The Effects of High- and Low-Anxiety Training on the Anticipation Judgments of Elite Performers.
Alder, David; Ford, Paul R; Causer, Joe; Williams, A Mark
2016-02-01
We examined the effects of high- versus low-anxiety conditions during video-based training of anticipation judgments using international-level badminton players facing serves and the transfer to high-anxiety and field-based conditions. Players were assigned to a high-anxiety training (HA), low-anxiety training (LA) or control group (CON) in a pretraining-posttest design. In the pre- and posttest, players anticipated serves from video and on court under high- and low-anxiety conditions. In the video-based high-anxiety pretest, anticipation response accuracy was lower and final fixations shorter when compared with the low-anxiety pretest. In the low-anxiety posttest, HA and LA demonstrated greater accuracy of judgments and longer final fixations compared with pretest and CON. In the high-anxiety posttest, HA maintained accuracy when compared with the low-anxiety posttest, whereas LA had lower accuracy. In the on-court posttest, the training groups demonstrated greater accuracy of judgments compared with the pretest and CON.
Kappa and Rater Accuracy: Paradigms and Parameters
ERIC Educational Resources Information Center
Conger, Anthony J.
2017-01-01
Drawing parallels to classical test theory, this article clarifies the difference between rater accuracy and reliability and demonstrates how category marginal frequencies affect rater agreement and Cohen's kappa. Category assignment paradigms are developed: comparing raters to a standard (index) versus comparing two raters to one another…
A fourth-order Cartesian grid embeddedboundary method for Poisson’s equation
Devendran, Dharshi; Graves, Daniel; Johansen, Hans; ...
2017-05-08
In this paper, we present a fourth-order algorithm to solve Poisson's equation in two and three dimensions. We use a Cartesian grid, embedded boundary method to resolve complex boundaries. We use a weighted least squares algorithm to solve for our stencils. We use convergence tests to demonstrate accuracy and we show the eigenvalues of the operator to demonstrate stability. We compare accuracy and performance with an established second-order algorithm. We also discuss in depth strategies for retaining higher-order accuracy in the presence of nonsmooth geometries.
A fourth-order Cartesian grid embeddedboundary method for Poisson’s equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devendran, Dharshi; Graves, Daniel; Johansen, Hans
In this paper, we present a fourth-order algorithm to solve Poisson's equation in two and three dimensions. We use a Cartesian grid, embedded boundary method to resolve complex boundaries. We use a weighted least squares algorithm to solve for our stencils. We use convergence tests to demonstrate accuracy and we show the eigenvalues of the operator to demonstrate stability. We compare accuracy and performance with an established second-order algorithm. We also discuss in depth strategies for retaining higher-order accuracy in the presence of nonsmooth geometries.
Sheffield, Catherine A; Kane, Michael P; Bakst, Gary; Busch, Robert S; Abelseth, Jill M; Hamilton, Robert A
2009-09-01
This study compared the accuracy and precision of four value-added glucose meters. Finger stick glucose measurements in diabetes patients were performed using the Abbott Diabetes Care (Alameda, CA) Optium, Diagnostic Devices, Inc. (Miami, FL) DDI Prodigy, Home Diagnostics, Inc. (Fort Lauderdale, FL) HDI True Track Smart System, and Arkray, USA (Minneapolis, MN) HypoGuard Assure Pro. Finger glucose measurements were compared with laboratory reference results. Accuracy was assessed by a Clarke error grid analysis (EGA), a Parkes EGA, and within 5%, 10%, 15%, and 20% of the laboratory value criteria (chi2 analysis). Meter precision was determined by calculating absolute mean differences in glucose values between duplicate samples (Kruskal-Wallis test). Finger sticks were obtained from 125 diabetes patients, of which 90.4% were Caucasian, 51.2% were female, 83.2% had type 2 diabetes, and average age of 59 years (SD 14 years). Mean venipuncture blood glucose was 151 mg/dL (SD +/-65 mg/dL; range, 58-474 mg/dL). Clinical accuracy by Clarke EGA was demonstrated in 94% of Optium, 82% of Prodigy, 61% of True Track, and 77% of the Assure Pro samples (P < 0.05 for Optium and True Track compared to all others). By Parkes EGA, the True Track was significantly less accurate than the other meters. Within 5% accuracy was achieved in 34%, 24%, 29%, and 13%, respectively (P < 0.05 for Optium, Prodigy, and Assure Pro compared to True Track). Within 10% accuracy was significantly greater for the Optium, Prodigy, and Assure Pro compared to True Track. Significantly more Optium results demonstrated within 15% and 20% accuracy compared to the other meter systems. The HDI True Track was significantly less precise than the other meter systems. The Abbott Optium was significantly more accurate than the other meter systems, whereas the HDI True Track was significantly less accurate and less precise compared to the other meter systems.
Masjedi, Milad; Andrews, Barry; Cobb, Justin
2013-01-01
Robotic systems have been shown to improve unicompartmental knee arthroplasty (UKA) component placement accuracy compared to conventional methods when used by experienced surgeons. We aimed to determine whether inexperienced UKA surgeons can position components accurately using robotic assistance when compared to conventional methods and to demonstrate the effect repetition has on accuracy. Sixteen surgeons were randomised to an active constraint robot or conventional group performing three UKAs over three weeks. Implanted component positions and orientations were compared to planned component positions in six degrees of freedom for both femoral and tibial components. Mean procedure time decreased for both robot (37.5 mins to 25.7 mins) (P = 0.002) and conventional (33.8 mins to 21.0 mins) (P = 0.002) groups by attempt three indicating the presence of a learning curve; however, neither group demonstrated changes in accuracy. Mean compound rotational and translational errors were lower in the robot group compared to the conventional group for both components at all attempts for which rotational error differences were significant at every attempt. The conventional group's positioning remained inaccurate even with repeated attempts although procedure time improved. In comparison, by limiting inaccuracies inherent in conventional equipment, robotic assistance enabled surgeons to achieve precision and accuracy when positioning UKA components irrespective of their experience. PMID:23862069
Bailey, Timothy S; Klaff, Leslie J; Wallace, Jane F; Greene, Carmine; Pardo, Scott; Harrison, Bern; Simmons, David A
2016-07-01
As blood glucose monitoring system (BGMS) accuracy is based on comparison of BGMS and laboratory reference glucose analyzer results, reference instrument accuracy is important to discriminate small differences between BGMS and reference glucose analyzer results. Here, we demonstrate the important role of reference glucose analyzer accuracy in BGMS accuracy evaluations. Two clinical studies assessed the performance of a new BGMS, using different reference instrument procedures. BGMS and YSI analyzer results were compared for fingertip blood that was obtained by untrained subjects' self-testing and study staff testing, respectively. YSI analyzer accuracy was monitored using traceable serum controls. In study 1 (N = 136), 94.1% of BGMS results were within International Organization for Standardization (ISO) 15197:2013 accuracy criteria; YSI analyzer serum control results showed a negative bias (-0.64% to -2.48%) at the first site and a positive bias (3.36% to 6.91%) at the other site. In study 2 (N = 329), 97.8% of BGMS results were within accuracy criteria; serum controls showed minimal bias (<0.92%) at both sites. These findings suggest that the ability to demonstrate that a BGMS meets accuracy guidelines is influenced by reference instrument accuracy. © 2016 Diabetes Technology Society.
Chan, Johanna L; Lin, Li; Feiler, Michael; Wolf, Andrew I; Cardona, Diana M; Gellad, Ziad F
2012-11-07
To evaluate accuracy of in vivo diagnosis of adenomatous vs non-adenomatous polyps using i-SCAN digital chromoendoscopy compared with high-definition white light. This is a single-center comparative effectiveness pilot study. Polyps (n = 103) from 75 average-risk adult outpatients undergoing screening or surveillance colonoscopy between December 1, 2010 and April 1, 2011 were evaluated by two participating endoscopists in an academic outpatient endoscopy center. Polyps were evaluated both with high-definition white light and with i-SCAN to make an in vivo prediction of adenomatous vs non-adenomatous pathology. We determined diagnostic characteristics of i-SCAN and high-definition white light, including sensitivity, specificity, and accuracy, with regards to identifying adenomatous vs non-adenomatous polyps. Histopathologic diagnosis was the gold standard comparison. One hundred and three small polyps, detected from forty-three patients, were included in the analysis. The average size of the polyps evaluated in the analysis was 3.7 mm (SD 1.3 mm, range 2 mm to 8 mm). Formal histopathology revealed that 54/103 (52.4%) were adenomas, 26/103 (25.2%) were hyperplastic, and 23/103 (22.3%) were other diagnoses include "lymphoid aggregates", "non-specific colitis," and "no pathologic diagnosis." Overall, the combined accuracy of endoscopists for predicting adenomas was identical between i-SCAN (71.8%, 95%CI: 62.1%-80.3%) and high-definition white light (71.8%, 95%CI: 62.1%-80.3%). However, the accuracy of each endoscopist differed substantially, where endoscopist A demonstrated 63.0% overall accuracy (95%CI: 50.9%-74.0%) as compared with endoscopist B demonstrating 93.3% overall accuracy (95%CI: 77.9%-99.2%), irrespective of imaging modality. Neither endoscopist demonstrated a significant learning effect with i-SCAN during the study. Though endoscopist A increased accuracy using i-SCAN from 59% (95%CI: 42.1%-74.4%) in the first half to 67.6% (95%CI: 49.5%-82.6%) in the second half, and endoscopist B decreased accuracy using i-SCAN from 100% (95%CI: 80.5%-100.0%) in the first half to 84.6% (95%CI: 54.6%-98.1%) in the second half, neither of these differences were statistically significant. i-SCAN and high-definition white light had similar efficacy predicting polyp histology. Endoscopist training likely plays a critical role in diagnostic test characteristics and deserves further study.
Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1997-01-01
A technique for designing optimal inputs for aerodynamic parameter estimation was flight tested on the F-18 High Angle of Attack Research Vehicle (HARV). Model parameter accuracies calculated from flight test data were compared on an equal basis for optimal input designs and conventional inputs at the same flight condition. In spite of errors in the a priori input design models and distortions of the input form by the feedback control system, the optimal inputs increased estimated parameter accuracies compared to conventional 3-2-1-1 and doublet inputs. In addition, the tests using optimal input designs demonstrated enhanced design flexibility, allowing the optimal input design technique to use a larger input amplitude to achieve further increases in estimated parameter accuracy without departing from the desired flight test condition. This work validated the analysis used to develop the optimal input designs, and demonstrated the feasibility and practical utility of the optimal input design technique.
Bailey, Timothy S.; Klaff, Leslie J.; Wallace, Jane F.; Greene, Carmine; Pardo, Scott; Harrison, Bern; Simmons, David A.
2016-01-01
Background: As blood glucose monitoring system (BGMS) accuracy is based on comparison of BGMS and laboratory reference glucose analyzer results, reference instrument accuracy is important to discriminate small differences between BGMS and reference glucose analyzer results. Here, we demonstrate the important role of reference glucose analyzer accuracy in BGMS accuracy evaluations. Methods: Two clinical studies assessed the performance of a new BGMS, using different reference instrument procedures. BGMS and YSI analyzer results were compared for fingertip blood that was obtained by untrained subjects’ self-testing and study staff testing, respectively. YSI analyzer accuracy was monitored using traceable serum controls. Results: In study 1 (N = 136), 94.1% of BGMS results were within International Organization for Standardization (ISO) 15197:2013 accuracy criteria; YSI analyzer serum control results showed a negative bias (−0.64% to −2.48%) at the first site and a positive bias (3.36% to 6.91%) at the other site. In study 2 (N = 329), 97.8% of BGMS results were within accuracy criteria; serum controls showed minimal bias (<0.92%) at both sites. Conclusions: These findings suggest that the ability to demonstrate that a BGMS meets accuracy guidelines is influenced by reference instrument accuracy. PMID:26902794
A noncontact RF-based respiratory sensor: results of a clinical trial.
Madsen, Spence; Baczuk, Jordan; Thorup, Kurt; Barton, Richard; Patwari, Neal; Langell, John T
2016-06-01
Respiratory rate (RR) is a critical vital signs monitored in health care setting. Current monitors suffer from sensor-contact failure, inaccurate data, and limited patient mobility. There is a critical need for an accurate and reliable and noncontact system to monitor RR. We developed a contact-free radio frequency (RF)-based system that measures movement using WiFi signal diffraction, which is converted into interpretable data using a Fourier transform. Here, we investigate the system's ability to measure fine movements associated with human respiration. Testing was conducted on subjects using visual cue, fixed-tempo instruction to breath at standard RRs. Blinded instruction-based RRs were compared to RF-acquired data to determine measurement accuracy. The RF-based technology was studied on postoperative ventilator-dependent patients. Blinded ventilator capnographic RR data were collected for each patient and compared to RF-acquired data to determine measurement accuracy. Respiratory rate data collected from 10 subjects breathing at a fixed RR (14, 16, 18, or 20) demonstrated 95.5% measurement accuracy between the patient's actual rate and that measured by our RF technology. Ten patients were enrolled into the clinical trial. Blinded ventilator capnographic RR data were compared to RF-based acquired data. The RF-based data showed 88.8% measurement accuracy with ventilator capnography. Initial clinical pilot trials with our contact-free RF-based monitoring system demonstrate a high degree of RR measurement accuracy when compared to capnographic data. Based on these results, we believe RF-based systems present a promising noninvasive, inexpensive, and accurate tool for continuous RR monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahn, Sangtae; Ross, Steven G.; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D.; Manjeshwar, Ravindra M.
2015-08-01
Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.
Performance Analysis of Ranging Techniques for the KPLO Mission
NASA Astrophysics Data System (ADS)
Park, Sungjoon; Moon, Sangman
2018-03-01
In this study, the performance of ranging techniques for the Korea Pathfinder Lunar Orbiter (KPLO) space communication system is investigated. KPLO is the first lunar mission of Korea, and pseudo-noise (PN) ranging will be used to support the mission along with sequential ranging. We compared the performance of both ranging techniques using the criteria of accuracy, acquisition probability, and measurement time. First, we investigated the end-to-end accuracy error of a ranging technique incorporating all sources of errors such as from ground stations and the spacecraft communication system. This study demonstrates that increasing the clock frequency of the ranging system is not required when the dominant factor of accuracy error is independent of the thermal noise of the ranging technique being used in the system. Based on the understanding of ranging accuracy, the measurement time of PN and sequential ranging are further investigated and compared, while both techniques satisfied the accuracy and acquisition requirements. We demonstrated that PN ranging performed better than sequential ranging in the signal-to-noise ratio (SNR) regime where KPLO will be operating, and we found that the T2B (weighted-voting balanced Tausworthe, voting v = 2) code is the best choice among the PN codes available for the KPLO mission.
Brown, Jessica A; Hux, Karen; Knollman-Porter, Kelly; Wallace, Sarah E
2016-01-01
Concomitant visual and cognitive impairments following traumatic brain injuries (TBIs) may be problematic when the visual modality serves as a primary source for receiving information. Further difficulties comprehending visual information may occur when interpretation requires processing inferential rather than explicit content. The purpose of this study was to compare the accuracy with which people with and without severe TBI interpreted information in contextually rich drawings. Fifteen adults with and 15 adults without severe TBI. Repeated-measures between-groups design. Participants were asked to match images to sentences that either conveyed explicit (ie, main action or background) or inferential (ie, physical or mental inference) information. The researchers compared accuracy between participant groups and among stimulus conditions. Participants with TBI demonstrated significantly poorer accuracy than participants without TBI extracting information from images. In addition, participants with TBI demonstrated significantly higher response accuracy when interpreting explicit rather than inferential information; however, no significant difference emerged between sentences referencing main action versus background information or sentences providing physical versus mental inference information for this participant group. Difficulties gaining information from visual environmental cues may arise for people with TBI given their difficulties interpreting inferential content presented through the visual modality.
The objectives of this demonstration were to test these field screening technologies for accuracy and precision in detecting Pentachlorophenol (PCP) levels in soil and water by comparing their results with those of a confirmatory laboratory. The three immunoassay technologies ...
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry.
Bostani, Maryam; Mueller, Jonathon W; McMillan, Kyle; Cody, Dianna D; Cagnon, Chris H; DeMarco, John J; McNitt-Gray, Michael F
2015-02-01
The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. The calculated mean percent difference between TLD measurements and Monte Carlo simulations was -4.9% with standard deviation of 8.7% and a range of -22.7% to 5.7%. The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.
NASA Astrophysics Data System (ADS)
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant-Friedrichs-Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational efficiency, the OTSEM is more efficient than the Fekete-based TSEM, although it is slightly costlier than the QSEM when a comparable numerical accuracy is required.
Yingyongyudha, Anyamanee; Saengsirisuwan, Vitoon; Panichaporn, Wanvisa; Boonsinsukh, Rumpa
2016-01-01
Balance deficits a significant predictor of falls in older adults. The Balance Evaluation Systems Test (BESTest) and the Mini-Balance Evaluation Systems Test (Mini-BESTest) are tools that may predict the likelihood of a fall, but their capabilities and accuracies have not been adequately addressed. Therefore, this study aimed at examining the capabilities of the BESTest and Mini-BESTest for identifying older adult with history of falls and comparing the participants with history of falls identification accuracy of the BESTest, Mini-BESTest, Berg Balance Scale (BBS), and the Timed Up and Go Test (TUG) for identifying participants with a history of falls. Two hundred healthy older adults with a mean age of 70 years were classified into participants with and without history of fall groups on the basis of their 12-month fall history. Their balance abilities were assessed using the BESTest, Mini-BESTest, BBS, and TUG. An analysis of the resulting receiver operating characteristic curves was performed to calculate the area under the curve (AUC), sensitivity, specificity, cutoff score, and posttest accuracy of each. The Mini-BESTest showed the highest AUC (0.84) compared with the BESTest (0.74), BBS (0.69), and TUG (0.35), suggesting that the Mini-BESTest had the highest accuracy in identifying older adult with history of falls. At the cutoff score of 16 (out of 28), the Mini-BESTest demonstrated a posttest accuracy of 85% with a sensitivity of 85% and specificity of 75%. The Mini-BESTest had the highest posttest accuracy, with the others having results of 76% (BESTest), 60% (BBS), and 65% (TUG). The Mini-BESTest is the most accurate tool for identifying older adult with history of falls compared with the BESTest, BBS, and TUG.
Relatively Certain! Comparative Thinking Reduces Uncertainty
ERIC Educational Resources Information Center
Mussweiler, Thomas; Posten, Ann-Christin
2012-01-01
Comparison is one of the most ubiquitous and versatile mechanisms in human information processing. Previous research demonstrates that one consequence of comparative thinking is increased judgmental efficiency: Comparison allows for quicker judgments without a loss in accuracy. We hypothesised that a second potential consequence of comparative…
Parent, Francois; Loranger, Sebastien; Mandal, Koushik Kanti; Iezzi, Victor Lambin; Lapointe, Jerome; Boisvert, Jean-Sébastien; Baiad, Mohamed Diaa; Kadoury, Samuel; Kashyap, Raman
2017-04-01
We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.
Lovett, M W
1984-05-01
Children referred with specific reading dysfunction were subtyped as accuracy disabled or rate disabled according to criteria developed from an information processing model of reading skill. Multiple measures of oral and written language development were compared for two subtyped samples matched on age, sex, and IQ. The two samples were comparable in reading fluency, reading comprehension, word knowledge, and word retrieval functions. Accuracy disabled readers demonstrated inferior decoding and spelling skills. The accuracy disabled sample proved deficient in their understanding of oral language structure and in their ability to associate unfamiliar pseudowords and novel symbols in a task designed to simulate some of the learning involved in initial reading acquisition. It was suggested that these two samples of disabled readers may be best described with respect to their relative standing along a theoretical continuum of normal reading development.
Finite Element Simulation of Articular Contact Mechanics with Quadratic Tetrahedral Elements
Maas, Steve A.; Ellis, Benjamin J.; Rawlins, David S.; Weiss, Jeffrey A.
2016-01-01
Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037
High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.
Song, Shiyu; Chandraker, Manmohan; Guest, Clark C
2016-04-01
We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.
Chávez-Valencia, V; Espinosa-Ortega, H F; Espinoza-Peralta, D; Arce-Salinas, C A
2009-01-01
Obstructive jaundice in patients with previous cholecystectomy requires a precise diagnosis. In the diagnostic algorithm, biliary ultrasound (BUS) and magnetic resonance cholangiogram (MRC) are used, although the accuracy of each method is unknown in our setting. No previous comparison of US and MRC in subjects with cholecystectomy has been made. To determine diagnostic accuracy of BUS and MRC in patients with recurrent biliary obstruction. Patients with endoscopic retrograde cholangiopacreatography (ERCP) demonstrating recurrent biliary obstruction by stones were included. All patients underwent BUS and MRC. We determined the diagnostic performance of each image study compared with ERCP. Twenty-seven patients with a mean age of 62.9 +/- 17.3 years-old were included. Sensitivity and specificity of BUS were 0.12 and 0.58, respectively. Figures for MRC were 0.88 and 0.82. Diagnostic agreement between ERCP and MRC was k= 0.66 whereas BUS had a k of only 0.26. MRC had good diagnostic performance for recurrent choledocolithiasis. BUS demonstrated lower accuracy compared with previous reports, so should not be considered in the initial approach of recurrent choledocus obstruction.
Kensinger, Elizabeth A; Choi, Hae-Yoon; Murray, Brendan D; Rajaram, Suparna
2016-07-01
In daily life, emotional events are often discussed with others. The influence of these social interactions on the veracity of emotional memories has rarely been investigated. The authors (Choi, Kensinger, & Rajaram Memory and Cognition, 41, 403-415, 2013) previously demonstrated that when the categorical relatedness of information is controlled, emotional items are more accurately remembered than neutral items. The present study examined whether emotion would continue to improve the accuracy of memory when individuals discussed the emotional and neutral events with others. Two different paradigms involving social influences were used to investigate this question and compare evidence. In both paradigms, participants studied stimuli that were grouped into conceptual categories of positive (e.g., celebration), negative (e.g., funeral), or neutral (e.g., astronomy) valence. After a 48-hour delay, recognition memory was tested for studied items and categorically related lures. In the first paradigm, recognition accuracy was compared when memory was tested individually or in a collaborative triad. In the second paradigm, recognition accuracy was compared when a prior retrieval session had occurred individually or with a confederate who supplied categorically related lures. In both of these paradigms, emotional stimuli were remembered more accurately than were neutral stimuli, and this pattern was preserved when social interaction occurred. In fact, in the first paradigm, there was a trend for collaboration to increase the beneficial effect of emotion on memory accuracy, and in the second paradigm, emotional lures were significantly less susceptible to the "social contagion" effect. Together, these results demonstrate that emotional memories can be more accurate than nonemotional ones even when events are discussed with others (Experiment 1) and even when that discussion introduces misinformation (Experiment 2).
Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Anderson, W. Kyle
1998-01-01
A discrete adjoint method is developed and demonstrated for aerodynamic design optimization on unstructured grids. The governing equations are the three-dimensional Reynolds-averaged Navier-Stokes equations coupled with a one-equation turbulence model. A discussion of the numerical implementation of the flow and adjoint equations is presented. Both compressible and incompressible solvers are differentiated and the accuracy of the sensitivity derivatives is verified by comparing with gradients obtained using finite differences. Several simplifying approximations to the complete linearization of the residual are also presented, and the resulting accuracy of the derivatives is examined. Demonstration optimizations for both compressible and incompressible flows are given.
Relatively certain! Comparative thinking reduces uncertainty.
Mussweiler, Thomas; Posten, Ann-Christin
2012-02-01
Comparison is one of the most ubiquitous and versatile mechanisms in human information processing. Previous research demonstrates that one consequence of comparative thinking is increased judgmental efficiency: comparison allows for quicker judgments without a loss in accuracy. We hypothesised that a second potential consequence of comparative thinking is reduced judgmental uncertainty. We examined this possibility in three experiments using three different domains of judgment and three different measures of uncertainty. Results consistently demonstrate that procedurally priming participants to rely more heavily on comparative thinking during judgment induces them to feel more certain about their judgment. Copyright © 2011 Elsevier B.V. All rights reserved.
Accuracy Analysis of a Low-Cost Platform for Positioning and Navigation
NASA Astrophysics Data System (ADS)
Hofmann, S.; Kuntzsch, C.; Schulze, M. J.; Eggert, D.; Sester, M.
2012-07-01
This paper presents an accuracy analysis of a platform based on low-cost components for landmark-based navigation intended for research and teaching purposes. The proposed platform includes a LEGO MINDSTORMS NXT 2.0 kit, an Android-based Smartphone as well as a compact laser scanner Hokuyo URG-04LX. The robot is used in a small indoor environment, where GNSS is not available. Therefore, a landmark map was produced in advance, with the landmark positions provided to the robot. All steps of procedure to set up the platform are shown. The main focus of this paper is the reachable positioning accuracy, which was analyzed in this type of scenario depending on the accuracy of the reference landmarks and the directional and distance measuring accuracy of the laser scanner. Several experiments were carried out, demonstrating the practically achievable positioning accuracy. To evaluate the accuracy, ground truth was acquired using a total station. These results are compared to the theoretically achievable accuracies and the laser scanner's characteristics.
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.
Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for allmore » exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.« less
Gender differences in structured risk assessment: comparing the accuracy of five instruments.
Coid, Jeremy; Yang, Min; Ullrich, Simone; Zhang, Tianqiang; Sizmur, Steve; Roberts, Colin; Farrington, David P; Rogers, Robert D
2009-04-01
Structured risk assessment should guide clinical risk management, but it is uncertain which instrument has the highest predictive accuracy among men and women. In the present study, the authors compared the Psychopathy Checklist-Revised (PCL-R; R. D. Hare, 1991, 2003); the Historical, Clinical, Risk Management-20 (HCR-20; C. D. Webster, K. S. Douglas, D. Eaves, & S. D. Hart, 1997); the Risk Matrix 2000-Violence (RM2000[V]; D. Thornton et al., 2003); the Violence Risk Appraisal Guide (VRAG; V. L. Quinsey, G. T. Harris, M. E. Rice, & C. A. Cormier, 1998); the Offenders Group Reconviction Scale (OGRS; J. B. Copas & P. Marshall, 1998; R. Taylor, 1999); and the total previous convictions among prisoners, prospectively assessed prerelease. The authors compared predischarge measures with subsequent offending and instruments ranked using multivariate regression. Most instruments demonstrated significant but moderate predictive ability. The OGRS ranked highest for violence among men, and the PCL-R and HCR-20 H subscale ranked highest for violence among women. The OGRS and total previous acquisitive convictions demonstrated greatest accuracy in predicting acquisitive offending among men and women. Actuarial instruments requiring no training to administer performed as well as personality assessment and structured risk assessment and were superior among men for violence.
Boson expansion theory in the seniority scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, T.; Li, C.; Pedrocchi, V.G.
1985-12-01
A boson expansion formalism in the seniority scheme is presented and its relation with number-conserving quasiparticle calculations is elucidated. Accuracy and convergence are demonstrated numerically. A comparative discussion with other related approaches is given.
Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.
Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A
2016-03-21
Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Folkner, W. M.; Border, J. S.; Nandi, S.; Zukor, K. S.
1993-01-01
A new radio metric positioning technique has demonstrated improved orbit determination accuracy for the Magellan and Pioneer Venus Orbiter orbiters. The new technique, known as Same-Beam Interferometry (SBI), is applicable to the positioning of multiple planetary rovers, landers, and orbiters which may simultaneously be observed in the same beamwidth of Earth-based radio antennas. Measurements of carrier phase are differenced between spacecraft and between receiving stations to determine the plane-of-sky components of the separation vector(s) between the spacecraft. The SBI measurements complement the information contained in line-of-sight Doppler measurements, leading to improved orbit determination accuracy. Orbit determination solutions have been obtained for a number of 48-hour data arcs using combinations of Doppler, differenced-Doppler, and SBI data acquired in the spring of 1991. Orbit determination accuracy is assessed by comparing orbit solutions from adjacent data arcs. The orbit solution differences are shown to agree with expected orbit determination uncertainties. The results from this demonstration show that the orbit determination accuracy for Magellan obtained by using Doppler plus SBI data is better than the accuracy achieved using Doppler plus differenced-Doppler by a factor of four and better than the accuracy achieved using only Doppler by a factor of eighteen. The orbit determination accuracy for Pioneer Venus Orbiter using Doppler plus SBI data is better than the accuracy using only Doppler data by 30 percent.
Cassidy, Jessica M; Carey, James R; Lu, Chiahao; Krach, Linda E; Feyma, Tim; Durfee, William K; Gillick, Bernadette T
2015-12-01
This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional (I/C) volume ratio for the primary motor cortex (M1) and posterior limb of internal capsule (PLIC) were done using two-sample t-tests. Participants showing an ipsilesional MEP response demonstrated superior tracking performance from the less affected hand (p=0.016) and significantly higher I/C volume ratios for M1 (p=0.028) and PLIC (p=0.005) compared to participants without an ipsilesional MEP response. Group differences in finger tracking accuracy from the affected hand were not significant. These results highlight differentiating factors amongst children with congenital hemiparesis showing contrasting MEP responses: less affected hand performance and preserved M1 and PLIC volume. Along with MEP status, these factors pose important clinical implications in pediatric stroke rehabilitation. These findings may also reflect competitive developmental processes associated with the preservation of affected hand function at the expense of some function in the less affected hand. Copyright © 2015 Elsevier Ltd. All rights reserved.
Validation of Clinical Testing for Warfarin Sensitivity
Langley, Michael R.; Booker, Jessica K.; Evans, James P.; McLeod, Howard L.; Weck, Karen E.
2009-01-01
Responses to warfarin (Coumadin) anticoagulation therapy are affected by genetic variability in both the CYP2C9 and VKORC1 genes. Validation of pharmacogenetic testing for warfarin responses includes demonstration of analytical validity of testing platforms and of the clinical validity of testing. We compared four platforms for determining the relevant single nucleotide polymorphisms (SNPs) in both CYP2C9 and VKORC1 that are associated with warfarin sensitivity (Third Wave Invader Plus, ParagonDx/Cepheid Smart Cycler, Idaho Technology LightCycler, and AutoGenomics Infiniti). Each method was examined for accuracy, cost, and turnaround time. All genotyping methods demonstrated greater than 95% accuracy for identifying the relevant SNPs (CYP2C9 *2 and *3; VKORC1 −1639 or 1173). The ParagonDx and Idaho Technology assays had the shortest turnaround and hands-on times. The Third Wave assay was readily scalable to higher test volumes but had the longest hands-on time. The AutoGenomics assay interrogated the largest number of SNPs but had the longest turnaround time. Four published warfarin-dosing algorithms (Washington University, UCSF, Louisville, and Newcastle) were compared for accuracy for predicting warfarin dose in a retrospective analysis of a local patient population on long-term, stable warfarin therapy. The predicted doses from both the Washington University and UCSF algorithms demonstrated the best correlation with actual warfarin doses. PMID:19324988
Langley, Michael R; Booker, Jessica K; Evans, James P; McLeod, Howard L; Weck, Karen E
2009-05-01
Responses to warfarin (Coumadin) anticoagulation therapy are affected by genetic variability in both the CYP2C9 and VKORC1 genes. Validation of pharmacogenetic testing for warfarin responses includes demonstration of analytical validity of testing platforms and of the clinical validity of testing. We compared four platforms for determining the relevant single nucleotide polymorphisms (SNPs) in both CYP2C9 and VKORC1 that are associated with warfarin sensitivity (Third Wave Invader Plus, ParagonDx/Cepheid Smart Cycler, Idaho Technology LightCycler, and AutoGenomics Infiniti). Each method was examined for accuracy, cost, and turnaround time. All genotyping methods demonstrated greater than 95% accuracy for identifying the relevant SNPs (CYP2C9 *2 and *3; VKORC1 -1639 or 1173). The ParagonDx and Idaho Technology assays had the shortest turnaround and hands-on times. The Third Wave assay was readily scalable to higher test volumes but had the longest hands-on time. The AutoGenomics assay interrogated the largest number of SNPs but had the longest turnaround time. Four published warfarin-dosing algorithms (Washington University, UCSF, Louisville, and Newcastle) were compared for accuracy for predicting warfarin dose in a retrospective analysis of a local patient population on long-term, stable warfarin therapy. The predicted doses from both the Washington University and UCSF algorithms demonstrated the best correlation with actual warfarin doses.
Effect of Carbohydrate and Caffeine Ingestion on Badminton Performance.
Clarke, Neil D; Duncan, Michael J
2016-01-01
To investigate the effect of ingesting carbohydrate and caffeine solutions on measures that are central to success in badminton. Twelve male badminton players performed a badminton serve-accuracy test, coincidence-anticipation timing (CAT), and a choice reaction-time sprint test 60 min before exercise. Participants then consumed 7 mL/kg body mass of either water (PLA), 6.4% carbohydrate solution (CHO), a solution containing a caffeine dose of 4 mg/kg, or 6.4% carbohydrate and 4 mg/kg caffeine (C+C). All solutions were flavored with orange-flavored concentrate. During the 33-min fatigue protocol, participants were provided with an additional 3 mL/kg body mass of solution, which was ingested before the end of the protocol. As soon as the 33-min fatigue protocol was completed, all measures were recorded again. Short-serve accuracy was improved after the ingestion of CHO and C+C compared with PLA (P = .001, η(p)(2) = .50). Long-serve accuracy was improved after the ingestion of C+C compared with PLA (P < .001, η(p)(2) = .53). Absolute error in CAT demonstrated smaller deteriorations after the ingestion of C+C compared with PLA (P < .05; slow, η(p)(2) = .41; fast, η(p)(2) = .31). Choice reaction time improved in all trials with the exception of PLA, which demonstrated a reduction (P < .001, η(p)(2) = .85), although C+C was faster than all trials (P < .001, η(p)(2) = .76). These findings suggest that the ingestion of a caffeinated carbohydrate solution before and during a badminton match can maintain serve accuracy, anticipation timing, and sprinting actions around the court.
Armen, Roger S; Chen, Jianhan; Brooks, Charles L
2009-10-13
Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and "noise" that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds.
Armen, Roger S.; Chen, Jianhan; Brooks, Charles L.
2009-01-01
Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and “noise” that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds. PMID:20160879
Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification
NASA Astrophysics Data System (ADS)
Sharif, I.; Khare, S.
2014-11-01
With the number of channels in the hundreds instead of in the tens Hyper spectral imagery possesses much richer spectral information than multispectral imagery. The increased dimensionality of such Hyper spectral data provides a challenge to the current technique for analyzing data. Conventional classification methods may not be useful without dimension reduction pre-processing. So dimension reduction has become a significant part of Hyper spectral image processing. This paper presents a comparative analysis of the efficacy of Haar and Daubechies wavelets for dimensionality reduction in achieving image classification. Spectral data reduction using Wavelet Decomposition could be useful because it preserves the distinction among spectral signatures. Daubechies wavelets optimally capture the polynomial trends while Haar wavelet is discontinuous and resembles a step function. The performance of these wavelets are compared in terms of classification accuracy and time complexity. This paper shows that wavelet reduction has more separate classes and yields better or comparable classification accuracy. In the context of the dimensionality reduction algorithm, it is found that the performance of classification of Daubechies wavelets is better as compared to Haar wavelet while Daubechies takes more time compare to Haar wavelet. The experimental results demonstrate the classification system consistently provides over 84% classification accuracy.
Chiu, Herng-Chia; Ho, Te-Wei; Lee, King-Teh; Chen, Hong-Yaw; Ho, Wen-Hsien
2013-01-01
The aim of this present study is firstly to compare significant predictors of mortality for hepatocellular carcinoma (HCC) patients undergoing resection between artificial neural network (ANN) and logistic regression (LR) models and secondly to evaluate the predictive accuracy of ANN and LR in different survival year estimation models. We constructed a prognostic model for 434 patients with 21 potential input variables by Cox regression model. Model performance was measured by numbers of significant predictors and predictive accuracy. The results indicated that ANN had double to triple numbers of significant predictors at 1-, 3-, and 5-year survival models as compared with LR models. Scores of accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) of 1-, 3-, and 5-year survival estimation models using ANN were superior to those of LR in all the training sets and most of the validation sets. The study demonstrated that ANN not only had a great number of predictors of mortality variables but also provided accurate prediction, as compared with conventional methods. It is suggested that physicians consider using data mining methods as supplemental tools for clinical decision-making and prognostic evaluation. PMID:23737707
Symbol-string sensitivity and children's reading.
Pammer, Kristen; Lavis, Ruth; Hansen, Peter; Cornelissen, Piers L
2004-06-01
In this study of primary school children, a novel 'symbol-string' task is used to assess sensitivity to the position of briefly presented non-alphabetic but letter-like symbols. The results demonstrate that sensitivity in the symbol-string task explains a unique proportion of the variability in children's contextual reading accuracy. Moreover, developmental dyslexic readers show reduced sensitivity in this task, compared to chronological age controls. The results suggest that limitations set by visuo-spatial processes and/or attentional iconic memory resources may constrain children's reading accuracy.
Effect of recent popularity on heat-conduction based recommendation models
NASA Astrophysics Data System (ADS)
Li, Wen-Jun; Dong, Qiang; Shi, Yang-Bo; Fu, Yan; He, Jia-Lin
2017-05-01
Accuracy and diversity are two important measures in evaluating the performance of recommender systems. It has been demonstrated that the recommendation model inspired by the heat conduction process has high diversity yet low accuracy. Many variants have been introduced to improve the accuracy while keeping high diversity, most of which regard the current node-degree of an item as its popularity. However in this way, a few outdated items of large degree may be recommended to an enormous number of users. In this paper, we take the recent popularity (recently increased item degrees) into account in the heat-conduction based methods, and propose accordingly the improved recommendation models. Experimental results on two benchmark data sets show that the accuracy can be largely improved while keeping the high diversity compared with the original models.
The effect of speed-accuracy strategy on response interference control in Parkinson's disease.
Wylie, S A; van den Wildenberg, W P M; Ridderinkhof, K R; Bashore, T R; Powell, V D; Manning, C A; Wooten, G F
2009-07-01
Studies that used conflict paradigms such as the Eriksen Flanker task show that many individuals with Parkinson's disease (PD) have pronounced difficulty resolving the conflict that arises from the simultaneous activation of mutually exclusive responses. This finding fits well with contemporary views that postulate a key role for the basal ganglia in action selection. The present experiment aims to specify the cognitive processes that underlie action selection deficits among PD patients in the context of variations in speed-accuracy strategy. PD patients (n=28) and healthy controls (n=17) performed an arrow version of the flanker task under task instructions that either emphasized speed or accuracy of responses. Reaction time (RT) and accuracy rates decreased with speed compared to accuracy instructions, although to a lesser extent for the PD group. Differences in flanker interference effects among PD and healthy controls depended on speed-accuracy strategy. Compared to the healthy controls, PD patients showed larger flanker interference effects under speed stress. RT distribution analyses suggested that PD patients have greater difficulty suppressing incorrect response activation when pressing for speed. These initial findings point to an important interaction between strategic and computational aspects of interference control in accounting for cognitive impairments of PD. The results are also compatible with recent brain imaging studies that demonstrate basal ganglia activity to co-vary with speed-accuracy adjustments.
Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang
2012-05-01
Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.
Kappa and Rater Accuracy: Paradigms and Parameters.
Conger, Anthony J
2017-12-01
Drawing parallels to classical test theory, this article clarifies the difference between rater accuracy and reliability and demonstrates how category marginal frequencies affect rater agreement and Cohen's kappa (κ). Category assignment paradigms are developed: comparing raters to a standard (index) versus comparing two raters to one another (concordance), using both nonstochastic and stochastic category membership. Using a probability model to express category assignments in terms of rater accuracy and random error, it is shown that observed agreement (Po) depends only on rater accuracy and number of categories; however, expected agreement (Pe) and κ depend additionally on category frequencies. Moreover, category frequencies affect Pe and κ solely through the variance of the category proportions, regardless of the specific frequencies underlying the variance. Paradoxically, some judgment paradigms involving stochastic categories are shown to yield higher κ values than their nonstochastic counterparts. Using the stated probability model, assignments to categories were generated for 552 combinations of paradigms, rater and category parameters, category frequencies, and number of stimuli. Observed means and standard errors for Po, Pe, and κ were fully consistent with theory expectations. Guidelines for interpretation of rater accuracy and reliability are offered, along with a discussion of alternatives to the basic model.
Paudel, Prakash; Kovai, Vilas; Naduvilath, Thomas; Phuong, Ha Thanh; Ho, Suit May; Giap, Nguyen Viet
2016-01-01
To assess validity of teacher-based vision screening and elicit factors associated with accuracy of vision screening in Vietnam. After brief training, teachers independently measured visual acuity (VA) in 555 children aged 12-15 years in Ba Ria - Vung Tau Province. Teacher VA measurements were compared to those of refractionists. Sensitivity, specificity, positive predictive value and negative predictive value were calculated for uncorrected VA (UVA) and presenting VA (PVA) 20/40 or worse in either eye. Chi-square, Fisher's exact test and multivariate logistic regression were used to assess factors associated with accuracy of vision screening. Level of significance was set at 5%. Trained teachers in Vietnam demonstrated 86.7% sensitivity, 95.7% specificity, 86.7% positive predictive value and 95.7% negative predictive value in identifying children with visual impairment using the UVA measurement. PVA measurement revealed low accuracy for teachers, which was significantly associated with child's age, sex, spectacle wear and myopic status, but UVA measurement showed no such associations. Better accuracy was achieved in measurement of VA and identification of children with visual impairment using UVA measurement compared to PVA. UVA measurement is recommended for teacher-based vision screening programs.
Propagation of measurement accuracy to biomass soft-sensor estimation and control quality.
Steinwandter, Valentin; Zahel, Thomas; Sagmeister, Patrick; Herwig, Christoph
2017-01-01
In biopharmaceutical process development and manufacturing, the online measurement of biomass and derived specific turnover rates is a central task to physiologically monitor and control the process. However, hard-type sensors such as dielectric spectroscopy, broth fluorescence, or permittivity measurement harbor various disadvantages. Therefore, soft-sensors, which use measurements of the off-gas stream and substrate feed to reconcile turnover rates and provide an online estimate of the biomass formation, are smart alternatives. For the reconciliation procedure, mass and energy balances are used together with accuracy estimations of measured conversion rates, which were so far arbitrarily chosen and static over the entire process. In this contribution, we present a novel strategy within the soft-sensor framework (named adaptive soft-sensor) to propagate uncertainties from measurements to conversion rates and demonstrate the benefits: For industrially relevant conditions, hereby the error of the resulting estimated biomass formation rate and specific substrate consumption rate could be decreased by 43 and 64 %, respectively, compared to traditional soft-sensor approaches. Moreover, we present a generic workflow to determine the required raw signal accuracy to obtain predefined accuracies of soft-sensor estimations. Thereby, appropriate measurement devices and maintenance intervals can be selected. Furthermore, using this workflow, we demonstrate that the estimation accuracy of the soft-sensor can be additionally and substantially increased.
Frouzan, Arash; Masoumi, Kambiz; Delirroyfard, Ali; Mazdaie, Behnaz; Bagherzadegan, Elnaz
2017-08-01
Long bone fractures are common injuries caused by trauma. Some studies have demonstrated that ultrasound has a high sensitivity and specificity in the diagnosis of upper and lower extremity long bone fractures. The aim of this study was to determine the accuracy of ultrasound compared with plain radiography in diagnosis of upper and lower extremity long bone fractures in traumatic patients. This cross-sectional study assessed 100 patients admitted to the emergency department of Imam Khomeini Hospital, Ahvaz, Iran with trauma to the upper and lower extremities, from September 2014 through October 2015. In all patients, first ultrasound and then standard plain radiography for the upper and lower limb was performed. Data were analyzed by SPSS version 21 to determine the specificity and sensitivity. The mean age of patients with upper and lower limb trauma were 31.43±12.32 years and 29.63±5.89 years, respectively. Radius fracture was the most frequent compared to other fractures (27%). Sensitivity, specificity, positive predicted value, and negative predicted value of ultrasound compared with plain radiography in the diagnosis of upper extremity long bones were 95.3%, 87.7%, 87.2% and 96.2%, respectively, and the highest accuracy was observed in left arm fractures (100%). Tibia and fibula fractures were the most frequent types compared to other fractures (89.2%). Sensitivity, specificity, PPV and NPV of ultrasound compared with plain radiography in the diagnosis of upper extremity long bone fractures were 98.6%, 83%, 65.4% and 87.1%, respectively, and the highest accuracy was observed in men, lower ages and femoral fractures. The results of this study showed that ultrasound compared with plain radiography has a high accuracy in the diagnosis of upper and lower extremity long bone fractures.
Bahadure, Nilesh Bhaskarrao; Ray, Arun Kumar; Thethi, Har Pal
2018-01-17
The detection of a brain tumor and its classification from modern imaging modalities is a primary concern, but a time-consuming and tedious work was performed by radiologists or clinical supervisors. The accuracy of detection and classification of tumor stages performed by radiologists is depended on their experience only, so the computer-aided technology is very important to aid with the diagnosis accuracy. In this study, to improve the performance of tumor detection, we investigated comparative approach of different segmentation techniques and selected the best one by comparing their segmentation score. Further, to improve the classification accuracy, the genetic algorithm is employed for the automatic classification of tumor stage. The decision of classification stage is supported by extracting relevant features and area calculation. The experimental results of proposed technique are evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on segmentation score, accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 92.03% accuracy, 91.42% specificity, 92.36% sensitivity, and an average segmentation score between 0.82 and 0.93 demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 93.79% dice similarity index coefficient, which indicates better overlap between the automated extracted tumor regions with manually extracted tumor region by radiologists.
Application of the boundary integral method to immiscible displacement problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masukawa, J.; Horne, R.N.
