J T; Pan, Jinbo; Ren, Xiao; Li, Chen; Okunishi, Eiji; Wang, Yu-Qi; Wang, Eryin; Shao, Yan; Zhang, Y Y; Yang, Hai-tao; Schwier, Eike F; Iwasawa, Hideaki; Shimada, Kenya; Taniguchi, Masaki; Cheng, Zhaohua; Zhou, Shuyun; Du, Shixuan; Pennycook, Stephen J; Pantelides, Sokrates T; Gao, Hong-Jun
2015-06-10
Single-layer transition-metal dichalcogenides (TMDs) receive significant attention due to their intriguing physical properties for both fundamental research and potential applications in electronics, optoelectronics, spintronics, catalysis, and so on. Here, we demonstrate the epitaxial growth of high-quality single-crystal, monolayer platinum diselenide (PtSe2), a new member of the layered TMDs family, by a single step of direct selenization of a Pt(111) substrate. A combination of atomic-resolution experimental characterizations and first-principle theoretic calculations reveals the atomic structure of the monolayer PtSe2/Pt(111). Angle-resolved photoemission spectroscopy measurements confirm for the first time the semiconducting electronic structure of monolayer PtSe2 (in contrast to its semimetallic bulk counterpart). The photocatalytic activity of monolayer PtSe2 film is evaluated by a methylene-blue photodegradation experiment, demonstrating its practical application as a promising photocatalyst. Moreover, circular polarization calculations predict that monolayer PtSe2 has also potential applications in valleytronics.
Wilaiprasitporn, Theerawit; Yagi, Tohru
2015-01-01
This research demonstrates the orientation-modulated attention effect on visual evoked potential. We combined this finding with our previous findings about the motion-modulated attention effect and used the result to develop novel visual stimuli for a personal identification number (PIN) application based on a brain-computer interface (BCI) framework. An electroencephalography amplifier with a single electrode channel was sufficient for our application. A computationally inexpensive algorithm and small datasets were used in processing. Seven healthy volunteers participated in experiments to measure offline performance. Mean accuracy was 83.3% at 13.9 bits/min. Encouraged by these results, we plan to continue developing the BCI-based personal identification application toward real-time systems.
Medical free-electron laser: fact or fiction?
NASA Astrophysics Data System (ADS)
Bell, James P.; Ponikvar, Donald R.
1994-07-01
The free electron laser (FEL) has long been proposed as a flexible tool for a variety of medical applications, and yet the FEL has not seen widespread acceptance in the medical community. The issues have been the laser's size, cost, and complexity. Unfortunately, research on applications of FELs has outpaced the device development efforts. This paper describes the characteristics of the FEL, as they have been demonstrated in the U.S. Army's FEL technology development program, and identifies specific medical applications where demonstrated performance levels would suffice. This includes new photodynamic therapies for cancer and HIV treatment, orthopedic applications, tissue welding applications, and multiwavelength surgical techniques. A new tunable kilowatt class FEL device is described, which utilizes existing hardware from the U.S. Army program. An assessment of the future potential, based on realistic technology scaling is provided.
Applications of potential theory computations to transonic aeroelasticity
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1986-01-01
Unsteady aerodynamic and aeroelastic stability calculations based upon transonic small disturbance (TSD) potential theory are presented. Results from the two-dimensional XTRAN2L code and the three-dimensional XTRAN3S code are compared with experiment to demonstrate the ability of TSD codes to treat transonic effects. The necessity of nonisentropic corrections to transonic potential theory is demonstrated. Dynamic computational effects resulting from the choice of grid and boundary conditions are illustrated. Unsteady airloads for a number of parameter variations including airfoil shape and thickness, Mach number, frequency, and amplitude are given. Finally, samples of transonic aeroelastic calculations are given. A key observation is the extent to which unsteady transonic airloads calculated by inviscid potential theory may be treated in a locally linear manner.
NASA Technical Reports Server (NTRS)
Wu, S. T. (Editor); Christensen, D. L.; Head, R. R.
1978-01-01
Demonstration projects, systems-subsystems simulation programs, applications (heating, cooling, agricultural, industrial), and climatic data testing (standards, economics, institutional) are the topics of the book. Economics of preheating water for commercial use and collecting, processing, and dissemination of data for the national demonstration program are discussed. Computer simulation of a solar energy system and graphical representation of solar collector performance are considered. Attention is given to solar driven heat pumps, solar cooling equipment, hybrid passive/active solar systems, and solar farm buildings. Evaluation of a thermographic scanning device for solar energy and conservation applications, use of meteorological data in system evaluation, and biomass conversion potential are presented.
Magnetized jet creation using a ring laser and applications
NASA Astrophysics Data System (ADS)
Liang, Edison; Gao, Ian; Lu, Yingchao; Ji, Hantao; Follett, Russ; Froula, Dustin; Tzeferacos, Petros; Lamb, Donald; Bickel, Andrew; Sio, Hong; Li, Chi Kiang; Petrasso, Richard; Wei, Mingsheng; Fu, Wen; Han, Lily
2017-10-01
We have recently demonstrated a new robust platform of magnetized jet creation using 20 OMEGA beams to form a hollow ring. We will present the latest experimental results and their theoretical interpretation, and explore potential applications to laboratory astrophysics, fundamental plasma physics and other areas. We will also discuss the scaling of this platform to future NIF experiments.
NASA Technical Reports Server (NTRS)
Cashion, Kenneth D.; Whitehurst, Charles A.
1987-01-01
The activities of the Earth Resources Laboratoy (ERL) for the past seventeen years are reviewed with particular reference to four typical applications demonstrating the use of remotely sensed data in a geobased information system context. The applications discussed are: a fire control model for the Olympic National Park; wildlife habitat modeling; a resource inventory system including a potential soil erosion model; and a corridor analysis model for locating routes between geographical locations. Some future applications are also discussed.
Expert systems for real-time monitoring and fault diagnosis
NASA Technical Reports Server (NTRS)
Edwards, S. J.; Caglayan, A. K.
1989-01-01
Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.
Integrated Data for Improved Asset Management
DOT National Transportation Integrated Search
2016-05-26
The objective of this research is to demonstrate the potential benefits for agency-wide data integration for VDOT asset management. This objective is achieved through an example application that requires information distributed across multiple databa...
Finite difference methods for the solution of unsteady potential flows
NASA Technical Reports Server (NTRS)
Caradonna, F. X.
1985-01-01
A brief review is presented of various problems which are confronted in the development of an unsteady finite difference potential code. This review is conducted mainly in the context of what is done for a typical small disturbance and full potential methods. The issues discussed include choice of equation, linearization and conservation, differencing schemes, and algorithm development. A number of applications including unsteady three-dimensional rotor calculation, are demonstrated.
Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions
NASA Technical Reports Server (NTRS)
Generazio, Ed
2017-01-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, weather prediction, earth quake prediction, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
NASA Astrophysics Data System (ADS)
Ajo Franklin, J. B.; Lindsey, N.; Dou, S.; Freifeld, B. M.; Daley, T. M.; Tracy, C.; Monga, I.
2017-12-01
"Dark Fiber" refers to the large number of fiber-optic lines installed for telecommunication purposes but not currently utilized. With the advent of distributed acoustic sensing (DAS), these unused fibers have the potential to become a seismic sensing network with unparalleled spatial extent and density with applications to monitoring both natural seismicity as well as near-surface soil properties. While the utility of DAS for seismic monitoring has now been conclusively shown on built-for-purpose networks, dark fiber deployments have been challenged by the heterogeneity of fiber installation procedures in telecommunication as well as access limitations. However, the potential of telecom networks to augment existing broadband monitoring stations provides a strong incentive to explore their utilization. We present preliminary results demonstrating the application of DAS to seismic monitoring on a 20 km run of "dark" telecommunications fiber between West Sacramento, CA and Woodland CA, part of the Dark Fiber Testbed maintained by the DOE's ESnet user facility. We show a small catalog of local and regional earthquakes detected by the array and evaluate fiber coupling by using variations in recorded frequency content. Considering the low density of broadband stations across much of the Sacramento Basin, such DAS recordings could provide a crucial data source to constrain small-magnitude local events. We also demonstrate the application of ambient noise interferometry using DAS-recorded waveforms to estimate soil properties under selected sections of the dark fiber transect; the success of this test suggests that the network could be utilized for environmental monitoring at the basin scale. The combination of these two examples demonstrates the exciting potential for combining DAS with ubiquitous dark fiber to greatly extend the reach of existing seismic monitoring networks.
Graphene-MoS2 Heterojunctions for High-Speed Opto-electronics
NASA Astrophysics Data System (ADS)
Horng, Jason; Wang, Alex; Wang, Danqing; Li, Alexander Shengzhi; Wang, Feng
Heterostructures consisting of two-dimensional materials has drawn significant attention in different research fields owning to their novel electronic states and potential applications. Transmitting information with transition metal dichalcogenides(TMDC) electro-optical modulator switch interconnect is of great interest for technological applications. However, their high-speed applications have been slowed by their intrinsically high resistivity as well as the difficulties in making optimized metal contacts. Here, we present a new strategy by using graphene as a tunable contact to two-dimensional semiconductors to explore possible applications in high-speed opto-electronics. We will present an optical study to provide better understanding of band alignment in graphene/MoS2 heterostructures and a demonstration of high-speed opto-electronics based on these heterostructures. The result shows the new scheme could have potential in both opto-modulators and optical sensing applications.
Systematic Convergence in Applying Variational Method to Double-Well Potential
ERIC Educational Resources Information Center
Mei, Wai-Ning
2016-01-01
In this work, we demonstrate the application of the variational method by computing the ground- and first-excited state energies of a double-well potential. We start with the proper choice of the trial wave functions using optimized parameters, and notice that accurate expectation values in excellent agreement with the numerical results can be…
2009-07-01
45 7.1 Scale, corrosion, bacteria and biofilm control...isms to thrive, creating a potential scenario for microbially induced corro- sion (MIC), heat transfer losses due to biofilm deposits, and potential...health hazards due to pathogenic bacteria growing within biofilm deposits. The following terms are used throughout this paper. Brief definitions are
Fuel Cell Seminar, 1992: Program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technicalmore » papers are included, the majority being processed for the data base.« less
Performance of conducting polymer electrodes for stimulating neuroprosthetics
NASA Astrophysics Data System (ADS)
Green, R. A.; Matteucci, P. B.; Hassarati, R. T.; Giraud, B.; Dodds, C. W. D.; Chen, S.; Byrnes-Preston, P. J.; Suaning, G. J.; Poole-Warren, L. A.; Lovell, N. H.
2013-02-01
Objective. Recent interest in the use of conducting polymers (CPs) for neural stimulation electrodes has been growing; however, concerns remain regarding the stability of coatings under stimulation conditions. These studies examine the factors of the CP and implant environment that affect coating stability. The CP poly(ethylene dioxythiophene) (PEDOT) is examined in comparison to platinum (Pt), to demonstrate the potential performance of these coatings in neuroprosthetic applications. Approach. PEDOT is coated on Pt microelectrode arrays and assessed in vitro for charge injection limit and long-term stability under stimulation in biologically relevant electrolytes. Physical and electrical stability of coatings following ethylene oxide (ETO) sterilization is established and efficacy of PEDOT as a visual prosthesis bioelectrode is assessed in the feline model. Main results. It was demonstrated that PEDOT reduced the potential excursion at a Pt electrode interface by 72% in biologically relevant solutions. The charge injection limit of PEDOT for material stability was found to be on average 30× larger than Pt when tested in physiological saline and 20× larger than Pt when tested in protein supplemented media. Additionally stability of the coating was confirmed electrically and morphologically following ETO processing. It was demonstrated that PEDOT-coated electrodes had lower potential excursions in vivo and electrically evoked potentials (EEPs) could be detected within the visual cortex. Significance. These studies demonstrate that PEDOT can be produced as a stable electrode coating which can be sterilized and perform effectively and safely in neuroprosthetic applications. Furthermore these findings address the necessity for characterizing in vitro properties of electrodes in biologically relevant milieu which mimic the in vivo environment more closely.
Corals and Their Potential Applications to Integrative Medicine
Cooper, Edwin L.; Hirabayashi, Kyle; Strychar, Kevin B.; Sammarco, Paul W.
2014-01-01
Over the last few years, we have pursued the use and exploitation of invertebrate immune systems, most notably their humoral products, to determine what effects their complex molecules might exert on humans, specifically their potential for therapeutic applications. This endeavor, called “bioprospecting,” is an emerging necessity for biomedical research. In order to treat the currently “untreatable,” or to discover more efficient treatment modalities, all options and potential sources must be exhausted so that we can provide the best care to patients, that is, proceed from forest and ocean ecosystems through the laboratory to the bedside. Here, we review current research findings that have yielded therapeutic benefits, particularly as derived from soft and hard corals. Several applications have already been demonstrated, including anti-inflammatory properties, anticancer properties, bone repair, and neurological benefits. PMID:24757491
Methodology of developing a smartphone application for crisis research and its clinical application.
Zhang, Melvyn W B; Ho, Cyrus S H; Fang, Pan; Lu, Yanxia; Ho, Roger C M
2014-01-01
Recent advancement in Internet based technologies have resulted in the growth of a sub-specialized field, termed as "Infodemiology" and "Infoveillance". Infoveillence refers to the collation of infodemiology measures for the purpose of surveillance and trending. Previous research has only demonstrated the research potential of Web 2.0 medium in collation of data in crisis situation. The objectives for the current study are to demonstrate the methodology of implementation of a smartphone-based application for dissemination and collation of information during a crisis situation. The Haze Smartphone application was developed using an online application builder and using HTML5 as the core programming language. A five-phase developmental method including a) formulation of user requirements, b) system design, c) system development, d) system evaluation and finally e) system application and implementation were adopted. The smartphone application was deployed during a one-week period via a self-sponsored Facebook post and via direct dissemination of the web-links by emails. A total of 298 respondents took part in the survey within the application. Most of them were between the ages of 20- to 29-years old and had a university education. More individuals preferred the option of accessing and providing feedback to a survey on physical and psychological wellbeing via direct access to a Web-based questionnaire. In addition, the participants reported a mean number of 4.03 physical symptoms (SD 2.6). The total Impact of Event Scale-Revised (IES-R) score was 18.47 (SD 11.69), which indicated that the study population did experience psychological stress but not posttraumatic stress disorder. The perceived dangerous Pollutant Standards Index (PSI) level and the number of physical symptoms were associated with higher IES-R Score (P<0.05). This study demonstrates how a smartphone application could potentially be used to acquire research data in a crisis situation. However, it is crucial for future research to further evaluate its effectiveness in a crisis situation.
Advances in Miniaturized Instruments for Genomics
2014-01-01
In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices. PMID:25114919
Electropolymerized Conducting Polymer as Actuator and Sensor Device
ERIC Educational Resources Information Center
Cortes, Maria T.; Moreno, Juan C.
2005-01-01
A study demonstrates the potential application of conducting polymers to convert electrical energy into mechanical energy at low voltage or current. The performance of the device is explained using electrochemistry and solid-state chemistry.
75 FR 10280 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-05
... has been demonstrated for this technology in dog and guinea pig models. Potential Applications and... effects in dogs and guinea pigs. J Clin Invest. 2009 Aug;119(8):2271-2280. [PubMed: 19620788] Patent...
A see through future: augmented reality and health information systems.
Monkman, Helen; Kushniruk, Andre W
2015-01-01
Augmented Reality (AR) is a method whereby virtual objects are superimposed on the real world. AR technology is becoming increasingly accessible and affordable and it has many potential health applications. This paper discusses current research on AR health applications such as medical education and medical practice. Some of the potential future uses for this technology (e.g., health information systems, consumer health applications) will also be presented. Additionally, there will be a discussion outlining some of usability and human factors challenges associated with AR in healthcare. It is expected that AR will become increasingly prevalent in healthcare; however, further investigation is required to demonstrate that they provide benefits over traditional methods. Moreover, AR applications must be thoroughly tested to ensure they do not introduce new errors into practice and have patient safety implications.
High temperature polymer dielectric film-wire insulation
NASA Technical Reports Server (NTRS)
Nairus, John G.
1994-01-01
The highlights of the program are outlined including two major accomplishments. TRW identified and demonstrated the potential of two aromatic/heterocyclic polymers to have an outstanding and superior combination of electrical, thermal, and chemical resistance properties versus state-of-the-art Kapton for spacecraft and/or aircraft dielectric insulation applications. (Supporting data is provided in tables.) Feasibility was demonstrated for supporting/enabling technologies such as ceramic coatings, continuous film casting, and conductor wire wrapping, which are designed to accelerate qualification and deployment of the new wire insulation materials for USAF systems applications during the mid- to late-1990's.
Optically guided atom interferometer tuned to magic wavelength
NASA Astrophysics Data System (ADS)
Akatsuka, Tomoya; Takahashi, Tadahiro; Katori, Hidetoshi
2017-11-01
We demonstrate an atom interferometer operating on the 1S0-3P0 clock transition of 87Sr atoms in a “magic” optical guide, where the light shift perturbations of the guiding potential are canceled. As a proof-of-principle demonstration, a Mach-Zehnder interferometer is set horizontally to map the acceleration introduced by the focused optical guide. This magic guide interferometer on the clock transition is applicable to atomic elements where magic wavelengths can be found. Possible applications of the magic guide interferometer, including a hollow-core fiber interferometer and gradiometer, are discussed.
Applications of ISES for vegetation and land use
NASA Technical Reports Server (NTRS)
Wilson, R. Gale
1990-01-01
Remote sensing relative to applications involving vegetation cover and land use is reviewed to consider the potential benefits to the Earth Observing System (Eos) of a proposed Information Sciences Experiment System (ISES). The ISES concept has been proposed as an onboard experiment and computational resource to support advanced experiments and demonstrations in the information and earth sciences. Embedded in the concept is potential for relieving the data glut problem, enhancing capabilities to meet real-time needs of data users and in-situ researchers, and introducing emerging technology to Eos as the technology matures. These potential benefits are examined in the context of state-of-the-art research activities in image/data processing and management.
Liquid biopsies come of age: towards implementation of circulating tumour DNA.
Wan, Jonathan C M; Massie, Charles; Garcia-Corbacho, Javier; Mouliere, Florent; Brenton, James D; Caldas, Carlos; Pacey, Simon; Baird, Richard; Rosenfeld, Nitzan
2017-04-01
Improvements in genomic and molecular methods are expanding the range of potential applications for circulating tumour DNA (ctDNA), both in a research setting and as a 'liquid biopsy' for cancer management. Proof-of-principle studies have demonstrated the translational potential of ctDNA for prognostication, molecular profiling and monitoring. The field is now in an exciting transitional period in which ctDNA analysis is beginning to be applied clinically, although there is still much to learn about the biology of cell-free DNA. This is an opportune time to appraise potential approaches to ctDNA analysis, and to consider their applications in personalized oncology and in cancer research.
ERIC Educational Resources Information Center
Evans, Judy P.; Taylor, Jerome
1995-01-01
Reviews the theory of reasoned action to demonstrate how it can be applied to understanding gang violence, and illustrates its potential applicability to a pilot sample of 30 contemporary and 18 earlier gangs living in a large metropolitan community. Results indicate this theory has been helpful in explaining higher levels of violence in…
Polarimetric Hyperspectral Imaging Systems and Applications
NASA Technical Reports Server (NTRS)
Cheng, Li-Jen; Mahoney, Colin; Reyes, George; Baw, Clayton La; Li, G. P.
1996-01-01
This paper reports activities in the development of AOTF Polarimetric Hyperspectral Imaging (PHI) Systems at JPL along with field observation results for illustrating the technology capabilities and advantages in remote sensing. In addition, the technology was also used to measure thickness distribution and structural imperfections of silicon-on-silicon wafers using white light interference phenomenon for demonstrating the potential in scientific and industrial applications.
2016-07-01
Particles (VLPs). The rationale is based on the beneficial effect of SV40 VLPs on an Acute Kidney Injury (AKI) model in mice, previously demonstrated...signaling which, as was demonstrated, protect mice kidneys from apoptosis, necrosis and consequent damage induced by a toxic (mercury) insult, increasing...recombinant VP1, without any genetic material. Using a mouse model for toxic Acute Kidney Injury (AKI), we demonstrated that systemic
4D printing of a self-morphing polymer driven by a swellable guest medium.
Su, Jheng-Wun; Tao, Xiang; Deng, Heng; Zhang, Cheng; Jiang, Shan; Lin, Yuyi; Lin, Jian
2018-01-31
There is a significant need of advanced materials that can be fabricated into functional devices with defined three-dimensional (3D) structures for application in tissue engineering, flexible electronics, and soft robotics. This need motivates an emerging four-dimensional (4D) printing technology, by which printed 3D structures consisting of active materials can transform their configurations over time in response to stimuli. Despite the ubiquity of active materials in performing self-morphing processes, their potential for 4D printing has not been fully explored to date. In this study, we demonstrate 4D printing of a commercial polymer, SU-8, which has not been reported to date in this field. The working principle is based on a self-morphing process of the printed SU-8 structures through spatial control of the swelling medium inside the polymer matrix by a modified process. To understand the self-morphing behavior, fundamental studies on the effect of the geometries including contours and filling patterns were carried out. A soft electronic device as an actuator was demonstrated to realize an application of this programmable polymer using the 3D printing technology. These studies provide a new paradigm for application of SU-8 in 4D printing, paving a new route to the exploration of more potential candidates by this demonstrated strategy.
NASA Astrophysics Data System (ADS)
Seddon, Angela B.
2016-10-01
The case for new, portable, real-time mid-infrared (MIR) molecular sensing and imaging is discussed. We set a record in demonstrating extreme broad-band supercontinuum (SC) generated light 1.4-13.3 μm in a specially engineered, step-index MIR optical fiber of high numerical aperture. This was the first experimental demonstration truly to reveal the potential of MIR fibers to emit across the MIR molecular "fingerprint spectral region" and a key first step towards bright, portable, broadband MIR sources for chemical and biomedical, molecular sensing and imaging in real-time. Potential applications are in the healthcare, security, energy, environmental monitoring, chemical-processing, manufacturing and the agriculture sectors. MIR narrow-line fiber lasers are now required to pump the fiber MIR-SC for a compact all-fiber solution. Rare-earth-ion (RE-) doped MIR fiber lasers are not yet demonstrated >=4 μm wavelength. We have fabricated small-core RE-fiber with photoluminescence across 3.5-6 μm, and long excited-state lifetimes. MIR-RE-fiber lasers are also applicable as discrete MIR fiber sensors in their own right, for applications including: ship-to-ship free-space communications, aircraft counter-measures, coherent MIR imaging, MIR-optical coherent tomography, laser-cutting/ patterning of soft materials and new wavelengths for fiber laser medical surgery.
Fiber based infrared lasers and their applications in medicine, spectroscopy and metrology
NASA Astrophysics Data System (ADS)
Alexander, Vinay Varkey
In my thesis, I have demonstrated the development of fiber based infrared lasers and devices for applications in medicine, spectroscopy and metrology. One of the key accomplishments presented in this thesis for medical applications is the demonstration of a focused infrared laser to perform renal denervation both in vivo and in vitro. Hypertension is a significant health hazard in the US and throughout the world, and the laser based renal denervation procedure may be a potential treatment for resistant hypertension. Compared to current treatment modalities, lasers may be able to perform treatments with lesser collateral tissue damage and quicker treatment times helping to reduce patient discomfort and pain. An additional medical application demonstrated in this thesis is the use of infrared fiber lasers to damage sebaceous glands in human skin as a potential treatment for acne. Another significant work presented in this thesis is a field trial performed at the Wright Patterson Air Force Base using a Short Wave Infrared (SWIR) Supercontinuum (SC) laser as an active illumination source for long distance reflectance measurements. In this case, an SC laser developed as part of this thesis is kept on a 12 story tower and propagated through the atmosphere to a target kept 1.6 km away and used to perform spectroscopy measurements. In the future this technology may permit 24/7 surveillance based on looking for the spectral signatures of materials. Beyond applications in defense, this technology may have far reaching commercial applications as well, including areas such as oil and natural resources exploration. Beyond these major contributions to the state-of-the-art, this thesis also describes other significant studies such as power scalability of SWIR SC sources and non-invasive measurement of surface roughness.
The Expert System Programme of the European Space Agency
NASA Astrophysics Data System (ADS)
Lafay, J. F.; Allard, F.
1992-08-01
ESA's Expert System Demonstration (ESD) program is discussed in terms of its goals, structure, three-phase approach, and initial results. ESD is intended to demonstrate the benefits of AI and knowledge-based systems for in-orbit infrastructures by developing a strategic technology to contribute to ESA missions. Three phases were defined for: (1) program definition and review of existing work; (2) demonstration of applications prototypes; and (3) the development of operational systems from successful prototypes. Applications of 16 proposed expert-system candidates are grouped into payload-engineering and crew/operations categories. The candidates are to be evaluated in terms of their potential contribution to strategic goals such as improving scientific return and automating operator functions to eliminate human error.
Wireless electronic-tattoo for long-term high fidelity facial muscle recordings
NASA Astrophysics Data System (ADS)
Inzelberg, Lilah; David Pur, Moshe; Steinberg, Stanislav; Rand, David; Farah, Maroun; Hanein, Yael
2017-05-01
Facial surface electromyography (sEMG) is a powerful tool for objective evaluation of human facial expressions and was accordingly suggested in recent years for a wide range of psychological and neurological assessment applications. Owing to technical challenges, in particular the cumbersome gelled electrodes, the use of facial sEMG was so far limited. Using innovative facial temporary tattoos optimized specifically for facial applications, we demonstrate the use of sEMG as a platform for robust identification of facial muscle activation. In particular, differentiation between diverse facial muscles is demonstrated. We also demonstrate a wireless version of the system. The potential use of the presented technology for user-experience monitoring and objective psychological and neurological evaluations is discussed.
Applications of space observations to the management and utilization of coastal fishery resources
NASA Technical Reports Server (NTRS)
Kemmerer, A. J.; Savastano, K. J.; Faller, K. H.
1977-01-01
Information needs of those concerned with the harvest and management of coastal fishery resources can be satisfied in part through applications of satellite remote sensing. Recently completed and ongoing investigations have demonstrated potentials for defining fish distribution patterns from multispectral data, monitoring fishing distribution and effort with synthetic aperture radar systems, forecasting recruitment of certain estuarine-dependent species, and tracking marine mammals. These investigations, which are reviewed in this paper, have relied on Landsat 1 and 2, Skylab-3, and Nimbus-6 supported sensors and sensors carried by aircraft and mounted on surface platforms to simulate applications from Seasat-A and other future spacecraft systems. None of the systems are operational as all were designed to identify and demonstrate applications and to aid in the specification of requirements for future spaceborne systems.
Technology Assessment Report: Aqueous Sludge Gasification Technologies
The study reveals that sludge gasification is a potentially suitable alternative to conventional sludge handling and disposal methods. However, very few commercial operations are in existence. The limited pilot, demonstration or commercial application of gasification technology t...
Ronald Sabo; Altaf H. Basta; Jerrold E. Winandy
2013-01-01
Public health awareness has increased in the past few years regarding the disposal of chromated copper arsenate (CCA) preservative-treated wood wastes. This study demonstrates the potential for using remediated CCA lumber and alternative fiber sources, such as sugar cane bagasse, to produce medium density fiberboard (MDF). The role of both remediated CCA loaded spruce...
Business logic for geoprocessing of distributed geodata
NASA Astrophysics Data System (ADS)
Kiehle, Christian
2006-12-01
This paper describes the development of a business-logic component for the geoprocessing of distributed geodata. The business logic acts as a mediator between the data and the user, therefore playing a central role in any spatial information system. The component is used in service-oriented architectures to foster the reuse of existing geodata inventories. Based on a geoscientific case study of groundwater vulnerability assessment and mapping, the demands for such architectures are identified with special regard to software engineering tasks. Methods are derived from the field of applied Geosciences (Hydrogeology), Geoinformatics, and Software Engineering. In addition to the development of a business logic component, a forthcoming Open Geospatial Consortium (OGC) specification is introduced: the OGC Web Processing Service (WPS) specification. A sample application is introduced to demonstrate the potential of WPS for future information systems. The sample application Geoservice Groundwater Vulnerability is described in detail to provide insight into the business logic component, and demonstrate how information can be generated out of distributed geodata. This has the potential to significantly accelerate the assessment and mapping of groundwater vulnerability. The presented concept is easily transferable to other geoscientific use cases dealing with distributed data inventories. Potential application fields include web-based geoinformation systems operating on distributed data (e.g. environmental planning systems, cadastral information systems, and others).
Ribes, Àngela; Santiago‐Felipe, Sara; Bernardos, Andrea; Marcos, M. Dolores; Pardo, Teresa; Sancenón, Félix; Aznar, Elena
2017-01-01
Abstract Aptamers have been used as recognition elements for several molecules due to their great affinity and selectivity. Additionally, mesoporous nanomaterials have demonstrated great potential in sensing applications. Based on these concepts, we report herein the use of two aptamer‐capped mesoporous silica materials for the selective detection of ochratoxin A (OTA). A specific aptamer for OTA was used to block the pores of rhodamine B‐loaded mesoporous silica nanoparticles. Two solids were prepared in which the aptamer capped the porous scaffolds by using a covalent or electrostatic approach. Whereas the prepared materials remained capped in water, dye delivery was selectively observed in the presence of OTA. The protocol showed excellent analytical performance in terms of sensitivity (limit of detection: 0.5–0.05 nm), reproducibility, and selectivity. Moreover, the aptasensors were tested for OTA detection in commercial foodstuff matrices, which demonstrated their potential applicability in real samples. PMID:29046860
MEMS FPI-based smartphone hyperspectral imager
NASA Astrophysics Data System (ADS)
Rissanen, Anna; Saari, Heikki; Rainio, Kari; Stuns, Ingmar; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Ojanen, Harri
2016-05-01
This paper demonstrates a mobile phone- compatible hyperspectral imager based on a tunable MEMS Fabry-Perot interferometer. The realized iPhone 5s hyperspectral imager (HSI) demonstrator utilizes MEMS FPI tunable filter for visible-range, which consist of atomic layer deposited (ALD) Al2O3/TiO2-thin film Bragg reflectors. Characterization results for the mobile phone hyperspectral imager utilizing MEMS FPI chip optimized for 500 nm is presented; the operation range is λ = 450 - 550 nm with FWHM between 8 - 15 nm. Also a configuration of two cascaded FPIs (λ = 500 nm and λ = 650 nm) combined with an RGB colour camera is presented. With this tandem configuration, the overall wavelength tuning range of MEMS hyperspectral imagers can be extended to cover a larger range than with a single FPI chip. The potential applications of mobile hyperspectral imagers in the vis-NIR range include authentication, counterfeit detection and potential health/wellness and food sensing applications.
NASA Technical Reports Server (NTRS)
Morino, Luigi; Bharadvaj, Bala K.; Freedman, Marvin I.; Tseng, Kadin
1988-01-01
The wave equation for an object in arbitrary motion is investigated analytically using a BEM approach, and practical applications to potential flows of compressible fluids around aircraft wings and helicopter rotors are considered. The treatment accounts for arbitrary combined rotational and translational motion of the reference frame and for the wake motion. The numerical implementation as a computer algorithm is demonstrated on problems with prescribed and free wakes, the former in compressible flows and the latter for incompressible flows; results are presented graphically and briefly characterized.
Potential biomedical applications of ion beam technology
NASA Technical Reports Server (NTRS)
Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.
1976-01-01
Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.
Potential biomedical applications of ion beam technology
NASA Technical Reports Server (NTRS)
Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.
1976-01-01
Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.
Prediction and characterization of application power use in a high-performance computing environment
Bugbee, Bruce; Phillips, Caleb; Egan, Hilary; ...
2017-02-27
Power use in data centers and high-performance computing (HPC) facilities has grown in tandem with increases in the size and number of these facilities. Substantial innovation is needed to enable meaningful reduction in energy footprints in leadership-class HPC systems. In this paper, we focus on characterizing and investigating application-level power usage. We demonstrate potential methods for predicting power usage based on a priori and in situ characteristics. Lastly, we highlight a potential use case of this method through a simulated power-aware scheduler using historical jobs from a real scientific HPC system.
Mobility experiments with microrobots for minimally invasive intraocular surgery.
Ullrich, Franziska; Bergeles, Christos; Pokki, Juho; Ergeneman, Olgac; Erni, Sandro; Chatzipirpiridis, George; Pané, Salvador; Framme, Carsten; Nelson, Bradley J
2013-04-23
To investigate microrobots as an assistive tool for minimally invasive intraocular surgery and to demonstrate mobility and controllability inside the living rabbit eye. A system for wireless magnetic control of untethered microrobots was developed. Mobility and controllability of a microrobot are examined in different media, specifically vitreous, balanced salt solution (BSS), and silicone oil. This is demonstrated through ex vivo and in vivo animal experiments. The developed electromagnetic system enables precise control of magnetic microrobots over a workspace that covers the posterior eye segment. The system allows for rotation and translation of the microrobot in different media (vitreous, BSS, silicone oil) inside the eye. Intravitreal introduction of untethered mobile microrobots can enable sutureless and precise ophthalmic procedures. Ex vivo and in vivo experiments demonstrate that microrobots can be manipulated inside the eye. Potential applications are targeted drug delivery for maculopathies such as AMD, intravenous deployment of anticoagulation agents for retinal vein occlusion (RVO), and mechanical applications, such as manipulation of epiretinal membrane peeling (ERM). The technology has the potential to reduce the invasiveness of ophthalmic surgery and assist in the treatment of a variety of ophthalmic diseases.
Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices
Zarudnyi, Konstantin; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Hudziak, Stephen; Kenyon, Anthony J.
2018-01-01
Resistance switching, or Resistive RAM (RRAM) devices show considerable potential for application in hardware spiking neural networks (neuro-inspired computing) by mimicking some of the behavior of biological synapses, and hence enabling non-von Neumann computer architectures. Spike-timing dependent plasticity (STDP) is one such behavior, and one example of several classes of plasticity that are being examined with the aim of finding suitable algorithms for application in many computing tasks such as coincidence detection, classification and image recognition. In previous work we have demonstrated that the neuromorphic capabilities of silicon-rich silicon oxide (SiOx) resistance switching devices extend beyond plasticity to include thresholding, spiking, and integration. We previously demonstrated such behaviors in devices operated in the unipolar mode, opening up the question of whether we could add plasticity to the list of features exhibited by our devices. Here we demonstrate clear STDP in unipolar devices. Significantly, we show that the response of our devices is broadly similar to that of biological synapses. This work further reinforces the potential of simple two-terminal RRAM devices to mimic neuronal functionality in hardware spiking neural networks. PMID:29472837
Wang, Yeliang; Li, Linfei; Yao, Wei; ...
2015-05-21
For single-layer transition-metal dichalcogenides (TMDs) receive significant attention due to their intriguing physical properties for both fundamental research and potential applications in electronics, optoelectronics, spintronics, catalysis, and so on. Here, we demonstrate the epitaxial growth of high-quality single-crystal, monolayer platinum diselenide (PtSe2), a new member of the layered TMDs family, by a single step of direct selenization of a Pt(111) substrate. We found that a combination of atomic-resolution experimental characterizations and first-principle theoretic calculations reveals the atomic structure of the monolayer PtSe2/Pt(111). Angle-resolved photoemission spectroscopy measurements confirm for the first time the semiconducting electronic structure of monolayer PtSe2 (in contrastmore » to its semimetallic bulk counterpart). The photocatalytic activity of monolayer PtSe2 film is evaluated by a methylene-blue photodegradation experiment, demonstrating its practical application as a promising photocatalyst. Moreover, circular polarization calculations predict that monolayer PtSe2 has also potential applications in valleytronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhaoyi; Zhou, You; Qi, Hao
The electron-doping-induced phase transition of a prototypical perovskite SmNiO 3 induces a large and non-volatile optical refractive-index change and has great potential for active-photonic-device applications. Strong optical modulation from the visible to the mid-infrared is demonstrated using thin-film SmNiO 3. Finally, modulation of a narrow band of light is demonstrated in this paper using plasmonic metasurfaces integrated with SmNiO 3.
NASA Astrophysics Data System (ADS)
Zhou, Yong; Gao, Huai-Ling; Shen, Li-Li; Pan, Zhao; Mao, Li-Bo; Wu, Tao; He, Jia-Cai; Zou, Duo-Hong; Zhang, Zhi-Yuan; Yu, Shu-Hong
2015-12-01
Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation. Recently, as a valuable alternative, a bottom-up TE approach utilizing cell-loaded micrometer-scale modular components as building blocks to reconstruct a new tissue in vitro or in vivo has been proved to demonstrate a number of desirable advantages compared with the traditional bulk scaffold based top-down TE approach. Nevertheless, micro-components with an ECM-mimicking nanofibrous structure are still very scarce and highly desirable. Chitosan (CS), an accessible natural polymer, has demonstrated appealing intrinsic properties and promising application potential for TE, especially the cartilage tissue regeneration. According to this background, we report here the fabrication of chitosan microspheres with an ECM-mimicking nanofibrous structure for the first time based on a physical gelation process. By combining this physical fabrication procedure with microfluidic technology, uniform CS microspheres (CMS) with controlled nanofibrous microstructure and tunable sizes can be facilely obtained. Especially, no potentially toxic or denaturizing chemical crosslinking agent was introduced into the products. Notably, in vitro chondrocyte culture tests revealed that enhanced cell attachment and proliferation were realized, and a macroscopic 3D geometrically shaped cartilage-like composite can be easily constructed with the nanofibrous CMS (NCMS) and chondrocytes, which demonstrate significant application potential of NCMS as the bottom-up cell-carrier components for cartilage tissue engineering.Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation. Recently, as a valuable alternative, a bottom-up TE approach utilizing cell-loaded micrometer-scale modular components as building blocks to reconstruct a new tissue in vitro or in vivo has been proved to demonstrate a number of desirable advantages compared with the traditional bulk scaffold based top-down TE approach. Nevertheless, micro-components with an ECM-mimicking nanofibrous structure are still very scarce and highly desirable. Chitosan (CS), an accessible natural polymer, has demonstrated appealing intrinsic properties and promising application potential for TE, especially the cartilage tissue regeneration. According to this background, we report here the fabrication of chitosan microspheres with an ECM-mimicking nanofibrous structure for the first time based on a physical gelation process. By combining this physical fabrication procedure with microfluidic technology, uniform CS microspheres (CMS) with controlled nanofibrous microstructure and tunable sizes can be facilely obtained. Especially, no potentially toxic or denaturizing chemical crosslinking agent was introduced into the products. Notably, in vitro chondrocyte culture tests revealed that enhanced cell attachment and proliferation were realized, and a macroscopic 3D geometrically shaped cartilage-like composite can be easily constructed with the nanofibrous CMS (NCMS) and chondrocytes, which demonstrate significant application potential of NCMS as the bottom-up cell-carrier components for cartilage tissue engineering. Electronic supplementary information (ESI) available: Additional figures and table. See DOI: 10.1039/c5nr06876b
Microbial biosurfactants as additives for food industries.
Campos, Jenyffer Medeiros; Stamford, Tânia Lúcia Montenegro; Sarubbo, Leonie Asfora; de Luna, Juliana Moura; Rufino, Raquel Diniz; Banat, Ibrahim M
2013-01-01
Microbial biosurfactants with high ability to reduce surface and interfacial surface tension and conferring important properties such as emulsification, detergency, solubilization, lubrication and phase dispersion have a wide range of potential applications in many industries. Significant interest in these compounds has been demonstrated by environmental, bioremediation, oil, petroleum, food, beverage, cosmetic and pharmaceutical industries attracted by their low toxicity, biodegradability and sustainable production technologies. Despite having significant potentials associated with emulsion formation, stabilization, antiadhesive and antimicrobial activities, significantly less output and applications have been reported in food industry. This has been exacerbated by uneconomical or uncompetitive costing issues for their production when compared to plant or chemical counterparts. In this review, biosurfactants properties, present uses and potential future applications as food additives acting as thickening, emulsifying, dispersing or stabilising agents in addition to the use of sustainable economic processes utilising agro-industrial wastes as alternative substrates for their production are discussed. © 2013 American Institute of Chemical Engineers.
A prodrug approach to the use of coumarins as potential therapeutics for superficial mycoses.
Mercer, Derry K; Robertson, Jennifer; Wright, Kristine; Miller, Lorna; Smith, Shane; Stewart, Colin S; O Neil, Deborah A
2013-01-01
Superficial mycoses are fungal infections of the outer layers of the skin, hair and nails that affect 20-25% of the world's population, with increasing incidence. Treatment of superficial mycoses, predominantly caused by dermatophytes, is by topical and/or oral regimens. New therapeutic options with improved efficacy and/or safety profiles are desirable. There is renewed interest in natural product-based antimicrobials as alternatives to conventional treatments, including the treatment of superficial mycoses. We investigated the potential of coumarins as dermatophyte-specific antifungal agents and describe for the first time their potential utility as topical antifungals for superficial mycoses using a prodrug approach. Here we demonstrate that an inactive coumarin glycone, esculin, is hydrolysed to the antifungal coumarin aglycone, esculetin by dermatophytes. Esculin is hydrolysed to esculetin β-glucosidases. We demonstrate that β-glucosidases are produced by dermatophytes as well as members of the dermal microbiota, and that this activity is sufficient to hydrolyse esculin to esculetin with concomitant antifungal activity. A β-glucosidase inhibitor (conduritol B epoxide), inhibited antifungal activity by preventing esculin hydrolysis. Esculin demonstrates good aqueous solubility (<6 g/l) and could be readily formulated and delivered topically as an inactive prodrug in a water-based gel or cream. This work demonstrates proof-of-principle for a therapeutic application of glycosylated coumarins as inactive prodrugs that could be converted to an active antifungal in situ. It is anticipated that this approach will be applicable to other coumarin glycones.