1988-08-01
This paper presents an application of the boundary integral method (BIM) to fluid displacement problems to demonstrate its usefulness in reservoir simulation. A method for solving two-dimensional (2D), piston-like displacement for incompressible fluids with good accuracy has been developed. Several typical example problems with repeated five-spot patterns were solved for various mobility ratios. The solutions were compared with the analytical solutions to demonstrate accuracy. Singularity programming was found to be a major advantage in handling flow in the vicinity of wells. The BIM was found to be an excellent way to solve immiscible displacement problems. Unlike analytic methods, it canmore » accommodate complex boundary shapes and does not suffer from numerical dispersion at the front.« less
ERIC Educational Resources Information Center
Puhan, Gautam
2013-01-01
The purpose of this study was to demonstrate that the choice of sample weights when defining the target population under poststratification equating can be a critical factor in determining the accuracy of the equating results under a unique equating scenario, known as "rater comparability scoring and equating." The nature of data…
Khrustaleva, A M; Volkov, A A; Stoklitskaia, D S; Miuge, N S; Zelenina, D A
2010-11-01
Sockeye salmon samples from five largest lacustrine-riverine systems of Kamchatka Peninsula were tested for polymorphism at six microsatellite (STR) and five single nucleotide polymorphism (SNP) loci. Statistically significant genetic differentiation among local populations from this part of the species range examined was demonstrated. The data presented point to pronounced genetic divergence of the populations from two geographical regions, Eastern and Western Kamchatka. For sockeye salmon, the individual identification test accuracy was higher for microsatellites compared to similar number of SNP markers. Pooling of the STR and SNP allele frequency data sets provided the highest accuracy of the individual fish population assignment.
Ratiometric wavelength monitor based on X-type spectral response using two edge filters
NASA Astrophysics Data System (ADS)
Hatta, Agus Muhamad; Rajan, Ginu; Farrell, Gerald; Semenova, Yuliya
2009-05-01
The performance of an all-fiber ratiometric wavelength measurement system is compared for the case of two edge filters and the case of one edge filter. The two fiber edge filters are used with overlapping and opposite slope spectral responses, a so called "X-type spectral response", each based on singlemode-multimode-singlemode (SMS) fiber structures. Noise and polarization dependent loss (PDL) are the two parameters that determine the resolution and an accuracy of the system. It is demonstrated that the use of two SMS edge filters for a ratiometric wavelength measurement system can increase the resolution and the accuracy when compared with a system using only one edge filter.
D'Iorio, M.; Jupiter, S.D.; Cochran, S.A.; Potts, D.C.
2007-01-01
In 1902, the Florida red mangrove, Rhizophora mangle L., was introduced to the island of Molokai, Hawaii, and has since colonized nearly 25% of the south coast shoreline. By classifying three kinds of remote sensing imagery, we compared abilities to detect invasive mangrove distributions and to discriminate mangroves from surrounding terrestrial vegetation. Using three analytical techniques, we compared mangrove mapping accuracy for various sensor-technique combinations. ANOVA of accuracy assessments demonstrated significant differences among techniques, but no significant differences among the three sensors. We summarize advantages and disadvantages of each sensor and technique for mapping mangrove distributions in tropical coastal environments.
Scheerlinck, Thierry; Polfliet, Mathias; Deklerck, Rudi; Van Gompel, Gert; Buls, Nico; Vandemeulebroucke, Jef
2016-01-01
We developed a marker-free automated CT-based spatial analysis (CTSA) method to detect stem-bone migration in consecutive CT datasets and assessed the accuracy and precision in vitro. Our aim was to demonstrate that in vitro accuracy and precision of CTSA is comparable to that of radiostereometric analysis (RSA). Stem and bone were segmented in 2 CT datasets and both were registered pairwise. The resulting rigid transformations were compared and transferred to an anatomically sound coordinate system, taking the stem as reference. This resulted in 3 translation parameters and 3 rotation parameters describing the relative amount of stem-bone displacement, and it allowed calculation of the point of maximal stem migration. Accuracy was evaluated in 39 comparisons by imposing known stem migration on a stem-bone model. Precision was estimated in 20 comparisons based on a zero-migration model, and in 5 patients without stem loosening. Limits of the 95% tolerance intervals (TIs) for accuracy did not exceed 0.28 mm for translations and 0.20° for rotations (largest standard deviation of the signed error (SD(SE)): 0.081 mm and 0.057°). In vitro, limits of the 95% TI for precision in a clinically relevant setting (8 comparisons) were below 0.09 mm and 0.14° (largest SD(SE): 0.012 mm and 0.020°). In patients, the precision was lower, but acceptable, and dependent on CT scan resolution. CTSA allows detection of stem-bone migration with an accuracy and precision comparable to that of RSA. It could be valuable for evaluation of subtle stem loosening in clinical practice.
Correlation of ground tests and analyses of a dynamically scaled Space Station model configuration
NASA Technical Reports Server (NTRS)
Javeed, Mehzad; Edighoffer, Harold H.; Mcgowan, Paul E.
1993-01-01
Verification of analytical models through correlation with ground test results of a complex space truss structure is demonstrated. A multi-component, dynamically scaled space station model configuration is the focus structure for this work. Previously established test/analysis correlation procedures are used to develop improved component analytical models. Integrated system analytical models, consisting of updated component analytical models, are compared with modal test results to establish the accuracy of system-level dynamic predictions. Design sensitivity model updating methods are shown to be effective for providing improved component analytical models. Also, the effects of component model accuracy and interface modeling fidelity on the accuracy of integrated model predictions is examined.
High-accuracy user identification using EEG biometrics.
Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip
2016-08-01
We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.
Lee, Won-Joon; Wilkinson, Caroline M; Hwang, Hyeon-Shik; Lee, Sang-Mi
2015-05-01
Accuracy is the most important factor supporting the reliability of forensic facial reconstruction (FFR) comparing to the corresponding actual face. A number of methods have been employed to evaluate objective accuracy of FFR. Recently, it has been attempted that the degree of resemblance between computer-generated FFR and actual face is measured by geometric surface comparison method. In this study, three FFRs were produced employing live adult Korean subjects and three-dimensional computerized modeling software. The deviations of the facial surfaces between the FFR and the head scan CT of the corresponding subject were analyzed in reverse modeling software. The results were compared with those from a previous study which applied the same methodology as this study except average facial soft tissue depth dataset. Three FFRs of this study that applied updated dataset demonstrated lesser deviation errors between the facial surfaces of the FFR and corresponding subject than those from the previous study. The results proposed that appropriate average tissue depth data are important to increase quantitative accuracy of FFR. © 2015 American Academy of Forensic Sciences.
Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui
2018-06-01
Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.
Experimental analysis of robot-assisted needle insertion into porcine liver.
Wang, Wendong; Shi, Yikai; Goldenberg, Andrew A; Yuan, Xiaoqing; Zhang, Peng; He, Lijing; Zou, Yingjie
2015-01-01
How to improve placement accuracy of needle insertion into liver tissue is of paramount interest to physicians. A robot-assisted system was developed to experimentally demonstrate its advantages in needle insertion surgeries. Experiments of needle insertion into porcine liver tissue were performed with conic tip needle (diameter 8 mm) and bevel tip needle (diameter 1.5 mm) in this study. Manual operation was designed to compare the performance of the presented robot-assisted system. The real-time force curves show outstanding advantages of robot-assisted operation in improving the controllability and stability of needle insertion process by comparing manual operation. The statistics of maximum force and average force further demonstrates robot-assisted operation causes less oscillation. The difference of liver deformation created by manual operation and robot-assisted operation is very low, 1 mm for average deformation and 2 mm for maximum deformation. To conclude, the presented robot-assisted system can improve placement accuracy of needle by stably control insertion process.
Matuszewski, Szymon; Frątczak-Łagiewska, Katarzyna
2018-02-05
Insects colonizing human or animal cadavers may be used to estimate post-mortem interval (PMI) usually by aging larvae or pupae sampled on a crime scene. The accuracy of insect age estimates in a forensic context is reduced by large intraspecific variation in insect development time. Here we test the concept that insect size at emergence may be used to predict insect physiological age and accordingly to improve the accuracy of age estimates in forensic entomology. Using results of laboratory study on development of forensically-useful beetle Creophilus maxillosus (Linnaeus, 1758) (Staphylinidae) we demonstrate that its physiological age at emergence [i.e. thermal summation value (K) needed for emergence] fall with an increase of beetle size. In the validation study it was found that K estimated based on the adult insect size was significantly closer to the true K as compared to K from the general thermal summation model. Using beetle length at emergence as a predictor variable and male or female specific model regressing K against beetle length gave the most accurate predictions of age. These results demonstrate that size of C. maxillosus at emergence improves accuracy of age estimates in a forensic context.
Exploring the Relationship Between Eye Movements and Electrocardiogram Interpretation Accuracy
NASA Astrophysics Data System (ADS)
Davies, Alan; Brown, Gavin; Vigo, Markel; Harper, Simon; Horseman, Laura; Splendiani, Bruno; Hill, Elspeth; Jay, Caroline
2016-12-01
Interpretation of electrocardiograms (ECGs) is a complex task involving visual inspection. This paper aims to improve understanding of how practitioners perceive ECGs, and determine whether visual behaviour can indicate differences in interpretation accuracy. A group of healthcare practitioners (n = 31) who interpret ECGs as part of their clinical role were shown 11 commonly encountered ECGs on a computer screen. The participants’ eye movement data were recorded as they viewed the ECGs and attempted interpretation. The Jensen-Shannon distance was computed for the distance between two Markov chains, constructed from the transition matrices (visual shifts from and to ECG leads) of the correct and incorrect interpretation groups for each ECG. A permutation test was then used to compare this distance against 10,000 randomly shuffled groups made up of the same participants. The results demonstrated a statistically significant (α 0.05) result in 5 of the 11 stimuli demonstrating that the gaze shift between the ECG leads is different between the groups making correct and incorrect interpretations and therefore a factor in interpretation accuracy. The results shed further light on the relationship between visual behaviour and ECG interpretation accuracy, providing information that can be used to improve both human and automated interpretation approaches.
Placebo-suggestion modulates conflict resolution in the Stroop Task.
Magalhães De Saldanha da Gama, Pedro A; Slama, Hichem; Caspar, Emilie A; Gevers, Wim; Cleeremans, Axel
2013-01-01
Here, we ask whether placebo-suggestion (without any form of hypnotic induction) can modulate the resolution of cognitive conflict. Naïve participants performed a Stroop Task while wearing an EEG cap described as a "brain wave" machine. In Experiment 1, participants were made to believe that the EEG cap would either enhance or decrease their color perception and performance on the Stroop task. In Experiment 2, participants were explicitly asked to imagine that their color perception and performance would be enhanced or decreased (non-hypnotic imaginative suggestion). We observed effects of placebo-suggestion on Stroop interference on accuracy: interference was decreased with positive suggestion and increased with negative suggestion compared to baseline. Intra-individual variability was also increased under negative suggestion compared to baseline. Compliance with the instruction to imagine a modulation of performance, on the other hand, did not influence accuracy and only had a negative impact on response latencies and on intra-individual variability, especially in the congruent condition of the Stroop Task. Taken together, these results demonstrate that expectations induced by a placebo-suggestion can modulate our ability to resolve cognitive conflict, either facilitating or impairing response accuracy depending on the suggestion's contents. Our results also demonstrate a dissociation between placebo-suggestion and non-hypnotic imaginative suggestion.
Placebo-Suggestion Modulates Conflict Resolution in the Stroop Task
Caspar, Emilie A.; Gevers, Wim; Cleeremans, Axel
2013-01-01
Here, we ask whether placebo-suggestion (without any form of hypnotic induction) can modulate the resolution of cognitive conflict. Naïve participants performed a Stroop Task while wearing an EEG cap described as a “brain wave” machine. In Experiment 1, participants were made to believe that the EEG cap would either enhance or decrease their color perception and performance on the Stroop task. In Experiment 2, participants were explicitly asked to imagine that their color perception and performance would be enhanced or decreased (non-hypnotic imaginative suggestion). We observed effects of placebo-suggestion on Stroop interference on accuracy: interference was decreased with positive suggestion and increased with negative suggestion compared to baseline. Intra-individual variability was also increased under negative suggestion compared to baseline. Compliance with the instruction to imagine a modulation of performance, on the other hand, did not influence accuracy and only had a negative impact on response latencies and on intra-individual variability, especially in the congruent condition of the Stroop Task. Taken together, these results demonstrate that expectations induced by a placebo-suggestion can modulate our ability to resolve cognitive conflict, either facilitating or impairing response accuracy depending on the suggestion’s contents. Our results also demonstrate a dissociation between placebo-suggestion and non-hypnotic imaginative suggestion. PMID:24130735
Accuracy of frozen section in the diagnosis of ovarian tumours.
Toneva, F; Wright, H; Razvi, K
2012-07-01
The purpose of our retrospective study was to assess the accuracy of intraoperative frozen section diagnosis compared to final paraffin diagnosis in ovarian tumours at a gynaecological oncology centre in the UK. We analysed 66 cases and observed that frozen section consultation agreed with final paraffin diagnosis in 59 cases, which provided an accuracy of 89.4%. The overall sensitivity and specificity for all tumours were 85.4% and 100%, respectively. The positive predictive value (PPV) and negative predictive value (NPV) were 100% and 89.4%, respectively. Of the seven cases with discordant results, the majority were large, mucinous tumours, which is in line with previous studies. Our study demonstrated that despite its limitations, intraoperative frozen section has a high accuracy and sensitivity for assessing ovarian tumours; however, care needs to be taken with large, mucinous tumours.
Accuracy and completeness of drug information in Wikipedia medication monographs.
Reilly, Timothy; Jackson, William; Berger, Victoria; Candelario, Danielle
The primary objective of this study was to determine the accuracy and completeness of drug information on Wikipedia and Micromedex compared with U.S. Food and Drug Administration-approved U.S. product inserts. The top 10 brand and top 10 generic medications from the 2012 Institute for Health Informatics' list of top 200 drugs were selected for evaluation. Wikipedia medication information was evaluated and compared with Micromedex in 7 sections of drug information; the U.S. product inserts were used as the standard comparator. Wikipedia demonstrated significantly lower completeness and accuracy scores compared with Micromedex (mean composite scores 18.55 vs. 38.4, respectively; P <0.01). No difference was found between the mean composite scores for brand versus generic drugs in either reference (17.8 vs. 19.3, respectively [P = 0.62], for Wikipedia; 39.2 vs. 37.6, [P = 0.06] for Micromedex). Limitations to these results include the speed with which information is edited on Wikipedia, that there was no evaluation of off-label information, and the limited number of drugs that were evaluated. Wikipedia lacks the accuracy and completeness of standard clinical references and should not be a routine part of clinical decision making. More research should be conducted to evaluate the rationale for health care providers' use of Wikipedia. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
A Spiking Neural Network in sEMG Feature Extraction.
Lobov, Sergey; Mironov, Vasiliy; Kastalskiy, Innokentiy; Kazantsev, Victor
2015-11-03
We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control.
Rolling bearing fault diagnosis based on information fusion using Dempster-Shafer evidence theory
NASA Astrophysics Data System (ADS)
Pei, Di; Yue, Jianhai; Jiao, Jing
2017-10-01
This paper presents a fault diagnosis method for rolling bearing based on information fusion. Acceleration sensors are arranged at different position to get bearing vibration data as diagnostic evidence. The Dempster-Shafer (D-S) evidence theory is used to fuse multi-sensor data to improve diagnostic accuracy. The efficiency of the proposed method is demonstrated by the high speed train transmission test bench. The results of experiment show that the proposed method in this paper improves the rolling bearing fault diagnosis accuracy compared with traditional signal analysis methods.
Constructing better classifier ensemble based on weighted accuracy and diversity measure.
Zeng, Xiaodong; Wong, Derek F; Chao, Lidia S
2014-01-01
A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases.
Constructing Better Classifier Ensemble Based on Weighted Accuracy and Diversity Measure
Chao, Lidia S.
2014-01-01
A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases. PMID:24672402
Mizinga, Kemmy M; Burnett, Thomas J; Brunelle, Sharon L; Wallace, Michael A; Coleman, Mark R
2018-05-01
The U.S. Department of Agriculture, Food Safety Inspection Service regulatory method for monensin, Chemistry Laboratory Guidebook CLG-MON, is a semiquantitative bioautographic method adopted in 1991. Official Method of AnalysisSM (OMA) 2011.24, a modern quantitative and confirmatory LC-tandem MS method, uses no chlorinated solvents and has several advantages, including ease of use, ready availability of reagents and materials, shorter run-time, and higher throughput than CLG-MON. Therefore, a bridging study was conducted to support the replacement of method CLG-MON with OMA 2011.24 for regulatory use. Using fortified bovine tissue samples, CLG-MON yielded accuracies of 80-120% in 44 of the 56 samples tested (one sample had no result, six samples had accuracies of >120%, and five samples had accuracies of 40-160%), but the semiquantitative nature of CLG-MON prevented assessment of precision, whereas OMA 2011.24 had accuracies of 88-110% and RSDr of 0.00-15.6%. Incurred residue results corroborated these results, demonstrating improved accuracy (83.3-114%) and good precision (RSDr of 2.6-20.5%) for OMA 2011.24 compared with CLG-MON (accuracy generally within 80-150%, with exceptions). Furthermore, χ2 analysis revealed no statistically significant difference between the two methods. Thus, the microbiological activity of monensin correlated with the determination of monensin A in bovine tissues, and OMA 2011.24 provided improved accuracy and precision over CLG-MON.
Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.
Chowdhury, Alok Kumar; Tjondronegoro, Dian; Chandran, Vinod; Trost, Stewart G
2017-09-01
To investigate whether the use of ensemble learning algorithms improve physical activity recognition accuracy compared to the single classifier algorithms, and to compare the classification accuracy achieved by three conventional ensemble machine learning methods (bagging, boosting, random forest) and a custom ensemble model comprising four algorithms commonly used for activity recognition (binary decision tree, k nearest neighbor, support vector machine, and neural network). The study used three independent data sets that included wrist-worn accelerometer data. For each data set, a four-step classification framework consisting of data preprocessing, feature extraction, normalization and feature selection, and classifier training and testing was implemented. For the custom ensemble, decisions from the single classifiers were aggregated using three decision fusion methods: weighted majority vote, naïve Bayes combination, and behavior knowledge space combination. Classifiers were cross-validated using leave-one subject out cross-validation and compared on the basis of average F1 scores. In all three data sets, ensemble learning methods consistently outperformed the individual classifiers. Among the conventional ensemble methods, random forest models provided consistently high activity recognition; however, the custom ensemble model using weighted majority voting demonstrated the highest classification accuracy in two of the three data sets. Combining multiple individual classifiers using conventional or custom ensemble learning methods can improve activity recognition accuracy from wrist-worn accelerometer data.
Accuracy of acoustic respiration rate monitoring in pediatric patients.
Patino, Mario; Redford, Daniel T; Quigley, Thomas W; Mahmoud, Mohamed; Kurth, C Dean; Szmuk, Peter
2013-12-01
Rainbow acoustic monitoring (RRa) utilizes acoustic technology to continuously and noninvasively determine respiratory rate from an adhesive sensor located on the neck. We sought to validate the accuracy of RRa, by comparing it to capnography, impedance pneumography, and to a reference method of counting breaths in postsurgical children. Continuous respiration rate data were recorded from RRa and capnography. In a subset of patients, intermittent respiration rate from thoracic impedance pneumography was also recorded. The reference method, counted respiratory rate by the retrospective analysis of the RRa, and capnographic waveforms while listening to recorded breath sounds were used to compare respiration rate of both capnography and RRa. Bias, precision, and limits of agreement of RRa compared with capnography and RRa and capnography compared with the reference method were calculated. Tolerance and reliability to the acoustic sensor and nasal cannula were also assessed. Thirty-nine of 40 patients (97.5%) demonstrated good tolerance of the acoustic sensor, whereas 25 of 40 patients (62.5%) demonstrated good tolerance of the nasal cannula. Intermittent thoracic impedance produced erroneous respiratory rates (>50 b·min(-1) from the other methods) on 47% of occasions. The bias ± SD and limits of agreement were -0.30 ± 3.5 b·min(-1) and -7.3 to 6.6 b·min(-1) for RRa compared with capnography; -0.1 ± 2.5 b·min(-1) and -5.0 to 5.0 b·min(-1) for RRa compared with the reference method; and 0.2 ± 3.4 b·min(-1) and -6.8 to 6.7 b·min(-1) for capnography compared with the reference method. When compared to nasal capnography, RRa showed good agreement and similar accuracy and precision but was better tolerated in postsurgical pediatric patients. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zolot, A. M.; Giorgetta, F. R.; Baumann, E.; Swann, W. C.; Coddington, I.; Newbury, N. R.
2013-03-01
The Doppler-limited spectra of methane between 176 THz and 184 THz (5870-6130 cm-1) and acetylene between 193 THz and 199 THz (6430-6630 cm-1) are acquired via comb-tooth resolved dual comb spectroscopy with frequency accuracy traceable to atomic standards. A least squares analysis of the measured absorbance and phase line shapes provides line center frequencies with absolute accuracy of 0.2 MHz, or less than one thousandth of the room temperature Doppler width. This accuracy is verified through comparison with previous saturated absorption spectroscopy of 37 strong isolated lines of acetylene. For the methane spectrum, the center frequencies of 46 well-isolated strong lines are determined with similar high accuracy, along with the center frequencies for 1107 non-isolated lines at lower accuracy. The measured methane line-center frequencies have an uncertainty comparable to the few available laser heterodyne measurements in this region but span a much larger optical bandwidth, marking the first broad-band measurements of the methane 2ν3 region directly referenced to atomic frequency standards. This study demonstrates the promise of dual comb spectroscopy to obtain high resolution broadband spectra that are comparable to state-of-the-art Fourier-transform spectrometer measurements but with much improved frequency accuracy.Work of the US government, not subject to US copyright.
Hierarchical image segmentation via recursive superpixel with adaptive regularity
NASA Astrophysics Data System (ADS)
Nakamura, Kensuke; Hong, Byung-Woo
2017-11-01
A fast and accurate segmentation algorithm in a hierarchical way based on a recursive superpixel technique is presented. We propose a superpixel energy formulation in which the trade-off between data fidelity and regularization is dynamically determined based on the local residual in the energy optimization procedure. We also present an energy optimization algorithm that allows a pixel to be shared by multiple regions to improve the accuracy and appropriate the number of segments. The qualitative and quantitative evaluations demonstrate that our algorithm, combining the proposed energy and optimization, outperforms the conventional k-means algorithm by up to 29.10% in F-measure. We also perform comparative analysis with state-of-the-art algorithms in the hierarchical segmentation. Our algorithm yields smooth regions throughout the hierarchy as opposed to the others that include insignificant details. Our algorithm overtakes the other algorithms in terms of balance between accuracy and computational time. Specifically, our method runs 36.48% faster than the region-merging approach, which is the fastest of the comparing algorithms, while achieving a comparable accuracy.
Neural substrates of empathic accuracy in people with schizophrenia.
Harvey, Philippe-Olivier; Zaki, Jamil; Lee, Junghee; Ochsner, Kevin; Green, Michael F
2013-05-01
Empathic deficits in schizophrenia may lead to social dysfunction, but previous studies of schizophrenia have not modeled empathy through paradigms that (1) present participants with naturalistic social stimuli and (2) link brain activity to "accuracy" about inferring other's emotional states. This study addressed this gap by investigating the neural correlates of empathic accuracy (EA) in schizophrenia. Fifteen schizophrenia patients and 15 controls were scanned while continuously rating the affective state of another person shown in a series of videos (ie, targets). These ratings were compared with targets' own self-rated affect, and EA was defined as the correlation between participants' ratings and targets' self-ratings. Targets' self-reported emotional expressivity also was measured. We searched for brain regions whose activity tracked parametrically with (1) perceivers' EA and (2) targets' expressivity. Patients showed reduced EA compared with controls. The left precuneus, left middle frontal gyrus, and bilateral thalamus were significantly more correlated with EA in controls compared with patients. High expressivity in targets was associated with better EA in controls but not in patients. High expressivity was associated with increased brain activity in a large set of regions in controls (eg, fusiform gyrus, medial prefrontal cortex) but not in patients. These results use a naturalistic performance measure to confirm that schizophrenic patients demonstrate impaired ability to understand others' internal states. They provide novel evidence about a potential mechanism for this impairment: schizophrenic patients failed to capitalize on targets' emotional expressivity and also demonstrate reduced neural sensitivity to targets' affective cues.
Streng, Martin; Ignatov, Atanas; Reinisch, Mattea; Costa, Serban-Dan; Eggemann, Holm
2018-02-01
Precise presurgical diagnosis of tumour size is essential for adequate treatment of male breast cancer (MBC). This study is aimed to compare the accuracy of clinical measurement (CE), ultrasound (US) and mammography (MG) for preoperative estimation of tumour size. This study was conducted as a prospective, multicentre register study. One hundred and twenty-nine male patients with invasive breast cancer were included. CE, US and MG were performed in 107, 110 and 75 patients, respectively, and the estimated tumour size was compared with the histopathological (HP) tumour size. All methods tended to underestimate the HP tumour size. None of the methods were significantly more accurate than the others in determining the maximal tumour diameter. The sensitivity within 5 mm tolerance for US was 65.5%, which was better than for MG (61.3%) and CE (56.6%). In the group of patients with pT2 tumours, MG showed significantly better accuracy than US. The measurements obtained with each method were significantly correlated with the HP measurements. The highest correlation coefficient was observed for MG (0.788), followed by US (0.741) and CE (0.671). Our data demonstrate that MG and US have similar accuracy with regard to tumour size estimation. US assessment showed the highest sensitivity in determining tumour size, followed by MG and CE. However, MG demonstrated a significant advantage for estimating the real tumour size for pT2 tumours compared to US or CE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Youshan, E-mail: ysliu@mail.iggcas.ac.cn; Teng, Jiwen, E-mail: jwteng@mail.iggcas.ac.cn; Xu, Tao, E-mail: xutao@mail.iggcas.ac.cn
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate newmore » cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational efficiency, the OTSEM is more efficient than the Fekete-based TSEM, although it is slightly costlier than the QSEM when a comparable numerical accuracy is required. - Highlights: • Higher-order cubature points for degrees 7 to 9 are developed. • The effects of quadrature rule on the mass and stiffness matrices has been conducted. • The cubature points have always positive integration weights. • Freeing from the inversion of a wide bandwidth mass matrix. • The accuracy of the TSEM has been improved in about one order of magnitude.« less
Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian
2013-01-01
Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to the conditions of operation. PMID:24260324
Diagnostic accuracy of imaging devices in glaucoma: A meta-analysis.
Fallon, Monica; Valero, Oliver; Pazos, Marta; Antón, Alfonso
Imaging devices such as the Heidelberg retinal tomograph-3 (HRT3), scanning laser polarimetry (GDx), and optical coherence tomography (OCT) play an important role in glaucoma diagnosis. A systematic search for evidence-based data was performed for prospective studies evaluating the diagnostic accuracy of HRT3, GDx, and OCT. The diagnostic odds ratio (DOR) was calculated. To compare the accuracy among instruments and parameters, a meta-analysis considering the hierarchical summary receiver-operating characteristic model was performed. The risk of bias was assessed using quality assessment of diagnostic accuracy studies, version 2. Studies in the context of screening programs were used for qualitative analysis. Eighty-six articles were included. The DOR values were 29.5 for OCT, 18.6 for GDx, and 13.9 for HRT. The heterogeneity analysis demonstrated statistically a significant influence of degree of damage and ethnicity. Studies analyzing patients with earlier glaucoma showed poorer results. The risk of bias was high for patient selection. Screening studies showed lower sensitivity values and similar specificity values when compared with those included in the meta-analysis. The classification capabilities of GDx, HRT, and OCT were high and similar across the 3 instruments. The highest estimated DOR was obtained with OCT. Diagnostic accuracy could be overestimated in studies including prediagnosed groups of subjects. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun
2012-01-01
Purpose Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Materials and Methods Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Results Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Conclusion Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI. PMID:22476999
NASA Astrophysics Data System (ADS)
Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo
2017-03-01
Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.
A Flexible Analysis Tool for the Quantitative Acoustic Assessment of Infant Cry
Reggiannini, Brian; Sheinkopf, Stephen J.; Silverman, Harvey F.; Li, Xiaoxue; Lester, Barry M.
2015-01-01
Purpose In this article, the authors describe and validate the performance of a modern acoustic analyzer specifically designed for infant cry analysis. Method Utilizing known algorithms, the authors developed a method to extract acoustic parameters describing infant cries from standard digital audio files. They used a frame rate of 25 ms with a frame advance of 12.5 ms. Cepstral-based acoustic analysis proceeded in 2 phases, computing frame-level data and then organizing and summarizing this information within cry utterances. Using signal detection methods, the authors evaluated the accuracy of the automated system to determine voicing and to detect fundamental frequency (F0) as compared to voiced segments and pitch periods manually coded from spectrogram displays. Results The system detected F0 with 88% to 95% accuracy, depending on tolerances set at 10 to 20 Hz. Receiver operating characteristic analyses demonstrated very high accuracy at detecting voicing characteristics in the cry samples. Conclusions This article describes an automated infant cry analyzer with high accuracy to detect important acoustic features of cry. A unique and important aspect of this work is the rigorous testing of the system’s accuracy as compared to ground-truth manual coding. The resulting system has implications for basic and applied research on infant cry development. PMID:23785178
Crock, J.G.; Lichte, F.E.
1982-01-01
Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne A.; Berry, David A.; Shultz, Travis R.
A set of equations are presented for calculating atomic principal spectral lines and fine-structure energy splits for single and multi-electron atoms. Calculated results are presented and compared to the National Institute of Science and Technology database demonstrating very good accuracy. The equations do not require fitted parameters. The only experimental parameter required is the Ionization energy for the electron of interest. The equations have comparable accuracy and broader applicability than the single electron Dirac equation. Three Appendices discuss the origin of the new equations and present calculated results. New insights into the special relativistic nature of the Dirac equation andmore » its relationship to the new equations are presented.« less
Uy, Raymonde Charles; Sarmiento, Raymond Francis; Gavino, Alex; Fontelo, Paul
2014-01-01
Clinical decision-making involves the interplay between cognitive processes and physicians' perceptions of confidence in the context of their information-seeking behavior. The objectives of the study are: to examine how these concepts interact, to determine whether physician confidence, defined in relation to information need, affects clinical decision-making, and if information access improves decision accuracy. We analyzed previously collected data about resident physicians' perceptions of information need from a study comparing abstracts and full-text articles in clinical decision accuracy. We found that there is a significant relation between confidence and accuracy (φ=0.164, p<0.01). We also found various differences in the alignment of confidence and accuracy, demonstrating the concepts of underconfidence and overconfidence across years of clinical experience. Access to online literature also has a significant effect on accuracy (p<0.001). These results highlight possible CDSS strategies to reduce medical errors.
Reference-based phasing using the Haplotype Reference Consortium panel.
Loh, Po-Ru; Danecek, Petr; Palamara, Pier Francesco; Fuchsberger, Christian; A Reshef, Yakir; K Finucane, Hilary; Schoenherr, Sebastian; Forer, Lukas; McCarthy, Shane; Abecasis, Goncalo R; Durbin, Richard; L Price, Alkes
2016-11-01
Haplotype phasing is a fundamental problem in medical and population genetics. Phasing is generally performed via statistical phasing in a genotyped cohort, an approach that can yield high accuracy in very large cohorts but attains lower accuracy in smaller cohorts. Here we instead explore the paradigm of reference-based phasing. We introduce a new phasing algorithm, Eagle2, that attains high accuracy across a broad range of cohort sizes by efficiently leveraging information from large external reference panels (such as the Haplotype Reference Consortium; HRC) using a new data structure based on the positional Burrows-Wheeler transform. We demonstrate that Eagle2 attains a ∼20× speedup and ∼10% increase in accuracy compared to reference-based phasing using SHAPEIT2. On European-ancestry samples, Eagle2 with the HRC panel achieves >2× the accuracy of 1000 Genomes-based phasing. Eagle2 is open source and freely available for HRC-based phasing via the Sanger Imputation Service and the Michigan Imputation Server.
ERIC Educational Resources Information Center
Liu, Ru-De; Ding, Yi; Gao, Bing-Cheng; Zhang, Dake
2015-01-01
This study aimed to examine the relations among property strategies, working memory, and multiplication tasks with 101 Chinese fourth-grade students. Two multiplication property strategies (associative and distributive) were compared with no strategy and demonstrated differentiated effects on students' accuracy and reaction time. Associative…
Estimation Methods for One-Parameter Testlet Models
ERIC Educational Resources Information Center
Jiao, Hong; Wang, Shudong; He, Wei
2013-01-01
This study demonstrated the equivalence between the Rasch testlet model and the three-level one-parameter testlet model and explored the Markov Chain Monte Carlo (MCMC) method for model parameter estimation in WINBUGS. The estimation accuracy from the MCMC method was compared with those from the marginalized maximum likelihood estimation (MMLE)…
Multiple confidence estimates as indices of eyewitness memory.
Sauer, James D; Brewer, Neil; Weber, Nathan
2008-08-01
Eyewitness identification decisions are vulnerable to various influences on witnesses' decision criteria that contribute to false identifications of innocent suspects and failures to choose perpetrators. An alternative procedure using confidence estimates to assess the degree of match between novel and previously viewed faces was investigated. Classification algorithms were applied to participants' confidence data to determine when a confidence value or pattern of confidence values indicated a positive response. Experiment 1 compared confidence group classification accuracy with a binary decision control group's accuracy on a standard old-new face recognition task and found superior accuracy for the confidence group for target-absent trials but not for target-present trials. Experiment 2 used a face mini-lineup task and found reduced target-present accuracy offset by large gains in target-absent accuracy. Using a standard lineup paradigm, Experiments 3 and 4 also found improved classification accuracy for target-absent lineups and, with a more sophisticated algorithm, for target-present lineups. This demonstrates the accessibility of evidence for recognition memory decisions and points to a more sensitive index of memory quality than is afforded by binary decisions.
A novel computerized surgeon-machine interface for robot-assisted laser phonomicrosurgery.
Mattos, Leonardo S; Deshpande, Nikhil; Barresi, Giacinto; Guastini, Luca; Peretti, Giorgio
2014-08-01
To introduce a novel computerized surgical system for improved usability, intuitiveness, accuracy, and controllability in robot-assisted laser phonomicrosurgery. Pilot technology assessment. The novel system was developed involving a newly designed motorized laser micromanipulator, a touch-screen display, and a graphics stylus. The system allows the control of a CO2 laser through interaction between the stylus and the live video of the surgical area. This empowers the stylus with the ability to have actual effect on the surgical site. Surgical enhancements afforded by this system were established through a pilot technology assessment using randomized trials comparing its performance with a state-of-the-art laser microsurgery system. Resident surgeons and medical students were chosen as subjects in performing sets of trajectory-following exercises. Image processing-based techniques were used for an objective performance assessment. A System Usability Scale-based questionnaire was used for the qualitative assessment. The computerized interface demonstrated superiority in usability, accuracy, and controllability over the state-of-the-art system. Significant ease of use and learning experienced by the subjects were demonstrated by the usability score assigned to the two compared interfaces: computerized interface = 83.96% versus state-of-the-art = 68.02%. The objective analysis showed a significant enhancement in accuracy and controllability: computerized interface = 90.02% versus state-of-the-art = 75.59%. The novel system significantly enhances the accuracy, usability, and controllability in laser phonomicrosurgery. The design provides an opportunity to improve the ergonomics and safety of current surgical setups. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
McRobert, Allistair Paul; Causer, Joe; Vassiliadis, John; Watterson, Leonie; Kwan, James; Williams, Mark A
2013-06-01
It is well documented that adaptations in cognitive processes with increasing skill levels support decision making in multiple domains. We examined skill-based differences in cognitive processes in emergency medicine physicians, and whether performance was significantly influenced by the removal of contextual information related to a patient's medical history. Skilled (n=9) and less skilled (n=9) emergency medicine physicians responded to high-fidelity simulated scenarios under high- and low-context information conditions. Skilled physicians demonstrated higher diagnostic accuracy irrespective of condition, and were less affected by the removal of context-specific information compared with less skilled physicians. The skilled physicians generated more options, and selected better quality options during diagnostic reasoning compared with less skilled counterparts. These cognitive processes were active irrespective of the level of context-specific information presented, although high-context information enhanced understanding of the patients' symptoms resulting in higher diagnostic accuracy. Our findings have implications for scenario design and the manipulation of contextual information during simulation training.
Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao
2015-01-01
In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. PMID:25977299
Bioluminescence Tomography–Guided Radiation Therapy for Preclinical Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bin; Wang, Ken Kang-Hsin, E-mail: kwang27@jhmi.edu; Yu, Jingjing
Purpose: In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm. Methods and Materials: The BLT system was designed to dock with the SARRP for image acquisition and to be detached before radiation delivery. A 3-mirror system was devised to reflect the bioluminescence emitted from the subject to a stationarymore » charge-coupled device (CCD) camera. Multispectral BLT and the incomplete variables truncated conjugate gradient method with a permissible region shrinking strategy were used as the optimization scheme to reconstruct bioluminescent source distributions. To validate BLT targeting accuracy, a small cylindrical light source with high CBCT contrast was placed in a phantom and also in the abdomen of a mouse carcass. The center of mass (CoM) of the source was recovered from BLT and used to guide radiation delivery. The accuracy of the BLT-guided targeting was validated with films and compared with the CBCT-guided delivery. In vivo experiments were conducted to demonstrate BLT localization capability for various source geometries. Results: Online BLT was able to recover the CoM of the embedded light source with an average accuracy of 1 mm compared to that with CBCT localization. Differences between BLT- and CBCT-guided irradiation shown on the films were consistent with the source localization revealed in the BLT and CBCT images. In vivo results demonstrated that our BLT system could potentially be applied for multiple targets and tumors. Conclusions: The online BLT/CBCT/SARRP system provides an effective solution for soft tissue targeting, particularly for small, nonpalpable, or orthotopic tumor models.« less
Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces.
Bardhan, Jaydeep P; Altman, Michael D; Willis, David J; Lippow, Shaun M; Tidor, Bruce; White, Jacob K
2007-07-07
Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, here methods were developed to model several important surface formulations using exact surface discretizations. Following and refining Zauhar's work [J. Comput.-Aided Mol. Des. 9, 149 (1995)], two classes of curved elements were defined that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. Numerical integration techniques are presented that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, a set of calculations are presented that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planar-triangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute-solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that the methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online as supplemental material.
Link, Manuela; Schmid, Christina; Pleus, Stefan; Baumstark, Annette; Rittmeyer, Delia; Haug, Cornelia; Freckmann, Guido
2015-04-14
The standard ISO (International Organization for Standardization) 15197 is widely accepted for the accuracy evaluation of systems for self-monitoring of blood glucose (SMBG). Accuracy evaluation was performed for 4 SMBG systems (Accu-Chek Aviva, ContourXT, GlucoCheck XL, GlucoMen LX PLUS) with 3 test strip lots each. To investigate a possible impact of the comparison method on system accuracy data, 2 different established methods were used. The evaluation was performed in a standardized manner following test procedures described in ISO 15197:2003 (section 7.3). System accuracy was assessed by applying ISO 15197:2003 and in addition ISO 15197:2013 criteria (section 6.3.3). For each system, comparison measurements were performed with a glucose oxidase (YSI 2300 STAT Plus glucose analyzer) and a hexokinase (cobas c111) method. All 4 systems fulfilled the accuracy requirements of ISO 15197:2003 with the tested lots. More stringent accuracy criteria of ISO 15197:2013 were fulfilled by 3 systems (Accu-Chek Aviva, ContourXT, GlucoMen LX PLUS) when compared to the manufacturer's comparison method and by 2 systems (Accu-Chek Aviva, ContourXT) when compared to the alternative comparison method. All systems showed lot-to-lot variability to a certain degree; 2 systems (Accu-Chek Aviva, ContourXT), however, showed only minimal differences in relative bias between the 3 evaluated lots. In this study, all 4 systems complied with the evaluated test strip lots with accuracy criteria of ISO 15197:2003. Applying ISO 15197:2013 accuracy limits, differences in the accuracy of the tested systems were observed, also demonstrating that the applied comparison method/system and the lot-to-lot variability can have a decisive influence on accuracy data obtained for a SMBG system. © 2015 Diabetes Technology Society.
Saini, V.; Riekerink, R. G. M. Olde; McClure, J. T.; Barkema, H. W.
2011-01-01
Determining the accuracy and precision of a measuring instrument is pertinent in antimicrobial susceptibility testing. This study was conducted to predict the diagnostic accuracy of the Sensititre MIC mastitis panel (Sensititre) and agar disk diffusion (ADD) method with reference to the manual broth microdilution test method for antimicrobial resistance profiling of Escherichia coli (n = 156), Staphylococcus aureus (n = 154), streptococcal (n = 116), and enterococcal (n = 31) bovine clinical mastitis isolates. The activities of ampicillin, ceftiofur, cephalothin, erythromycin, oxacillin, penicillin, the penicillin-novobiocin combination, pirlimycin, and tetracycline were tested against the isolates. Diagnostic accuracy was determined by estimating the area under the receiver operating characteristic curve; intertest essential and categorical agreements were determined as well. Sensititre and the ADD method demonstrated moderate to highly accurate (71 to 99%) and moderate to perfect (71 to 100%) predictive accuracies for 74 and 76% of the isolate-antimicrobial MIC combinations, respectively. However, the diagnostic accuracy was low for S. aureus-ceftiofur/oxacillin combinations and other streptococcus-ampicillin combinations by either testing method. Essential agreement between Sensititre automatic MIC readings and MIC readings obtained by the broth microdilution test method was 87%. Essential agreement between Sensititre automatic and manual MIC reading methods was 97%. Furthermore, the ADD test method and Sensititre MIC method exhibited 92 and 91% categorical agreement (sensitive, intermediate, resistant) of results, respectively, compared with the reference method. However, both methods demonstrated lower agreement for E. coli-ampicillin/cephalothin combinations than for Gram-positive isolates. In conclusion, the Sensititre and ADD methods had moderate to high diagnostic accuracy and very good essential and categorical agreement for most udder pathogen-antimicrobial combinations and can be readily employed in veterinary diagnostic laboratories. PMID:21270215
Existing methods for improving the accuracy of digital-to-analog converters
NASA Astrophysics Data System (ADS)
Eielsen, Arnfinn A.; Fleming, Andrew J.
2017-09-01
The performance of digital-to-analog converters is principally limited by errors in the output voltage levels. Such errors are known as element mismatch and are quantified by the integral non-linearity. Element mismatch limits the achievable accuracy and resolution in high-precision applications as it causes gain and offset errors, as well as harmonic distortion. In this article, five existing methods for mitigating the effects of element mismatch are compared: physical level calibration, dynamic element matching, noise-shaping with digital calibration, large periodic high-frequency dithering, and large stochastic high-pass dithering. These methods are suitable for improving accuracy when using digital-to-analog converters that use multiple discrete output levels to reconstruct time-varying signals. The methods improve linearity and therefore reduce harmonic distortion and can be retrofitted to existing systems with minor hardware variations. The performance of each method is compared theoretically and confirmed by simulations and experiments. Experimental results demonstrate that three of the five methods provide significant improvements in the resolution and accuracy when applied to a general-purpose digital-to-analog converter. As such, these methods can directly improve performance in a wide range of applications including nanopositioning, metrology, and optics.
Golden Ratio Versus Pi as Random Sequence Sources for Monte Carlo Integration
NASA Technical Reports Server (NTRS)
Sen, S. K.; Agarwal, Ravi P.; Shaykhian, Gholam Ali
2007-01-01
We discuss here the relative merits of these numbers as possible random sequence sources. The quality of these sequences is not judged directly based on the outcome of all known tests for the randomness of a sequence. Instead, it is determined implicitly by the accuracy of the Monte Carlo integration in a statistical sense. Since our main motive of using a random sequence is to solve real world problems, it is more desirable if we compare the quality of the sequences based on their performances for these problems in terms of quality/accuracy of the output. We also compare these sources against those generated by a popular pseudo-random generator, viz., the Matlab rand and the quasi-random generator ha/ton both in terms of error and time complexity. Our study demonstrates that consecutive blocks of digits of each of these numbers produce a good random sequence source. It is observed that randomly chosen blocks of digits do not have any remarkable advantage over consecutive blocks for the accuracy of the Monte Carlo integration. Also, it reveals that pi is a better source of a random sequence than theta when the accuracy of the integration is concerned.
Assessing the accuracy of predictive models for numerical data: Not r nor r2, why not? Then what?
2017-01-01
Assessing the accuracy of predictive models is critical because predictive models have been increasingly used across various disciplines and predictive accuracy determines the quality of resultant predictions. Pearson product-moment correlation coefficient (r) and the coefficient of determination (r2) are among the most widely used measures for assessing predictive models for numerical data, although they are argued to be biased, insufficient and misleading. In this study, geometrical graphs were used to illustrate what were used in the calculation of r and r2 and simulations were used to demonstrate the behaviour of r and r2 and to compare three accuracy measures under various scenarios. Relevant confusions about r and r2, has been clarified. The calculation of r and r2 is not based on the differences between the predicted and observed values. The existing error measures suffer various limitations and are unable to tell the accuracy. Variance explained by predictive models based on cross-validation (VEcv) is free of these limitations and is a reliable accuracy measure. Legates and McCabe’s efficiency (E1) is also an alternative accuracy measure. The r and r2 do not measure the accuracy and are incorrect accuracy measures. The existing error measures suffer limitations. VEcv and E1 are recommended for assessing the accuracy. The applications of these accuracy measures would encourage accuracy-improved predictive models to be developed to generate predictions for evidence-informed decision-making. PMID:28837692
Frouzan, Arash; Masoumi, Kambiz; Delirroyfard, Ali; Mazdaie, Behnaz; Bagherzadegan, Elnaz
2017-01-01
Background Long bone fractures are common injuries caused by trauma. Some studies have demonstrated that ultrasound has a high sensitivity and specificity in the diagnosis of upper and lower extremity long bone fractures. Objective The aim of this study was to determine the accuracy of ultrasound compared with plain radiography in diagnosis of upper and lower extremity long bone fractures in traumatic patients. Methods This cross-sectional study assessed 100 patients admitted to the emergency department of Imam Khomeini Hospital, Ahvaz, Iran with trauma to the upper and lower extremities, from September 2014 through October 2015. In all patients, first ultrasound and then standard plain radiography for the upper and lower limb was performed. Data were analyzed by SPSS version 21 to determine the specificity and sensitivity. Results The mean age of patients with upper and lower limb trauma were 31.43±12.32 years and 29.63±5.89 years, respectively. Radius fracture was the most frequent compared to other fractures (27%). Sensitivity, specificity, positive predicted value, and negative predicted value of ultrasound compared with plain radiography in the diagnosis of upper extremity long bones were 95.3%, 87.7%, 87.2% and 96.2%, respectively, and the highest accuracy was observed in left arm fractures (100%). Tibia and fibula fractures were the most frequent types compared to other fractures (89.2%). Sensitivity, specificity, PPV and NPV of ultrasound compared with plain radiography in the diagnosis of upper extremity long bone fractures were 98.6%, 83%, 65.4% and 87.1%, respectively, and the highest accuracy was observed in men, lower ages and femoral fractures. Conclusion The results of this study showed that ultrasound compared with plain radiography has a high accuracy in the diagnosis of upper and lower extremity long bone fractures. PMID:28979747
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isotalo, Aarno
A method referred to as tally nuclides is presented for accurately and efficiently calculating the time-step averages and integrals of any quantities that are weighted sums of atomic densities with constant weights during the step. The method allows all such quantities to be calculated simultaneously as a part of a single depletion solution with existing depletion algorithms. Some examples of the results that can be extracted include step-average atomic densities and macroscopic reaction rates, the total number of fissions during the step, and the amount of energy released during the step. Furthermore, the method should be applicable with several depletionmore » algorithms, and the integrals or averages should be calculated with an accuracy comparable to that reached by the selected algorithm for end-of-step atomic densities. The accuracy of the method is demonstrated in depletion calculations using the Chebyshev rational approximation method. Here, we demonstrate how the ability to calculate energy release in depletion calculations can be used to determine the accuracy of the normalization in a constant-power burnup calculation during the calculation without a need for a reference solution.« less
Calculating Time-Integral Quantities in Depletion Calculations
Isotalo, Aarno
2016-06-02
A method referred to as tally nuclides is presented for accurately and efficiently calculating the time-step averages and integrals of any quantities that are weighted sums of atomic densities with constant weights during the step. The method allows all such quantities to be calculated simultaneously as a part of a single depletion solution with existing depletion algorithms. Some examples of the results that can be extracted include step-average atomic densities and macroscopic reaction rates, the total number of fissions during the step, and the amount of energy released during the step. Furthermore, the method should be applicable with several depletionmore » algorithms, and the integrals or averages should be calculated with an accuracy comparable to that reached by the selected algorithm for end-of-step atomic densities. The accuracy of the method is demonstrated in depletion calculations using the Chebyshev rational approximation method. Here, we demonstrate how the ability to calculate energy release in depletion calculations can be used to determine the accuracy of the normalization in a constant-power burnup calculation during the calculation without a need for a reference solution.« less
Photon caliper to achieve submillimeter positioning accuracy
NASA Astrophysics Data System (ADS)
Gallagher, Kyle J.; Wong, Jennifer; Zhang, Junan
2017-09-01
The purpose of this study was to demonstrate the feasibility of using a commercial two-dimensional (2D) detector array with an inherent detector spacing of 5 mm to achieve submillimeter accuracy in localizing the radiation isocenter. This was accomplished by delivering the Vernier ‘dose’ caliper to a 2D detector array where the nominal scale was the 2D detector array and the non-nominal Vernier scale was the radiation dose strips produced by the high-definition (HD) multileaf collimators (MLCs) of the linear accelerator. Because the HD MLC sequence was similar to the picket fence test, we called this procedure the Vernier picket fence (VPF) test. We confirmed the accuracy of the VPF test by offsetting the HD MLC bank by known increments and comparing the known offset with the VPF test result. The VPF test was able to determine the known offset within 0.02 mm. We also cross-validated the accuracy of the VPF test in an evaluation of couch hysteresis. This was done by using both the VPF test and the ExacTrac optical tracking system to evaluate the couch position. We showed that the VPF test was in agreement with the ExacTrac optical tracking system within a root-mean-square value of 0.07 mm for both the lateral and longitudinal directions. In conclusion, we demonstrated the VPF test can determine the offset between a 2D detector array and the radiation isocenter with submillimeter accuracy. Until now, no method to locate the radiation isocenter using a 2D detector array has been able to achieve such accuracy.
Evaluation of a novel flexible snake robot for endoluminal surgery.
Patel, Nisha; Seneci, Carlo A; Shang, Jianzhong; Leibrandt, Konrad; Yang, Guang-Zhong; Darzi, Ara; Teare, Julian
2015-11-01
Endoluminal therapeutic procedures such as endoscopic submucosal dissection are increasingly attractive given the shift in surgical paradigm towards minimally invasive surgery. This novel three-channel articulated robot was developed to overcome the limitations of the flexible endoscope which poses a number of challenges to endoluminal surgery. The device enables enhanced movement in a restricted workspace, with improved range of motion and with the accuracy required for endoluminal surgery. To evaluate a novel flexible robot for therapeutic endoluminal surgery. Bench-top studies. Research laboratory. Targeting and navigation tasks of the robot were performed to explore the range of motion and retroflexion capabilities. Complex endoluminal tasks such as endoscopic mucosal resection were also simulated. Successful completion, accuracy and time to perform the bench-top tasks were the main outcome measures. The robot ranges of movement, retroflexion and navigation capabilities were demonstrated. The device showed significantly greater accuracy of targeting in a retroflexed position compared to a conventional endoscope. Bench-top study and small study sample. We were able to demonstrate a number of simulated endoscopy tasks such as navigation, targeting, snaring and retroflexion. The improved accuracy of targeting whilst in a difficult configuration is extremely promising and may facilitate endoluminal surgery which has been notoriously challenging with a conventional endoscope.
Reduced asymmetry in motor skill learning in left-handed compared to right-handed individuals.
McGrath, Robert L; Kantak, Shailesh S
2016-02-01
Hemispheric specialization for motor control influences how individuals perform and adapt to goal-directed movements. In contrast to adaptation, motor skill learning involves a process wherein one learns to synthesize novel movement capabilities in absence of perturbation such that they are performed with greater accuracy, consistency and efficiency. Here, we investigated manual asymmetry in acquisition and retention of a complex motor skill that requires speed and accuracy for optimal performance in right-handed and left-handed individuals. We further determined if degree of handedness influences motor skill learning. Ten right-handed (RH) and 10 left-handed (LH) adults practiced two distinct motor skills with their dominant or nondominant arms during separate sessions two-four weeks apart. Learning was quantified by changes in the speed-accuracy tradeoff function measured at baseline and one-day retention. Manual asymmetry was evident in the RH group but not the LH group. RH group demonstrated significantly greater skill improvement for their dominant-right hand than their nondominant-left hand. In contrast, for the LH group, both dominant and nondominant hands demonstrated comparable learning. Less strongly-LH individuals (lower EHI scores) exhibited more learning of their dominant hand. These results suggest that while hemispheric specialization influences motor skill learning, these effects may be influenced by handedness. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dementev, A. O.; Dmitriev, E. V.; Kozoderov, V. V.; Egorov, V. D.
2017-10-01
Hyperspectral imaging is up-to-date promising technology widely applied for the accurate thematic mapping. The presence of a large number of narrow survey channels allows us to use subtle differences in spectral characteristics of objects and to make a more detailed classification than in the case of using standard multispectral data. The difficulties encountered in the processing of hyperspectral images are usually associated with the redundancy of spectral information which leads to the problem of the curse of dimensionality. Methods currently used for recognizing objects on multispectral and hyperspectral images are usually based on standard base supervised classification algorithms of various complexity. Accuracy of these algorithms can be significantly different depending on considered classification tasks. In this paper we study the performance of ensemble classification methods for the problem of classification of the forest vegetation. Error correcting output codes and boosting are tested on artificial data and real hyperspectral images. It is demonstrates, that boosting gives more significant improvement when used with simple base classifiers. The accuracy in this case in comparable the error correcting output code (ECOC) classifier with Gaussian kernel SVM base algorithm. However the necessity of boosting ECOC with Gaussian kernel SVM is questionable. It is demonstrated, that selected ensemble classifiers allow us to recognize forest species with high enough accuracy which can be compared with ground-based forest inventory data.
Elsawy, Amr S; Eldawlatly, Seif; Taher, Mohamed; Aly, Gamal M
2014-01-01
The current trend to use Brain-Computer Interfaces (BCIs) with mobile devices mandates the development of efficient EEG data processing methods. In this paper, we demonstrate the performance of a Principal Component Analysis (PCA) ensemble classifier for P300-based spellers. We recorded EEG data from multiple subjects using the Emotiv neuroheadset in the context of a classical oddball P300 speller paradigm. We compare the performance of the proposed ensemble classifier to the performance of traditional feature extraction and classifier methods. Our results demonstrate the capability of the PCA ensemble classifier to classify P300 data recorded using the Emotiv neuroheadset with an average accuracy of 86.29% on cross-validation data. In addition, offline testing of the recorded data reveals an average classification accuracy of 73.3% that is significantly higher than that achieved using traditional methods. Finally, we demonstrate the effect of the parameters of the P300 speller paradigm on the performance of the method.
NASA Technical Reports Server (NTRS)
Butera, M. K.
1979-01-01
The success of remotely mapping wetland vegetation of the southwestern coast of Florida is examined. A computerized technique to process aircraft and LANDSAT multispectral scanner data into vegetation classification maps was used. The cost effectiveness of this mapping technique was evaluated in terms of user requirements, accuracy, and cost. Results indicate that mangrove communities are classified most cost effectively by the LANDSAT technique, with an accuracy of approximately 87 percent and with a cost of approximately 3 cent per hectare compared to $46.50 per hectare for conventional ground survey methods.
Fan, Yong; Du, Jin Peng; Liu, Ji Jun; Zhang, Jia Nan; Qiao, Huan Huan; Liu, Shi Chang; Hao, Ding Jun
2018-06-01
A miniature spine-mounted robot has recently been introduced to further improve the accuracy of pedicle screw placement in spine surgery. However, the differences in accuracy between the robotic-assisted (RA) technique and the free-hand with fluoroscopy-guided (FH) method for pedicle screw placement are controversial. A meta-analysis was conducted to focus on this problem. Several randomized controlled trials (RCTs) and cohort studies involving RA and FH and published before January 2017 were searched for using the Cochrane Library, Ovid, Web of Science, PubMed, and EMBASE databases. A total of 55 papers were selected. After the full-text assessment, 45 clinical trials were excluded. The final meta-analysis included 10 articles. The accuracy of pedicle screw placement within the RA group was significantly greater than the accuracy within the FH group (odds ratio 95%, "perfect accuracy" confidence interval: 1.38-2.07, P < .01; odds ratio 95% "clinically acceptable" Confidence Interval: 1.17-2.08, P < .01). There are significant differences in accuracy between RA surgery and FH surgery. It was demonstrated that the RA technique is superior to the conventional method in terms of the accuracy of pedicle screw placement.
Accuracy of the Yamax CW-701 Pedometer for measuring steps in controlled and free-living conditions
Coffman, Maren J; Reeve, Charlie L; Butler, Shannon; Keeling, Maiya; Talbot, Laura A
2016-01-01
Objective The Yamax Digi-Walker CW-701 (Yamax CW-701) is a low-cost pedometer that includes a 7-day memory, a 2-week cumulative memory, and automatically resets to zero at midnight. To date, the accuracy of the Yamax CW-701 has not been determined. The purpose of this study was to assess the accuracy of steps recorded by the Yamax CW-701 pedometer compared with actual steps and two other devices. Methods The study was conducted in a campus-based lab and in free-living settings with 22 students, faculty, and staff at a mid-sized university in the Southeastern US. While wearing a Yamax CW-701, Yamax Digi-Walker SW-200, and an ActiGraph GTX3 accelerometer, participants engaged in activities at variable speeds and conditions. To assess accuracy of each device, steps recorded were compared with actual step counts. Statistical tests included paired sample t-tests, percent accuracy, intraclass correlation coefficient, and Bland–Altman plots. Results The Yamax CW-701 demonstrated reliability and concurrent validity during walking at a fast pace and walking on a track, and in free-living conditions. Decreased accuracy was noted walking at a slow pace. Conclusions These findings are consistent with prior research. With most pedometers and accelerometers, adequate force and intensity must be present for a step to register. The Yamax CW-701 is accurate in recording steps taken while walking at a fast pace and in free-living settings. PMID:29942555
Accuracy of the Yamax CW-701 Pedometer for measuring steps in controlled and free-living conditions.
Coffman, Maren J; Reeve, Charlie L; Butler, Shannon; Keeling, Maiya; Talbot, Laura A
2016-01-01
The Yamax Digi-Walker CW-701 (Yamax CW-701) is a low-cost pedometer that includes a 7-day memory, a 2-week cumulative memory, and automatically resets to zero at midnight. To date, the accuracy of the Yamax CW-701 has not been determined. The purpose of this study was to assess the accuracy of steps recorded by the Yamax CW-701 pedometer compared with actual steps and two other devices. The study was conducted in a campus-based lab and in free-living settings with 22 students, faculty, and staff at a mid-sized university in the Southeastern US. While wearing a Yamax CW-701, Yamax Digi-Walker SW-200, and an ActiGraph GTX3 accelerometer, participants engaged in activities at variable speeds and conditions. To assess accuracy of each device, steps recorded were compared with actual step counts. Statistical tests included paired sample t -tests, percent accuracy, intraclass correlation coefficient, and Bland-Altman plots. The Yamax CW-701 demonstrated reliability and concurrent validity during walking at a fast pace and walking on a track, and in free-living conditions. Decreased accuracy was noted walking at a slow pace. These findings are consistent with prior research. With most pedometers and accelerometers, adequate force and intensity must be present for a step to register. The Yamax CW-701 is accurate in recording steps taken while walking at a fast pace and in free-living settings.
Optimal rotated staggered-grid finite-difference schemes for elastic wave modeling in TTI media
NASA Astrophysics Data System (ADS)
Yang, Lei; Yan, Hongyong; Liu, Hong
2015-11-01
The rotated staggered-grid finite-difference (RSFD) is an effective approach for numerical modeling to study the wavefield characteristics in tilted transversely isotropic (TTI) media. But it surfaces from serious numerical dispersion, which directly affects the modeling accuracy. In this paper, we propose two different optimal RSFD schemes based on the sampling approximation (SA) method and the least-squares (LS) method respectively to overcome this problem. We first briefly introduce the RSFD theory, based on which we respectively derive the SA-based RSFD scheme and the LS-based RSFD scheme. Then different forms of analysis are used to compare the SA-based RSFD scheme and the LS-based RSFD scheme with the conventional RSFD scheme, which is based on the Taylor-series expansion (TE) method. The contrast in numerical accuracy analysis verifies the greater accuracy of the two proposed optimal schemes, and indicates that these schemes can effectively widen the wavenumber range with great accuracy compared with the TE-based RSFD scheme. Further comparisons between these two optimal schemes show that at small wavenumbers, the SA-based RSFD scheme performs better, while at large wavenumbers, the LS-based RSFD scheme leads to a smaller error. Finally, the modeling results demonstrate that for the same operator length, the SA-based RSFD scheme and the LS-based RSFD scheme can achieve greater accuracy than the TE-based RSFD scheme, while for the same accuracy, the optimal schemes can adopt shorter difference operators to save computing time.
Multi-site evaluation of IKONOS data for classification of tropical coral reef environments
Andrefouet, S.; Kramer, Philip; Torres-Pulliza, D.; Joyce, K.E.; Hochberg, E.J.; Garza-Perez, R.; Mumby, P.J.; Riegl, Bernhard; Yamano, H.; White, W.H.; Zubia, M.; Brock, J.C.; Phinn, S.R.; Naseer, A.; Hatcher, B.G.; Muller-Karger, F. E.
2003-01-01
Ten IKONOS images of different coral reef sites distributed around the world were processed to assess the potential of 4-m resolution multispectral data for coral reef habitat mapping. Complexity of reef environments, established by field observation, ranged from 3 to 15 classes of benthic habitats containing various combinations of sediments, carbonate pavement, seagrass, algae, and corals in different geomorphologic zones (forereef, lagoon, patch reef, reef flats). Processing included corrections for sea surface roughness and bathymetry, unsupervised or supervised classification, and accuracy assessment based on ground-truth data. IKONOS classification results were compared with classified Landsat 7 imagery for simple to moderate complexity of reef habitats (5-11 classes). For both sensors, overall accuracies of the classifications show a general linear trend of decreasing accuracy with increasing habitat complexity. The IKONOS sensor performed better, with a 15-20% improvement in accuracy compared to Landsat. For IKONOS, overall accuracy was 77% for 4-5 classes, 71% for 7-8 classes, 65% in 9-11 classes, and 53% for more than 13 classes. The Landsat classification accuracy was systematically lower, with an average of 56% for 5-10 classes. Within this general trend, inter-site comparisons and specificities demonstrate the benefits of different approaches. Pre-segmentation of the different geomorphologic zones and depth correction provided different advantages in different environments. Our results help guide scientists and managers in applying IKONOS-class data for coral reef mapping applications. ?? 2003 Elsevier Inc. All rights reserved.
Faure, Elodie; Danjou, Aurélie M N; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Dossus, Laure; Fervers, Béatrice
2017-02-24
Environmental exposure assessment based on Geographic Information Systems (GIS) and study participants' residential proximity to environmental exposure sources relies on the positional accuracy of subjects' residences to avoid misclassification bias. Our study compared the positional accuracy of two automatic geocoding methods to a manual reference method. We geocoded 4,247 address records representing the residential history (1990-2008) of 1,685 women from the French national E3N cohort living in the Rhône-Alpes region. We compared two automatic geocoding methods, a free-online geocoding service (method A) and an in-house geocoder (method B), to a reference layer created by manually relocating addresses from method A (method R). For each automatic geocoding method, positional accuracy levels were compared according to the urban/rural status of addresses and time-periods (1990-2000, 2001-2008), using Chi Square tests. Kappa statistics were performed to assess agreement of positional accuracy of both methods A and B with the reference method, overall, by time-periods and by urban/rural status of addresses. Respectively 81.4% and 84.4% of addresses were geocoded to the exact address (65.1% and 61.4%) or to the street segment (16.3% and 23.0%) with methods A and B. In the reference layer, geocoding accuracy was higher in urban areas compared to rural areas (74.4% vs. 10.5% addresses geocoded to the address or interpolated address level, p < 0.0001); no difference was observed according to the period of residence. Compared to the reference method, median positional errors were 0.0 m (IQR = 0.0-37.2 m) and 26.5 m (8.0-134.8 m), with positional errors <100 m for 82.5% and 71.3% of addresses, for method A and method B respectively. Positional agreement of method A and method B with method R was 'substantial' for both methods, with kappa coefficients of 0.60 and 0.61 for methods A and B, respectively. Our study demonstrates the feasibility of geocoding residential addresses in epidemiological studies not initially recorded for environmental exposure assessment, for both recent addresses and residence locations more than 20 years ago. Accuracy of the two automatic geocoding methods was comparable. The in-house method (B) allowed a better control of the geocoding process and was less time consuming.
Al-Bayati, Mohammad; Grueneisen, Johannes; Lütje, Susanne; Sawicki, Lino M; Suntharalingam, Saravanabavaan; Tschirdewahn, Stephan; Forsting, Michael; Rübben, Herbert; Herrmann, Ken; Umutlu, Lale; Wetter, Axel
2018-01-01
To evaluate diagnostic accuracy of integrated 68Gallium labelled prostate-specific membrane antigen (68Ga-PSMA)-11 positron emission tomography (PET)/MRI in patients with primary prostate cancer (PCa) as compared to multi-parametric MRI. A total of 22 patients with recently diagnosed primary PCa underwent clinically indicated 68Ga-PSMA-11 PET/CT for initial staging followed by integrated 68Ga-PSMA-11 PET/MRI. Images of multi-parametric magnetic resonance imaging (mpMRI), PET and PET/MRI were evaluated separately by applying Prostate Imaging Reporting and Data System (PIRADSv2) for mpMRI and a 5-point Likert scale for PET and PET/MRI. Results were compared with pathology reports of biopsy or resection. Statistical analyses including receiver operating characteristics analysis were performed to compare the diagnostic performance of mpMRI, PET and PET/MRI. PET and integrated PET/MRI demonstrated a higher diagnostic accuracy than mpMRI (area under the curve: mpMRI: 0.679, PET and PET/MRI: 0.951). The proportion of equivocal results (PIRADS 3 and Likert 3) was considerably higher in mpMRI than in PET and PET/MRI. In a notable proportion of equivocal PIRADS results, PET led to a correct shift towards higher suspicion of malignancy and enabled correct lesion classification. Integrated 68Ga-PSMA-11 PET/MRI demonstrates higher diagnostic accuracy than mpMRI and is particularly valuable in tumours with equivocal results from PIRADS classification. © 2018 S. Karger AG, Basel.
The Resolution of Visual Noise in Word Recognition
ERIC Educational Resources Information Center
Pae, Hye K.; Lee, Yong-Won
2015-01-01
This study examined lexical processing in English by native speakers of Korean and Chinese, compared to that of native speakers of English, using normal, alternated, and inverse fonts. Sixty four adult students participated in a lexical decision task. The findings demonstrated similarities and differences in accuracy and latency among the three L1…
The Danger of Inadequate Conceptualisation in PISA for Education Policy
ERIC Educational Resources Information Center
Gaber, Slavko; Cankar, Gregor; Umek, Ljubica Marjanovic; Tasner, Veronika
2012-01-01
Due to the broad acceptance of the Programme for International Student Assessment (PISA) and other comparative studies as instruments of policymaking, its accuracy is essential. This article attempts to demonstrate omissions in the conceptualisation, and consequently in calculation and interpretation, of one of the central points of PISA 2006 and…
Progress Towards a Cartesian Cut-Cell Method for Viscous Compressible Flow
NASA Technical Reports Server (NTRS)
Berger, Marsha; Aftosmis, Michael J.
2011-01-01
The proposed paper reports advances in developing a method for high Reynolds number compressible viscous flow simulations using a Cartesian cut-cell method with embedded boundaries. This preliminary work focuses on accuracy of the discretization near solid wall boundaries. A model problem is used to investigate the accuracy of various difference stencils for second derivatives and to guide development of the discretization of the viscous terms in the Navier-Stokes equations. Near walls, quadratic reconstruction in the wall-normal direction is used to mitigate mesh irregularity and yields smooth skin friction distributions along the body. Multigrid performance is demonstrated using second-order coarse grid operators combined with second-order restriction and prolongation operators. Preliminary verification and validation for the method is demonstrated using flat-plate and airfoil examples at compressible Mach numbers. Simulations of flow on laminar and turbulent flat plates show skin friction and velocity profiles compared with those from boundary-layer theory. Airfoil simulations are performed at laminar and turbulent Reynolds numbers with results compared to both other simulations and experimental data
Approximated mutual information training for speech recognition using myoelectric signals.
Guo, Hua J; Chan, A D C
2006-01-01
A new training algorithm called the approximated maximum mutual information (AMMI) is proposed to improve the accuracy of myoelectric speech recognition using hidden Markov models (HMMs). Previous studies have demonstrated that automatic speech recognition can be performed using myoelectric signals from articulatory muscles of the face. Classification of facial myoelectric signals can be performed using HMMs that are trained using the maximum likelihood (ML) algorithm; however, this algorithm maximizes the likelihood of the observations in the training sequence, which is not directly associated with optimal classification accuracy. The AMMI training algorithm attempts to maximize the mutual information, thereby training the HMMs to optimize their parameters for discrimination. Our results show that AMMI training consistently reduces the error rates compared to these by the ML training, increasing the accuracy by approximately 3% on average.
NASA Astrophysics Data System (ADS)
Hyun, Jae-Sang; Li, Beiwen; Zhang, Song
2017-07-01
This paper presents our research findings on high-speed high-accuracy three-dimensional shape measurement using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of computer-generated 8-bit sinusoidal patterns (a.k.a., the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: a commercially available inexpensive projector and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.
Information filtering via biased heat conduction.
Liu, Jian-Guo; Zhou, Tao; Guo, Qiang
2011-09-01
The process of heat conduction has recently found application in personalized recommendation [Zhou et al., Proc. Natl. Acad. Sci. USA 107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction, which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix, and Delicious datasets could be improved by 43.5%, 55.4% and 19.2%, respectively, compared with the standard heat conduction algorithm and also the diversity is increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.
Alborzi, Saeed; Rasekhi, Alireza; Shomali, Zahra; Madadi, Gooya; Alborzi, Mahshid; Kazemi, Mahboobeh; Hosseini Nohandani, Azam
2018-01-01
Abstract To determine the diagnostic accuracy of pelvic magnetic resonance imaging (MRI), transvaginal sonography (TVS), and transrectal sonography (TRS) in diagnosis of deep infiltrating endometriosis (DIE). This diagnostic accuracy study was conducted during a 2-year period including a total number of 317 patients with signs and symptoms of endometriosis. All the patients were evaluated by pelvic MRI, TVS, and TRS in the same center. The criterion standard was considered to be the laparoscopy and histopathologic examination. Of 317 patients being included in the present study, 252 tested positive for DIE. The sensitivity, specificity, positive predictive value, and negative predictive value of TVS was found to be 83.3%, 46.1%, 85.7%, and 41.6%, respectively. These variables were 80.5%, 18.6%, 79.3%, and 19.7% for TRS and 90.4%, 66.1%, 91.2%, and 64.1% for MRI, respectively. MRI had the highest accuracy (85.4%) when compared to TVS (75.7%) and TRS (67.8%). The sensitivity of TRS, TVS, and MRI in uterosacral ligament DIE was 82.8%, 70.9%, and 63.6%, respectively. On the contrary, specificity had a reverse trend, favoring MRI (93.9%, 92.8%, and 89.8% for TVS and TRS, respectively). The results of the present study demonstrated that TVS and TRS have appropriate diagnostic accuracy in diagnosis of DIE comparable to MRI. PMID:29465552
Implementation and Assessment of Advanced Analog Vector-Matrix Processor
NASA Technical Reports Server (NTRS)
Gary, Charles K.; Bualat, Maria G.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
This paper discusses the design and implementation of an analog optical vecto-rmatrix coprocessor with a throughput of 128 Mops for a personal computer. Vector matrix calculations are inherently parallel, providing a promising domain for the use of optical calculators. However, to date, digital optical systems have proven too cumbersome to replace electronics, and analog processors have not demonstrated sufficient accuracy in large scale systems. The goal of the work described in this paper is to demonstrate a viable optical coprocessor for linear operations. The analog optical processor presented has been integrated with a personal computer to provide full functionality and is the first demonstration of an optical linear algebra processor with a throughput greater than 100 Mops. The optical vector matrix processor consists of a laser diode source, an acoustooptical modulator array to input the vector information, a liquid crystal spatial light modulator to input the matrix information, an avalanche photodiode array to read out the result vector of the vector matrix multiplication, as well as transport optics and the electronics necessary to drive the optical modulators and interface to the computer. The intent of this research is to provide a low cost, highly energy efficient coprocessor for linear operations. Measurements of the analog accuracy of the processor performing 128 Mops are presented along with an assessment of the implications for future systems. A range of noise sources, including cross-talk, source amplitude fluctuations, shot noise at the detector, and non-linearities of the optoelectronic components are measured and compared to determine the most significant source of error. The possibilities for reducing these sources of error are discussed. Also, the total error is compared with that expected from a statistical analysis of the individual components and their relation to the vector-matrix operation. The sufficiency of the measured accuracy of the processor is compared with that required for a range of typical problems. Calculations resolving alloy concentrations from spectral plume data of rocket engines are implemented on the optical processor, demonstrating its sufficiency for this problem. We also show how this technology can be easily extended to a 100 x 100 10 MHz (200 Cops) processor.
Grande, Antonio Jose; Reid, Hamish; Thomas, Emma; Foster, Charlie; Darton, Thomas C
2016-08-01
Dengue fever is a ubiquitous arboviral infection in tropical and sub-tropical regions, whose incidence has increased over recent decades. In the absence of a rapid point of care test, the clinical diagnosis of dengue is complex. The World Health Organisation has outlined diagnostic criteria for making the diagnosis of dengue infection, which includes the use of the tourniquet test (TT). To assess the quality of the evidence supporting the use of the TT and perform a diagnostic accuracy meta-analysis comparing the TT to antibody response measured by ELISA. A comprehensive literature search was conducted in the following databases to April, 2016: MEDLINE (PubMed), EMBASE, Cochrane Central Register of Controlled Trials, BIOSIS, Web of Science, SCOPUS. Studies comparing the diagnostic accuracy of the tourniquet test with ELISA for the diagnosis of dengue were included. Two independent authors extracted data using a standardized form. A total of 16 studies with 28,739 participants were included in the meta-analysis. Pooled sensitivity for dengue diagnosis by TT was 58% (95% Confidence Interval (CI), 43%-71%) and the specificity was 71% (95% CI, 60%-80%). In the subgroup analysis sensitivity for non-severe dengue diagnosis was 55% (95% CI, 52%-59%) and the specificity was 63% (95% CI, 60%-66%), whilst sensitivity for dengue hemorrhagic fever diagnosis was 62% (95% CI, 53%-71%) and the specificity was 60% (95% CI, 48%-70%). Receiver-operator characteristics demonstrated a test accuracy (AUC) of 0.70 (95% CI, 0.66-0.74). The tourniquet test is widely used in resource poor settings despite currently available evidence demonstrating only a marginal benefit in making a diagnosis of dengue infection alone. The protocol for this systematic review was registered at CRD42015020323.
Tan, Xiao Wei; Zheng, Qishi; Shi, Luming; Gao, Fei; Allen, John Carson; Coenen, Adriaan; Baumann, Stefan; Schoepf, U Joseph; Kassab, Ghassan S; Lim, Soo Teik; Wong, Aaron Sung Lung; Tan, Jack Wei Chieh; Yeo, Khung Keong; Chin, Chee Tang; Ho, Kay Woon; Tan, Swee Yaw; Chua, Terrance Siang Jin; Chan, Edwin Shih Yen; Tan, Ru San; Zhong, Liang
2017-06-01
To evaluate the combined diagnostic accuracy of coronary computed tomography angiography (CCTA) and computed tomography derived fractional flow reserve (FFRct) in patients with suspected or known coronary artery disease (CAD). PubMed, The Cochrane library, Embase and OpenGray were searched to identify studies comparing diagnostic accuracy of CCTA and FFRct. Diagnostic test measurements of FFRct were either extracted directly from the published papers or calculated from provided information. Bivariate models were conducted to synthesize the diagnostic performance of combined CCTA and FFRct at both "per-vessel" and "per-patient" levels. 7 articles were included for analysis. The combined diagnostic outcomes from "both positive" strategy, i.e. a subject was considered as "positive" only when both CCTA and FFRct were "positive", demonstrated relative high specificity (per-vessel: 0.91; per-patient: 0.81), high positive likelihood ratio (LR+, per-vessel: 7.93; per-patient: 4.26), high negative likelihood ratio (LR-, per-vessel: 0.30; per patient: 0.24) and high accuracy (per-vessel: 0.91; per-patient: 0.81) while "either positive" strategy, i.e. a subject was considered as "positive" when either CCTA or FFRct was "positive", demonstrated relative high sensitivity (per-vessel: 0.97; per-patient: 0.98), low LR+ (per-vessel: 1.50; per-patient: 1.17), low LR- (per-vessel: 0.07; per-patient: 0.09) and low accuracy (per-vessel: 0.57; per-patient: 0.54). "Both positive" strategy showed better diagnostic performance to rule in patients with non-significant stenosis compared to "either positive" strategy, as it efficiently reduces the proportion of testing false positive subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
Newland, Richard F.; Baker, Robert A.; Sanderson, Andrew J.; Tuble, Sigrid C.; Tully, Phil J.
2012-01-01
Abstract: This report describes the assessment of three specific safety-related specifications in the consideration of an alternate oxygenator; first the grip strength relationship between various oxygenator connectors and SMARxT® tubing, second, the grip strength of various biopassive tubings and an isolated SMARxT® connector, and finally, the accuracy of the arterial outlet temperature measurement. Grip strength experiments for the connections between the SMARxT® tubing and the venous reservoir outlet and the oxygenator venous inlet and oxygenator arterial outlet of the Medtronic Affinity®, Sorin Synthesis®, Sorin Primox®, and Terumo Capiox® RX25 oxygenators were performed. In addition we compared the grip strength of polyvinyl chloride, Physio®, Trillium®, Carmeda®, X-Coating®, and SMARxT® tubing. The accuracy of the integrated arterial outlet temperature probes was determined by comparing the temperatures measured by the integrated probe with a precision reference thermometer. Connector grip strength comparisons for the evaluation oxygenators with SMARxT® tubing showed significant variation between oxygenators and connections (p = .02). Evaluation of the arterial outlet showed significant variation between evaluation oxygenators, while at the venous reservoir outlet and oxygenator inlet, there were no significant differences. Grip strength comparison data for the various tubing types demonstrated a main effect for tubing type F(5, 18) = 8.01, p = .002, ηp2 = .77. Temperature accuracy measurements demonstrated that all oxygenators overread the arterial outlet temperature at 15°C, whilst at temperatures ≥25°C, all oxygenators underread the arterial outlet temperature. The integrity of SMARxT® tubing connection is influenced by the connector type, and may decline over time, highlighting the importance to not consider interchanging components of the bypass circuit as inconsequential. PMID:22893983
Feasibility and accuracy of nasal alar pulse oximetry.
Morey, T E; Rice, M J; Vasilopoulos, T; Dennis, D M; Melker, R J
2014-06-01
The nasal ala is an attractive site for pulse oximetry because of perfusion by branches of the external and internal carotid arteries. We evaluated the accuracy of a novel pulse oximetry sensor custom designed for the nasal ala. After IRB approval, healthy non-smoking subjects [n=12; aged 28 (23-41) yr; 6M/6F] breathed hypoxic mixtures of fresh gas by a facemask to achieve oxyhaemoglobin saturations of 70-100% measured by traditional co-oximetry from radial artery samples. Concurrent alar and finger pulse oximetry values were measured using probes designed for these sites. Data were analysed using the Bland-Altman method for multiple observations per subject. Bias, precision, and accuracy root mean square error (ARMS) over a range of 70-100% were significantly better for the alar probe compared with a standard finger probe. The mean bias for the alar and finger probes was 0.73% and 1.90% (P<0.001), respectively, with corresponding precision values of 1.65 and 1.83 (P=0.015) and ARMS values of 1.78% and 2.72% (P=0.047). The coefficients of determination were 0.96 and 0.96 for the alar and finger probes, respectively. The within/between-subject variation for the alar and finger probes were 1.14/1.57% and 1.87/1.47%, respectively. The limits of agreement were 3.96/-2.50% and 5.48/-1.68% for the alar and finger probes, respectively. Nasal alar pulse oximetry is feasible and demonstrates accurate pulse oximetry values over a range of 70-100%. The alar probe demonstrated greater accuracy compared with a conventional finger pulse oximeter. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Larger core size has superior technical and analytical accuracy in bladder tissue microarray.
Eskaros, Adel Rh; Egloff, Shanna A Arnold; Boyd, Kelli L; Richardson, Joyce E; Hyndman, M Eric; Zijlstra, Andries
2017-03-01
The construction of tissue microarrays (TMAs) with cores from a large number of paraffin-embedded tissues (donors) into a single paraffin block (recipient) is an effective method of analyzing samples from many patient specimens simultaneously. For the TMA to be successful, the cores within it must capture the correct histologic areas from the donor blocks (technical accuracy) and maintain concordance with the tissue of origin (analytical accuracy). This can be particularly challenging for tissues with small histological features such as small islands of carcinoma in situ (CIS), thin layers of normal urothelial lining of the bladder, or cancers that exhibit intratumor heterogeneity. In an effort to create a comprehensive TMA of a bladder cancer patient cohort that accurately represents the tumor heterogeneity and captures the small features of normal and CIS, we determined how core size (0.6 vs 1.0 mm) impacted the technical and analytical accuracy of the TMA. The larger 1.0 mm core exhibited better technical accuracy for all tissue types at 80.9% (normal), 94.2% (tumor), and 71.4% (CIS) compared with 58.6%, 85.9%, and 63.8% for 0.6 mm cores. Although the 1.0 mm core provided better tissue capture, increasing the number of replicates from two to three allowed with the 0.6 mm core compensated for this reduced technical accuracy. However, quantitative image analysis of proliferation using both Ki67+ immunofluorescence counts and manual mitotic counts demonstrated that the 1.0 mm core size also exhibited significantly greater analytical accuracy (P=0.004 and 0.035, respectively, r 2 =0.979 and 0.669, respectively). Ultimately, our findings demonstrate that capturing two or more 1.0 mm cores for TMA construction provides superior technical and analytical accuracy over the smaller 0.6 mm cores, especially for tissues harboring small histological features or substantial heterogeneity.
Validation of Biofeedback Wearables for Photoplethysmographic Heart Rate Tracking
Jo, Edward; Lewis, Kiana; Directo, Dean; Kim, Michael J.; Dolezal, Brett A.
2016-01-01
The purpose of this study was to examine the validity of HR measurements by two commercial-use activity trackers in comparison to ECG. Twenty-four healthy participants underwent the same 77-minute protocol during a single visit. Each participant completed an initial rest period of 15 minutes followed by 5 minute periods of each of the following activities: 60W and 120W cycling, walking, jogging, running, resisted arm raises, resisted lunges, and isometric plank. In between each exercise task was a 5-minute rest period. Each subject wore a Basis Peak (BPk) on one wrist and a Fitbit Charge HR (FB) on the opposite wrist. Criterion measurement of HR was administered by 12-lead ECG. Time synced data from each device and ECG were concurrently and electronically acquired throughout the entire 77-minute protocol. When examining data in aggregate, there was a strong correlation between BPk and ECG for HR (r = 0.92, p < 0.001) with a mean bias of -2.5 bpm (95% LoA 19.3, -24.4). The FB demonstrated a moderately strong correlation with ECG for HR (r = 0.83, p < 0.001) with an average mean bias of -8.8 bpm (95% LoA 24.2, -41.8). During physical efforts eliciting ECG HR > 116 bpm, the BPk demonstrated an r = 0.77 and mean bias = -4.9 bpm (95% LoA 21.3, -31.0) while the FB demonstrated an r = 0.58 and mean bias = -12.7 bpm (95% LoA 28.6, -54.0). The BPk satisfied validity criteria for HR monitors, however showed a marginal decline in accuracy with increasing physical effort (ECG HR > 116 bpm). The FB failed to satisfy validity criteria and demonstrated a substantial decrease in accuracy during higher exercise intensities. Key points Modern day wearable multi-sensor activity trackers incorporate reflective photoplethymography (PPG) for heart rate detection and monitoring at the dorsal wrist. This study examined the validity of two PPG-based activity trackers, the Basis Peak and Fitbit Charge HR. The Basis Peak performed with accuracy compared with ECG and results substantiate validation of heart rate measurements. There was a slight decrease in performance during higher levels of physical exertion. The Fitbit Charge HR performed with poor accuracy compared with ECG especially during higher physical exertion and specific exercise tasks. The Fitbit Charge HR was not validated for heart rate monitoring, although better accuracy was observed during resting or recovery conditions. PMID:27803634
Dougher, Carly E; Rifkin, Dena E; Anderson, Cheryl AM; Smits, Gerard; Persky, Martha S; Block, Geoffrey A; Ix, Joachim H
2016-01-01
Background: Sodium intake influences blood pressure and proteinuria, yet the impact on long-term outcomes is uncertain in chronic kidney disease (CKD). Accurate assessment is essential for clinical and public policy recommendations, but few large-scale studies use 24-h urine collections. Recent studies that used spot urine sodium and associated estimating equations suggest that they may provide a suitable alternative, but their accuracy in patients with CKD is unknown. Objective: We compared the accuracy of 4 equations [the Nerbass, INTERSALT (International Cooperative Study on Salt, Other Factors, and Blood Pressure), Tanaka, and Kawasaki equations] that use spot urine sodium to estimate 24-h sodium excretion in patients with moderate to advanced CKD. Design: We evaluated the accuracy of spot urine sodium to predict mean 24-h urine sodium excretion over 9 mo in 129 participants with stage 3–4 CKD. Spot morning urine sodium was used in 4 estimating equations. Bias, precision, and accuracy were assessed and compared across each equation. Results: The mean age of the participants was 67 y, 52% were female, and the mean estimated glomerular filtration rate was 31 ± 9 mL · min–1 · 1.73 m–2. The mean ± SD number of 24-h urine collections was 3.5 ± 0.8/participant, and the mean 24-h sodium excretion was 168.2 ± 67.5 mmol/d. Although the Tanaka equation demonstrated the least bias (mean: −8.2 mmol/d), all 4 equations had poor precision and accuracy. The INTERSALT equation demonstrated the highest accuracy but derived an estimate only within 30% of mean measured sodium excretion in only 57% of observations. Bland-Altman plots revealed systematic bias with the Nerbass, INTERSALT, and Tanaka equations, underestimating sodium excretion when intake was high. Conclusion: These findings do not support the use of spot urine specimens to estimate dietary sodium intake in patients with CKD and research studies enriched with patients with CKD. The parent data for this study come from a clinical trial that was registered at clinicaltrials.gov as NCT00785629. PMID:27357090
Dougher, Carly E; Rifkin, Dena E; Anderson, Cheryl Am; Smits, Gerard; Persky, Martha S; Block, Geoffrey A; Ix, Joachim H
2016-08-01
Sodium intake influences blood pressure and proteinuria, yet the impact on long-term outcomes is uncertain in chronic kidney disease (CKD). Accurate assessment is essential for clinical and public policy recommendations, but few large-scale studies use 24-h urine collections. Recent studies that used spot urine sodium and associated estimating equations suggest that they may provide a suitable alternative, but their accuracy in patients with CKD is unknown. We compared the accuracy of 4 equations [the Nerbass, INTERSALT (International Cooperative Study on Salt, Other Factors, and Blood Pressure), Tanaka, and Kawasaki equations] that use spot urine sodium to estimate 24-h sodium excretion in patients with moderate to advanced CKD. We evaluated the accuracy of spot urine sodium to predict mean 24-h urine sodium excretion over 9 mo in 129 participants with stage 3-4 CKD. Spot morning urine sodium was used in 4 estimating equations. Bias, precision, and accuracy were assessed and compared across each equation. The mean age of the participants was 67 y, 52% were female, and the mean estimated glomerular filtration rate was 31 ± 9 mL · min(-1) · 1.73 m(-2) The mean ± SD number of 24-h urine collections was 3.5 ± 0.8/participant, and the mean 24-h sodium excretion was 168.2 ± 67.5 mmol/d. Although the Tanaka equation demonstrated the least bias (mean: -8.2 mmol/d), all 4 equations had poor precision and accuracy. The INTERSALT equation demonstrated the highest accuracy but derived an estimate only within 30% of mean measured sodium excretion in only 57% of observations. Bland-Altman plots revealed systematic bias with the Nerbass, INTERSALT, and Tanaka equations, underestimating sodium excretion when intake was high. These findings do not support the use of spot urine specimens to estimate dietary sodium intake in patients with CKD and research studies enriched with patients with CKD. The parent data for this study come from a clinical trial that was registered at clinicaltrials.gov as NCT00785629. © 2016 American Society for Nutrition.
NASA Astrophysics Data System (ADS)
Mohebbi, Akbar
2018-02-01
In this paper we propose two fast and accurate numerical methods for the solution of multidimensional space fractional Ginzburg-Landau equation (FGLE). In the presented methods, to avoid solving a nonlinear system of algebraic equations and to increase the accuracy and efficiency of method, we split the complex problem into simpler sub-problems using the split-step idea. For a homogeneous FGLE, we propose a method which has fourth-order of accuracy in time component and spectral accuracy in space variable and for nonhomogeneous one, we introduce another scheme based on the Crank-Nicolson approach which has second-order of accuracy in time variable. Due to using the Fourier spectral method for fractional Laplacian operator, the resulting schemes are fully diagonal and easy to code. Numerical results are reported in terms of accuracy, computational order and CPU time to demonstrate the accuracy and efficiency of the proposed methods and to compare the results with the analytical solutions. The results show that the present methods are accurate and require low CPU time. It is illustrated that the numerical results are in good agreement with the theoretical ones.
Blind Insight: Metacognitive Discrimination Despite Chance Task Performance
Dienes, Zoltan; Barrett, Adam B.; Bor, Daniel; Seth, Anil K.
2014-01-01
Blindsight and other examples of unconscious knowledge and perception demonstrate dissociations between judgment accuracy and metacognition: Studies reveal that participants’ judgment accuracy can be above chance while their confidence ratings fail to discriminate right from wrong answers. Here, we demonstrated the opposite dissociation: a reliable relationship between confidence and judgment accuracy (demonstrating metacognition) despite judgment accuracy being no better than chance. We evaluated the judgments of 450 participants who completed an AGL task. For each trial, participants decided whether a stimulus conformed to a given set of rules and rated their confidence in that judgment. We identified participants who performed at chance on the discrimination task, utilizing a subset of their responses, and then assessed the accuracy and the confidence-accuracy relationship of their remaining responses. Analyses revealed above-chance metacognition among participants who did not exhibit decision accuracy. This important new phenomenon, which we term blind insight, poses critical challenges to prevailing models of metacognition grounded in signal detection theory. PMID:25384551
Distinguishing Fast and Slow Processes in Accuracy - Response Time Data.