A Prodrug Approach to the Use of Coumarins as Potential Therapeutics for Superficial Mycoses
Mercer, Derry K.; Robertson, Jennifer; Wright, Kristine; Miller, Lorna; Smith, Shane; Stewart, Colin S.; O′Neil, Deborah A.
2013-01-01
Superficial mycoses are fungal infections of the outer layers of the skin, hair and nails that affect 20–25% of the world's population, with increasing incidence. Treatment of superficial mycoses, predominantly caused by dermatophytes, is by topical and/or oral regimens. New therapeutic options with improved efficacy and/or safety profiles are desirable. There is renewed interest in natural product-based antimicrobials as alternatives to conventional treatments, including the treatment of superficial mycoses. We investigated the potential of coumarins as dermatophyte-specific antifungal agents and describe for the first time their potential utility as topical antifungals for superficial mycoses using a prodrug approach. Here we demonstrate that an inactive coumarin glycone, esculin, is hydrolysed to the antifungal coumarin aglycone, esculetin by dermatophytes. Esculin is hydrolysed to esculetin β-glucosidases. We demonstrate that β-glucosidases are produced by dermatophytes as well as members of the dermal microbiota, and that this activity is sufficient to hydrolyse esculin to esculetin with concomitant antifungal activity. A β-glucosidase inhibitor (conduritol B epoxide), inhibited antifungal activity by preventing esculin hydrolysis. Esculin demonstrates good aqueous solubility (<6 g/l) and could be readily formulated and delivered topically as an inactive prodrug in a water-based gel or cream. This work demonstrates proof-of-principle for a therapeutic application of glycosylated coumarins as inactive prodrugs that could be converted to an active antifungal in situ. It is anticipated that this approach will be applicable to other coumarin glycones. PMID:24260474
Options for organization and operation of space applications transfer centers
NASA Technical Reports Server (NTRS)
Robinson, A. C.; Madigan, J. A.
1976-01-01
The benefits of developing regional facilities for transfer of NASA developed technology are discussed. These centers are designed to inform, persuade, and serve users. Included will be equipment for applications and demonstrations of the processes, a library, training facilities, and meeting rooms. The staff will include experts in the various techniques, as well as personnel involved in finding and persuading potential users.
Boyle, Bryan; Arnedillo-Sánchez, Inmaculada
2017-01-01
This paper describes the application of collaboration scripts to guide social interaction behaviours of children with intellectual disabilities. The use of such scripts demonstrate potential as a means of creating CSCL environments that can be used to provide children with communication and social interaction impairments with a platform for learning and practicing such skills in a meaningful social context.
Potential Applications of Polyamines in Agriculture and Plant Biotechnology.
Tiburcio, Antonio F; Alcázar, Rubén
2018-01-01
The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.
Linear Augmentation for Stabilizing Stationary Solutions: Potential Pitfalls and Their Application
Karnatak, Rajat
2015-01-01
Linear augmentation has recently been shown to be effective in targeting desired stationary solutions, suppressing bistablity, in regulating the dynamics of drive response systems and in controlling the dynamics of hidden attractors. The simplicity of the procedure is the main highlight of this scheme but questions related to its general applicability still need to be addressed. Focusing on the issue of targeting stationary solutions, this work demonstrates instances where the scheme fails to stabilize the required solutions and leads to other complicated dynamical scenarios. Examples from conservative as well as dissipative systems are presented in this regard and important applications in dissipative predator—prey systems are discussed, which include preventative measures to avoid potentially catastrophic dynamical transitions in these systems. PMID:26544879
Immunotherapy applications of carbon nanotubes: from design to safe applications.
Fadel, Tarek R; Fahmy, Tarek M
2014-04-01
Carbon nanotubes (CNTs) have the potential to overcome significant challenges related to vaccine development and immunotherapy. Central to these applications is an improved understanding of CNT interactions with the immune system. Unique properties such as high aspect ratio, flexible surface chemistry, and control over structure and morphology may allow for enhanced target specificity and transport of antigens across cell membranes. Although recent work has demonstrated the potential of CNTs to amplify the immune response as adjuvants, other results have also linked their proinflammatory properties to harmful health effects. Here, we review the recent advances of CNT-based immunological research, focusing on current understandings of therapeutic efficacy and mechanisms of immunotoxicology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Electrical percolation in graphene–polymer composites
NASA Astrophysics Data System (ADS)
Marsden, A. J.; Papageorgiou, D. G.; Vallés, C.; Liscio, A.; Palermo, V.; Bissett, M. A.; Young, R. J.; Kinloch, I. A.
2018-07-01
Electrically conductive composites comprising polymers and graphene are extremely versatile and have a wide range of potential applications. The conductivity of these composites depends on the choice of polymer matrix, the type of graphene filler, the processing methodology, and any post-production treatments. In this review, we discuss the progress in graphene–polymer composites for electrical applications. Graphene filler types are reviewed, the progress in modelling these composites is outlined, the current optimal composites are presented, and the example of strain sensors is used to demonstrate their application.
A Review of Microbubble and its Applications in Ozonation
NASA Astrophysics Data System (ADS)
Shangguan, Yufei; Yu, Shuili; Gong, Chao; Wang, Yue; Yang, Wangzhen; Hou, Li-an
2018-03-01
Ozonation has been demonstrated to be an effective technology for the oxidation of organic matters in water treatment. But the low solubility and low mass transfer efficiency limit the application. Microbubble technology has the potential of enhancing gas-liquid mass transfer efficiency, thus it can be applied in ozonation process. The applications of microbubble ozonation have shown advantages over macro bubble ozonation in mass transfer and reaction rate. Microbubble ozonation will be a promising treatment both in water and wastewater treatment.
Demonstration of Unmanned Aircraft Systems Use for Traffic Incident Management (UAS-TIM)
DOT National Transportation Integrated Search
2017-12-01
Previous investigations into technologies that can improve incident response, monitoring, and clearance resulted in the potential application of Unmanned Aerial System (UAS) for use in Traffic Incident Management (TIM). An initial investigation of UA...
Preparation of hollow magnetite microspheres and their applications as drugs carriers
2012-01-01
Hollow magnetite microspheres have been synthesized by a simple process through a template-free hydrothermal approach. Hollow microspheres were surface modified by coating with a silica nanolayer. Pristine and modified hollow microparticles were characterized by field-emission electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, FT-IR and Raman spectroscopy, and VSM magnetometry. The potential application of the modified hollow magnetite microspheres as a drug carrier was evaluated by using Rhodamine B and methotrexate as model drugs. The loading and release kinetics of both molecules showed a clear pH and temperature dependent profile. Graphical abstract Hollow magnetite microspheres have been synthesized. Load-release experiments with Rhodamine-B as a model drug and with Methotrexate (chemotherapy drug used in treating certain types of cancer) demonstrated the potential applications of these nanostructures in biomedical applications. PMID:22490731
NASA Astrophysics Data System (ADS)
Nellist, Michael R.; Laskowski, Forrest A. L.; Qiu, Jingjing; Hajibabaei, Hamed; Sivula, Kevin; Hamann, Thomas W.; Boettcher, Shannon W.
2018-01-01
Heterogeneous electrochemical phenomena, such as (photo)electrochemical water splitting to generate hydrogen using semiconductors and/or electrocatalysts, are driven by the accumulated charge carriers and thus the interfacial electrochemical potential gradients that promote charge transfer. However, measurements of the "surface" electrochemical potential during operation are not generally possible using conventional electrochemical techniques, which measure/control the potential of a conducting electrode substrate. Here we show that the nanoscale conducting tip of an atomic force microscope cantilever can sense the surface electrochemical potential of electrocatalysts in operando. To demonstrate utility, we measure the potential-dependent and thickness-dependent electronic properties of cobalt (oxy)hydroxide phosphate (CoPi). We then show that CoPi, when deposited on illuminated haematite (α-Fe2O3) photoelectrodes, acts as both a hole collector and an oxygen evolution catalyst. We demonstrate the versatility of the technique by comparing surface potentials of CoPi-decorated planar and mesoporous haematite and discuss viability for broader application in the study of electrochemical phenomena.
Unified interatomic potential and energy barrier distributions for amorphous oxides.
Trinastic, J P; Hamdan, R; Wu, Y; Zhang, L; Cheng, Hai-Ping
2013-10-21
Amorphous tantala, titania, and hafnia are important oxides for biomedical implants, optics, and gate insulators. Understanding the effects of oxide doping is crucial to optimize performance in these applications. However, no molecular dynamics potentials have been created to date that combine these and other oxides that would allow computational analyses of doping-dependent structural and mechanical properties. We report a novel set of computationally efficient, two-body potentials modeling van der Waals and covalent interactions that reproduce the structural and elastic properties of both pure and doped amorphous oxides. In addition, we demonstrate that the potential accurately produces energy barrier distributions for pure and doped samples. The distributions can be directly compared to experiment and used to calculate physical quantities such as internal friction to understand how doping affects material properties. Future analyses using these potentials will be of great value to determine optimal doping concentrations and material combinations for myriad material science applications.
A low-cost photoacoustic microscopy system with a laser diode excitation
Wang, Tianheng; Nandy, Sreyankar; Salehi, Hassan S.; Kumavor, Patrick D.; Zhu, Quing
2014-01-01
Photoacoustic microscopy (PAM) is capable of mapping microvasculature networks in biological tissue and has demonstrated great potential for biomedical applications. However, the clinical application of the PAM system is limited due to the use of bulky and expensive pulsed laser sources. In this paper, a low-cost optical-resolution PAM system with a pulsed laser diode excitation has been introduced. The lateral resolution of this PAM system was estimated to be 7 µm by imaging a carbon fiber. The phantoms made of polyethylene tubes filled with blood and a mouse ear were imaged to demonstrate the feasibility of this PAM system for imaging biological tissues. PMID:25401019
Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams
NASA Astrophysics Data System (ADS)
Woerdemann, Mike; Alpmann, Christina; Denz, Cornelia
2011-03-01
Ince-Gaussian (IG) beams are a third complete family of solutions of the paraxial Helmholtz equation. While many applications of Hermite-Gaussian and Laguerre-Gaussian beams have been demonstrated for manipulation of microparticles, the potential of the more general class of IG beams has not yet been exploited at all. We describe the unique properties of IG beams with respect to optical trapping applications, demonstrate a flexible experimental realization of arbitrary IG beams and prove the concept by creating two- and three-dimensional, highly ordered assemblies of typical microparticles. The concept is universal and can easily be integrated into existing holographic optical tweezers setups.
Finite element modeling of electromagnetic fields and waves using NASTRAN
NASA Technical Reports Server (NTRS)
Moyer, E. Thomas, Jr.; Schroeder, Erwin
1989-01-01
The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.
Santos, M F; Machado, C; Tachinski, C G; Júnior, J F; Piletti, R; Peterson, M; Fiori, M A
2014-06-01
This study demonstrates the potential application of glass particles doped with Zn(+2) (GZn) as an atoxic, antimicrobial additive when used in conjunction with high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) polymers. Toxicity tests demonstrated that these modified glass particles were nontoxic to human cells, and atomic absorption analyses demonstrated the migration of ionic species in quantities less than 2.0ppm for both the HDPE/GZn and LLDPE/GZn compounds. Microbiological tests demonstrated the antimicrobial effect of the pure GZn compound as well as the polymeric HDPE/GZn and LLDPE/GZn compounds. In addition, at percentages of GZn higher than 2.00wt.% and at a time of 4h, the bactericidal performance is excellent and equal for both polymeric compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Fault tolerant testbed evaluation, phase 1
NASA Technical Reports Server (NTRS)
Caluori, V., Jr.; Newberry, T.
1993-01-01
In recent years, avionics systems development costs have become the driving factor in the development of space systems, military aircraft, and commercial aircraft. A method of reducing avionics development costs is to utilize state-of-the-art software application generator (autocode) tools and methods. The recent maturity of application generator technology has the potential to dramatically reduce development costs by eliminating software development steps that have historically introduced errors and the need for re-work. Application generator tools have been demonstrated to be an effective method for autocoding non-redundant, relatively low-rate input/output (I/O) applications on the Space Station Freedom (SSF) program; however, they have not been demonstrated for fault tolerant, high-rate I/O, flight critical environments. This contract will evaluate the use of application generators in these harsh environments. Using Boeing's quad-redundant avionics system controller as the target system, Space Shuttle Guidance, Navigation, and Control (GN&C) software will be autocoded, tested, and evaluated in the Johnson (Space Center) Avionics Engineering Laboratory (JAEL). The response of the autocoded system will be shown to match the response of the existing Shuttle General Purpose Computers (GPC's), thereby demonstrating the viability of using autocode techniques in the development of future avionics systems.
Recent progress in nanostructured next-generation field emission devices
NASA Astrophysics Data System (ADS)
Mittal, Gaurav; Lahiri, Indranil
2014-08-01
Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.
Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.
Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten
2016-01-11
Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry.
Godlewska, Beata R; Clare, Stuart; Cowen, Philip J; Emir, Uzay E
2017-01-01
The advantages of ultra-high-field (UHF ≥ 7T) MR have been demonstrated in a variety of MR acquisition modalities. Magnetic resonance spectroscopy (MRS) can particularly benefit from substantial gains in signal-to-noise ratio (SNR) and spectral resolution at UHF, enabling the quantification of numerous metabolites, including glutamate, glutamine, glutathione, and γ-aminobutyric acid that are relevant to psychiatric disorders. The aim of this review is to give an overview about the advantages and advances of UHF MRS and its application to psychiatric disorders. In order to provide a practical guide for potential applications of MRS at UHF, a literature review is given, surveying advantages and disadvantages of MRS at UHF. Key concepts, emerging technologies, practical considerations, and applications of UHF MRS are provided. Second, the strength of UHF MRS is demonstrated using some examples of its application in psychiatric disorders.
Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry
Godlewska, Beata R.; Clare, Stuart; Cowen, Philip J.; Emir, Uzay E.
2017-01-01
The advantages of ultra-high-field (UHF ≥ 7T) MR have been demonstrated in a variety of MR acquisition modalities. Magnetic resonance spectroscopy (MRS) can particularly benefit from substantial gains in signal-to-noise ratio (SNR) and spectral resolution at UHF, enabling the quantification of numerous metabolites, including glutamate, glutamine, glutathione, and γ-aminobutyric acid that are relevant to psychiatric disorders. The aim of this review is to give an overview about the advantages and advances of UHF MRS and its application to psychiatric disorders. In order to provide a practical guide for potential applications of MRS at UHF, a literature review is given, surveying advantages and disadvantages of MRS at UHF. Key concepts, emerging technologies, practical considerations, and applications of UHF MRS are provided. Second, the strength of UHF MRS is demonstrated using some examples of its application in psychiatric disorders. PMID:28744229
GaN-Based Laser Wireless Power Transfer System.
De Santi, Carlo; Meneghini, Matteo; Caria, Alessandro; Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid; Kalinic, Boris; Cesca, Tiziana; Meneghesso, Gaudenzio; Zanoni, Enrico
2018-01-17
The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications.
GaN-Based Laser Wireless Power Transfer System
Meneghini, Matteo; Caria, Alessandro; Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid; Kalinic, Boris; Meneghesso, Gaudenzio; Zanoni, Enrico
2018-01-01
The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications. PMID:29342114
Code of Federal Regulations, 2012 CFR
2012-01-01
... sequential performances of a material control test which is designed to detect anomalies potentially... capability required by § 74.53. Material control test means a comparison of a pre-established alarm threshold... into practical application for experimental and demonstration purposes, including the experimental...
Code of Federal Regulations, 2013 CFR
2013-01-01
... sequential performances of a material control test which is designed to detect anomalies potentially... capability required by § 74.53. Material control test means a comparison of a pre-established alarm threshold... into practical application for experimental and demonstration purposes, including the experimental...
Code of Federal Regulations, 2010 CFR
2010-01-01
... sequential performances of a material control test which is designed to detect anomalies potentially... capability required by § 74.53. Material control test means a comparison of a pre-established alarm threshold... into practical application for experimental and demonstration purposes, including the experimental...
Code of Federal Regulations, 2011 CFR
2011-01-01
... sequential performances of a material control test which is designed to detect anomalies potentially... capability required by § 74.53. Material control test means a comparison of a pre-established alarm threshold... into practical application for experimental and demonstration purposes, including the experimental...
Code of Federal Regulations, 2014 CFR
2014-01-01
... sequential performances of a material control test which is designed to detect anomalies potentially... capability required by § 74.53. Material control test means a comparison of a pre-established alarm threshold... into practical application for experimental and demonstration purposes, including the experimental...
[Use of virtual reality in forensic psychiatry. A new paradigm?].
Fromberger, P; Jordan, K; Müller, J L
2014-03-01
For more than 20 years virtual realities (VR) have been successfully used in the assessment and treatment of psychiatric disorders. The most important advantages of VR are the high ecological validity of virtual environments, the entire controllability of virtual stimuli in the virtual environment and the capability to induce the sensation of being in the virtual environment instead of the physical environment. VRs provide the opportunity to face the user with stimuli and situations which are not available or too risky in reality. Despite these advantages VR-based applications have not yet been applied in forensic psychiatry. On the basis of an overview of the recent state-of-the-art in VR-based applications in general psychiatry, the article demonstrates the advantages and possibilities of VR-based applications in forensic psychiatry. Up to now only preliminary studies regarding the VR-based assessment of pedophilic interests exist. These studies demonstrate the potential of ecologically valid VR-based applications for the assessment of forensically relevant disorders. One of the most important advantages is the possibility of VR to assess the behavior of forensic inpatients in crime-related situations without endangering others. This provides completely new possibilities not only regarding the assessment but also for the treatment of forensic inpatients. Before utilizing these possibilities in the clinical practice exhaustive research and development will be necessary. Given the high potential of VR-based applications, this effort would be worth it.
Multifunctional shape and size specific magneto-polymer composite particles.
Nunes, Janine; Herlihy, Kevin P; Mair, Lamar; Superfine, Richard; DeSimone, Joseph M
2010-04-14
Interest in uniform multifunctional magnetic particles is driven by potential applications in biomedical and materials science. Here we demonstrate the fabrication of highly tailored nanoscale and microscale magneto-polymer composite particles using a template based approach. Regiospecific surface functionalization of the particles was performed by chemical grafting and evaporative Pt deposition. Manipulation of the particles by an applied magnetic field was demonstrated in water and hydrogen peroxide.
Natural Resource Information System, remote sensing studies
NASA Technical Reports Server (NTRS)
Leachtenauer, J.; Hirsch, R.; Williams, V.; Tucker, R.
1972-01-01
Potential applications of remote sensing data were reviewed, and available imagery was interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and qualities of imagery required to satisfy identified data needs. Ektachrome imagery available over the demonstration areas was reviewed to establish the feasibility of interpreting cultural features, range condition, and timber type. Using the same imagery, a land use map was prepared for the demonstration area. The feasibility of identifying commercial timber areas using a density slicing technique was tested on multispectral imagery available for a portion of the demonstration area.
Estimation of the Potential for Atrazine Transport in a Silt Loam Soil
Eckhardt, D.A.V.; Wagenet, R.J.
1996-01-01
The transport potential of the herbicide atrazine (2-chloro-4-ethyl-6-isopropyl-s-triazine) through a 1-meter-thick root zone of corn (Zea mays L.) in a silty-loam soil in Kansas was estimated for a 22-year period (1972-93) using the one-dimensional water-flow and solute-transport model LEACHM. Results demonstrate that, for this soil, atrazine transport is directly related to the amount and timing of rain that follows spring applications of atrazine. Two other critical transport factors were important in wet years - [1] variability in atrazine application rate, and [2] atrazine degradation rates below the root zone. Results demonstrate that the coincidence of heavy rain soon after atrazine application can cause herbicide to move below the rooting zone into depths at which biodegradation rates are assumed to be low but are often unknown. Atrazine that reaches below the rooting zone and persists in the underlying soil can subsequently be transported into ground water as soil water drains, typically after the growing season. A frequency analysis of atrazine concentrations in subsurface drainage, combined with field data, demonstrates the relative importance of critical transport factors and confirms a need for definitive estimates of atrazine-degradation rates below the root zone. The analysis indicates that periodic leaching of atrazine can be expected for this soil when rainfall that exceeds 20 cm/mo coincides with atrazine presence in soil.
DeGregorio, Nicole; Iyengar, Srinivasan S
2018-01-09
We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen-bonded systems is demonstrated here.
Jet engine applications for materials with nanometer-scale dimensions
NASA Technical Reports Server (NTRS)
Appleby, J. W., Jr.
1995-01-01
The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and materials with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.
Jet engine applications for materials with nanometer-scale dimensions
NASA Technical Reports Server (NTRS)
Appleby, J. W., Jr.
1995-01-01
The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and material with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.
Sun, Xiaomin; Xu, Dan; Luo, Fang; Wei, Zihan; Wei, Cong; Xue, Gang
2015-01-01
A recent paper [Tormala ZL, Jia JS, Norton MI (2012). The preference for potential. Journal of personality and social psychology, 103: 567-583] demonstrated that persons often prefer potential rather than achievement when evaluating others, because information regarding potential evokes greater interest and processing, resulting in more favorable evaluations. This research aimed to expand on this finding by asking two questions: (a) Is the preference for potential effect replicable in other cultures? (b) Is there any other mechanism that accounts for this preference for potential? To answer these two questions, we replicated Tormala et al.'s study in multiple cities (17 studies with 1,128 participants) in China using an individual participant data (IPD) meta-analysis approach to test our hypothesis. Our results showed that the preference for potential effect found in the US is also robust in China. Moreover, we also found a pro-youth bias behind the preference for potential effect. To be specific, persons prefer a potential-oriented applicant rather than an achievement-oriented applicant, partially because they believe that the former is younger than the latter.
NASA Astrophysics Data System (ADS)
Noh, Kunbae
2011-12-01
Self-ordered arrangements observed in various materials systems such as anodic aluminum oxide, polystyrene nanoparticles, and block copolymer are of great interest in terms of providing new opportunities in nanofabrication field where lithographic techniques are broadly used in general. Investigations on self-assembled nano arrays to understand how to obtain periodic nano arrays in an efficient yet inexpensive way, and how to realize advanced material and device systems thereof, can lead to significant impacts on science and technology for many forefront device applications. In this thesis, various aspects of periodic nano-arrays have been discussed including novel preparations, properties and applications of anodized aluminum oxide (AAO) and PS-b-P4VP (S4VP) di-block copolymer self-assembly. First, long-range ordered AAO arrays have been demonstrated. Nanoimprint lithography (NIL) process allowed a faithful pattern transfer of the imprint mold pattern onto Al thin film, and interesting self-healing and pattern tripling phenomena were observed, which could be applicable towards fabrication of the NIL master mold having highly dense pattern over large area, useful for fabrication of a large-area substrate for predictable positioning of arrayed devices. Second, S4VP diblock copolymer self-assembly and S4VP directed AAO self-assembly have been demonstrated in the Al thin film on Si substrate. Such a novel combination of two dissimilar self-assembly techniques demonstrated a potential as a versatile tool for nanopatterning formation on a Si substrate, capable of being integrated into Si process technology. As exemplary applications, vertically aligned Ni nanowires have been synthesized into an S4VP-guided AAO membrane on a Si substrate in addition to anti-dot structured [Co/Pd]n magnetic multilayer using S4VP self assembly. Third, a highly hexagonally ordered, vertically parallel aluminum oxide nanotube array was successfully fabricated via hard anodization technique. The Al2O3 nanotube arrays so fabricated exhibit a uniform and reproducible dimension, and a quite high aspect ratio of greater than ˜1,000. Such high-aspect-ratio, mechanically robust, large-surface-area nanotube array structure can be useful for many technical applications. As a potential application in biomedical research, drug storage/controlled drug release from such AAO nanotubes was investigated, and the advantageous potential of using AAO nanotubes for biological implant surface coatings alternative to TiO2 nanotubes has been discussed.
Berg, Jonathan S; Powell, Cynthia M
2015-10-05
Since newborn screening (NBS) began in the 1960s, technological advances have enabled its expansion to include an increasing number of disorders. Recent developments now make it possible to sequence an infant's genome relatively quickly and economically. Clinical application of whole-exome and whole-genome sequencing is expanding at a rapid pace but presents many challenges. Its utility in NBS has yet to be demonstrated and its application in the pediatric population requires examination, not only for potential clinical benefits, but also for the unique ethical challenges it presents. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
Market definition study of photovoltaic power for remote villages in developing countries
NASA Technical Reports Server (NTRS)
Ragsdale, C.; Quashie, P.
1980-01-01
The potential market of photovoltaic systems in remote village applications in developing countries is assessed. It is indicated that photovoltaic technology is cost-competitive with diesel generators in many remote village applications. The major barriers to development of this market are the limited financial resources on the part of developing countries, and lack of awareness of photovoltaics as a viable option in rural electrification. A comprehensive information, education and demonstration program should be established as soon as possible to convince the potential customer countries and the various financial institutions of the viability of photovoltaics as an electricity option for developing countries.
New bioactive and biobased product applications of pectin
USDA-ARS?s Scientific Manuscript database
Pectin is well known for its bioactive health-promoting properties and use in biobased products. Recent reports have demonstrated that pectin and pectic fractions have potential as prebiotics, prevent pathogenic bacterial adhesion, increase prostate specific antigen doubling time in patients with re...
SITE TECHNOLOGY CAPSULE: SONOTECH PULSE COMBUSTION SYSTEM
Sonotech has targeted waste incineration as a potential application for this technology. Based on bench-scale rotary-kiln simulator tests, Sonotech proposed a demonstration under the SITE program to evaluate the Sonotech pulse combustion system on a larger scale at EPA's IRF in J...
45 CFR 63.6 - Evaluation of applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... policy objectives; (2) Feasibility of the project; (3) Soundness of research design, statistical... qualifications and experience, including managerial, of personnel; (8) Adequacy of facilities and other resources... demonstrate to other potential users that such methods or techniques are feasible and cost-effective; (3) That...
45 CFR 63.6 - Evaluation of applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... policy objectives; (2) Feasibility of the project; (3) Soundness of research design, statistical... qualifications and experience, including managerial, of personnel; (8) Adequacy of facilities and other resources... demonstrate to other potential users that such methods or techniques are feasible and cost-effective; (3) That...
45 CFR 63.6 - Evaluation of applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... policy objectives; (2) Feasibility of the project; (3) Soundness of research design, statistical... qualifications and experience, including managerial, of personnel; (8) Adequacy of facilities and other resources... demonstrate to other potential users that such methods or techniques are feasible and cost-effective; (3) That...
Evaluating Remotely-Sensed Surface Soil Moisture Estimates Using Triple Collocation
USDA-ARS?s Scientific Manuscript database
Recent work has demonstrated the potential of enhancing remotely-sensed surface soil moisture validation activities through the application of triple collocation techniques which compare time series of three mutually independent geophysical variable estimates in order to acquire the root-mean-square...
Solar energy in California industry - Applications, characteristics and potential
NASA Technical Reports Server (NTRS)
Barbieri, R. H.; Pivirotto, D. S.
1978-01-01
Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.
Space shuttle main engine computed tomography applications
NASA Technical Reports Server (NTRS)
Sporny, Richard F.
1990-01-01
For the past two years the potential applications of computed tomography to the fabrication and overhaul of the Space Shuttle Main Engine were evaluated. Application tests were performed at various government and manufacturer facilities with equipment produced by four different manufacturers. The hardware scanned varied in size and complexity from a small temperature sensor and turbine blades to an assembled heat exchanger and main injector oxidizer inlet manifold. The evaluation of capabilities included the ability to identify and locate internal flaws, measure the depth of surface cracks, measure wall thickness, compare manifold design contours to actual part contours, perform automatic dimensional inspections, generate 3D computer models of actual parts, and image the relationship of the details in a complex assembly. The capabilities evaluated, with the exception of measuring the depth of surface flaws, demonstrated the existing and potential ability to perform many beneficial Space Shuttle Main Engine applications.
Clinical application of neurotrophic factors: the potential for primary auditory neuron protection
Gillespie, Lisa N.; Shepherd, Robert K.
2007-01-01
Sensorineural hearing loss, as a result of damage to or destruction of the sensory epithelia within the cochlea, is a common cause of deafness. The subsequent degeneration of the neural elements within the inner ear may impinge upon the efficacy of the cochlear implant. Experimental studies have demonstrated that neurotrophic factors can prevent this degeneration in animal models of deafness, and can even provide functional benefits. Neurotrophic factor therapy may, therefore, provide similar protective effects in humans, resulting in improved speech perception outcomes among cochlear implant patients. There are, however, numerous issues pertaining to delivery techniques and treatment regimes which need to be addressed prior to any clinical application. This review considers these issues in view of the potential therapeutic application of neurotrophic factors within the auditory system. PMID:16262651
Mahurin, Shannon M.; Mamontov, Eugene; Thompson, Matthew W.; ...
2016-10-04
Transport of electrolytes in nanoporous carbon-based electrodes largely defines the function and performance of energy storage devices. Here, using molecular dynamics simulation and quasielastic neutron scattering, we investigate the microscopic dynamics of a prototypical ionic liquid electrolyte, [emim][Tf 2N], under applied electric potential in carbon materials with 6.7 nm and 1.5 nm pores. The simulations demonstrate the formation of dense layers of counter-ions near the charged surfaces, which is reversible when the polarity is reversed. In the experiment, the ions immobilized near the surface manifest themselves in the elastic scattering signal. The experimentally observed ion immobilization near the wall ismore » fully reversible as a function of the applied electric potential in the 6.7 nm, but not in the 1.5 nm nanopores. In the latter case, remarkably, the first application of the electric potential leads to apparently irreversible immobilization of cations or anions, depending on the polarity, near the carbon pore walls. This unexpectedly demonstrates that in carbon electrode materials with the small pores, which are optimal for energy storage applications, the polarity of the electrical potential applied for the first time after the introduction of an ionic liquid electrolyte may define the decoration of the small pore walls with ions for prolonged periods of time and possibly for the lifetime of the electrode.« less
ERIC Educational Resources Information Center
Ninemire, B.; Mei, W. N.
2004-01-01
In applying the variational method, six different sets of trial wave functions are used to calculate the ground state and first excited state energies of the strongly bound potentials, i.e. V(x)=x[2m], where m = 4, 5 and 6. It is shown that accurate results can be obtained from thorough analysis of the asymptotic behaviour of the solutions.…
Engineering a 3D microfluidic culture platform for tumor-treating field application
NASA Astrophysics Data System (ADS)
Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.
2016-05-01
The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy.
Measuring three-dimensional interaction potentials using optical interference.
Mojarad, Nassir; Sandoghdar, Vahid; Krishnan, Madhavi
2013-04-22
We describe the application of three-dimensional (3D) scattering interferometric (iSCAT) imaging to the measurement of spatial interaction potentials for nano-objects in solution. We study electrostatically trapped gold particles in a nanofluidic device and present details on axial particle localization in the presence of a strongly reflecting interface. Our results demonstrate high-speed (~kHz) particle tracking with subnanometer localization precision in the axial and average 2.5 nm in the lateral dimension. A comparison of the measured levitation heights of trapped particles with the calculated values for traps of various geometries reveals good agreement. Our work demonstrates that iSCAT imaging delivers label-free, high-speed and accurate 3D tracking of nano-objects conducive to probing weak and long-range interaction potentials in solution.
Gorban, A N; Mirkes, E M; Zinovyev, A
2016-12-01
Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefore, a lot of recent applications in machine learning exploited properties of non-quadratic error functionals based on L 1 norm or even sub-linear potentials corresponding to quasinorms L p (0
Functionalization of carbon nanotubes: Characterization, modeling and composite applications
NASA Astrophysics Data System (ADS)
Wang, Shiren
Carbon nanotubes have demonstrated exceptional mechanical, thermal and electrical properties, and are regarded as one of the most promising reinforcement materials for the next generation of high performance structural and multifunctional composites. However, to date, most application attempts have been hindered by several technical roadblocks, such as poor dispersion and weak interfacial bonding. In this dissertation, several innovative functionalization methods were proposed, studied to overcome these technical issues in order to realize the full potential of nanotubes as reinforcement. These functionalization methods included precision sectioning of nanotubes using an ultra-microtome, electron-beam irradiation, amino and epoxide group grafting. The characterization results of atomic force microscope, transmission electronic microscope and Raman suggested that aligned carbon nanotubes can be precisely sectioned with controlled length and minimum sidewall damage. This study also designed and demonstrated new covalent functionalization approaches through unique epoxy-grafting and one-step amino-grafting, which have potential of scale-up for composite applications. In addition, the dissertation also successfully tailored the structure and properties of the thin nanotube film through electron beam irradiation. Significant improvement of both mechanical and electrical conducting properties of the irradiated nanotube films or buckypapers was achieved. All these methods demonstrated effectiveness in improving dispersion and interfacial bonding in the epoxy resin, resulting in considerable improvements in composite mechanical properties. Modeling of functionalization methods also provided further understanding and offered the reasonable explanations of SWNTs length distribution as well as carbon nanostructure transformation upon electron-beam irradiation. Both experimental and modeling results provide important foundations for the further comprehensively investigation of nanotube functionalization, and hence facilitate realization of the full potential of nanotube-reinforced nanocomposites.
Polestitters: Using Solar Sails for Constant Real-time Sensing of Earth's Polar Regions
NASA Astrophysics Data System (ADS)
Mulligan, P.; Diedrich, B. L.; Barnes, N.; Derbes, B.
2012-12-01
NASA has funded the Sunjammer mission - a near term demonstration of solar sail technology (2014/15). Sunjammer has the potential to demonstrate stationkeeping out of Earth's orbital plane. This is a first step in achieving "polesitter" orbits with year-round, real-time visibility of Earth's polar regions. Potential applications for such missions are illustrated. Solar sails have long been a concept for spacecraft propulsion that works by exchanging momentum with sunlight reflected by large, lightweight, mirrored sails. In addition to enabling propellantless propulsion throughout the solar system and beyond, their continuous thrust enables artificial Lagrange orbits (ALOs), some of which can be called "polesitter" orbits, with 24-hour, year-round visibility of Earth's polar regions. Several potential Earth remote sensing applications have been identified that address the limited temporal and spatial coverage from traditional polar and geostationary satellites. The Galileo spacecraft during its 1990 Earth flyby acquired imagery and radiometer data similar to the view from a polesitter. The Galileo imagery was used to derive aerosols and cloud variations used in atmospheric motion vector (AMV) derivations. Composites of satellite imagery over the South Pole is routinely used to derive atmospheric motion vectors like those performed regularly from geostationary satellites. The JAXA IKAROS mission flew a 14x14m solar sail past Venus in 2010. Sunjammer will demonstrate a state of the art 38x38m solar sail from Earth to an artificial Lagrange orbit located sunward and north of the sun-Earth L1 point. Traditional spacecraft can orbit naturally occurring Lagrange equilibrium points between the sun and Earth. The low, continuous thrust of solar sails can change where these points occur, creating new orbits with a variety of potential applications including polar remote sensing, space weather monitoring, and polar communications. This figure illustrates a selection of possible solar sail orbits around the sun-Earth L1 and L2 points.
Exploring a model-driven architecture (MDA) approach to health care information systems development.
Raghupathi, Wullianallur; Umar, Amjad
2008-05-01
To explore the potential of the model-driven architecture (MDA) in health care information systems development. An MDA is conceptualized and developed for a health clinic system to track patient information. A prototype of the MDA is implemented using an advanced MDA tool. The UML provides the underlying modeling support in the form of the class diagram. The PIM to PSM transformation rules are applied to generate the prototype application from the model. The result of the research is a complete MDA methodology to developing health care information systems. Additional insights gained include development of transformation rules and documentation of the challenges in the application of MDA to health care. Design guidelines for future MDA applications are described. The model has the potential for generalizability. The overall approach supports limited interoperability and portability. The research demonstrates the applicability of the MDA approach to health care information systems development. When properly implemented, it has the potential to overcome the challenges of platform (vendor) dependency, lack of open standards, interoperability, portability, scalability, and the high cost of implementation.
Seo, Hyeonglim; Choi, Ikjang; Whiting, Nicholas; Hu, Jingzhe; Luu, Quy Son; Pudakalakatti, Shivanand; McCowan, Caitlin; Kim, Yaewon; Zacharias, Niki; Lee, Seunghyun; Bhattacharya, Pratip; Lee, Youngbok
2018-05-20
Porous silicon nanoparticles have recently garnered attention as potentially-promising biomedical platforms for drug delivery and medical diagnostics. Here, we demonstrate porous silicon nanoparticles as contrast agents for ²⁹Si magnetic resonance imaging. Size-controlled porous silicon nanoparticles were synthesized by magnesiothermic reduction of silica nanoparticles and were surface activated for further functionalization. Particles were hyperpolarized via dynamic nuclear polarization to enhance their ²⁹Si MR signals; the particles demonstrated long ²⁹Si spin-lattice relaxation (T₁) times (~ 25 mins), which suggests potential applicability for medical imaging. Furthermore, ²⁹Si hyperpolarization levels were sufficient to allow ²⁹Si MRI in phantoms. These results underscore the potential of porous silicon nanoparticles that, when combined with hyperpolarized magnetic resonance imaging, can be a powerful theragnostic deep tissue imaging platform to interrogate various biomolecular processes in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Robustness Testing Campaign for IMA-SP Partitioning Kernels
NASA Astrophysics Data System (ADS)
Grixti, Stephen; Lopez Trecastro, Jorge; Sammut, Nicholas; Zammit-Mangion, David
2015-09-01
With time and space partitioned architectures becoming increasingly appealing to the European space sector, the dependability of partitioning kernel technology is a key factor to its applicability in European Space Agency projects. This paper explores the potential of the data type fault model, which injects faults through the Application Program Interface, in partitioning kernel robustness testing. This fault injection methodology has been tailored to investigate its relevance in uncovering vulnerabilities within partitioning kernels and potentially contributing towards fault removal campaigns within this domain. This is demonstrated through a robustness testing case study of the XtratuM partitioning kernel for SPARC LEON3 processors. The robustness campaign exposed a number of vulnerabilities in XtratuM, exhibiting the potential benefits of using such a methodology for the robustness assessment of partitioning kernels.
Promising application of dynamic nuclear polarization for in vivo (13)C MR imaging.
Yen, Yi-Fen; Nagasawa, Kiyoshi; Nakada, Tsutomu
2011-01-01
Use of hyperpolarized (13)C in magnetic resonance (MR) imaging is a new technique that enhances signal tens of thousands-fold. Recent in vivo animal studies of metabolic imaging that used hyperpolarized (13)C demonstrated its potential in many applications for disease indication, metabolic profiling, and treatment monitoring. We review the basic physics for dynamic nuclear polarization (DNP) and in vivo studies reported in prostate cancer research, hepatocellular carcinoma research, diabetes and cardiac applications, brain metabolism, and treatment response as well as investigations of various DNP (13)C substrates.
Photonic jet etching: Justifying the shape of optical fiber tip
NASA Astrophysics Data System (ADS)
Abdurrochman, Andri; Zelgowski, Julien; Lecler, Sylvain; Mermet, Frédéric; Tumbelaka, Bernard; Fontaine, Joël
2016-02-01
Photonic jet (PJ) is a low diverging and highly concentrated beam in the shadow side of dielectric particle (cylinder or sphere). The concentration can be more than 200 times higher than the incidence wave. It is a non-resonance phenomenon in the near-field can propagate in a few wavelengths. Many potential applications have been proposed, including PJ etching. Hence, a guided-beam is considered increasing the PJ mobility control. While the others used a combination of classical optical fibers and spheres, we are concerned on a classical optical fiber with spherical tip to generate the PJ. This PJ driven waveguide has been realized using Gaussian mode beam inside the core. It has different variable parameters compared to classical PJ, which will be discussed in correlation with the etching demonstrations. The parameters dependency between the tip and PJ properties are complex; and theoretical aspect of this interaction will be exposed to justify the shape of our tip and optical fiber used in our demonstrations. Methods to achieve such a needed optical fiber tip will also be described. Finally the ability to generate PJ out of the shaped optical fiber will be experimentally demonstrated and the potential applications for material processing will be exposed.
Deng, Jie; Larson, Andrew C.