Coomans, Frederik; Hofman, Abe; Brinkhuis, Matthieu; van der Maas, Han L J; Maris, Gunter
2016-01-01
We investigate the relation between speed and accuracy within problem solving in its simplest non-trivial form. We consider tests with only two items and code the item responses in two binary variables: one indicating the response accuracy, and one indicating the response speed. Despite being a very basic setup, it enables us to study item pairs stemming from a broad range of domains such as basic arithmetic, first language learning, intelligence-related problems, and chess, with large numbers of observations for every pair of problems under consideration. We carry out a survey over a large number of such item pairs and compare three types of psychometric accuracy-response time models present in the literature: two 'one-process' models, the first of which models accuracy and response time as conditionally independent and the second of which models accuracy and response time as conditionally dependent, and a 'two-process' model which models accuracy contingent on response time. We find that the data clearly violates the restrictions imposed by both one-process models and requires additional complexity which is parsimoniously provided by the two-process model. We supplement our survey with an analysis of the erroneous responses for an example item pair and demonstrate that there are very significant differences between the types of errors in fast and slow responses.
Chow, Benjamin J W; Freeman, Michael R; Bowen, James M; Levin, Leslie; Hopkins, Robert B; Provost, Yves; Tarride, Jean-Eric; Dennie, Carole; Cohen, Eric A; Marcuzzi, Dan; Iwanochko, Robert; Moody, Alan R; Paul, Narinder; Parker, John D; O'Reilly, Daria J; Xie, Feng; Goeree, Ron
2011-06-13
Computed tomographic coronary angiography (CTCA) has gained clinical acceptance for the detection of obstructive coronary artery disease. Although single-center studies have demonstrated excellent accuracy, multicenter studies have yielded variable results. The true diagnostic accuracy of CTCA in the "real world" remains uncertain. We conducted a field evaluation comparing multidetector CTCA with invasive CA (ICA) to understand CTCA's diagnostic accuracy in a real-world setting. A multicenter cohort study of patients awaiting ICA was conducted between September 2006 and June 2009. All patients had either a low or an intermediate pretest probability for coronary artery disease and underwent CTCA and ICA within 10 days. The results of CTCA and ICA were interpreted visually by local expert observers who were blinded to all clinical data and imaging results. Using a patient-based analysis (diameter stenosis ≥50%) of 169 patients, the sensitivity, specificity, positive predictive value, and negative predictive value were 81.3% (95% confidence interval [CI], 71.0%-89.1%), 93.3% (95% CI, 85.9%-97.5%), 91.6% (95% CI, 82.5%-96.8%), and 84.7% (95% CI, 76.0%-91.2%), respectively; the area under receiver operating characteristic curve was 0.873. The diagnostic accuracy varied across centers (P < .001), with a sensitivity, specificity, positive predictive value, and negative predictive value ranging from 50.0% to 93.2%, 92.0% to 100%, 84.6% to 100%, and 42.9% to 94.7%, respectively. Compared with ICA, CTCA appears to have good accuracy; however, there was variability in diagnostic accuracy across centers. Factors affecting institutional variability need to be better understood before CTCA is universally adopted. Additional real-world evaluations are needed to fully understand the impact of CTCA on clinical care. clinicaltrials.gov Identifier: NCT00371891.
Voleti, Pramod B; Hamula, Mathew J; Baldwin, Keith D; Lee, Gwo-Chin
2014-09-01
The purpose of this systematic review and meta-analysis is to compare patient-specific instrumentation (PSI) versus standard instrumentation for total knee arthroplasty (TKA) with regard to coronal and sagittal alignment, operative time, intraoperative blood loss, and cost. A systematic query in search of relevant studies was performed, and the data published in these studies were extracted and aggregated. In regard to coronal alignment, PSI demonstrated improved accuracy in femorotibial angle (FTA) (P=0.0003), while standard instrumentation demonstrated improved accuracy in hip-knee-ankle angle (HKA) (P=0.02). Importantly, there were no differences between treatment groups in the percentages of FTA or HKA outliers (>3 degrees from target alignment) (P=0.7). Sagittal alignment, operative time, intraoperative blood loss, and cost were also similar between groups (P>0.1 for all comparisons). Copyright © 2014 Elsevier Inc. All rights reserved.
Wu, Xiaoping; Akgün, Can; Vaughan, J Thomas; Andersen, Peter; Strupp, John; Uğurbil, Kâmil; Van de Moortele, Pierre-François
2010-07-01
Parallel excitation holds strong promises to mitigate the impact of large transmit B1 (B+1) distortion at very high magnetic field. Accelerated RF pulses, however, inherently tend to require larger values in RF peak power which may result in substantial increase in Specific Absorption Rate (SAR) in tissues, which is a constant concern for patient safety at very high field. In this study, we demonstrate adapted rate RF pulse design allowing for SAR reduction while preserving excitation target accuracy. Compared with other proposed implementations of adapted rate RF pulses, our approach is compatible with any k-space trajectories, does not require an analytical expression of the gradient waveform and can be used for large flip angle excitation. We demonstrate our method with numerical simulations based on electromagnetic modeling and we include an experimental verification of transmit pattern accuracy on an 8 transmit channel 9.4 T system.
An adaptive front tracking technique for three-dimensional transient flows
NASA Astrophysics Data System (ADS)
Galaktionov, O. S.; Anderson, P. D.; Peters, G. W. M.; van de Vosse, F. N.
2000-01-01
An adaptive technique, based on both surface stretching and surface curvature analysis for tracking strongly deforming fluid volumes in three-dimensional flows is presented. The efficiency and accuracy of the technique are demonstrated for two- and three-dimensional flow simulations. For the two-dimensional test example, the results are compared with results obtained using a different tracking approach based on the advection of a passive scalar. Although for both techniques roughly the same structures are found, the resolution for the front tracking technique is much higher. In the three-dimensional test example, a spherical blob is tracked in a chaotic mixing flow. For this problem, the accuracy of the adaptive tracking is demonstrated by the volume conservation for the advected blob. Adaptive front tracking is suitable for simulation of the initial stages of fluid mixing, where the interfacial area can grow exponentially with time. The efficiency of the algorithm significantly benefits from parallelization of the code. Copyright
Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes
Di Napoli, Claudia; Pope, Iestyn; Masia, Francesco; Watson, Peter; Langbein, Wolfgang; Borri, Paola
2014-01-01
In this work, we demonstrate the applicability of coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy for quantitative chemical imaging of saturated and unsaturated lipids in human stem-cell derived adipocytes. We compare dual-frequency/differential CARS (D-CARS), which enables rapid imaging and simple data analysis, with broadband hyperspectral CARS microscopy analyzed using an unsupervised phase-retrieval and factorization method recently developed by us for quantitative chemical image analysis. Measurements were taken in the vibrational fingerprint region (1200–2000/cm) and in the CH stretch region (2600–3300/cm) using a home-built CARS set-up which enables hyperspectral imaging with 10/cm resolution via spectral focussing from a single broadband 5 fs Ti:Sa laser source. Through a ratiometric analysis, both D-CARS and phase-retrieved hyperspectral CARS determine the concentration of unsaturated lipids with comparable accuracy in the fingerprint region, while in the CH stretch region D-CARS provides only a qualitative contrast owing to its non-linear behavior. When analyzing hyperspectral CARS images using the blind factorization into susceptibilities and concentrations of chemical components recently demonstrated by us, we are able to determine vol:vol concentrations of different lipid components and spatially resolve inhomogeneities in lipid composition with superior accuracy compared to state-of-the art ratiometric methods. PMID:24877002
Devlin, Hugh; Whelton, Christopher
2015-09-01
The aim of this systematic review was to determine the diagnostic accuracy of the mandibular cortical width measurements and porosity in detecting hip osteoporosis. All of the included studies used measurements on panoramic radiographs. Studies were included if they compared the radiographic measurements (or index tests) with central dual energy X-ray absorptiometry (DXA) of the hip as the reference standard. A measure of diagnostic accuracy such as sensitivity and specificity or area under the receiver operating characteristic curve was also required for inclusion. Seven studies were identified. Meta-analysis was not possible because of the heterogeneity of the studies. The studies all demonstrated moderate diagnostic accuracy. If a patient with a thin or porous mandibular cortex is identified by a chance radiographic finding, additional clinical risk factors need to be considered and the patient referred for further investigation with DXA where necessary. © 2013 John Wiley & Sons A/S and The Gerodontology Society. Published by John Wiley & Sons Ltd.
Modeling of the Mode S tracking system in support of aircraft safety research
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1982-01-01
This report collects, documents, and models data relating the expected accuracies of tracking variables to be obtained from the FAA's Mode S Secondary Surveillance Radar system. The data include measured range and azimuth to the tracked aircraft plus the encoded altitude transmitted via the Mode S data link. A brief summary is made of the Mode S system status and its potential applications for aircraft safety improvement including accident analysis. FAA flight test results are presented demonstrating Mode S range and azimuth accuracy and error characteristics and comparing Mode S to the current ATCRBS radar tracking system. Data are also presented that describe the expected accuracy and error characteristics of encoded altitude. These data are used to formulate mathematical error models of the Mode S variables and encoded altitude. A brief analytical assessment is made of the real-time tracking accuracy available from using Mode S and how it could be improved with down-linked velocity.
Improving crop classification through attention to the timing of airborne radar acquisitions
NASA Technical Reports Server (NTRS)
Brisco, B.; Ulaby, F. T.; Protz, R.
1984-01-01
Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.
Trade-off studies of a hyperspectral infrared sounder on a geostationary satellite.
Wang, Fang; Li, Jun; Schmit, Timothy J; Ackerman, Steven A
2007-01-10
Trade-off studies on spectral coverage, signal-to-noise ratio (SNR), and spectral resolution for a hyperspectral infrared (IR) sounder on a geostationary satellite are summarized. The data density method is applied for the vertical resolution analysis, and the rms error between true and retrieved profiles is used to represent the retrieval accuracy. The effects of spectral coverage, SNR, and spectral resolution on vertical resolution and retrieval accuracy are investigated. The advantages of IR and microwave sounder synergy are also demonstrated. When focusing on instrument performance and data processing, the results from this study show that the preferred spectral coverage combines long-wave infrared (LWIR) with the shorter middle-wave IR (SMidW). Using the appropriate spectral coverage, a hyperspectral IR sounder with appropriate SNR can achieve the required science performance (1 km vertical resolution, 1 K temperature, and 10% relative humidity retrieval accuracy). The synergy of microwave and IR sounders can improve the vertical resolution and retrieval accuracy compared to either instrument alone.
NASA Astrophysics Data System (ADS)
Haines, P. E.; Esler, J. G.; Carver, G. D.
2014-06-01
A new methodology for the formulation of an adjoint to the transport component of the chemistry transport model TOMCAT is described and implemented in a new model, RETRO-TOM. The Eulerian backtracking method is used, allowing the forward advection scheme (Prather's second-order moments) to be efficiently exploited in the backward adjoint calculations. Prather's scheme is shown to be time symmetric, suggesting the possibility of high accuracy. To attain this accuracy, however, it is necessary to make a careful treatment of the "density inconsistency" problem inherent to offline transport models. The results are verified using a series of test experiments. These demonstrate the high accuracy of RETRO-TOM when compared with direct forward sensitivity calculations, at least for problems in which flux limiters in the advection scheme are not required. RETRO-TOM therefore combines the flexibility and stability of a "finite difference of adjoint" formulation with the accuracy of an "adjoint of finite difference" formulation.
NASA Astrophysics Data System (ADS)
Haines, P. E.; Esler, J. G.; Carver, G. D.
2014-01-01
A new methodology for the formulation of an adjoint to the transport component of the chemistry transport model TOMCAT is described and implemented in a new model RETRO-TOM. The Eulerian backtracking method is used, allowing the forward advection scheme (Prather's second-order moments), to be efficiently exploited in the backward adjoint calculations. Prather's scheme is shown to be time-symmetric suggesting the possibility of high accuracy. To attain this accuracy, however, it is necessary to make a careful treatment of the "density inconsistency" problem inherent to offline transport models. The results are verified using a series of test experiments. These demonstrate the high accuracy of RETRO-TOM when compared with direct forward sensitivity calculations, at least for problems in which flux-limiters in the advection scheme are not required. RETRO-TOM therefore combines the flexibility and stability of a "finite difference of adjoint" formulation with the accuracy of an "adjoint of finite difference" formulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Siyuan; Hwang, Youngdeok; Khabibrakhmanov, Ildar
With increasing penetration of solar and wind energy to the total energy supply mix, the pressing need for accurate energy forecasting has become well-recognized. Here we report the development of a machine-learning based model blending approach for statistically combining multiple meteorological models for improving the accuracy of solar/wind power forecast. Importantly, we demonstrate that in addition to parameters to be predicted (such as solar irradiance and power), including additional atmospheric state parameters which collectively define weather situations as machine learning input provides further enhanced accuracy for the blended result. Functional analysis of variance shows that the error of individual modelmore » has substantial dependence on the weather situation. The machine-learning approach effectively reduces such situation dependent error thus produces more accurate results compared to conventional multi-model ensemble approaches based on simplistic equally or unequally weighted model averaging. Validation over an extended period of time results show over 30% improvement in solar irradiance/power forecast accuracy compared to forecasts based on the best individual model.« less
Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao
2015-07-01
In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Experimental study of temperature sensor for an ocean-going liquid hydrogen (LH2) carrier
NASA Astrophysics Data System (ADS)
Nakano, A.; Shimazaki, T.; Sekiya, M.; Shiozawa, H.; Aoyagi, A.; Ohtsuka, K.; Iwakiri, T.; Mikami, Z.; Sato, M.; Kinoshita, K.; Matsuoka, T.; Takayama, Y.; Yamamoto, K.
2018-04-01
The prototype temperature sensors for an ocean-going liquid hydrogen (LH2) carrier were manufactured by way of trial. All of the sensors adopted Platinum 1000 (PT-1000) resistance thermometer elements. Various configurations of preproduction temperature sensors were tested in AIST's LH2 test facility. In the experiments, a PT-1000 resistance thermometer, calibrated at the National Metrology Institute of Japan at AIST, was used as the standard thermometer. The temperatures measured by the preproduction sensors were compared with the temperatures measured by the standard thermometer, and the measurement accuracy of the temperature sensors in LH2 was investigated and discussed. It was confirmed that the measurement accuracies of the preproduction temperature sensors were within ±50 mK, which is the required measurement accuracy for a technical demonstration ocean-going LH2 carrier.
Information filtering via biased heat conduction
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Zhou, Tao; Guo, Qiang
2011-09-01
The process of heat conduction has recently found application in personalized recommendation [Zhou , Proc. Natl. Acad. Sci. USA PNASA60027-842410.1073/pnas.1000488107107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction, which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix, and Delicious datasets could be improved by 43.5%, 55.4% and 19.2%, respectively, compared with the standard heat conduction algorithm and also the diversity is increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.
Technique for Very High Order Nonlinear Simulation and Validation
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2001-01-01
Finding the sources of sound in large nonlinear fields via direct simulation currently requires excessive computational cost. This paper describes a simple technique for efficiently solving the multidimensional nonlinear Euler equations that significantly reduces this cost and demonstrates a useful approach for validating high order nonlinear methods. Up to 15th order accuracy in space and time methods were compared and it is shown that an algorithm with a fixed design accuracy approaches its maximal utility and then its usefulness exponentially decays unless higher accuracy is used. It is concluded that at least a 7th order method is required to efficiently propagate a harmonic wave using the nonlinear Euler equations to a distance of 5 wavelengths while maintaining an overall error tolerance that is low enough to capture both the mean flow and the acoustics.
Wang, Hubiao; Chai, Hua; Bao, Lifeng; Wang, Yong
2017-01-01
An experiment comparing the location accuracy of gravity matching-aided navigation in the ocean and simulation is very important to evaluate the feasibility and the performance of an INS/gravity-integrated navigation system (IGNS) in underwater navigation. Based on a 1′ × 1′ marine gravity anomaly reference map and multi-model adaptive Kalman filtering algorithm, a matching location experiment of IGNS was conducted using data obtained using marine gravimeter. The location accuracy under actual ocean conditions was 2.83 nautical miles (n miles). Several groups of simulated data of marine gravity anomalies were obtained by establishing normally distributed random error N(u,σ2) with varying mean u and noise variance σ2. Thereafter, the matching location of IGNS was simulated. The results show that the changes in u had little effect on the location accuracy. However, an increase in σ2 resulted in a significant decrease in the location accuracy. A comparison between the actual ocean experiment and the simulation along the same route demonstrated the effectiveness of the proposed simulation method and quantitative analysis results. In addition, given the gravimeter (1–2 mGal accuracy) and the reference map (resolution 1′ × 1′; accuracy 3–8 mGal), location accuracy of IGNS was up to reach ~1.0–3.0 n miles in the South China Sea. PMID:29261136
Wang, Hubiao; Wu, Lin; Chai, Hua; Bao, Lifeng; Wang, Yong
2017-12-20
An experiment comparing the location accuracy of gravity matching-aided navigation in the ocean and simulation is very important to evaluate the feasibility and the performance of an INS/gravity-integrated navigation system (IGNS) in underwater navigation. Based on a 1' × 1' marine gravity anomaly reference map and multi-model adaptive Kalman filtering algorithm, a matching location experiment of IGNS was conducted using data obtained using marine gravimeter. The location accuracy under actual ocean conditions was 2.83 nautical miles (n miles). Several groups of simulated data of marine gravity anomalies were obtained by establishing normally distributed random error N ( u , σ 2 ) with varying mean u and noise variance σ 2 . Thereafter, the matching location of IGNS was simulated. The results show that the changes in u had little effect on the location accuracy. However, an increase in σ 2 resulted in a significant decrease in the location accuracy. A comparison between the actual ocean experiment and the simulation along the same route demonstrated the effectiveness of the proposed simulation method and quantitative analysis results. In addition, given the gravimeter (1-2 mGal accuracy) and the reference map (resolution 1' × 1'; accuracy 3-8 mGal), location accuracy of IGNS was up to reach ~1.0-3.0 n miles in the South China Sea.
Lidestam, Björn; Hällgren, Mathias; Rönnberg, Jerker
2014-01-01
This study compared elderly hearing aid (EHA) users and elderly normal-hearing (ENH) individuals on identification of auditory speech stimuli (consonants, words, and final word in sentences) that were different when considering their linguistic properties. We measured the accuracy with which the target speech stimuli were identified, as well as the isolation points (IPs: the shortest duration, from onset, required to correctly identify the speech target). The relationships between working memory capacity, the IPs, and speech accuracy were also measured. Twenty-four EHA users (with mild to moderate hearing impairment) and 24 ENH individuals participated in the present study. Despite the use of their regular hearing aids, the EHA users had delayed IPs and were less accurate in identifying consonants and words compared with the ENH individuals. The EHA users also had delayed IPs for final word identification in sentences with lower predictability; however, no significant between-group difference in accuracy was observed. Finally, there were no significant between-group differences in terms of IPs or accuracy for final word identification in highly predictable sentences. Our results also showed that, among EHA users, greater working memory capacity was associated with earlier IPs and improved accuracy in consonant and word identification. Together, our findings demonstrate that the gated speech perception ability of EHA users was not at the level of ENH individuals, in terms of IPs and accuracy. In addition, gated speech perception was more cognitively demanding for EHA users than for ENH individuals in the absence of semantic context. PMID:25085610
High-accuracy resolver-to-digital conversion via phase locked loop based on PID controller
NASA Astrophysics Data System (ADS)
Li, Yaoling; Wu, Zhong
2018-03-01
The problem of resolver-to-digital conversion (RDC) is transformed into the problem of angle tracking control, and a phase locked loop (PLL) method based on PID controller is proposed in this paper. This controller comprises a typical PI controller plus an incomplete differential which can avoid the amplification of higher-frequency noise components by filtering the phase detection error with a low-pass filter. Compared with conventional ones, the proposed PLL method makes the converter a system of type III and thus the conversion accuracy can be improved. Experimental results demonstrate the effectiveness of the proposed method.
A method of solid-solid phase equilibrium calculation by molecular dynamics
NASA Astrophysics Data System (ADS)
Karavaev, A. V.; Dremov, V. V.
2016-12-01
A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.
Azola, Alba M; Sunday, Kirstyn L; Humbert, Ianessa A
2017-02-01
Submental surface electromyography (ssEMG) visual biofeedback is widely used to train swallowing maneuvers. This study compares the effect of ssEMG and videofluoroscopy (VF) visual biofeedback on hyo-laryngeal accuracy when training a swallowing maneuver. Furthermore, it examines the clinician's ability to provide accurate verbal cues during swallowing maneuver training. Thirty healthy adults performed the volitional laryngeal vestibule closure maneuver (vLVC), which involves swallowing and sustaining closure of the laryngeal vestibule for 2 s. The study included two stages: (1) first accurate demonstration of the vLVC maneuver, followed by (2) training-20 vLVC training swallows. Participants were randomized into three groups: (a) ssEMG biofeedback only, (b) VF biofeedback only, and (c) mixed biofeedback (VF for the first accurate demonstration achieving stage and ssEMG for the training stage). Participants' performances were verbally critiqued or reinforced in real time while both the clinician and participant were observing the assigned visual biofeedback. VF and ssEMG were continuously recorded for all participants. Results show that accuracy of both vLVC performance and clinician cues was greater with VF biofeedback than with either ssEMG or mixed biofeedback (p < 0.001). Using ssEMG for providing real-time biofeedback during training could lead to errors while learning and training a swallowing maneuver.
Accuracy of digital impressions of multiple dental implants: an in vitro study.
Vandeweghe, Stefan; Vervack, Valentin; Dierens, Melissa; De Bruyn, Hugo
2017-06-01
Studies demonstrated that the accuracy of intra-oral scanners can be compared with conventional impressions for most indications. However, little is known about their applicability to take impressions of multiple implants. The aim of this study was to evaluate the accuracy of four intra-oral scanners when applied for implant impressions in the edentulous jaw. An acrylic mandibular cast containing six external connection implants (region 36, 34, 32, 42, 44 and 46) with PEEK scanbodies was scanned using four intra-oral scanners: the Lava C.O.S. and the 3M True Definition, Cerec Omnicam and 3Shape Trios. Each model was scanned 10 times with every intra-oral scanner. As a reference, a highly accurate laboratory scanner (104i, Imetric, Courgenay, Switzerland) was used. The scans were imported into metrology software (Geomagic Qualify 12) for analyses. Accuracy was measured in terms of trueness (comparing test and reference) and precision (determining the deviation between different test scans). Mann-Whitney U-test and Wilcoxon signed rank test were used to detect statistically significant differences in trueness and precision respectively. The mean trueness was 0.112 mm for Lava COS, 0.035 mm for 3M TrueDef, 0.028 mm for Trios and 0.061 mm for Cerec Omnicam. There was no statistically significant difference between 3M TrueDef and Trios (P = 0.262). Cerec Omnicam was less accurate than 3M TrueDef (P = 0.013) and Trios (P = 0.005), but more accurate compared to Lava COS (P = 0.007). Lava COS was also less accurate compared to 3M TrueDef (P = 0.005) and Trios (P = 0.005). The mean precision was 0.066 mm for Lava COS, 0.030 mm for 3M TrueDef, 0.033 mm for Trios and 0.059 mm for Cerec Omnicam. There was no statistically significant difference between 3M TrueDef and Trios (P = 0.119). Cerec Omnicam was less accurate compared to 3M TrueDef (P < 0.001) and Trios (P < 0.001), but no difference was found with Lava COS (P = 0.169). Lava COS was also less accurate compared to 3M TrueDef (P < 0.001) and Trios (P < 0.001). Based on the findings of this in vitro study, the 3M True Definition and Trios scanner demonstrated the highest accuracy. The Lava COS was found not suitable for taking implant impressions for a cross-arch bridge in the edentulous jaw. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jiang, Jipeng; Liu, Ying; Wang, Kun; Wu, Xixiang; Tang, Ying
2017-09-07
The aim of study was to compare the accuracy between rectal water contrast transvaginal ultrasound (RWC-TVS) and double-contrast barium enema (DCBE) in evaluating the bowel endometriosis presence as well as its extent. 198 patients at reproductive age with suspicious bowel endometriosis were included. Physicians in two groups specialised at endometriosis performed RWC-TVS as well as DCBE before laparoscopy and both groups were blinded to other groups' results. Findings from RWC-TVS or DCBE were compared with histological results. The severity of experienced pain severity through RWC-TVS or DCBE was assessed by an analogue scale of 10 cm. In total, 110 in 198 women were confirmed to have endometriosis nodules in the bowel by laparoscopy as well as histopathology. For bowel endometriosis diagnosis, DCBE and RWC-TVS demonstrated sensitivities of 96.4% and 88.2%, specificities of 100% and 97.3%, positive prediction values of 100% and 98.0%, negative prediction values of 98.0% and 88.0%, accuracies of 98.0% and 92.4%, respectively. DCBE was related to more tolerance than RWC-TVS. RWC-TVS and DCBE demonstrated similar accuracies in the bowel endometriosis diagnosis; however, patients showed more tolerance for RWC-TVS than those with DCBE. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
A globally efficient means of distributing UTC time and frequency through GPS
NASA Technical Reports Server (NTRS)
Kusters, John A.; Giffard, Robin P.; Cutler, Leonard S.; Allan, David W.; Miranian, Mihran
1995-01-01
Time and frequency outputs comparable in quality to the best laboratories have been demonstrated on an integrated system suitable for field application on a global basis. The system measures the time difference between 1 pulse-per-second (pps) signals derived from local primary frequency standards and from a multi-channel GPS C/A receiver. The measured data is processed through optimal SA Filter algorithms that enhance both the stability and accuracy of GPS timing signals. Experiments were run simultaneously at four different sites. Even with large distances between sites, the overall results show a high degree of cross-correlation of the SA noise. With sufficiently long simultaneous measurement sequences, the data shows that determination of the difference in local frequency from an accepted remote standard to better than 1 x 10(exp -14) is possible. This method yields frequency accuracy, stability, and timing stability comparable to that obtained with more conventional common-view experiments. In addition, this approach provides UTC(USNO MC) in real time to an accuracy better than 20 ns without the problems normally associated with conventional common-view techniques. An experimental tracking loop was also set up to demonstrate the use of enhanced GPS for dissemination of UTC(USNO MC) over a wide geographic area. Properly disciplining a cesium standard with a multi-channel GPS receiver, with additional input from USNO, has been found to permit maintaining a timing precision of better than 10 ns between Palo Alto, CA and Washington, DC.
NASA Astrophysics Data System (ADS)
Krinitskiy, Mikhail; Sinitsyn, Alexey
2017-04-01
Shortwave radiation is an important component of surface heat budget over sea and land. To estimate them accurate observations of cloud conditions are needed including total cloud cover, spatial and temporal cloud structure. While massively observed visually, for building accurate SW radiation parameterizations cloud structure needs also to be quantified using precise instrumental measurements. While there already exist several state of the art land-based cloud-cameras that satisfy researchers needs, their major disadvantages are associated with inaccuracy of all-sky images processing algorithms which typically result in the uncertainties of 2-4 octa of cloud cover estimates with the resulting true-scoring cloud cover accuracy of about 7%. Moreover, none of these algorithms determine cloud types. We developed an approach for cloud cover and structure estimating, which provides much more accurate estimates and also allows for measuring additional characteristics. This method is based on the synthetic controlling index, namely the "grayness rate index", that we introduced in 2014. Since then this index has already demonstrated high efficiency being used along with the technique namely the "background sunburn effect suppression", to detect thin clouds. This made it possible to significantly increase the accuracy of total cloud cover estimation in various sky image states using this extension of routine algorithm type. Errors for the cloud cover estimates significantly decreased down resulting the mean squared error of about 1.5 octa. Resulting true-scoring accuracy is more than 38%. The main source of this approach uncertainties is the solar disk state determination errors. While the deep neural networks approach lets us to estimate solar disk state with 94% accuracy, the final result of total cloud estimation still isn`t satisfying. To solve this problem completely we applied the set of machine learning algorithms to the problem of total cloud cover estimation directly. The accuracy of this approach varies depending on algorithm choice. Deep neural networks demonstrated the best accuracy of more than 96%. We will demonstrate some approaches and the most influential statistical features of all-sky images that lets the algorithm reach that high accuracy. With the use of our new optical package a set of over 480`000 samples has been collected in several sea missions in 2014-2016 along with concurrent standard human observed and instrumentally recorded meteorological parameters. We will demonstrate the results of the field measurements and will discuss some still remaining problems and the potential of the further developments of machine learning approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, K.D.; Brown, M.L.; Dewanjee, M.K.
We prospectively compared sequential technetium-gallium imaging with indium-labeled-leukocyte imaging in fifty patients with suspected low-grade musculoskeletal sepsis. Adequate images and follow-up examinations were obtained for forty-two patients. The presence or absence of low-grade sepsis was confirmed by histological and bacteriological examinations of tissue specimens taken at surgery in thirty of the forty-two patients. In these thirty patients, the sensitivity of sequential Tc-Ga imaging was 48 per cent, the specificity was 86 per cent, and the accuracy was 57 per cent, whereas the sensitivity of the indium-labeled-leukocyte technique was 83 per cent, the specificity was 86 per cent, and the accuracymore » was 83 per cent. When the additional twelve patients for whom surgery was deemed unnecessary were considered, the sensitivity of sequential Tc-Ga imaging was 50 per cent, the specificity was 78 per cent, and the accuracy was 62 per cent, as compared with a sensitivity of 83 per cent, a specificity of 94 per cent, and an accuracy of 88 per cent with the indium-labeled-leukocyte method. In patients with a prosthesis the indium-labeled-leukocyte image was 94 per cent accurate, compared with 75 per cent accuracy for sequential Tc-Ga imaging. Statistical analysis of these data demonstrated that the indium-labeled-leukocyte technique was superior to sequential Tc-Ga imaging in detecting areas of low-grade musculoskeletal sepsis.« less
Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster.
Olsen, Thomas
2007-02-01
This study aimed to demonstrate how the level of accuracy in intraocular lens (IOL) power calculation can be improved with optical biometry using partial optical coherence interferometry (PCI) (Zeiss IOLMaster) and current anterior chamber depth (ACD) prediction algorithms. Intraocular lens power in 461 consecutive cataract operations was calculated using both PCI and ultrasound and the accuracy of the results of each technique were compared. To illustrate the importance of ACD prediction per se, predictions were calculated using both a recently published 5-variable method and the Haigis 2-variable method and the results compared. All calculations were optimized in retrospect to account for systematic errors, including IOL constants and other off-set errors. The average absolute IOL prediction error (observed minus expected refraction) was 0.65 dioptres with ultrasound and 0.43 D with PCI using the 5-variable ACD prediction method (p < 0.00001). The number of predictions within +/- 0.5 D, +/- 1.0 D and +/- 2.0 D of the expected outcome was 62.5%, 92.4% and 99.9% with PCI, compared with 45.5%, 77.3% and 98.4% with ultrasound, respectively (p < 0.00001). The 2-variable ACD method resulted in an average error in PCI predictions of 0.46 D, which was significantly higher than the error in the 5-variable method (p < 0.001). The accuracy of IOL power calculation can be significantly improved using calibrated axial length readings obtained with PCI and modern IOL power calculation formulas incorporating the latest generation ACD prediction algorithms.
Cheng, Y; Cai, Y; Wang, Y
2014-01-01
The aim of this study was to assess the accuracy of ultrasonography in the diagnosis of chronic lateral ankle ligament injury. A total of 120 ankles in 120 patients with a clinical suspicion of chronic ankle ligament injury were examined by ultrasonography by using a 5- to 17-MHz linear array transducer before surgery. The results of ultrasonography were compared with the operative findings. There were 18 sprains and 24 partial and 52 complete tears of the anterior talofibular ligament (ATFL); 26 sprains, 27 partial and 12 complete tears of the calcaneofibular ligament (CFL); and 1 complete tear of the posterior talofibular ligament (PTFL) at arthroscopy and operation. Compared with operative findings, the sensitivity, specificity and accuracy of ultrasonography were 98.9%, 96.2% and 84.2%, respectively, for injury of the ATFL and 93.8%, 90.9% and 83.3%, respectively, for injury of the CFL. The PTFL tear was identified by ultrasonography. The accuracy of identification between acute-on-chronic and subacute-chronic patients did not differ. The accuracies of diagnosing three grades of ATFL injuries were almost the same as those of diagnosing CFL injuries. Ultrasonography provides useful information for the evaluation of patients presenting with chronic pain after ankle sprain. Intraoperative findings are the reference standard. We demonstrated that ultrasonography was highly sensitive and specific in detecting chronic lateral ligments injury of the ankle joint.
Cheng, Y; Cai, Y
2014-01-01
Objective: The aim of this study was to assess the accuracy of ultrasonography in the diagnosis of chronic lateral ankle ligament injury. Methods: A total of 120 ankles in 120 patients with a clinical suspicion of chronic ankle ligament injury were examined by ultrasonography by using a 5- to 17-MHz linear array transducer before surgery. The results of ultrasonography were compared with the operative findings. Results: There were 18 sprains and 24 partial and 52 complete tears of the anterior talofibular ligament (ATFL); 26 sprains, 27 partial and 12 complete tears of the calcaneofibular ligament (CFL); and 1 complete tear of the posterior talofibular ligament (PTFL) at arthroscopy and operation. Compared with operative findings, the sensitivity, specificity and accuracy of ultrasonography were 98.9%, 96.2% and 84.2%, respectively, for injury of the ATFL and 93.8%, 90.9% and 83.3%, respectively, for injury of the CFL. The PTFL tear was identified by ultrasonography. The accuracy of identification between acute-on-chronic and subacute–chronic patients did not differ. The accuracies of diagnosing three grades of ATFL injuries were almost the same as those of diagnosing CFL injuries. Conclusion: Ultrasonography provides useful information for the evaluation of patients presenting with chronic pain after ankle sprain. Advances in knowledge: Intraoperative findings are the reference standard. We demonstrated that ultrasonography was highly sensitive and specific in detecting chronic lateral ligments injury of the ankle joint. PMID:24352708
Humalog(®) KwikPen™: an insulin-injecting pen designed for ease of use.
Schwartz, Sherwyn L; Ignaut, Debra A; Bodie, Jennifer N
2010-11-01
Insulin pens offer significant benefits over vial and syringe injections for patients with diabetes who require insulin therapy. Insulin pens are more discreet, easier for patients to hold and inject, and provide better dosing accuracy than vial and syringe injections. The Humalog(®) KwikPen™ (prefilled insulin lispro [Humalog] pen, Eli Lilly and Company, Indianapolis, IN, USA) is a prefilled insulin pen highly rated by patients for ease of use in injections, and has been preferred by patients to both a comparable insulin pen and to vial and syringe injections in comparator studies. Together with an engineering study demonstrating smoother injections and reduced dosing error versus a comparator pen, recent evidence demonstrates the Humalog KwikPen device is an accurate, easy-to-use, patient-preferred insulin pen.
McNair, Peter J; Colvin, Matt; Reid, Duncan
2011-02-01
To compare the accuracy of 12 maximal strength (1-repetition maximum [1-RM]) equations for predicting quadriceps strength in people with osteoarthritis (OA) of the knee joint. Eighteen subjects with OA of the knee joint attended a rehabilitation gymnasium on 3 occasions: 1) a familiarization session, 2) a session where the 1-RM of the quadriceps was established using a weights machine for an open-chain knee extension exercise and a leg press exercise, and 3) a session where the subjects performed with a load at which they could lift for approximately 10 repetitions only. The data were used in 12 prediction equations to calculate 1-RM strength and compared to the actual 1-RM data. Data were examined using Bland and Altman graphs and statistics, intraclass correlation coefficients (ICCs), and typical error values between the actual 1-RM and the respective 1-RM prediction equation data. Difference scores (predicted 1-RM--actual 1-RM) across the injured and control legs were also compared. For the knee extension exercise, the Brown, Brzycki, Epley, Lander, Mayhew et al, Poliquin, and Wathen prediction equations demonstrated the greatest levels of predictive accuracy. All of the ICCs were high (range 0.96–0.99), and typical errors were between 3% and 4%. For the knee press exercise, the Adams, Berger, Kemmler et al, and O'Conner et al equations demonstrated the greatest levels of predictive accuracy. All of the ICCs were high (range 0.95-0.98), and the typical errors ranged from 5.9-6.3%. This study provided evidence supporting the use of prediction equations to assess maximal strength in individuals with a knee joint with OA.
Biltoft-Jensen, Anja; Damsgaard, Camilla Trab; Andersen, Rikke; Ygil, Karin Hess; Andersen, Elisabeth Wreford; Ege, Majken; Christensen, Tue; Sørensen, Louise Bergmann; Stark, Ken D; Tetens, Inge; Thorsen, Anne-Vibeke
2015-08-28
Bias in self-reported dietary intake is important when evaluating the effect of dietary interventions, particularly for intervention foods. However, few have investigated this in children, and none have investigated the reporting accuracy of fish intake in children using biomarkers. In a Danish school meal study, 8- to 11-year-old children (n 834) were served the New Nordic Diet (NND) for lunch. The present study examined the accuracy of self-reported intake of signature foods (berries, cabbage, root vegetables, legumes, herbs, potatoes, wild plants, mushrooms, nuts and fish) characterising the NND. Children, assisted by parents, self-reported their diet in a Web-based Dietary Assessment Software for Children during the intervention and control (packed lunch) periods. The reported fish intake by children was compared with their ranking according to fasting whole-blood EPA and DHA concentration and weight percentage using the Spearman correlations and cross-classification. Direct observation of school lunch intake (n 193) was used to score the accuracy of food-reporting as matches, intrusions, omissions and faults. The reporting of all lunch foods had higher percentage of matches compared with the reporting of signature foods in both periods, and the accuracy was higher during the control period compared with the intervention period. Both Spearman's rank correlations and linear mixed models demonstrated positive associations between EPA+DHA and reported fish intake. The direct observations showed that both reported and real intake of signature foods did increase during the intervention period. In conclusion, the self-reported data represented a true increase in the intake of signature foods and can be used to examine dietary intervention effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.A.; Christie, M.J.; Sandler, M.P.
1988-08-01
Preoperative exclusion or confirmation of periprosthetic infection is essential for correct surgical management of patients with suspected infected joint prostheses. The sensitivity and specificity of (/sup 111/In)WBC imaging in the diagnosis of infected total joint prostheses was examined in 28 patients and compared with sequential (/sup 99m/Tc)HDP/(/sup 111/In)WBC scintigraphy and aspiration arthrography. The sensitivity of preoperative aspiration cultures was 12%, with a specificity of 81% and an accuracy of 58%. The sensitivity of (/sup 111/In)WBC imaging alone was 100%, with a specificity of 50% and an accuracy of 65%. When correlated with the bone scintigraphy and read as sequential (/supmore » 99m/Tc)HDP/(/sup 111/In)WBC imaging, the sensitivity was 88%, specificity 95%, and accuracy 93%. This study demonstrates that (/sup 111/In)WBC imaging is an extremely sensitive imaging modality for the detection of occult infection of joint prostheses. It also demonstrates the necessity of correlating (/sup 111/In)WBC images with (/sup 99m/Tc)HDP skeletal scintigraphy in the detection of occult periprosthetic infection.« less
Data Processing and Quality Evaluation of a Boat-Based Mobile Laser Scanning System
Vaaja, Matti; Kukko, Antero; Kaartinen, Harri; Kurkela, Matti; Kasvi, Elina; Flener, Claude; Hyyppä, Hannu; Hyyppä, Juha; Järvelä, Juha; Alho, Petteri
2013-01-01
Mobile mapping systems (MMSs) are used for mapping topographic and urban features which are difficult and time consuming to measure with other instruments. The benefits of MMSs include efficient data collection and versatile usability. This paper investigates the data processing steps and quality of a boat-based mobile mapping system (BoMMS) data for generating terrain and vegetation points in a river environment. Our aim in data processing was to filter noise points, detect shorelines as well as points below water surface and conduct ground point classification. Previous studies of BoMMS have investigated elevation accuracies and usability in detection of fluvial erosion and deposition areas. The new findings concerning BoMMS data are that the improved data processing approach allows for identification of multipath reflections and shoreline delineation. We demonstrate the possibility to measure bathymetry data in shallow (0–1 m) and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS ground points classification compared to manually classified data. We also demonstrate the spatial variations of the ground point density and assess elevation and vertical accuracies of the BoMMS data. PMID:24048340
Data processing and quality evaluation of a boat-based mobile laser scanning system.
Vaaja, Matti; Kukko, Antero; Kaartinen, Harri; Kurkela, Matti; Kasvi, Elina; Flener, Claude; Hyyppä, Hannu; Hyyppä, Juha; Järvelä, Juha; Alho, Petteri
2013-09-17
Mobile mapping systems (MMSs) are used for mapping topographic and urban features which are difficult and time consuming to measure with other instruments. The benefits of MMSs include efficient data collection and versatile usability. This paper investigates the data processing steps and quality of a boat-based mobile mapping system (BoMMS) data for generating terrain and vegetation points in a river environment. Our aim in data processing was to filter noise points, detect shorelines as well as points below water surface and conduct ground point classification. Previous studies of BoMMS have investigated elevation accuracies and usability in detection of fluvial erosion and deposition areas. The new findings concerning BoMMS data are that the improved data processing approach allows for identification of multipath reflections and shoreline delineation. We demonstrate the possibility to measure bathymetry data in shallow (0-1 m) and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS ground points classification compared to manually classified data. We also demonstrate the spatial variations of the ground point density and assess elevation and vertical accuracies of the BoMMS data.
Localization of a Robotic Crawler for CANDU Fuel Channel Inspection
NASA Astrophysics Data System (ADS)
Manning, Mark
This thesis discusses the design and development of a pipe crawling robot for the purpose of CANDU fuel channel inspection. The pipe crawling robot shall be capable of deploying the existing CIGAR (Channel Inspection and Gauging Apparatus for Reactors) sensor head. The main focus of this thesis is the design of the localization system for this robot and the many tests that were completed to demonstrate its accuracy. The proposed localization system consists of three redundant resolver wheels mounted to the robot's frame and two resolvers that are mounted inside a custom made cable drum. This cable drum shall be referred to in this thesis as the emergency retrieval device. This device serves the dual-purpose of providing absolute position measurements (via the cable that is tethered to the robot) as well as retrieving the robot if it is inoperable. The estimated accuracy of the proposed design is demonstrated with the use of a proof-of-concept prototype and a custom made test bench that uses a vision system to provide a more accurate estimate of the robot's position. The only major difference between the proof-of-concept prototype and the proposed solution is that the more expensive radiation hardened components were not used in the proof-of-concept prototype design. For example, the proposed solution shall use radiation hardened resolver wheels, whereas the proof-of-concept prototype used encoder wheels. These encoder wheels provide the same specified accuracy as the radiation hardened resolvers for the most realistic results possible. The rationale behind the design of the proof-of-concept prototype, the proposed final design, the design of the localization system test bench, and the test plan for developing all of the components of the design related to the robot's localization system are discussed in the thesis. The test plan provides a step by step guide to the configuration and optimization of an Unscented Kalman Filter (UKF). The UKF was selected as the ideal sensor fusion algorithm for use in this application. Benchmarking was completed to compare the accuracy achieved by the UKF algorithm to other data fusion algorithms. When compared to other algorithms, the UKF demonstrated the best accuracy when considering all likely sources of error such as sensor failure and surface unevenness. The test results show that the localization system is able to achieve a worst case positional accuracy of +/- 3.6 mm for the robot crawler over the full 6350 mm distance that the robot travels inside the pressure tube. This is extrapolated from the test results completed over the shorter length test bench with simulated surface unevenness. The key benefits of the pipe crawling robot when compared to the current system include: reduced dosage to workers and the reduced outage time. The advantages are due to the fact that the robot can be automated and multiple inspection robots can be deployed simultaneously. The current inspection system is only able to complete one inspection at a time.
NASA Astrophysics Data System (ADS)
Tseng, Chien-Hsun
2018-06-01
This paper aims to develop a multidimensional wave digital filtering network for predicting static and dynamic behaviors of composite laminate based on the FSDT. The resultant network is, thus, an integrated platform that can perform not only the free vibration but also the bending deflection of moderate thick symmetric laminated plates with low plate side-to-thickness ratios (< = 20). Safeguarded by the Courant-Friedrichs-Levy stability condition with the least restriction in terms of optimization technique, the present method offers numerically high accuracy, stability and efficiency to proceed a wide range of modulus ratios for the FSDT laminated plates. Instead of using a constant shear correction factor (SCF) with a limited numerical accuracy for the bending deflection, an optimum SCF is particularly sought by looking for a minimum ratio of change in the transverse shear energy. This way, it can predict as good results in terms of accuracy for certain cases of bending deflection. Extensive simulation results carried out for the prediction of maximum bending deflection have demonstratively proven that the present method outperforms those based on the higher-order shear deformation and layerwise plate theories. To the best of our knowledge, this is the first work that shows an optimal selection of SCF can significantly increase the accuracy of FSDT-based laminates especially compared to the higher order theory disclaiming any correction. The highest accuracy of overall solution is compared to the 3D elasticity equilibrium one.