2010-01-01
Objectives To test the feasibility of combining inner-volume imaging (IVI) techniques with conventional multishot periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) techniques for targeted-PROPELLER magnetic resonance imaging. Materials and Methods Perpendicular section-selective gradients for spatially selective excitation and refocusing RF pulses were applied to limit the refocused field-of-view (FOV) along the phase-encoding direction for each rectangular blade image. We performed comparison studies in phantoms and normal volunteers by using targeted-PROPELLER methods for a wide range of imaging applications that commonly use turbo-spin-echo (TSE) approaches (brain, abdominal, vessel wall, cardiac). Results In these initial studies, we demonstrated the feasibility of using targeted-PROPELLER approaches to limit the imaging FOV thereby reducing the number of blades or permitting increased spatial resolution without commensurate increases in scan time. Both phantom and in vivo motion studies demonstrated the potential for more robust regional self-navigated motion correction compared with conventional full FOV PROPELLER methods. Conclusion We demonstrated that the reduced FOV targeted-PROPELLER technique offers the potential for reducing imaging time, increasing spatial resolution, and targeting specific areas for robust regional motion correction. PMID:19465860
Abraham, Roney; Ibrahim, Tamer S
2007-02-01
In this article, a radiofrequency (RF) excitation scheme for 7-Tesla (T) whole-body applications is derived and analyzed using the finite difference time domain (FDTD) method. Important features of the proposed excitation scheme and coil (a potential 7T whole-body transverse electromagnetic [TEM] resonator design), from both operational and electromagnetic perspectives, are discussed. The choice of the coil's operational mode is unconventional; instead of the typical "homogenous mode," we use a mode that provides a null field in the center of the coil at low-field applications. Using a 3D FDTD implementation of Maxwell's equations, we demonstrate that the whole-body 7T TEM coil (tuned to the aforementioned unconventional mode and excited in an optimized near-field, phased-array fashion) can potentially provide 1) homogenous whole-slice (demonstrated in three axial, sagittal, and coronal slices) and 2) 3D localized (demonstrated in the heart) excitations. As RF power was not considered as a part of the optimization in several cases, the significant improvements achieved by whole-slice RF excitation came at the cost of considerable increases in RF power requirements. Copyright (c) 2007 Wiley-Liss, Inc.
Experimental demonstration of spinor slow light
NASA Astrophysics Data System (ADS)
Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; JuzeliÅ«nas, Gediminas; Yu, Ite A.
2016-03-01
Over the last decade there has been a continuing interest in slow and stored light based on the electromagnetically induced transparency (EIT) effect, because of their potential applications in quantum information manipulation. However, previous experimental works all dealt with the single-component slow light which cannot be employed as a qubit. In this work, we report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The oscillations between the two components, similar to the Rabi oscillation of a two-level system or a qubit, were observed. Single-photon SSL can be considered as two-color qubits. We experimentally demonstrated a possible application of the DT scheme as quantum memory and quantum rotator for the two-color qubits. This work opens up a new direction in the slow light research.
Dual-mode operation of 2D material-base hot electron transistors
Lan, Yann-Wen; Torres, Jr., Carlos M.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.
2016-01-01
Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550
Dual-mode operation of 2D material-base hot electron transistors.
Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L
2016-09-01
Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.
Schmidlin, Patrick R; Fujioka-Kobayashi, Masako; Mueller, Heinz-Dieter; Sculean, Anton; Lussi, Adrian; Miron, Richard J
2017-06-01
The aim of this study is to examine morphological changes of dentin surfaces following air polishing or amino acid buffered hypochlorite solution application and to assess their influence on periodontal ligament (PDL) cell survival, attachment, and spreading to dentin discs in vitro. Bovine dentin discs were treated with either (i) Classic, (ii) Plus, or (iii) Perio powder (EMS). Furthermore, Perisolv® a hypochlorite solution buffered with various amino acids was investigated. Untreated dentin discs served as controls. Morphological changes to dentin discs were assessed using scanning electron microscopy (SEM). Human PDL cells were seeded onto the respectively treated discs, and samples were then investigated for PDL cell survival, attachment, and spreading using a live/dead assay, adhesion assay, and SEM imaging, respectively. Both control and Perisolv®-rinsed dentin discs demonstrated smooth surfaces at low and high magnifications. The Classic powders demonstrated the thickest coating followed by the Powder Plus. The Perio powder demonstrated marked alterations of dentin discs by revealing the potential to open dentinal tubules even before rinsing. Seeding of PDL cells demonstrated an almost 100 % survival rate on all samples demonstrating very high biocompatibility for all materials. Significantly higher PDL cell numbers were observed on samples treated with the Perio powder and the Perisolv® solution (approximately 40 % more cells; p < 0.05). SEM imaging revealed the potential for PDL cells to attach and spread on all surfaces. The results from the present study demonstrate that cell survival and spreading of PDL cells on root surfaces is possible following either air polishing or application with Perisolv®. Future in vitro and animal testing is necessary to further characterize the beneficial effects of either system in a clinical setting. The use of air polishing or application with Perisolv amino acid buffered hypochlorite solution was effective in treating root surfaces and allowed for near 100 % PDL cell survival, attachment, and spreading onto all root surfaces.
Application of Micro-ramp Flow Control Devices to an Oblique Shock Interaction
NASA Technical Reports Server (NTRS)
Hirt, Stefanie; Anderson, Bernhard
2007-01-01
Tests are planned in the 15cm x 15cm supersonic wind tunnel at NASA Glenn to demonstrate the applicability of micro-ramp flow control to the management of shock wave boundary layer interactions. These tests will be used as a database for computational fluid dynamics (CFD) validation and Design of Experiments (DoE) design information. Micro-ramps show potential for mechanically simple and fail-safe boundary layer control.
Line Fluid Actuated Valve Development Program. [for application on the space shuttle
NASA Technical Reports Server (NTRS)
Lynch, R. A.
1975-01-01
The feasibility of a line-fluid actuated valve design for potential application as a propellant-control valve on the space shuttle was examined. Design and analysis studies of two prototype valve units were conducted and demonstrated performance is reported. It was shown that the line-fluid actuated valve concept offers distinct weight and electrical advantages over alternate valve concepts. Summaries of projected performance and design goals are also included.
DOT National Transportation Integrated Search
1998-01-01
Technology offers a significant potential to improve the productivity and safety of the motor carrier industry. To date, the application of new technology to commercial vehicles has been limited to single unit trucks and truck tractors because of con...
FogEye UV Sensor System : Low Visibility Landing Test (Phase IV Report)
DOT National Transportation Integrated Search
2004-03-01
The potential of FogEye solar blind UV technology to contribute to safe and swift throughput operations at airports has been demonstrated. One application, use of FogEye (Safety Sentry), as an aircraft surface detection sensor has been successfully o...
Aggregate Measures of Watershed Health from Reconstructed Water Quality Data with Uncertainty
Risk-based indices such as reliability, resilience, and vulnerability (R-R-V), have the potential to serve as watershed health assessment tools. Recent research has demonstrated the applicability of such indices for water quality (WQ) constituents such as total suspended solids ...
Nature of the Band Gap and Origin of the Electro-/Photo-Activity of Co3O4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, L.; Xiao, Haiyan Y.; Meyer, H. M.
2013-08-21
Co3O4 exhibits intriguing physical, chemical and catalytic properties and has demonstrated great potential for next-generation renewable energy applications. These interesting properties and promising applications are underpinned by its electronic structure and optical properties, which are unfortunately poorly understood and the subject of considerable debate over many years. Here, we unveil a consistent electronic structural description of Co3O4 by synergetic infrared optical and in situ photoemission spectroscopy as well as standard density functional theory calculations. In contrast to previous assumptions, we demonstrate a much smaller fundamental band gap, which is directly related to its efficient electro-/photoactivity. The present results may helpmore » to advance the fundamental understanding and provide guidance for the use of oxidematerials in photocatalysis and solar applications.« less
Embedded I&C for Extreme Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A.
2016-04-01
This project uses embedded instrumentation and control (I&C) technologies to demonstrate potential performance gains of nuclear power plant components in extreme environments. Extreme environments include high temperature, radiation, high pressure, high vibration, and high EMI conditions. For extreme environments, performance gains arise from moment-to-moment sensing of local variables and immediate application of local feedback control. Planning for embedding I&C during early system design phases contrasts with the traditional, serial design approach that incorporates minimal I&C after mechanical and electrical design is complete. The demonstration application involves the development and control of a novel, proof-of-concept motor/pump design. The motor and pumpmore » combination operate within the fluid environment, eliminating the need for rotating seals. Actively controlled magnetic bearings also replace failure-prone mechanical contact bearings that typically suspend rotating components. Such as design has the potential to significantly enhance the reliability and life of the pumping system and would not be possible without embedded I&C.« less
Application of fiber tapers in astronomy
NASA Astrophysics Data System (ADS)
Marcel, Jaclyn; Haynes, Roger; Bland-Hawthorn, Joss
2006-06-01
Fiber tapers have the potential to significantly advance instrument technology into the realm of fully integrated optical systems. Our initial investigation was directed at the use of fiber tapers as f-ratio transformation devices. Using a technique developed for testing focal ratio degradation (FRD), a collimated light source was injected at different angles into various fiber taper samples and the far-field profile of the fiber output was observed. We compare the FRD present in the optical fiber tapers with conventional fibers and determine how effectively fiber tapers perform as image converters. We demonstrate that while silica fiber tapers may have slightly more intrinsic FRD than conventional fibers they still show promise as adiabatic mode transformers and are worth investigating further for their potential use in astronomical instruments. In this paper we present a brief review of the current status of fiber tapers with particular focus on the astronomical applications. We demonstrate the conservation of etendue in the taper transformation process and present the experimental results for a number of different taper profiles and manufacturers.
NASA Astrophysics Data System (ADS)
Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chang, Ting-Chang; Sze, Simon M.; Lee, Jack C.
2016-04-01
We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes to further minimize total synaptic power consumption due to sneak-path currents and demonstrate the capability for spike-induced synaptic behaviors, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation, long-term depression, and spike-timing dependent plasticity are demonstrated systemically with comprehensive investigation of spike waveform analyses and represent a potential application for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from the (SiH)2 defect to generate the hydrogenbridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with largescale complementary metal-oxide semiconductor manufacturing technology.
Quantitative phase microscopy via optimized inversion of the phase optical transfer function.
Jenkins, Micah H; Gaylord, Thomas K
2015-10-01
Although the field of quantitative phase imaging (QPI) has wide-ranging biomedical applicability, many QPI methods are not well-suited for such applications due to their reliance on coherent illumination and specialized hardware. By contrast, methods utilizing partially coherent illumination have the potential to promote the widespread adoption of QPI due to their compatibility with microscopy, which is ubiquitous in the biomedical community. Described herein is a new defocus-based reconstruction method that utilizes a small number of efficiently sampled micrographs to optimally invert the partially coherent phase optical transfer function under assumptions of weak absorption and slowly varying phase. Simulation results are provided that compare the performance of this method with similar algorithms and demonstrate compatibility with large phase objects. The accuracy of the method is validated experimentally using a microlens array as a test phase object. Lastly, time-lapse images of live adherent cells are obtained with an off-the-shelf microscope, thus demonstrating the new method's potential for extending QPI capability widely in the biomedical community.
Current and potential imaging applications of ferumoxytol for magnetic resonance imaging.
Toth, Gerda B; Varallyay, Csanad G; Horvath, Andrea; Bashir, Mustafa R; Choyke, Peter L; Daldrup-Link, Heike E; Dosa, Edit; Finn, John Paul; Gahramanov, Seymur; Harisinghani, Mukesh; Macdougall, Iain; Neuwelt, Alexander; Vasanawala, Shreyas S; Ambady, Prakash; Barajas, Ramon; Cetas, Justin S; Ciporen, Jeremy; DeLoughery, Thomas J; Doolittle, Nancy D; Fu, Rongwei; Grinstead, John; Guimaraes, Alexander R; Hamilton, Bronwyn E; Li, Xin; McConnell, Heather L; Muldoon, Leslie L; Nesbit, Gary; Netto, Joao P; Petterson, David; Rooney, William D; Schwartz, Daniel; Szidonya, Laszlo; Neuwelt, Edward A
2017-07-01
Contrast-enhanced magnetic resonance imaging is a commonly used diagnostic tool. Compared with standard gadolinium-based contrast agents, ferumoxytol (Feraheme, AMAG Pharmaceuticals, Waltham, MA), used as an alternative contrast medium, is feasible in patients with impaired renal function. Other attractive imaging features of i.v. ferumoxytol include a prolonged blood pool phase and delayed intracellular uptake. With its unique pharmacologic, metabolic, and imaging properties, ferumoxytol may play a crucial role in future magnetic resonance imaging of the central nervous system, various organs outside the central nervous system, and the cardiovascular system. Preclinical and clinical studies have demonstrated the overall safety and effectiveness of this novel contrast agent, with rarely occurring anaphylactoid reactions. The purpose of this review is to describe the general and organ-specific properties of ferumoxytol, as well as the advantages and potential pitfalls associated with its use in magnetic resonance imaging. To more fully demonstrate the applications of ferumoxytol throughout the body, an imaging atlas was created and is available online as supplementary material. Published by Elsevier Inc.
Preliminary Evaluation Of Commercial Supercapacitors For Space Applications
NASA Astrophysics Data System (ADS)
Gineste, Valery; Loup, Didier; Mattesco, Patrick; Neugnot, Nicolas
2011-10-01
Supercapacitors are identified since years as a new technology enabling energy storage together with high power delivery capability to the system. A recent ESA study [1] led by Astrium has demonstrated the interest of these devices for space application, providing that reliability and end of life performances are demonstrated. A realistic commercial on the shelf (COTS) approach (or with limited design modification approved by potential suppliers) has been favoured (as for batteries). This paper presents preliminary test results done by Astrium on COTS supercapacitors: accelerated life tests, calendar life tests, technology analyses. Based on these results, assessment and lessons learnt are drawn in view of future exhaustive supercapacitor validation and future qualification.
A topological quantum optics interface
NASA Astrophysics Data System (ADS)
Barik, Sabyasachi; Karasahin, Aziz; Flower, Christopher; Cai, Tao; Miyake, Hirokazu; DeGottardi, Wade; Hafezi, Mohammad; Waks, Edo
2018-02-01
The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder. Although considerable progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored. We demonstrate a strong interface between single quantum emitters and topological photonic states. Our approach creates robust counterpropagating edge states at the boundary of two distinct topological photonic crystals. We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends. This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing.
A simplified lumped model for the optimization of post-buckled beam architecture wideband generator
NASA Astrophysics Data System (ADS)
Liu, Weiqun; Formosa, Fabien; Badel, Adrien; Hu, Guangdi
2017-11-01
Buckled beams structures are a classical kind of bistable energy harvesters which attract more and more interests because of their capability to scavenge energy over a large frequency band in comparison with linear generator. The usual modeling approach uses the Galerkin mode discretization method with relatively high complexity, while the simplification with a single-mode solution lacks accuracy. It stems on the optimization of the energy potential features to finally define the physical and geometrical parameters. Therefore, in this paper, a simple lumped model is proposed with explicit relationship between the potential shape and parameters to allow efficient design of bistable beams based generator. The accuracy of the approximation model is studied with the effectiveness of application analyzed. Moreover, an important fact, that the bending stiffness has little influence on the potential shape with low buckling level and the sectional area determined, is found. This feature extends the applicable range of the model by utilizing the design of high moment of inertia. Numerical investigations demonstrate that the proposed model is a simple and reliable tool for design. An optimization example of using the proposed model is demonstrated with satisfactory performance.
Active invisibility cloaks in one dimension
NASA Astrophysics Data System (ADS)
Mostafazadeh, Ali
2015-06-01
We outline a general method of constructing finite-range cloaking potentials which render a given finite-range real or complex potential, v (x ) , unidirectionally reflectionless or invisible at a wave number, k0, of our choice. We give explicit analytic expressions for three classes of cloaking potentials which achieve this goal while preserving some or all of the other scattering properties of v (x ) . The cloaking potentials we construct are the sum of up to three constituent unidirectionally invisible potentials. We discuss their utility in making v (x ) bidirectionally invisible at k0 and demonstrate the application of our method to obtain antireflection and invisibility cloaks for a Bragg reflector.
Richardson, G
2009-09-01
By application of matched asymptotic expansions, a simplified partial differential equation (PDE) model for the dynamic electrochemical processes occurring in the vicinity of a membrane, as ions selectively permeate across it, is formally derived from the Poisson-Nernst-Planck equations of electrochemistry. It is demonstrated that this simplified model reduces itself, in the limit of a long thin axon, to the cable equation used by Hodgkin and Huxley to describe the propagation of action potentials in the unmyelinated squid giant axon. The asymptotic reduction from the simplified PDE model to the cable equation leads to insights that are not otherwise apparent; these include an explanation of why the squid giant axon attains a diameter in the region of 1 mm. The simplified PDE model has more general application than the Hodgkin-Huxley cable equation and can, e.g. be used to describe action potential propagation in myelinated axons and neuronal cell bodies.
Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications.
Martin, Marjolaine; Portetelle, Daniel; Michel, Gurvan; Vandenbol, Micheline
2014-04-01
Marine microorganisms play key roles in every marine ecological process, hence the growing interest in studying their populations and functions. Microbial communities on algae remain underexplored, however, despite their huge biodiversity and the fact that they differ markedly from those living freely in seawater. The study of this microbiota and of its relationships with algal hosts should provide crucial information for ecological investigations on algae and aquatic ecosystems. Furthermore, because these microorganisms interact with algae in multiple, complex ways, they constitute an interesting source of novel bioactive compounds with biotechnological potential, such as dehalogenases, antimicrobials, and alga-specific polysaccharidases (e.g., agarases, carrageenases, and alginate lyases). Here, to demonstrate the huge potential of alga-associated organisms and their metabolites in developing future biotechnological applications, we first describe the immense diversity and density of these microbial biofilms. We further describe their complex interactions with algae, leading to the production of specific bioactive compounds and hydrolytic enzymes of biotechnological interest. We end with a glance at their potential use in medical and industrial applications.
Ratiometric fluorescence measurements and imaging of the dipole potential in cell plasma membranes
NASA Astrophysics Data System (ADS)
Shynkar, Vasyl V.; Klymchenko, Andrey S.; Duportail, Guy; Demchenko, Alexander P.; Mély, Yves
2004-09-01
Development of fluorescence microscopic methods is limited by the application of new dyes, the response of which could be sensitive to different functional states in the living cells, and, in particular, to electrostatic potentials on their plasma membranes. Recently, we showed that newly designed 3-hydroxyflavone fluorescence dyes are highly electrochromic and show a strong two-band ratiometric response to electric dipole potential in lipid membranes. In the present report we extend these observations and describe a new generation of these dyes as electrochromic probes in biomembrane research. Modification of the membrane dipole potential was achieved by addition of 6-ketocholestanol (6-KC), cholesterol and phloretin. The dipole potential was also estimated by the reference probe di-8-ANEPPS. As an example, we show that on addition of 6-KC there occurs a dramatic change of the intensity ratio of the two emission bands, which is easily detected as a change of color. We describe in detail the applications of one of these dyes, PPZ8, to the studies of cells in suspension or attached to the glass surface. Confocal microscopy demonstrates strong preference of the probe for the cell plasma membrane, which allows us to apply this dye for studying electrostatic and other biomembrane properties. We demonstrate that the two-color response provides a direct and convenient way to measure the dipole potential in the plasma membrane. Applying PPZ8 in confocal microcopy and two-photon microspectroscopy allowed us to provide two-color imaging of the membrane dipole potential on the level of a single cell.
Photonic Aharonov–Bohm effect in photon–phonon interactions
Li, Enbang; Eggleton, Benjamin J.; Fang, Kejie; Fan, Shanhui
2014-01-01
The Aharonov–Bohm effect is one of the most intriguing phenomena in both classical and quantum physics, and associates with a number of important and fundamental issues in quantum mechanics. The Aharonov–Bohm effects of charged particles have been experimentally demonstrated and found applications in various fields. Recently, attention has also focused on the Aharonov–Bohm effect for neutral particles, such as photons. Here we propose to utilize the photon–phonon interactions to demonstrate that photonic Aharonov–Bohm effects do exist for photons. By introducing nonreciprocal phases for photons, we observe experimentally a gauge potential for photons in the visible range based on the photon–phonon interactions in acousto-optic crystals, and demonstrate the photonic Aharonov–Bohm effect. The results presented here point to new possibilities to control and manipulate photons by designing an effective gauge potential. PMID:24476790
Komane, Patrick P; Kumar, Pradeep; Marimuthu, Thashree; Toit, Lisa C du; Kondiah, Pierre P D; Choonara, Yahya E; Pillay, Viness
2018-06-10
The complete synthesis, optimization, purification, functionalization and evaluation of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) was reported for potential application in dexamethasone delivery to the ischemic brain tissue. The conditions for high yield were optimized and carbon nanotubes functionalized and PEGylated prior to dexamethasone loading. Morphological changes were confirmed by SEM and TEM. Addition of functional groups to MWCNTs was demonstrated by FTIR. Thermal stability reduced following MWCNTs functionalization as demonstrated in TGA. The presence of carbon at 2θ of 25° and iron at 2θ of 45° in MWCNTs was illustrated by XRD. Polydispersive index and zeta potential were found to be 0.261 and −15.0 mV, respectively. Dexamethasone release increased by 55%, 65% and 95% in pH of 7.4, 6.5 and 5.5 respectively as evaluated by UV-VIS. The functionalized VA-MWCNTs were demonstrated to be less toxic in PC-12 cells in the concentration range from 20 to 20,000 µg/mL. These findings have demonstrated the potential of VA-MWCNTs in the enhancement of fast and prolonged release of dexamethasone which could lead to the effective treatment of ischemic stroke. More work is under way for targeting ischemic sites using atrial natriuretic peptide antibody in stroke rats.
A Proof-of-Concept for Semantically Interoperable Federation of IoT Experimentation Facilities.
Lanza, Jorge; Sanchez, Luis; Gomez, David; Elsaleh, Tarek; Steinke, Ronald; Cirillo, Flavio
2016-06-29
The Internet-of-Things (IoT) is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo) boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds.
A Proof-of-Concept for Semantically Interoperable Federation of IoT Experimentation Facilities
Lanza, Jorge; Sanchez, Luis; Gomez, David; Elsaleh, Tarek; Steinke, Ronald; Cirillo, Flavio
2016-01-01
The Internet-of-Things (IoT) is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo) boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds. PMID:27367695
USDA-ARS?s Scientific Manuscript database
Current developments in the field of metagenomics in biological sciences have demonstrated the need and potential usefulness of taxonomical and functional analyses of meta-omics data generated by genomics, transcriptomics, proteomics, and metabolomics. This review will provide a general overview of...
White Light Schlieren Optics Using Bacteriorhodopsin as an Adaptive Image Grid
NASA Technical Reports Server (NTRS)
Peale, Robert; Ruffin, Boh; Donahue, Jeff; Barrett, Carolyn
1996-01-01
A Schlieren apparatus using a bacteriorhodopsin film as an adaptive image grid with white light illumination is demonstrated for the first time. The time dependent spectral properties of the film are characterized. Potential applications include a single-ended Schlieren system for leak detection.
Using Analytic Hierarchy Process in Textbook Evaluation
ERIC Educational Resources Information Center
Kato, Shigeo
2014-01-01
This study demonstrates the application of the analytic hierarchy process (AHP) in English language teaching materials evaluation, focusing in particular on its potential for systematically integrating different components of evaluation criteria in a variety of teaching contexts. AHP is a measurement procedure wherein pairwise comparisons are made…
SITE TECHNOLOGY CAPSULE: GEOTECH DEVELOPMENT CORPORATION COLD TOP EX-SITU VITRIFICATION TECHNOLOGY
A SITE technology demonstration was conducted in 1997 to evaluate the potential applicability and effectiveness of the Geotech Cold Top ex-situ vitrification technology on chromium-contaminated soils. The primary objective was to develop test data to evaluate whether the waste a...
Cholesteric metronomes with flexoelectrically programmable amplitude
NASA Astrophysics Data System (ADS)
Joshi, Vinay; Varanytsia, A.; Chang, Kai-Han; Paterson, Daniel A.; Storey, John M. D.; Imrie, Corrie T.; Chien, Liang-Chy
2018-02-01
We experimentally demonstrate fast flexoelectro-optic switching in a liquid crystal cell containing bimesogen-doped and polymer-stabilized cholesteric. The device exhibits a response time of less than 0.7 ms and with low hysteresis and color dispersion which is suitable for potential applications including field-sequential color displays.
Automated Training Evaluation (ATE). Final Report.
ERIC Educational Resources Information Center
Charles, John P.; Johnson, Robert M.
The automation of weapons system training presents the potential for significant savings in training costs in terms of manpower, time, and money. The demonstration of the technical feasibility of automated training through the application of advanced digital computer techniques and advanced training techniques is essential before the application…
Selective removal of organics for water reclamation
NASA Technical Reports Server (NTRS)
Murphy, Oliver J.; Hitchens, G. Duncan; Kaba, Lamine; Verostko, Charles E.
1990-01-01
Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. The feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space habitat humidity condensates was demonstrated. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. The electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water reclamation applications are described. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are also described. The design of a novel electrochemical system that incorporates a proton exchange membrane (PEM) electrolyte is presented based on parametric test data and current fuel cell technology.
NASA JSC water monitor system: City of Houston field demonstration
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Jeffers, E. L.; Fricks, D. H.
1979-01-01
A water quality monitoring system with on-line and real time operation similar to the function in a spacecraft was investigated. A system with the capability to determine conformance to future high effluent quality standards and to increase the potential for reclamation and reuse of water was designed. Although all system capabilities were not verified in the initial field trial, fully automated operation over a sustained period with only routine manual adjustments was accomplished. Two major points were demonstrated: (1) the water monitor system has great potential in water monitoring and/or process control applications; and (2) the water monitor system represents a vast improvement over conventional (grab sample) water monitoring techniques.
NASA Astrophysics Data System (ADS)
Akashi, Ryosuke; Nagornov, Yuri S.
2018-06-01
We develop a non-empirical scheme to search for the minimum-energy escape paths from the minima of the potential surface to unknown saddle points nearby. A stochastic algorithm is constructed to move the walkers up the surface through the potential valleys. This method employs only the local gradient and diagonal part of the Hessian matrix of the potential. An application to a two-dimensional model potential is presented to demonstrate the successful finding of the paths to the saddle points. The present scheme could serve as a starting point toward first-principles simulation of rare events across the potential basins free from empirical collective variables.
Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2005-01-01
Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.
Porphyrin-Based Nanostructures for Photocatalytic Applications
Chen, Yingzhi; Li, Aoxiang; Huang, Zheng-Hong; Wang, Lu-Ning; Kang, Feiyu
2016-01-01
Well-defined organic nanostructures with controllable size and morphology are increasingly exploited in optoelectronic devices. As promising building blocks, porphyrins have demonstrated great potentials in visible-light photocatalytic applications, because of their electrical, optical and catalytic properties. From this perspective, we have summarized the recent significant advances on the design and photocatalytic applications of porphyrin-based nanostructures. The rational strategies, such as texture or crystal modification and interfacial heterostructuring, are described. The applications of the porphyrin-based nanostructures in photocatalytic pollutant degradation and hydrogen evolution are presented. Finally, the ongoing challenges and opportunities for the future development of porphyrin nanostructures in high-quality nanodevices are also proposed. PMID:28344308
Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics
Li, Zhaoyi; Zhou, You; Qi, Hao; ...
2016-08-30
The electron-doping-induced phase transition of a prototypical perovskite SmNiO 3 induces a large and non-volatile optical refractive-index change and has great potential for active-photonic-device applications. Strong optical modulation from the visible to the mid-infrared is demonstrated using thin-film SmNiO 3. Finally, modulation of a narrow band of light is demonstrated in this paper using plasmonic metasurfaces integrated with SmNiO 3.
NASA Technical Reports Server (NTRS)
King, Trude V. V.; Clark, Roger N.; Ager, Cathy; Swayze, Gregg A.
1995-01-01
We have demonstrated the unique utility of imaging spectroscopy in mapping mineral distribution. In the Summitville mining region we have shown that the mine site does not contribute clay minerals to the Alamosa River, but does contribute Fe-bearing minerals. Such minerals have the potential to carry heavy metals. This application illustrates only one specific environmental application of imaging spectroscopy data. For instance, the types of minerals we can map with confidence are those frequently associated with environmental problems related to active and abandoned mine lands. Thus, the potential utility of this technology to the field of environmental science has yet to be fully explored.
NASA Astrophysics Data System (ADS)
Kim, Hyunhong; Choi, Seong-Hyeon; Kim, Mijung; Park, Jang-Ung; Bae, Joonwon; Park, Jongnam
2017-11-01
Owing to a recent push toward one-dimensional nanomaterials, in this study, we report a seed-mediated synthetic strategy for copper nanowires (Cu NWs) production involving thermal decomposition of metal-surfactant complexes in an organic medium. Ultra-long Cu NWs with a high aspect ratio and uniform diameter were obtained by separating nucleation and growth steps. The underlying mechanism for nanowire formation was investigated, in addition, properties of the obtained Cu NWs were also characterized using diverse analysis techniques. The performance of resulting Cu NWs as transparent electrodes was demonstrated for potential application. This article can provide information on both new synthetic pathway and potential use of Cu NWs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Susanta Kumar, E-mail: skdasfpy@kiit.ac.in; Andreev, Alexander; Braenzel, Julia
2016-03-21
The feasibility of femtosecond laser-induced periodic nanostructures on thin Ti and Cu foils (thickness down to 1 μm) is demonstrated. At pulse durations of 120 fs and a wavelength of 400 nm, periods of 61 nm to 320 nm were obtained. Particle-in-cell simulations of laser ion acceleration processes with such nanostructured targets indicate their potential for high energy particle physics applications. In particular, a measurable enhancement of the proton cut-off energy and a significant enhancement of the number of accelerated particles compared to non- or weakly structured targets of same thickness and material are expected.
Skyrmion-based multi-channel racetrack
NASA Astrophysics Data System (ADS)
Song, Chengkun; Jin, Chendong; Wang, Jinshuai; Xia, Haiyan; Wang, Jianbo; Liu, Qingfang
2017-11-01
Magnetic skyrmions are promising for the application of racetrack memories, logic gates, and other nano-devices, owing to their topologically protected stability, small size, and low driving current. In this work, we propose a skyrmion-based multi-channel racetrack memory where the skyrmion moves in the selected channel by applying voltage-controlled magnetic anisotropy gates. It is demonstrated numerically that a current-dependent skyrmion Hall effect can be restrained by the additional potential of the voltage-controlled region, and the skyrmion velocity and moving channel in the racetrack can be operated by tuning the voltage-controlled magnetic anisotropy, gate position, and current density. Our results offer a potential application of racetrack memory based on skyrmions.
Transfer Hydro-dehalogenation of Organic Halides Catalyzed by Ruthenium(II) Complex.
You, Tingjie; Wang, Zhenrong; Chen, Jiajia; Xia, Yuanzhi
2017-02-03
A simple and efficient Ru(II)-catalyzed transfer hydro-dehalogenation of organic halides using 2-propanol solvent as the hydride source was reported. This methodology is applicable for hydro-dehalogenation of a variety of aromatic halides and α-haloesters and amides without additional ligand, and quantitative yields were achieved in many cases. The potential synthetic application of this method was demonstrated by efficient gram-scale transformation with catalyst loading as low as 0.5 mol %.
Applications of the Analytical Electron Microscope to Materials Science
NASA Technical Reports Server (NTRS)
Goldstein, J. I.
1992-01-01
In the last 20 years, the analytical electron microscope (AEM) as allowed investigators to obtain chemical and structural information from less than 50 nanometer diameter regions in thin samples of materials and to explore problems where reactions occur at boundaries and interfaces or within small particles or phases in bulk samples. Examples of the application of the AEM to materials science problems are presented in this paper and demonstrate the usefulness and the future potential of this instrument.
Cancer diagnosis by infrared spectroscopy: methodological aspects
NASA Astrophysics Data System (ADS)
Jackson, Michael; Kim, Keith; Tetteh, John; Mansfield, James R.; Dolenko, Brion; Somorjai, Raymond L.; Orr, F. W.; Watson, Peter H.; Mantsch, Henry H.
1998-04-01
IR spectroscopy is proving to be a powerful tool for the study and diagnosis of cancer. The application of IR spectroscopy to the analysis of cultured tumor cells and grading of breast cancer sections is outlined. Potential sources of error in spectral interpretation due to variations in sample histology and artifacts associated with sample storage and preparation are discussed. The application of statistical techniques to assess differences between spectra and to non-subjectively classify spectra is demonstrated.
NASA Astrophysics Data System (ADS)
Wang, Ruikang K.; Baran, Utku; Choi, Woo J.
2016-02-01
Optical coherence tomography (OCT) based microangiography (OMAG) is a new imaging technique enabling the visualization of blood flow within microcirculatory tissue beds in vivo with high resolution. In this talk, the concept and advantages of OMAG will be discussed and its potential clinical applications in the dermatology will be shown, demonstrating its usefulness in the clinical monitoring and therapeutic treatment of various skin pathologies, e.g. acne, port wine stain and wound healing.
Mechanical design of DNA nanostructures
NASA Astrophysics Data System (ADS)
Castro, Carlos E.; Su, Hai-Jun; Marras, Alexander E.; Zhou, Lifeng; Johnson, Joshua
2015-03-01
Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07153k
Novel applications of photonic signal processing: Temporal cloaking and biphoton pulse shaping
NASA Astrophysics Data System (ADS)
Lukens, Joseph M.
We experimentally demonstrate two innovative applications of photonic technologies previously solidified in the field of classical optical communications. In the first application, we exploit electro-optic modulator technology to develop a novel "time cloak,'' a device which hides events in time by manipulating the flow of a probing light beam. Our temporal cloak is capable of masking high-speed optical data from a receiver, greatly improving the feasibility of time cloaking and bringing such exotic concepts to the verge of practical application. In the second specialization, high-resolution Fourier-transform pulse shaping---perfected for multi-wavelength telecom networks---is applied to shape the correlations of entangled photon pairs, states which have received considerable attention in nonlocal tests of quantum theory and in quantum key distribution. Using nonlinear waveguides fabricated out of periodically poled lithium niobate, we are able to demonstrate ultrafast coincidence detection with record-high efficiency, which coupled with our pulse shaper allows us to realize for the first time several capabilities in biphoton control, including high-order dispersion cancellation, orthogonal spectral coding, correlation train generation, and tunable delay control. Each of these experiments represents an important advance in quantum state manipulation, with the potential to impact developments in quantum information. And more generally, our work introducing telecommunication technology into both temporal cloaking and biphoton control highlights the potential of such tools in more nascent outgrowths of classical and quantum optics.
Orlenko, Alena; Moore, Jason H; Orzechowski, Patryk; Olson, Randal S; Cairns, Junmei; Caraballo, Pedro J; Weinshilboum, Richard M; Wang, Liewei; Breitenstein, Matthew K
2018-01-01
With the maturation of metabolomics science and proliferation of biobanks, clinical metabolic profiling is an increasingly opportunistic frontier for advancing translational clinical research. Automated Machine Learning (AutoML) approaches provide exciting opportunity to guide feature selection in agnostic metabolic profiling endeavors, where potentially thousands of independent data points must be evaluated. In previous research, AutoML using high-dimensional data of varying types has been demonstrably robust, outperforming traditional approaches. However, considerations for application in clinical metabolic profiling remain to be evaluated. Particularly, regarding the robustness of AutoML to identify and adjust for common clinical confounders. In this study, we present a focused case study regarding AutoML considerations for using the Tree-Based Optimization Tool (TPOT) in metabolic profiling of exposure to metformin in a biobank cohort. First, we propose a tandem rank-accuracy measure to guide agnostic feature selection and corresponding threshold determination in clinical metabolic profiling endeavors. Second, while AutoML, using default parameters, demonstrated potential to lack sensitivity to low-effect confounding clinical covariates, we demonstrated residual training and adjustment of metabolite features as an easily applicable approach to ensure AutoML adjustment for potential confounding characteristics. Finally, we present increased homocysteine with long-term exposure to metformin as a potentially novel, non-replicated metabolite association suggested by TPOT; an association not identified in parallel clinical metabolic profiling endeavors. While warranting independent replication, our tandem rank-accuracy measure suggests homocysteine to be the metabolite feature with largest effect, and corresponding priority for further translational clinical research. Residual training and adjustment for a potential confounding effect by BMI only slightly modified the suggested association. Increased homocysteine is thought to be associated with vitamin B12 deficiency - evaluation for potential clinical relevance is suggested. While considerations for clinical metabolic profiling are recommended, including adjustment approaches for clinical confounders, AutoML presents an exciting tool to enhance clinical metabolic profiling and advance translational research endeavors.
LeMoyne, Robert; Mastroianni, Timothy
2014-01-01
The patellar tendon reflex constitutes a fundamental aspect of the conventional neurological evaluation. Dysfunctional characteristics of the reflex response can augment the diagnostic acuity of a clinician for subsequent referral to more advanced medical resources. The capacity to quantify the reflex response while alleviating the growing strain on specialized medical resources is a topic of interest. The quantification of the tendon reflex response has been successfully demonstrated with considerable accuracy and consistency through using a potential energy impact pendulum attached to a reflex hammer for evoking the tendon reflex with a smartphone, such as an iPhone, application representing a wireless accelerometer platform to quantify reflex response. Another sensor integrated into the smartphone, such as an iPhone, is the gyroscope, which measures rate of angular rotation. A smartphone application enables wireless transmission through Internet connectivity of the gyroscope signal recording of the reflex response as an email attachment. The smartphone wireless gyroscope application demonstrates considerable accuracy and consistency for the quantification of the tendon reflex response.
The SITE Program demonstration of one configuration of the BioTrol Soil Washing System (BSWS) was conducted to obtain reliable performance and cost data that can be used to evaluate the potential applicability of the technology as a remediation alternative for sites contaminated ...
42 CFR 59a.4 - How are grant applications evaluated?
Code of Federal Regulations, 2010 CFR
2010-10-01
... LIBRARY OF MEDICINE GRANTS Grants for Establishing, Expanding, and Improving Basic Resources § 59a.4 How... Secretary's evaluation shall consider the scope of library or related services for the population and... coordination with other libraries and related facilities, and (d) Potential for testing or demonstration of new...
Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. J.; George, R.; Bush, B.
2009-04-29
This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.
Optical Information Processing for Aerospace Applications 2
NASA Technical Reports Server (NTRS)
Stermer, R. L. (Compiler)
1984-01-01
Current research in optical processing, and determination of its role in future aerospace systems was reviewed. It is shown that optical processing offers significant potential for aircraft and spacecraft control, pattern recognition, and robotics. It is demonstrated that the development of optical devices and components can be implemented in practical aerospace configurations.
78 FR 70260 - Inviting Applications for Value-Added Producer Grants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
... end goals. All proposals must demonstrate economic viability and sustainability in order to compete... development of a defined program of economic planning activities to determine the viability of a potential... enter into value-added activities. Awards may be made for either economic planning or working capital...
Understanding Resistance: Reflections on Race and Privilege through Service-Learning
ERIC Educational Resources Information Center
Espino, Michelle M.; Lee, Jenny J.
2011-01-01
Service-learning has been hailed as an effective means to bridge classroom learning with practical application in the local context. Numerous studies have demonstrated the educational value of service-learning, particularly the potential to build awareness and appreciation for diversity. Students' resistance to even acknowledging issues of…
Generational Attitudes and Teacher ICT Use
ERIC Educational Resources Information Center
Pegler, Karen; Kollewyn, Joan; Crichton, Susan
2010-01-01
This paper explores the impact of generational attitudes on teachers' ICT use. Findings from the preliminary research suggest that when applications have a use or purpose that extends beyond the classroom and into their social or personal sphere, younger teachers demonstrate noticeable confidence and a higher potential for technology integration…
Lavandula angustifolia Miller: English lavender.
Denner, Sallie Stoltz
2009-01-01
Folk and traditional therapeutic use of the essential oil of English lavender for pain, infection, relaxation, and sedation dates back centuries. Current research focusing on the inherent synergism of Lavandula angustifolia Miller demonstrates great potential for future applications. Today's investigations may provide the key to eradicating degenerative inflammatory disease, infectious disease, and carcinogenesis.
USDA-ARS?s Scientific Manuscript database
Sophorolipids (SLs) are microbial glycolipids that can be produced via fermentation in relatively large yields (reportedly as high as 400 g/L under appropriate growth conditions). These versatile molecules have demonstrated usefulness as additives in detergent, cleaner, cosmetic, and stabilizer appl...
Multispectral and polarimetric photodetection using a plasmonic metasurface
NASA Astrophysics Data System (ADS)
Pelzman, Charles; Cho, Sang-Yeon
2018-01-01
We present a metasurface-integrated Si 2-D CMOS sensor array for multispectral and polarimetric photodetection applications. The demonstrated sensor is based on the polarization selective extraordinary optical transmission from periodic subwavelength nanostructures, acting as artificial atoms, known as meta-atoms. The meta-atoms were created by patterning periodic rectangular apertures that support optical resonance at the designed spectral bands. By spatially separating meta-atom clusters with different lattice constants and orientations, the demonstrated metasurface can convert the polarization and spectral information of an optical input into a 2-D intensity pattern. As a proof-of-concept experiment, we measured the linear components of the Stokes parameters directly from captured images using a CMOS camera at four spectral bands. Compared to existing multispectral polarimetric sensors, the demonstrated metasurface-integrated CMOS system is compact and does not require any moving components, offering great potential for advanced photodetection applications.
Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor.
Kim, P H; Hauer, B D; Clark, T J; Fani Sani, F; Freeman, M R; Davis, J P
2017-11-07
Cavity optomechanics has demonstrated remarkable capabilities, such as measurement and control of mechanical motion at the quantum level. Yet many compelling applications of optomechanics-such as microwave-to-telecom wavelength conversion, quantum memories, materials studies, and sensing applications-require hybrid devices, where the optomechanical system is coupled to a separate, typically condensed matter, system. Here, we demonstrate such a hybrid optomechanical system, in which a mesoscopic ferromagnetic needle is integrated with an optomechanical torsional resonator. Using this system we quantitatively extract the magnetization of the needle, not known a priori, demonstrating the potential of this system for studies of nanomagnetism. Furthermore, we show that we can magnetically dampen its torsional mode from room-temperature to 11.6 K-improving its mechanical response time without sacrificing torque sensitivity. Future extensions will enable studies of high-frequency spin dynamics and broadband wavelength conversion via torque mixing.