Romeas, Thomas; Faubert, Jocelyn
2015-01-01
Recent studies have shown that athletes’ domain specific perceptual-cognitive expertise can transfer to everyday tasks. Here we assessed the perceptual-cognitive expertise of athletes and non-athletes using sport specific and non-sport specific biological motion perception (BMP) tasks. Using a virtual environment, university-level soccer players and university students’ non-athletes were asked to perceive the direction of a point-light walker and to predict the trajectory of a masked-ball during a point-light soccer kick. Angles of presentation were varied for orientation (upright, inverted) and distance (2 m, 4 m, 16 m). Accuracy and reaction time were measured to assess observers’ performance. The results highlighted athletes’ superior ability compared to non-athletes to accurately predict the trajectory of a masked soccer ball presented at 2 m (reaction time), 4 m (accuracy and reaction time), and 16 m (accuracy) of distance. More interestingly, experts also displayed greater performance compared to non-athletes throughout the more fundamental and general point-light walker direction task presented at 2 m (reaction time), 4 m (accuracy and reaction time), and 16 m (reaction time) of distance. In addition, athletes showed a better performance throughout inverted conditions in the walker (reaction time) and soccer kick (accuracy and reaction time) tasks. This implies that during human BMP, athletes demonstrate an advantage for recognizing body kinematics that goes beyond sport specific actions. PMID:26388828
A reference standard-based quality assurance program for radiology.
Liu, Patrick T; Johnson, C Daniel; Miranda, Rafael; Patel, Maitray D; Phillips, Carrie J
2010-01-01
The authors have developed a comprehensive radiology quality assurance (QA) program that evaluates radiology interpretations and procedures by comparing them with reference standards. Performance metrics are calculated and then compared with benchmarks or goals on the basis of published multicenter data and meta-analyses. Additional workload for physicians is kept to a minimum by having trained allied health staff members perform the comparisons of radiology reports with the reference standards. The performance metrics tracked by the QA program include the accuracy of CT colonography for detecting polyps, the false-negative rate for mammographic detection of breast cancer, the accuracy of CT angiography detection of coronary artery stenosis, the accuracy of meniscal tear detection on MRI, the accuracy of carotid artery stenosis detection on MR angiography, the accuracy of parathyroid adenoma detection by parathyroid scintigraphy, the success rate for obtaining cortical tissue on ultrasound-guided core biopsies of pelvic renal transplants, and the technical success rate for peripheral arterial angioplasty procedures. In contrast with peer-review programs, this reference standard-based QA program minimizes the possibilities of reviewer bias and erroneous second reviewer interpretations. The more objective assessment of performance afforded by the QA program will provide data that can easily be used for education and management conferences, research projects, and multicenter evaluations. Additionally, such performance data could be used by radiology departments to demonstrate their value over nonradiology competitors to referring clinicians, hospitals, patients, and third-party payers. Copyright 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Towards designing an optical-flow based colonoscopy tracking algorithm: a comparative study
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.
2013-03-01
Automatic co-alignment of optical and virtual colonoscopy images can supplement traditional endoscopic procedures, by providing more complete information of clinical value to the gastroenterologist. In this work, we present a comparative analysis of our optical flow based technique for colonoscopy tracking, in relation to current state of the art methods, in terms of tracking accuracy, system stability, and computational efficiency. Our optical-flow based colonoscopy tracking algorithm starts with computing multi-scale dense and sparse optical flow fields to measure image displacements. Camera motion parameters are then determined from optical flow fields by employing a Focus of Expansion (FOE) constrained egomotion estimation scheme. We analyze the design choices involved in the three major components of our algorithm: dense optical flow, sparse optical flow, and egomotion estimation. Brox's optical flow method,1 due to its high accuracy, was used to compare and evaluate our multi-scale dense optical flow scheme. SIFT6 and Harris-affine features7 were used to assess the accuracy of the multi-scale sparse optical flow, because of their wide use in tracking applications; the FOE-constrained egomotion estimation was compared with collinear,2 image deformation10 and image derivative4 based egomotion estimation methods, to understand the stability of our tracking system. Two virtual colonoscopy (VC) image sequences were used in the study, since the exact camera parameters(for each frame) were known; dense optical flow results indicated that Brox's method was superior to multi-scale dense optical flow in estimating camera rotational velocities, but the final tracking errors were comparable, viz., 6mm vs. 8mm after the VC camera traveled 110mm. Our approach was computationally more efficient, averaging 7.2 sec. vs. 38 sec. per frame. SIFT and Harris affine features resulted in tracking errors of up to 70mm, while our sparse optical flow error was 6mm. The comparison among egomotion estimation algorithms showed that our FOE-constrained egomotion estimation method achieved the optimal balance between tracking accuracy and robustness. The comparative study demonstrated that our optical-flow based colonoscopy tracking algorithm maintains good accuracy and stability for routine use in clinical practice.
Numerical Integration Techniques for Curved-Element Discretizations of Molecule–Solvent Interfaces
Bardhan, Jaydeep P.; Altman, Michael D.; Willis, David J.; Lippow, Shaun M.; Tidor, Bruce; White, Jacob K.
2012-01-01
Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, we have developed methods to model several important surface formulations using exact surface discretizations. Following and refining Zauhar’s work (J. Comp.-Aid. Mol. Des. 9:149-159, 1995), we define two classes of curved elements that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. We then present numerical integration techniques that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, we present a set of calculations that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planartriangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute–solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that our methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online at http://web.mit.edu/tidor. PMID:17627358
NASA Astrophysics Data System (ADS)
Zhang, Junwei; Hong, Xuezhi; Liu, Jie; Guo, Changjian
2018-04-01
In this work, we investigate and experimentally demonstrate an orthogonal frequency division multiplexing (OFDM) based high speed wavelength-division multiplexed (WDM) visible light communication (VLC) system using an inter-block data precoding and superimposed pilots (DP-SP) based channel estimation (CE) scheme. The residual signal-to-pilot interference (SPI) can be eliminated by using inter-block data precoding, resulting in a significant improvement in estimated accuracy and the overall system performance compared with uncoded SP based CE scheme. We also study the power allocation/overhead problem of the training for DP-SP, uncoded SP and conventional preamble based CE schemes, from which we obtain the optimum signal-to-pilot power ratio (SPR)/overhead percentage for all above cases. Intra-symbol frequency-domain averaging (ISFA) is also adopted to further enhance the accuracy of CE. By using the DP-SP based CE scheme, aggregate data rates of 1.87-Gbit/s and 1.57-Gbit/s are experimentally demonstrated over 0.8-m and 2-m indoor free space transmission, respectively, using a commercially available red, green and blue (RGB) light emitting diode (LED) with WDM. Experimental results show that the DP-SP based CE scheme is comparable to the conventional preamble based CE scheme in term of received Q factor and data rate while entailing a much smaller overhead-size.
Kim, Brian J; Merchant, Madhur; Zheng, Chengyi; Thomas, Anil A; Contreras, Richard; Jacobsen, Steven J; Chien, Gary W
2014-12-01
Natural language processing (NLP) software programs have been widely developed to transform complex free text into simplified organized data. Potential applications in the field of medicine include automated report summaries, physician alerts, patient repositories, electronic medical record (EMR) billing, and quality metric reports. Despite these prospects and the recent widespread adoption of EMR, NLP has been relatively underutilized. The objective of this study was to evaluate the performance of an internally developed NLP program in extracting select pathologic findings from radical prostatectomy specimen reports in the EMR. An NLP program was generated by a software engineer to extract key variables from prostatectomy reports in the EMR within our healthcare system, which included the TNM stage, Gleason grade, presence of a tertiary Gleason pattern, histologic subtype, size of dominant tumor nodule, seminal vesicle invasion (SVI), perineural invasion (PNI), angiolymphatic invasion (ALI), extracapsular extension (ECE), and surgical margin status (SMS). The program was validated by comparing NLP results to a gold standard compiled by two blinded manual reviewers for 100 random pathology reports. NLP demonstrated 100% accuracy for identifying the Gleason grade, presence of a tertiary Gleason pattern, SVI, ALI, and ECE. It also demonstrated near-perfect accuracy for extracting histologic subtype (99.0%), PNI (98.9%), TNM stage (98.0%), SMS (97.0%), and dominant tumor size (95.7%). The overall accuracy of NLP was 98.7%. NLP generated a result in <1 second, whereas the manual reviewers averaged 3.2 minutes per report. This novel program demonstrated high accuracy and efficiency identifying key pathologic details from the prostatectomy report within an EMR system. NLP has the potential to assist urologists by summarizing and highlighting relevant information from verbose pathology reports. It may also facilitate future urologic research through the rapid and automated creation of large databases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abgrall, N.; Aguayo, E.; Avignone, F. T.
We report the first measurement of the muon flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 foot level. Measurements were done with the Majorana Demonstrator veto system arranged in two different configurations. Both results are in agreement within statistical accuracy. The measured flux is (4.08+-0.19) x 10 -9 muons/cm/2. We compare our results with previous calculations.
USDA-ARS?s Scientific Manuscript database
The accuracy and precision of the Horsfall-Barratt (H-B) scale has been questioned, and some of the psychophysical law on which it is based found to be inappropriate. It has not been demonstrated whether use of the H-B scale systematically affects the outcome of hypothesis testing. A simulation mode...
Certified ion implantation fluence by high accuracy RBS.
Colaux, Julien L; Jeynes, Chris; Heasman, Keith C; Gwilliam, Russell M
2015-05-07
From measurements over the last two years we have demonstrated that the charge collection system based on Faraday cups can robustly give near-1% absolute implantation fluence accuracy for our electrostatically scanned 200 kV Danfysik ion implanter, using four-point-probe mapping with a demonstrated accuracy of 2%, and accurate Rutherford backscattering spectrometry (RBS) of test implants from our quality assurance programme. The RBS is traceable to the certified reference material IRMM-ERM-EG001/BAM-L001, and involves convenient calibrations both of the electronic gain of the spectrometry system (at about 0.1% accuracy) and of the RBS beam energy (at 0.06% accuracy). We demonstrate that accurate RBS is a definitive method to determine quantity of material. It is therefore useful for certifying high quality reference standards, and is also extensible to other kinds of samples such as thin self-supporting films of pure elements. The more powerful technique of Total-IBA may inherit the accuracy of RBS.
Batten, W M J; Harrison, M E; Bahaj, A S
2013-02-28
The actuator disc-RANS model has widely been used in wind and tidal energy to predict the wake of a horizontal axis turbine. The model is appropriate where large-scale effects of the turbine on a flow are of interest, for example, when considering environmental impacts, or arrays of devices. The accuracy of the model for modelling the wake of tidal stream turbines has not been demonstrated, and flow predictions presented in the literature for similar modelled scenarios vary significantly. This paper compares the results of the actuator disc-RANS model, where the turbine forces have been derived using a blade-element approach, to experimental data measured in the wake of a scaled turbine. It also compares the results with those of a simpler uniform actuator disc model. The comparisons show that the model is accurate and can predict up to 94 per cent of the variation in the experimental velocity data measured on the centreline of the wake, therefore demonstrating that the actuator disc-RANS model is an accurate approach for modelling a turbine wake, and a conservative approach to predict performance and loads. It can therefore be applied to similar scenarios with confidence.
Can Selforganizing Maps Accurately Predict Photometric Redshifts?
NASA Technical Reports Server (NTRS)
Way, Michael J.; Klose, Christian
2012-01-01
We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods
Power calculation for comparing diagnostic accuracies in a multi-reader, multi-test design.
Kim, Eunhee; Zhang, Zheng; Wang, Youdan; Zeng, Donglin
2014-12-01
Receiver operating characteristic (ROC) analysis is widely used to evaluate the performance of diagnostic tests with continuous or ordinal responses. A popular study design for assessing the accuracy of diagnostic tests involves multiple readers interpreting multiple diagnostic test results, called the multi-reader, multi-test design. Although several different approaches to analyzing data from this design exist, few methods have discussed the sample size and power issues. In this article, we develop a power formula to compare the correlated areas under the ROC curves (AUC) in a multi-reader, multi-test design. We present a nonparametric approach to estimate and compare the correlated AUCs by extending DeLong et al.'s (1988, Biometrics 44, 837-845) approach. A power formula is derived based on the asymptotic distribution of the nonparametric AUCs. Simulation studies are conducted to demonstrate the performance of the proposed power formula and an example is provided to illustrate the proposed procedure. © 2014, The International Biometric Society.
Jo, Min-Jeong; Jung, Hyung-Sup; Won, Joong-Sun; Poland, Michael; Miklius, Asta; Lu, Zhong
2015-01-01
Multiple-aperture SAR interferometry (MAI) has demonstrated outstanding measurement accuracy of along-track displacement when compared to pixel-offset-tracking methods; however, measuring slow-moving (cm/year) surface displacement remains a challenge. Stacking of multi-temporal observations is a potential approach to reducing noise and increasing measurement accuracy, but it is difficult to achieve a significant improvement by applying traditional stacking methods to multi-temporal MAI interferograms. This paper proposes an efficient MAI stacking method, where multi-temporal forward- and backward-looking residual interferograms are individually stacked before the MAI interferogram is generated. We tested the performance of this method using ENVISAT data from Kīlauea Volcano, Hawai‘i, where displacement on the order of several centimeters per year is common. By comparing results from the proposed stacking methods with displacements from GPS data, we documented measurement accuracies of about 1.03 and 1.07 cm/year for the descending and ascending tracks, respectively—an improvement of about a factor of two when compared with that from the conventional stacking approach. Three-dimensional surface-displacement maps can be constructed by combining stacked InSAR and MAI observations, which will contribute to a better understanding of a variety of geological phenomena.
Diagnostic accuracy of a uniform research case definition for TBM in children: a prospective study.
Solomons, R S; Visser, D H; Marais, B J; Schoeman, J F; van Furth, A M
2016-07-01
Bacteriological confirmation of tuberculous meningitis (TBM) is problematic, and rarely guides initial clinical management. A uniform TBM case definition has been proposed for research purposes. We prospectively enrolled patients aged 3 months to 13 years with meningitis confirmed using cerebrospinal fluid analysis at Tygerberg Hospital, Cape Town, South Africa. Criteria that differentiated TBM from other causes were explored and the accuracy of a probable TBM score assessed by comparing bacteriologically confirmed cases to 'non-TBM' controls. Of 139 meningitis patients, 79 were diagnosed with TBM (35 bacteriologically confirmed), 10 with bacterial meningitis and 50 with viral meningitis. Among those with bacteriologically confirmed TBM, 15 were Mycobacterium tuberculosis culture-positive and 20 were culture-negative but positive on GenoType(®) MTBDRplus or Xpert(®) MTB/RIF; 18 were positive on only a single commercial nucleic acid amplification test. A probable TBM score provided a sensitivity of 74% (95%CI 57-88) and a specificity of 97% (95%CI 86-99) compared to bacteriologically confirmed TBM. A probable TBM score demonstrated excellent specificity compared to bacteriological confirmation. However, 26% of children with TBM would be missed due to the limited accuracy of the case definition. Further prospective testing of an algorithm-based approach to TBM is advisable before recommendation for general clinical practice.
Erdodi, Laszlo A; Tyson, Bradley T; Shahein, Ayman G; Lichtenstein, Jonathan D; Abeare, Christopher A; Pelletier, Chantalle L; Zuccato, Brandon G; Kucharski, Brittany; Roth, Robert M
2017-05-01
The Recognition Memory Test (RMT) and Word Choice Test (WCT) are structurally similar, but psychometrically different. Previous research demonstrated that adding a time-to-completion cutoff improved the classification accuracy of the RMT. However, the contribution of WCT time-cutoffs to improve the detection of invalid responding has not been investigated. The present study was designed to evaluate the classification accuracy of time-to-completion on the WCT compared to the accuracy score and the RMT. Both tests were administered to 202 adults (M age = 45.3 years, SD = 16.8; 54.5% female) clinically referred for neuropsychological assessment in counterbalanced order as part of a larger battery of cognitive tests. Participants obtained lower and more variable scores on the RMT (M = 44.1, SD = 7.6) than on the WCT (M = 46.9, SD = 5.7). Similarly, they took longer to complete the recognition trial on the RMT (M = 157.2 s,SD = 71.8) than the WCT (M = 137.2 s, SD = 75.7). The optimal cutoff on the RMT (≤43) produced .60 sensitivity at .87 specificity. The optimal cutoff on the WCT (≤47) produced .57 sensitivity at .87 specificity. Time-cutoffs produced comparable classification accuracies for both RMT (≥192 s; .48 sensitivity at .88 specificity) and WCT (≥171 s; .49 sensitivity at .91 specificity). They also identified an additional 6-10% of the invalid profiles missed by accuracy score cutoffs, while maintaining good specificity (.93-.95). Functional equivalence was reached at accuracy scores ≤43 (RMT) and ≤47 (WCT) or time-to-completion ≥192 s (RMT) and ≥171 s (WCT). Time-to-completion cutoffs are valuable additions to both tests. They can function as independent validity indicators or enhance the sensitivity of accuracy scores without requiring additional measures or extending standard administration time.
Robinson, Charlotte S; Sharp, Patrick
2012-05-01
Blood glucose monitoring systems (BGMS) are used in the hospital environment to manage blood glucose levels in patients at the bedside. The International Organization for Standardization (ISO) 15197:2003 standard is currently used by regulatory bodies as a minimum requirement for the performance of BGMS, specific to self-testing. There are calls for the tightening of accuracy requirements and implementation of a standard specifically for point-of-care (POC) BGMS. The accuracy of six commonly used BGMS was assessed in a clinical setting, with 108 patients' finger stick capillary samples. Using the accuracy criteria from the existing standard and a range of tightened accuracy criteria, system performance was compared. Other contributors to system performance have been measured, including hematocrit sensitivity and meter error rates encountered in the clinical setting. Five of the six BGMS evaluated met current accuracy criteria within the ISO 15197 standard. Only the Optium Xceed system had >95% of all readings within a tightened criteria of ±12.5% from the reference at glucose levels ≥72 mg/dl (4 mmol/liter) and ±9 mg/dl (0.5 mmol/liter) at glucose levels <72 mg/dl (4 mmol/liter). The Nova StatStrip Xpress had the greatest number of error messages observed; Optium Xceed the least. OneTouch Ultra2, Nova StatStrip Xpress, Accu-Chek Performa, and Contour TS products were all significantly influenced by blood hematocrit levels. From evidence obtained during this clinical evaluation, the Optium Xceed system is most likely to meet future anticipated accuracy standards for POC BGMS. In this clinical study, the results demonstrated the Optium Xceed product to have the highest level of accuracy, to have the lowest occurrence of error messages, and to be least influenced by blood hematocrit levels. © 2012 Diabetes Technology Society.
Incardona, Sandra; Mwancha-Kwasa, Magoma; Rees-Channer, Roxanne R; Albertini, Audrey; Havumaki, Joshua; Chiodini, Peter; Oyibo, Wellington; Gonzalez, Iveth J
2018-01-15
Malaria rapid diagnostic tests (RDTs) are becoming widely adopted for case management at community level. However, reports and anecdotal observations indicate that the blood transfer step poses a significant challenge to many users. This study sought to evaluate the inverted cup device in the hands of health workers in everyday clinical practice, in comparison with the plastic pipette, and to determine the volume accuracy of the device made of a lower-cost plastic. The volume accuracy of inverted cup devices made of two plastics, PMMA and SBC, was compared by transferring blood 150 times onto filter paper and comparing the blood spot areas with those produced by 20 reference transfers with a calibrated micropipette. The ease of use, safety and acceptability of the inverted cup device and the pipette were evaluated by 50 health workers in Nigeria. Observations were recorded on pre-designed questionnaires, by the health workers themselves and by trained observers. Focus group discussions were also conducted. The volume accuracy assessment showed that the device made from the low-cost material (SBC) delivered a more accurate volume (mean 5.4 μL, SD 0.48 μL, range 4.5-7.0 μL) than the PMMA device (mean 5.9 μL, SD 0.48 μL, range 4.9-7.2 μL). The observational evaluation demonstrated that the inverted cup device performed better than the pipette in all aspects, e.g. higher proportions of health workers achieved successful blood collection (96%, vs. 66%), transfer of the required blood volume (90%, vs. 58%), and blood deposit without any loss (95%, vs. 50%). Majority of health workers also considered it' very easy' to use (81%),'very appropriate' for everyday use (78%), and 50% of them reported that it was their preferred BTD. The good volume accuracy and high acceptability of the inverted cup device shown in this study, along with observed ease of use and safety in hands of health workers, further strengthens prior findings which demonstrated its higher accuracy as compared with other BTDs in a laboratory setting. Altogether, these studies suggest that the inverted cup device should replace other types of devices for use in day-to-day malaria diagnosis with RDTs.
Zhang, Shengwei; Arfanakis, Konstantinos
2012-01-01
Purpose To investigate the effect of standardized and study-specific human brain diffusion tensor templates on the accuracy of spatial normalization, without ignoring the important roles of data quality and registration algorithm effectiveness. Materials and Methods Two groups of diffusion tensor imaging (DTI) datasets, with and without visible artifacts, were normalized to two standardized diffusion tensor templates (IIT2, ICBM81) as well as study-specific templates, using three registration approaches. The accuracy of inter-subject spatial normalization was compared across templates, using the most effective registration technique for each template and group of data. Results It was demonstrated that, for DTI data with visible artifacts, the study-specific template resulted in significantly higher spatial normalization accuracy than standardized templates. However, for data without visible artifacts, the study-specific template and the standardized template of higher quality (IIT2) resulted in similar normalization accuracy. Conclusion For DTI data with visible artifacts, a carefully constructed study-specific template may achieve higher normalization accuracy than that of standardized templates. However, as DTI data quality improves, a high-quality standardized template may be more advantageous than a study-specific template, since in addition to high normalization accuracy, it provides a standard reference across studies, as well as automated localization/segmentation when accompanied by anatomical labels. PMID:23034880
Bayesian Regression of Thermodynamic Models of Redox Active Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Katherine
Finding a suitable functional redox material is a critical challenge to achieving scalable, economically viable technologies for storing concentrated solar energy in the form of a defected oxide. Demonstrating e ectiveness for thermal storage or solar fuel is largely accomplished by using a thermodynamic model derived from experimental data. The purpose of this project is to test the accuracy of our regression model on representative data sets. Determining the accuracy of the model includes parameter tting the model to the data, comparing the model using di erent numbers of param- eters, and analyzing the entropy and enthalpy calculated from themore » model. Three data sets were considered in this project: two demonstrating materials for solar fuels by wa- ter splitting and the other of a material for thermal storage. Using Bayesian Inference and Markov Chain Monte Carlo (MCMC), parameter estimation was preformed on the three data sets. Good results were achieved, except some there was some deviations on the edges of the data input ranges. The evidence values were then calculated in a variety of ways and used to compare models with di erent number of parameters. It was believed that at least one of the parameters was unnecessary and comparing evidence values demonstrated that the parameter was need on one data set and not signi cantly helpful on another. The entropy was calculated by taking the derivative in one variable and integrating over another. and its uncertainty was also calculated by evaluating the entropy over multiple MCMC samples. Afterwards, all the parts were written up as a tutorial for the Uncertainty Quanti cation Toolkit (UQTk).« less
Chan, Wing-Nga; Tsang, William Wai-Nam
2017-01-01
Turning-while-walking is one of the commonest causes of falls in stroke survivors. It involves cognitive processing and may be challenging when performed concurrently with a cognitive task. Previous studies of dual-tasking involving turning-while-walking in stroke survivors show that the performance of physical tasks is compromised. However, the design of those studies did not address the response of stroke survivors under dual-tasking condition without specifying the task-preference and its effect on the performance of the cognitive task. First, to compare the performance of single-tasking and dual-tasking in stroke survivors. Second, to compare the performance of stroke survivors with non-stroke controls. Fifty-nine stroke survivors and 45 controls were assessed with an auditory Stroop test, a turning-while-walking test, and a combination of the two single tasks. The outcome of the cognitive task was measured by the reaction time and accuracy of the task. The physical task was evaluated by measuring the turning duration, number of steps to turn, and time to complete the turning-while-walking test. Stroke survivors showed a significantly reduced accuracy in the auditory Stroop test when dual-tasking, but there was no change in the reaction time. Their performance in the turning-while-walking task was similar under both single-tasking and dual-tasking condition. Additionally, stroke survivors demonstrated a significantly longer reaction time and lower accuracy than the controls both when single-tasking and dual-tasking. They took longer to turn, with more steps, and needed more time to complete the turning-while-walking task in both tasking conditions. The results show that stroke survivors with high mobility function performed the auditory Stroop test less accurately while preserving simultaneous turning-while-walking performance. They also demonstrated poorer performance in both single-tasking and dual-tasking as compared with controls.
Myocardial perfusion imaging with PET
Nakazato, Ryo; Berman, Daniel S; Alexanderson, Erick; Slomka, Piotr
2013-01-01
PET-myocardial perfusion imaging (MPI) allows accurate measurement of myocardial perfusion, absolute myocardial blood flow and function at stress and rest in a single study session performed in approximately 30 min. Various PET tracers are available for MPI, and rubidium-82 or nitrogen-13-ammonia is most commonly used. In addition, a new fluorine-18-based PET-MPI tracer is currently being evaluated. Relative quantification of PET perfusion images shows very high diagnostic accuracy for detection of obstructive coronary artery disease. Dynamic myocardial blood flow analysis has demonstrated additional prognostic value beyond relative perfusion imaging. Patient radiation dose can be reduced and image quality can be improved with latest advances in PET/CT equipment. Simultaneous assessment of both anatomy and perfusion by hybrid PET/CT can result in improved diagnostic accuracy. Compared with SPECT-MPI, PET-MPI provides higher diagnostic accuracy, using lower radiation doses during a shorter examination time period for the detection of coronary artery disease. PMID:23671459
Inui, Hiroshi; Taketomi, Shuji; Nakamura, Kensuke; Sanada, Takaki; Tanaka, Sakae; Nakagawa, Takumi
2013-05-01
Few studies have demonstrated improvement in accuracy of rotational alignment using image-free navigation systems mainly due to the inconsistent registration of anatomical landmarks. We have used an image-free navigation for total knee arthroplasty, which adopts the average algorithm between two reference axes (transepicondylar axis and axis perpendicular to the Whiteside axis) for femoral component rotation control. We hypothesized that addition of another axis (condylar twisting axis measured on a preoperative radiograph) would improve the accuracy. One group using the average algorithm (double-axis group) was compared with the other group using another axis to confirm the accuracy of the average algorithm (triple-axis group). Femoral components were more accurately implanted for rotational alignment in the triple-axis group (ideal: triple-axis group 100%, double-axis group 82%, P<0.05). Copyright © 2013 Elsevier Inc. All rights reserved.
An automatic step adjustment method for average power analysis technique used in fiber amplifiers
NASA Astrophysics Data System (ADS)
Liu, Xue-Ming
2006-04-01
An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.
Can nutrient status of four woody plant species be predicted using field spectrometry?
NASA Astrophysics Data System (ADS)
Ferwerda, Jelle G.; Skidmore, Andrew K.
This paper demonstrates the potential of hyperspectral remote sensing to predict the chemical composition (i.e., nitrogen, phosphorous, calcium, potassium, sodium, and magnesium) of three tree species (i.e., willow, mopane and olive) and one shrub species (i.e., heather). Reflectance spectra, derivative spectra and continuum-removed spectra were compared in terms of predictive power. Results showed that the best predictions for nitrogen, phosphorous, and magnesium occur when using derivative spectra, and the best predictions for sodium, potassium, and calcium occur when using continuum-removed data. To test whether a general model for multiple species is also valid for individual species, a bootstrapping routine was applied. Prediction accuracies for the individual species were lower then prediction accuracies obtained for the combined dataset for all except one element/species combination, indicating that indices with high prediction accuracies at the landscape scale are less appropriate to detect the chemical content of individual species.
Fault detection and diagnosis of diesel engine valve trains
NASA Astrophysics Data System (ADS)
Flett, Justin; Bone, Gary M.
2016-05-01
This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.
Distinguishing Fast and Slow Processes in Accuracy - Response Time Data
Coomans, Frederik; Hofman, Abe; Brinkhuis, Matthieu; van der Maas, Han L. J.; Maris, Gunter
2016-01-01
We investigate the relation between speed and accuracy within problem solving in its simplest non-trivial form. We consider tests with only two items and code the item responses in two binary variables: one indicating the response accuracy, and one indicating the response speed. Despite being a very basic setup, it enables us to study item pairs stemming from a broad range of domains such as basic arithmetic, first language learning, intelligence-related problems, and chess, with large numbers of observations for every pair of problems under consideration. We carry out a survey over a large number of such item pairs and compare three types of psychometric accuracy-response time models present in the literature: two ‘one-process’ models, the first of which models accuracy and response time as conditionally independent and the second of which models accuracy and response time as conditionally dependent, and a ‘two-process’ model which models accuracy contingent on response time. We find that the data clearly violates the restrictions imposed by both one-process models and requires additional complexity which is parsimoniously provided by the two-process model. We supplement our survey with an analysis of the erroneous responses for an example item pair and demonstrate that there are very significant differences between the types of errors in fast and slow responses. PMID:27167518
Composite Bloom Filters for Secure Record Linkage.
Durham, Elizabeth Ashley; Kantarcioglu, Murat; Xue, Yuan; Toth, Csaba; Kuzu, Mehmet; Malin, Bradley
2014-12-01
The process of record linkage seeks to integrate instances that correspond to the same entity. Record linkage has traditionally been performed through the comparison of identifying field values ( e.g., Surname ), however, when databases are maintained by disparate organizations, the disclosure of such information can breach the privacy of the corresponding individuals. Various private record linkage (PRL) methods have been developed to obscure such identifiers, but they vary widely in their ability to balance competing goals of accuracy, efficiency and security. The tokenization and hashing of field values into Bloom filters (BF) enables greater linkage accuracy and efficiency than other PRL methods, but the encodings may be compromised through frequency-based cryptanalysis. Our objective is to adapt a BF encoding technique to mitigate such attacks with minimal sacrifices in accuracy and efficiency. To accomplish these goals, we introduce a statistically-informed method to generate BF encodings that integrate bits from multiple fields, the frequencies of which are provably associated with a minimum number of fields. Our method enables a user-specified tradeoff between security and accuracy. We compare our encoding method with other techniques using a public dataset of voter registration records and demonstrate that the increases in security come with only minor losses to accuracy.
Composite Bloom Filters for Secure Record Linkage
Durham, Elizabeth Ashley; Kantarcioglu, Murat; Xue, Yuan; Toth, Csaba; Kuzu, Mehmet; Malin, Bradley
2014-01-01
The process of record linkage seeks to integrate instances that correspond to the same entity. Record linkage has traditionally been performed through the comparison of identifying field values (e.g., Surname), however, when databases are maintained by disparate organizations, the disclosure of such information can breach the privacy of the corresponding individuals. Various private record linkage (PRL) methods have been developed to obscure such identifiers, but they vary widely in their ability to balance competing goals of accuracy, efficiency and security. The tokenization and hashing of field values into Bloom filters (BF) enables greater linkage accuracy and efficiency than other PRL methods, but the encodings may be compromised through frequency-based cryptanalysis. Our objective is to adapt a BF encoding technique to mitigate such attacks with minimal sacrifices in accuracy and efficiency. To accomplish these goals, we introduce a statistically-informed method to generate BF encodings that integrate bits from multiple fields, the frequencies of which are provably associated with a minimum number of fields. Our method enables a user-specified tradeoff between security and accuracy. We compare our encoding method with other techniques using a public dataset of voter registration records and demonstrate that the increases in security come with only minor losses to accuracy. PMID:25530689
Developing collaborative classifiers using an expert-based model
Mountrakis, G.; Watts, R.; Luo, L.; Wang, Jingyuan
2009-01-01
This paper presents a hierarchical, multi-stage adaptive strategy for image classification. We iteratively apply various classification methods (e.g., decision trees, neural networks), identify regions of parametric and geographic space where accuracy is low, and in these regions, test and apply alternate methods repeating the process until the entire image is classified. Currently, classifiers are evaluated through human input using an expert-based system; therefore, this paper acts as the proof of concept for collaborative classifiers. Because we decompose the problem into smaller, more manageable sub-tasks, our classification exhibits increased flexibility compared to existing methods since classification methods are tailored to the idiosyncrasies of specific regions. A major benefit of our approach is its scalability and collaborative support since selected low-accuracy classifiers can be easily replaced with others without affecting classification accuracy in high accuracy areas. At each stage, we develop spatially explicit accuracy metrics that provide straightforward assessment of results by non-experts and point to areas that need algorithmic improvement or ancillary data. Our approach is demonstrated in the task of detecting impervious surface areas, an important indicator for human-induced alterations to the environment, using a 2001 Landsat scene from Las Vegas, Nevada. ?? 2009 American Society for Photogrammetry and Remote Sensing.
Retrieving cloudy atmosphere parameters from RPG-HATPRO radiometer data
NASA Astrophysics Data System (ADS)
Kostsov, V. S.
2015-03-01
An algorithm for simultaneously determining both tropospheric temperature and humidity profiles and cloud liquid water content from ground-based measurements of microwave radiation is presented. A special feature of this algorithm is that it combines different types of measurements and different a priori information on the sought parameters. The features of its use in processing RPG-HATPRO radiometer data obtained in the course of atmospheric remote sensing experiments carried out by specialists from the Faculty of Physics of St. Petersburg State University are discussed. The results of a comparison of both temperature and humidity profiles obtained using a ground-based microwave remote sensing method with those obtained from radiosonde data are analyzed. It is shown that this combined algorithm is comparable (in accuracy) to the classical method of statistical regularization in determining temperature profiles; however, this algorithm demonstrates better accuracy (when compared to the method of statistical regularization) in determining humidity profiles.
Validation of enhanced kinect sensor based motion capturing for gait assessment
Müller, Björn; Ilg, Winfried; Giese, Martin A.
2017-01-01
Optical motion capturing systems are expensive and require substantial dedicated space to be set up. On the other hand, they provide unsurpassed accuracy and reliability. In many situations however flexibility is required and the motion capturing system can only temporarily be placed. The Microsoft Kinect v2 sensor is comparatively cheap and with respect to gait analysis promising results have been published. We here present a motion capturing system that is easy to set up, flexible with respect to the sensor locations and delivers high accuracy in gait parameters comparable to a gold standard motion capturing system (VICON). Further, we demonstrate that sensor setups which track the person only from one-side are less accurate and should be replaced by two-sided setups. With respect to commonly analyzed gait parameters, especially step width, our system shows higher agreement with the VICON system than previous reports. PMID:28410413
Apirakviriya, Chayanis; Rungruxsirivorn, Tassawan; Phupong, Vorapong; Wisawasukmongchol, Wirach
2016-05-01
To assess diagnostic accuracy of 3D transvaginal ultrasound (3D-TVS) compared with hysteroscopy in detecting uterine cavity abnormalities in infertile women. This prospective observational cross-sectional study was conducted during the July 2013 to December 2013 study period. Sixty-nine women with infertility were enrolled. In the mid to late follicular phase of each subject's menstrual cycle, 3D transvaginal ultrasound and hysteroscopy were performed on the same day in each patient. Hysteroscopy is widely considered to be the gold standard method for investigation of the uterine cavity. Uterine cavity characteristics and abnormalities were recorded. Diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and positive and negative likelihood ratios were evaluated. Hysteroscopy was successfully performed in all subjects. Hysteroscopy diagnosed pathological findings in 22 of 69 cases (31.8%). There were 18 endometrial polyps, 3 submucous myomas, and 1 septate uterus. Three-dimensional transvaginal ultrasound in comparison with hysteroscopy had 84.1% diagnostic accuracy, 68.2% sensitivity, 91.5% specificity, 79% positive predictive value, and 86% negative predictive value. The positive and negative likelihood ratios were 8.01 and 0.3, respectively. 3D-TVS successfully detected every case of submucous myoma and uterine anomaly. For detection of endometrial polyps, 3D-TVS had 61.1% sensitivity, 91.5% specificity, and 83.1% diagnostic accuracy. 3D-TVS demonstrated 84.1% diagnostic accuracy for detecting uterine cavity abnormalities in infertile women. A significant percentage of infertile patients had evidence of uterine cavity pathology. Hysteroscopy is, therefore, recommended for accurate detection and diagnosis of uterine cavity lesion. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
[GSH fermentation process modeling using entropy-criterion based RBF neural network model].
Tan, Zuoping; Wang, Shitong; Deng, Zhaohong; Du, Guocheng
2008-05-01
The prediction accuracy and generalization of GSH fermentation process modeling are often deteriorated by noise existing in the corresponding experimental data. In order to avoid this problem, we present a novel RBF neural network modeling approach based on entropy criterion. It considers the whole distribution structure of the training data set in the parameter learning process compared with the traditional MSE-criterion based parameter learning, and thus effectively avoids the weak generalization and over-learning. Then the proposed approach is applied to the GSH fermentation process modeling. Our results demonstrate that this proposed method has better prediction accuracy, generalization and robustness such that it offers a potential application merit for the GSH fermentation process modeling.
Inflight alignment of payload inertial reference from Shuttle navigation system
NASA Astrophysics Data System (ADS)
Treder, A. J.; Norris, R. E.; Ruprecht, R.
Two methods for payload attitude initialization from the STS Orbiter have been proposed: body axis maneuvers (BAM) and star line maneuvers (SLM). The first achieves alignment directly through the Shuttle star tracker, while the second, indirectly through the stellar-updated Shuttle inertial platform. The Inertial Upper Stage (IUS) with its strapdown navigation system is used to demonstrate in-flight alignment techniques. Significant accuracy can be obtained with minimal impact on Orbiter operations, with payload inertial reference potentially approaching the accuracy of the Shuttle star tracker. STS-6 flight performance parameters, including alignment stability, are discussed and compared with operational complexity. Results indicate overall alignment stability of .06 deg, 3 sigma per axis.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
Vaidyanathan, Sriram; Chattopadhyay, Arpita; Mackie, Sarah L; Scarsbrook, Andrew
2018-06-21
Large-vessel vasculitis (LVV) is a serious illness with potentially life-threatening consequences. 18 F-FDG PET-CT has emerged as a valuable diagnostic tool in suspected LVV, combining the strengths of functional and structural imaging. This study aimed to compare the accuracy of FDG PET-CT and contrast-enhanced CT (CECT) in the evaluation of patients with LVV. A retrospective database review for LVV patients undergoing CECT and PET-CT between 2011 to 2016 yielded demographics, scan interval and vasculitis type. Qualitative and quantitative PET-CT analyses included aorta: liver FDG uptake, bespoke FDG uptake distribution scores and vascular maximum standardized uptake values (SUVmax). Quantitative CECT data were assessed wall thickness and mural/lumen ratio. ROC curves were constructed to evaluate comparative diagnostic accuracy and a correlational analysis was conducted between SUVmax and wall-thickness. 36 adults (17 LVV, 19 controls) with a mean age (range) 63 (38-89) years, of which 17 (47%) were males were included. Time interval between CT and PET was mean (standard deviation (SD)) 1.9 (1.2) months. Both SUVmax and wall-thickness demonstrated a significant difference between LVV and controls, with a mean difference (95%confidence interval (CI)) for SUVmax 1.6 (1.1, 2.0) and wall thickness 1.25 (0.68, 1.83) mm, respectively. These two parameters were significantly correlated (p < .0001, R = 0.62). The area under the curve (AUC) (95% CI) for SUVmax was 0.95 (0.88-1.00), and for mural thickening was 0.83 (0.66-0.99). FDG PET-CT demonstrated excellent accuracy whilst CECT mural thickening showed good accuracy in the diagnosis of LVV. Both parameters showed a highly significant correlation. In hospitals without access to FDG PET-CT or in patients unsuitable for PET-CT (e.g., uncontrolled diabetes) CECT offers a viable alternative for the assessment LVV. Advances in knowledge: FDG PET-CT is a highly accurate test for the diagnosis of LVV. Aorta:liver SUVmax ratio is the most specific parameter for LVV. In hospitals without PET-CT or in unsuitable patients e.g. diabetics, CECT is a viable alternative.
Percival, Elizabeth; Bhatia, Rani; Preece, Kahn; McElduff, Patrick; McEvoy, Mark; Collison, Adam; Mattes, Joerg
2016-01-01
Ara h2 sIgE serum levels improve the diagnostic accuracy for predicting peanut allergy, but the use of Ara h2 purified protein as a skin prick test (SPT), has not been substantially evaluated. The fraction of exhaled nitric oxide (FeNO) shows promise as a novel biomarker of peanut allergy. Reproducibility of these measures has not been determined. The aim was to assess the accuracy and reproducibility (over a time-period of at least 12 months) of SPT to Ara h2 in comparison with four predictors of clinical peanut allergy (Peanut SPT, Ara h2 specific Immunoglobulin E (sIgE), Peanut sIgE and FeNO). Twenty-seven children were recruited in a follow-up of a prospective cohort of fifty-six children at least 12 months after an open-labelled peanut food challenge. Their repeat assessment involved a questionnaire, SPT to peanut and Ara h2 purified protein, FeNO and sIgE to peanut and Ara h2 measurements. Ara h2 SPT was no worse in accuracy when compared with peanut SPT, FeNO, Ara h2 sIgE and peanut sIgE (AUC 0.908 compared with 0.887, 0.889, 0.935 and 0.804 respectively) for predicting allergic reaction at previous food challenge. SPT for peanut and Ara h2 demonstrated limited reproducibility (ICC = 0.51 and 0.44); while FeNO demonstrated good reproducibility (ICC = 0.73) and sIgE for peanut and Ara h2 were highly reproducible (ICC = 0.81 and 0.85). In this population, Ara h2 SPT was no worse in accuracy when compared with current testing for the evaluation of clinical peanut allergy, but had-like peanut SPT-poor reproducibility. FeNO, peanut sIgE and Ara h2 sIgE were consistently reproducible despite an interval of at least 12 months between the repeated measurements.
DJ-1 is a reliable serum biomarker for discriminating high-risk endometrial cancer.
Di Cello, Annalisa; Di Sanzo, Maddalena; Perrone, Francesca Marta; Santamaria, Gianluca; Rania, Erika; Angotti, Elvira; Venturella, Roberta; Mancuso, Serafina; Zullo, Fulvio; Cuda, Giovanni; Costanzo, Francesco
2017-06-01
New reliable approaches to stratify patients with endometrial cancer into risk categories are highly needed. We have recently demonstrated that DJ-1 is overexpressed in endometrial cancer, showing significantly higher levels both in serum and tissue of patients with high-risk endometrial cancer compared with low-risk endometrial cancer. In this experimental study, we further extended our observation, evaluating the role of DJ-1 as an accurate serum biomarker for high-risk endometrial cancer. A total of 101 endometrial cancer patients and 44 healthy subjects were prospectively recruited. DJ-1 serum levels were evaluated comparing cases and controls and, among endometrial cancer patients, between high- and low-risk patients. The results demonstrate that DJ-1 levels are significantly higher in cases versus controls and in high- versus low-risk patients. The receiver operating characteristic curve analysis shows that DJ-1 has a very good diagnostic accuracy in discriminating endometrial cancer patients versus controls and an excellent accuracy in distinguishing, among endometrial cancer patients, low- from high-risk cases. DJ-1 sensitivity and specificity are the highest when high- and low-risk patients are compared, reaching the value of 95% and 99%, respectively. Moreover, DJ-1 serum levels seem to be correlated with worsening of the endometrial cancer grade and histotype, making it a reliable tool in the preoperative decision-making process.
Gullick, Margaret M; Wolford, George
2013-01-01
We examined the brain activity underlying the development of our understanding of negative numbers, which are amounts lacking direct physical counterparts. Children performed a paired comparison task with positive and negative numbers during an fMRI session. As previously shown in adults, both pre-instruction fifth-graders and post-instruction seventh-graders demonstrated typical behavioral and neural distance effects to negative numbers, where response times and parietal and frontal activity increased as comparison distance decreased. We then determined the factors impacting the distance effect in each age group. Behaviorally, the fifth-grader distance effect for negatives was significantly predicted only by positive comparison accuracy, indicating that children who were generally better at working with numbers were better at comparing negatives. In seventh-graders, negative number comparison accuracy significantly predicted their negative number distance effect, indicating that children who were better at working with negative numbers demonstrated a more typical distance effect. Across children, as age increased, the negative number distance effect increased in the bilateral IPS and decreased frontally, indicating a frontoparietal shift consistent with previous numerical development literature. In contrast, as negative comparison task accuracy increased, the parietal distance effect increased in the left IPS and decreased in the right, possibly indicating a change from an approximate understanding of negatives' values to a more exact, precise representation (particularly supported by the left IPS) with increasing expertise. These shifts separately indicate the effects of increasing maturity generally in numeric processing and specifically in negative number understanding.
Huang, Yu-Ting; Georgiev, Dejan; Foltynie, Tom; Limousin, Patricia; Speekenbrink, Maarten; Jahanshahi, Marjan
2015-08-01
When choosing between two options, sufficient accumulation of information is required to favor one of the options over the other, before a decision is finally reached. To establish the effect of dopaminergic medication on the rate of accumulation of information, decision thresholds and speed-accuracy trade-offs, we tested 14 patients with Parkinson's disease (PD) on and off dopaminergic medication and 14 age-matched healthy controls on two versions of the moving-dots task. One version manipulated the level of task difficulty and hence effort required for decision-making and the other the urgency, requiring decision-making under speed vs. accuracy instructions. The drift diffusion model was fitted to the behavioral data. As expected, the reaction time data revealed an effect of task difficulty, such that the easier the perceptual decision-making task was, the faster the participants responded. PD patients not only made significantly more errors compared to healthy controls, but interestingly they also made significantly more errors ON than OFF medication. The drift diffusion model indicated that PD patients had lower drift rates when tested ON compared to OFF medication, indicating that dopamine levels influenced the quality of information derived from sensory information. On the speed-accuracy task, dopaminergic medication did not directly influence reaction times or error rates. PD patients OFF medication had slower RTs and made more errors with speed than accuracy instructions compared to the controls, whereas such differences were not observed ON medication. PD patients had lower drift rates and higher response thresholds than the healthy controls both with speed and accuracy instructions and ON and OFF medication. For the patients, only non-decision time was higher OFF than ON medication and higher with accuracy than speed instructions. The present results demonstrate that when task difficulty is manipulated, dopaminergic medication impairs perceptual decision-making and renders it more errorful in PD relative to when patients are tested OFF medication. In contrast, for the speed/accuracy task, being ON medication improved performance by eliminating the significantly higher errors and slower RTs observed for patients OFF medication compared to the HC group. There was no evidence of dopaminergic medication inducing impulsive decisions when patients were acting under speed pressure. For the speed-accuracy instructions, the sole effect of dopaminergic medication was on non-decision time, which suggests that medication primarily affected processes tightly coupled with the motor symptoms of PD. Interestingly, the current results suggest opposite effects of dopaminergic medication on the levels of difficulty and speed-accuracy versions of the moving dots task, possibly reflecting the differential effect of dopamine on modulating drift rate (levels of difficulty task) and non-decision time (speed-accuracy task) in the process of perceptual decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.
Very high resolution aerial films
NASA Astrophysics Data System (ADS)
Becker, Rolf
1986-11-01
The use of very high resolution aerial films in aerial photography is evaluated. Commonly used panchromatic, color, and CIR films and their high resolution equivalents are compared. Based on practical experience and systematic investigations, the very high image quality and improved height accuracy that can be achieved using these films are demonstrated. Advantages to be gained from this improvement and operational restrictions encountered when using high resolution film are discussed.
Al-Ekrish, Asma'a A; Alfadda, Sara A; Ameen, Wadea; Hörmann, Romed; Puelacher, Wolfgang; Widmann, Gerlig
2018-06-16
To compare the surface of computer-aided design (CAD) models of the maxilla produced using ultra-low MDCT doses combined with filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) reconstruction techniques with that produced from a standard dose/FBP protocol. A cadaveric completely edentulous maxilla was imaged using a standard dose protocol (CTDIvol: 29.4 mGy) and FBP, in addition to 5 low dose test protocols (LD1-5) (CTDIvol: 4.19, 2.64, 0.99, 0.53, and 0.29 mGy) reconstructed with FBP, ASIR 50, ASIR 100, and MBIR. A CAD model from each test protocol was superimposed onto the reference model using the 'Best Fit Alignment' function. Differences between the test and reference models were analyzed as maximum and mean deviations, and root-mean-square of the deviations, and color-coded models were obtained which demonstrated the location, magnitude and direction of the deviations. Based upon the magnitude, size, and distribution of areas of deviations, CAD models from the following protocols were comparable to the reference model: FBP/LD1; ASIR 50/LD1 and LD2; ASIR 100/LD1, LD2, and LD3; MBIR/LD1. The following protocols demonstrated deviations mostly between 1-2 mm or under 1 mm but over large areas, and so their effect on surgical guide accuracy is questionable: FBP/LD2; MBIR/LD2, LD3, LD4, and LD5. The following protocols demonstrated large deviations over large areas and therefore were not comparable to the reference model: FBP/LD3, LD4, and LD5; ASIR 50/LD3, LD4, and LD5; ASIR 100/LD4, and LD5. When MDCT is used for CAD models of the jaws, dose reductions of 86% may be possible with FBP, 91% with ASIR 50, and 97% with ASIR 100. Analysis of the stability and accuracy of CAD/CAM surgical guides as directly related to the jaws is needed to confirm the results.
Sentinel Lymph Node Detection Using Carbon Nanoparticles in Patients with Early Breast Cancer
Lu, Jianping; Zeng, Yi; Chen, Xia; Yan, Jun
2015-01-01
Purpose Carbon nanoparticles have a strong affinity for the lymphatic system. The purpose of this study was to evaluate the feasibility of sentinel lymph node biopsy using carbon nanoparticles in early breast cancer and to optimize the application procedure. Methods Firstly, we performed a pilot study to demonstrate the optimized condition using carbon nanoparticles for sentinel lymph nodes (SLNs) detection by investigating 36 clinically node negative breast cancer patients. In subsequent prospective study, 83 patients with clinically node negative breast cancer were included to evaluate SLNs using carbon nanoparticles. Another 83 SLNs were detected by using blue dye. SLNs detection parameters were compared between the methods. All patients irrespective of the SLNs status underwent axillary lymph node dissection for verification of axillary node status after the SLN biopsy. Results In pilot study, a 1 ml carbon nanoparticles suspension used 10–15min before surgery was associated with the best detection rate. In subsequent prospective study, with carbon nanoparticles, the identification rate, accuracy, false negative rate was 100%, 96.4%, 11.1%, respectively. The identification rate and accuracy were 88% and 95.5% with 15.8% of false negative rate using blue dye technique. The use of carbon nanoparticles suspension showed significantly superior results in identification rate (p = 0.001) and reduced false-negative results compared with blue dye technique. Conclusion Our study demonstrated feasibility and accuracy of using carbon nanoparticles for SLNs mapping in breast cancer patients. Carbon nanoparticles are useful in SLNs detection in institutions without access to radioisotope. PMID:26296136
Fusing face-verification algorithms and humans.
O'Toole, Alice J; Abdi, Hervé; Jiang, Fang; Phillips, P Jonathon
2007-10-01
It has been demonstrated recently that state-of-the-art face-recognition algorithms can surpass human accuracy at matching faces over changes in illumination. The ranking of algorithms and humans by accuracy, however, does not provide information about whether algorithms and humans perform the task comparably or whether algorithms and humans can be fused to improve performance. In this paper, we fused humans and algorithms using partial least square regression (PLSR). In the first experiment, we applied PLSR to face-pair similarity scores generated by seven algorithms participating in the Face Recognition Grand Challenge. The PLSR produced an optimal weighting of the similarity scores, which we tested for generality with a jackknife procedure. Fusing the algorithms' similarity scores using the optimal weights produced a twofold reduction of error rate over the most accurate algorithm. Next, human-subject-generated similarity scores were added to the PLSR analysis. Fusing humans and algorithms increased the performance to near-perfect classification accuracy. These results are discussed in terms of maximizing face-verification accuracy with hybrid systems consisting of multiple algorithms and humans.
Wong, Yu-Tung; Finley, Charles C; Giallo, Joseph F; Buckmire, Robert A
2011-08-01
To introduce a novel method of combining robotics and the CO(2) laser micromanipulator to provide excellent precision and performance repeatability designed for surgical applications. Pilot feasibility study. We developed a portable robotic controller that appends to a standard CO(2) laser micromanipulator. The robotic accuracy and laser beam path repeatability were compared to six experienced users of the industry standard micromanipulator performing the same simulated surgical tasks. Helium-neon laser beam video tracking techniques were employed. The robotic controller demonstrated superiority over experienced human manual micromanipulator control in accuracy (laser path within 1 mm of idealized centerline), 97.42% (standard deviation [SD] 2.65%), versus 85.11% (SD 14.51%), P = .018; and laser beam path repeatability (area of laser path divergence on successive trials), 21.42 mm(2) (SD 4.35 mm(2) ) versus 65.84 mm(2) (SD 11.93 mm(2) ), P = .006. Robotic micromanipulator control enhances accuracy and repeatability for specific laser tasks. Computerized control opens opportunity for alternative user interfaces and additional safety features. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
Investigation of the reconstruction accuracy of guided wave tomography using full waveform inversion
NASA Astrophysics Data System (ADS)
Rao, Jing; Ratassepp, Madis; Fan, Zheng
2017-07-01
Guided wave tomography is a promising tool to accurately determine the remaining wall thicknesses of corrosion damages, which are among the major concerns for many industries. Full Waveform Inversion (FWI) algorithm is an attractive guided wave tomography method, which uses a numerical forward model to predict the waveform of guided waves when propagating through corrosion defects, and an inverse model to reconstruct the thickness map from the ultrasonic signals captured by transducers around the defect. This paper discusses the reconstruction accuracy of the FWI algorithm on plate-like structures by using simulations as well as experiments. It was shown that this algorithm can obtain a resolution of around 0.7 wavelengths for defects with smooth depth variations from the acoustic modeling data, and about 1.5-2 wavelengths from the elastic modeling data. Further analysis showed that the reconstruction accuracy is also dependent on the shape of the defect. It was demonstrated that the algorithm maintains the accuracy in the case of multiple defects compared to conventional algorithms based on Born approximation.
HEp-2 cell image classification method based on very deep convolutional networks with small datasets
NASA Astrophysics Data System (ADS)
Lu, Mengchi; Gao, Long; Guo, Xifeng; Liu, Qiang; Yin, Jianping
2017-07-01
Human Epithelial-2 (HEp-2) cell images staining patterns classification have been widely used to identify autoimmune diseases by the anti-Nuclear antibodies (ANA) test in the Indirect Immunofluorescence (IIF) protocol. Because manual test is time consuming, subjective and labor intensive, image-based Computer Aided Diagnosis (CAD) systems for HEp-2 cell classification are developing. However, methods proposed recently are mostly manual features extraction with low accuracy. Besides, the scale of available benchmark datasets is small, which does not exactly suitable for using deep learning methods. This issue will influence the accuracy of cell classification directly even after data augmentation. To address these issues, this paper presents a high accuracy automatic HEp-2 cell classification method with small datasets, by utilizing very deep convolutional networks (VGGNet). Specifically, the proposed method consists of three main phases, namely image preprocessing, feature extraction and classification. Moreover, an improved VGGNet is presented to address the challenges of small-scale datasets. Experimental results over two benchmark datasets demonstrate that the proposed method achieves superior performance in terms of accuracy compared with existing methods.
Evaluation of registration accuracy between Sentinel-2 and Landsat 8
NASA Astrophysics Data System (ADS)
Barazzetti, Luigi; Cuca, Branka; Previtali, Mattia
2016-08-01
Starting from June 2015, Sentinel-2A is delivering high resolution optical images (ground resolution up to 10 meters) to provide a global coverage of the Earth's land surface every 10 days. The planned launch of Sentinel-2B along with the integration of Landsat images will provide time series with an unprecedented revisit time indispensable for numerous monitoring applications, in which high resolution multi-temporal information is required. They include agriculture, water bodies, natural hazards to name a few. However, the combined use of multi-temporal images requires an accurate geometric registration, i.e. pixel-to-pixel correspondence for terrain-corrected products. This paper presents an analysis of spatial co-registration accuracy for several datasets of Sentinel-2 and Landsat 8 images distributed all around the world. Images were compared with digital correlation techniques for image matching, obtaining an evaluation of registration accuracy with an affine transformation as geometrical model. Results demonstrate that sub-pixel accuracy was achieved between 10 m resolution Sentinel-2 bands (band 3) and 15 m resolution panchromatic Landsat images (band 8).
Frameless stereotaxy using bone fiducial markers for deep brain stimulation.
Holloway, Kathryn L; Gaede, Steven E; Starr, Philip A; Rosenow, Joshua M; Ramakrishnan, Viswanathan; Henderson, Jaimie M
2005-09-01
Functional neurosurgical interventions such as deep brain stimulation (DBS) are traditionally performed with the aid of a stereotactic frame. Although frameless techniques have been perceived as less accurate, data from a recent phantom study of a modified frameless approach demonstrated a laboratory accuracy exceeding that obtained using a common frame system. The present study was conducted to evaluate the accuracy of a frameless system in routine clinical use. Deep brain stimulation leads were implanted in 38 patients by using a skull-mounted trajectory guide and an image-guided workstation. Registration was accomplished with bone fiducial markers. Final lead positions were measured on postoperative computerized tomography scans and compared with the planned lead positions. The accuracy of the Leksell frame within the clinical situation has been reported on in a recent study; these raw data served as a comparison data set. The difference between expected and actual lead locations in the x plane was 1.4 mm in the frame-based procedure and 1.6 mm in the frameless procedure. Similarly, the difference in the y plane was 1.6 mm in the frame-based system and 1.3 mm in the frameless one. The error was greatest in the z plane, that is, 1.7 mm in the frame-based method and 2 mm in the frameless system. Multivariate analysis of variance demonstrated no statistically significant difference in the accuracy of the two methods. The accuracy of the frame-based and frameless systems was not statistically significantly different (p = 0.22). Note, however, that frameless techniques offer advantages in patient comfort, separation of imaging from surgery, and decreased operating time.
Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol
2016-06-09
The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.
Rodríguez-Wong, Laura; Noguera-González, Danny; Esparza-Villalpando, Vicente; Montero-Aguilar, Mauricio
2017-01-01
Introduction The inferior alveolar nerve block (IANB) is the most common anesthetic technique used on mandibular teeth during root canal treatment. Its success in the presence of preoperative inflammation is still controversial. The aim of this study was to evaluate the sensitivity, specificity, predictive values, and accuracy of three diagnostic tests used to predict IANB failure in symptomatic irreversible pulpitis (SIP). Methodology A cross-sectional study was carried out on the mandibular molars of 53 patients with SIP. All patients received a single cartridge of mepivacaine 2% with 1 : 100000 epinephrine using the IANB technique. Three diagnostic clinical tests were performed to detect anesthetic failure. Anesthetic failure was defined as a positive painful response to any of the three tests. Sensitivity, specificity, predictive values, accuracy, and ROC curves were calculated and compared and significant differences were analyzed. Results IANB failure was determined in 71.7% of the patients. The sensitivity scores for the three tests (lip numbness, the cold stimuli test, and responsiveness during endodontic access) were 0.03, 0.35, and 0.55, respectively, and the specificity score was determined as 1 for all of the tests. Clinically, none of the evaluated tests demonstrated a high enough accuracy (0.30, 0.53, and 0.68 for lip numbness, the cold stimuli test, and responsiveness during endodontic access, resp.). A comparison of the areas under the curve in the ROC analyses showed statistically significant differences between the three tests (p < 0.05). Conclusion None of the analyzed tests demonstrated a high enough accuracy to be considered a reliable diagnostic tool for the prediction of anesthetic failure. PMID:28694714
An alternative sensor-based method for glucose monitoring in children and young people with diabetes
Edge, Julie; Acerini, Carlo; Campbell, Fiona; Hamilton-Shield, Julian; Moudiotis, Chris; Rahman, Shakeel; Randell, Tabitha; Smith, Anne; Trevelyan, Nicola
2017-01-01
Objective To determine accuracy, safety and acceptability of the FreeStyle Libre Flash Glucose Monitoring System in the paediatric population. Design, setting and patients Eighty-nine study participants, aged 4–17 years, with type 1 diabetes were enrolled across 9 diabetes centres in the UK. A factory calibrated sensor was inserted on the back of the upper arm and used for up to 14 days. Sensor glucose measurements were compared with capillary blood glucose (BG) measurements. Sensor results were masked to participants. Results Clinical accuracy of sensor results versus BG results was demonstrated, with 83.8% of results in zone A and 99.4% of results in zones A and B of the consensus error grid. Overall mean absolute relative difference (MARD) was 13.9%. Sensor accuracy was unaffected by patient factors such as age, body weight, sex, method of insulin administration or time of use (day vs night). Participants were in the target glucose range (3.9–10.0 mmol/L) ∼50% of the time (mean 12.1 hours/day), with an average of 2.2 hours/day and 9.5 hours/day in hypoglycaemia and hyperglycaemia, respectively. Sensor application, wear/use of the device and comparison to self-monitoring of blood glucose were rated favourably by most participants/caregivers (84.3–100%). Five device related adverse events were reported across a range of participant ages. Conclusions Accuracy, safety and user acceptability of the FreeStyle Libre System were demonstrated for the paediatric population. Accuracy of the system was unaffected by subject characteristics, making it suitable for a broad range of children and young people with diabetes. Trial registration number NCT02388815. PMID:28137708
NASA Astrophysics Data System (ADS)
Yang, Huijuan; Guan, Cuntai; Sui Geok Chua, Karen; San Chok, See; Wang, Chuan Chu; Kok Soon, Phua; Tang, Christina Ka Yin; Keng Ang, Kai
2014-06-01
Objective. Detection of motor imagery of hand/arm has been extensively studied for stroke rehabilitation. This paper firstly investigates the detection of motor imagery of swallow (MI-SW) and motor imagery of tongue protrusion (MI-Ton) in an attempt to find a novel solution for post-stroke dysphagia rehabilitation. Detection of MI-SW from a simple yet relevant modality such as MI-Ton is then investigated, motivated by the similarity in activation patterns between tongue movements and swallowing and there being fewer movement artifacts in performing tongue movements compared to swallowing. Approach. Novel features were extracted based on the coefficients of the dual-tree complex wavelet transform to build multiple training models for detecting MI-SW. The session-to-session classification accuracy was boosted by adaptively selecting the training model to maximize the ratio of between-classes distances versus within-class distances, using features of training and evaluation data. Main results. Our proposed method yielded averaged cross-validation (CV) classification accuracies of 70.89% and 73.79% for MI-SW and MI-Ton for ten healthy subjects, which are significantly better than the results from existing methods. In addition, averaged CV accuracies of 66.40% and 70.24% for MI-SW and MI-Ton were obtained for one stroke patient, demonstrating the detectability of MI-SW and MI-Ton from the idle state. Furthermore, averaged session-to-session classification accuracies of 72.08% and 70% were achieved for ten healthy subjects and one stroke patient using the MI-Ton model. Significance. These results and the subjectwise strong correlations in classification accuracies between MI-SW and MI-Ton demonstrated the feasibility of detecting MI-SW from MI-Ton models.
Vilar, Jose M; Cuervo, Belen; Rubio, Monica; Sopena, Joaquín; Domínguez, Juan M; Santana, Angelo; Carrillo, Jose M
2016-10-07
Subjective pain assessment scales have been widely used for assessing lameness in response to pain, but the accuracy of these scales has been questioned. To assess scale accuracy, 10 lame, presa Canario dogs with osteoarthritis (OA) associated with bilateral hip dysplasia were first treated with mesenchymal stem cells. Then, potential lameness improvement was analyzed using two pain scales (Bioarth and visual analog scale). These data were compared with similar data collected using a force platform with the same animals during a period of 6 months after treatment. The F test for intraclass correlation showed that concordance in pain/lameness scores between the 2 measuring methodologies was not significant (P value ≥ 0.9213; 95 % confidence interval, -0.56, 0.11). Although subjective pain assessment showed improvement after 6 months, force platform data demonstrated those same animals had returned to the initial lameness state. Use of pain assessment scales to measure lameness associated with OA did not have great accuracy and concordance when compared with quantitative force platform gait analysis.
Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortunati, Valerio, E-mail: v.fortunati@erasmusmc.nl; Verhaart, René F.; Angeloni, Francesco
2014-09-01
Purpose: To investigate the feasibility of using deformable registration in clinical practice to fuse MR and CT images of the head and neck for treatment planning. Method and Materials: A state-of-the-art deformable registration algorithm was optimized, evaluated, and compared with rigid registration. The evaluation was based on manually annotated anatomic landmarks and regions of interest in both modalities. We also developed a multiparametric registration approach, which simultaneously aligns T1- and T2-weighted MR sequences to CT. This was evaluated and compared with single-parametric approaches. Results: Our results show that deformable registration yielded a better accuracy than rigid registration, without introducing unrealisticmore » deformations. For deformable registration, an average landmark alignment of approximatively 1.7 mm was obtained. For all the regions of interest excluding the cerebellum and the parotids, deformable registration provided a median modified Hausdorff distance of approximatively 1 mm. Similar accuracies were obtained for the single-parameter and multiparameter approaches. Conclusions: This study demonstrates that deformable registration of head-and-neck CT and MR images is feasible, with overall a significanlty higher accuracy than for rigid registration.« less
Design and Calibration of the X-33 Flush Airdata Sensing (FADS) System
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Cobleigh, Brent R.; Haering, Edward A.
1998-01-01
This paper presents the design of the X-33 Flush Airdata Sensing (FADS) system. The X-33 FADS uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters. The system is designed with dual-redundant measurement hardware, which produces two independent measurement paths. Airdata parameters that correspond to the measurement path with the minimum fit error are selected as the output values. This method enables a single sensor failure to occur with minimal degrading of the system performance. The paper shows the X-33 FADS architecture, derives the estimating algorithms, and demonstrates a mathematical analysis of the FADS system stability. Preliminary aerodynamic calibrations are also presented here. The calibration parameters, the position error coefficient (epsilon), and flow correction terms for the angle of attack (delta alpha), and angle of sideslip (delta beta) are derived from wind tunnel data. Statistical accuracy of' the calibration is evaluated by comparing the wind tunnel reference conditions to the airdata parameters estimated. This comparison is accomplished by applying the calibrated FADS algorithm to the sensed wind tunnel pressures. When the resulting accuracy estimates are compared to accuracy requirements for the X-33 airdata, the FADS system meets these requirements.
NASA Astrophysics Data System (ADS)
Rokhzadi, Arman; Mohammadian, Abdolmajid; Charron, Martin
2018-01-01
The objective of this paper is to develop an optimized implicit-explicit (IMEX) Runge-Kutta scheme for atmospheric applications focusing on stability and accuracy. Following the common terminology, the proposed method is called IMEX-SSP2(2,3,2), as it has second-order accuracy and is composed of diagonally implicit two-stage and explicit three-stage parts. This scheme enjoys the Strong Stability Preserving (SSP) property for both parts. This new scheme is applied to nonhydrostatic compressible Boussinesq equations in two different arrangements, including (i) semiimplicit and (ii) Horizontally Explicit-Vertically Implicit (HEVI) forms. The new scheme preserves the SSP property for larger regions of absolute monotonicity compared to the well-studied scheme in the same class. In addition, numerical tests confirm that the IMEX-SSP2(2,3,2) improves the maximum stable time step as well as the level of accuracy and computational cost compared to other schemes in the same class. It is demonstrated that the A-stability property as well as satisfying "second-stage order" and stiffly accurate conditions lead the proposed scheme to better performance than existing schemes for the applications examined herein.
Video-augmented feedback for procedural performance.
Wittler, Mary; Hartman, Nicholas; Manthey, David; Hiestand, Brian; Askew, Kim
2016-06-01
Resident programs must assess residents' achievement of core competencies for clinical and procedural skills. Video-augmented feedback may facilitate procedural skill acquisition and promote more accurate self-assessment. A randomized controlled study to investigate whether video-augmented verbal feedback leads to increased procedural skill and improved accuracy of self-assessment compared to verbal only feedback. Participants were evaluated during procedural training for ultrasound guided internal jugular central venous catheter (US IJ CVC) placement. All participants received feedback based on a validated 30-point checklist for US IJ CVC placement and validated 6-point procedural global rating scale. Scores in both groups improved by a mean of 9.6 points (95% CI: 7.8-11.4) on the 30-point checklist, with no difference between groups in mean score improvement on the global rating scale. In regards to self-assessment, participant self-rating diverged from faculty scoring, increasingly so after receiving feedback. Residents rated highly by faculty underestimated their skill, while those rated more poorly demonstrated increasing overestimation. Accuracy of self-assessment was not improved by addition of video. While feedback advanced the skill of the resident, video-augmented feedback did not enhance skill acquisition or improve accuracy of resident self-assessment compared to standard feedback.
23 CFR 1200.22 - State traffic safety information system improvements grants.
Code of Federal Regulations, 2013 CFR
2013-04-01
... measures to be used to demonstrate quantitative progress in the accuracy, completeness, timeliness... to implement, provides an explanation. (d) Requirement for quantitative improvement. A State shall demonstrate quantitative improvement in the data attributes of accuracy, completeness, timeliness, uniformity...
23 CFR 1200.22 - State traffic safety information system improvements grants.
Code of Federal Regulations, 2014 CFR
2014-04-01
... measures to be used to demonstrate quantitative progress in the accuracy, completeness, timeliness... to implement, provides an explanation. (d) Requirement for quantitative improvement. A State shall demonstrate quantitative improvement in the data attributes of accuracy, completeness, timeliness, uniformity...
Error and Uncertainty in the Accuracy Assessment of Land Cover Maps
NASA Astrophysics Data System (ADS)
Sarmento, Pedro Alexandre Reis
Traditionally the accuracy assessment of land cover maps is performed through the comparison of these maps with a reference database, which is intended to represent the "real" land cover, being this comparison reported with the thematic accuracy measures through confusion matrixes. Although, these reference databases are also a representation of reality, containing errors due to the human uncertainty in the assignment of the land cover class that best characterizes a certain area, causing bias in the thematic accuracy measures that are reported to the end users of these maps. The main goal of this dissertation is to develop a methodology that allows the integration of human uncertainty present in reference databases in the accuracy assessment of land cover maps, and analyse the impacts that uncertainty may have in the thematic accuracy measures reported to the end users of land cover maps. The utility of the inclusion of human uncertainty in the accuracy assessment of land cover maps is investigated. Specifically we studied the utility of fuzzy sets theory, more precisely of fuzzy arithmetic, for a better understanding of human uncertainty associated to the elaboration of reference databases, and their impacts in the thematic accuracy measures that are derived from confusion matrixes. For this purpose linguistic values transformed in fuzzy intervals that address the uncertainty in the elaboration of reference databases were used to compute fuzzy confusion matrixes. The proposed methodology is illustrated using a case study in which the accuracy assessment of a land cover map for Continental Portugal derived from Medium Resolution Imaging Spectrometer (MERIS) is made. The obtained results demonstrate that the inclusion of human uncertainty in reference databases provides much more information about the quality of land cover maps, when compared with the traditional approach of accuracy assessment of land cover maps. None
Influence of non-level walking on pedometer accuracy.
Leicht, Anthony S; Crowther, Robert G
2009-05-01
The YAMAX Digiwalker pedometer has been previously confirmed as a valid and reliable monitor during level walking, however, little is known about its accuracy during non-level walking activities or between genders. Subsequently, this study examined the influence of non-level walking and gender on pedometer accuracy. Forty-six healthy adults completed 3-min bouts of treadmill walking at their normal walking pace during 11 inclines (0-10%) while another 123 healthy adults completed walking up and down 47 stairs. During walking, participants wore a YAMAX Digiwalker SW-700 pedometer with the number of steps taken and registered by the pedometer recorded. Pedometer difference (steps registered-steps taken), net error (% of steps taken), absolute error (absolute % of steps taken) and gender were examined by repeated measures two-way ANOVA and Tukey's post hoc tests. During incline walking, pedometer accuracy indices were similar between inclines and gender except for a significantly greater step difference (-7+/-5 steps vs. 1+/-4 steps) and net error (-2.4+/-1.8% for 9% vs. 0.4+/-1.2% for 2%). Step difference and net error were significantly greater during stair descent compared to stair ascent while absolute error was significantly greater during stair ascent compared to stair descent. The current study demonstrated that the YAMAX Digiwalker SW-700 pedometer exhibited good accuracy during incline walking up to 10% while it overestimated steps taken during stair ascent/descent with greater overestimation during stair descent. Stair walking activity should be documented in field studies as the YAMAX Digiwalker SW-700 pedometer overestimates this activity type.
Performance of a new test strip for freestyle blood glucose monitoring systems.
Lock, John Paul; Brazg, Ronald; Bernstein, Robert M; Taylor, Elizabeth; Patel, Mona; Ward, Jeanne; Alva, Shridhara; Chen, Ting; Welsh, Zoë; Amor, Walter; Bhogal, Claire; Ng, Ronald
2011-01-01
a new strip, designed to enhance the ease of use and minimize interference of non-glucose sugars, has been developed to replace the current FreeStyle (Abbott Diabetes Care, Alameda, CA) blood glucose test strip. We evaluated the performance of this new strip. laboratory evaluation included precision, linearity, dynamic range, effects of operating temperature, humidity, altitude, hematocrit, interferents, and blood reapplication. System accuracy, lay user performance, and ease of use for finger capillary blood testing and accuracy for venous blood testing were evaluated at clinics. Lay users also compared the speed and ease of use between the new strip and the current FreeStyle strip. for glucose concentrations <75 mg/dL, 73%, 100%, and 100% of the individual capillary blood glucose results obtained by lay users fell within ± 5, 10, and 15 mg/dL, respectively, of the reference. For glucose concentrations ≥75 mg/dL, 68%, 95%, 99%, and 99% of the lay user results fell within ± 5%, 10%, 15%, and 20%, respectively, of the reference. Comparable accuracy was obtained in the venous blood study. Lay users found the new test strip easy to use and faster and easier to use than the current FreeStyle strip. The new strip maintained accuracy under various challenging conditions, including high concentrations of various interferents, sample reapplication up to 60 s, and extremes in hematocrit, altitude, and operating temperature and humidity. our results demonstrated excellent accuracy of the new FreeStyle test strip and validated the improvements in minimizing interference and enhancing ease of use.
The effects of aging on ERP correlates of source memory retrieval for self-referential information.
Dulas, Michael R; Newsome, Rachel N; Duarte, Audrey
2011-03-04
Numerous behavioral studies have suggested that normal aging negatively affects source memory accuracy for various kinds of associations. Neuroimaging evidence suggests that less efficient retrieval processing (temporally delayed and attenuated) may contribute to these impairments. Previous aging studies have not compared source memory accuracy and corresponding neural activity for different kinds of source details; namely, those that have been encoded via a more or less effective strategy. Thus, it is not yet known whether encoding source details in a self-referential manner, a strategy suggested to promote successful memory in the young and old, may enhance source memory accuracy and reduce the commonly observed age-related changes in neural activity associated with source memory retrieval. Here, we investigated these issues by using event-related potentials (ERPs) to measure the effects of aging on the neural correlates of successful source memory retrieval ("old-new effects") for objects encoded either self-referentially or self-externally. Behavioral results showed that both young and older adults demonstrated better source memory accuracy for objects encoded self-referentially. ERP results showed that old-new effects onsetted earlier for self-referentially encoded items in both groups and that age-related differences in the onset latency of these effects were reduced for self-referentially, compared to self-externally, encoded items. These results suggest that the implementation of an effective encoding strategy, like self-referential processing, may lead to more efficient retrieval, which in turn may improve source memory accuracy in both young and older adults. Published by Elsevier B.V.
Fuller, G W; Kemp, S P T; Raftery, M
2017-03-01
To investigate the accuracy and reliability of side-line video review of head impact events to aid identification of concussion in elite sport. Diagnostic accuracy and inter-rater agreement study. Immediate care, match day and team doctors involved in the 2015 Rugby Union World Cup viewed 20 video clips showing broadcaster's footage of head impact events occurring during elite Rugby matches. Subjects subsequently recorded whether any criteria warranting permanent removal from play or medical room head injury assessment were present. The accuracy of these ratings were compared to consensus expert opinion by calculating mean sensitivity and specificity across raters. The reproducibility of doctor's decisions was additionally assessed using raw agreement and Gwets AC1 chance corrected agreement coefficient. Forty rugby medicine doctors were included in the study. Compared to the expert reference standard overall sensitivity and specificity of doctors decisions were 77.5% (95% CI 73.1-81.5%) and 53.3% (95% CI 48.2-58.2%) respectively. Overall there was raw agreement of 67.8% (95% CI 57.9-77.7%) between doctors across all video clips. Chance corrected Gwets AC1 agreement coefficient was 0.39 (95% CI 0.17-0.62), indicating fair agreement. Rugby World Cup doctors' demonstrated moderate accuracy and fair reproducibility in head injury event decision making when assessing video clips of head impact events. The use of real-time video may improve the identification, decision making and management of concussion in elite sports. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Robotic guidance benefits the learning of dynamic, but not of spatial movement characteristics.
Lüttgen, Jenna; Heuer, Herbert
2012-10-01
Robotic guidance is an engineered form of haptic-guidance training and intended to enhance motor learning in rehabilitation, surgery, and sports. However, its benefits (and pitfalls) are still debated. Here, we investigate the effects of different presentation modes on the reproduction of a spatiotemporal movement pattern. In three different groups of participants, the movement was demonstrated in three different modalities, namely visual, haptic, and visuo-haptic. After demonstration, participants had to reproduce the movement in two alternating recall conditions: haptic and visuo-haptic. Performance of the three groups during recall was compared with regard to spatial and dynamic movement characteristics. After haptic presentation, participants showed superior dynamic accuracy, whereas after visual presentation, participants performed better with regard to spatial accuracy. Added visual feedback during recall always led to enhanced performance, independent of the movement characteristic and the presentation modality. These findings substantiate the different benefits of different presentation modes for different movement characteristics. In particular, robotic guidance is beneficial for the learning of dynamic, but not of spatial movement characteristics.
Motion Correction in PROPELLER and Turboprop-MRI
Tamhane, Ashish A.; Arfanakis, Konstantinos
2009-01-01
PROPELLER and Turboprop-MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo and gradient and spin-echo, respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop-MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that, blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop-MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction were discussed for PROPELLER and Turboprop-MRI. PMID:19365858
The validity of two Omron pedometers during treadmill walking is speed dependent.
Giannakidou, Dimitra M; Kambas, Antonis; Ageloussis, Nikolaos; Fatouros, Ioannis; Christoforidis, Christos; Venetsanou, Fotini; Douroudos, Ioannis; Taxildaris, Kyriakos
2012-01-01
The purpose of this study was to examine the effects of walking speed on the accuracy of measurement of steps, distance, and energy expenditure of two commercially available Omron pedometers [HJ-720IT-E2 (HJ-720) and HJ-113-E (HJ-113)]. Twenty-four untrained males (age, 22.7 ± 2.8 years; BMI, 24.38 ± 2.19 kg m(-2); body fat (%), 16 ± 2.2; VO(2max), 40.2 ± 6.5 ml kg(-1) min(-1)) and 18 females (age, 22.4 ± 2.9 years; BMI, 21.68 ± 2.43 kg m(-2); body fat (%), 23% ± 1.8; VO(2max), 35.9 ± 2.8 ml kg(-1) min(-1)) walked at five different velocities (54, 67, 80, 94 and 107 m min(-1)) on a treadmill in 5-min stages while wearing three types of pedometers: (a) HJ-720, (b) HJ-113, and (c) Yamax Digi-Walker SW-200 (YAM). Step-count for each pedometer was recorded at the end of each stage and compared with the value of a hand counter. Additionally, Omron pedometers were evaluated on their distance and energy expenditure (against VO(2) measurement with a gas-exchange analyzer) accuracy during each stage. HJ-720 and HJ-113 demonstrated high accuracy (r = 0.80-0.99) at all speeds. YAM underestimated step-count only at 54 m min(-1) (r = 0.46). HJ-720 and HJ-113 overestimated distance at slower speeds and underestimated distance at faster speeds, providing mean distance values that where to within 1.5-4% at 80 m min(-1). HJ-720 and HJ-113 underestimated energy expenditure (gross kilocalories) by 28%, when compared to indirect calorimetry. These results suggest that although the Omron HJ-720 and HJ-113 pedometers are accurate in the measurement of step-count, they demonstrate limited accuracy in the assessment of traveled distance and energy expenditure in a speed-dependent manner.
Kotani, Yoshihisa; Abumi, Kuniyoshi; Ito, Manabu; Takahata, Masahiko; Sudo, Hideki; Ohshima, Shigeki; Minami, Akio
2007-06-15
The accuracy of pedicle screw placement was evaluated in posterior scoliosis surgeries with or without the use of computer-assisted surgical techniques. In this retrospective cohort study, the pedicle screw placement accuracy in posterior scoliosis surgery was compared between conventional fluoroscopic and computer-assisted surgical techniques. There has been no study systemically analyzing the perforation pattern and comparative accuracy of pedicle screw placement in posterior scoliosis surgery. The 45 patients who received posterior correction surgeries were divided into 2 groups: Group C, manual control (25 patients); and Group N, navigation surgery (20 patients). The average Cobb angles were 73.7 degrees and 73.1 degrees before surgery in Group C and Group N, respectively. Using CT images, vertebral rotation, pedicle axes as measured to anteroposterior sacral axis and vertebral axis, and insertion angle error were measured. In perforation cases, the angular tendency, insertion point, and length abnormality were evaluated. The perforation was observed in 11% of Group C and 1.8% in Group N. In Group C, medial perforations of left screws were demonstrated in 8 of 9 perforated screws and 55% were distributed either in L1 or T12. The perforation consistently occurred in pedicles in which those axes approached anteroposterior sacral axis within 5 degrees . The average insertion errors were 8.4 degrees and 5.0 degrees in Group C and Group N, respectively, which were significantly different (P < 0.02). The medial perforation in Group C occurred around L1, especially when pedicle axis approached anteroposterior sacral axis. This consistent tendency was considered as the limitation of fluoroscopic screw insertion in which horizontal vertebral image was not visible. The use of surgical navigation system successfully reduced the perforation rate and insertion angle errors, demonstrating the clear advantage in safe and accurate pedicle screw placement of scoliosis surgery.
NASA Astrophysics Data System (ADS)
Nilsson, Johan; Burgess, David
2014-05-01
The CryoSat mission was launched in 2010 to observe the Earth's cryosphere. In contrast to previous satellite radar altimeters, this mission is expected to monitor the elevation of small ice caps and glaciers, which according to the IPCC will be the largest contributor to 21st century sea level rise. To date the ESA CryoSat SARiN level-2 (L2) elevation product is not yet fully optimized for use over these types of glaciated regions, as its processed with a more universal algorithm. Thus the aim of this study is to demonstrate that with the use of improved processing CryoSat SARiN data can be used for more accurate topography mapping and elevation change detection for ice caps and glaciers. To demonstrate this, elevations and elevation changes over Barnes ice cap, located on Baffin Island in the Canadian Arctic, have been estimated from available data from the years 2010-2013. ESA's CryoSat level-1b (L1b) SARiN baseline "B" data product was used and processed in-house to estimate surface elevations. The resulting product is referred to as DTU-L2. The processing focused on improving the retracker, reducing phase noise and correcting phase ambiguities. The accuracy of the DTU-L2 and the ESA-L2 product was determined by comparing the measured elevations against NASA's IceBridge Airborne Topographic Mapper (ATM) elevations from May 2011. The resulting difference in accuracy was determined by comparing their associated errors. From the multi-temporal measurements spanning the period 2010-2013, elevation changes where estimated and compared to ICESat derived changes from 2003-2009. The result of the study shows good agreement between the NASA measured ATM elevations and the DTU-L2 data. It also shows that the pattern of elevation change is similar to that derived from ICESat data. The accuracy of the DTU-L2 estimated elevations is on average several factors higher compared to the ESA-L2 elevation product. These preliminary results demonstrates that CryoSat elevation data, using improved processing, can be used for accurate topographic mapping and elevation change detection on ice caps and glaciers. Future work would entail extending this processing to other regions of this type to support these results.
Precise GNSS Positioning Using Smart Devices
Caldera, Stefano; Pertusini, Lisa
2017-01-01
The recent access to GNSS (Global Navigation Satellite System) phase observations on smart devices, enabled by Google through its Android operating system, opens the possibility to apply precise positioning techniques using off-the-shelf, mass-market devices. The target of this work is to evaluate whether this is feasible, and which positioning accuracy can be achieved by relative positioning of the smart device with respect to a base station. Positioning of a Google/HTC Nexus 9 tablet was performed by means of batch least-squares adjustment of L1 phase double-differenced observations, using the open source goGPS software, over baselines ranging from approximately 10 m to 8 km, with respect to both physical (geodetic or low-cost) and virtual base stations. The same positioning procedure was applied also to a co-located u-blox low-cost receiver, to compare the performance between the receiver and antenna embedded in the Nexus 9 and a standard low-cost single-frequency receiver with external patch antenna. The results demonstrate that with a smart device providing raw GNSS phase observations, like the Nexus 9, it is possible to reach decimeter-level accuracy through rapid-static surveys, without phase ambiguity resolution. It is expected that sub-centimeter accuracy could be achieved, as demonstrated for the u-blox case, if integer phase ambiguities were correctly resolved. PMID:29064417
Precise GNSS Positioning Using Smart Devices.
Realini, Eugenio; Caldera, Stefano; Pertusini, Lisa; Sampietro, Daniele
2017-10-24
The recent access to GNSS (Global Navigation Satellite System) phase observations on smart devices, enabled by Google through its Android operating system, opens the possibility to apply precise positioning techniques using off-the-shelf, mass-market devices. The target of this work is to evaluate whether this is feasible, and which positioning accuracy can be achieved by relative positioning of the smart device with respect to a base station. Positioning of a Google/HTC Nexus 9 tablet was performed by means of batch least-squares adjustment of L1 phase double-differenced observations, using the open source goGPS software, over baselines ranging from approximately 10 m to 8 km, with respect to both physical (geodetic or low-cost) and virtual base stations. The same positioning procedure was applied also to a co-located u-blox low-cost receiver, to compare the performance between the receiver and antenna embedded in the Nexus 9 and a standard low-cost single-frequency receiver with external patch antenna. The results demonstrate that with a smart device providing raw GNSS phase observations, like the Nexus 9, it is possible to reach decimeter-level accuracy through rapid-static surveys, without phase ambiguity resolution. It is expected that sub-centimeter accuracy could be achieved, as demonstrated for the u-blox case, if integer phase ambiguities were correctly resolved.
Mileva, Mila; Burton, A Mike
2018-06-19
Unfamiliar face matching is a surprisingly difficult task, yet we often rely on people's matching decisions in applied settings (e.g., border control). Most attempts to improve accuracy (including training and image manipulation) have had very limited success. In a series of studies, we demonstrate that using smiling rather than neutral pairs of images brings about significant improvements in face matching accuracy. This is true for both match and mismatch trials, implying that the information provided through a smile helps us detect images of the same identity as well as distinguishing between images of different identities. Study 1 compares matching performance when images in the face pair display either an open-mouth smile or a neutral expression. In Study 2, we add an intermediate level, closed-mouth smile, to identify the effect of teeth being exposed, and Study 3 explores face matching accuracy when only information about the lower part of the face is available. Results demonstrate that an open-mouth smile changes the face in an idiosyncratic way which aids face matching decisions. Such findings have practical implications for matching in the applied context where we typically use neutral images to represent ourselves in official documents. © 2018 The British Psychological Society.
DNA Base-Calling from a Nanopore Using a Viterbi Algorithm
Timp, Winston; Comer, Jeffrey; Aksimentiev, Aleksei
2012-01-01
Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (∼98%), even with a poor signal/noise ratio. PMID:22677395
An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV
NASA Astrophysics Data System (ADS)
Lynch, K. P.; Scarano, F.
2015-03-01
The motion-tracking-enhanced MART (MTE-MART; Novara et al. in Meas Sci Technol 21:035401, 2010) has demonstrated the potential to increase the accuracy of tomographic PIV by the combined use of a short sequence of non-simultaneous recordings. A clear bottleneck of the MTE-MART technique has been its computational cost. For large datasets comprising time-resolved sequences, MTE-MART becomes unaffordable and has been barely applied even for the analysis of densely seeded tomographic PIV datasets. A novel implementation is proposed for tomographic PIV image sequences, which strongly reduces the computational burden of MTE-MART, possibly below that of regular MART. The method is a sequential algorithm that produces a time-marching estimation of the object intensity field based on an enhanced guess, which is built upon the object reconstructed at the previous time instant. As the method becomes effective after a number of snapshots (typically 5-10), the sequential MTE-MART (SMTE) is most suited for time-resolved sequences. The computational cost reduction due to SMTE simply stems from the fewer MART iterations required for each time instant. Moreover, the method yields superior reconstruction quality and higher velocity field measurement precision when compared with both MART and MTE-MART. The working principle is assessed in terms of computational effort, reconstruction quality and velocity field accuracy with both synthetic time-resolved tomographic images of a turbulent boundary layer and two experimental databases documented in the literature. The first is the time-resolved data of flow past an airfoil trailing edge used in the study of Novara and Scarano (Exp Fluids 52:1027-1041, 2012); the second is a swirling jet in a water flow. In both cases, the effective elimination of ghost particles is demonstrated in number and intensity within a short temporal transient of 5-10 frames, depending on the seeding density. The increased value of the velocity space-time correlation coefficient demonstrates the increased velocity field accuracy of SMTE compared with MART.
Third-order dissipative hydrodynamics from the entropy principle
NASA Astrophysics Data System (ADS)
El, Andrej; Xu, Zhe; Greiner, Carsten
2010-06-01
We review the entropy based derivation of third-order hydrodynamic equations and compare their solutions in one-dimensional boost-invariant geometry with calculations by the partonic cascade BAMPS. We demonstrate that Grad's approximation, which underlies the derivation of both Israel-Stewart and third-order equations, describes the transverse spectra from BAMPS with high accuracy. At the same time solutions of third-order equations are much closer to BAMPS results than solutions of Israel-Stewart equations. Introducing a resummation scheme for all higher-oder corrections to one-dimensional hydrodynamic equation we demonstrate the importance of higher-order terms if the Knudsen number is large.
An underwater light attenuation scheme for marine ecosystem models.
Penta, Bradley; Lee, Zhongping; Kudela, Raphael M; Palacios, Sherry L; Gray, Deric J; Jolliff, Jason K; Shulman, Igor G
2008-10-13
Simulation of underwater light is essential for modeling marine ecosystems. A new model of underwater light attenuation is presented and compared with previous models. In situ data collected in Monterey Bay, CA. during September 2006 are used for validation. It is demonstrated that while the new light model is computationally simple and efficient it maintains accuracy and flexibility. When this light model is incorporated into an ecosystem model, the correlation between modeled and observed coastal chlorophyll is improved over an eight-year time period. While the simulation of a deep chlorophyll maximum demonstrates the effect of the new model at depth.
Diffractive shear interferometry for extreme ultraviolet high-resolution lensless imaging
NASA Astrophysics Data System (ADS)
Jansen, G. S. M.; de Beurs, A.; Liu, X.; Eikema, K. S. E.; Witte, S.
2018-05-01
We demonstrate a novel imaging approach and associated reconstruction algorithm for far-field coherent diffractive imaging, based on the measurement of a pair of laterally sheared diffraction patterns. The differential phase profile retrieved from such a measurement leads to improved reconstruction accuracy, increased robustness against noise, and faster convergence compared to traditional coherent diffractive imaging methods. We measure laterally sheared diffraction patterns using Fourier-transform spectroscopy with two phase-locked pulse pairs from a high harmonic source. Using this approach, we demonstrate spectrally resolved imaging at extreme ultraviolet wavelengths between 28 and 35 nm.