Large polarization-dependent exciton optical Stark effect in lead iodide perovskites
Yang, Ye; Yang, Mengjin; Zhu, Kai; Johnson, Justin C.; Berry, Joseph J.; van de Lagemaat, Jao; Beard, Matthew C.
2016-01-01
A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spin state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics. PMID:27577007
Hanlon, Damien; Backes, Claudia; Doherty, Evie; Cucinotta, Clotilde S.; Berner, Nina C.; Boland, Conor; Lee, Kangho; Harvey, Andrew; Lynch, Peter; Gholamvand, Zahra; Zhang, Saifeng; Wang, Kangpeng; Moynihan, Glenn; Pokle, Anuj; Ramasse, Quentin M.; McEvoy, Niall; Blau, Werner J.; Wang, Jun; Abellan, Gonzalo; Hauke, Frank; Hirsch, Andreas; Sanvito, Stefano; O'Regan, David D.; Duesberg, Georg S.; Nicolosi, Valeria; Coleman, Jonathan N.
2015-01-01
Few-layer black phosphorus (BP) is a new two-dimensional material which is of great interest for applications, mainly in electronics. However, its lack of environmental stability severely limits its synthesis and processing. Here we demonstrate that high-quality, few-layer BP nanosheets, with controllable size and observable photoluminescence, can be produced in large quantities by liquid phase exfoliation under ambient conditions in solvents such as N-cyclohexyl-2-pyrrolidone (CHP). Nanosheets are surprisingly stable in CHP, probably due to the solvation shell protecting the nanosheets from reacting with water or oxygen. Experiments, supported by simulations, show reactions to occur only at the nanosheet edge, with the rate and extent of the reaction dependent on the water/oxygen content. We demonstrate that liquid-exfoliated BP nanosheets are potentially useful in a range of applications from ultrafast saturable absorbers to gas sensors to fillers for composite reinforcement. PMID:26469634
Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets.
Wang, Xiaolin; Du, Yi; Dou, Shixue; Zhang, Chao
2012-06-29
Topological insulators, a new class of condensed matter having bulk insulating states and gapless metallic surface states, have demonstrated fascinating quantum effects. However, the potential practical applications of the topological insulators are still under exploration worldwide. We demonstrate that nanosheets of a Bi(2)Te(3) topological insulator several quintuple layers thick display giant and linear magnetoresistance. The giant and linear magnetoresistance achieved is as high as over 600% at room temperature, with a trend towards further increase at higher temperatures, as well as being weakly temperature-dependent and linear with the field, without any sign of saturation at measured fields up to 13 T. Furthermore, we observed a magnetic field induced gap below 10 K. The observation of giant and linear magnetoresistance paves the way for 3D topological insulators to be useful for practical applications in magnetoelectronic sensors such as disk reading heads, mechatronics, and other multifunctional electromagnetic applications.
Large polarization-dependent exciton optical Stark effect in lead iodide perovskites
Yang, Ye; Yang, Mengjin; Zhu, Kai; ...
2016-08-31
A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spinmore » state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Lastly, our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics.« less
NASA Astrophysics Data System (ADS)
Fan, Fan; Yu, Yueyang; Amiri, Seyed Ebrahim Hashemi; Quandt, David; Bimberg, Dieter; Ning, C. Z.
2017-04-01
Semiconductor nanolasers are potentially important for many applications. Their design and fabrication are still in the early stage of research and face many challenges. In this paper, we demonstrate a generally applicable membrane transfer method to release and transfer a strain-balanced InGaAs quantum-well nanomembrane of 260 nm in thickness onto various substrates with a high yield. As an initial device demonstration, nano-ring lasers of 1.5 μm in outer diameter and 500 nm in radial thickness are fabricated on MgF2 substrates. Room temperature single mode operation is achieved under optical pumping with a cavity volume of only 0.43λ03 (λ0 in vacuum). Our nano-membrane based approach represents an advantageous alternative to other design and fabrication approaches and could lead to integration of nanolasers on silicon substrates or with metallic cavity.
Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels.
Chinga-Carrasco, Gary; Syverud, Kristin
2014-09-01
Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels
Syverud, Kristin
2014-01-01
Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. PMID:24713295
Bogodvid, Tatiana K.; Andrianov, Vyatcheslav V.; Deryabina, Irina B.; Muranova, Lyudmila N.; Silantyeva, Dinara I.; Vinarskaya, Aliya; Balaban, Pavel M.; Gainutdinov, Khalil L.
2017-01-01
Long-term changes in membrane potential after associative training were described previously in identified premotor interneurons for withdrawal of the terrestrial snail Helix. Serotonin was shown to be a major transmitter involved in triggering the long-term changes in mollusks. In the present study we compared the changes in electrophysiological characteristics of identifiable premotor interneurons for withdrawal in response to bath applications of serotonin (5-HT) or serotonin precursor 5-hydroxytryptophan (5-HTP) in preparations from naïve, neurotoxin-injected or associatively trained snails. It was found that 5-HT or 5-HTP applications caused a significant decrease of membrane potential in premotor interneurons of naïve snails, associatively trained snails and snails with impaired serotonergic system by injection of a selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) 1 week before the experiments. Applications of 5-HT or 5-HTP did not cause significant changes in the action potential (AP) threshold potential of these neurons in naïve snails. Conversely, applications of 5-HT or 5-HTP to the premotor interneurons of previously trained or 5,7-DHT-injected snails caused a significant increase in the firing threshold potential in spite of a depolarizing shift of the resting membrane potential. Results demonstrate that responsiveness of premotor interneurons to extracellularly applied 5-HT or 5-HTP changes for days after the associative training or serotonin depletion. Similarity of the effects in trained and 5,7-DHT-injected animals may be due to massive release of serotonin elicited by 5,7-DHT injection. Our results suggest that serotonin release due to aversive conditionining or elicited by the neurotoxin administration triggers similar changes in resting membrane potential and AP threshold in response to bath applications of 5-HT or its precursor 5-HTP. PMID:29311833
Removal of formaldehyde from air using functionalized silica supports.
Ewlad-Ahmed, Abdunaser M; Morris, Michael A; Patwardhan, Siddharth V; Gibson, Lorraine T
2012-12-18
This paper demonstrates the use of functionalized meso-silica materials (MCM-41 or SBA-15) as adsorbents for formaldehyde (H₂CO) vapor from contaminated air. Additionally new green nanosilica (GNs) materials were prepared via a bioinspired synthesis route and were assessed for removal of H₂CO from contaminated indoor air. These exciting new materials were prepared via rapid, 15 min, environmentally friendly synthesis routes avoiding any secondary pollution. They provided an excellent platform for functionalization and extraction of H₂CO demonstrating similar performance to the conventional meso-silica materials. To the authors' knowledge this is the first reported practical application of this material type. Prior to trapping, all materials were functionalized with amino-propyl groups which led to chemisorption of H₂CO; removing it permanently from air. No retention of H₂CO was achieved with nonfunctionalized material and it was observed that best extraction performance required a dynamic adsorption setup when compared to passive application. These results demonstrate the first application of GNs as potential adsorbents and functionalized meso-silica for use in remediation of air pollution in indoor air.
Successfully Transitioning Science Research to Space Weather Applications
NASA Technical Reports Server (NTRS)
Spann, James
2012-01-01
The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.
Recent advances in reduction methods for nonlinear problems. [in structural mechanics
NASA Technical Reports Server (NTRS)
Noor, A. K.
1981-01-01
Status and some recent developments in the application of reduction methods to nonlinear structural mechanics problems are summarized. The aspects of reduction methods discussed herein include: (1) selection of basis vectors in nonlinear static and dynamic problems, (2) application of reduction methods in nonlinear static analysis of structures subjected to prescribed edge displacements, and (3) use of reduction methods in conjunction with mixed finite element models. Numerical examples are presented to demonstrate the effectiveness of reduction methods in nonlinear problems. Also, a number of research areas which have high potential for application of reduction methods are identified.
Development and Performance Analysis of a Photonics-Assisted RF Converter for 5G Applications
NASA Astrophysics Data System (ADS)
Borges, Ramon Maia; Muniz, André Luiz Marques; Sodré Junior, Arismar Cerqueira
2017-03-01
This article presents a simple, ultra-wideband and tunable radiofrequency (RF) converter for 5G cellular networks. The proposed optoelectronic device performs broadband photonics-assisted upconversion and downconversion using a single optical modulator. Experimental results demonstrate RF conversion from DC to millimeter waves, including 28 and 38 GHz that are potential frequency bands for 5G applications. Narrow linewidth and low phase noise characteristics are observed in all generated RF carriers. An experimental digital performance analysis using different modulation schemes illustrates the applicability of the proposed photonics-based device in reconfigurable optical wireless communications.
Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens.
Lau, Han Yih; Wang, Yuling; Wee, Eugene J H; Botella, Jose R; Trau, Matt
2016-08-16
Effective disease management strategies to prevent catastrophic crop losses require rapid, sensitive, and multiplexed detection methods for timely decision making. To address this need, a rapid, highly specific and sensitive point-of-care method for multiplex detection of plant pathogens was developed by taking advantage of surface-enhanced Raman scattering (SERS) labeled nanotags and recombinase polymerase amplification (RPA), which is a rapid isothermal amplification method with high specificity. In this study, three agriculturally important plant pathogens (Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum) were used to demonstrate potential translation into the field. The RPA-SERS method was faster, more sensitive than polymerase chain reaction, and could detect as little as 2 copies of B. cinerea DNA. Furthermore, multiplex detection of the three pathogens was demonstrated for complex systems such as the Arabidopsis thaliana plant and commercial tomato crops. To demonstrate the potential for on-site field applications, a rapid single-tube RPA/SERS assay was further developed and successfully performed for a specific target outside of a laboratory setting.
Polymer Stabilization of Liquid-Crystal Blue Phase II toward Photonic Crystals.
Jo, Seong-Yong; Jeon, Sung-Wook; Kim, Byeong-Cheon; Bae, Jae-Hyun; Araoka, Fumito; Choi, Suk-Won
2017-03-15
The temperature ranges where a pure simple-cubic blue phase (BPII) emerges are quite narrow compared to the body-centered-cubic BP (BPI) such that the polymer stabilization of BPII is much more difficult. Hence, a polymer-stabilized BPII possessing a wide temperature range has been scarcely reported. Here, we fabricate a polymer-stabilized BPII over a temperature range of 50 °C including room temperature. The fabricated polymer-stabilized BPII is confirmed via polarized optical microscopy, Bragg reflection, and Kossel diagram observations. Furthermore, we demonstrate reflective BP liquid-crystal devices utilizing the reflectance-voltage performance as a potential application of the polymer-stabilized BPII. Our work demonstrates the possibility of practical application of the polymer-stabilized BPII to photonic crystals.
Forensic proteomics for the evaluation of the post-mortem decay in bones.
Procopio, Noemi; Williams, Anna; Chamberlain, Andrew T; Buckley, Michael
2018-04-15
Current methods for evaluation the of post-mortem interval (PMI) of skeletal remains suffer from poor accuracy due to the great number of variables that affect the diagenetic process and to the lack of specific guidelines to address this issue. During decomposition, proteins can undergo cumulative decay over the time, resulting in a decrease in the range and abundance of proteins present (i.e., the proteome) in different tissues as well as in an increase of post-translational modifications occurring in these proteins. In this study, we investigate the applicability of bone proteomic analyses to simulated forensic contexts, looking for specific biomarkers that may help the estimation of PMI, as well as evaluate a previously discovered marker for the estimation of biological age. We noticed a reduction of particular plasma and muscle proteins with increasing PMIs, as well as an increased deamidation of biglycan, a protein with a role in modulating bone growth and mineralization. We also corroborated our previous results regarding the use of fetuin-A as a potential biomarker for the estimation of age-at-death, demonstrating the applicability and the great potential that proteomics may have towards forensic sciences. The estimation of the post-mortem interval has a key role in forensic investigations, however nowadays it still suffers from poor reliability, especially when body tissues are heavily decomposed. Here we propose for the first time the application of bone proteomics to the estimation of the time elapsed since death and found several new potential biomarkers to address this, demonstrating the applicability of proteomic analyses to forensic sciences. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Weigel, A. M.; Griffin, R.; Bugbee, K.
2015-12-01
Various organizations such as the Group on Earth Observations (GEO) have developed a structure for general thematic areas in Earth science research, however the Climate Data Initiative (CDI) is addressing the challenging goal of organizing such datasets around core themes specifically related to climate change impacts. These thematic areas, which currently include coastal flooding, food resilience, ecosystem vulnerability, water, transportation, energy infrastructure, and human health, form the core of a new college course at the University of Alabama in Huntsville developed around real-world applications in the Earth sciences. The goal of this course is to educate students on the data available and scope of GIS applications in Earth science across the CDI climate themes. Real world applications and datasets serve as a pedagogical tool that provide a useful medium for instruction in scientific geospatial analysis and GIS software. With a wide range of potential research areas that fall under the rubric of "Earth science", thematic foci can help to structure a student's understanding of the potential uses of GIS across sub-disciplines, while communicating core data processing concepts. The learning modules and use-case scenarios for this course demonstrate the potential applications of CDI data to undergraduate and graduate Earth science students.
Employment of Geoscientists in the Private Sector
NASA Astrophysics Data System (ADS)
Russell, J. L.
2001-05-01
In the private sector, major employers of geoscientists engage in diverse activities ranging from resource exploration and extraction, assessment of geologic hazards, and determination of environmental impacts. These firms actively recruit, from the breadth of geoscience disciplines, technically qualified individuals with the ability to make pragmatic decisions in the context of multidisciplinary teams that commonly include non-scientists. Moreover, they expect applicants to communicate effectively verbally and in writing, as well as demonstrate skills and experience in integrating field investigations, conducting laboratory studies, and accomplishing computer modeling. These applicants should be capable of simultaneously working in multiple projects which are rapidly evolving. Successful recruiting and employment requires interactions between the job applicant and potential employer conducted with honesty and integrity. Resumes and associated transmittal letters should be directed to specific employers based on the applicant's review of information on the firm from the Internet and other sources. "Shotgun" or blanket approaches are seldom productive. Participation in pertinent professional societies, internships, and summer employment can provide valuable experiences and opportunities for networking with potential employers.
Feurzeig, Wallace
1984-01-01
The first expert instructional system, the Socratic System, was developed in 1964. One of the earliest applications of this system was in the area of differential diagnosis in clinical medicine. The power of the underlying instructional paradigm was demonstrated and the potential of the approach for valuably supplementing medical instruction was recognized. Twenty years later, despite further educationally significant advances in expert systems technology and enormous reductions in the cost of computers, expert instructional methods have found very little application in medical schools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Laura; Harvey, Stephen P.; Teeter, Glenn
We demonstrate the potential of X-ray photoelectron spectroscopy (XPS) to characterize new carrier-selective contacts (CSC) for solar cell application. We show that XPS not only provides information about the surface chemical properties of the CSC material, but that operando XPS, i.e. under light bias condition, can also directly measure the photovoltage that develops at the CSC/absorber interface, revealing device relevant information without the need of assembling a full solar cell. We present the application of the technique to molybdenum oxide hole-selective contact films on a crystalline silicon absorber.
NASA Technical Reports Server (NTRS)
1982-01-01
The merits, shortcomings, and future outlook of thermal IR remote sensing are appraised from a philosophical and speculative point of view in the light of the HCMM experiments. Two key questions stemming from HCMM addressed are: thermal remote sensing from space platforms now on a solid foundation in terms of demonstrated applications of real utility as well as theory, and where should NASA's research be focused in thermal remote sensing and are the potential applications sufficient to justify inclusion of thermal sensors in later generations of Earth resources satellites.
Fast-response LCDs for virtual reality applications
NASA Astrophysics Data System (ADS)
Chen, Haiwei; Peng, Fenglin; Gou, Fangwang; Wand, Michael; Wu, Shin-Tson
2017-02-01
We demonstrate a fast-response liquid crystal display (LCD) with an ultra-low-viscosity nematic LC mixture. The measured average motion picture response time is only 6.88 ms, which is comparable to 6.66 ms for an OLED at a 120 Hz frame rate. If we slightly increase the TFT frame rate and/or reduce the backlight duty ratio, image blurs can be further suppressed to unnoticeable level. Potential applications of such an image-blur-free LCD for virtual reality, gaming monitors, and TVs are foreseeable.
Facile synthesis and application of a carbon foam with large mesopores.
Fu, Liling; Qi, Genggeng; Sahore, Ritu; Sougrat, Rachid; DiSalvo, Francis J; Giannelis, Emmanuel P
2013-11-28
By combining elements of hard- and soft-templating, a facile synthesis method for carbon foams with large mesopores has been demonstrated. A commercial Pluronic surfactant was used as the structure-directing agent as well as the carbon precursor. No micelle swelling agent or post treatment is necessary to enlarge mesopores. As such this method requires fewer synthesis steps and is highly scalable. The as-synthesized meso-carbons showed potential applications in the fields of carbon oxide capture and lithium-sulfur batteries.
1991-03-01
series of experiments have been performed to create a plane of light with a ruby pulse laser and photograph demonstrate the application of Particle...using a SIT 1. INTRODUCTION (silicon intensified tube) camera developed 6y Wernet at NASA Lewis (1989). Optical diagnostics have now become essential...lens for the PIV tests. Fig 2 shows a photograph of the As a result of this the potential sensitivity of the technique has nozzle guide vanes
A toxicological study of 1,2,4-triazole-5-one
DOE Office of Scientific and Technical Information (OSTI.GOV)
London, J.
1988-12-01
The acute oral LD/sub 50/ values for 1,2,4-triazole-5-one (TO) are greater than 5g/kg. According to classical guidelines, the material would be considered only slightly toxic or practically nontoxic in both rats and mice. The sensitization study in the guinea pig did not show TO to have potential sensitizing effects. Skin application studies on the rabbit demonstrated it was cutaneously nonirritating. This material was also nonirritating in the rabbit eye application studies. 4 refs., 1 tab.
GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control.
Nam, Yunjun; Koo, Bonkon; Cichocki, Andrzej; Choi, Seungjin
2014-02-01
We present a novel human-machine interface, called GOM-Face , and its application to humanoid robot control. The GOM-Face bases its interfacing on three electric potentials measured on the face: 1) glossokinetic potential (GKP), which involves the tongue movement; 2) electrooculogram (EOG), which involves the eye movement; 3) electromyogram, which involves the teeth clenching. Each potential has been individually used for assistive interfacing to provide persons with limb motor disabilities or even complete quadriplegia an alternative communication channel. However, to the best of our knowledge, GOM-Face is the first interface that exploits all these potentials together. We resolved the interference between GKP and EOG by extracting discriminative features from two covariance matrices: a tongue-movement-only data matrix and eye-movement-only data matrix. With the feature extraction method, GOM-Face can detect four kinds of horizontal tongue or eye movements with an accuracy of 86.7% within 2.77 s. We demonstrated the applicability of the GOM-Face to humanoid robot control: users were able to communicate with the robot by selecting from a predefined menu using the eye and tongue movements.
NASA Astrophysics Data System (ADS)
Wu, Hsin-Yu; Cunningham, Brian T.
2014-04-01
We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml-1) well below typical administered dosages (mg ml-1). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery.We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml-1) well below typical administered dosages (mg ml-1). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery. Electronic supplementary information (ESI) available: Fabrication of PNA substrates, fabrication details of the flow cell, details of FDTD simulation, characterization of the scattering volume, and detection of diltiazem diluted in DI water and PBS. See DOI: 10.1039/c4nr00027g
SiC nanoparticles as potential carriers for biologically active substances
NASA Astrophysics Data System (ADS)
Guevara-Lora, Ibeth; Czosnek, Cezary; Smycz, Aleksandra; Janik, Jerzy F.; Kozik, Andrzej
2009-01-01
Silicon carbide SiC thanks to its many advantageous properties has found numerous applications in diverse areas of technology. In this regard, its nanosized forms often with novel properties have been the subject of intense research in recent years. The aim of this study was to investigate the binding of biologically active substances onto SiC nanopowders as a new approach to biomolecule immobilization in terms of their prospective applications in medicine or for biochemical detection. The SiC nanoparticles were prepared by a two-stage aerosol-assisted synthesis from neat hexamethyldisiloxane. The binding of several proteins (bovine serum albumin, high molecular weight kininogen, immunoglobulin G) on SiC particle surfaces was demonstrated at the levels of 1-2 nanograms per mg of SiC. These values were found to significantly increase after suitable chemical modifications of nanoparticle surfaces (by carbodiimide or 3-aminopropyltrietoxysilane treatment). The study of SiC biocompatibility showed a lack of cytotoxicity against macrophages-like cells below the concentration of 1 mg nanoparticles per mL. In summary, we demonstrated the successful immobilization of the selected substances on the SiC nanoparticles. These results including the cytotoxicity study make nano-SiC highly attractive for potential applications in medicine, biotechnology or molecular detection.
Preparation of Monodomain Liquid Crystal Elastomers and Liquid Crystal Elastomer Nanocomposites.
Kim, Hojin; Zhu, Bohan; Chen, Huiying; Adetiba, Oluwatomiyin; Agrawal, Aditya; Ajayan, Pulickel; Jacot, Jeffrey G; Verduzco, Rafael
2016-02-06
LCEs are shape-responsive materials with fully reversible shape change and potential applications in medicine, tissue engineering, artificial muscles, and as soft robots. Here, we demonstrate the preparation of shape-responsive liquid crystal elastomers (LCEs) and LCE nanocomposites along with characterization of their shape-responsiveness, mechanical properties, and microstructure. Two types of LCEs - polysiloxane-based and epoxy-based - are synthesized, aligned, and characterized. Polysiloxane-based LCEs are prepared through two crosslinking steps, the second under an applied load, resulting in monodomain LCEs. Polysiloxane LCE nanocomposites are prepared through the addition of conductive carbon black nanoparticles, both throughout the bulk of the LCE and to the LCE surface. Epoxy-based LCEs are prepared through a reversible esterification reaction. Epoxy-based LCEs are aligned through the application of a uniaxial load at elevated (160 °C) temperatures. Aligned LCEs and LCE nanocomposites are characterized with respect to reversible strain, mechanical stiffness, and liquid crystal ordering using a combination of imaging, two-dimensional X-ray diffraction measurements, differential scanning calorimetry, and dynamic mechanical analysis. LCEs and LCE nanocomposites can be stimulated with heat and/or electrical potential to controllably generate strains in cell culture media, and we demonstrate the application of LCEs as shape-responsive substrates for cell culture using a custom-made apparatus.
Myakalwar, Ashwin Kumar; Sreedhar, S.; Barman, Ishan; Dingari, Narahara Chari; Rao, S. Venugopal; Kiran, P. Prem; Tewari, Surya P.; Kumar, G. Manoj
2012-01-01
We report the effectiveness of laser-induced breakdown spectroscopy (LIBS) in probing the content of pharmaceutical tablets and also investigate its feasibility for routine classification. This method is particularly beneficial in applications where its exquisite chemical specificity and suitability for remote and on site characterization significantly improves the speed and accuracy of quality control and assurance process. Our experiments reveal that in addition to the presence of carbon, hydrogen, nitrogen and oxygen, which can be primarily attributed to the active pharmaceutical ingredients, specific inorganic atoms were also present in all the tablets. Initial attempts at classification by a ratiometric approach using oxygen to nitrogen compositional values yielded an optimal value (at 746.83 nm) with the least relative standard deviation but nevertheless failed to provide an acceptable classification. To overcome this bottleneck in the detection process, two chemometric algorithms, i.e. principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA), were implemented to exploit the multivariate nature of the LIBS data demonstrating that LIBS has the potential to differentiate and discriminate among pharmaceutical tablets. We report excellent prospective classification accuracy using supervised classification via the SIMCA algorithm, demonstrating its potential for future applications in process analytical technology, especially for fast on-line process control monitoring applications in the pharmaceutical industry. PMID:22099648
Investigation of optimization-based reconstruction with an image-total-variation constraint in PET
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan
2016-08-01
Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loginova, Y.F.; Dezhurov, S.V.; Zherdeva, V.V.
Highlights: Black-Right-Pointing-Pointer New QDs coated with combination of polythiol ligands and silica shell were synthesized. Black-Right-Pointing-Pointer We examine the QDs stability in digestive tract of mice after per os administration. Black-Right-Pointing-Pointer The polymer/silica shell prevents QDs degradation and fluorescence quenching in vivo. -- Abstract: CdSe-core, ZnS-capped semiconductor quantum dots (QDs) are of great potential for biomedical applications. However, applications in the gastrointestinal tract for in vivo imaging and therapeutic purposes are hampered by their sensitivity to acidic environments and potential toxicity. Here we report the use of coatings with a combination of polythiol ligands and silica shell (QDs PolyT-APS) tomore » stabilize QDs fluorescence under acidic conditions. We demonstrated the stability of water-soluble QDs PolyT-APS both in vitro, in strong acidic solutions, and in vivo. The biodistribution, stability and photoluminescence properties of QDs in the gastrointestinal tract of mice after per os administration were assessed. We demonstrated that QDs coated with current traditional materials - mercapto compounds (QDs MPA) and pendant thiol group (QDs PolyT) - are not capable of protecting QDs from chemically induced degradation and surface modification. Polythiol ligands and silica shell quantum dots (QDs PolyT-APS) are suitable for biological and biomedical applications in the gastrointestinal tract.« less
Amnion-derived stem cells: in quest of clinical applications
2011-01-01
In the promising field of regenerative medicine, human perinatal stem cells are of great interest as potential stem cells with clinical applications. Perinatal stem cells could be isolated from normally discarded human placentae, which are an ideal cell source in terms of availability, the fewer number of ethical concerns, less DNA damage, and so on. Numerous studies have demonstrated that some of the placenta-derived cells possess stem cell characteristics like pluripotent differentiation ability, particularly in amniotic epithelial (AE) cells. Term human amniotic epithelium contains a relatively large number of stem cell marker-positive cells as an adult stem cell source. In this review, we introduce a model theory of why so many AE cells possess stem cell characteristics. We also describe previous work concerning the therapeutic applications and discuss the pluripotency of the AE cells and potential pitfalls for amnion-derived stem cell research. PMID:21596003
Pimenta, Soraia; Pinho, Silvestre T
2011-02-01
Both environmental and economic factors have driven the development of recycling routes for the increasing amount of carbon fibre reinforced polymer (CFRP) waste generated. This paper presents a review of the current status and outlook of CFRP recycling operations, focusing on state-of-the-art fibre reclamation and re-manufacturing processes, and on the commercialisation and potential applications of recycled products. It is shown that several recycling and re-manufacturing processes are reaching a mature stage, with implementations at commercial scales in operation, production of recycled CFRPs having competitive structural performances, and demonstrator components having been manufactured. The major challenges for the sound establishment of a CFRP recycling industry and the development of markets for the recyclates are summarised; the potential for introducing recycled CFRPs in structural components is discussed, and likely promising applications are investigated. Copyright © 2010 Elsevier Ltd. All rights reserved.
Towards on-chip time-resolved thermal mapping with micro-/nanosensor arrays
2012-01-01
In recent years, thin-film thermocouple (TFTC) array emerged as a versatile candidate in micro-/nanoscale local temperature sensing for its high resolution, passive working mode, and easy fabrication. However, some key issues need to be taken into consideration before real instrumentation and industrial applications of TFTC array. In this work, we will demonstrate that TFTC array can be highly scalable from micrometers to nanometers and that there are potential applications of TFTC array in integrated circuits, including time-resolvable two-dimensional thermal mapping and tracing the heat source of a device. Some potential problems and relevant solutions from a view of industrial applications will be discussed in terms of material selection, multiplexer reading, pattern designing, and cold-junction compensation. We show that the TFTC array is a powerful tool for research fields such as chip thermal management, lab-on-a-chip, and other novel electrical, optical, or thermal devices. PMID:22931306
Application of laminar flow control to high-bypass-ratio turbofan engine nacelles
NASA Technical Reports Server (NTRS)
Wie, Y. S.; Collier, F. S., Jr.; Wagner, R. D.
1991-01-01
Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-flow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.
Emerging Applications of Porphryins in Photomedicine
NASA Astrophysics Data System (ADS)
Huang, Haoyuan; Song, Wentao; Rieffel, James; Lovell, Jonathan
2015-04-01
Biomedical applications of porphyrins and related molecules have been extensively pursued in the context of photodynamic therapy (PDT). Recent advances in nanoscale engineering have opened the door for new ways that porphyrins stand to potentially benefit human health. Metalloporphyrins are inherently suitable for many types of medical imaging and therapy. Traditional nanocarriers such as liposomes, dendrimers and silica nanoparticles have been explored for photosensitizer delivery. Concurrently, entirely new classes of porphyrin nanostructures are being developed, such as smart materials that are activated by specific biochemicals encountered at disease sites. Techniques have been developed that improve treatments by combining biomaterials with photosensitizers and functional moieties such as peptides, DNA and antibodies. Compared to simpler structures, these more complex and functional designs can potentially decrease side effects and lead to safer and more efficient phototherapies. This review examines recent research on porphyrin-derived materials in multimodal imaging, drug delivery, bio-sensing, phototherapy and probe design, demonstrating their bright future for biomedical applications.
GRCop-84: A High Temperature Copper-based Alloy For High Heat Flux Applications
NASA Technical Reports Server (NTRS)
Ellis, David L.
2005-01-01
While designed for rocket engine main combustion chamber liners, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) offers potential for high heat flux applications in industrial applications requiring a temperature capability up to approximately 700 C (1292 F). GRCop-84 is a copper-based alloy with excellent elevated temperature strength, good creep resistance, long LCF lives and enhanced oxidation resistance. It also has a lower thermal expansion than copper and many other low alloy copper-based alloys. GRCop-84 can be manufactured into a variety of shapes such as tubing, bar, plate and sheet using standard production techniques and requires no special production techniques. GRCop-84 forms well, so conventional fabrication methods including stamping and bending can be used. GRCop-84 has demonstrated an ability to be friction stir welded, brazed, inertia welded, diffusion bonded and electron beam welded for joining to itself and other materials. Potential applications include plastic injection molds, resistance welding electrodes and holders, permanent metal casting molds, vacuum plasma spray nozzles and high temperature heat exchanger applications.
Biomedical Applications of Carbon Nanotubes: A Critical Review.
Sharma, Priyanka; Mehra, Neelesh Kumar; Jain, Keerti; Jain, N K
2016-08-01
The convergence of nano and biotechnology is enabling scientific and technical knowledge for improving human well being. Carbon nanotubes have become most fascinating material to be studied and unveil new avenues in the field of nanobiotechnology. The nanometer size and high aspect ratio of the CNTs are the two distinct features, which have contributed to diverse biomedical applications. They have captured the attention as nanoscale materials due to their nanometric structure and remarkable list of superlative and extravagant properties that encouraged their exploitation for promising applications. Significant progress has been made in order to overcome some of the major hurdles towards biomedical application of nanomaterials, especially on issues regarding the aqueous solubility/dispersion and safety of CNTs. Functionalized CNTs have been used in drug targeting, imaging, and in the efficient delivery of gene and nucleic acids. CNTs have also demonstrated great potential in diverse biomedical uses like drug targeting, imaging, cancer treatment, tissue regeneration, diagnostics, biosensing, genetic engineering and so forth. The present review highlights the possible potential of CNTs in diagnostics, imaging and targeted delivery of bioactives and also outlines the future opportunities for biomedical applications.
Application of Electrokinetic Stabilisation (EKS) Method for Soft Soil: A Review
NASA Astrophysics Data System (ADS)
Azhar, ATS; Azim, MAM; Syakeera, NN; Jefferson, IF; Rogers, CDF
2017-08-01
Soil properties such as low shear strength, excessive compression, collapsing behavior, high swell potential are some of the undesirable properties of soils in geotechnical engineering and those properties would cause severe distress to the structures. To solve these, an innovative stabilization of Electrokinetic (EKS) has been introduced. Electrokinetic is an applicable technique to transport charged particles and fluid in an electric potential. The EKS demonstrates changes in soil pH due to electrolysis reactions, water flow between the electrodes and migration of ions towards the cathode. This treatment has proven its efficiency in consolidating organic, peat and clayey silt as well as less expensive than other methods. Otherwise, this method also gives advantage by not disturbing site. The primary objective of this review is to discuss the application of electrokinetic and to investigate the current knowledge of electrokinetic in geotechnical application through a literature search and review, including consideration of certain aspects related to the soft soil application that may be relevant to the future study and at the same time addressing some key issues and their implications on soil behaviors.
Recent advances in biocompatible semiconductor nanocrystals for immunobiological applications.
Nanda, Sitansu Sekhar; Kim, Min Jik; Kim, Kwangmeyung; Papaefthymiou, Georgia C; Selvan, Subramanian Tamil; Yi, Dong Kee
2017-11-01
Quantum confinement in inorganic semiconductor nanocrystals produces brightly luminescent nanoparticles endowed with unique photo-physical properties, such as tunable optical properties. These have found widespread applications in nanotechnology. The ability to render such nanostructures biocompatible, while maintaining their tunable radiation in the visible range of the electromagnetic spectrum, renders them appropriate for bio-applications. Promising in vitro and in vivo diagnostic applications have been demonstrated, such as fluorescence-based detection of biological interactions, single molecule tracking, multiplexing and immunoassaying. In particular, these fluorescent inorganic semiconductor nanocrystals, generally known as quantum dots, have the potential of remarkable immunobiological applications. This review focuses on the current status of biocompatible quantum dots and their applications in immunobiology - immunosensing, immunofluorescent imaging and immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrooxidation of organics in waste water
NASA Technical Reports Server (NTRS)
Hitchens, G. D.; Murphy, Oliver J.; Kaba, Lamine; Verostko, Charles E.
1990-01-01
Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. Research sponsored by NASA is currently being pursued to demonstrate the feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space-habitat humidity condensates. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. This paper discusses the electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water-reclamation applications. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are described. The design of an electrochemical system that incorporates a membrane-based electrolyte based on parametric test data and current fuel-cell technology is presented.
Application of near field communication for health monitoring in daily life.
Strömmer, Esko; Kaartinen, Jouni; Pärkkä, Juha; Ylisaukko-Oja, Arto; Korhonen, Ilkka
2006-01-01
We study the possibility of applying an emerging RFID-based communication technology, NFC (Near Field Communication), to health monitoring. We suggest that NFC is, compared to other competing technologies, a high-potential technology for short-range connectivity between health monitoring devices and mobile terminals. We propose practices to apply NFC to some health monitoring applications and study the benefits that are attainable with NFC. We compare NFC to other short-range communication technologies such as Bluetooth and IrDA, and study the possibility of improving the usability of health monitoring devices with NFC. We also introduce a research platform for technical evaluation, applicability study and application demonstrations of NFC.
Synthesizing parallel imaging applications using the CAP (computer-aided parallelization) tool
NASA Astrophysics Data System (ADS)
Gennart, Benoit A.; Mazzariol, Marc; Messerli, Vincent; Hersch, Roger D.
1997-12-01
Imaging applications such as filtering, image transforms and compression/decompression require vast amounts of computing power when applied to large data sets. These applications would potentially benefit from the use of parallel processing. However, dedicated parallel computers are expensive and their processing power per node lags behind that of the most recent commodity components. Furthermore, developing parallel applications remains a difficult task: writing and debugging the application is difficult (deadlocks), programs may not be portable from one parallel architecture to the other, and performance often comes short of expectations. In order to facilitate the development of parallel applications, we propose the CAP computer-aided parallelization tool which enables application programmers to specify at a high-level of abstraction the flow of data between pipelined-parallel operations. In addition, the CAP tool supports the programmer in developing parallel imaging and storage operations. CAP enables combining efficiently parallel storage access routines and image processing sequential operations. This paper shows how processing and I/O intensive imaging applications must be implemented to take advantage of parallelism and pipelining between data access and processing. This paper's contribution is (1) to show how such implementations can be compactly specified in CAP, and (2) to demonstrate that CAP specified applications achieve the performance of custom parallel code. The paper analyzes theoretically the performance of CAP specified applications and demonstrates the accuracy of the theoretical analysis through experimental measurements.
Conducting polymers: Synthesis and industrial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
1997-04-01
The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in themore » US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.« less
Shaw, C M; Brodie, J; Mueller, J F
2012-01-01
To date there has been limited evidence anthropogenically sourced pollution from catchments reaching corals of the Great Barrier Reef (GBR). In this study, freshly isolated zooxanthellae were exposed to polar chemicals (chiefly herbicides) extracted from water samples collected in a flood plume in the GBR lagoon. Photosynthetic potential of the isolated zooxanthellae declined after exposure to concentrated extracts (10 times) from all but one of the sampling sites. Photosynthetic potential demonstrated a significant positive relationship with the concentration of diuron in the concentrated extracts and a significant inverse relationship with salinity measured at the sampling site. This study demonstrates that runoff from land based application of herbicides may reduce photosynthetic efficiency in corals of inshore reefs in the GBR. The ecological impacts of the chemicals in combination with other potential stressors on corals remain unclear. Copyright © 2012 Elsevier Ltd. All rights reserved.
Block copolymer nanoassemblies for photodynamic therapy and diagnosis.
Dickerson, Matthew; Bae, Younsoo
2013-11-01
Light can be a powerful therapeutic and diagnostic tool. Light-sensitive molecules can be used to develop locally targeted cancer therapeutics. This approach is known as photodynamic therapy (PDT). Similarly, it is possible to diagnose diseases and track the course of treatment in vivo using ligh-sensitive molecules. This methodology is referred to as photodynamic diagnosis (PDD). Despite the potential, many PDT and PDD agents have imperfect physiochemical properties for their successful clinical application. Nanotechnology may solve these issues by improving the viability of PDT and PDD. This review summarizes the current state of PDT and PDD development, the integration of nanotechnology in the field, and the prospective future applications, demonstrating the potential of PDT and PDD for improved cancer treatment and diagnosis.
Hybrid Active-Passive Systems for Control of Aircraft Interior Noise
NASA Technical Reports Server (NTRS)
Fuller, Chris R.; Palumbo, Dan (Technical Monitor)
2002-01-01
It was proposed to continue with development and application in the two active-passive areas of Active Tuned Vibration Absorbers (ATVA) and smart foam applied to the reduction of interior noise in aircraft. In general the work was focused on making both techniques more efficient, practical and robust thus increasing their application potential. The work was also concerned with demonstrating the potential of these two technologies under realistic implementations as well as understanding the fundamental physics of the systems. The proposed work consisted of a three-year program and was tightly coordinated with related work being carried out in the Structural Acoustics Branch at NASA LaRC. The work was supervised and coordinated through all phases by Prof Chris Fuller of Va Tech.
2D lateral heterostructures of group-III monochalcogenide: Potential photovoltaic applications
NASA Astrophysics Data System (ADS)
Cheng, Kai; Guo, Yu; Han, Nannan; Jiang, Xue; Zhang, Junfeng; Ahuja, Rajeev; Su, Yan; Zhao, Jijun
2018-04-01
Solar photovoltaics provides a practical and sustainable solution to the increasing global energy demand. Using first-principles calculations, we investigate the energetics and electronic properties of two-dimensional lateral heterostructures by group-III monochalcogenides and explore their potential applications in photovoltaics. The band structures and formation energies from supercell calculations demonstrate that these heterostructures retain semiconducting behavior and might be synthesized in laboratory using the chemical vapor deposition technique. According to the computed band offsets, most of the heterojunctions belong to type II band alignment, which can prevent the recombination of electron-hole pairs. Besides, the electronic properties of these lateral heterostructures can be effectively tailored by the number of layers, leading to a high theoretical power conversion efficiency over 20%.
SPR Biosensors in Direct Molecular Fishing: Implications for Protein Interactomics.
Florinskaya, Anna; Ershov, Pavel; Mezentsev, Yuri; Kaluzhskiy, Leonid; Yablokov, Evgeniy; Medvedev, Alexei; Ivanov, Alexis
2018-05-18
We have developed an original experimental approach based on the use of surface plasmon resonance (SPR) biosensors, applicable for investigation of potential partners involved in protein⁻protein interactions (PPI) as well as protein⁻peptide or protein⁻small molecule interactions. It is based on combining a SPR biosensor, size exclusion chromatography (SEC), mass spectrometric identification of proteins (LC-MS/MS) and direct molecular fishing employing principles of affinity chromatography for isolation of potential partner proteins from the total lysate of biological samples using immobilized target proteins (or small non-peptide compounds) as ligands. Applicability of this approach has been demonstrated within the frame of the Human Proteome Project (HPP) and PPI regulation by a small non-peptide biologically active compound, isatin.
Improving oiled shoreline cleanup with COREXIT 9580
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiocco, R.J.; Lessard, R.R.; Canevari, G.P.