Fat fraction bias correction using T1 estimates and flip angle mapping.
Yang, Issac Y; Cui, Yifan; Wiens, Curtis N; Wade, Trevor P; Friesen-Waldner, Lanette J; McKenzie, Charles A
2014-01-01
To develop a new method of reducing T1 bias in proton density fat fraction (PDFF) measured with iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL). PDFF maps reconstructed from high flip angle IDEAL measurements were simulated and acquired from phantoms and volunteer L4 vertebrae. T1 bias was corrected using a priori T1 values for water and fat, both with and without flip angle correction. Signal-to-noise ratio (SNR) maps were used to measure precision of the reconstructed PDFF maps. PDFF measurements acquired using small flip angles were then compared to both sets of corrected large flip angle measurements for accuracy and precision. Simulations show similar results in PDFF error between small flip angle measurements and corrected large flip angle measurements as long as T1 estimates were within one standard deviation from the true value. Compared to low flip angle measurements, phantom and in vivo measurements demonstrate better precision and accuracy in PDFF measurements if images were acquired at a high flip angle, with T1 bias corrected using T1 estimates and flip angle mapping. T1 bias correction of large flip angle acquisitions using estimated T1 values with flip angle mapping yields fat fraction measurements of similar accuracy and superior precision compared to low flip angle acquisitions. Copyright © 2013 Wiley Periodicals, Inc.
Boushey, Carol J; Spoden, Melissa; Delp, Edward J; Zhu, Fengqing; Bosch, Marc; Ahmad, Ziad; Shvetsov, Yurii B; DeLany, James P; Kerr, Deborah A
2017-03-22
The mobile Food Record (mFR) is an image-based dietary assessment method for mobile devices. The study primary aim was to test the accuracy of the mFR by comparing reported energy intake (rEI) to total energy expenditure (TEE) using the doubly labeled water (DLW) method. Usability of the mFR was assessed by questionnaires before and after the study. Participants were 45 community dwelling men and women, 21-65 years. They were provided pack-out meals and snacks and encouraged to supplement with usual foods and beverages not provided. After being dosed with DLW, participants were instructed to record all eating occasions over a 7.5 days period using the mFR. Three trained analysts estimated rEI from the images sent to a secure server. rEI and TEE correlated significantly (Spearman correlation coefficient of 0.58, p < 0.0001). The mean percentage of underreporting below the lower 95% confidence interval of the ratio of rEI to TEE was 12% for men (standard deviation (SD) ± 11%) and 10% for women (SD ± 10%). The results demonstrate the accuracy of the mFR is comparable to traditional dietary records and other image-based methods. No systematic biases could be found. The mFR was received well by the participants and usability was rated as easy.
Schoenthaler, Martin; Avcil, Tuba; Sevcenco, Sabina; Nagele, Udo; Hermann, Thomas E W; Kuehhas, Franklin E; Shariat, Shahrokh F; Frankenschmidt, Alexander; Wetterauer, Ulrich; Miernik, Arkadiusz
2015-01-01
To evaluate the Single-Incision Transumbilical Surgery (SITUS) technique as compared to an established laparoendoscopic single-site surgery (LESS) technique (Single-Port Laparoscopic Surgery, SPLS) and conventional laparoscopy (CLS) in a surgical simulator model. Sixty-three medical students without previous laparoscopic experience were randomly assigned to one of the three groups (SITUS, SPLS and CLS). Subjects were asked to perform five standardized tasks of increasing difficulty adopted from the Fundamentals of Laparoscopic Surgery curriculum. Statistical evaluation included task completion times and accuracy. Overall performances of all tasks (except precision cutting) were significantly faster and of higher accuracy in the CLS and SITUS groups than in the SPLS group (p = 0.004 to p < 0.001). CLS and SITUS groups alone showed no significant difference in performance times and accuracy measurements for all tasks (p = 0.048 to p = 0.989). SITUS proved to be a simple, but highly effective technique to overcome restrictions of SPLS. In a surgical simulator model, novices were able to achieve task performances comparable to CLS and did significantly better than using a port-assisted LESS technique such as SPLS. The demonstrated advantages of SITUS may be attributed to a preservation of the basic principles of conventional laparoscopy, such as the use of straight instruments and an adequate degree of triangulation.
Acceptability and feasibility of a virtual counselor (VICKY) to collect family health histories.
Wang, Catharine; Bickmore, Timothy; Bowen, Deborah J; Norkunas, Tricia; Campion, MaryAnn; Cabral, Howard; Winter, Michael; Paasche-Orlow, Michael
2015-10-01
To overcome literacy-related barriers in the collection of electronic family health histories, we developed an animated Virtual Counselor for Knowing your Family History, or VICKY. This study examined the acceptability and accuracy of using VICKY to collect family histories from underserved patients as compared with My Family Health Portrait (MFHP). Participants were recruited from a patient registry at a safety net hospital and randomized to use either VICKY or MFHP. Accuracy was determined by comparing tool-collected histories with those obtained by a genetic counselor. A total of 70 participants completed this study. Participants rated VICKY as easy to use (91%) and easy to follow (92%), would recommend VICKY to others (83%), and were highly satisfied (77%). VICKY identified 86% of first-degree relatives and 42% of second-degree relatives; combined accuracy was 55%. As compared with MFHP, VICKY identified a greater number of health conditions overall (49% with VICKY vs. 31% with MFHP; incidence rate ratio (IRR): 1.59; 95% confidence interval (95% CI): 1.13-2.25; P = 0.008), in particular, hypertension (47 vs. 15%; IRR: 3.18; 95% CI: 1.66-6.10; P = 0.001) and type 2 diabetes (54 vs. 22%; IRR: 2.47; 95% CI: 1.33-4.60; P = 0.004). These results demonstrate that technological support for documenting family history risks can be highly accepted, feasible, and effective.
NASA Astrophysics Data System (ADS)
Oh, Dongryul; Hong, Chae-Seon; Ju, Sang Gyu; Kim, Minkyu; Koo, Bum Yong; Choi, Sungback; Park, Hee Chul; Choi, Doo Ho; Pyo, Hongryull
2017-01-01
A new technique for manufacturing a patient-specific dosimetric phantom using three-dimensional printing (PSDP_3DP) was developed, and its geometrical and dosimetric accuracy was analyzed. External body contours and structures of the spine and metallic fixation screws (MFS) were delineated from CT images of a patient with MFS who underwent stereotactic body radiation therapy for spine metastasis. Contours were converted into a STereoLithography file format using in-house program. A hollow, four-section PSDP was designed and manufactured using three types of 3DP to allow filling with a muscle-equivalent liquid and insertion of dosimeters. To evaluate the geometrical accuracy of PSDP_3DP, CT images were obtained and compared with patient CT data for volume, mean density, and Dice similarity coefficient for contours. The dose distribution in the PSDP_3DP was calculated by applying the same beam parameters as for the patient, and the dosimetric characteristics of the PSDP_3DP were compared with the patient plan. The registered CT of the PSDP_3DP was well matched with that of the real patient CT in the axial, coronal, and sagittal planes. The physical accuracy and dosimetric characteristics of PSDP_3DP were comparable to those of a real patient. The ability to manufacture a PSDP representing an extreme patient condition was demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, N., E-mail: nwen1@hfhs.org; Snyder, K. C.; Qin, Y.
2016-05-15
Purpose: To evaluate the total systematic accuracy of a frameless, image guided stereotactic radiosurgery system. Methods: The localization accuracy and intermodality difference was determined by delivering radiation to an end-to-end prototype phantom, in which the targets were localized using optical surface monitoring system (OSMS), electromagnetic beacon-based tracking (Calypso®), cone-beam CT, “snap-shot” planar x-ray imaging, and a robotic couch. Six IMRT plans with jaw tracking and a flattening filter free beam were used to study the dosimetric accuracy for intracranial and spinal stereotactic radiosurgery treatment. Results: End-to-end localization accuracy of the system evaluated with the end-to-end phantom was 0.5 ± 0.2more » mm with a maximum deviation of 0.9 mm over 90 measurements (including jaw, MLC, and cone measurements for both auto and manual fusion) for single isocenter, single target treatment, 0.6 ± 0.4 mm for multitarget treatment with shared isocenter. Residual setup errors were within 0.1 mm for OSMS, and 0.3 mm for Calypso. Dosimetric evaluation based on absolute film dosimetry showed greater than 90% pass rate for all cases using a gamma criteria of 3%/1 mm. Conclusions: The authors’ experience demonstrates that the localization accuracy of the frameless image-guided system is comparable to robotic or invasive frame based radiosurgery systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Adam P.; Laskin, Julia; Laskin, Alexander
2012-07-02
The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found betweenmore » the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.« less
Detection of food intake from swallowing sequences by supervised and unsupervised methods.
Lopez-Meyer, Paulo; Makeyev, Oleksandr; Schuckers, Stephanie; Melanson, Edward L; Neuman, Michael R; Sazonov, Edward
2010-08-01
Studies of food intake and ingestive behavior in free-living conditions most often rely on self-reporting-based methods that can be highly inaccurate. Methods of Monitoring of Ingestive Behavior (MIB) rely on objective measures derived from chewing and swallowing sequences and thus can be used for unbiased study of food intake with free-living conditions. Our previous study demonstrated accurate detection of food intake in simple models relying on observation of both chewing and swallowing. This article investigates methods that achieve comparable accuracy of food intake detection using only the time series of swallows and thus eliminating the need for the chewing sensor. The classification is performed for each individual swallow rather than for previously used time slices and thus will lead to higher accuracy in mass prediction models relying on counts of swallows. Performance of a group model based on a supervised method (SVM) is compared to performance of individual models based on an unsupervised method (K-means) with results indicating better performance of the unsupervised, self-adapting method. Overall, the results demonstrate that highly accurate detection of intake of foods with substantially different physical properties is possible by an unsupervised system that relies on the information provided by the swallowing alone.
Detection of Food Intake from Swallowing Sequences by Supervised and Unsupervised Methods
Lopez-Meyer, Paulo; Makeyev, Oleksandr; Schuckers, Stephanie; Melanson, Edward L.; Neuman, Michael R.; Sazonov, Edward
2010-01-01
Studies of food intake and ingestive behavior in free-living conditions most often rely on self-reporting-based methods that can be highly inaccurate. Methods of Monitoring of Ingestive Behavior (MIB) rely on objective measures derived from chewing and swallowing sequences and thus can be used for unbiased study of food intake with free-living conditions. Our previous study demonstrated accurate detection of food intake in simple models relying on observation of both chewing and swallowing. This article investigates methods that achieve comparable accuracy of food intake detection using only the time series of swallows and thus eliminating the need for the chewing sensor. The classification is performed for each individual swallow rather than for previously used time slices and thus will lead to higher accuracy in mass prediction models relying on counts of swallows. Performance of a group model based on a supervised method (SVM) is compared to performance of individual models based on an unsupervised method (K-means) with results indicating better performance of the unsupervised, self-adapting method. Overall, the results demonstrate that highly accurate detection of intake of foods with substantially different physical properties is possible by an unsupervised system that relies on the information provided by the swallowing alone. PMID:20352335
Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement
Guzik, Stephen M.; Weisgraber, Todd H.; Colella, Phillip; ...
2013-12-10
A lattice-Boltzmann model to solve the equivalent of the Navier-Stokes equations on adap- tively refined grids is presented. A method for transferring information across interfaces between different grid resolutions was developed following established techniques for finite- volume representations. This new approach relies on a space-time interpolation and solving constrained least-squares problems to ensure conservation. The effectiveness of this method at maintaining the second order accuracy of lattice-Boltzmann is demonstrated through a series of benchmark simulations and detailed mesh refinement studies. These results exhibit smaller solution errors and improved convergence when compared with similar approaches relying only on spatial interpolation. Examplesmore » highlighting the mesh adaptivity of this method are also provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidsmeier, T.; Koehl, R.; Lanham, R.
2008-07-15
The current design and fabrication process for RERTR fuel plates utilizes film radiography during the nondestructive testing and characterization. Digital radiographic methods offer a potential increases in efficiency and accuracy. The traditional and digital radiographic methods are described and demonstrated on a fuel plate constructed with and average of 51% by volume fuel using the dispersion method. Fuel loading data from each method is analyzed and compared to a third baseline method to assess accuracy. The new digital method is shown to be more accurate, save hours of work, and provide additional information not easily available in the traditional method.more » Additional possible improvements suggested by the new digital method are also raised. (author)« less
Development of a Nonequilibrium Radiative Heating Prediction Method for Coupled Flowfield Solutions
NASA Technical Reports Server (NTRS)
Hartung, Lin C.
1991-01-01
A method for predicting radiative heating and coupling effects in nonequilibrium flow-fields has been developed. The method resolves atomic lines with a minimum number of spectral points, and treats molecular radiation using the smeared band approximation. To further minimize computational time, the calculation is performed on an optimized spectrum, which is computed for each flow condition to enhance spectral resolution. Additional time savings are obtained by performing the radiation calculation on a subgrid optimally selected for accuracy. Representative results from the new method are compared to previous work to demonstrate that the speedup does not cause a loss of accuracy and is sufficient to make coupled solutions practical. The method is found to be a useful tool for studies of nonequilibrium flows.
CFRP composite mirrors for space telescopes and their micro-dimensional stability
NASA Astrophysics Data System (ADS)
Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo
2010-07-01
Ultra-lightweight and high-accuracy CFRP (carbon fiber reinforced plastics) mirrors for space telescopes were fabricated to demonstrate their feasibility for light wavelength applications. The CTE (coefficient of thermal expansion) of the all- CFRP sandwich panels was tailored to be smaller than 1×10-7/K. The surface accuracy of mirrors of 150 mm in diameter was 1.8 um RMS as fabricated and the surface smoothness was improved to 20 nm RMS by using a replica technique. Moisture expansion was considered the largest in un-predictable surface preciseness errors. The moisture expansion affected not only homologous shape change but also out-of-plane distortion especially in unsymmetrical compositions. Dimensional stability due to the moisture expansion was compared with a structural mathematical model.
Forest tree species discrimination in western Himalaya using EO-1 Hyperion
NASA Astrophysics Data System (ADS)
George, Rajee; Padalia, Hitendra; Kushwaha, S. P. S.
2014-05-01
The information acquired in the narrow bands of hyperspectral remote sensing data has potential to capture plant species spectral variability, thereby improving forest tree species mapping. This study assessed the utility of spaceborne EO-1 Hyperion data in discrimination and classification of broadleaved evergreen and conifer forest tree species in western Himalaya. The pre-processing of 242 bands of Hyperion data resulted into 160 noise-free and vertical stripe corrected reflectance bands. Of these, 29 bands were selected through step-wise exclusion of bands (Wilk's Lambda). Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) algorithms were applied to the selected bands to assess their effectiveness in classification. SVM was also applied to broadband data (Landsat TM) to compare the variation in classification accuracy. All commonly occurring six gregarious tree species, viz., white oak, brown oak, chir pine, blue pine, cedar and fir in western Himalaya could be effectively discriminated. SVM produced a better species classification (overall accuracy 82.27%, kappa statistic 0.79) than SAM (overall accuracy 74.68%, kappa statistic 0.70). It was noticed that classification accuracy achieved with Hyperion bands was significantly higher than Landsat TM bands (overall accuracy 69.62%, kappa statistic 0.65). Study demonstrated the potential utility of narrow spectral bands of Hyperion data in discriminating tree species in a hilly terrain.
Jin, Mengran; Liu, Zhen; Liu, Xingyong; Yan, Huang; Han, Xiao; Qiu, Yong; Zhu, Zezhang
2016-06-01
To assess the accuracy of O-arm-navigation-based pedicle screw insertion in dystrophic scoliosis secondary to NF-1 and compare it with free-hand pedicle screw insertion technique. 32 patients with dystrophic NF-1-associated scoliosis were divided into two groups. A total of 92 pedicle screws were implanted in apical region (two vertebrae above and below the apex each) in 13 patients using O-arm-based navigation (O-arm group), and 121 screws were implanted in 19 patients using free-hand technique (free-hand group). The postoperative CT images were reviewed and analyzed for pedicle violation. The screw penetration was divided into four grades: grade 0 (ideal placement), grade 1 (penetration <2 mm), grade 2 (penetration between 2 and 4 mm), and grade 3 (penetration >4 mm). The accuracy rate of pedicle screw placement (grade 0, 1) was significantly higher in the O-arm group (79 %, 73/92) compared to 67 % (81/121) of the free-hand group (P = 0.045). Meanwhile, a significantly lower prevalence of grade 2-3 perforation was observed in the O-arm group (21 vs. 33 %, P < 0.05), and the incidence of medial perforation was significantly minimized by using O-arm navigation compared to free-hand technique (2 vs. 15 %, P < 0.01). Moreover, the implant density in apical region was significantly elevated by using O-arm navigation (58 vs. 42 %, P < 0.001). We reported 79 % accuracy of O-arm-based pedicle screw placement in dystrophic NF-1-associated scoliosis. O-arm navigation system does facilitate pedicle screw insertion in dystrophic NF-1-associated scoliosis, demonstrating superiorities in the safety and accuracy of pedicle screw placement in comparison with free-hand technique.
s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography
Li, Ying; Qin, Jing; Hsin, Yue-Loong; Osher, Stanley; Liu, Wentai
2016-01-01
EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ms). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and ℓ1−2 regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in the image processing field. In order to handle 3D EEG source images, we propose a voxel-based Total Generalized Variation (vTGV) regularization that extends the definition of second-order TGV from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ1−2 regularization is utilized to promote sparsity on the current density itself. We demonstrate that ℓ1−2 regularization is able to enhance sparsity and accelerate computations than ℓ1 regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages of the proposed method over other state-of-the-art methods in terms of total reconstruction accuracy, localization accuracy and focalization degree. The application to the source localization of event-related potential data further demonstrates the performance of the proposed method in real-world scenarios. PMID:27965529
Genomic selection for crossbred performance accounting for breed-specific effects.
Lopes, Marcos S; Bovenhuis, Henk; Hidalgo, André M; van Arendonk, Johan A M; Knol, Egbert F; Bastiaansen, John W M
2017-06-26
Breed-specific effects are observed when the same allele of a given genetic marker has a different effect depending on its breed origin, which results in different allele substitution effects across breeds. In such a case, single-breed breeding values may not be the most accurate predictors of crossbred performance. Our aim was to estimate the contribution of alleles from each parental breed to the genetic variance of traits that are measured in crossbred offspring, and to compare the prediction accuracies of estimated direct genomic values (DGV) from a traditional genomic selection model (GS) that are trained on purebred or crossbred data, with accuracies of DGV from a model that accounts for breed-specific effects (BS), trained on purebred or crossbred data. The final dataset was composed of 924 Large White, 924 Landrace and 924 two-way cross (F1) genotyped and phenotyped animals. The traits evaluated were litter size (LS) and gestation length (GL) in pigs. The genetic correlation between purebred and crossbred performance was higher than 0.88 for both LS and GL. For both traits, the additive genetic variance was larger for alleles inherited from the Large White breed compared to alleles inherited from the Landrace breed (0.74 and 0.56 for LS, and 0.42 and 0.40 for GL, respectively). The highest prediction accuracies of crossbred performance were obtained when training was done on crossbred data. For LS, prediction accuracies were the same for GS and BS DGV (0.23), while for GL, prediction accuracy for BS DGV was similar to the accuracy of GS DGV (0.53 and 0.52, respectively). In this study, training on crossbred data resulted in higher prediction accuracy than training on purebred data and evidence of breed-specific effects for LS and GL was demonstrated. However, when training was done on crossbred data, both GS and BS models resulted in similar prediction accuracies. In future studies, traits with a lower genetic correlation between purebred and crossbred performance should be included to further assess the value of the BS model in genomic predictions.
Examining Curricular Integration Strategies To Optimize Learning Of The Anatomical Sciences
NASA Astrophysics Data System (ADS)
Lisk, Kristina Adriana Ayako
Background: Integration of basic and clinical science knowledge is essential to clinical practice. Although the importance of these two knowledge domains is well-recognized, successfully supporting the development of learners' integrated basic and clinical science knowledge, remains an educational challenge. In this dissertation, I examine curricular integration strategies to optimize learning of the anatomical sciences. Objectives: The studies were designed to achieve the following research aims: 1) to objectively identify clinically relevant content for an integrated musculoskeletal anatomy curriculum; 2) to examine the value of integrated anatomy and clinical science instruction compared to clinical science instruction alone on novices' diagnostic accuracy and diagnostic reasoning process; 3) to compare the effect of integrating and segregating anatomy and clinical science instruction along with a learning strategy (self-explanation) on novices' diagnostic accuracy. Methods: A modified Delphi was used to objectively select clinically relevant content for an integrated musculoskeletal anatomy curriculum. Two experimental studies were created to compare different instructional strategies to optimize learning of the curricular content. In both of these studies, novice learners were taught the clinical features of musculoskeletal pathologies using different learning approaches. Diagnostic performance was measured immediately after instruction and one-week later. Results: The results show that the Delphi method is an effective strategy to select clinically relevant content for integrated anatomy curricula. The findings also demonstrate that novices who were explicitly taught the clinical features of musculoskeletal diseases using causal basic science descriptions had superior diagnostic accuracy and a better understanding of the relative importance of key clinical features for disease categories. Conclusions: This research demonstrates how integration strategies can be applied at multiple levels of the curriculum. Further, this work shows the value of cognitive integration of anatomy and clinical science and it emphasizes the importance of purposefully linking the anatomical and clinical sciences in day-to-day teaching.
Evaluation of mathematical algorithms for automatic patient alignment in radiosurgery.
Williams, Kenneth M; Schulte, Reinhard W; Schubert, Keith E; Wroe, Andrew J
2015-06-01
Image registration techniques based on anatomical features can serve to automate patient alignment for intracranial radiosurgery procedures in an effort to improve the accuracy and efficiency of the alignment process as well as potentially eliminate the need for implanted fiducial markers. To explore this option, four two-dimensional (2D) image registration algorithms were analyzed: the phase correlation technique, mutual information (MI) maximization, enhanced correlation coefficient (ECC) maximization, and the iterative closest point (ICP) algorithm. Digitally reconstructed radiographs from the treatment planning computed tomography scan of a human skull were used as the reference images, while orthogonal digital x-ray images taken in the treatment room were used as the captured images to be aligned. The accuracy of aligning the skull with each algorithm was compared to the alignment of the currently practiced procedure, which is based on a manual process of selecting common landmarks, including implanted fiducials and anatomical skull features. Of the four algorithms, three (phase correlation, MI maximization, and ECC maximization) demonstrated clinically adequate (ie, comparable to the standard alignment technique) translational accuracy and improvements in speed compared to the interactive, user-guided technique; however, the ICP algorithm failed to give clinically acceptable results. The results of this work suggest that a combination of different algorithms may provide the best registration results. This research serves as the initial groundwork for the translation of automated, anatomy-based 2D algorithms into a real-world system for 2D-to-2D image registration and alignment for intracranial radiosurgery. This may obviate the need for invasive implantation of fiducial markers into the skull and may improve treatment room efficiency and accuracy. © The Author(s) 2014.
Vandenberghe, Bart; Corpas, Livia; Bosmans, Hilde; Yang, Jie; Jacobs, Reinhilde
2011-08-01
The aim of this study was the determination of image accuracy and quality for periodontal diagnosis using various X-ray generators with conventional and digital radiographs. Thirty-one in vitro periodontal defects were evaluated on intraoral conventional (E-, F/E-speed) and digital images (three indirect, two direct sensors). Standardised radiographs were made with an alternating current (AC), a high-frequency (HF) and a direct current (DC) X-ray unit at rising exposure times (20-160 ms with 20-ms interval) with a constant kV of 70. Three observers assessed bone levels for comparison to the gold standard. Lamina dura, contrast, trabecularisation, crater and furcation involvements were evaluated. Irrespective X-ray generator-type, measurement deviations increased at higher exposure times for solid-state, but decreased for photostimulable storage phosphor (PSP) systems. Accuracy for HF or DC was significantly higher than AC (p < 0.0001), especially at low exposure times. At 0.5- to 1-mm clinical deviation, 27-53% and 32-55% dose savings were demonstrated when using HF or DC generators compared to AC, but only for PSP. No savings were found for solid-state sensors, indicating their higher sensitivity. The use of digital sensors compared to film allowed 15-90% dose savings using the AC tube, whilst solid-state sensors allowed approximately 50% savings compared to PSP, depending on tube type and threshold level.. Accuracy of periodontal diagnosis increases when using HF or DC generators and/or digital receptors with adequate diagnostic information at lower exposure times.
Hunter, C; Siddiqui, M; Georgiou Delisle, T; Blake, H; Jeyadevan, N; Abulafi, M; Swift, I; Toomey, P; Brown, G
2017-04-01
To compare the preoperative staging accuracy of computed tomography (CT) and 3-T magnetic resonance imaging (MRI) in colon cancer, and to investigate the prognostic significance of identified risk factors. Fifty-eight patients undergoing primary resection of their colon cancer were prospectively recruited, with 53 patients included for final analysis. Accuracy of CT and MRI were compared for two readers, using postoperative histology as the reference standard. Patients were followed-up for a median of 39 months. Risk factors were compared by modality and reader in terms of metachronous metastases and disease-free survival (DFS), stratified for adjuvant chemotherapy. Accuracy for the identification of T3c+ disease was non-significantly greater on MRI (75% and 79%) than CT (70% and 77%). Differences in the accuracy of MRI and CT for identification of T3+ disease (MRI 75% and 57%, CT 72% and 66%) and N+ disease (MRI 62% and 63%, CT 62% and 56%) were also non-significant. Identification of extramural venous invasion (EMVI+) disease was significantly greater on MRI (75% and 75%) than CT (79% and 54%) for one reader (p=0.029). T3c+ disease at histopathology was the only risk factor that demonstrated a significant difference in rate of metachronous metastases (odds ratio [OR] 8.6, p=0.0044) and DFS stratified for adjuvant therapy (OR=4, p=0.048). T3c or greater disease is the strongest risk factor for predicting DFS in colon cancer, and is accurately identified on imaging. T3c+ disease may therefore be the best imaging entry criteria for trials of neoadjuvant treatment. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
de la Coba, Pablo; Bruehl, Stephen; Gálvez-Sánchez, Carmen María; Reyes Del Paso, Gustavo A
2018-05-01
This study examined the diagnostic accuracy and test-retest reliability of a novel dynamic evoked pain protocol (slowly repeated evoked pain; SREP) compared to temporal summation of pain (TSP), a standard index of central sensitization. Thirty-five fibromyalgia (FM) and 30 rheumatoid arthritis (RA) patients completed, in pseudorandomized order, a standard mechanical TSP protocol (10 stimuli of 1s duration at the thenar eminence using a 300g monofilament with 1s interstimulus interval) and the SREP protocol (9 suprathreshold pressure stimuli of 5s duration applied to the fingernail with a 30s interstimulus interval). In order to evaluate reliability for both protocols, they were repeated in a second session 4-7 days later. Evidence for significant pain sensitization over trials (increasing pain intensity ratings) was observed for SREP in FM (p<.001) but not in RA (p=.35), whereas significant sensitization was observed in both diagnostic groups for the TSP protocol (p's<.008). Compared to TSP, SREP demonstrated higher overall diagnostic accuracy (87.7% vs. 64.6%), greater sensitivity (0.89 vs. 0.57), and greater specificity (0.87 vs. 0.73) in discriminating between FM and RA patients. Test-retest reliability of SREP sensitization was good in FM (ICCs: 0.80), and moderate in RA (ICC: 0.68). SREP seems to be a dynamic evoked pain index tapping into pain sensitization that allows for greater diagnostic accuracy in identifying FM patients compared to a standard TSP protocol. Further research is needed to study mechanisms underlying SREP and the potential utility of adding SREP to standard pain evaluation protocols.
Senore, Carlo; Mandel, Jack S.; Allison, James E.; Atkin, Wendy S.; Benamouzig, Robert; Bossuyt, Patrick M. M.; Silva, Mahinda De; Guittet, Lydia; Halloran, Stephen P.; Haug, Ulrike; Hoff, Geir; Itzkowitz, Steven H.; Leja, Marcis; Levin, Bernard; Meijer, Gerrit A.; O'Morain, Colm A.; Parry, Susan; Rabeneck, Linda; Rozen, Paul; Saito, Hiroshi; Schoen, Robert E.; Seaman, Helen E.; Steele, Robert J. C.; Sung, Joseph J. Y.; Winawer, Sidney J.
2016-01-01
BACKGROUND New screening tests for colorectal cancer continue to emerge, but the evidence needed to justify their adoption in screening programs remains uncertain. METHODS A review of the literature and a consensus approach by experts was undertaken to provide practical guidance on how to compare new screening tests with proven screening tests. RESULTS Findings and recommendations from the review included the following: Adoption of a new screening test requires evidence of effectiveness relative to a proven comparator test. Clinical accuracy supported by programmatic population evaluation in the screening context on an intention‐to‐screen basis, including acceptability, is essential. Cancer‐specific mortality is not essential as an endpoint provided that the mortality benefit of the comparator has been demonstrated and that the biologic basis of detection is similar. Effectiveness of the guaiac‐based fecal occult blood test provides the minimum standard to be achieved by a new test. A 4‐phase evaluation is recommended. An initial retrospective evaluation in cancer cases and controls (Phase 1) is followed by a prospective evaluation of performance across the continuum of neoplastic lesions (Phase 2). Phase 3 follows the demonstration of adequate accuracy in these 2 prescreening phases and addresses programmatic outcomes at 1 screening round on an intention‐to‐screen basis. Phase 4 involves more comprehensive evaluation of ongoing screening over multiple rounds. Key information is provided from the following parameters: the test positivity rate in a screening population, the true‐positive and false‐positive rates, and the number needed to colonoscope to detect a target lesion. CONCLUSIONS New screening tests can be evaluated efficiently by this stepwise comparative approach. Cancer 2016;122:826–39. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. PMID:26828588
Young, Graeme P; Senore, Carlo; Mandel, Jack S; Allison, James E; Atkin, Wendy S; Benamouzig, Robert; Bossuyt, Patrick M M; Silva, Mahinda De; Guittet, Lydia; Halloran, Stephen P; Haug, Ulrike; Hoff, Geir; Itzkowitz, Steven H; Leja, Marcis; Levin, Bernard; Meijer, Gerrit A; O'Morain, Colm A; Parry, Susan; Rabeneck, Linda; Rozen, Paul; Saito, Hiroshi; Schoen, Robert E; Seaman, Helen E; Steele, Robert J C; Sung, Joseph J Y; Winawer, Sidney J
2016-03-15
New screening tests for colorectal cancer continue to emerge, but the evidence needed to justify their adoption in screening programs remains uncertain. A review of the literature and a consensus approach by experts was undertaken to provide practical guidance on how to compare new screening tests with proven screening tests. Findings and recommendations from the review included the following: Adoption of a new screening test requires evidence of effectiveness relative to a proven comparator test. Clinical accuracy supported by programmatic population evaluation in the screening context on an intention-to-screen basis, including acceptability, is essential. Cancer-specific mortality is not essential as an endpoint provided that the mortality benefit of the comparator has been demonstrated and that the biologic basis of detection is similar. Effectiveness of the guaiac-based fecal occult blood test provides the minimum standard to be achieved by a new test. A 4-phase evaluation is recommended. An initial retrospective evaluation in cancer cases and controls (Phase 1) is followed by a prospective evaluation of performance across the continuum of neoplastic lesions (Phase 2). Phase 3 follows the demonstration of adequate accuracy in these 2 prescreening phases and addresses programmatic outcomes at 1 screening round on an intention-to-screen basis. Phase 4 involves more comprehensive evaluation of ongoing screening over multiple rounds. Key information is provided from the following parameters: the test positivity rate in a screening population, the true-positive and false-positive rates, and the number needed to colonoscope to detect a target lesion. New screening tests can be evaluated efficiently by this stepwise comparative approach. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.
Hampp, Emily L; Chughtai, Morad; Scholl, Laura Y; Sodhi, Nipun; Bhowmik-Stoker, Manoshi; Jacofsky, David J; Mont, Michael A
2018-05-01
This study determined if robotic-arm assisted total knee arthroplasty (RATKA) allows for more accurate and precise bone cuts and component position to plan compared with manual total knee arthroplasty (MTKA). Specifically, we assessed the following: (1) final bone cuts, (2) final component position, and (3) a potential learning curve for RATKA. On six cadaver specimens (12 knees), a MTKA and RATKA were performed on the left and right knees, respectively. Bone-cut and final-component positioning errors relative to preoperative plans were compared. Median errors and standard deviations (SDs) in the sagittal, coronal, and axial planes were compared. Median values of the absolute deviation from plan defined the accuracy to plan. SDs described the precision to plan. RATKA bone cuts were as or more accurate to plan based on nominal median values in 11 out of 12 measurements. RATKA bone cuts were more precise to plan in 8 out of 12 measurements ( p ≤ 0.05). RATKA final component positions were as or more accurate to plan based on median values in five out of five measurements. RATKA final component positions were more precise to plan in four out of five measurements ( p ≤ 0.05). Stacked error results from all cuts and implant positions for each specimen in procedural order showed that RATKA error was less than MTKA error. Although this study analyzed a small number of cadaver specimens, there were clear differences that separated these two groups. When compared with MTKA, RATKA demonstrated more accurate and precise bone cuts and implant positioning to plan. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Xu, Rende; Li, Chenguang; Qian, Juying; Ge, Junbo
2015-11-01
Invasive fractional flow reserve (FFR) is the gold standard for the determination of physiologic stenosis severity and the need for revascularization. FFR computed from standard acquired coronary computed tomographic angiography datasets (FFRCT) is an emerging technology which allows calculation of FFR using resting image data from coronary computed tomographic angiography (CCTA). However, the diagnostic accuracy of FFRCT in the evaluation of lesion-specific myocardial ischemia remains to be confirmed, especially in patients with intermediate coronary stenosis. We performed an integrated analysis of data from 3 prospective, international, and multicenter trials, which assessed the diagnostic performance of FFRCT using invasive FFR as a reference standard. Three studies evaluating 609 patients and 1050 vessels were included. The total calculated sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of FFRCT were 82.8%, 77.7%, 60.8%, 91.6%, and 79.2%, respectively, for the per-vessel analysis, and 89.4%, 70.5%, 69.7%, 89.7%, and 78.7%, respectively, for the per-patient analysis. Compared with CCTA alone, FFRCT demonstrated significantly improved accuracy (P < 0.001) in detecting lesion-specific ischemia. In patients with intermediate coronary stenosis, FFRCT remained both highly sensitive and specific with respect to the diagnosis of ischemia. In conclusion, FFRCT appears to be a reliable noninvasive alternative to invasive FFR, as it demonstrates high accuracy in the determination of anatomy and lesion-specific ischemia, which justifies the performance of additional randomized controlled trials to evaluate both the clinical benefits and the cost-effectiveness of FFRCT-guided coronary revascularization.
Ikeuchi, Hiroko; Ikuta, Ko
2016-09-01
In the last decade, posterior instrumented fusion using percutaneous pedicle screws (PPSs) had been growing in popularity, and its safety and good clinical results have been reported. However, there have been few previous reports of the accuracy of PPS placement compared with that of conventional open screw insertion in an institution. This study aimed to evaluate the accuracy of PPS placement compared with that of conventional open technique. One hundred patients were treated with posterior instrumented fusion of the thoracic and lumbar spine from April 2008 to July 2013. Four cases of revised instrumentation surgery were excluded. In this study, the pedicle screws inserted below Th7 were investigated, therefore, a total of 455 screws were enrolled. Two hundred and ninety-three pedicle screws were conventional open-inserted screws (O-group) and 162 screws were PPSs (P-group). We conducted a comparative study about the accuracy of placement between the two groups. Postoperative computed tomography scans were carried out to all patients, and the pedicle screw position was assessed according to a scoring system described by Zdichavsky et al. (Eur J Trauma 30:241-247, 2004; Eur J Trauma 30:234-240, 2004) and a classification described by Wiesner et al. (Spine 24:1599-1603, 1999). Based on Zdichavsky's scoring system, the number of grade Ia screws was 283 (96.6 %) in the O-group and 153 (94.4 %) in the P-group, whereas 5 screws (1.7 %) in the O-group and one screw (0.6 %) in the P-group were grade IIIa/IIIb. Meanwhile, the pedicle wall penetrations based on Wiesner classification were demonstrated in 20 screws (6.8 %) in the O-group, and 12 screws (7.4 %) in the P-group. No neurologic complications were observed and no screws had to be replaced in both groups. The PPSs could be ideally inserted without complications. There were no statistically significant differences about the accuracy between the conventional open insertion and PPS placement.
Chen, Chia-Hsiung; Azari, David; Hu, Yu Hen; Lindstrom, Mary J.; Thelen, Darryl; Yen, Thomas Y.; Radwin, Robert G.
2015-01-01
Objective Marker-less 2D video tracking was studied as a practical means to measure upper limb kinematics for ergonomics evaluations. Background Hand activity level (HAL) can be estimated from speed and duty cycle. Accuracy was measured using a cross correlation template-matching algorithm for tracking a region of interest on the upper extremities. Methods Ten participants performed a paced load transfer task while varying HAL (2, 4, and 5) and load (2.2 N, 8.9 N and 17.8 N). Speed and acceleration measured from 2D video were compared against ground truth measurements using 3D infrared motion capture. Results The median absolute difference between 2D video and 3D motion capture was 86.5 mm/s for speed, and 591 mm/s2 for acceleration, and less than 93 mm/s for speed and 656 mm/s2 for acceleration when camera pan and tilt were within ±30 degrees. Conclusion Single-camera 2D video had sufficient accuracy (< 100 mm/s) for evaluating HAL. Practitioner Summary This study demonstrated that 2D video tracking had sufficient accuracy to measure HAL for ascertaining the American Conference of Government Industrial Hygienists Threshold Limit Value® for repetitive motion when the camera is located within ±30 degrees off the plane of motion when compared against 3D motion capture for a simulated repetitive motion task. PMID:25978764
Frozen section pathology for decision making in parotid surgery.
Olsen, Kerry D; Moore, Eric J; Lewis, Jean E
2013-12-01
For parotid lesions, the high accuracy and utility of intraoperative frozen section (FS) pathology, compared with permanent section pathology, facilitates intraoperative decision making about the extent of surgery required. To demonstrate the accuracy and utility of FS pathology of parotid lesions as one factor in intraoperative decision making. Retrospective review of patients undergoing parotidectomy at a tertiary care center. Evaluation of the accuracy of FS pathology for parotid surgery by comparing FS pathology results with those of permanent section. Documented changes from FS to permanent section in 1339 parotidectomy pathology reports conducted from January 1, 2000, through December 31, 2009, included 693 benign and 268 primary and metastatic malignant tumors. Changes in diagnosis were found from benign to malignant (n = 11) and malignant to benign (n = 2). Sensitivity and specificity of a malignant diagnosis were 98.5% and 99.0%, respectively. Other changes were for lymphoma vs inflammation or lymphoma typing (n = 89) and for confirmation of or change in tumor type for benign (n = 36) or malignant (n = 69) tumors. No case changed from low- to high-grade malignant tumor. Only 4 cases that changed from FS to permanent section would have affected intraoperative decision making. Three patients underwent additional surgery 2 to 3 weeks later. Overall, only 1 patient was overtreated (lymphoma initially deemed carcinoma). Frozen section pathology for parotid lesions has high accuracy and utility in intraoperative decision making, facilitating timely complete procedures.
Deep Learning to Classify Radiology Free-Text Reports.
Chen, Matthew C; Ball, Robyn L; Yang, Lingyao; Moradzadeh, Nathaniel; Chapman, Brian E; Larson, David B; Langlotz, Curtis P; Amrhein, Timothy J; Lungren, Matthew P
2018-03-01
Purpose To evaluate the performance of a deep learning convolutional neural network (CNN) model compared with a traditional natural language processing (NLP) model in extracting pulmonary embolism (PE) findings from thoracic computed tomography (CT) reports from two institutions. Materials and Methods Contrast material-enhanced CT examinations of the chest performed between January 1, 1998, and January 1, 2016, were selected. Annotations by two human radiologists were made for three categories: the presence, chronicity, and location of PE. Classification of performance of a CNN model with an unsupervised learning algorithm for obtaining vector representations of words was compared with the open-source application PeFinder. Sensitivity, specificity, accuracy, and F1 scores for both the CNN model and PeFinder in the internal and external validation sets were determined. Results The CNN model demonstrated an accuracy of 99% and an area under the curve value of 0.97. For internal validation report data, the CNN model had a statistically significant larger F1 score (0.938) than did PeFinder (0.867) when classifying findings as either PE positive or PE negative, but no significant difference in sensitivity, specificity, or accuracy was found. For external validation report data, no statistical difference between the performance of the CNN model and PeFinder was found. Conclusion A deep learning CNN model can classify radiology free-text reports with accuracy equivalent to or beyond that of an existing traditional NLP model. © RSNA, 2017 Online supplemental material is available for this article.
Combining geostatistics with Moran's I analysis for mapping soil heavy metals in Beijing, China.
Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo
2012-03-01
Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran's I analysis was used to supplement the traditional geostatistics. According to Moran's I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran's I and the standardized Moran's I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran's I analysis was better than traditional geostatistics. Thus, Moran's I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals.
Combining Geostatistics with Moran’s I Analysis for Mapping Soil Heavy Metals in Beijing, China
Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo
2012-01-01
Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran’s I analysis was used to supplement the traditional geostatistics. According to Moran’s I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran’s I and the standardized Moran’s I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran’s I analysis was better than traditional geostatistics. Thus, Moran’s I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals. PMID:22690179
Global positioning method based on polarized light compass system
NASA Astrophysics Data System (ADS)
Liu, Jun; Yang, Jiangtao; Wang, Yubo; Tang, Jun; Shen, Chong
2018-05-01
This paper presents a global positioning method based on a polarized light compass system. A main limitation of polarization positioning is the environment such as weak and locally destroyed polarization environments, and the solution to the positioning problem is given in this paper which is polarization image de-noising and segmentation. Therefore, the pulse coupled neural network is employed for enhancing positioning performance. The prominent advantages of the present positioning technique are as follows: (i) compared to the existing position method based on polarized light, better sun tracking accuracy can be achieved and (ii) the robustness and accuracy of positioning under weak and locally destroyed polarization environments, such as cloudy or building shielding, are improved significantly. Finally, some field experiments are given to demonstrate the effectiveness and applicability of the proposed global positioning technique. The experiments have shown that our proposed method outperforms the conventional polarization positioning method, the real time longitude and latitude with accuracy up to 0.0461° and 0.0911°, respectively.
Quantitative hard x-ray phase contrast imaging of micropipes in SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohn, V. G.; Argunova, T. S.; Je, J. H., E-mail: jhje@postech.ac.kr
2013-12-15
Peculiarities of quantitative hard x-ray phase contrast imaging of micropipes in SiC are discussed. The micropipe is assumed as a hollow cylinder with an elliptical cross section. The major and minor diameters can be restored using the least square fitting procedure by comparing the experimental data, i.e. the profile across the micropipe axis, with those calculated based on phase contrast theory. It is shown that one projection image gives an information which does not allow a complete determination of the elliptical cross section, if an orientation of micropipe is not known. Another problem is a weak accuracy in estimating themore » diameters, partly because of using pink synchrotron radiation, which is necessary because a monochromatic beam intensity is not sufficient to reveal the weak contrast from a very small object. The general problems of accuracy in estimating the two diameters using the least square procedure are discussed. Two experimental examples are considered to demonstrate small as well as modest accuracies in estimating the diameters.« less
Paraskevopoulou, Sivylla E; Wu, Di; Eftekhar, Amir; Constandinou, Timothy G
2014-09-30
This work presents a novel unsupervised algorithm for real-time adaptive clustering of neural spike data (spike sorting). The proposed Hierarchical Adaptive Means (HAM) clustering method combines centroid-based clustering with hierarchical cluster connectivity to classify incoming spikes using groups of clusters. It is described how the proposed method can adaptively track the incoming spike data without requiring any past history, iteration or training and autonomously determines the number of spike classes. Its performance (classification accuracy) has been tested using multiple datasets (both simulated and recorded) achieving a near-identical accuracy compared to k-means (using 10-iterations and provided with the number of spike classes). Also, its robustness in applying to different feature extraction methods has been demonstrated by achieving classification accuracies above 80% across multiple datasets. Last but crucially, its low complexity, that has been quantified through both memory and computation requirements makes this method hugely attractive for future hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.
Luo, Xiongbiao; Jayarathne, Uditha L; McLeod, A Jonathan; Mori, Kensaku
2014-01-01
Endoscopic navigation generally integrates different modalities of sensory information in order to continuously locate an endoscope relative to suspicious tissues in the body during interventions. Current electromagnetic tracking techniques for endoscopic navigation have limited accuracy due to tissue deformation and magnetic field distortion. To avoid these limitations and improve the endoscopic localization accuracy, this paper proposes a new endoscopic navigation framework that uses an optical mouse sensor to measure the endoscope movements along its viewing direction. We then enhance the differential evolution algorithm by modifying its mutation operation. Based on the enhanced differential evolution method, these movement measurements and image structural patches in endoscopic videos are fused to accurately determine the endoscope position. An evaluation on a dynamic phantom demonstrated that our method provides a more accurate navigation framework. Compared to state-of-the-art methods, it improved the navigation accuracy from 2.4 to 1.6 mm and reduced the processing time from 2.8 to 0.9 seconds.