1996-08-01
The cleanup of oiled shorelines has generally been by mechanical, labor-intensive means. The use of a chemical shoreline cleaner to assist in water-flushing oil from the surfaces can result in more complete and more rapid cleaning. Not only is the cleaning process more efficient, but it can also be less environmentally damaging since there is potentially much less human intrusion and stress on the biological community. This paper describes research and applications of COREXIT 9580 shoreline cleaner for treatment of oiled shorelines, including four recent applications in Puerto Rico, Bermuda, Texas and Nova Scotia. Research work on shoreline vegetation, suchmore » as mangroves, has also demonstrated the potential use of this product to save and restore oiled vegetation.« less
Civil tiltrotor missions and applications
NASA Technical Reports Server (NTRS)
Clay, Bill; Baumgaertner, Paul; Thompson, Pete; Meyer, Sam; Reber, Ron; Berry, Dennis (Editor)
1987-01-01
In 1983, an FAA-sponsored National Rotorcraft Program sought to identify improvements to the national interurban transportation networks and determined that conventional helicopters did not have the potential to satisfy requirements because of a lack of capacity, high operational costs, and high noise levels. Tiltrotors, it was felt offered a better potential to improve interurban air transport service. In 1985, the FAA proposed a joint civil tiltrotor study with NASA and DOD that would capitalize on development of the military V-22 tiltrotor and document the potential of the commercial tiltrotor transport market. The results of a study on the mission and application of a civil tiltrotor is presented. This study addresses national issues and includes a market summary. A technical summary provides information on six design configurations and potential risk areas are identified. The development of a National Plan for a tiltrotor transportation system is recommended including civil tiltrotor technology development, infrastructure planning and development, a flight technology demonstration plan, and near term actions.
Hsueh, Hsiao-Ting; Lin, Chih-Ting
2016-05-15
Surface potential is one of the most important properties at solid-liquid interfaces. It can be modulated by the voltage applied on the electrode or by the surface properties. Hence, surface potential is a good indicator for surface modifications, such as biomolecular bindings. In this work, we proposed a planar nano-gap structure for surface-potential difference monitoring. Based on the proposed architecture, the variance of surface-potential difference can be determined by electrical double layer capacitance (EDLC) between the nano-gap electrodes. Using cyclic voltammetry method, in this work, we demonstrated a relationship between surface potential and EDLC by chemically modifying surface properties. Finally, we also showed the proposed planar nano-gap device provides the capability for cardiac-troponin T (cTnT) measurements with co-existed 10 µg/ml BSA interference. The detection dynamic range is from 100 pg/ml to 1 µg/ml. Based on experimental results and extrapolation, the detection limit is less than 100 pg/ml in diluted PBS buffer (0.01X PBS). These results demonstrated the planar nano-gap architecture having potentials on biomolecular detection through monitoring of surface-potential variation. Copyright © 2015 Elsevier B.V. All rights reserved.
Saxena, Anuj; Saxena, Anjali
2012-07-01
Physiological and biochemical responses, metal bioaccumulation and tolerance potential of Sphagnum squarrosum Crome Samml. to Cu and Cd were studied to determine its bioindication and bioremediation potential. Results suggest that glutathione treatment increases the metal accumulation potential and plays a definite role in heavy metal scavenging. High abundance of Sphagnum in metal-rich sites strongly suggests its high metal tolerance capabilities. This experiment demonstrates that S. squarrosum is able to accumulate and tolerate a high amount of metals and feasibility of its application as bioindicator and remediator test species of metal-contaminated environment.
Building bio-assays with magnetic particles on a digital microfluidic platform.
Kokalj, Tadej; Pérez-Ruiz, Elena; Lammertyn, Jeroen
2015-09-25
Digital microfluidics (DMF) has emerged as a promising liquid handling technology for a variety of applications, demonstrating great potential both in terms of miniaturization and automation. DMF is based on the manipulation of discrete, independently controllable liquid droplets, which makes it highly reconfigurable and reprogrammable. One of its most exclusive advantages, compared to microchannel-based microfluidics, is its ability to precisely handle solid nano- and microsized objects, such as magnetic particles. Magnetic particles have become very popular in the last decade, since their high surface-to-volume ratio and the possibility to magnetically separate them from the matrix make them perfect suitable as a solid support for bio-assay development. The potential of magnetic particles in DMF-based bio-assays has been demonstrated for various applications. In this review we discuss the latest developments of magnetic particle-based DMF bio-assays with the aim to present, identify and analyze the trends in the field. We also discuss the state-of-the art of device integration, current status of commercialization and issues that still need to be addressed. With this paper we intend to stimulate researchers to exploit and unveil the potential of these exciting tools, which will shape the future of modern biochemistry, microbiology and biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.
Free-piston Stirling engine/linear alternator 1000-hour endurance test
NASA Technical Reports Server (NTRS)
Rauch, J.; Dochat, G.
1985-01-01
The Free Piston Stirling Engine (FPSE) has the potential to be a long lived, highly reliable, power conversion device attractive for many product applications such as space, residential or remote site power. The purpose of endurance testing the FPSE was to demonstrate its potential for long life. The endurance program was directed at obtaining 1000 operational hours under various test conditions: low power, full stroke, duty cycle and stop/start. Critical performance parameters were measured to note any change and/or trend. Inspections were conducted to measure and compare critical seal/bearing clearances. The engine performed well throughout the program, completing more than 1100 hours. Hardware inspection, including the critical clearances, showed no significant change in hardware or clearance dimensions. The performance parameters did not exhibit any increasing or decreasing trends. The test program confirms the potential for long life FPSE applications.
Light-evoked hyperpolarization and silencing of neurons by conjugated polymers.
Feyen, Paul; Colombo, Elisabetta; Endeman, Duco; Nova, Mattia; Laudato, Lucia; Martino, Nicola; Antognazza, Maria Rosa; Lanzani, Guglielmo; Benfenati, Fabio; Ghezzi, Diego
2016-03-04
The ability to control and modulate the action potential firing in neurons represents a powerful tool for neuroscience research and clinical applications. While neuronal excitation has been achieved with many tools, including electrical and optical stimulation, hyperpolarization and neuronal inhibition are typically obtained through patch-clamp or optogenetic manipulations. Here we report the use of conjugated polymer films interfaced with neurons for inducing a light-mediated inhibition of their electrical activity. We show that prolonged illumination of the interface triggers a sustained hyperpolarization of the neuronal membrane that significantly reduces both spontaneous and evoked action potential firing. We demonstrate that the polymeric interface can be activated by either visible or infrared light and is capable of modulating neuronal activity in brain slices and explanted retinas. These findings prove the ability of conjugated polymers to tune neuronal firing and suggest their potential application for the in-vivo modulation of neuronal activity.
Light-evoked hyperpolarization and silencing of neurons by conjugated polymers
Feyen, Paul; Colombo, Elisabetta; Endeman, Duco; Nova, Mattia; Laudato, Lucia; Martino, Nicola; Antognazza, Maria Rosa; Lanzani, Guglielmo; Benfenati, Fabio; Ghezzi, Diego
2016-01-01
The ability to control and modulate the action potential firing in neurons represents a powerful tool for neuroscience research and clinical applications. While neuronal excitation has been achieved with many tools, including electrical and optical stimulation, hyperpolarization and neuronal inhibition are typically obtained through patch-clamp or optogenetic manipulations. Here we report the use of conjugated polymer films interfaced with neurons for inducing a light-mediated inhibition of their electrical activity. We show that prolonged illumination of the interface triggers a sustained hyperpolarization of the neuronal membrane that significantly reduces both spontaneous and evoked action potential firing. We demonstrate that the polymeric interface can be activated by either visible or infrared light and is capable of modulating neuronal activity in brain slices and explanted retinas. These findings prove the ability of conjugated polymers to tune neuronal firing and suggest their potential application for the in-vivo modulation of neuronal activity. PMID:26940513
Shen, Kun; Logan, Angus W J; Colell, Johannes F P; Bae, Junu; Ortiz, Gerardo X; Theis, Thomas; Warren, Warren S; Malcolmson, Steven J; Wang, Qiu
2017-09-25
Diazirines are an attractive class of potential molecular tags for magnetic resonance imaging owing to their biocompatibility and ease of incorporation into a large variety of molecules. As recently reported, 15 N 2 -diazirine can be hyperpolarized by the SABRE-SHEATH method, sustaining both singlet and magnetization states, thus offering a path to long-lived polarization storage. Herein, we show the generality of this approach by illustrating that the diazirine tag alone is sufficient for achieving excellent signal enhancements with long-lasting polarization. Our investigations reveal the critical role of Lewis basic additives, including water, on achieving SABRE-promoted hyperpolarization. The application of this strategy to a 15 N 2 -diazirine-containing choline derivative demonstrates the potential of 15 N 2 -diazirines as molecular imaging tags for biomedical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Demonstrating the Viability and Affordability of Nuclear Surface Power Systems
NASA Technical Reports Server (NTRS)
Vandyke, Melissa K.
2006-01-01
A set of tasks have been identified to help demonstrate the viability, performance, and affordability of surface fission systems. Completion of these tasks will move surface fission systems closer to reality by demonstrating affordability and performance potential. Tasks include fabrication and test of a 19-pin section of a Surface Power Unit Demonstrator (SPUD); design, fabrication, and utilization of thermal simulators optimized for surface fission' applications; design, fabrication, and utilization of GPHS module thermal simulators; design, fabrication, and test of a fission surface power system shield; and work related to potential fission surface power fuel/clad systems. Work on the SPUD will feed directly into joint NASA MSFC/NASA GRC fabrication and test of a surface power plant Engineering Development Unit (EDU). The goal of the EDU will be to perform highly realistic thermal, structural, and electrical testing on an integrated fission surface power system. Fission thermal simulator work will help enable high fidelity non-nuclear testing of pumped NaK surface fission power systems. Radioisotope thermal simulator work will help enable design and development of higher power radioisotope systems (power ultimately limited by Pu-238 availability). Shield work is designed to assess the potential of using a water neutron shield on the surface of the moon. Fuels work is geared toward assessing the current potential of using fuels that have already flown in space.
Cellulose Nanomaterials — A Path Towards Commercialization Workshop Report
Fred Hansen; Victoria Brun; Emily Keller; World Nieh; Theodore Wegner; Michael Meador; Lisa Friedersdorf
2014-01-01
Cellulose nanomaterials are primarily isolated from trees and other organisms; are naturally occurring polymeric materials that have demonstrated great promise for commercial applications across an array of industrial sectors; are renewable and environmentally sustainable; and have the potential to be produced in large volumes (i.e., millions of tons per year). The...
Synthesis and optical properties of water-soluble biperylene-based dendrimers.
Shao, Pin; Jia, Ningyang; Zhang, Shaojuan; Bai, Mingfeng
2014-05-30
We report the synthesis and photophysical properties of three biperylene-based dendrimers, which show red fluorescence in water. A fluorescence microscopy study demonstrated uptake of biperylene-based dendrimers in living cells. Our results indicate that these biperylene-based dendrimers are promising candidates in fluorescence imaging applications with the potential as therapeutic carriers.
Pokémon Go: An Unexpected Inspiration for Next Generation Learning Environments
ERIC Educational Resources Information Center
Nigaglioni, Irene
2017-01-01
Although mobile applications and games often seem isolating and somewhat stationary, last year's augmented reality (AR) gaming craze Pokémon Go demonstrated how technology has the potential to promote socialization, collaboration, and physical activity while still engaging users. Pokémon Go's use of AR technology, which superimposes…
Using the Polymerase Chain Reaction in an Undergraduate Laboratory to Produce "DNA Fingerprints."
ERIC Educational Resources Information Center
Phelps, Tara L.; And Others
1996-01-01
Presents a laboratory exercise that demonstrates the sensitivity of the Polymerase Chain Reaction as well as its potential application to forensic analysis during a criminal investigation. Can also be used to introduce, review, and integrate population and molecular genetics topics such as genotypes, multiple alleles, allelic and genotypic…
NASA Technical Reports Server (NTRS)
1975-01-01
The work is reported of the panel concerning the application of space technology to the improved management of the nation's inland resources. The progress since the 1967-68 study is briefly reviewed. The data needed for the management of inlet water ways, and the potential benefits of better management are discussed along with 16 proposed demonstration projects.
A Quantitative Quality Control Model for Parallel and Distributed Crowdsourcing Tasks
ERIC Educational Resources Information Center
Zhu, Shaojian
2014-01-01
Crowdsourcing is an emerging research area that has experienced rapid growth in the past few years. Although crowdsourcing has demonstrated its potential in numerous domains, several key challenges continue to hinder its application. One of the major challenges is quality control. How can crowdsourcing requesters effectively control the quality…
[Electromyography of the perineum. Demonstration of the method].
Plotti, G; Palla, G P; Romanini, C; Piscicelli, U; Bompiani, A
1981-05-12
The Authors, by means of surface E.M.G. have investigated the perineal potentials. The choice of surface E.M.G. is due to the good acceptance of the method by the patients, as it does not interfere with muscular activity and mental concentration, which are fundamental for a good application of R.A.T.
Electron Beam Freeform Fabrication Technology Development for Aerospace Applications
NASA Technical Reports Server (NTRS)
Taminger, Karen M.
2006-01-01
NASA Langley has developed a the EBF(sup 3)process and currently has two EBF(sup 3) systems in house. EBF(sup 3) process offers potential cost reduction and fabrication of complex unitized structures out of metals. EBF(sup 3) has been successfully demonstrated on Al, Al-Li, Ti, and Ni alloys to date.
Applications of Nonlinear Principal Components Analysis to Behavioral Data.
ERIC Educational Resources Information Center
Hicks, Marilyn Maginley
1981-01-01
An empirical investigation of the statistical procedure entitled nonlinear principal components analysis was conducted on a known equation and on measurement data in order to demonstrate the procedure and examine its potential usefulness. This method was suggested by R. Gnanadesikan and based on an early paper of Karl Pearson. (Author/AL)
Natural Resource Information System. Remote Sensing Studies.
ERIC Educational Resources Information Center
Leachtenauer, J.; And Others
A major design objective of the Natural Resource Information System entailed the use of remote sensing data as an input to the system. Potential applications of remote sensing data were therefore reviewed and available imagery interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and…
FIA forest inventory data for wildlife habitat assessment
David C. Chojnacky
2000-01-01
The Forest Inventory and Analysis (FIA) program of the USDA Forest Service maintains a network of permanent plots to monitor changing forest conditions. These plots were originally established to monitor the nation's timber supply; however, these data have great potential for evaluating other forest resources. To demonstrate a wildlife application, an assessment...
NASA Technical Reports Server (NTRS)
Espinoza, M. U.
1977-01-01
Photographic images from LANDSAT 1 were applied to the study of soil in Desaguadero, Bolivia, in order to locate areas with high agricultural and livestock potential. Photointerpretation techniques were emphasized and advantages of information obtained via multispectral satellite images in various bands and combinations were demonstrated.
Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics.
van der Meulen, Machteld I; Petkov, Nikolay; Morris, Michael A; Kazakova, Olga; Han, Xinhai; Wang, Kang L; Jacob, Ajey P; Holmes, Justin D
2009-01-01
Magnetically doped Si and Ge nanowires have potential application in future nanowire spin-based devices. Here, we report a supercritical fluid method for producing single crystalline Mn-doped Ge nanowires with a Mn-doping concentration of between 0.5-1.0 atomic % that display ferromagnetism above 300 K and a superior performance with respect to the hole mobility of around 340 cm(2)/Vs, demonstrating the potential of using these nanowires as building blocks for electronic devices.
Pan, Yi; Shi, Yupeng; Chen, Junying; Wong, Chap-Mo; Zhang, Heng; Li, Mei-Jin; Li, Cheuk-Wing; Yi, Changqing
2016-12-01
In this study, a highly sensitive and selective fluorescent Zn(2+) probe which exhibited excellent biocompatibility, water solubility, and cell-membrane permeability, was facilely synthesized in a single step by grafting polyethyleneimine (PEI) with quinoline derivatives. The primary amino groups in the branched PEI can increase water solubility and cell permeability of the probe PEIQ, while quinoline derivatives can specifically recognize Zn(2+) and reduce the potential cytotoxicity of PEI. Basing on fluorescence off-on mechanism, PEIQ demonstrated excellent sensing capability towards Zn(2+) in absolute aqueous solution, where a high sensitivity with a detection limit as low as 38.1nM, and a high selectivity over competing metal ions and potential interfering amino acids, were achieved. Inspired by these results, elementary logic operations (YES, NOT and INHIBIT) have been constructed by employing PEIQ as the gate while Zn(2+) and EDTA as chemical inputs. Together with the low cytotoxicity and good cell-permeability, the practical application of PEIQ in living cell imaging was satisfactorily demonstrated, emphasizing its wide application in fundamental biology research. Copyright © 2016. Published by Elsevier B.V.
Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro
NASA Astrophysics Data System (ADS)
Zhou, Guoqiang; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying
2016-05-01
Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.
Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics
NASA Astrophysics Data System (ADS)
Liu, Yang; Chang, Zheng; Yuan, Hsiangkuo; Fales, Andrew M.; Vo-Dinh, Tuan
2013-11-01
A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications.A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications. Electronic supplementary information (ESI) available: Details of experimental section, characterization details and relaxivity curve of developed QMT nanoprobe in water at 1.5 T magnetic filed strength. See DOI: 10.1039/c3nr03762b
Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate
NASA Astrophysics Data System (ADS)
Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan
2015-10-01
Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.
Titanium MEMS Technology Development for Drug Delivery and Microfluidic Applications
NASA Astrophysics Data System (ADS)
Khandan, Omid
The use of microelectromechanical systems (MEMS) technology in medical and biological applications has increased dramatically in the past decade due to the potential for enhanced sensitivity, functionality, and performance associated with the miniaturization of devices, as well as the market potential for low-cost, personalized medicine. However, the utility of such devices in clinical medicine is ultimately limited due to factors associated with prevailing micromachined materials such as silicon, as it poses concerns of safety and reliability due to its intrinsically brittle properties, making it prone to catastrophic failure. Recent advances in titanium (Ti) micromachining provides an opportunity to create devices with enhanced safety and performance due to its proven biocompatibility and high fracture toughness, which causes it to fail by means of graceful, plasticity-based deformation. Motivated by this opportunity, we discuss our efforts to advance Ti MEMS technology in two ways: 1) Through the development of titanium-based microneedles (MNs) that seek to provide a safer, simpler, and more efficacious means of ocular drug delivery, and 2) Through the advancement of Ti anodic bonding for future realization of robust microfluidic devices for photocatalysis applications. As for the first of these thrusts, we show that MN devices with in-plane geometry and through-thickness fenestrations that serve as drug reservoirs for passive delivery via diffusive transport from fast-dissolving coatings can be fabricated utilizing Ti deep reactive ion etching (Ti DRIE). Our mechanical testing and finite element analysis (FEA) results suggest that these devices possess sufficient stiffness for reliable corneal insertion. Our MN coating studies show that, relative to solid MNs of identical shank dimension, fenestrated devices can increase drug carrying capacity by 5-fold. Furthermore, we demonstrate that through-etched fenestrations provide a protective cavity for delivering drugs subsurface, thereby enhancing delivery efficiencies in an ex vivo rabbit cornea model. Collectively, these results show the potential embodied in developing Ti MNs for effective, minimally invasive, and low-cost ocular drug delivery. Additionally, or the second of these thrusts, we report the development of an anodic bonding process that allows, for the first time, high-strength joining of bulk Ti and glass substrates at the wafer-scale, without need for interlayers or adhesives. We demonstrate that uniform, full-wafer bonding can be achieved at temperatures as low as 250°C, and that failure during burst pressure testing occurs via crack propagation through the glass, rather than the Ti/glass interface, thus demonstrating the robustness of the bonding. Moreover, using optimized bonding conditions, we demonstrate the fabrication of rudimentary Ti/glass-based microfluidic devices at the wafer-scale, and their leak-free operation under pressure-driven flow. Finally, we demonstrate the monolithic integration of nanoporous titanium dioxide within such devices, thus illustrating the promise embodied in Ti anodic bonding for future realization of robust microfluidic devices for photocatalysis applications. Together, these results demonstrate the potential embodied in utilizing Ti MEMS technology for the fabrication of novel drug delivery and microfluidic systems with enhanced robustness, safety, and performance.
Kim, Sunghee; Kim, Ki Chul; Lee, Seung Woo; Jang, Seung Soon
2016-07-27
Understanding the thermodynamic stability and redox properties of oxygen functional groups on graphene is critical to systematically design stable graphene-based positive electrode materials with high potential for lithium-ion battery applications. In this work, we study the thermodynamic and redox properties of graphene functionalized with carbonyl and hydroxyl groups, and the evolution of these properties with the number, types and distribution of functional groups by employing the density functional theory method. It is found that the redox potential of the functionalized graphene is sensitive to the types, number, and distribution of oxygen functional groups. First, the carbonyl group induces higher redox potential than the hydroxyl group. Second, more carbonyl groups would result in higher redox potential. Lastly, the locally concentrated distribution of the carbonyl group is more beneficial to have higher redox potential compared to the uniformly dispersed distribution. In contrast, the distribution of the hydroxyl group does not affect the redox potential significantly. Thermodynamic investigation demonstrates that the incorporation of carbonyl groups at the edge of graphene is a promising strategy for designing thermodynamically stable positive electrode materials with high redox potentials.
Scalable Production of Graphene-Based Wearable E-Textiles.
Karim, Nazmul; Afroj, Shaila; Tan, Sirui; He, Pei; Fernando, Anura; Carr, Chris; Novoselov, Kostya S
2017-12-26
Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors.
Social capital: theory, evidence, and implications for oral health.
Rouxel, Patrick L; Heilmann, Anja; Aida, Jun; Tsakos, Georgios; Watt, Richard G
2015-04-01
In the last two decades, there has been increasing application of the concept of social capital in various fields of public health, including oral health. However, social capital is a contested concept with debates on its definition, measurement, and application. This study provides an overview of the concept of social capital, highlights the various pathways linking social capital to health, and discusses the potential implication of this concept for health policy. An extensive and diverse international literature has examined the relationship between social capital and a range of general health outcomes across the life course. A more limited but expanding literature has also demonstrated the potential influence of social capital on oral health. Much of the evidence in relation to oral health is limited by methodological shortcomings mainly related to the measurement of social capital, cross-sectional study designs, and inadequate controls for confounding factors. Further research using stronger methodological designs should explore the role of social capital in oral health and assess its potential application in the development of oral health improvement interventions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Accelerating atomistic simulations through self-learning bond-boost hyperdynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Danny; Voter, Arthur F
2008-01-01
By altering the potential energy landscape on which molecular dynamics are carried out, the hyperdynamics method of Voter enables one to significantly accelerate the simulation state-to-state dynamics of physical systems. While very powerful, successful application of the method entails solving the subtle problem of the parametrization of the so-called bias potential. In this study, we first clarify the constraints that must be obeyed by the bias potential and demonstrate that fast sampling of the biased landscape is key to the obtention of proper kinetics. We then propose an approach by which the bond boost potential of Miron and Fichthorn canmore » be safely parametrized based on data acquired in the course of a molecular dynamics simulation. Finally, we introduce a procedure, the Self-Learning Bond Boost method, in which the parametrization is step efficiently carried out on-the-fly for each new state that is visited during the simulation by safely ramping up the strength of the bias potential up to its optimal value. The stability and accuracy of the method are demonstrated.« less
Single-Walled Carbon Nanotubes Probed with Insulator-Based Dielectrophoresis
2017-01-01
Single-walled carbon nanotubes (SWNTs) offer unique electrical and optical properties. Common synthesis processes yield SWNTs with large length polydispersity (several tens of nanometers up to centimeters) and heterogeneous electrical and optical properties. Applications often require suitable selection and purification. Dielectrophoresis is one manipulation method for separating SWNTs based on dielectric properties and geometry. Here, we present a study of surfactant and single-stranded DNA-wrapped SWNTs suspended in aqueous solutions manipulated by insulator-based dielectrophoresis (iDEP). This method allows us to manipulate SWNTs with the help of arrays of insulating posts in a microfluidic device around which electric field gradients are created by the application of an electric potential to the extremities of the device. Semiconducting SWNTs were imaged during dielectrophoretic manipulation with fluorescence microscopy making use of their fluorescence emission in the near IR. We demonstrate SWNT trapping at low-frequency alternating current (AC) electric fields with applied potentials not exceeding 1000 V. Interestingly, suspended SWNTs showed both positive and negative dielectrophoresis, which we attribute to their ζ potential and the suspension properties. Such behavior agrees with common theoretical models for nanoparticle dielectrophoresis. We further show that the measured ζ potentials and suspension properties are in excellent agreement with a numerical model predicting the trapping locations in the iDEP device. This study is fundamental for the future application of low-frequency AC iDEP for technological applications of SWNTs. PMID:29131586
Electronic aroma detection technology for forensic and law enforcement applications
NASA Astrophysics Data System (ADS)
Barshick, Stacy-Ann; Griest, Wayne H.; Vass, Arpad A.
1997-02-01
A major problem hindering criminal investigations is the lack of appropriate tools for proper crime scene investigations. Often locating important pieces of evidence means relying on the ability of trained detection canines. Development of analytical technology to uncover and analyze evidence, potentially at the scene, could serve to expedite criminal investigations, searches, and court proceedings. To address this problem, a new technology based on gas sensor arrays was investigated for its applicability to forensic and law enforcement problems. The technology employs an array of sensors that respond to volatile chemical components yielding a characteristic 'fingerprint' pattern representative of the vapor-phase composition of a sample. Sample aromas can be analyzed and identified using artificial neural networks that are trained on known aroma patterns. Several candidate applications based on known technological needs of the forensic and law enforcement communities have been investigated. These applications have included the detection of aromas emanating from cadavers to aid in determining time since death, drug detection for deterring the manufacture, sale, and use of drugs of abuse, and the analysis of fire debris for accelerant identification. The result to date for these applications have been extremely promising and demonstrate the potential applicability of this technology for forensic use.
NASA Astrophysics Data System (ADS)
Balss, Karin Maria
The research contained in this thesis is focused on the formation and characterization of surface composition gradients on thin gold films that are formed by applications of in-plane potential gradients. Injecting milliamp currents into thin Au films yields significant in-plane voltage drops so that, rather than assuming a single value of potential, an in-plane potential gradient is imposed on the film which depends on the resistivity of the film, the cross sectional area and the magnitude of the potential drop. Furthermore, the in-plane electric potential gradient means that, relative to a solution reference couple, electrochemical reactions occurs at defined spatial positions corresponding to the local potential, V(x) ˜ E0. The spatial gradient in electrochemical potential can then produce spatially dependent electrochemistry. Surface-chemical potential gradients can be prepared by arranging the spread of potentials to span an electrochemical wave mediating redox-associated adsorption or desorption. Examples of reactions that can be spatially patterned include the electrosorption of alkanethiols and over-potential metal deposition. The unique advantage of this method for patterning spatial compositions is the control of surface coverage in both space and time. The thesis is organized into two parts. In Part I, formation and characterization of 1- and 2-component alkanethiol monolayer gradients is investigated. Numerous surface science tools are employed to examine the distribution in coverage obtained by application of in-plane potential gradients. Macroscopic characterization was obtained by sessile water drop contact angle measurements and surface plasmon resonance imaging. Gradients were also imaged on micron length scales with pulsed-force mode atomic force microscopy. Direct chemical evidence of surface compositions in aromatic thiol surface coverage was obtained by surface-enhanced Raman spectroscopy. In Part II, the applications of in-plane potential gradients is discussed. Electrochemical reactions other than electrosorption of alkanethiols were demonstrated with over-potential deposition of copper onto gold films. One application of these patterns is to control the movement of supermolecular objects. As a first step towards this goal, biological cells were seeded onto gradient patterns containing adhesion promoters and inhibitors. The morphology and adhesion was investigated as a function of concentration along the gradient.
The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation
Kim, Eun-Jung; Kim, Nayoun; Cho, Seok-Goo
2013-01-01
In the last 10 years, mesenchymal stem cells (MSCs) have emerged as a therapeutic approach to regenerative medicine, cancer, autoimmune diseases, and many more due to their potential to differentiate into various tissues, to repair damaged tissues and organs, and also for their immunomodulatory properties. Findings in vitro and in vivo have demonstrated immune regulatory function of MSCs and have facilitated their application in clinical trials, such as those of autoimmune diseases and chronic inflammatory diseases. There has been an increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation (HSCT), including hematopoietic stem cell engraftment and the prevention and treatment of graft-versus-host disease (GVHD), and their therapeutic potential has been reported in numerous clinical trials. Although the safety of clinical application of MSCs is established, further modifications to improve their efficacy are required. In this review, we summarize advances in the potential use of MSCs in HSCT. In addition, we discuss their use in clinical trials of the treatment of GVHD following HSCT, the immunomodulatory capacity of MSCs, and their regenerative and therapeutic potential in the field of HSCT. PMID:23306700
Chang, Moon-Hwan; Dosev, Dosi; Kennedy, Ian M.
2007-01-01
Increasingly growing application of nanoparticles in biotechnology requires fast and accessible tools for their manipulation and for characterization of their colloidal properties. In this work we determine the zeta-potentials for polystyrene nanoparticles using micro electrical field flow fractionation (μ–EFFF) which is an efficient method for sorting of particles by size. The data obtained by μ–EFFF were compared to zeta potentials determined by standard capillary electrophoresis. For proof of concept, we used polystyrene nanoparticles of two different sizes, impregnated with two different fluorescent dyes. Fluorescent emission spectra were used to evaluate the particle separation in both systems. Using the theory of electrophoresis, we estimated the zeta-potentials as a function of size, dielectric permittivity, viscosity and electrophoretic mobility. The results obtained by the μ–EFFF technique were confirmed by the conventional capillary electrophoresis measurements. These results demonstrate the applicability of the μ–EFFF method not only for particle size separation but also as a simple and inexpensive tool for measurements of nanoparticles zeta potentials. PMID:18542710
Ardeshiri, Ramtin; Mulcahy, Ben; Zhen, Mei; Rezai, Pouya
2016-01-01
C. elegans is a well-known model organism in biology and neuroscience with a simple cellular (959 cells) and nervous (302 neurons) system and a relatively homologous (40%) genome to humans. Lateral and longitudinal manipulation of C. elegans to a favorable orientation is important in many applications such as neural and cellular imaging, laser ablation, microinjection, and electrophysiology. In this paper, we describe a micro-electro-fluidic device for on-demand manipulation of C. elegans and demonstrate its application in imaging of organs and neurons that cannot be visualized efficiently under natural orientation. To achieve this, we have used the electrotaxis technique to longitudinally orient the worm in a microchannel and then insert it into an orientation and imaging channel in which we integrated a rotatable glass capillary for orientation of the worm in any desired direction. The success rates of longitudinal and lateral orientations were 76% and 100%, respectively. We have demonstrated the application of our device in optical and fluorescent imaging of vulva, uterine-vulval cell (uv1), vulB1\\2 (adult vulval toroid cells), and ventral nerve cord of wild-type and mutant worms. In comparison to existing methods, the developed technique is capable of orienting the worm at any desired angle and maintaining the orientation while providing access to the worm for potential post-manipulation assays. This versatile tool can be potentially used in various applications such as neurobehavioral imaging, neuronal ablation, microinjection, and electrophysiology. PMID:27990213
High Temperature Performance Evaluation of a Compliant Foil Seal
NASA Technical Reports Server (NTRS)
Salehi, Mohsen; Heshmat, Hooshang; Walton, James F., II
2001-01-01
The key points to be gleaned from the effort reported herein are that the CFS (Compliant Foil Seal) has been demonstrated in conjunction with a foil bearing in a small gas turbine simulator at temperatures as high as 1000 F and outperformed a comparable brush seal. Having demonstrated the feasibility of the CFS, it would appear that this new seal design has application potential in a wide range of machines. What remains is to demonstrate performance at higher pressure ratios, consistent performance at large rotor excursions and the ability to manufacture the seal in much larger sizes exceeding by an order of magnitude that which has been tested to date.
Wang, Jindong; Qin, Xiaojuan; Jiang, Yinzhu; Wang, Xiaojing; Chen, Liwei; Zhao, Feng; Wei, Zhengjun; Zhang, Zhiming
2016-04-18
A proof-of-principle demonstration of a one-way polarization encoding quantum key distribution (QKD) system is demonstrated. This approach can automatically compensate for birefringence and phase drift. This is achieved by constructing intrinsically stable polarization-modulated units (PMUs) to perform the encoding and decoding, which can be used with four-state protocol, six-state protocol, and the measurement-device-independent (MDI) scheme. A polarization extinction ratio of about 30 dB was maintained for several hours over a 50 km optical fiber without any adjustments to our setup, which evidences its potential for use in practical applications.
The Advanced Communications Technology Satellite - Performance, Reliability and Lessons Learned
NASA Technical Reports Server (NTRS)
Krawczyk, Richard J.; Ignaczak, Louis R.
2000-01-01
The Advanced Communications Satellite (ACTS) was conceived and developed in the mid- 1980s as an experimental satellite to demonstrate unproven Ka-band technology, and potential new commercial applications and services. Since launch into geostationary orbit in September 1993. ACTS has accumulated almost seven years of essentially trouble-free operation and met all program objectives. The unique technology, service experiments. and system level demonstrations accomplished by ACTS have been reported in many forums over the past several years. As ACTS completes its final experiments activity, this paper will relate the top-level program goals that have been achieved in the design, operation, and performance of the particular satellite subsystems. Pre-launch decisions to ensure satellite reliability and the subsequent operational experiences contribute to lessons learned that may be applicable to other comsat programs.
Parametric amplification of orbital angular momentum beams based on light-acoustic interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wei, E-mail: wei-g@163.com, E-mail: zhuzhihandd@sina.com; Mu, Chunyuan; Yang, Yuqiang
A high fidelity amplification of beams carrying orbital angular momentum (OAM) is very crucial for OAM multiplexing and other OAM-based applications. Here, we report a demonstration of stimulated Brillouin amplification for OAM beams, and the energy conversion efficiency of photon-phonon coupling and the phase structure of amplified signals are investigated in collinear and noncollinear frame systems, respectively. Our results demonstrate that the OAM signals can be efficiently amplified without obvious noise introduced, and the modes of output signal are independent of the pump modes or the geometrical frames. Meanwhile, an OAM state depending on the optical modes and the geometricalmore » frames is loaded into phonons by coherent light-acoustic interaction, which reveals more fundamental significance and a great application potential in OAM-multiplexing.« less
Intelligent Mortality Reporting with FHIR
Hoffman, Ryan A.; Wu, Hang; Venugopalan, Janani; Braun, Paula; Wang, May D.
2017-01-01
One pressing need in the area of public health is timely, accurate, and complete reporting of deaths and the conditions leading up to them. Fast Healthcare Interoperability Resources (FHIR) is a new HL7 interoperability standard for electronic health record (EHR), while Sustainable Medical Applications and Reusable Technologies (SMART)-on-FHIR enables third-party app development that can work “out of the box”. This research demonstrates the feasibility of developing SMART-on-FHIR applications to enable medical professionals to perform timely and accurate death reporting within multiple different jurisdictions of US. We explored how the information on a standard certificate of death can be mapped to resources defined in the FHIR standard (DSTU2). We also demonstrated analytics for potentially improving the accuracy and completeness of mortality reporting data. PMID:28804791
Development of magnesium diboride (MgB 2) wires and magnets using in situ strand fabrication method
NASA Astrophysics Data System (ADS)
Tomsic, Michael; Rindfleisch, Matthew; Yue, Jinji; McFadden, Kevin; Doll, David; Phillips, John; Sumption, Mike D.; Bhatia, Mohit; Bohnenstiehl, Scot; Collings, E. W.
2007-06-01
Since 2001 when magnesium diboride (MgB 2) was first reported to have a transition temperature of 39 K, conductor development has progressed to where MgB 2 superconductor wire in kilometer-long piece-lengths has been demonstrated in magnets and coils. Work has started on demonstrating MgB 2 wire in superconducting devices now that the wire is available commercially. MgB 2 superconductors and coils have the potential to be integrated in a variety of commercial applications such as magnetic resonance imaging, fault current limiters, transformers, motors, generators, adiabatic demagnetization refrigerators, magnetic separation, magnetic levitation, energy storage, and high energy physics applications. This paper discusses the progress on MgB 2 conductor and coil development in the last several years at Hyper Tech Research, Inc.
Bioinspired Synthesis of Monolithic and Layered Aerogels.
Han, Xiao; Hassan, Khalil T; Harvey, Alan; Kulijer, Dejan; Oila, Adrian; Hunt, Michael R C; Šiller, Lidija
2018-06-01
Aerogels are the least dense and most porous materials known to man, with potential applications from lightweight superinsulators to smart energy materials. To date their use has been seriously hampered by their synthesis methods, which are laborious and expensive. Taking inspiration from the life cycle of the damselfly, a novel ambient pressure-drying approach is demonstrated in which instead of employing low-surface-tension organic solvents to prevent pore collapse during drying, sodium bicarbonate solution is used to generate pore-supporting carbon dioxide in situ, significantly reducing energy, time, and cost in aerogel production. The generic applicability of this readily scalable new approach is demonstrated through the production of granules, monoliths, and layered solids with a number of precursor materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compression of surface myoelectric signals using MP3 encoding.
Chan, Adrian D C
2011-01-01
The potential of MP3 compression of surface myoelectric signals is explored in this paper. MP3 compression is a perceptual-based encoder scheme, used traditionally to compress audio signals. The ubiquity of MP3 compression (e.g., portable consumer electronics and internet applications) makes it an attractive option for remote monitoring and telemedicine applications. The effects of muscle site and contraction type are examined at different MP3 encoding bitrates. Results demonstrate that MP3 compression is sensitive to the myoelectric signal bandwidth, with larger signal distortion associated with myoelectric signals that have higher bandwidths. Compared to other myoelectric signal compression techniques reported previously (embedded zero-tree wavelet compression and adaptive differential pulse code modulation), MP3 compression demonstrates superior performance (i.e., lower percent residual differences for the same compression ratios).
Topical nitroglycerin: a potential treatment for impotence.
Owen, J A; Saunders, F; Harris, C; Fenemore, J; Reid, K; Surridge, D; Condra, M; Morales, A
1989-03-01
The effect of 2 per cent nitroglycerin paste applied to the penile shaft of impotent subjects was evaluated in a placebo controlled double-blind study under laboratory conditions. After application of nitroglycerin paste or a placebo ointment base, penile tumescence was recorded through a strain gauge transducer while subjects viewed an erotic video presentation. Relative to the placebo paste the number of subjects demonstrating an increase in penile circumference after nitroglycerin (18 of 26) was significantly different than all other outcome possibilities (p less than 0.05). Noninvasive vascular assessment by ultrasonography demonstrated an increase in diameter and blood flow in the cavernous arteries after application of nitroglycerin paste. Nitroglycerin paste increases blood flow in the cavernous arteries and improves tumescence after erotic stimulation. This agent may represent a new therapy for impotence.
Applications of ultrafast laser direct writing: from polarization control to data storage
NASA Astrophysics Data System (ADS)
Donko, A.; Gertus, T.; Brambilla, G.; Beresna, M.
2018-02-01
Ultrafast laser direct writing is a fascinating technology which emerged more than two decades from fundamental studies of material resistance to high-intensity optical fields. Its development saw the discovery of many puzzling phenomena and demonstration of useful applications. Today, ultrafast laser writing is seen as a technology with great potential and is rapidly entering the industrial environment. Whereas, less than 10 years ago, ultrafast lasers were still confined within the research labs. This talk will overview some of the unique features of ultrafast lasers and give examples of its applications in optical data storage, polarization control and optical fibers.
Composite material application for liquid rocket engines
NASA Technical Reports Server (NTRS)
Heubner, S. W.
1982-01-01
With increasing emphasis on improving engine thrust-to-weight ratios to provide improved payload capabilities, weight reductions achievable by the use of composites have become attractive. Of primary significance is the weight reduction offered by composites, although high temperature properties and cost reduction were also considered. The potential for application of composites to components of Earth-to-orbit hydrocarbon engines and orbit-to-orbit LOX/H2 engines was assessed. The components most likely to benefit from the application of composites were identified, as were the critical technology areas where developed would be required. Recommendations were made and a program outlined for the design, fabrication, and demonstration of specific engine components.
Aerogel Use as a Skin Protective Liner In Space Suits and Prosthetic Limbs Project
NASA Technical Reports Server (NTRS)
Roberson, Luke Bennett
2014-01-01
Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications for use in space suits and orthopedics. Three tests were performed on several types of aerogel to assess the properties of each material, and our initial findings demonstrated that these materrials would be excellent candidates for liner applications for prosthetics and space suits. The project is currently on hold until additional funding is obtained for application testing at the VH Hospitals in Tampa
Bottom-Up Syntheses and Characterization of One Dimensional Nanomaterials
NASA Astrophysics Data System (ADS)
Yeh, Yao-Wen
Nanomaterials, materials having at least one dimension below 100 nm, have been creating exciting opportunities for fundamental quantum confinement studies and applications in electronic devices and energy technologies. One obvious and important aspect of nanomaterials is their production. Although nanostructures can be obtained by top-down reductive e-beam lithography and focused ion beam processes, further development of these processes is needed before these techniques can become practical routes to large scale production. On the other hand, bottom-up syntheses, with advantages in material diversity, throughput, and the potential for large volume production, may provide an alternative strategy for creating nanostructures. In this work, we explore syntheses of one dimensional nanostructures based on hydrothermal and arc discharge methods. The first project presented in this thesis involves syntheses of technologically important nanomaterials and their potential application in energy harvesting. In particular, it was demonstrated that single crystal ferroelectric lead magnesium niobate lead titanate (PMN-PT) nanowires can be synthesized by a hydrothermal route. The chemical composition of the synthesized nanowires is near the rhombohedral-monoclinic boundary of PMN-PT, which leads to a high piezoelectric coefficient of 381 pm/V. Finally, the potential use of PMN-PT nanowires in energy harvesting applications was also demonstrated. The second part of this thesis involves the synthesis of carbon and boron nitride nanotubes by dc arc discharges. In particular, we investigated how local plasma related properties affected the synthesis of carbon nanostructures. Finally, we investigated the anodic nature of the arc and how a dc arc discharge can be applied to synthesize boron nitride nanotubes.
Zhang, Melvyn; Bingham, Kathleen; Kantarovich, Karin; Laidlaw, Jennifer; Urbach, David; Sockalingam, Sanjeev; Ho, Roger
2016-04-30
Delirium is a common medical condition with a high prevalence in hospital settings. Effective delirium management requires a multi-component intervention, including the use of Interprofessional teams and evidence-based interventions at the point of care. One vehicle for increasing access of delirium practice tools at the point of care is E-health. There has been a paucity of studies describing the implementation of delirium related clinical application. The purpose of this current study is to acquire users' perceptions of the utility, feasibility and effectiveness of a smartphone application for delirium care in a general surgery unit. In addition, the authors aimed to elucidate the potential challenges with implementing this application. This quantitative study was conducted between January 2015 and June 2015 at the University Health Network, Toronto General Hospital site. Participants met inclusion criteria if they were clinical staff on the General Surgery Unit at the Toronto General Hospital site and had experience caring for patients with delirium. At the conclusion of the 4 weeks after the implementation of the intervention, participants were invited by email to participate in a focus group to discuss their perspectives related to using the delirium application Our findings identified several themes related to the implementation and use of this smartphone application in an acute care clinical setting. These themes will provide clinicians preparing to use a smartphone application to support delirium care with an implementation framework. This study is one of the first to demonstrate the potential utility of a smartphone application for delirium inter-professional education. While this technology does appeal to healthcare professionals, it is important to note potential implementation challenges. Our findings provide insights into these potential barriers and can be used to assist healthcare professionals considering the development and use of an inter-professional clinical care application in their setting.
NASA Astrophysics Data System (ADS)
Miloi, Mădălina Mihaela; Goryunov, Semyon; Kulin, German
2018-04-01
A wide range of problems in neutron optics is well described by a theory based on application of the effective potential model. It was assumed that the concept of the effective potential in neutron optics have a limited region of validity and ceases to be correct in the case of the giant acceleration of a matter. To test this hypothesis a new Ultra Cold neutron experiment for the observation neutron interaction with potential structure oscillating in space was proposed. The report is focused on the model calculations of the topography of sample surface that oscillate in space. These calculations are necessary to find an optimal parameters and geometry of the planned experiment.
Arnold, Mayara; Batista, Jacimaria; Dickenson, Eric; Gerrity, Daniel
2018-07-01
The purpose of this research was to investigate the impacts of ozone dose and empty bed contact time (EBCT) in ozone-biofiltration systems on disinfection byproduct (DBP) formation potential. The data were used to evaluate the possibility of using DBP formation potential as an alternative guideline for total organic carbon (TOC) removal in potable reuse applications. A pilot-scale ozone-biofiltration system was operated with O 3 /TOC ratios ranging from 0.1 to 2.25 and EBCTs ranging from 2 to 20 min. The biofiltration columns contained anthracite or biological activated carbon (BAC). Bench-scale chlorination was performed using the uniform formation conditions (UFC) approach, and quenched samples were analyzed for total trihalomethanes (TTHMs) and regulated haloacetic acids (HAA5s). The data demonstrated that ozone-biofiltration achieved TOC removals ranging from ∼10 to 30%, depending on operational conditions, but biofiltration without ozone generally achieved <10% TOC removal. UFC testing demonstrated that ozone alone was efficient in transforming bulk organic matter and reducing DBP formation potential by 10-30%. The synergistic combination of ozone and biofiltration achieved average overall reductions in TTHM and HAA5 formation potential of 26% and 51%, respectively. Finally, a maximum TOC concentration of 2.0 mg/L was identified as a recommended treatment target for reliable compliance with TTHM and HAA5 regulations for potable reuse systems in the United States. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wu, Hsin-Yu; Cunningham, Brian T
2014-05-21
We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml(-1)) well below typical administered dosages (mg ml(-1)). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery.
Xiao, Wei; Li, Yuan; Hu, Chuan; Huang, Yuan; He, Qin; Gao, Huile
2017-07-01
Carbonaceous dots exhibit increasing applications in diagnosis and drug delivery due to excellent photostability and biocompatibility properties. However, relative short excitation and emission of melanin carbonaceous dots (MCDs) limit the applicability in fluorescence bioimaging. Furthermore, the generally poor spatial resolution of fluorescence imaging limits potential in vivo applications. Due to a variety of beneficial properties, in this study, MCDs were prepared exhibiting great potential in fluorescence and photoacoustic dual-mode bioimaging. The MCDs exhibited a long excitation peak at 615nm and emission peak at 650nm, further highlighting the applicability in fluorescence imaging, while the absorbance peak at 633nm renders MCDs suitable for photoacoustic imaging. In vivo, the photoacoustic signal of MCDs was linearly correlated with the concentration of MCDs. Moreover, the MCDs were shown to be taken up into triple negative breast cancer cell line 4T1 in both a time- and concentration-dependent manner. In vivo fluorescence and photoacoustic imaging of subcutaneous 4T1 tumor demonstrated that MCDs could passively target triple negative breast cancer tissue by enhanced permeability and retention effects and may therefore be used for tumor dual-mode imaging. Furthermore, fluorescence distribution in tissue slices suggested that MCDs may distribute in 4T1 tumor with high efficacy. In conclusion, the MCDs studied offer potential application in fluorescence and photoacoustic dual-mode imaging. Copyright © 2017 Elsevier Inc. All rights reserved.
Recent progress in flexible OLED displays
NASA Astrophysics Data System (ADS)
Hack, Michael G.; Weaver, Michael S.; Mahon, Janice K.; Brown, Julie J.
2001-09-01
Organic light emitting device (OLED) technology has recently been shown to demonstrate excellent performance and cost characteristics for use in numerous flat panel display (FPD) applications. OLED displays emit bright, colorful light with excellent power efficiency, wide viewing angle and video response rates. OLEDs are also demonstrating the requisite environmental robustness for a wide variety of applications. OLED technology is also the first FPD technology with the potential to be highly functional and durable in a flexible format. The use of plastic and other flexible substrate materials offers numerous advantages over commonly used glass substrates, including impact resistance, light weight, thinness and conformability. Currently, OLED displays are being fabricated on rigid substrates, such as glass or silicon wafers. At Universal Display Corporation (UDC), we are developing a new class of flexible OLED displays (FOLEDs). These displays also have extremely low power consumption through the use of electrophosphorescent doped OLEDs. To commercialize FOLED technology, a number of technical issues related to packaging and display processing on flexible substrates need to be addressed. In this paper, we report on our recent results to demonstrate the key technologies that enable the manufacture of power efficient, long-life flexible OLED displays for commercial and military applications.
NASA Astrophysics Data System (ADS)
Piao, Daqing; Ramadan, Mohammad; Park, Aaron; Bartels, Kenneth E.; Patel, Sanjay G.
2017-10-01
Inadvertent injury to important anatomic structures is a significant risk in minimally invasive surgery (MIS) that potentially requires conversion to an open procedure, which results in increased morbidity and mortality. Surgeons operating minimal-invasively currently do not have an easy-to-use, real-time device to aid in intraoperative identification of important anatomic structures that underlie tissue planes. We demonstrate freehand diffuse optical spectroscopy (DOS) imaging for intraoperatively identifying major underlying veins and arteries. An applicator probe that can be affixed to and detached from an 8-mm laparoscopic instrument has been developed. The 10-mm DOS source-detector separation renders sampling of tissue heterogeneities a few millimeters deep. DOS spectra acquired consecutively during freehand movement of the applicator probe on the tissue surface are displayed as a temporal and spectral image to assist in spatially resolved identification of the underlying structures. Open surgery identifications of the vena cava and aorta underlying peritoneal fat of ˜4 mm in thickness using the applicator probe under room light were demonstrated repeatedly in multiple pigs in vivo.
Bhartia, Bhavesh; Bacher, Nadav; Jayaraman, Sundaramurthy; Khatib, Salam; Song, Jing; Guo, Shifeng; Troadec, Cedric; Puniredd, Sreenivasa Reddy; Srinivasan, Madapusi Palavedu; Haick, Hossam
2015-07-15
Formation of dense monolayers with proven atmospheric stability using simple fabrication conditions remains a major challenge for potential applications such as (bio)sensors, solar cells, surfaces for growth of biological cells, and molecular, organic, and plastic electronics. Here, we demonstrate a single-step modification of organophosphonic acids (OPA) on 1D and 2D structures using supercritical carbon dioxide (SCCO2) as a processing medium, with high stability and significantly shorter processing times than those obtained by the conventional physisorption-chemisorption method (2.5 h vs 48-60 h).The advantages of this approach in terms of stability and atmospheric resistivity are demonstrated on various 2D materials, such as indium-tin-oxide (ITO) and 2D Si surfaces. The advantage of the reported approach on electronic and sensing devices is demonstrated by Si nanowire field effect transistors (SiNW FETs), which have shown a few orders of magnitude higher electrical and sensing performances, compared with devices obtained by conventional approaches. The compatibility of the reported approach with various materials and its simple implementation with a single reactor makes it easily scalable for various applications.
Strategies for improving neural signal detection using a neural-electronic interface.
Szlavik, Robert B
2003-03-01
There have been various theoretical and experimental studies presented in the literature that focus on interfacing neurons with discrete electronic devices, such as transistors. From both a theoretical and experimental perspective, these studies have emphasized the variability in the characteristics of the detected action potential from the nerve cell. The demonstrated lack of reproducible fidelity of the nerve cell action potential at the device junction would make it impractical to implement these devices in any neural prosthetic application where reliable detection of the action potential was a prerequisite. In this study, the effects of several different physical parameters on the fidelity of the detected action potential at the device junction are investigated and discussed. The impact of variations in the extracellular resistivity, which directly affects the junction seal resistance, is studied along with the impact of variable nerve cell membrane capacitance and variations in the injected charge. These parameters are discussed in the context of their suitability to design manipulation for the purpose of improving the fidelity of the detected neural action potential. In addition to investigating the effects of variations in these parameters, the applicability of the linear equivalent circuit approach to calculating the junction potential is investigated.
Examples of Current and Future Uses of Neural-Net Image Processing for Aerospace Applications
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2004-01-01
Feed forward artificial neural networks are very convenient for performing correlated interpolation of pairs of complex noisy data sets as well as detecting small changes in image data. Image-to-image, image-to-variable and image-to-index applications have been tested at Glenn. Early demonstration applications are summarized including image-directed alignment of optics, tomography, flow-visualization control of wind-tunnel operations and structural-model-trained neural networks. A practical application is reviewed that employs neural-net detection of structural damage from interference fringe patterns. Both sensor-based and optics-only calibration procedures are available for this technique. These accomplishments have generated the knowledge necessary to suggest some other applications for NASA and Government programs. A tomography application is discussed to support Glenn's Icing Research tomography effort. The self-regularizing capability of a neural net is shown to predict the expected performance of the tomography geometry and to augment fast data processing. Other potential applications involve the quantum technologies. It may be possible to use a neural net as an image-to-image controller of an optical tweezers being used for diagnostics of isolated nano structures. The image-to-image transformation properties also offer the potential for simulating quantum computing. Computer resources are detailed for implementing the black box calibration features of the neural nets.
Development of grid-like applications for public health using Web 2.0 mashup techniques.
Scotch, Matthew; Yip, Kevin Y; Cheung, Kei-Hoi
2008-01-01
Development of public health informatics applications often requires the integration of multiple data sources. This process can be challenging due to issues such as different file formats, schemas, naming systems, and having to scrape the content of web pages. A potential solution to these system development challenges is the use of Web 2.0 technologies. In general, Web 2.0 technologies are new internet services that encourage and value information sharing and collaboration among individuals. In this case report, we describe the development and use of Web 2.0 technologies including Yahoo! Pipes within a public health application that integrates animal, human, and temperature data to assess the risk of West Nile Virus (WNV) outbreaks. The results of development and testing suggest that while Web 2.0 applications are reasonable environments for rapid prototyping, they are not mature enough for large-scale public health data applications. The application, in fact a "systems of systems," often failed due to varied timeouts for application response across web sites and services, internal caching errors, and software added to web sites by administrators to manage the load on their servers. In spite of these concerns, the results of this study demonstrate the potential value of grid computing and Web 2.0 approaches in public health informatics.
Chapiro, Julius; Geschwind, Jean-François
2015-08-01
In this issue, Rozenblum et al ( 1 ) were able to demonstrate that radiofrequency (RF) ablation-induced liver regeneration promotes "off-target" tumorigenesis in a MDR2 knock-out mouse model of hepatocellular carcinoma (HCC) in the setting of chronic liver inflammation. In addition, the authors demonstrated that blocking liver regeneration with a c-met inhibitor might attenuate or eliminate potential tumorigenic effects. These results provide the rationale for combined therapeutic approaches of RF ablation followed by a systemic application of immunomodulatory drugs.
NASA Technical Reports Server (NTRS)
Meyer, Tom; Zubrin, Robert
1997-01-01
The first phase of the research includes a comprehensive analytical study examining the potential applications for engineering subsystems and mission strategies made possible by such RWGS based subsystems, and will include an actual experimental demonstration and performance characterization of a full-scale brassboard RWGS working unit. By the time of this presentation the laboratory demonstration unit will not yet be operational but we will present the results of our analytical studies to date and plans for the ongoing work.
Linifanib--a multi-targeted receptor tyrosine kinase inhibitor and a low molecular weight gelator.
Marlow, Maria; Al-Ameedee, Mohammed; Smith, Thomas; Wheeler, Simon; Stocks, Michael J
2015-04-14
In this study we demonstrate that linifanib, a multi-targeted receptor tyrosine kinase inhibitor, with a key urea containing pharmacophore, self-assembles into a hydrogel in the presence of low amounts of solvent. We demonstrate the role of the urea functional group and that of fluorine substitution on the adjacent aromatic ring in promoting self-assembly. We have also shown that linifanib has superior mechanical strength to two structurally related analogues and hence increased potential for localisation at an injection site for drug delivery applications.
Atom-Photon Coupling from Nitrogen-vacancy Centres Embedded in Tellurite Microspheres
NASA Astrophysics Data System (ADS)
Ruan, Yinlan; Gibson, Brant C.; Lau, Desmond W. M.; Greentree, Andrew D.; Ji, Hong; Ebendorff-Heidepriem, Heike; Johnson, Brett C.; Ohshima, Takeshi; Monro, Tanya M.
2015-06-01
We have developed a technique for creating high quality tellurite microspheres with embedded nanodiamonds (NDs) containing nitrogen-vacancy (NV) centres. This hybrid method allows fluorescence of the NVs in the NDs to be directly, rather than evanescently, coupled to the whispering gallery modes of the tellurite microspheres at room temperature. As a demonstration of its sensing potential, shifting of the resonance peaks is also demonstrated by coating a sphere surface with a liquid layer. This new approach is a robust way of creating cavities for use in quantum and sensing applications.
Electrostatic Field Invisibility Cloak
NASA Astrophysics Data System (ADS)
Lan, Chuwen; Yang, Yuping; Geng, Zhaoxin; Li, Bo; Zhou, Ji
2015-11-01
The invisibility cloak has been drawing much attention due to its new concept for manipulating many physical fields, from oscillating wave fields (electromagnetic, acoustic and elastic) to static magnetic fields, dc electric fields, and diffusive fields. Here, an electrostatic field invisibility cloak has been theoretically investigated and experimentally demonstrated to perfectly hide two dimensional objects without disturbing their external electrostatic fields. The desired cloaking effect has been achieved via both cancelling technology and transformation optics (TO). This study demonstrates a novel way for manipulating electrostatic fields, which shows promise for a wide range of potential applications.
A symbolic shaped-based retrieval of skull images.
Lin, H Jill; Ruiz-Correa, Salvador; Shapiro, Linda G; Cunningham, Michael L; Sze, Raymond W
2005-01-01
In this work, we describe a novel symbolic representation of shapes for quantifying skull abnormalities in children with craniosynostosis. We show the efficacy of our work by demonstrating an application of this representation in shape-based retrieval of skull morphologies. This tool will enable correlation with potential pathogenesis and prognosis in order to enhance medical care.
NASA Astrophysics Data System (ADS)
Jacobs, Alan M.; Cox, John D.; Juang, Yi-Shung
1987-01-01
A solid-state digital x-ray detector is described which can replace high resolution film in industrial radiography and has potential for application in some medical imaging. Because of the 10 micron pixel pitch on the sensor, contact magnification radiology is possible and is demonstrated. Methods for frame speed increase and integration of sensor to a large format are discussed.
Applications of Redwood Genotyping by Using Microsatellite Markers
Chris Brinegar; Dan Bruno; Ryan Kirkbride; Steven Glavas; Ingrid Udranszky
2007-01-01
A panel of polymorphic microsatellite markers have been developed in coast redwood (Sequoia sempervirens). Two loci in particular (Seq18D7-3 and Seq21E5) demonstrate the potential of microsatellite genotyping in the assessment of genetic diversity and inheritance in redwoods. The highly polymorphic Seq18D7-3 marker provided evidence for the planting...
A Synthesis of the Economic Values of Wilderness
Tom Holmes; Michael Bowker; Jeffrey Englin; Evan Hjerpe; John B. Loomis; Spencer Phillips; Robert Richardson
2015-01-01
Early applications of wilderness economic research demonstrated that the values of natural amenities and commodities produced from natural areas could be measured in commensurate terms. To the surprise of many, the economic values of wilderness protection often exceeded the potential commercial values that might result from resource extraction. Here, the concepts and...
ERIC Educational Resources Information Center
Nimon, Kim
2012-01-01
Using state achievement data that are openly accessible, this paper demonstrates the application of hierarchical linear modeling within the context of career technical education research. Three prominent approaches to analyzing clustered data (i.e., modeling aggregated data, modeling disaggregated data, modeling hierarchical data) are discussed…
"Mouse Clone Model" for evaluating the immunogenicity and tumorigenicity of pluripotent stem cells.
Zhang, Gang; Zhang, Yi
2015-12-18
To investigate the immune-rejection and tumor-formation potentials of induced pluripotent stem cells and other stem cells, we devised a model-designated the "Mouse Clone Model"-which combined the theory of somatic animal cloning, tetraploid complementation, and induced pluripotent stem cells to demonstrate the applicability of stem cells for transplantation therapy.
Evaluation of a hybrid pixel detector for electron microscopy.
Faruqi, A R; Cattermole, D M; Henderson, R; Mikulec, B; Raeburn, C
2003-04-01
We describe the application of a silicon hybrid pixel detector, containing 64 by 64 pixels, each 170 microm(2), in electron microscopy. The device offers improved resolution compared to CCDs along with faster and noiseless readout. Evaluation of the detector, carried out on a 120 kV electron microscope, demonstrates the potential of the device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippe, Sebastien
A system that can compare physical objects while potentially protecting sensitive information about the objects themselves has been demonstrated experimentally at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). This work, by researchers at Princeton University and PPPL, marks an initial confirmation of the application of a powerful cryptographic technique in the physical world. Graduate student Sébastien Philippe discusses the experiment.
Kalman filter control of a model of spatiotemporal cortical dynamics
Schiff, Steven J; Sauer, Tim
2007-01-01
Recent advances in Kalman filtering to estimate system state and parameters in nonlinear systems have offered the potential to apply such approaches to spatiotemporal nonlinear systems. We here adapt the nonlinear method of unscented Kalman filtering to observe the state and estimate parameters in a computational spatiotemporal excitable system that serves as a model for cerebral cortex. We demonstrate the ability to track spiral wave dynamics, and to use an observer system to calculate control signals delivered through applied electrical fields. We demonstrate how this strategy can control the frequency of such a system, or quench the wave patterns, while minimizing the energy required for such results. These findings are readily testable in experimental applications, and have the potential to be applied to the treatment of human disease. PMID:18310806
Zhang, Jing; Moradi, Emilia; Somekh, Michael G; Mather, Melissa L
2018-01-15
A label-free microscopy method for assessing the differentiation status of stem cells is presented with potential application for characterization of therapeutic stem cell populations. The microscopy system is capable of characterizing live cells based on the use of evanescent wave microscopy and quantitative phase contrast (QPC) microscopy. The capability of the microscopy system is demonstrated by studying the differentiation of live immortalised neonatal mouse neural stem cells over a 15 day time course. Metrics extracted from microscope images are assessed and images compared with results from endpoint immuno-staining studies to illustrate the system's performance. Results demonstrate the potential of the microscopy system as a valuable tool for cell biologists to readily identify the differentiation status of unlabelled live cells.
Market definition studies for photovoltaic highway applications
NASA Technical Reports Server (NTRS)
1978-01-01
Prospects for solar electric power in applications related to highways within the continental United States are examined. Principal prospective users are found to be the highway departments of the various states. Economic analysis is employed to demonstrate that suitable applications can occur when powering apparatus such as signs, crossing signals, or instruments which consume less than 100 watts on the average, provided they are located at least one-half mile from existing utility power. Such applications are projected to occur two or three times per state per year. Attitudes of highway officials toward possible use of solar power are sampled and described. Although falling photovoltaic cell prices are expected to have little effect on sales potential here, methods for federal stimulation of this market are discussed.
Argon gas: a potential neuroprotectant and promising medical therapy
2014-01-01
Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential. PMID:24533741
Experimental program to determine long term characteristics of the MDE pressure transducers
NASA Technical Reports Server (NTRS)
Parker, C. D.
1973-01-01
The pressure cell sensors developed for the Pioneer 10/G meteoroid detection experiments (MDE) were investigated to enhance their application and their potential as a sensor in other MDE applications. Their Paschen characteristics were also investigated, and the effects of variations in geometry, Ni-63 platings (for initial ionizations) and sealing pressures were determined. The effects of extensive pre-flight testing and proton and heavy ion space radiation were investigated. Flight-quality pressure panels/cells were committed to long term testing to demonstrate their suitability for the Pioneer 10/G Missions.
Visible-light optical coherence tomography: a review
NASA Astrophysics Data System (ADS)
Shu, Xiao; Beckmann, Lisa; Zhang, Hao F.
2017-12-01
Visible-light optical coherence tomography (vis-OCT) is an emerging imaging modality, providing new capabilities in both anatomical and functional imaging of biological tissue. It relies on visible light illumination, whereas most commercial and investigational OCTs use near-infrared light. As a result, vis-OCT requires different considerations in engineering design and implementation but brings unique potential benefits to both fundamental research and clinical care of several diseases. Here, we intend to provide a summary of the development of vis-OCT and its demonstrated applications. We also provide perspectives on future technology improvement and applications.
Mode locking of electron spin coherences in singly charged quantum dots.
Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M
2006-07-21
The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.
Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications.
Tokuda, Takashi; Noda, Toshihiko; Sasagawa, Kiyotaka; Ohta, Jun
2010-12-29
In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors' architecture on the basis of the type of electric measurement or imaging functionalities.
The role of nanotechnology in the development of battery materials for electric vehicles
NASA Astrophysics Data System (ADS)
Lu, Jun; Chen, Zonghai; Ma, Zifeng; Pan, Feng; Curtiss, Larry A.; Amine, Khalil
2016-12-01
A significant amount of battery research and development is underway, both in academia and industry, to meet the demand for electric vehicle applications. When it comes to designing and fabricating electrode materials, nanotechnology-based approaches have demonstrated numerous benefits for improved energy and power density, cyclability and safety. In this Review, we offer an overview of nanostructured materials that are either already commercialized or close to commercialization for hybrid electric vehicle applications, as well as those under development with the potential to meet the requirements for long-range electric vehicles.
The role of nanotechnology in the development of battery materials for electric vehicles.
Lu, Jun; Chen, Zonghai; Ma, Zifeng; Pan, Feng; Curtiss, Larry A; Amine, Khalil
2016-12-06
A significant amount of battery research and development is underway, both in academia and industry, to meet the demand for electric vehicle applications. When it comes to designing and fabricating electrode materials, nanotechnology-based approaches have demonstrated numerous benefits for improved energy and power density, cyclability and safety. In this Review, we offer an overview of nanostructured materials that are either already commercialized or close to commercialization for hybrid electric vehicle applications, as well as those under development with the potential to meet the requirements for long-range electric vehicles.
The Stealth Biplane: a Proposal in Response to a Low Reynolds Number Station Keeping Mission
NASA Technical Reports Server (NTRS)
Walsh, Timothy E.; Flynn, Kevin T.; Donovan, Steven; Paul, Chris; Pangilinan, Harold; Padgett, John; Twomey, Daniel
1990-01-01
The Stealth Biplane is conceived and constructed to serve as a remotely piloted vehicle designed to navigate a low-level figure-eight course at a target Reynolds number of 100,000. This flight vehicle will combine the latest in lightweight radio controlled hardware in conjunction with current low Reynolds number aerodynamic research to demonstrate feasible operation in a variety of applications. These potential low Reynolds number applications include high altitude atmospheric sampling, search and rescue, and even law enforcement. Design specs and fabrication technique are discussed.
NASA Astrophysics Data System (ADS)
Blankenhorn, M.; Heintze, E.; Slota, M.; van Slageren, J.; Moores, B. A.; Degen, C. L.; Bogani, L.; Dressel, M.
2017-09-01
The design and realization of a torque magnetometer is reported that reads the deflection of a membrane by optical interferometry. The compact instrument allows for low-temperature measurements of tiny crystals less than a microgram with a significant improvement in sensitivity, signal-to-noise ratio as well as data acquisition time compared with conventional magnetometry and offers an enormous potential for further improvements and future applications in different fields. Magnetic measurements on single-molecule magnets demonstrate the applicability of the membrane-based torque magnetometer.
Blankenhorn, M; Heintze, E; Slota, M; van Slageren, J; Moores, B A; Degen, C L; Bogani, L; Dressel, M
2017-09-01
The design and realization of a torque magnetometer is reported that reads the deflection of a membrane by optical interferometry. The compact instrument allows for low-temperature measurements of tiny crystals less than a microgram with a significant improvement in sensitivity, signal-to-noise ratio as well as data acquisition time compared with conventional magnetometry and offers an enormous potential for further improvements and future applications in different fields. Magnetic measurements on single-molecule magnets demonstrate the applicability of the membrane-based torque magnetometer.
NASA Astrophysics Data System (ADS)
Etheridge, Michael L.
The current work focused on the ability of magnetic nanoparticles to produce heat in the presence of an applied alternating magnetic field. Magnetic nanoparticle hyperthermia applications utilize this behavior to treat cancer and this approach has received clinical approval in the European Union, but significant developments are necessary for this technology to have a chance for wider-spread acceptance. Here then we begin by investigating some of the important limitations of the current technology. By characterizing the ability of superparamagnetic and ferromagnetic nanoparticles to heat under a range of applied fields, we are able to determine the optimal field settings for clinical application and make recommendations on the highest impact strategies to increase heating. In addition, we apply these experimentally determined limits to heating in a series of heat transfer models, to demonstrate the therapeutic impact of nanoparticle concentration, target volume, and delivery strategy. Next, we attempt to address one of the key questions facing the field- what is the impact of biological aggregation on heating? Controlled aggregate populations are produced and characterized in ionic and protein solutions and their heating is compared with nanoparticles incubated in cellular suspensions. Through this investigation we are able to demonstrate that aggregation is responsible for up to a 50% decrease in heating. However, more importantly, we are able to demonstrate that the observed reductions in heating correlate with reductions in longitudinal relaxation (T1) measured by sweep imaging with Fourier transformation (SWIFT) magnetic resonance imaging (MRI), providing a potential platform to account for these aggregation effects and directly predict heating in a clinical setting. Finally, we present a new application for magnetic nanoparticle heating, in the thawing of cryopreserved biomaterials. A number of groups have demonstrated the ability to rapidly cool and preserve tissues in the vitreous state, but crystallization and cracking failures occur upon the subsequent thaw. Magnetic nanoparticles offer a potential solution to these issues, through their ability to provide rapid, uniform heating, and we illustrate this through heating in several cryoprotectant solutions and by modeling the effects of heating at the bulk and micro-scales.
Flexible, Photopatterned, Colloidal CdSe Semiconductor Nanocrystal Integrated Circuits
NASA Astrophysics Data System (ADS)
Stinner, F. Scott
As semiconductor manufacturing pushes towards smaller and faster transistors, a parallel goal exists to create transistors which are not nearly as small. These transistors are not intended to match the performance of traditional crystalline semiconductors; they are designed to be significantly lower in cost and manufactured using methods that can make them physically flexible for applications where form is more important than speed. One of the developing technologies for this application is semiconductor nanocrystals. We first explore methods to develop CdSe nanocrystal semiconducting "inks" into large-scale, high-speed integrated circuits. We demonstrate photopatterned transistors with mobilities of 10 cm2/Vs on Kapton substrates. We develop new methods for vertical interconnect access holes to demonstrate multi-device integrated circuits including inverting amplifiers with 7 kHz bandwidths, ring oscillators with <10 micros stage delays, and NAND and NOR logic gates. In order to produce higher performance and more consistent transistors, we develop a new hybrid procedure for processing the CdSe nanocrystals. This procedure produces transistors with repeatable performance exceeding 40 cm2/Vs when fabricated on silicon wafers and 16 cm 2/vs when fabricated as part of photopatterned integrated circuits on Kapton substrates. In order to demonstrate the full potential of these transistors, methods to create high-frequency oscillators were developed. These methods allow for transistors to operate at higher voltages as well as provide a means for wirebonding to the Kapton substrate, both of which are required for operating and probing high-frequency oscillators. Simulations of this system show the potential for operation at MHz frequencies. Demonstration of these transistors in this frequency range would open the door for development of CdSe integrated circuits for high-performance sensor, display, and audio applications. To develop further applications of electronics on flexible substrates, procedures are developed for the integration of polychromatic displays on polyethylene terephthalate (PET) substrates and a commercial near field communication (NFC) link. The device draws its power from the NFC transmitter common on smartphones and eliminates the need for a fixed battery. This allows for the mass deployment of flexible, interactive displays on product packaging.
Cheng, Xiao-Dong; Hao, Yan-Hong; Peng, Xi-Tian; Yuan, Bi-Feng; Shi, Zhi-Guo; Feng, Yu-Qi
2015-08-15
The present study described the preparation and application of zwitterionic stationary phases (ACS) with controllable ratio of positively charged tertiary amine groups and negatively charged carboxyl groups. Various parameters, including water content, pH values and ionic strength of the mobile phase, were investigated to study the chromatographic characteristics of ACS columns. The prepared ACS columns demonstrated a mix-mode retention mechanism composed of surface adsorption, partitioning and electrostatic interactions. The elemental analysis of different batches of the ACS phases demonstrated good reproducibility of the preparation strategy. Additionally, various categories of compounds, including nucleosides, water-soluble vitamins, benzoic acid derivatives and basic compounds were successively employed to evaluate the separation selectivity of the prepared ACS stationary phases. These ACS phases exhibited entirely different selectivity and retention behavior from each other for various polar analytes, demonstrating the excellent application potential in the analysis of polar compounds in HILIC. Copyright © 2015 Elsevier B.V. All rights reserved.
Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells
Novobrantseva, Tatiana I; Borodovsky, Anna; Wong, Jamie; Klebanov, Boris; Zafari, Mohammad; Yucius, Kristina; Querbes, William; Ge, Pei; Ruda, Vera M; Milstein, Stuart; Speciner, Lauren; Duncan, Rick; Barros, Scott; Basha, Genc; Cullis, Pieter; Akinc, Akin; Donahoe, Jessica S; Narayanannair Jayaprakash, K; Jayaraman, Muthusamy; Bogorad, Roman L; Love, Kevin; Whitehead, Katie; Levins, Chris; Manoharan, Muthiah; Swirski, Filip K; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G; de Fougerolles, Antonin; Nahrendorf, Matthias; Koteliansky, Victor
2012-01-01
Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells. PMID:23344621
Nanodiamond-Based Composite Structures for Biomedical Imaging and Drug Delivery.
Rosenholm, Jessica M; Vlasov, Igor I; Burikov, Sergey A; Dolenko, Tatiana A; Shenderova, Olga A
2015-02-01
Nanodiamond particles are widely recognized candidates for biomedical applications due to their excellent biocompatibility, bright photoluminescence based on color centers and outstanding photostability. Recently, more complex architectures with a nanodiamond core and an external shell or nanostructure which provides synergistic benefits have been developed, and their feasibility for biomedical applications has been demonstrated. This review is aimed at summarizing recent achievements in the fabrication and functional demonstrations of nanodiamond-based composite structures, along with critical considerations that should be taken into account in the design of such structures from a biomedical point of view. A particular focus of the review is core/shell structures of nanodiamond surrounded by porous silica shells, which demonstrate a remarkable increase in drug loading efficiency; as well as nanodiamonds decorated with carbon dots, which have excellent potential as bioimaging probes. Other combinations are also considered, relying on the discussed inherent properties of the inorganic materials being integrated in a way to advance inorganic nanomedicine in the quest for better health-related nanotechnology.
NASA Astrophysics Data System (ADS)
Choi, Nack-Bong
Flexible electronics is an emerging next-generation technology that offers many advantages such as light weight, durability, comfort, and flexibility. These unique features enable many new applications such as flexible display, flexible sensors, conformable electronics, and so forth. For decades, a variety of flexible substrates have been demonstrated for the application of flexible electronics. Most of them are plastic films and metal foils so far. For the fundamental device of flexible circuits, thin film transistors (TFTs) using poly silicon, amorphous silicon, metal oxide and organic semiconductor have been successfully demonstrated. Depending on application, low-cost and disposable flexible electronics will be required for convenience. Therefore it is important to study inexpensive substrates and to explore simple processes such as printing technology. In this thesis, paper is introduced as a new possible substrate for flexible electronics due to its low-cost and renewable property, and amorphous indium gallium zinc oxide (a-IGZO) TFTs are realized as the promising device on the paper substrate. The fabrication process and characterization of a-IGZO TFT on the paper substrate are discussed. a-IGZO TFTs using a polymer gate dielectric on the paper substrate demonstrate excellent performances with field effect mobility of ˜20 cm2 V-1 s-1, on/off current ratio of ˜106, and low leakage current, which show the enormous potential for flexible electronics application. In order to complement the n-channel a-IGZO TFTs and then enable complementary metal-oxide semiconductor (CMOS) circuit architectures, cuprous oxide is studied as a candidate material of p-channel oxide TFTs. In this thesis, a printing process is investigated as an alternative method for the fabrication of low-cost and disposable electronics. Among several printing methods, a modified offset roll printing that prints high resolution patterns is presented. A new method to fabricate a high resolution printing plate is investigated and the most favorable condition to transfer ink from a blanket to a cliche is studied. Consequently, a high resolution cliche is demonstrated and the printed patterns of 10mum width and 6mum line spacing are presented. In addition, the top gate a-IGZO TFTs with channel width/length of 12/6mum is successfully demonstrated by printing etch-resists. This work validates the compatibility of a-IGZO TFT on paper substrate for the disposable microelectronics application and presents the potential of low-cost and high resolution printing technology.
Single-shot detection of bacterial endospores via coherent Raman spectroscopy.
Pestov, Dmitry; Wang, Xi; Ariunbold, Gombojav O; Murawski, Robert K; Sautenkov, Vladimir A; Dogariu, Arthur; Sokolov, Alexei V; Scully, Marlan O
2008-01-15
Recent advances in coherent Raman spectroscopy hold exciting promise for many potential applications. For example, a technique, mitigating the nonresonant four-wave-mixing noise while maximizing the Raman-resonant signal, has been developed and applied to the problem of real-time detection of bacterial endospores. After a brief review of the technique essentials, we show how extensions of our earlier experimental work [Pestov D, et al. (2007) Science 316:265-268] yield single-shot identification of a small sample of Bacillus subtilis endospores (approximately 10(4) spores). The results convey the utility of the technique and its potential for "on-the-fly" detection of biohazards, such as Bacillus anthracis. The application of optimized coherent anti-Stokes Raman scattering scheme to problems requiring chemical specificity and short signal acquisition times is demonstrated.
A functional perspective on social marketing: insights from Israel's bicycle helmet campaign.
Ressler, W H; Toledo, E
1997-01-01
This article examines the functional approach to attitudes for its potential contribution to improving models of attitude-behavior consistency and to demonstrate its potential application to social marketing. To this end, a study of children's attitudes toward bicycle helmets is reported on and its results examined. The study was undertaken to plan Israel's first-ever media campaign to encourage the use of helmets by children. Responses of the 783 Israeli children (ages 7 to 14 years) who participated in the study are analyzed to test the hypothesis generated by this application of functional theory--that children's attitudes toward wearing bicycle helmets serve primarily an expressive function. The results suggest cautious support for the functional hypothesis. In conclusion, possible extensions of this approach to other areas of social marketing are discussed.
Özel, Rıfat Emrah; Hayat, Akhtar; Andreescu, Silvana
2015-01-01
Neurotransmitters are important biological molecules that are essential to many neurophysiological processes including memory, cognition, and behavioral states. The development of analytical methodologies to accurately detect neurotransmitters is of great importance in neurological and biological research. Specifically designed microelectrodes or microbiosensors have demonstrated potential for rapid, real-time measurements with high spatial resolution. Such devices can facilitate study of the role and mechanism of action of neurotransmitters and can find potential uses in biomedicine. This paper reviews the current status and recent advances in the development and application of electrochemical sensors for the detection of small-molecule neurotransmitters. Measurement challenges and opportunities of electroanalytical methods to advance study and understanding of neurotransmitters in various biological models and disease conditions are discussed. PMID:26973348
Wang, Shou-Guo; Park, Sung Hwan; Cramer, Nicolai
2018-05-04
Chiral cyclopentadienyl (Cp x ) ligands have a large application potential in enantioselective transition-metal catalysis. However, the development of concise and practical routes to such ligands remains in its infancy. We present a convenient and efficient two-step synthesis of a novel class of chiral Cp x ligands with tunable steric properties that can be readily used for complexation, giving Cp x Rh I , Cp x Ir I , and Cp x Ru II complexes. The potential of this ligand class is demonstrated with the latter in the enantioselective cyclization of azabenzonorbornadienes with alkynes, affording dihydrobenzoindoles in up to 98:2 e.r., significantly outperforming existing binaphthyl-derived Cp x ligands. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LED Surgical Task Lighting Scoping Study: A Hospital Energy Alliance Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuenge, Jason R.
Tungsten-halogen (halogen) lamps have traditionally been used to light surgical tasks in hospitals, even though they are in many respects ill-suited to the application due to the large percentage of radiant energy outside the visible spectrum and issues with color rendering/quality. Light-emitting diode (LED) technology offers potential for adjustable color and improved color rendition/quality, while simultaneously reducing side-effects from non-visible radiant energy. It also has the potential for significant energy savings, although this is a fairly narrow application in the larger commercial building energy use sector. Based on analysis of available products and Hospital Energy Alliance member interest, it ismore » recommended that a product specification and field measurement procedure be developed for implementation in demonstration projects.« less
Soft template synthesis of yolk/silica shell particles.
Wu, Xue-Jun; Xu, Dongsheng
2010-04-06
Yolk/shell particles possess a unique structure that is composed of hollow shells that encapsulate other particles but with an interstitial space between them. These structures are different from core/shell particles in that the core particles are freely movable in the shell. Yolk/shell particles combine the properties of each component, and can find potential applications in catalysis, lithium ion batteries, and biosensors. In this Research News article, a soft-template-assisted method for the preparation of yolk/silica shell particles is presented. The demonstrated method is simple and general, and can produce hollow silica spheres incorporated with different particles independent of their diameters, geometry, and composition. Furthermore, yolk/mesoporous silica shell particles and multishelled particles are also prepared through optimization of the experimental conditions. Finally, potential applications of these particles are discussed.
NASA Astrophysics Data System (ADS)
Fierro, Stéphane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki
2013-11-01
This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the results of the in vivo and in vitro experiments, a quantitative analysis of the increase in stomach pH is also presented. It is proposed that the catheter-free pH monitoring system presented in this study could be potentially employed in any biological environment.
Fierro, Stéphane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki
2013-11-19
This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the results of the in vivo and in vitro experiments, a quantitative analysis of the increase in stomach pH is also presented. It is proposed that the catheter-free pH monitoring system presented in this study could be potentially employed in any biological environment.
Saltcedar and Russian Olive Control Demonstration Act Science Assessment
Shafroth, Patrick B.; Brown, Curtis A.; Merritt, David M.
2010-01-01
The primary intent of this document is to provide the science assessment called for under The Saltcedar and Russian Olive Control Demonstration Act of 2006 (Public Law 109-320; the Act). A secondary purpose is to provide a common background for applicants for prospective demonstration projects, should funds be appropriated for this second phase of the Act. This document synthesizes the state-of-the-science on the following topics: the distribution and abundance (extent) of saltcedar (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) in the Western United States, potential for water savings associated with controlling saltcedar and Russian olive and the associated restoration of occupied sites, considerations related to wildlife use of saltcedar and Russian olive habitat or restored habitats, methods to control saltcedar and Russian olive, possible utilization of dead biomass following removal of saltcedar and Russian olive, and approaches and challenges associated with revegetation or restoration following control efforts. A concluding chapter discusses possible long-term management strategies, needs for additional study, potentially useful field demonstration projects, and a planning process for on-the-ground projects involving removal of saltcedar and Russian olive.
NASA Technical Reports Server (NTRS)
Anderson, John R.; Wilbur, Paul J.
1989-01-01
The potential usefulness of the constrained sheath optics concept as a means of controlling the divergence of low energy, high current density ion beams is examined numerically and experimentally. Numerical results demonstrate that some control of the divergence of typical ion beamlets can be achieved at perveance levels of interest by contouring the surface of the constrained sheath properly. Experimental results demonstrate that a sheath can be constrained by a wire mesh attached to the screen plate of the ion optics system. The numerically predicted beamlet divergence characteristics are shown to depart from those measured experimentally, and additional numerical analysis is used to demonstrate that this departure is probably due to distortions of the sheath caused by the fact that it attempts to conform to the individual wires that make up the sheath constraining mesh. The concept is considered potentially useful in controlling the divergence of ion beamlets in applications where low divergence, low energy, high current density beamlets are being sought, but more work is required to demonstrate this for net beam ion energies as low as 5 eV.
Bossé, Janine T.; Abouelhadid, Sherif; Li, Yanwen; Lin, Chia-Wei; Vohra, Prerna; Tucker, Alexander W.; Rycroft, Andrew N.; Maskell, Duncan J.; Aebi, Markus; Langford, Paul R.
2017-01-01
Actinobacillus pleuropneumoniae is a mucosal respiratory pathogen causing contagious porcine pleuropneumonia. Pathogenesis studies have demonstrated a major role for the capsule, exotoxins and outer membrane proteins. Actinobacillus pleuropneumoniae can also glycosylate proteins, using a cytoplasmic N-linked glycosylating enzyme designated NGT, but its transcriptional arrangement and role in virulence remains unknown. We investigated the NGT locus and demonstrated that the putative transcriptional unit consists of rimO, ngt and a glycosyltransferase termed agt. From this information we used the A. pleuropneumoniae glycosylation locus to decorate an acceptor protein, within Escherichia coli, with a hexose polymer that reacted with an anti-dextran antibody. Mass spectrometry analysis of a truncated protein revealed that this operon could add up to 29 repeat units to the appropriate sequon. We demonstrated the importance of NGT in virulence, by creating deletion mutants and testing them in a novel respiratory cell line adhesion model. This study demonstrates the importance of the NGT glycosylation system for pathogenesis and its potential biotechnological application for glycoengineering. PMID:28077594
Cuccui, Jon; Terra, Vanessa S; Bossé, Janine T; Naegeli, Andreas; Abouelhadid, Sherif; Li, Yanwen; Lin, Chia-Wei; Vohra, Prerna; Tucker, Alexander W; Rycroft, Andrew N; Maskell, Duncan J; Aebi, Markus; Langford, Paul R; Wren, Brendan W
2017-01-01
Actinobacillus pleuropneumoniae is a mucosal respiratory pathogen causing contagious porcine pleuropneumonia. Pathogenesis studies have demonstrated a major role for the capsule, exotoxins and outer membrane proteins. Actinobacillus pleuropneumoniae can also glycosylate proteins, using a cytoplasmic N-linked glycosylating enzyme designated NGT, but its transcriptional arrangement and role in virulence remains unknown. We investigated the NGT locus and demonstrated that the putative transcriptional unit consists of rimO, ngt and a glycosyltransferase termed agt. From this information we used the A. pleuropneumoniae glycosylation locus to decorate an acceptor protein, within Escherichia coli, with a hexose polymer that reacted with an anti-dextran antibody. Mass spectrometry analysis of a truncated protein revealed that this operon could add up to 29 repeat units to the appropriate sequon. We demonstrated the importance of NGT in virulence, by creating deletion mutants and testing them in a novel respiratory cell line adhesion model. This study demonstrates the importance of the NGT glycosylation system for pathogenesis and its potential biotechnological application for glycoengineering. © 2017 The Authors.
Larios, Diego F; Barbancho, Julio; Sevillano, José L; Rodríguez, Gustavo; Molina, Francisco J; Gasull, Virginia G; Mora-Merchan, Javier M; León, Carlos
2013-09-10
Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task.
Generation of acoustic self-bending and bottle beams by phase engineering
NASA Astrophysics Data System (ADS)
Zhang, Peng; Li, Tongcang; Zhu, Jie; Zhu, Xuefeng; Yang, Sui; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang
2014-07-01
Directing acoustic waves along curved paths is critical for applications such as ultrasound imaging, surgery and acoustic cloaking. Metamaterials can direct waves by spatially varying the material properties through which the wave propagates. However, this approach is not always feasible, particularly for acoustic applications. Here we demonstrate the generation of acoustic bottle beams in homogeneous space without using metamaterials. Instead, the sound energy flows through a three-dimensional curved shell in air leaving a close-to-zero pressure region in the middle, exhibiting the capability of circumventing obstacles. By designing the initial phase, we develop a general recipe for creating self-bending wave packets, which can set acoustic beams propagating along arbitrary prescribed convex trajectories. The measured acoustic pulling force experienced by a rigid ball placed inside such a beam confirms the pressure field of the bottle. The demonstrated acoustic bottle and self-bending beams have potential applications in medical ultrasound imaging, therapeutic ultrasound, as well as acoustic levitations and isolations.
DPSSL for direct dicing and drilling of dielectrics
NASA Astrophysics Data System (ADS)
Ashkenasi, David; Schwagmeier, M.
2007-02-01
New strategies in laser micro processing of glasses and other optically transparent materials are being developed with increasing interest and intensity using diode pumped solid state laser (DPSSL) systems generating short or ultra-short pulses in the optical spectra at good beam quality. Utilizing non-linear absorption channels, it can be demonstrated that ns green (532 nm) laser light can scribe, dice, full body cut and drill (flat) borofloat and borosilicate glasses at good quality. Outside of the correct choice in laser parameters, an intelligent laser beam management plays an important role in successful micro processing of glass. This application characterizes a very interesting alternative where standard methods demonstrate severe limitations such as diamond dicing, CO2 laser treatment or water jet cutting, especially for certain type of optical materials and/or geometric conditions. Application near processing examples using different DPSSL systems generating ns pulsed light at 532 nm in TEM 00 at average powers up to 10 W are presented and discussed in respect to potential applications in display technology, micro electronics and optics.
Integrating DXplain into a clinical information system using the World Wide Web.
Elhanan, G; Socratous, S A; Cimino, J J
1996-01-01
The World Wide Web(WWW) offers a cross-platform environment and standard protocols that enable integration of various applications available on the Internet. The authors use the Web to facilitate interaction between their Web-based Clinical Information System and a decision-support system-DXplain, at the Massachusetts General Hospital-using local architecture and Common Gateway Interface programs. The current application translates patients laboratory test results into DXplain's terms to generate diagnostic hypotheses. Two different access methods are utilized for this model; Hypertext Transfer Protocol (HTTP) and TCP/IP function calls. While clinical aspects cannot be evaluated as yet, the model demonstrates the potential of Web-based applications for interaction and integration and how local architecture, with a controlled vocabulary server, can further facilitate such integration. This model serves to demonstrate some of the limitations of the current WWW technology and identifies issues such as control over Web resources and their utilization and liability issues as possible obstacles for further integration.
Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation.
Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn
2016-03-30
Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors.
Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation
Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn
2016-01-01
Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors. PMID:27026070
NASA Astrophysics Data System (ADS)
Trung, Nguyen Huu; Van Toan, Nguyen; Ono, Takahito
2017-12-01
Although the electrochemical deposition of thermoelectric materials is a potential method for applications such as flexible thermoelectric power generators (FTEGs), to date the use of this technique is limited. This paper demonstrates a new fabrication of self-supported π-type FTEGs using electrochemical deposition of thermoelectric materials. Two types of the devices based on Bi2Te3-Cu and Bi2Te3-Sb2Te3 have been fully completed and characterized. The Bi2Te3-Cu and Bi2Te3-Sb2Te3 devices consist of 24 pairs of thermocouples that can harvest thermal energy with output power densities of 1-4 µW cm-2 from temperature differences of approximately 2 °C-4 °C from the human body. The highly scalable and new devices demonstrated in this work open up opportunities for the applications of electrochemically deposited thermoelectric materials.
NASA Astrophysics Data System (ADS)
Roy, Ritayan; Condylis, Paul C.; Johnathan, Yik Jinen; Hessmo, Björn
2017-04-01
We demonstrate a two-photon transition of rubidium (Rb) atoms from the ground state (5$S_{1/2}$) to the excited state (4$D_{5/2}$), using a home-built ytterbium (Yb)-doped fiber amplifier at 1033 nm. This is the first demonstration of an atomic frequency reference at 1033 nm as well as of a one-colour two-photon transition for the above energy levels. A simple optical setup is presented for the two-photon transition fluorescence spectroscopy, which is useful for frequency stabilization for a broad class of lasers. This spectroscopy has potential applications in the fiber laser industry as a frequency reference, particularly for the Yb-doped fiber lasers. This two-photon transition also has applications in atomic physics as a background- free high- resolution atom detection and for quantum communication, which is outlined in this article.
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Balakrishna, S.; Kilgore, W. Allen
1995-01-01
A state-of-the-art, computerized mode protection and dynamic response monitoring system has been developed for the NASA Langley Research Center National Transonic Facility (NTF). This report describes the development of the model protection and shutdown system (MPSS). A technical description of the system is given along with discussions on operation and capabilities of the system. Applications of the system to vibration problems are presented to demonstrate the system capabilities, typical applications, versatility, and investment research return derived from the system to date. The system was custom designed for the NTF but can be used at other facilities or for other dynamic measurement/diagnostic applications. Potential commercial uses of the system are described. System capability has been demonstrated for forced response testing and for characterizing and quantifying bias errors for onboard inertial model attitude measurement devices. The system is installed in the NTF control room and has been used successfully for monitoring, recording and analyzing the dynamic response of several model systems tested in the NTF.
Vernick, Sefi; Trocchia, Scott M.; Warren, Steven B.; Young, Erik F.; Bouilly, Delphine; Gonzalez, Ruben L.; Nuckolls, Colin; Shepard, Kenneth L.
2017-01-01
The study of biomolecular interactions at the single-molecule level holds great potential for both basic science and biotechnology applications. Single-molecule studies often rely on fluorescence-based reporting, with signal levels limited by photon emission from single optical reporters. The point-functionalized carbon nanotube transistor, known as the single-molecule field-effect transistor, is a bioelectronics alternative based on intrinsic molecular charge that offers significantly higher signal levels for detection. Such devices are effective for characterizing DNA hybridization kinetics and thermodynamics and enabling emerging applications in genomic identification. In this work, we show that hybridization kinetics can be directly controlled by electrostatic bias applied between the device and the surrounding electrolyte. We perform the first single-molecule experiments demonstrating the use of electrostatics to control molecular binding. Using bias as a proxy for temperature, we demonstrate the feasibility of detecting various concentrations of 20-nt target sequences from the Ebolavirus nucleoprotein gene in a constant-temperature environment. PMID:28516911
Secondary electroosmotic flow in microchannels with nonuniform and asymmetric Zeta potential
NASA Astrophysics Data System (ADS)
Zhang, Jinbai; He, Guowei; Liu, Feng
2004-11-01
Microfluidics has a broad range of applications in biotechnology, such as sample injection, drug delivering, solution mixing, and separations. All of these techniques require handling fluids in the low Reynolds number (Re) regime. Electroosmotic flow (EOF) or electroosmocitcs is the bulk movement of liquid relative to a stationary surface due to an externally applied electronic field. It is an alternative to pressure-driven flows with convenient implementation The driving force for EOF is dependent on the zeta potential. Previous reseraches focus on the nonuniform Zeta potential. In the present work, we consider nonuniform and asymmetric Zeta potential. The effects of asymmetric Zeta potential on the EOF are investigated analytically and simulated numerically. It is demonstrated that the nonuniform and asymmetric Zeta potential can generate more flow patterns for microfluidic control compared to symmetric Zeta potential.
Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas
2015-11-14
Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.
Gimenez, Gizeli S; Coutinho-Neto, Antonio; Kayano, Anderson M; Simões-Silva, Rodrigo; Trindade, Frances; de Almeida e Silva, Alexandre; Marcussi, Silvana; da Silva, Saulo L; Fernandes, Carla F C; Zuliani, Juliana P; Calderon, Leonardo A; Soares, Andreimar M; Stábeli, Rodrigo G
2014-01-01
Toxins purified from the venom of spiders have high potential to be studied pharmacologically and biochemically. These biomolecules may have biotechnological and therapeutic applications. This study aimed to evaluate the protein content of Parawixia bistriata venom and functionally characterize its proteins that have potential for biotechnological applications. The crude venom showed no phospholipase, hemorrhagic, or anti-Leishmania activities attesting to low genotoxicity and discrete antifungal activity for C. albicans. However the following activities were observed: anticoagulation, edema, myotoxicity and proteolysis on casein, azo-collagen, and fibrinogen. The chromatographic and electrophoretic profiles of the proteins revealed a predominance of acidic, neutral, and polar proteins, highlighting the presence of proteins with high molecular masses. Five fractions were collected using cation exchange chromatography, with the P4 fraction standing out as that of the highest purity. All fractions showed proteolytic activity. The crude venom and fractions P1, P2, and P3 showed larvicidal effects on A. aegypti. Fraction P4 showed the presence of a possible metalloprotease (60 kDa) that has high proteolytic activity on azo-collagen and was inhibited by EDTA. The results presented in this study demonstrate the presence of proteins in the venom of P. bistriata with potential for biotechnological applications.
Gimenez, Gizeli S.; Coutinho-Neto, Antonio; Kayano, Anderson M.; Simões-Silva, Rodrigo; Trindade, Frances; de Almeida e Silva, Alexandre; Marcussi, Silvana; da Silva, Saulo L.; Fernandes, Carla F. C.; Zuliani, Juliana P.; Calderon, Leonardo A.; Soares, Andreimar M.; Stábeli, Rodrigo G.
2014-01-01
Toxins purified from the venom of spiders have high potential to be studied pharmacologically and biochemically. These biomolecules may have biotechnological and therapeutic applications. This study aimed to evaluate the protein content of Parawixia bistriata venom and functionally characterize its proteins that have potential for biotechnological applications. The crude venom showed no phospholipase, hemorrhagic, or anti-Leishmania activities attesting to low genotoxicity and discrete antifungal activity for C. albicans. However the following activities were observed: anticoagulation, edema, myotoxicity and proteolysis on casein, azo-collagen, and fibrinogen. The chromatographic and electrophoretic profiles of the proteins revealed a predominance of acidic, neutral, and polar proteins, highlighting the presence of proteins with high molecular masses. Five fractions were collected using cation exchange chromatography, with the P4 fraction standing out as that of the highest purity. All fractions showed proteolytic activity. The crude venom and fractions P1, P2, and P3 showed larvicidal effects on A. aegypti. Fraction P4 showed the presence of a possible metalloprotease (60 kDa) that has high proteolytic activity on azo-collagen and was inhibited by EDTA. The results presented in this study demonstrate the presence of proteins in the venom of P. bistriata with potential for biotechnological applications. PMID:24895632
Promotion of Water Channels for Enhanced Ion Transport in 14 nm Diameter Carbon Nanotubes.
Sheng, Jiadong; Zhu, Qi; Zeng, Xian; Yang, Zhaohui; Zhang, Xiaohua
2017-03-29
Ion transport plays an important role in solar-to-electricity conversion, drug delivery, and a variety of biological processes. Carbon nanotube (CNT) is a promising material as an ion transporter in the applications of the mimicking of natural ion channels, desalination, and energy harvesting. Here, we demonstrate a unique, enhanced ion transport through a vertically aligned multiwall CNT membrane after the application of an electric potential across CNT membranes. Interestingly, electrowetting arising from the application of an electric potential is critical for the enhancement of overall ion transport rate through CNT membranes. The wettability of a liquid with high surface tension on the interior channel walls of CNTs increases during an electric potential treatment and promotes the formation of water channels in CNTs. The formation of water channels in CNTs induces an increase in overall ion diffusion through CNT membranes. This phenomenon is also related to a decrease in the charge transfer resistance of CNTs (R ct ) after an electric potential is applied. Correspondingly, the enhanced ion flow rate gives rise to an enhancement in the capacitive performance of CNT based membranes. Our observations might have profound impact on the development of CNT based energy storage devices as well as artificial ion channels.
Mobile Personal Health System for Ambulatory Blood Pressure Monitoring
Felix, Vanessa G.; Ostos, Rodolfo; Gonzalez, Jesus A.; Cervantes, Armando; Ochoa, Armando; Ruiz, Carlos; Ramos, Roberto; Maestre, Gladys E.
2013-01-01
The ARVmobile v1.0 is a multiplatform mobile personal health monitor (PHM) application for ambulatory blood pressure (ABP) monitoring that has the potential to aid in the acquisition and analysis of detailed profile of ABP and heart rate (HR), improve the early detection and intervention of hypertension, and detect potential abnormal BP and HR levels for timely medical feedback. The PHM system consisted of ABP sensor to detect BP and HR signals and smartphone as receiver to collect the transmitted digital data and process them to provide immediate personalized information to the user. Android and Blackberry platforms were developed to detect and alert of potential abnormal values, offer friendly graphical user interface for elderly people, and provide feedback to professional healthcare providers via e-mail. ABP data were obtained from twenty-one healthy individuals (>51 years) to test the utility of the PHM application. The ARVmobile v1.0 was able to reliably receive and process the ABP readings from the volunteers. The preliminary results demonstrate that the ARVmobile 1.0 application could be used to perform a detailed profile of ABP and HR in an ordinary daily life environment, bedsides of estimating potential diagnostic thresholds of abnormal BP variability measured as average real variability. PMID:23762189
Highly efficient white OLEDs for lighting applications
NASA Astrophysics Data System (ADS)
Murano, Sven; Burghart, Markus; Birnstock, Jan; Wellmann, Philipp; Vehse, Martin; Werner, Ansgar; Canzler, Tobias; Stübinger, Thomas; He, Gufeng; Pfeiffer, Martin; Boerner, Herbert
2005-10-01
The use of organic light-emitting diodes (OLEDs) for large area general lighting purposes is gaining increasing interest during the recent years. Especially small molecule based OLEDs have already shown their potential for future applications. For white light emission OLEDs, power efficiencies exceeding that of incandescent bulbs could already be demonstrated, however additional improvements are needed to further mature the technology allowing for commercial applications as general purpose illuminating sources. Ultimately the efficiencies of fluorescent tubes should be reached or even excelled, a goal which could already be achieved in the past for green OLEDs.1 In this publication the authors will present highly efficient white OLEDs based on an intentional doping of the charge carrier transport layers and the usage of different state of the art emission principles. This presentation will compare white PIN-OLEDs based on phosphorescent emitters, fluorescent emitters and stacked OLEDs. It will be demonstrated that the reduction of the operating voltage by the use of intentionally doped transport layers leads to very high power efficiencies for white OLEDs, demonstrating power efficiencies of well above 20 lm/W @ 1000 cd/m2. The color rendering properties of the emitted light is very high and CRIs between 85 and 95 are achieved, therefore the requirements for standard applications in the field of lighting applications could be clearly fulfilled. The color coordinates of the light emission can be tuned within a wide range through the implementation of minor structural changes.
NASA Technical Reports Server (NTRS)
Park, Young W.; Montez, Moises N.
1994-01-01
A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.
NASA Astrophysics Data System (ADS)
Xin, Zhaowei; Wei, Dong; Li, Dapeng; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
In this paper, a polarization difference liquid-crystal microlens array (PD-LCMLA) for three dimensional imaging application through turbid media is fabricated and demonstrated. This device is composed of a twisted nematic liquidcrystal cell (TNLCC), a polarizer and a liquid-crystal microlens array. The polarizer is sandwiched between the TNLCC and LCMLA to help the polarization difference system achieving the orthogonal polarization raw images. The prototyped camera for polarization difference imaging has been constructed by integrating the PD-LCMLA with an image sensor. The orthogonally polarized light-field images are recorded by switching the working state of the TNLCC. Here, by using a special microstructure in conjunction with the polarization-difference algorithm, we demonstrate that the three-dimensional information in the scattering media can be retrieved from the polarization-difference imaging system with an electrically tunable PD-LCMLA. We further investigate the system's potential function based on the flexible microstructure. The microstructure provides a wide operation range in the manipulation of incident beams and also emerges multiple operation modes for imaging applications, such as conventional planar imaging, polarization imaging mode, and polarization-difference imaging mode. Since the PD-LCMLA demonstrates a very low power consumption, multiple imaging modes and simple manufacturing, this kind of device presents a potential to be used in many other optical and electro-optical systems.
Keohane, D; Lehane, E; Rutherford, E; Livingstone, V; Kelly, L; Kaimkhani, S; O'Connell, F; Redmond, H P; Corrigan, M A
2017-04-01
To design, develop and test the effect of an educational initiative to improve risk perception amongst patients attending a high-risk breast cancer clinic. This was achieved through three objectives - 1. identifying an optimal method of presenting risk data, 2. designing and building a risk application, and 3. testing the ability of the application to successfully modify patients perceived risk of cancer. A mobile application was developed for this project using best practice methods for displaying risk information. Patients (n = 84) were randomly allocated into two groups - 'Control' or 'Treatment'. Both groups underwent standard risk counseling while the application was employed in the 'Treatment' group. The patients were surveyed before their session, immediately after and six weeks later. Increases in accuracy were seen in both groups with larger increases demonstrated in the 'Treatment' group with 'Personal 10 Year Risk' statistically significant ('Control' group increase from 21% to 48% vs the 'Treatment' group increase from 33% to 71% - p = 0.003). This project demonstrated trends towards improved risk perception, however mixed logistic regression was unable to show a 30% difference between groups. Numerical literacy and understanding of risk were identified as issues amongst the general population. Overestimating risk remains high amongst attendees. Using mobile applications to convey risk information to patients is a new and evolving area with a corresponding paucity of data. We have demonstrated its potential and emphasised the importance of designing how this information is communicated to patients in order to make it understandable and meaningful. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P
2015-02-14
Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carothers, Christopher D.; Meredith, Jeremy S.; Blanco, Marc
Performance modeling of extreme-scale applications on accurate representations of potential architectures is critical for designing next generation supercomputing systems because it is impractical to construct prototype systems at scale with new network hardware in order to explore designs and policies. However, these simulations often rely on static application traces that can be difficult to work with because of their size and lack of flexibility to extend or scale up without rerunning the original application. To address this problem, we have created a new technique for generating scalable, flexible workloads from real applications, we have implemented a prototype, called Durango, thatmore » combines a proven analytical performance modeling language, Aspen, with the massively parallel HPC network modeling capabilities of the CODES framework.Our models are compact, parameterized and representative of real applications with computation events. They are not resource intensive to create and are portable across simulator environments. We demonstrate the utility of Durango by simulating the LULESH application in the CODES simulation environment on several topologies and show that Durango is practical to use for simulation without loss of fidelity, as quantified by simulation metrics. During our validation of Durango's generated communication model of LULESH, we found that the original LULESH miniapp code had a latent bug where the MPI_Waitall operation was used incorrectly. This finding underscores the potential need for a tool such as Durango, beyond its benefits for flexible workload generation and modeling.Additionally, we demonstrate the efficacy of Durango's direct integration approach, which links Aspen into CODES as part of the running network simulation model. Here, Aspen generates the application-level computation timing events, which in turn drive the start of a network communication phase. Results show that Durango's performance scales well when executing both torus and dragonfly network models on up to 4K Blue Gene/Q nodes using 32K MPI ranks, Durango also avoids the overheads and complexities associated with extreme-scale trace files.« less
A vortex-shedding flowmeter based on IPMCs
NASA Astrophysics Data System (ADS)
Di Pasquale, Giovanna; Graziani, Salvatore; Pollicino, Antonino; Strazzeri, Salvatore
2016-01-01
Ionic polymer-metal composites (IPMCs) are electroactive polymers that can be used both as sensors and actuators. They have been demonstrated for many potential applications, in wet and underwater environments. Applications in fields such as biomimetics, robotics, and aerospace, just to mention a few, have been proposed. In this paper, the sensing nature of IPMCs is used to develop a flowmeter based on the vortex shedding phenomenon. The system is described, and a model is proposed and verified. A setup has been realized, and data have been acquired for many working conditions. The performance of the sensing system has been investigated by using acquired experimental data. Water flux velocities in the range [0.38, 2.83] m s-1 have been investigated. This working range is comparable with ranges claimed for established technologies. Results show the suitability of the proposed system to work as a flowmeter. The proposed transducer is suitable for envisaged post-silicon applications, where the use of IPMCs gives the opportunity to realize a new generating polymeric flowmeter. This has potential applications in fields where properties of IPMCs such as low cost, usability, and disposability are relevant.
NASA Astrophysics Data System (ADS)
Kundu, Sourav K.; McMath, Linda P.; Zaidan, Jonathan T.; Spears, J. Richard
1991-05-01
Laser-balloon angioplasty (LBA) may potentially be used for local application of pharmacologically active agents which will reduce thrombogenic and proliferative responses after the angioplasty. In this study, the feasibility of applying covalently conjugated heparin- albumin microparticles onto arterial luminal surface was demonstrated. The covalent linkages were formed by reaction with 1-ethyl-3-dimethyl-aminopropyl-carbodiimide (EDC), and the resultant conjugates were used for preparation of microparticles by employing standard emulsification and heat-crosslinking techniques. The heparin release rate from the microparticles was found to be dependent upon the degree of crosslinking. When a thin coagulum of a suspension of microparticles was formed with heat on a glass surface, the treated surface demonstrated resistance to clot formation in contact with non-anticoagulated blood. A suspension of the microparticles applied during laser-balloon angioplasty onto the luminal surface of dog carotid and femoral arteries showed persistence for up to one week without thrombus formation or occlusion of the vessel. Since the rate of biodegradation is primarily dictated by the extent of crosslinking, an optimal degree of thermal denaturation will permit longer persistence of the carrier while allowing adequate release of the entrapped pharmacologic agent. A variety of antithrombotic and antiinflammatory agents are being considered as candidate bioprotective materials for local application after angioplasty.
Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong
2016-01-01
Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation. PMID:27306096
NASA Astrophysics Data System (ADS)
Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong
2016-06-01
Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation.
NASA Astrophysics Data System (ADS)
Leung, Chung Ming; Li, Jiefang; Viehland, D.; Zhuang, X.
2018-07-01
Over the past two decades, magnetoelectric (ME) composites and their devices have been an important topic of research. Potential applications ranging from low-power sensing to high-power converters have been investigated. This review, first begins with a summary of multiferroic materials that work at room temperature. Such ME materials are usually in composites, and their ME effect generated as a product property of magnetostrictive and piezoelectric composite layers. After that, mechanisms, working principles, and applications of ME composites from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters will be discussed. First, the development of ME sensors in terms of materials and structures to enhance their sensitivities and to reduce noise level is reviewed and discussed. Second, the structure of ME-based energy harvesters is discussed and summarized. Third, the development of ME gyrators is summarized for power applications, including current/voltage conversion, power efficiency, power density and figures of merit. Results demonstrate that our ME gyrator has the ability to satisfy the needs of power conversion with superior efficiency (>90%), offering potential uses in power electronic applications.
Conformal Microwave Array (CMA) Applicators for Hyperthermia of Diffuse Chestwall Recurrence
Stauffer, Paul R.; Maccarini, Paolo; Arunachalam, Kavitha; Craciunescu, Oana; Diederich, Chris; Juang, Titania; Rossetto, Francesca; Schlorff, Jaime; Milligan, Andrew; Hsu, Joe; Sneed, Penny; Vujaskovic, Zeljko
2010-01-01
Purpose This article summarizes the evolution of microwave array applicators for heating large area chestwall disease as an adjuvant to external beam radiation, systemic chemotherapy, and potentially simultaneous brachytherapy. Methods Current devices used for thermotherapy of chestwall recurrence are reviewed. The largest conformal array applicator to date is evaluated in four studies: i) ability to conform to the torso is demonstrated with a CT scan of a torso phantom and MR scan of the conformal waterbolus component on a mastectomy patient; ii) Specific Absorption Rate (SAR) and temperature distributions are calculated with electromagnetic and thermal simulation software for a mastectomy patient; iii). SAR patterns are measured with a scanning SAR probe in liquid muscle phantom for a buried coplanar waveguide CMA; and iv) heating patterns and patient tolerance of CMA applicators are characterized in a clinical pilot study with 13 patients. Results CT and MR scans demonstrate excellent conformity of CMA applicators to contoured anatomy. Simulations demonstrate effective control of heating over contoured anatomy. Measurements confirm effective coverage of large treatment areas with no gaps. In 42 hyperthermia treatments, CMA applicators provided well-tolerated effective heating of up to 500cm2 regions, achieving target temperatures of Tmin=41.4±0.7°C, T90=42.1±0.6°C, Tave=42.8±0.6°C, and Tmax=44.3±0.8°C as measured in an average of 90 points per treatment. Summary The CMA applicator is an effective thermal therapy device for heating large-area superficial disease such as diffuse chestwall recurrence. It is able to cover over three times the treatment area of conventional hyperthermia devices while conforming to typical body contours. PMID:20849262
Fluorescence lifetime in cardiovascular diagnostics
NASA Astrophysics Data System (ADS)
Marcu, Laura
2010-01-01
We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications.
Fluorescence lifetime in cardiovascular diagnostics.
Marcu, Laura
2010-01-01
We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications.
Synthesis of Acetone-Derived C6 , C9 , and C12 Carbon Scaffolds for Chemical and Fuel Applications.
Moore, Cameron M; Jenkins, Rhodri W; Janicke, Michael T; Kubic, William L; Polikarpov, Evgueni; Semelsberger, Troy A; Sutton, Andrew D
2016-12-20
A simple, inexpensive catalyst system (Amberlyst 15 and Ni/SiO 2 -Al 2 O 3 ) is described for the upgrading of acetone to a range of chemicals and potential fuels. Stepwise hydrodeoxygenation of the produced ketones can yield branched alcohols, alkenes, and alkanes. An analysis of these products is provided, which demonstrates that this approach can provide a product profile of valuable bioproducts and potential biofuels. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Precise replication of antireflective nanostructures from biotemplates
NASA Astrophysics Data System (ADS)
Gao, Hongjun; Liu, Zhongfan; Zhang, Jin; Zhang, Guoming; Xie, Guoyong
2007-03-01
The authors report herein a new type of nanonipple structures on the cicada's eye and the direct structural replication of the complex micro- and nanostructures for potential functional emulation. A two-step direct molding process is developed to replicate these natural micro- and nanostructures using epoxy resin with high fidelity, which demonstrates a general way of fabricating functional nanostructures by direct replication of natural biotemplates via a suitable physicochemical process. Measurements of spectral reflectance showed that this kind of replicated nanostructure has remarkable antireflective property, suggestive of its potential applications to optical devices.
Airway disease phenotypes in animal models of cystic fibrosis.
McCarron, Alexandra; Donnelley, Martin; Parsons, David
2018-04-02
In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.
Polymer X-ray refractive nano-lenses fabricated by additive technology.
Petrov, A K; Bessonov, V O; Abrashitova, K A; Kokareva, N G; Safronov, K R; Barannikov, A A; Ershov, P A; Klimova, N B; Lyatun, I I; Yunkin, V A; Polikarpov, M; Snigireva, I; Fedyanin, A A; Snigirev, A
2017-06-26
The present work demonstrates the potential applicability of additive manufacturing to X-Ray refractive nano-lenses. A compound refractive lens with a radius of 5 µm was produced by the two-photon polymerization induced lithography. It was successfully tested at the X-ray microfocus laboratory source and a focal spot of 5 μm was measured. An amorphous nature of polymer material combined with the potential of additive technologies may result in a significantly enhanced focusing performance compared to the best examples of modern X-ray compound refractive lenses.
Smartphone chloridometer for point-of-care applications
NASA Astrophysics Data System (ADS)
Zhang, Chenji; Kim, Jimin P.; Creer, Michael; Yang, Jian; Liu, Zhiwen
2017-08-01
Chloride level in sweat is a major diagnostic criterion for cystic fibrosis (CF) and many other health conditions. In an effort to develop a low cost, point-of-care sweat diagnostics system for chloride concentration measurement, we demonstrated a smartphone-based chloridometer to measure sweat chloride by using our recently developed fluorescence chloride sensor. We characterized the performance of our device to validate its clinical potential. The study indicates that our smartphone-based chloridometer may potentially advance the point-of-care diagnostic system by reducing cost and improving diagnostic accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thekdi, Arvind; Nimbalkar, Sachin U.
2015-01-01
The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.
Model-data integration to improve the LPJmL dynamic global vegetation model
NASA Astrophysics Data System (ADS)
Forkel, Matthias; Thonicke, Kirsten; Schaphoff, Sibyll; Thurner, Martin; von Bloh, Werner; Dorigo, Wouter; Carvalhais, Nuno
2017-04-01
Dynamic global vegetation models show large uncertainties regarding the development of the land carbon balance under future climate change conditions. This uncertainty is partly caused by differences in how vegetation carbon turnover is represented in global vegetation models. Model-data integration approaches might help to systematically assess and improve model performances and thus to potentially reduce the uncertainty in terrestrial vegetation responses under future climate change. Here we present several applications of model-data integration with the LPJmL (Lund-Potsdam-Jena managed Lands) dynamic global vegetation model to systematically improve the representation of processes or to estimate model parameters. In a first application, we used global satellite-derived datasets of FAPAR (fraction of absorbed photosynthetic activity), albedo and gross primary production to estimate phenology- and productivity-related model parameters using a genetic optimization algorithm. Thereby we identified major limitations of the phenology module and implemented an alternative empirical phenology model. The new phenology module and optimized model parameters resulted in a better performance of LPJmL in representing global spatial patterns of biomass, tree cover, and the temporal dynamic of atmospheric CO2. Therefore, we used in a second application additionally global datasets of biomass and land cover to estimate model parameters that control vegetation establishment and mortality. The results demonstrate the ability to improve simulations of vegetation dynamics but also highlight the need to improve the representation of mortality processes in dynamic global vegetation models. In a third application, we used multiple site-level observations of ecosystem carbon and water exchange, biomass and soil organic carbon to jointly estimate various model parameters that control ecosystem dynamics. This exercise demonstrates the strong role of individual data streams on the simulated ecosystem dynamics which consequently changed the development of ecosystem carbon stocks and fluxes under future climate and CO2 change. In summary, our results demonstrate challenges and the potential of using model-data integration approaches to improve a dynamic global vegetation model.
Variometric approach for real-time GNSS navigation: First demonstration of Kin-VADASE capabilities
NASA Astrophysics Data System (ADS)
Branzanti, Mara; Colosimo, Gabriele; Mazzoni, Augusto
2017-06-01
The use of Global Navigation Satellite Systems (GNSS) kinematic positioning for navigational applications dramatically increased over the last decade. Real-time high performance navigation (positioning accuracy from one to few centimeters) can be achieved with established techniques such as Real Time Kinematic (RTK), and Precise Point Positioning (PPP). Despite their potential, the application of these techniques is limited mainly by their high cost. This work proposes the Kinematic implementation of the Variometric Approach for Displacement Analysis Standalone Engine (Kin-VADASE) and gives a demonstration of its performances in the field of GNSS navigation. VADASE is a methodology for the real-time detection of a standalone GNSS receiver displacements. It was originally designed for seismology and monitoring applications, where the receiver is supposed to move for few minutes, in the range of few meters, around a predefined position. Kin-VADASE overcomes the aforementioned limitations and aims to be a complete methodology with fully kinematic capabilities. Here, for the first time, we present its application to two test cases in order to estimate high rate (i.e., 10 Hz) kinematic parameters of moving vehicles. In this demonstration, data are collected and processed in the office, but the same results can be obtained in real-time through the implementation of Kin-VADASE in the firmware of a GNSS receiver. All the Kin-VADASE processing were carried out using double and single frequency observations in order to investigate the potentialities of the software with geodetic class and low-cost single frequency receivers. Root Mean Square Errors in 3D with respect to differential positioning are at the level of 50 cm for dual frequency and better than 1 meter for single frequency data. This reveals how Kin-VADASE features the main advantage of the standalone approach and the single frequency capability and, although with slightly lower accuracy with respect to the established techniques, can be a valid alternative to estimate kinematic parameters of vehicle in motions.
Cone-Beam CT with a Flat-Panel Detector: From Image Science to Image-Guided Surgery
Siewerdsen, Jeffrey H.
2011-01-01
The development of large-area flat-panel x-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions - for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck / skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical performance under CBCT guidance, and early clinical trials demonstrate feasibility, workflow, and image quality within the surgical theatre. PMID:22942510
New interatomic potential for Mg–Al–Zn alloys with specific application to dilute Mg-based alloys
NASA Astrophysics Data System (ADS)
Dickel, Doyl E.; Baskes, Michael I.; Aslam, Imran; Barrett, Christopher D.
2018-06-01
Because of its very large c/a ratio, zinc has proven to be a difficult element to model using semi-empirical classical potentials. It has been shown, in particular, that for the modified embedded atom method (MEAM), a potential cannot simultaneously have an hcp ground state and c/a ratio greater than ideal. As an alloying element, however, useful zinc potentials can be generated by relaxing the condition that hcp be the lowest energy structure. In this paper, we present a MEAM zinc potential, which gives accurate material properties for the pure state, as well as a MEAM ternary potential for the Mg–Al–Zn system which will allow the atomistic modeling of a wide class of alloys containing zinc. The effects of zinc in simple Mg–Zn for this potential is demonstrated and these results verify the accuracy for the new potential in these systems.
Synthesis of Nanodiamond-Daunorubicin Conjugates to Overcome Multidrug Chemoresistance in Leukemia
Man, Han B.; Kim, Hansung; Kim, Ho-Joong; Robinson, Erik; Liu, Wing Kam; Chow, Edward Kai-Hua; Ho, Dean
2013-01-01
Nanodiamonds (NDs) are promising candidates in nanomedicine, demonstrating significant potential as gene/drug delivery platforms for cancer therapy. We have synthesized ND vectors capable of chemotherapeutic loading and delivery with applications towards chemoresistant leukemia. The loading of Daunorubicin (DNR) onto NDs was optimized by adjusting reaction parameters such as acidity and concentration. The resulting conjugate, a novel therapeutic payload for NDs, was characterized extensively for size, surface charge, and loading efficiency. A K562 human myelogenous leukemia cell line, with multidrug resistance conferred by incremental DNR exposure, was used to demonstrate the efficacy enhancement resulting from ND-based delivery. While resistant K562 cells were able to overcome treatment from DNR alone, as compared with non-resistant K562 cells, NDs were able to improve DNR delivery into resistant K562 cells. By overcoming efflux mechanisms present in this resistant leukemia line, ND-enabled therapeutics have demonstrated the potential to improve cancer treatment efficacy, especially towards resistant strains. PMID:23916889
NASA Astrophysics Data System (ADS)
Wang, Han; Zhang, Linfeng; Han, Jiequn; E, Weinan
2018-07-01
Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model.
Testing of a compact 10-Gbps Lasercomm system for maritime platforms
NASA Astrophysics Data System (ADS)
Juarez, Juan C.; Souza, Katherine T.; Nicholes, Dustin D.; Riggins, James L.; Tomey, Hala J.; Venkat, Radha A.
2017-08-01
Lasercomm technology continues to be of interest for many applications both in the commercial and defense sectors because of its potential to provide high bandwidth communications that are secure without the need for RF spectrum management. Over the last decade, terrestrial Lasercomm development has progressed from initial experiments in the lab through field demonstrations in airborne and maritime environments. While these demonstrations have shown high capability levels, the complexity, size, weight, and power of the systems has slowed transition into fielded systems. This paper presents field test results of a recently developed maritime Lasercomm terminal and modem architecture with a compact form factor for enabling robust, 10-Gbps class data transport over highly scintillated links as found in terrestrial applications such as air-to-air, air-to-surface, and surface-to-surface links.
Gold glyconanoparticles as new tools in antiadhesive therapy.
Rojo, Javier; Díaz, Vicente; de la Fuente, Jesús M; Segura, Inmaculada; Barrientos, Africa G; Riese, Hans H; Bernad, Antonio; Penadés, Soledad
2004-03-05
Gold glyconanoparticles (GNPs) have been prepared as new multivalent tools that mimic glycosphingolipids on the cell surface. GNPs are highly soluble under physiological conditions, stable against enzymatic degradation and nontoxic. Thereby GNPs open up a novel promising multivalent platform for biological applications. It has recently been demonstrated that specific tumor-associated carbohydrate antigens (glycosphingolipids and glycoproteins) are involved in the initial step of tumor spreading. A mouse melanoma model was selected to test glyconanoparticles as possible inhibitors of experimental lung metastasis. A carbohydrate-carbohydrate interaction is proposed as the first recognition step for this process. Glyconanoparticles presenting lactose (lacto-GNPs) have been used successfully to significantly reduce the progression of experimental metastasis. This result shows for the first time a clear biological effect of lacto-GNPs, demonstrating the potential application of this glyconanotechnology in biological processes.
Estimation of Noise Properties for TV-regularized Image Reconstruction in Computed Tomography
Sánchez, Adrian A.
2016-01-01
A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128 × 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR. PMID:26308968
High-frequency and high-quality silicon carbide optomechanical microresonators
Lu, Xiyuan; Lee, Jonathan Y.; Lin, Qiang
2015-01-01
Silicon carbide (SiC) exhibits excellent material properties attractive for broad applications. We demonstrate the first SiC optomechanical microresonators that integrate high mechanical frequency, high mechanical quality, and high optical quality into a single device. The radial-breathing mechanical mode has a mechanical frequency up to 1.69 GHz with a mechanical Q around 5500 in atmosphere, which corresponds to a fm · Qm product as high as 9.47 × 1012 Hz. The strong optomechanical coupling allows us to efficiently excite and probe the coherent mechanical oscillation by optical waves. The demonstrated devices, in combination with the superior thermal property, chemical inertness, and defect characteristics of SiC, show great potential for applications in metrology, sensing, and quantum photonics, particularly in harsh environments that are challenging for other device platforms. PMID:26585637
Feldmeier, J J; Davolt, D A; Court, W S; Onoda, J M; Alecu, R
1998-01-01
In a previous publication (Feldmeier et al., Radiother Oncol 1995; 35:138-144) we reported our success in preventing delayed radiation enteropathy in a murine model by the application of hyperbaric oxygen (HBO2). In this study we introduce a histologic morphometric technique for assessing fibrosis in the submucosa of these same animal specimens and relate this assay to the previous results. The histologic morphometry, like the previous gross morphometry and compliance assays, demonstrates a significant protective effect for HBO2. The present assay is related to the previous assays in a statistically significant fashion. The predictive value for the histologic morphometric assay demonstrates a sensitivity of 75% and a specificity of 62.5%. The applicability of this assay to other organ systems and its potential superiority to the compliance assay are discussed.
A topological quantum optics interface.
Barik, Sabyasachi; Karasahin, Aziz; Flower, Christopher; Cai, Tao; Miyake, Hirokazu; DeGottardi, Wade; Hafezi, Mohammad; Waks, Edo
2018-02-09
The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder. Although considerable progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored. We demonstrate a strong interface between single quantum emitters and topological photonic states. Our approach creates robust counterpropagating edge states at the boundary of two distinct topological photonic crystals. We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends. This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesim, Yunus E., E-mail: yunus.kesim@bilkent.edu.tr; Battal, Enes; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800
2014-07-15
Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic losses. Alternative plasmonic materials that offer low loss and tunability are desired for a new generation of efficient and agile devices. In this paper, atomic layer deposition (ALD) grown ZnO is investigated as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. We show that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectricmore » properties. In order to demonstrate plasmonic resonances, we simulate a grating structure and computationally demonstrate an ultra-wide-band (4–15 μm) infrared absorber.« less
Automatic Generation of OpenMP Directives and Its Application to Computational Fluid Dynamics Codes
NASA Technical Reports Server (NTRS)
Yan, Jerry; Jin, Haoqiang; Frumkin, Michael; Yan, Jerry (Technical Monitor)
2000-01-01
The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate OpenMP-based parallel programs with nominal user assistance. We outline techniques used in the implementation of the tool and discuss the application of this tool on the NAS Parallel Benchmarks and several computational fluid dynamics codes. This work demonstrates the great potential of using the tool to quickly port parallel programs and also achieve good performance that exceeds some of the commercial tools.
NASA Astrophysics Data System (ADS)
Hines, E.; Baldwin, C.; Jones, C.; Lewison, R. L.; Lieske, S.; Rudd, M.
2016-02-01
The flexibility of the Driver Pressure State Impact Response (DPSIR) framework is demonstrated through application to the coastal zone of east Gulf of Thailand during an inter-disciplinary multi-cultural workshop comprised of participants (including practitioners) from south-east Asian coastal countries, North America and Australia in January 2015. The benefits of the framework as identified by participants included systematic and critical thinking, and identification of data gaps and other needs, such as capacity building. We use four case studies that highlight cross-border social-ecological challenges in Thailand and Cambodia to demonstrate: a) participant learning, b) individuality and flexibility of approaches (e.g. scales considered), c) participants' feedback on its application, and d) its potential use to identify both data-gaps and low-hanging-fruit type actions.
Total analysis systems with Thermochromic Etching Discs technology.
Avella-Oliver, Miquel; Morais, Sergi; Carrascosa, Javier; Puchades, Rosa; Maquieira, Ángel
2014-12-16
A new analytical system based on Thermochromic Etching Discs (TED) technology is presented. TED comprises a number of attractive features such as track independency, selective irradiation, a high power laser, and the capability to create useful assay platforms. The analytical versatility of this tool opens up a wide range of possibilities to design new compact disc-based total analysis systems applicable in chemistry and life sciences. In this paper, TED analytical implementation is described and discussed, and their analytical potential is supported by several applications. Microarray immunoassay, immunofiltration assay, solution measurement, and cell culture approaches are herein addressed in order to demonstrate the practical capacity of this system. The analytical usefulness of TED technology is herein demonstrated, describing how to exploit this tool for developing truly integrated analytical systems that provide solutions within the point of care framework.
Estimation of noise properties for TV-regularized image reconstruction in computed tomography.
Sánchez, Adrian A
2015-09-21
A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128 × 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR.
Estimation of noise properties for TV-regularized image reconstruction in computed tomography
NASA Astrophysics Data System (ADS)
Sánchez, Adrian A.
2015-09-01
A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128× 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR.
Boukari, Yamina; Qutachi, Omar; Scurr, David J; Morris, Andrew P; Doughty, Stephen W; Billa, Nashiru
2017-11-01
The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p < 0.05). The formulation also sintered at 37 °C following injection through a needle, demonstrating its injectable potential. The scaffolds demonstrated cytocompatibility, with increased cell numbers observed over an 8-day study period. Von Kossa and immunostaining of the hMSC-scaffolds confirmed their osteogenic potential with the ability to sinter at 37 °C in situ.
Cost-effective implementation of intelligent systems
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.; Heer, Ewald
1990-01-01
Significant advances have occurred during the last decade in knowledge-based engineering research and knowledge-based system (KBS) demonstrations and evaluations using integrated intelligent system technologies. Performance and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent system technologies can be realized. In this paper the rationale and potential benefits for typical examples of application projects that demonstrate an increase in productivity through the use of intelligent system technologies are discussed. These demonstration projects have provided an insight into additional technology needs and cultural barriers which are currently impeding the transition of the technology into operational environments. Proposed methods which addresses technology evolution and implementation are also discussed.
Libster, Dima; Aserin, Abraham; Garti, Nissim
2011-04-15
Recently, self-assembled lyotropic liquid crystals (LLCs) of lipids and water have attracted the attention of both scientific and applied research communities, due to their remarkable structural complexity and practical potential in diverse applications. The phase behavior of mixtures of glycerol monooleate (monoolein, GMO) was particularly well studied due to the potential utilization of these systems in drug delivery systems, food products, and encapsulation and crystallization of proteins. Among the studied lyotropic mesophases, reverse hexagonal LLC (H(II)) of monoolein/water were not widely subjected to practical applications since these were stable only at elevated temperatures. Lately, we obtained stable H(II) mesophases at room temperature by incorporating triacylglycerol (TAG) molecules into the GMO/water mixtures and explored the physical properties of these structures. The present feature article summarizes recent systematic efforts in our laboratory to utilize the H(II) mesophases for solubilization, and potential release and crystallization of biomacromolecules. Such a concept was demonstrated in the case of two therapeutic peptides-cyclosporin A (CSA) and desmopressin, as well as RALA peptide, which is a model skin penetration enhancer, and eventually a larger macromolecule-lysozyme (LSZ). In the course of the study we tried to elucidate relationships between the different levels of organization of LLCs (from the microstructural level, through mesoscale, to macroscopic level) and find feasible correlations between them. Since the structural properties of the mesophase systems are a key factor in drug release applications, we investigated the effects of these guest molecules on their conformations and the way these molecules partition within the domains of the mesophases. The examined H(II) mesophases exhibited great potential as transdermal delivery vehicles for bioactive peptides, enabling tuning the release properties according to their chemical composition and physical properties. Furthermore, we showed a promising opportunity for crystallization of CSA and LSZ in single crystal form as model biomacromolecules for crystallographic structure determination. The main outcomes of our research demonstrated that control of the physical properties of hexagonal LLC on different length scales is key for rational design of these systems as delivery vehicles and crystallization medium for biomacromolecules. Copyright © 2011 Elsevier Inc. All rights reserved.
Tormala, Zakary L; Jia, Jayson S; Norton, Michael I
2012-10-01
When people seek to impress others, they often do so by highlighting individual achievements. Despite the intuitive appeal of this strategy, we demonstrate that people often prefer potential rather than achievement when evaluating others. Indeed, compared with references to achievement (e.g., "this person has won an award for his work"), references to potential (e.g., "this person could win an award for his work") appear to stimulate greater interest and processing, which can translate into more favorable reactions. This tendency creates a phenomenon whereby the potential to be good at something can be preferred over actually being good at that very same thing. We document this preference for potential in laboratory and field experiments, using targets ranging from athletes to comedians to graduate school applicants and measures ranging from salary allocations to online ad clicks to admission decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Tingchao; Tian, Xiaoqing; Lin, Xiaodong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg
Light-emitting nonlinear optical molecules, especially those with large Stokes shifts and broad tunability of their emission wavelength, have attracted considerable attention for various applications including biomedical imaging and fluorescent sensors. However, most fluorescent chromophores have only limited potential for such applications due to small Stokes shifts, narrow tunability of fluorescence emissions, and small optical nonlinearity in highly polar solvents. In this work, we demonstrate that a two-photon absorbing stilbene chromophore exhibits a large two-photon absorption action cross-section (ηδ = 320 GM) in dimethylsulfoxide (DMSO) and shows broad fluorescence tunability (125 nm) by manipulating the polarity of the surrounding medium. Importantly, a very large Stokesmore » shift of up to 227 nm is achieved in DMSO. Thanks to these features, this chromophore can be utilized as a two-photon probe for bioimaging applications and in an ultrasensitive solid-state gas detector.« less
ALON® Components With Tunable Dielectric Properties for High Power Accelerator Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, Lee M; Jha, Santosh K; Lobur, Nicole
There are challenges in linear particle accelerators associated with the need to suppress “higher order modes” (HOMs). HOMs are detrimental to accelerator operation as they are a source of beam instability. The absorption/suppression of HOMs and dissipation of the energy of higher order modes is vital to the function of these accelerators. Surmet has identified ALON® Optical Ceramic (Aluminum Oxynitride), a hard, durable ceramic that is fabricated through conventional powder processing techniques, as a potential material for HOM absorber. In this Phase I program, Surmet has produced new ALON-composite HOM absorber materials that function at both ambient and cryogenic temperatures.more » The composite materials were developed and evaluated in collaboration with Thomas Jefferson National Labs. Success in this Phase I and the potential Phase II will demonstrate the utility of ALON composite components for RF absorbing applications and lay the groundwork for commercialization of such products, with applications in basic science, medical and digital electronics industries.« less
Infrared spectroscopy and spectroscopic imaging in forensic science.
Ewing, Andrew V; Kazarian, Sergei G
2017-01-16
Infrared spectroscopy and spectroscopic imaging, are robust, label free and inherently non-destructive methods with a high chemical specificity and sensitivity that are frequently employed in forensic science research and practices. This review aims to discuss the applications and recent developments of these methodologies in this field. Furthermore, the use of recently emerged Fourier transform infrared (FT-IR) spectroscopic imaging in transmission, external reflection and Attenuated Total Reflection (ATR) modes are summarised with relevance and potential for forensic science applications. This spectroscopic imaging approach provides the opportunity to obtain the chemical composition of fingermarks and information about possible contaminants deposited at a crime scene. Research that demonstrates the great potential of these techniques for analysis of fingerprint residues, explosive materials and counterfeit drugs will be reviewed. The implications of this research for the examination of different materials are considered, along with an outlook of possible future research avenues for the application of vibrational spectroscopic methods to the analysis of forensic samples.
Biopharmaceutical potentials of Prosopis spp. (Mimosaceae, Leguminosa).
Henciya, Santhaseelan; Seturaman, Prabha; James, Arthur Rathinam; Tsai, Yi-Hong; Nikam, Rahul; Wu, Yang-Chang; Dahms, Hans-Uwe; Chang, Fang Rong
2017-01-01
Prosopis is a commercially important plant genus, which has been used since ancient times, particularly for medicinal purposes. Traditionally, Paste, gum, and smoke from leaves and pods are applied for anticancer, antidiabetic, anti-inflammatory, and antimicrobial purposes. Components of Prosopis such as flavonoids, tannins, alkaloids, quinones, or phenolic compounds demonstrate potentials in various biofunctions, such as analgesic, anthelmintic, antibiotic, antiemetic, microbial antioxidant, antimalarial, antiprotozoal, antipustule, and antiulcer activities; enhancement of H + , K + , ATPases; oral disinfection; and probiotic and nutritional effects; as well as in other biopharmaceutical applications, such as binding abilities for tablet production. The compound juliflorine provides a cure in Alzheimer disease by inhibiting acetylcholine esterase at cholinergic brain synapses. Some indirect medicinal applications of Prosopis spp. are indicated, including antimosquito larvicidal activity, chemical synthesis by associated fungal or bacterial symbionts, cyanobacterial degradation products, "mesquite" honey and pollens with high antioxidant activity, etc. This review will reveal the origins, distribution, folk uses, chemical components, biological functions, and applications of different representatives of Prosopis. Copyright © 2016. Published by Elsevier B.V.
High-performance, low-cost solar collectors for disinfection of contaminated water.
Vidal, A; Diaz, A I
2000-01-01
Although the germicidal action of sunlight has long been recognized, its potential for practical applications has to be researched more thoroughly. This paper summarizes the progress made toward a commercially practical collector for solar disinfection applications. Nontracking compound parabolic collectors (CPCs), developed originally for capturing solar photons for thermal energy applications, were examined as potential solar photoreactors. A field demonstration of solar disinfection treatment using commercially manufactured solar reactors was conducted. Field tests showed successful destruction of Escherichia coli and Enterococcus faecalis and have provided data for full-scale design of water treatment systems. From above observations, a throughput value of 50 L/m2 h for the low-cost CPC reactor tested was estimated. For a 190 m3/d (0.05 MGD) facility, the estimated total costs for disinfection using UV-A is U.S. $0.19/m3 ($0.70/1000 gal). The use of near-UV sunlight to disinfect water supplies seems promising in rural communities of developing countries where treated water is unavailable.
Inyang, Mandu; Dickenson, Eric
2015-09-01
In this work, the potential benefits, economics, and challenges of applying biochar in water treatment operations to remove organic and microbial contaminants was reviewed. Minimizing the use of relatively more expensive traditional sorbents in water treatment is a motivating aspect of biochar production, e.g., $246/ton non-activated biochar to $1500/ton activated carbon. Biochar can remove organic contaminants in water, such as some pesticides (0.02-23 mg g(-1)), pharmaceutical and personal care products (0.001-59 mg g(-1)), dyes (2-104 mg g(-1)), humic acid (60 mg g(-1)), perfluorooctane sulfonate (164 mg g(-1)), and N-nitrosomodimethylamine (3 mg g(-1)). Including adsorption/filtration applications, biochar can potentially be used to inactivate Escherichia coli via disinfection, and transform 95% of 2-chlorobiphenyl via advanced oxidation processes. However, more sorption data using biochar especially at demonstration-scale, for treating potable and reuse water in adsorption/filtration applications will help establish the potential of biochars to serve as surrogates for activated carbons. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evanescent field: A potential light-tool for theranostics application
NASA Astrophysics Data System (ADS)
Polley, Nabarun; Singh, Soumendra; Giri, Anupam; Pal, Samir Kumar
2014-03-01
A noninvasive or minimally invasive optical approach for theranostics, which would reinforce diagnosis, treatment, and preferably guidance simultaneously, is considered to be major challenge in biomedical instrument design. In the present work, we have developed an evanescent field-based fiber optic strategy for the potential theranostics application in hyperbilirubinemia, an increased concentration of bilirubin in the blood and is a potential cause of permanent brain damage or even death in newborn babies. Potential problem of bilirubin deposition on the hydroxylated fiber surface at physiological pH (7.4), that masks the sensing efficacy and extraction of information of the pigment level, has also been addressed. Removal of bilirubin in a blood-phantom (hemoglobin and human serum albumin) solution from an enhanced level of 77 μM/l (human jaundice >50 μM/l) to ˜30 μM/l (normal level ˜25 μM/l in human) using our strategy has been successfully demonstrated. In a model experiment using chromatography paper as a mimic of biological membrane, we have shown efficient degradation of the bilirubin under continuous monitoring for guidance of immediate/future course of action.
Li, Mei; Yang, Xuan; Wang, Weidan; Zhang, Yu; Wan, Peng; Yang, Ke; Han, Yong
2017-04-01
Regeneration of bone defects is a clinical challenge that usually necessitates bone grafting materials. Limited bone supply and donor site morbidity limited the application of autografting, and improved biomaterials are needed to match the performance of autografts. Osteoinductive materials would be the perfect candidates for achieving this task. Strontium (Sr) is known to encourage bone formation and also prevent osteoporosis. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopedic applications. The present study demonstrated a new concept of developing biodegradable and hollow three-dimensional magnesium-strontium (MgSr) devices for grafting with their clinical demands. The microstructure and performance of MgSr devices, in vitro degradation and biological properties including in vitro cytocompatibility and osteoinductivity were investigated. The results showed that our MgSr devices exhibited good cytocompatibility and osteogenic effect. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the expression level of osteogenesis-related genes and proteins, respectively. The results showed that our MgSr devices could both up-regulate the genes and proteins expression of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), as well as alkaline phosphatase (ALP), Osteopontin (OPN), Collagen I (COL I) and Osteocalcin (OCN) significantly. Taken together, our innovation presented in this work demonstrated that the hollow three-dimensional MgSr substitutes had excellent biocompatibility and osteogenesis and could be potential candidates for bone grafting for future orthopedic applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator.
King, A P; Buerger, C; Tsoumpas, C; Marsden, P K; Schaeffter, T
2012-01-01
Respiratory motion models have potential application for estimating and correcting the effects of motion in a wide range of applications, for example in PET-MR imaging. Given that motion cycles caused by breathing are only approximately repeatable, an important quality of such models is their ability to capture and estimate the intra- and inter-cycle variability of the motion. In this paper we propose and describe a technique for free-form nonrigid respiratory motion correction in the thorax. Our model is based on a principal component analysis of the motion states encountered during different breathing patterns, and is formed from motion estimates made from dynamic 3-D MRI data. We apply our model using a data-driven technique based on a 2-D MRI image navigator. Unlike most previously reported work in the literature, our approach is able to capture both intra- and inter-cycle motion variability. In addition, the 2-D image navigator can be used to estimate how applicable the current motion model is, and hence report when more imaging data is required to update the model. We also use the motion model to decide on the best positioning for the image navigator. We validate our approach using MRI data acquired from 10 volunteers and demonstrate improvements of up to 40.5% over other reported motion modelling approaches, which corresponds to 61% of the overall respiratory motion present. Finally we demonstrate one potential application of our technique: MRI-based motion correction of real-time PET data for simultaneous PET-MRI acquisition. Copyright © 2011 Elsevier B.V. All rights reserved.
Kosta, Eleni; Pitkänen, Olli; Niemelä, Marketta; Kaasinen, Eija
2010-06-01
Ambient Intelligence provides the potential for vast and varied applications, bringing with it both promise and peril. The development of Ambient Intelligence applications poses a number of ethical and legal concerns. Mobile devices are increasingly evolving into tools to orientate in and interact with the environment, thus introducing a user-centric approach to Ambient Intelligence. The MINAmI (Micro-Nano integrated platform for transverse Ambient Intelligence applications) FP6 research project aims at creating core technologies for mobile device based Ambient Intelligence services. In this paper we assess five scenarios that demonstrate forthcoming MINAmI-based applications focusing on healthcare, assistive technology, homecare, and everyday life in general. A legal and ethical analysis of the scenarios is conducted, which reveals various conflicting interests. The paper concludes with some thoughts on drafting ethical guidelines for Ambient Intelligence applications.
Plasma in dentistry: a review of basic concepts and applications in dentistry.
Kim, Jae-Hoon; Lee, Mi-Ae; Han, Geum-Jun; Cho, Byeong-Hoon
2014-01-01
Plasma-related technologies are essential in modern industries. Recently, plasma has attracted increased attention in the biomedical field. This paper provides a basic knowledge of plasma and a narrative review of plasma applications in dentistry. To review plasma applications in dentistry, an electronic search in PubMed, SCOPUS and Google scholar up to December 2012 was done. This was followed by extensive hand searching using reference lists from relevant articles. There have been attempts to apply plasma technology in various fields of dentistry including surface modifications of dental implants, adhesion, caries treatment, endodontic treatment and tooth bleaching. Although many studies were in early stages, the potential value of plasma for dental applications has been demonstrated. To enlarge the scope of plasma applications and put relevant research to practical use, interdisciplinary research with participation of dental professionals is required.
DMD: a digital light processing application to projection displays
NASA Astrophysics Data System (ADS)
Feather, Gary A.
1989-01-01
Summary Revolutionary technologies achieve rapid product and subsequent business diffusion only when the in- ventors focus on technology application, maturation, and proliferation. A revolutionary technology is emerg- ing with micro-electromechanical systems (MEMS). MEMS are being developed by leveraging mature semi- conductor processing coupled with mechanical systems into complete, integrated, useful systems. The digital micromirror device (DMD), a Texas Instruments invented MEMS, has focused on its application to projec- tion displays. The DMD has demonstrated its application as a digital light processor, processing and produc- ing compelling computer and video projection displays. This tutorial discusses requirements in the projection display market and the potential solutions offered by this digital light processing system. The seminar in- cludes an evaluation of the market, system needs, design, fabrication, application, and performance results of a system using digital light processing solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coram, Jamie L.; Morrow, James D.; Perkins, David Nikolaus
2015-09-01
This document describes the PANTHER R&D Application, a proof-of-concept user interface application developed under the PANTHER Grand Challenge LDRD. The purpose of the application is to explore interaction models for graph analytics, drive algorithmic improvements from an end-user point of view, and support demonstration of PANTHER technologies to potential customers. The R&D Application implements a graph-centric interaction model that exposes analysts to the algorithms contained within the GeoGraphy graph analytics library. Users define geospatial-temporal semantic graph queries by constructing search templates based on nodes, edges, and the constraints among them. Users then analyze the results of the queries using bothmore » geo-spatial and temporal visualizations. Development of this application has made user experience an explicit driver for project and algorithmic level decisions that will affect how analysts one day make use of PANTHER technologies.« less
Radar Altimetry for Inland Water: Current and Potential Applications
NASA Astrophysics Data System (ADS)
Tarpanelli, Angelica; Brocca, Luca; Barbetta, Silvia; Moramarco, Tommaso; da Silva, Joecila Santos; Calmant, Stephane
2015-12-01
Apart from oceans and ice-sheets, radar altimeters are shown by a plethora of works to be of considerable interest in monitoring inland water bodies such as rivers, lakes, wetlands and floodplains. More than a decade of research on the application in the field of continental hydrology has demonstrated the advantages of providing global coverage, regular temporal sampling and short delivery delays, especially via the acquisition of numerous useful measurements over ungauged areas. With the aim to investigate the benefits that can be achieved by Sentinel-3 mission, two applications are here shown for selected pilot rivers and the results on discharge estimation are analyzed and discussed in terms of performance measures.
Schiecke, Karin; Pester, Britta; Feucht, Martha; Leistritz, Lutz; Witte, Herbert
2015-01-01
In neuroscience, data are typically generated from neural network activity. Complex interactions between measured time series are involved, and nothing or only little is known about the underlying dynamic system. Convergent Cross Mapping (CCM) provides the possibility to investigate nonlinear causal interactions between time series by using nonlinear state space reconstruction. Aim of this study is to investigate the general applicability, and to show potentials and limitation of CCM. Influence of estimation parameters could be demonstrated by means of simulated data, whereas interval-based application of CCM on real data could be adapted for the investigation of interactions between heart rate and specific EEG components of children with temporal lobe epilepsy.
Tissue Regeneration: A Silk Road.
Jao, Dave; Mou, Xiaoyang; Hu, Xiao
2016-08-05
Silk proteins are natural biopolymers that have extensive structural possibilities for chemical and mechanical modifications to facilitate novel properties, functions, and applications in the biomedical field. The versatile processability of silk fibroins (SF) into different forms such as gels, films, foams, membranes, scaffolds, and nanofibers makes it appealing in a variety of applications that require mechanically superior, biocompatible, biodegradable, and functionalizable biomaterials. There is no doubt that nature is the world's best biological engineer, with simple, exquisite but powerful designs that have inspired novel technologies. By understanding the surface interaction of silk materials with living cells, unique characteristics can be implemented through structural modifications, such as controllable wettability, high-strength adhesiveness, and reflectivity properties, suggesting its potential suitability for surgical, optical, and other biomedical applications. All of the interesting features of SF, such as tunable biodegradation, anti-bacterial properties, and mechanical properties combined with potential self-healing modifications, make it ideal for future tissue engineering applications. In this review, we first demonstrate the current understanding of the structures and mechanical properties of SF and the various functionalizations of SF matrices through chemical and physical manipulations. Then the diverse applications of SF architectures and scaffolds for different regenerative medicine will be discussed in detail, including their current applications in bone, eye, nerve, skin, tendon, ligament, and cartilage regeneration.
Flight mechanics applications for tethers in space: Cooperative Italian-US programs
NASA Technical Reports Server (NTRS)
Bevilacqua, Franco; Merlina, Pietro; Anderson, John L.
1990-01-01
Since the 1974 proposal by Giuseppe Colombo to fly a tethered subsatellite from the Shuttle Orbiter, the creative thinking of many scientists and engineers from Italy and U.S. has generated a broad range of potential tether applications in space. Many of these applications have promise for enabling innovative research and operational activities relating to flight mechanics in earth orbit and at suborbital altitudes. From a flight mechanics standpoint the most interesting of the currently proposed flight demonstrations are: the second Tethered Satellite System experiment which offers both the potential for aerothermodynamics and hypersonics research and for atmospheric science research; the Tethered Initiated Space Recovery System which would enable orbital deboost and recovery of a re-entry vehicle and waste removal from a space station; and the Tether Elevator/Crawler System which would provide a variable microgravity environment and space station center of mass management. The outer atmospheric and orbital flight mechanics characteristics of these proposed tether flight demonstrations are described. The second Tethered Satellite System mission will deploy the tethered satellite earthward and will bring it as low as 130 km from ground and thus into the transition region between the atmosphere (non-ionized) and the partially ionized ionosphere. The atmospheric flight mechanics of the tethered satellite is discussed and simulation results are presented. The Tether Initiated Space Recovery System experiment will demonstrate the ability of a simple tether system to deboost and recover a reentry vehicle. The main feature of this demonstration is the utilization of a Small Expendable Deployment System (SEDS) and the low-tension deployment assumed to separate the reentry vehicle from the Shuttle. This low-tension deployment maneuver is discussed and its criticalities are outlined. The Tether Elevator/Crawler System is a new space element able to move in a controlled way between the ends of a deployed tethered system. A Shuttle test of an Elevator model is planned to demonstrate the unique capability of this element as a microgravity facility and to test the transfer motion control. The basic dynamical features of the Elevator system are presented and a preliminary assessment of the Elevator-induced tether vibrations is discussed.
Scalable Production of Graphene-Based Wearable E-Textiles
2017-01-01
Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors. PMID:29185706
NASA Technical Reports Server (NTRS)
Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.
2005-01-01
In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.
Responte, Donald J.; Natoli, Roman M.; Athanasiou, Kyriacos A.
2012-01-01
This study determined the effects of exogenous hyaluronic acid (HA) on the biomechanical and biochemical properties of self-assembled bovine chondrocytes, and investigated biophysical and genetic mechanisms underlying these effects. The effects of HA commencement time, concentration, application duration and molecular weight were examined using histology, biomechanics and biochemistry. Additionally, the effects of HA application on sulphated glycosaminoglycan (GAG) retention were assessed. To investigate the influence of HA on gene expression, microarray analysis was conducted. HA treatment of developing neocartilage increased compressive stiffness onefold and increased sulphated GAG content by 35 per cent. These effects were dependent on HA molecular weight, concentration and application commencement time. Additionally, applying HA increased sulphated GAG retention within self-assembled neotissue. HA administration also upregulated 503 genes, including multiple genes associated with TGF-β1 signalling. Increased sulphated GAG retention indicated that HA could enhance compressive stiffness by increasing the osmotic pressure that negatively charged GAGs create. The gene expression data demonstrate that HA treatment differentially regulates genes related to TGF-β1 signalling, revealing a potential mechanism for altering matrix composition. These results illustrate the potential use of HA to improve cartilage regeneration efforts and better understand cartilage development. PMID:22809846
NASA Astrophysics Data System (ADS)
Fritz, Steffen; Dias, Eduardo; Zeug, Guenther; Vescovi, Fabio; See, Linda; Sturn, Tobias; McCallum, Ian; Stammes, Piet; Snik, Frans; Hendriks, Elise
2015-04-01
The ESA funded EducEO project is aimed at demonstrating the potential of citizen science and crowdsourcing for Earth Observation (EO), where citizen science and crowdsourcing refer to the involvement of citizens in tasks such as data collection. The potential for using citizens in the calibration and validation of satellite imagery through in-situ measurements and image recognition is largely untapped. The EducEO project will aim to achieve good integration with networks such as GLOBE (primary and secondary education) and COST (higher education) to involve students in four different applications that will be piloted as part of the EducEO project. The presentation will provide a brief overview and initial results of these applications, which include: the iSpex tool for measuring air pollution using an iPhone; a game to classify cropland and deforested areas from high resolution satellite imagery; an application to monitor areas of forest change using radar data from Sentinel-1; and the collection of in-situ yield and production data from both farmers (using high-tech farming equipment) and students. In particular initial results and future potential of the serious game on land cover and forest change monitoring will be discussed.
Data-centric method for object observation through scattering media
NASA Astrophysics Data System (ADS)
Tanida, Jun; Horisaki, Ryoichi
2018-03-01
A data-centric method is introduced for object observation through scattering media. A large number of training pairs are used to characterize the relation between the object and the observation signals based on machine learning. Using the method object information can be retrieved even from strongly-disturbed signals. As potential applications, object recognition, imaging, and focusing through scattering media were demonstrated.
Ophthalmic imaging using multiphoton microscopy
NASA Astrophysics Data System (ADS)
Teng, Shu-Wen; Peng, Ju-Li; Lin, Huei-Hsing; Wu, Hai-Yin; Lo, Wen; Sun, Yen; Lin, Wei-Chou; Lin, Sung-Jan; Jee, Shiou-Hwa; Tan, Hsin-Yuan; Dong, Chen-Yuan
2005-04-01
This purpose of this study is to demonstrate the feasibility of using multiphoton microscopy in ophthalmologic imaging. Without the introduction of extrinsic fluorescence molecules, multiphoton induced autofluorescence and second harmonic generation signals can be used to obtain useful structural information of normal and diseased corneas. Our work can potentially lead to the in vivo application of multiphoton microscopy in investigating corneal physiology and pathologies.
NASA Technical Reports Server (NTRS)
Jiang, Jonathan H.; Wang, Ding-Yi; Romans, Larry J.; Ao, Chi O.; Schwartz, Michael J.; Stiller, Gabriele P.; von Clarmann, Thomas; Lopez-Puertas, Manuel; Funke, Bernd; Gil-Lopez, Sergio;
2003-01-01
A new generation GPS flight receiver was launched on the Argentinian satellite SAC-C in 2001. It has demonstrated the potential applicability for the continuous monitoring of the earth's atmosphere with radio occultation technology, and providing high vertical resolution profiles of temperature and water vapour data complementary to other sounding techniques.
Fabrication of Polymer Optical Fibre (POF) Gratings
Luo, Yanhua; Yan, Binbin; Zhang, Qijin; Peng, Gang-Ding; Wen, Jianxiang; Zhang, Jianzhong
2017-01-01
Gratings inscribed in polymer optical fibre (POF) have attracted remarkable interest for many potential applications due to their distinctive properties. This paper overviews the current state of fabrication of POF gratings since their first demonstration in 1999. In particular we summarize and discuss POF materials, POF photosensitivity, techniques and issues of fabricating POF gratings, as well as various types of POF gratings. PMID:28273844
Freely Tunable Broadband Polarization Rotator for Terahertz Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping
2014-12-28
A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.
Experimental Method of Generating Electromagnetic Gaussian Schell-model Beams
2015-03-26
attracted special attention for the potential use in free-space optical communications, imaging through turbulence , and remote sensing applications [11...successful experiment demonstrated a reduction in scintillation of a completely unpolarized EGSM beam propagated through simulated 1 atmospheric turbulence [1...propagate through the atmosphere using either an atmospheric phase wheel or using additional SLMs to display atmospheric phase screens. Further, the source
Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate of human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a pr...
NASA Astrophysics Data System (ADS)
Managò, Stefano; Valente, Carmen; Mirabelli, Peppino; Circolo, Diego; Basile, Filomena; Corda, Daniela; de Luca, Anna Chiara
2016-04-01
Acute lymphoblastic leukemia type B (B-ALL) is a neoplastic disorder that shows high mortality rates due to immature lymphocyte B-cell proliferation. B-ALL diagnosis requires identification and classification of the leukemia cells. Here, we demonstrate the use of Raman spectroscopy to discriminate normal lymphocytic B-cells from three different B-leukemia transformed cell lines (i.e., RS4;11, REH, MN60 cells) based on their biochemical features. In combination with immunofluorescence and Western blotting, we show that these Raman markers reflect the relative changes in the potential biological markers from cell surface antigens, cytoplasmic proteins, and DNA content and correlate with the lymphoblastic B-cell maturation/differentiation stages. Our study demonstrates the potential of this technique for classification of B-leukemia cells into the different differentiation/maturation stages, as well as for the identification of key biochemical changes under chemotherapeutic treatments. Finally, preliminary results from clinical samples indicate high consistency of, and potential applications for, this Raman spectroscopy approach.
Update on Bio-Refining and Nanocellulose Composite Materials Manufacturing.
Postek, Michael T; Poster, Dianne L
2017-01-01
Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. One of the factors limiting the potential of nanocellulose and the vast array of potential new products is the ability to produce high-volume quantities of this nano-material. However, recent research has demonstrated that nanocellulose can be efficently produced in large volumes from wood at relatively low cost by the incorporation of ionizing radiation in the process stream. Ionizing radiation causes significant break down of the polysaccharides and leads to the production of potentially useful gaseous products such as H 2 and CO. Ionizing radiation processing remains an open field, ripe for innovation and application. This presentation will review the strong collaboration between the National Institute of Standards and Technology (NIST) and its academic partners pursuing the demonstration of applied ionizing radiation processing to plant materials for the manufacturing and characterization of novel nanomaterials.
Update on Bio-Refining and Nanocellulose Composite Materials Manufacturing
Postek, Michael T.; Poster, Dianne L.
2017-01-01
Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. One of the factors limiting the potential of nanocellulose and the vast array of potential new products is the ability to produce high-volume quantities of this nano-material. However, recent research has demonstrated that nanocellulose can be efficently produced in large volumes from wood at relatively low cost by the incorporation of ionizing radiation in the process stream. Ionizing radiation causes significant break down of the polysaccharides and leads to the production of potentially useful gaseous products such as H2 and CO. Ionizing radiation processing remains an open field, ripe for innovation and application. This presentation will review the strong collaboration between the National Institute of Standards and Technology (NIST) and its academic partners pursuing the demonstration of applied ionizing radiation processing to plant materials for the manufacturing and characterization of novel nanomaterials. PMID:29225398
Cytotoxicity and genotoxicity property of hydroxyapatite-mullite eluates.
Kalmodia, Sushma; Sharma, Vyom; Pandey, Alok K; Dhawan, Alok; Basu, Bikramjit
2011-02-01
Long-term biomedical applications of implant materials may cause osteolysis, aseptic losing and toxicity. Therefore, we investigated the cytotoxic and genotoxic potential of hydroxyapatite (HA) mullite eluates in L929 mouse fibroblast cells. The spark plasma sintered HA-20% mullite biocomposite (HA20M) were ground using mortar and pestle as well as ball milling. The cells were exposed for 6 h to varying concentrations (10, 25, 50, 75 and 100%) of the eluates of HA-20% mullite (87 nm), HA (171 nm) and mullite (154 nm). The scanning electron microscopy and MTT assay revealed the concentration dependent toxicity of H20M eluate at and above 50%. The analysis of the DNA damaging potential of HA, mullite and HA20M eluates using Comet assay demonstrated a significant DNA damage by HA20M which was largely related to the presence of mullite. The results collectively demonstrate the cytotoxic and genotoxic potential of HA20M eluate in L929 cells is dependent on particle size, concentration and composition.
Update on bio-refining and nanocellulose composite materials manufacturing
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Poster, Dianne L.
2017-08-01
Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. One of the factors limiting the potential of nanocellulose and the vast array of potential new products is the ability to produce high-volume quantities of this nano-material. However, recent research has demonstrated that nanocellulose can be efficently produced in large volumes from wood at relatively low cost by the incorporation of ionizing radiation in the process stream. Ionizing radiation causes significant break down of the polysaccharides and leads to the production of potentially useful gaseous products such as H2 and CO. Ionizing radiation processing remains an open field, ripe for innovation and application. This presentation will review the strong collaboration between the National Institute of Standards and Technology (NIST) and its academic partners pursuing the demonstration of applied ionizing radiation processing to plant materials for the manufacturing and characterization of novel nanomaterials.
NASA Astrophysics Data System (ADS)
Lu, Shin-Ming; Chan, Wen-Yuan; Su, Wei-Bin; Pai, Woei Wu; Liu, Hsiang-Lin; Chang, Chia-Seng
2018-04-01
The form of the external potential (FEP) for generating field emission resonance (FER) in a scanning tunneling microscopy (STM) junction is usually assumed to be triangular. We demonstrate that this assumption can be examined using a plot that can characterize FEP. The plot is FER energies versus the corresponding distances between the tip and sample. Through this energy–distance relationship, we discover that the FEP is nearly triangular for a blunt STM tip. However, the assumption of a triangular potential form is invalid for a sharp tip. The disparity becomes more severe as the tip is sharper. We demonstrate that the energy–distance plot can be exploited to determine the barrier width in field emission and estimate the effective sharpness of an STM tip. Because FERs were observed on Pb islands grown on the Cu(111) surface in this study, determination of the tip sharpness enabled the derivation of the subtle expansion deformation of Pb islands due to electrostatic force in the STM junction.
Development of nonhuman adenoviruses as vaccine vectors
Bangari, Dinesh S.; Mittal, Suresh K.
2006-01-01
Human adenoviral (HAd) vectors have demonstrated great potential as vaccine vectors. Preclinical and clinical studies have demonstrated the feasibility of vector design, robust antigen expression and protective immunity using this system. However, clinical use of adenoviral vectors for vaccine purposes is anticipated to be limited by vector immunity that is either preexisting or develops rapidly following the first inoculation with adenoviral vectors. Vector immunity inactivates the vector particles and rapidly removes the transduced cells, thereby limiting the duration of transgene expression. Due to strong vector immunity, subsequent use of the same vector is usually less efficient. In order to circumvent this limitation, nonhuman adenoviral vectors have been proposed as alternative vectors. In addition to eluding HAd immunity, these vectors possess most of the attractive features of HAd vectors. Several replication-competent or replication-defective nonhuman adenoviral vectors have been developed and investigated for their potential as vaccine delivery vectors. Here, we review recent advances in the design and characterization of various nonhuman adenoviral vectors, and discuss their potential applications for human and animal vaccination. PMID:16297508
NASA Astrophysics Data System (ADS)
Tu, Ting-Yu; Yang, Shu-Jyuan; Wang, Chung-Hao; Lee, Shin-Yu; Shieh, Ming-Jium
2018-02-01
Drug delivery systems combined multimodal therapy strategies are very promising in cancer theranostic applications. In this work, a new drug-delivery vehicles based on human serum albumin (HSA)-coated gold nanorods (GNR/PSS/HSA NPs) was developed. The success of coating was verified by transmission electron microscopy (TEM), zeta potential and fourier transform infrared spectroscopy (FTIR). Furthermore, it is demonstrated that doxorubicin (DOX) is successfully loaded among multilayered gold nanorods by the electrostatic and hydrophobic force, and DOX@GNR/PSS/HSA NPs were highly biocompatible and stable in various physiological solutions. The NPs possess strong absorbance in nearinfrared (NIR) region, and high photothermal conversion efficiency for outstanding photothermal therapy applications. A bimodal drug release triggered by proteinase or NIR irradiation has been revealed, resulting in a significant chemotherapeutic effect in tumor sites because of the preferential drug accumulation and triggered release. Importantly, the in vitro and in vivo experiments demonstrated that DOX@GNR/PSS/HSA NPs, which combined photothermal and chemotherapy for cancer therapy, revealing a remarkably superior synergistic anticancer effect over either monotherapy. All these results suggested a considerable potential of DOX@GNR/PSS/HSA NPs nano-platform for antitumor therapy.
Microlith Based Sorber for Removal of Environmental Contaminants
NASA Technical Reports Server (NTRS)
Roychoudhury, S.; Perry, J.
2004-01-01
The development of energy efficient, lightweight sorption systems for removal of environmental contaminants in space flight applications is an area of continuing interest to NASA. The current CO2 removal system on the International Space Station employs two pellet bed canisters of 5A molecular sieve that alternate between regeneration and sorption. A separate disposable charcoal bed removes trace contaminants. An alternative technology has been demonstrated using a sorption bed consisting of metal meshes coated with a sorbent, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI); thesemeshes have the potential for direct electrical heating for this application. This allows the bed to be regenerable via resistive heating and offers the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. The capability of removing both CO2 and trace contaminants within the same bed has also been demonstrated. Thus, the need for a separate trace contaminant unit is eliminated resulting in an opportunity for significant weight savings. Unlike the charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration. This paper describes the design and performance of a prototype sorber device for simultaneous CO2 and trace contarninant removal and its attendant weight and energy savings.