An implicit spatial and high-order temporal finite difference scheme for 2D acoustic modelling
NASA Astrophysics Data System (ADS)
Wang, Enjiang; Liu, Yang
2018-01-01
The finite difference (FD) method exhibits great superiority over other numerical methods due to its easy implementation and small computational requirement. We propose an effective FD method, characterised by implicit spatial and high-order temporal schemes, to reduce both the temporal and spatial dispersions simultaneously. For the temporal derivative, apart from the conventional second-order FD approximation, a special rhombus FD scheme is included to reach high-order accuracy in time. Compared with the Lax-Wendroff FD scheme, this scheme can achieve nearly the same temporal accuracy but requires less floating-point operation times and thus less computational cost when the same operator length is adopted. For the spatial derivatives, we adopt the implicit FD scheme to improve the spatial accuracy. Apart from the existing Taylor series expansion-based FD coefficients, we derive the least square optimisation based implicit spatial FD coefficients. Dispersion analysis and modelling examples demonstrate that, our proposed method can effectively decrease both the temporal and spatial dispersions, thus can provide more accurate wavefields.
Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.
Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe
2017-10-01
Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.
Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface.
Kiran Kumar, G R; Reddy, M Ramasubba
2018-06-08
Traditional Spatial filters used for steady-state visual evoked potential (SSVEP) extraction such as minimum energy combination (MEC) require the estimation of the background electroencephalogram (EEG) noise components. Even though this leads to improved performance in low signal to noise ratio (SNR) conditions, it makes such algorithms slow compared to the standard detection methods like canonical correlation analysis (CCA) due to the additional computational cost. In this paper, Periodic component analysis (πCA) is presented as an alternative spatial filtering approach to extract the SSVEP component effectively without involving extensive modelling of the noise. The πCA can separate out components corresponding to a given frequency of interest from the background electroencephalogram (EEG) by capturing the temporal information and does not generalize SSVEP based on rigid templates. Data from ten test subjects were used to evaluate the proposed method and the results demonstrate that the periodic component analysis acts as a reliable spatial filter for SSVEP extraction. Statistical tests were performed to validate the results. The experimental results show that πCA provides significant improvement in accuracy compared to standard CCA and MEC in low SNR conditions. The results demonstrate that πCA provides better detection accuracy compared to CCA and on par with that of MEC at a lower computational cost. Hence πCA is a reliable and efficient alternative detection algorithm for SSVEP based brain-computer interface (BCI). Copyright © 2018. Published by Elsevier B.V.
Comparison of Perfusion CT Software to Predict the Final Infarct Volume After Thrombectomy.
Austein, Friederike; Riedel, Christian; Kerby, Tina; Meyne, Johannes; Binder, Andreas; Lindner, Thomas; Huhndorf, Monika; Wodarg, Fritz; Jansen, Olav
2016-09-01
Computed tomographic perfusion represents an interesting physiological imaging modality to select patients for reperfusion therapy in acute ischemic stroke. The purpose of our study was to determine the accuracy of different commercial perfusion CT software packages (Philips (A), Siemens (B), and RAPID (C)) to predict the final infarct volume (FIV) after mechanical thrombectomy. Single-institutional computed tomographic perfusion data from 147 mechanically recanalized acute ischemic stroke patients were postprocessed. Ischemic core and FIV were compared about thrombolysis in cerebral infarction (TICI) score and time interval to reperfusion. FIV was measured at follow-up imaging between days 1 and 8 after stroke. In 118 successfully recanalized patients (TICI 2b/3), a moderately to strongly positive correlation was observed between ischemic core and FIV. The highest accuracy and best correlation are shown in early and fully recanalized patients (Pearson r for A=0.42, B=0.64, and C=0.83; P<0.001). Bland-Altman plots and boxplots demonstrate smaller ranges in package C than in A and B. Significant differences were found between the packages about over- and underestimation of the ischemic core. Package A, compared with B and C, estimated more than twice as many patients with a malignant stroke profile (P<0.001). Package C best predicted hypoperfusion volume in nonsuccessfully recanalized patients. Our study demonstrates best accuracy and approximation between the results of a fully automated software (RAPID) and FIV, especially in early and fully recanalized patients. Furthermore, this software package overestimated the FIV to a significantly lower degree and estimated a malignant mismatch profile less often than other software. © 2016 American Heart Association, Inc.
An augmented reality tool for learning spatial anatomy on mobile devices.
Jain, Nishant; Youngblood, Patricia; Hasel, Matthew; Srivastava, Sakti
2017-09-01
Augmented Realty (AR) offers a novel method of blending virtual and real anatomy for intuitive spatial learning. Our first aim in the study was to create a prototype AR tool for mobile devices. Our second aim was to complete a technical evaluation of our prototype AR tool focused on measuring the system's ability to accurately render digital content in the real world. We imported Computed Tomography (CT) data derived virtual surface models into a 3D Unity engine environment and implemented an AR algorithm to display these on mobile devices. We investigated the accuracy of the virtual renderings by comparing a physical cube with an identical virtual cube for dimensional accuracy. Our comparative study confirms that our AR tool renders 3D virtual objects with a high level of accuracy as evidenced by the degree of similarity between measurements of the dimensions of a virtual object (a cube) and the corresponding physical object. We developed an inexpensive and user-friendly prototype AR tool for mobile devices that creates highly accurate renderings. This prototype demonstrates an intuitive, portable, and integrated interface for spatial interaction with virtual anatomical specimens. Integrating this AR tool with a library of CT derived surface models provides a platform for spatial learning in the anatomy curriculum. The segmentation methodology implemented to optimize human CT data for mobile viewing can be extended to include anatomical variations and pathologies. The ability of this inexpensive educational platform to deliver a library of interactive, 3D models to students worldwide demonstrates its utility as a supplemental teaching tool that could greatly benefit anatomical instruction. Clin. Anat. 30:736-741, 2017. © 2017Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Samanci, Yavuz; Karagöz, Yeşim; Yaman, Mehmet; Atçı, İbrahim Burak; Emre, Ufuk; Kılıçkesmez, Nuri Özgür; Çelik, Suat Erol
2016-11-01
To determine the accuracy of median nerve T2 evaluation and its relation with Boston Questionnaire (BQ) and nerve conduction studies (NCSs) in pre-operative and post-operative carpal tunnel syndrome (CTS) patients in comparison with healthy volunteers. Twenty-three CTS patients and 24 healthy volunteers underwent NCSs, median nerve T2 evaluation and self-administered BQ. Pre-operative and 1st year post-operative median nerve T2 values and cross-sectional areas (CSAs) were compared both within pre-operative and post-operative CTS groups, and with healthy volunteers. The relationship between MRI findings and BQ and NCSs was analyzed. The ROC curve analysis was used for determining the accuracy. The comparison of pre-operative and post-operative T2 values and CSAs revealed statistically significant improvements in the post-operative patient group (p<0.001 for all parameters). There were positive correlations between T2 values at all levels and BQ values, and positive and negative correlations were also found regarding T2 values and NCS findings in CTS patients. The receiver operating characteristic curve analysis for defined cut-off levels of median nerve T2 values in hands with severe CTS yielded excellent accuracy at all levels. However, this accuracy could not be demonstrated in hands with mild CTS. This study is the first to analyze T2 values in both pre-operative and post-operative CTS patients. The presence of increased T2 values in CTS patients compared to controls and excellent accuracy in hands with severe CTS indicates T2 signal changes related to CTS pathophysiology and possible utilization of T2 signal evaluation in hands with severe CTS. Copyright © 2016 Elsevier B.V. All rights reserved.
Zheng, Dandan; Todor, Dorin A
2011-01-01
In real-time trans-rectal ultrasound (TRUS)-based high-dose-rate prostate brachytherapy, the accurate identification of needle-tip position is critical for treatment planning and delivery. Currently, needle-tip identification on ultrasound images can be subject to large uncertainty and errors because of ultrasound image quality and imaging artifacts. To address this problem, we developed a method based on physical measurements with simple and practical implementation to improve the accuracy and robustness of needle-tip identification. Our method uses measurements of the residual needle length and an off-line pre-established coordinate transformation factor, to calculate the needle-tip position on the TRUS images. The transformation factor was established through a one-time systematic set of measurements of the probe and template holder positions, applicable to all patients. To compare the accuracy and robustness of the proposed method and the conventional method (ultrasound detection), based on the gold-standard X-ray fluoroscopy, extensive measurements were conducted in water and gel phantoms. In water phantom, our method showed an average tip-detection accuracy of 0.7 mm compared with 1.6 mm of the conventional method. In gel phantom (more realistic and tissue-like), our method maintained its level of accuracy while the uncertainty of the conventional method was 3.4mm on average with maximum values of over 10mm because of imaging artifacts. A novel method based on simple physical measurements was developed to accurately detect the needle-tip position for TRUS-based high-dose-rate prostate brachytherapy. The method demonstrated much improved accuracy and robustness over the conventional method. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Actuator-Assisted Calibration of Freehand 3D Ultrasound System.
Koo, Terry K; Silvia, Nathaniel
2018-01-01
Freehand three-dimensional (3D) ultrasound has been used independently of other technologies to analyze complex geometries or registered with other imaging modalities to aid surgical and radiotherapy planning. A fundamental requirement for all freehand 3D ultrasound systems is probe calibration. The purpose of this study was to develop an actuator-assisted approach to facilitate freehand 3D ultrasound calibration using point-based phantoms. We modified the mathematical formulation of the calibration problem to eliminate the need of imaging the point targets at different viewing angles and developed an actuator-assisted approach/setup to facilitate quick and consistent collection of point targets spanning the entire image field of view. The actuator-assisted approach was applied to a commonly used cross wire phantom as well as two custom-made point-based phantoms (original and modified), each containing 7 collinear point targets, and compared the results with the traditional freehand cross wire phantom calibration in terms of calibration reproducibility, point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time. Results demonstrated that the actuator-assisted single cross wire phantom calibration significantly improved the calibration reproducibility and offered similar point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time with respect to the freehand cross wire phantom calibration. On the other hand, the actuator-assisted modified "collinear point target" phantom calibration offered similar precision and accuracy when compared to the freehand cross wire phantom calibration, but it reduced the data acquisition time by 57%. It appears that both actuator-assisted cross wire phantom and modified collinear point target phantom calibration approaches are viable options for freehand 3D ultrasound calibration.
Actuator-Assisted Calibration of Freehand 3D Ultrasound System
2018-01-01
Freehand three-dimensional (3D) ultrasound has been used independently of other technologies to analyze complex geometries or registered with other imaging modalities to aid surgical and radiotherapy planning. A fundamental requirement for all freehand 3D ultrasound systems is probe calibration. The purpose of this study was to develop an actuator-assisted approach to facilitate freehand 3D ultrasound calibration using point-based phantoms. We modified the mathematical formulation of the calibration problem to eliminate the need of imaging the point targets at different viewing angles and developed an actuator-assisted approach/setup to facilitate quick and consistent collection of point targets spanning the entire image field of view. The actuator-assisted approach was applied to a commonly used cross wire phantom as well as two custom-made point-based phantoms (original and modified), each containing 7 collinear point targets, and compared the results with the traditional freehand cross wire phantom calibration in terms of calibration reproducibility, point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time. Results demonstrated that the actuator-assisted single cross wire phantom calibration significantly improved the calibration reproducibility and offered similar point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time with respect to the freehand cross wire phantom calibration. On the other hand, the actuator-assisted modified “collinear point target” phantom calibration offered similar precision and accuracy when compared to the freehand cross wire phantom calibration, but it reduced the data acquisition time by 57%. It appears that both actuator-assisted cross wire phantom and modified collinear point target phantom calibration approaches are viable options for freehand 3D ultrasound calibration. PMID:29854371
Ranucci, Marco; Castelvecchio, Serenella; Menicanti, Lorenzo; Frigiola, Alessandro; Pelissero, Gabriele
2010-03-01
The European system for cardiac operative risk evaluation (EuroSCORE) is currently used in many institutions and is considered a reference tool in many countries. We hypothesised that too many variables were included in the EuroSCORE using limited patient series. We tested different models using a limited number of variables. A total of 11150 adult patients undergoing cardiac operations at our institution (2001-2007) were retrospectively analysed. The 17 risk factors composing the EuroSCORE were separately analysed and ranked for accuracy of prediction of hospital mortality. Seventeen models were created by progressively including one factor at a time. The models were compared for accuracy with a receiver operating characteristics (ROC) analysis and area under the curve (AUC) evaluation. Calibration was tested with Hosmer-Lemeshow statistics. Clinical performance was assessed by comparing the predicted with the observed mortality rates. The best accuracy (AUC 0.76) was obtained using a model including only age, left ventricular ejection fraction, serum creatinine, emergency operation and non-isolated coronary operation. The EuroSCORE AUC (0.75) was not significantly different. Calibration and clinical performance were better in the five-factor model than in the EuroSCORE. Only in high-risk patients were 12 factors needed to achieve a good performance. Including many factors in multivariable logistic models increases the risk for overfitting, multicollinearity and human error. A five-factor model offers the same level of accuracy but demonstrated better calibration and clinical performance. Models with a limited number of factors may work better than complex models when applied to a limited number of patients. Copyright (c) 2009 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.
Yang, Xiaofeng; Tridandapani, Srini; Beitler, Jonathan J; Yu, David S; Chen, Zhengjia; Kim, Sungjin; Bruner, Deborah W; Curran, Walter J; Liu, Tian
2014-10-01
To investigate the diagnostic accuracy of ultrasound histogram features in the quantitative assessment of radiation-induced parotid gland injury and to identify potential imaging biomarkers for radiation-induced xerostomia (dry mouth)-the most common and debilitating side effect after head-and-neck radiotherapy (RT). Thirty-four patients, who have developed xerostomia after RT for head-and-neck cancer, were enrolled. Radiation-induced xerostomia was defined by the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer morbidity scale. Ultrasound scans were performed on each patient's parotids bilaterally. The 34 patients were stratified into the acute-toxicity groups (16 patients, ≤ 3 months after treatment) and the late-toxicity group (18 patients, > 3 months after treatment). A separate control group of 13 healthy volunteers underwent similar ultrasound scans of their parotid glands. Six sonographic features were derived from the echo-intensity histograms to assess acute and late toxicity of the parotid glands. The quantitative assessments were compared to a radiologist's clinical evaluations. The diagnostic accuracy of these ultrasonic histogram features was evaluated with the receiver operating characteristic (ROC) curve. With an area under the ROC curve greater than 0.90, several histogram features demonstrated excellent diagnostic accuracy for evaluation of acute and late toxicity of parotid glands. Significant differences (P < .05) in all six sonographic features were demonstrated between the control, acute-toxicity, and late-toxicity groups. However, subjective radiologic evaluation cannot distinguish between acute and late toxicity of parotid glands. We demonstrated that ultrasound histogram features could be used to measure acute and late toxicity of the parotid glands after head-and-neck cancer RT, which may be developed into a low-cost imaging method for xerostomia monitoring and assessment. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Sadder and less accurate? False memory for negative material in depression.
Joormann, Jutta; Teachman, Bethany A; Gotlib, Ian H
2009-05-01
Previous research has demonstrated that induced sad mood is associated with increased accuracy of recall in certain memory tasks; the effects of clinical depression, however, are likely to be quite different. The authors used the Deese-Roediger-McDermott paradigm to examine the impact of clinical depression on erroneous recall of neutral and/or emotional stimuli. Specifically, they presented Deese-Roediger-McDermott lists that were highly associated with negative, neutral, or positive lures and compared participants diagnosed with major depressive disorder and nondepressed control participants on the accuracy of their recall of presented material and their false recall of never-presented lures. Compared with control participants, major depressive disorder participants recalled fewer words that had been previously presented but were more likely to falsely recall negative lures; there were no differences between major depressive disorder and control participants in false recall of positive or neutral lures. These findings indicate that depression is associated with false memories of negative material.
Pfammatter, Sibylle; Bonneil, Eric; Thibault, Pierre
2016-12-02
Quantitative proteomics using isobaric reagent tandem mass tags (TMT) or isobaric tags for relative and absolute quantitation (iTRAQ) provides a convenient approach to compare changes in protein abundance across multiple samples. However, the analysis of complex protein digests by isobaric labeling can be undermined by the relative large proportion of co-selected peptide ions that lead to distorted reporter ion ratios and affect the accuracy and precision of quantitative measurements. Here, we investigated the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS) in proteomic experiments to reduce sample complexity and improve protein quantification using TMT isobaric labeling. LC-FAIMS-MS/MS analyses of human and yeast protein digests led to significant reductions in interfering ions, which increased the number of quantifiable peptides by up to 68% while significantly improving the accuracy of abundance measurements compared to that with conventional LC-MS/MS. The improvement in quantitative measurements using FAIMS is further demonstrated for the temporal profiling of protein abundance of HEK293 cells following heat shock treatment.
Liu, Jian; Gao, Yun-Hua; Li, Ding-Dong; Gao, Yan-Chun; Hou, Ling-Mi; Xie, Ting
2014-01-01
To compare the value of contrast-enhanced ultrasound (CEUS) qualitative and quantitative analysis in the identification of breast tumor lumps. Qualitative and quantitative indicators of CEUS for 73 cases of breast tumor lumps were retrospectively analyzed by univariate and multivariate approaches. Logistic regression was applied and ROC curves were drawn for evaluation and comparison. The CEUS qualitative indicator-generated regression equation contained three indicators, namely enhanced homogeneity, diameter line expansion and peak intensity grading, which demonstrated prediction accuracy for benign and malignant breast tumor lumps of 91.8%; the quantitative indicator-generated regression equation only contained one indicator, namely the relative peak intensity, and its prediction accuracy was 61.5%. The corresponding areas under the ROC curve for qualitative and quantitative analyses were 91.3% and 75.7%, respectively, which exhibited a statistically significant difference by the Z test (P<0.05). The ability of CEUS qualitative analysis to identify breast tumor lumps is better than with quantitative analysis.
Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Gentile, Nick
This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy andmore » performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.« less
Video Feedback in Key Word Signing Training for Preservice Direct Support Staff.
Rombouts, Ellen; Meuris, Kristien; Maes, Bea; De Meyer, Anne-Marie; Zink, Inge
2016-04-01
Research has demonstrated that formal training is essential for professionals to learn key word signing. Yet, the particular didactic strategies have not been studied. Therefore, this study compared the effectiveness of verbal and video feedback in a key word signing training for future direct support staff. Forty-nine future direct support staff were randomly assigned to 1 of 3 key word signing training programs: modeling and verbal feedback (classical method [CM]), additional video feedback (+ViF), and additional video feedback and photo reminder (+ViF/R). Signing accuracy and training acceptability were measured 1 week after and 7 months after training. Participants from the +ViF/R program achieved significantly higher signing accuracy compared with the CM group. Acceptability ratings did not differ between any of the groups. Results suggest that at an equal time investment, the programs containing more training components were more effective. Research on the effect of rehearsal on signing maintenance is warranted.
Adaptive intensity modulated radiotherapy for advanced prostate cancer
NASA Astrophysics Data System (ADS)
Ludlum, Erica Marie
The purpose of this research is to develop and evaluate improvements in intensity modulated radiotherapy (IMRT) for concurrent treatment of prostate and pelvic lymph nodes. The first objective is to decrease delivery time while maintaining treatment quality, and evaluate the effectiveness and efficiency of novel one-step optimization compared to conventional two-step optimization. Both planning methods are examined at multiple levels of complexity by comparing the number of beam apertures, or segments, the amount of radiation delivered as measured by monitor units (MUs), and delivery time. One-step optimization is demonstrated to simplify IMRT planning and reduce segments (from 160 to 40), MUs (from 911 to 746), and delivery time (from 22 to 7 min) with comparable plan quality. The second objective is to examine the capability of three commercial dose calculation engines employing different levels of accuracy and efficiency to handle high--Z materials, such as metallic hip prostheses, included in the treatment field. Pencil beam, convolution superposition, and Monte Carlo dose calculation engines are compared by examining the dose differences for patient plans with unilateral and bilateral hip prostheses, and for phantom plans with a metal insert for comparison with film measurements. Convolution superposition and Monte Carlo methods calculate doses that are 1.3% and 34.5% less than the pencil beam method, respectively. Film results demonstrate that Monte Carlo most closely represents actual radiation delivery, but none of the three engines accurately predict the dose distribution when high-Z heterogeneities exist in the treatment fields. The final objective is to improve the accuracy of IMRT delivery by accounting for independent organ motion during concurrent treatment of the prostate and pelvic lymph nodes. A leaf-shifting algorithm is developed to track daily prostate position without requiring online dose calculation. Compared to conventional methods of adjusting patient position, adjusting the multileaf collimator (MLC) leaves associated with the prostate in each segment significantly improves lymph node dose coverage (maintains 45 Gy compared to 42.7, 38.3, and 34.0 Gy for iso-shifts of 0.5, 1 and 1.5 cm). Altering the MLC portal shape is demonstrated as a new and effective solution to independent prostate movement during concurrent treatment.
NASA Technical Reports Server (NTRS)
Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.
1991-01-01
An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.
Soil quality assessment using weighted fuzzy association rules
Xue, Yue-Ju; Liu, Shu-Guang; Hu, Yue-Ming; Yang, Jing-Feng
2010-01-01
Fuzzy association rules (FARs) can be powerful in assessing regional soil quality, a critical step prior to land planning and utilization; however, traditional FARs mined from soil quality database, ignoring the importance variability of the rules, can be redundant and far from optimal. In this study, we developed a method applying different weights to traditional FARs to improve accuracy of soil quality assessment. After the FARs for soil quality assessment were mined, redundant rules were eliminated according to whether the rules were significant or not in reducing the complexity of the soil quality assessment models and in improving the comprehensibility of FARs. The global weights, each representing the importance of a FAR in soil quality assessment, were then introduced and refined using a gradient descent optimization method. This method was applied to the assessment of soil resources conditions in Guangdong Province, China. The new approach had an accuracy of 87%, when 15 rules were mined, as compared with 76% from the traditional approach. The accuracy increased to 96% when 32 rules were mined, in contrast to 88% from the traditional approach. These results demonstrated an improved comprehensibility of FARs and a high accuracy of the proposed method.
Chen, Yibin; Chen, Jiaxi; Chen, Xuan; Wang, Min; Wang, Wei
2015-01-01
A new method of uniform sampling is evaluated in this paper. The items and indexes were adopted to evaluate the rationality of the uniform sampling. The evaluation items included convenience of operation, uniformity of sampling site distribution, and accuracy and precision of measured results. The evaluation indexes included operational complexity, occupation rate of sampling site in a row and column, relative accuracy of pill weight, and relative deviation of pill weight. They were obtained from three kinds of drugs with different shape and size by four kinds of sampling methods. Gray correlation analysis was adopted to make the comprehensive evaluation by comparing it with the standard method. The experimental results showed that the convenience of uniform sampling method was 1 (100%), odds ratio of occupation rate in a row and column was infinity, relative accuracy was 99.50-99.89%, reproducibility RSD was 0.45-0.89%, and weighted incidence degree exceeded the standard method. Hence, the uniform sampling method was easy to operate, and the selected samples were distributed uniformly. The experimental results demonstrated that the uniform sampling method has good accuracy and reproducibility, which can be put into use in drugs analysis.
Fekete, Szabolcs; Fekete, Jeno; Molnár, Imre; Ganzler, Katalin
2009-11-06
Many different strategies of reversed phase high performance liquid chromatographic (RP-HPLC) method development are used today. This paper describes a strategy for the systematic development of ultrahigh-pressure liquid chromatographic (UHPLC or UPLC) methods using 5cmx2.1mm columns packed with sub-2microm particles and computer simulation (DryLab((R)) package). Data for the accuracy of computer modeling in the Design Space under ultrahigh-pressure conditions are reported. An acceptable accuracy for these predictions of the computer models is presented. This work illustrates a method development strategy, focusing on time reduction up to a factor 3-5, compared to the conventional HPLC method development and exhibits parts of the Design Space elaboration as requested by the FDA and ICH Q8R1. Furthermore this paper demonstrates the accuracy of retention time prediction at elevated pressure (enhanced flow-rate) and shows that the computer-assisted simulation can be applied with sufficient precision for UHPLC applications (p>400bar). Examples of fast and effective method development in pharmaceutical analysis, both for gradient and isocratic separations are presented.
Wang, Mi; Fan, Chengcheng; Yang, Bo; Jin, Shuying; Pan, Jun
2016-01-01
Satellite attitude accuracy is an important factor affecting the geometric processing accuracy of high-resolution optical satellite imagery. To address the problem whereby the accuracy of the Yaogan-24 remote sensing satellite’s on-board attitude data processing is not high enough and thus cannot meet its image geometry processing requirements, we developed an approach involving on-ground attitude data processing and digital orthophoto (DOM) and the digital elevation model (DEM) verification of a geometric calibration field. The approach focuses on three modules: on-ground processing based on bidirectional filter, overall weighted smoothing and fitting, and evaluation in the geometric calibration field. Our experimental results demonstrate that the proposed on-ground processing method is both robust and feasible, which ensures the reliability of the observation data quality, convergence and stability of the parameter estimation model. In addition, both the Euler angle and quaternion could be used to build a mathematical fitting model, while the orthogonal polynomial fitting model is more suitable for modeling the attitude parameter. Furthermore, compared to the image geometric processing results based on on-board attitude data, the image uncontrolled and relative geometric positioning result accuracy can be increased by about 50%. PMID:27483287
Testing the exclusivity effect in location memory.
Clark, Daniel P A; Dunn, Andrew K; Baguley, Thom
2013-01-01
There is growing literature exploring the possibility of parallel retrieval of location memories, although this literature focuses primarily on the speed of retrieval with little attention to the accuracy of location memory recall. Baguley, Lansdale, Lines, and Parkin (2006) found that when a person has two or more memories for an object's location, their recall accuracy suggests that only one representation can be retrieved at a time (exclusivity). This finding is counterintuitive given evidence of non-exclusive recall in the wider memory literature. The current experiment explored the exclusivity effect further and aimed to promote an alternative outcome (i.e., independence or superadditivity) by encouraging the participants to combine multiple representations of space at encoding or retrieval. This was encouraged by using anchor (points of reference) labels that could be combined to form a single strongly associated combination. It was hypothesised that the ability to combine the anchor labels would allow the two representations to be retrieved concurrently, generating higher levels of recall accuracy. The results demonstrate further support for the exclusivity hypothesis, showing no significant improvement in recall accuracy when there are multiple representations of a target object's location as compared to a single representation.
Albin, Thomas J
2013-01-01
Designers and ergonomists occasionally must produce anthropometric models of workstations with only summary percentile data available regarding the intended users. Until now the only option available was adding or subtracting percentiles of the anthropometric elements, e.g. heights and widths, used in the model, despite the known resultant errors in the estimate of the percent of users accommodated. This paper introduces a new method, the Median Correlation Method (MCM) that reduces the error. Compare the relative accuracy of MCM to combining percentiles for anthropometric models comprised of all possible pairs of five anthropometric elements. Describe the mathematical basis of the greater accuracy of MCM. MCM is described. 95th percentile accommodation percentiles are calculated for the sums and differences of all combinations of five anthropometric elements by combining percentiles and using MCM. The resulting estimates are compared with empirical values of the 95th percentiles, and the relative errors are reported. The MCM method is shown to be significantly more accurate than adding percentiles. MCM is demonstrated to have a mathematical advantage estimating accommodation relative to adding or subtracting percentiles. The MCM method should be used in preference to adding or subtracting percentiles when limited data prevent more sophisticated anthropometric models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E; Kozioziemski, B; Moody, J
2008-06-26
We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close tomore » that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.« less
pK(A) in proteins solving the Poisson-Boltzmann equation with finite elements.
Sakalli, Ilkay; Knapp, Ernst-Walter
2015-11-05
Knowledge on pK(A) values is an eminent factor to understand the function of proteins in living systems. We present a novel approach demonstrating that the finite element (FE) method of solving the linearized Poisson-Boltzmann equation (lPBE) can successfully be used to compute pK(A) values in proteins with high accuracy as a possible replacement to finite difference (FD) method. For this purpose, we implemented the software molecular Finite Element Solver (mFES) in the framework of the Karlsberg+ program to compute pK(A) values. This work focuses on a comparison between pK(A) computations obtained with the well-established FD method and with the new developed FE method mFES, solving the lPBE using protein crystal structures without conformational changes. Accurate and coarse model systems are set up with mFES using a similar number of unknowns compared with the FD method. Our FE method delivers results for computations of pK(A) values and interaction energies of titratable groups, which are comparable in accuracy. We introduce different thermodynamic cycles to evaluate pK(A) values and we show for the FE method how different parameters influence the accuracy of computed pK(A) values. © 2015 Wiley Periodicals, Inc.
Playing vs. nonplaying aerobic training in tennis: physiological and performance outcomes.
Pialoux, Vincent; Genevois, Cyril; Capoen, Arnaud; Forbes, Scott C; Thomas, Jordan; Rogowski, Isabelle
2015-01-01
This study compared the effects of playing and nonplaying high intensity intermittent training (HIIT) on physiological demands and tennis stroke performance in young tennis players. Eleven competitive male players (13.4 ± 1.3 years) completed both a playing and nonplaying HIIT session of equal distance, in random order. During each HIIT session, heart rate (HR), blood lactate, and ratings of perceived exertion (RPE) were monitored. Before and after each HIIT session, the velocity and accuracy of the serve, and forehand and backhand strokes were evaluated. The results demonstrated that both HIIT sessions achieved an average HR greater than 90% HRmax. The physiological demands (average HR) were greater during the playing session compared to the nonplaying session, despite similar lactate concentrations and a lower RPE. The results also indicate a reduction in shot velocity after both HIIT sessions; however, the playing HIIT session had a more deleterious effect on stroke accuracy. These findings suggest that 1) both HIIT sessions may be sufficient to develop maximal aerobic power, 2) playing HIIT sessions provide a greater physiological demand with a lower RPE, and 3) playing HIIT has a greater deleterious effect on stroke performance, and in particular on the accuracy component of the ground stroke performance, and should be incorporated appropriately into a periodization program in young male tennis players.
Kulkarni, Shruti R; Rajendran, Bipin
2018-07-01
We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
GStream: Improving SNP and CNV Coverage on Genome-Wide Association Studies
Alonso, Arnald; Marsal, Sara; Tortosa, Raül; Canela-Xandri, Oriol; Julià, Antonio
2013-01-01
We present GStream, a method that combines genome-wide SNP and CNV genotyping in the Illumina microarray platform with unprecedented accuracy. This new method outperforms previous well-established SNP genotyping software. More importantly, the CNV calling algorithm of GStream dramatically improves the results obtained by previous state-of-the-art methods and yields an accuracy that is close to that obtained by purely CNV-oriented technologies like Comparative Genomic Hybridization (CGH). We demonstrate the superior performance of GStream using microarray data generated from HapMap samples. Using the reference CNV calls generated by the 1000 Genomes Project (1KGP) and well-known studies on whole genome CNV characterization based either on CGH or genotyping microarray technologies, we show that GStream can increase the number of reliably detected variants up to 25% compared to previously developed methods. Furthermore, the increased genome coverage provided by GStream allows the discovery of CNVs in close linkage disequilibrium with SNPs, previously associated with disease risk in published Genome-Wide Association Studies (GWAS). These results could provide important insights into the biological mechanism underlying the detected disease risk association. With GStream, large-scale GWAS will not only benefit from the combined genotyping of SNPs and CNVs at an unprecedented accuracy, but will also take advantage of the computational efficiency of the method. PMID:23844243
Playing vs. Nonplaying Aerobic Training in Tennis: Physiological and Performance Outcomes
Pialoux, Vincent; Genevois, Cyril; Capoen, Arnaud; Forbes, Scott C.; Thomas, Jordan; Rogowski, Isabelle
2015-01-01
This study compared the effects of playing and nonplaying high intensity intermittent training (HIIT) on physiological demands and tennis stroke performance in young tennis players. Eleven competitive male players (13.4 ± 1.3 years) completed both a playing and nonplaying HIIT session of equal distance, in random order. During each HIIT session, heart rate (HR), blood lactate, and ratings of perceived exertion (RPE) were monitored. Before and after each HIIT session, the velocity and accuracy of the serve, and forehand and backhand strokes were evaluated. The results demonstrated that both HIIT sessions achieved an average HR greater than 90% HRmax. The physiological demands (average HR) were greater during the playing session compared to the nonplaying session, despite similar lactate concentrations and a lower RPE. The results also indicate a reduction in shot velocity after both HIIT sessions; however, the playing HIIT session had a more deleterious effect on stroke accuracy. These findings suggest that 1) both HIIT sessions may be sufficient to develop maximal aerobic power, 2) playing HIIT sessions provide a greater physiological demand with a lower RPE, and 3) playing HIIT has a greater deleterious effect on stroke performance, and in particular on the accuracy component of the ground stroke performance, and should be incorporated appropriately into a periodization program in young male tennis players. PMID:25816346
Makeyev, Oleksandr; Besio, Walter G.
2016-01-01
Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933
Makeyev, Oleksandr; Besio, Walter G
2016-06-10
Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected.
Meltzer, Lisa J.; Hiruma, Laura S.; Avis, Kristin; Montgomery-Downs, Hawley; Valentin, Judith
2015-01-01
Study Objectives: To evaluate the reliability and validity of the commercially available Fitbit Ultra (2012) accelerometer compared to polysomnography (PSG) and two different actigraphs in a pediatric sample. Design and Setting: All subjects wore the Fitbit Ultra while undergoing overnight clinical polysomnography in a sleep laboratory; a randomly selected subset of participants also wore either the Ambulatory Monitoring Inc. Motionlogger Sleep Watch (AMI) or Phillips-Respironics Mini-Mitter Spectrum (PRMM). Participants: 63 youth (32 females, 31 males), ages 3–17 years (mean 9.7 years, SD 4.6 years). Measurements: Both “Normal” and “Sensitive” sleep-recording Fitbit Ultra modes were examined. Outcome variables included total sleep time (TST), wake after sleep onset (WASO), and sleep efficiency (SE). Primary analyses examined the differences between Fitbit Ultra and PSG using repeated-measures ANCOVA, with epoch-by-epoch comparisons between Fitbit Ultra and PSG used to determine sensitivity, specificity, and accuracy. Intra-device reliability, differences between Fitbit Ultra and actigraphy, and differences by both developmental age group and sleep disordered breathing (SDB) status were also examined. Results: Compared to PSG, the Normal Fitbit Ultra mode demonstrated good sensitivity (0.86) and accuracy (0.84), but poor specificity (0.52); conversely, the Sensitive Fitbit Ultra mode demonstrated adequate specificity (0.79), but inadequate sensitivity (0.70) and accuracy (0.71). Compared to PSG, the Fitbit Ultra significantly overestimated TST (41 min) and SE (8%) in Normal mode, and underestimated TST (105 min) and SE (21%) in Sensitive mode. Similar differences were found between Fitbit Ultra (both modes) and both brands of actigraphs. Conclusions: Despite its low cost and ease of use for consumers, neither sleep-recording mode of the Fitbit Ultra accelerometer provided clinically comparable results to PSG. Further, pediatric sleep researchers and clinicians should be cautious about substituting these devices for validated actigraphs, with a significant risk of either overestimating or underestimating outcome data including total sleep time and sleep efficiency. Citation: Meltzer LJ, Hiruma LS, Avis K, Montgomery-Downs H, Valentin J. Comparison of a commercial accelerometer with polysomnography and actigraphy in children and adolescents. SLEEP 2015;38(8):1323–1330. PMID:26118555
Dynamic comparisons of piezoelectric ejecta diagnostics
NASA Astrophysics Data System (ADS)
Buttler, W. T.; Zellner, M. B.; Olson, R. T.; Rigg, P. A.; Hixson, R. S.; Hammerberg, J. E.; Obst, A. W.; Payton, J. R.; Iverson, A.; Young, J.
2007-03-01
We investigate the quantitative reliability and precision of three different piezoelectric technologies for measuring ejected areal mass from shocked surfaces. Specifically we performed ejecta measurements on Sn shocked at two pressures, P ≈215 and 235 kbar. The shock in the Sn was created by launching a impactor with a powder gun. We self-compare and cross-compare these measurements to assess the ability of these probes to precisely determine the areal mass ejected from a shocked surface. We demonstrate the precision of each technology to be good, with variabilities on the order of ±10%. We also discuss their relative accuracy.
Beat-to-beat heart rate estimation fusing multimodal video and sensor data
Antink, Christoph Hoog; Gao, Hanno; Brüser, Christoph; Leonhardt, Steffen
2015-01-01
Coverage and accuracy of unobtrusively measured biosignals are generally relatively low compared to clinical modalities. This can be improved by exploiting redundancies in multiple channels with methods of sensor fusion. In this paper, we demonstrate that two modalities, skin color variation and head motion, can be extracted from the video stream recorded with a webcam. Using a Bayesian approach, these signals are fused with a ballistocardiographic signal obtained from the seat of a chair with a mean absolute beat-to-beat estimation error below 25 milliseconds and an average coverage above 90% compared to an ECG reference. PMID:26309754
Beat-to-beat heart rate estimation fusing multimodal video and sensor data.
Antink, Christoph Hoog; Gao, Hanno; Brüser, Christoph; Leonhardt, Steffen
2015-08-01
Coverage and accuracy of unobtrusively measured biosignals are generally relatively low compared to clinical modalities. This can be improved by exploiting redundancies in multiple channels with methods of sensor fusion. In this paper, we demonstrate that two modalities, skin color variation and head motion, can be extracted from the video stream recorded with a webcam. Using a Bayesian approach, these signals are fused with a ballistocardiographic signal obtained from the seat of a chair with a mean absolute beat-to-beat estimation error below 25 milliseconds and an average coverage above 90% compared to an ECG reference.
DNA base-calling from a nanopore using a Viterbi algorithm.
Timp, Winston; Comer, Jeffrey; Aksimentiev, Aleksei
2012-05-16
Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (~98%), even with a poor signal/noise ratio. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Optimizing Tsunami Forecast Model Accuracy
NASA Astrophysics Data System (ADS)
Whitmore, P.; Nyland, D. L.; Huang, P. Y.
2015-12-01
Recent tsunamis provide a means to determine the accuracy that can be expected of real-time tsunami forecast models. Forecast accuracy using two different tsunami forecast models are compared for seven events since 2006 based on both real-time application and optimized, after-the-fact "forecasts". Lessons learned by comparing the forecast accuracy determined during an event to modified applications of the models after-the-fact provide improved methods for real-time forecasting for future events. Variables such as source definition, data assimilation, and model scaling factors are examined to optimize forecast accuracy. Forecast accuracy is also compared for direct forward modeling based on earthquake source parameters versus accuracy obtained by assimilating sea level data into the forecast model. Results show that including assimilated sea level data into the models increases accuracy by approximately 15% for the events examined.
Continuous decoding of human grasp kinematics using epidural and subdural signals
NASA Astrophysics Data System (ADS)
Flint, Robert D.; Rosenow, Joshua M.; Tate, Matthew C.; Slutzky, Marc W.
2017-02-01
Objective. Restoring or replacing function in paralyzed individuals will one day be achieved through the use of brain-machine interfaces. Regaining hand function is a major goal for paralyzed patients. Two competing prerequisites for the widespread adoption of any hand neuroprosthesis are accurate control over the fine details of movement, and minimized invasiveness. Here, we explore the interplay between these two goals by comparing our ability to decode hand movements with subdural and epidural field potentials (EFPs). Approach. We measured the accuracy of decoding continuous hand and finger kinematics during naturalistic grasping motions in five human subjects. We recorded subdural surface potentials (electrocorticography; ECoG) as well as with EFPs, with both standard- and high-resolution electrode arrays. Main results. In all five subjects, decoding of continuous kinematics significantly exceeded chance, using either EGoG or EFPs. ECoG decoding accuracy compared favorably with prior investigations of grasp kinematics (mean ± SD grasp aperture variance accounted for was 0.54 ± 0.05 across all subjects, 0.75 ± 0.09 for the best subject). In general, EFP decoding performed comparably to ECoG decoding. The 7-20 Hz and 70-115 Hz spectral bands contained the most information about grasp kinematics, with the 70-115 Hz band containing greater information about more subtle movements. Higher-resolution recording arrays provided clearly superior performance compared to standard-resolution arrays. Significance. To approach the fine motor control achieved by an intact brain-body system, it will be necessary to execute motor intent on a continuous basis with high accuracy. The current results demonstrate that this level of accuracy might be achievable not just with ECoG, but with EFPs as well. Epidural placement of electrodes is less invasive, and therefore may incur less risk of encephalitis or stroke than subdural placement of electrodes. Accurately decoding motor commands at the epidural level may be an important step towards a clinically viable brain-machine interface.
Tarzwell, Robert; Newberg, Andrew; Henderson, Theodore A.
2015-01-01
Background Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are highly heterogeneous and often present with overlapping symptomology, providing challenges in reliable classification and treatment. Single photon emission computed tomography (SPECT) may be advantageous in the diagnostic separation of these disorders when comorbid or clinically indistinct. Methods Subjects were selected from a multisite database, where rest and on-task SPECT scans were obtained on a large group of neuropsychiatric patients. Two groups were analyzed: Group 1 with TBI (n=104), PTSD (n=104) or both (n=73) closely matched for demographics and comorbidity, compared to each other and healthy controls (N=116); Group 2 with TBI (n=7,505), PTSD (n=1,077) or both (n=1,017) compared to n=11,147 without either. ROIs and visual readings (VRs) were analyzed using a binary logistic regression model with predicted probabilities inputted into a Receiver Operating Characteristic analysis to identify sensitivity, specificity, and accuracy. One-way ANOVA identified the most diagnostically significant regions of increased perfusion in PTSD compared to TBI. Analysis included a 10-fold cross validation of the protocol in the larger community sample (Group 2). Results For Group 1, baseline and on-task ROIs and VRs showed a high level of accuracy in differentiating PTSD, TBI and PTSD+TBI conditions. This carefully matched group separated with 100% sensitivity, specificity and accuracy for the ROI analysis and at 89% or above for VRs. Group 2 had lower sensitivity, specificity and accuracy, but still in a clinically relevant range. Compared to subjects with TBI, PTSD showed increases in the limbic regions, cingulum, basal ganglia, insula, thalamus, prefrontal cortex and temporal lobes. Conclusions This study demonstrates the ability to separate PTSD and TBI from healthy controls, from each other, and detect their co-occurrence, even in highly comorbid samples, using SPECT. This modality may offer a clinical option for aiding diagnosis and treatment of these conditions. PMID:26132293
Amen, Daniel G; Raji, Cyrus A; Willeumier, Kristen; Taylor, Derek; Tarzwell, Robert; Newberg, Andrew; Henderson, Theodore A
2015-01-01
Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are highly heterogeneous and often present with overlapping symptomology, providing challenges in reliable classification and treatment. Single photon emission computed tomography (SPECT) may be advantageous in the diagnostic separation of these disorders when comorbid or clinically indistinct. Subjects were selected from a multisite database, where rest and on-task SPECT scans were obtained on a large group of neuropsychiatric patients. Two groups were analyzed: Group 1 with TBI (n=104), PTSD (n=104) or both (n=73) closely matched for demographics and comorbidity, compared to each other and healthy controls (N=116); Group 2 with TBI (n=7,505), PTSD (n=1,077) or both (n=1,017) compared to n=11,147 without either. ROIs and visual readings (VRs) were analyzed using a binary logistic regression model with predicted probabilities inputted into a Receiver Operating Characteristic analysis to identify sensitivity, specificity, and accuracy. One-way ANOVA identified the most diagnostically significant regions of increased perfusion in PTSD compared to TBI. Analysis included a 10-fold cross validation of the protocol in the larger community sample (Group 2). For Group 1, baseline and on-task ROIs and VRs showed a high level of accuracy in differentiating PTSD, TBI and PTSD+TBI conditions. This carefully matched group separated with 100% sensitivity, specificity and accuracy for the ROI analysis and at 89% or above for VRs. Group 2 had lower sensitivity, specificity and accuracy, but still in a clinically relevant range. Compared to subjects with TBI, PTSD showed increases in the limbic regions, cingulum, basal ganglia, insula, thalamus, prefrontal cortex and temporal lobes. This study demonstrates the ability to separate PTSD and TBI from healthy controls, from each other, and detect their co-occurrence, even in highly comorbid samples, using SPECT. This modality may offer a clinical option for aiding diagnosis and treatment of these conditions.
Towards frameless maskless SRS through real-time 6DoF robotic motion compensation.
Belcher, Andrew H; Liu, Xinmin; Chmura, Steven; Yenice, Kamil; Wiersma, Rodney D
2017-11-13
Stereotactic radiosurgery (SRS) uses precise dose placement to treat conditions of the CNS. Frame-based SRS uses a metal head ring fixed to the patient's skull to provide high treatment accuracy, but patient comfort and clinical workflow may suffer. Frameless SRS, while potentially more convenient, may increase uncertainty of treatment accuracy and be physiologically confining to some patients. By incorporating highly precise robotics and advanced software algorithms into frameless treatments, we present a novel frameless and maskless SRS system where a robot provides real-time 6DoF head motion stabilization allowing positional accuracies to match or exceed those of traditional frame-based SRS. A 6DoF parallel kinematics robot was developed and integrated with a real-time infrared camera in a closed loop configuration. A novel compensation algorithm was developed based on an iterative closest-path correction approach. The robotic SRS system was tested on six volunteers, whose motion was monitored and compensated for in real-time over 15 min simulated treatments. The system's effectiveness in maintaining the target's 6DoF position within preset thresholds was determined by comparing volunteer head motion with and without compensation. Comparing corrected and uncorrected motion, the 6DoF robotic system showed an overall improvement factor of 21 in terms of maintaining target position within 0.5 mm and 0.5 degree thresholds. Although the system's effectiveness varied among the volunteers examined, for all volunteers tested the target position remained within the preset tolerances 99.0% of the time when robotic stabilization was used, compared to 4.7% without robotic stabilization. The pre-clinical robotic SRS compensation system was found to be effective at responding to sub-millimeter and sub-degree cranial motions for all volunteers examined. The system's success with volunteers has demonstrated its capability for implementation with frameless and maskless SRS treatments, potentially able to achieve the same or better treatment accuracies compared to traditional frame-based approaches.
Continuous decoding of human grasp kinematics using epidural and subdural signals
Flint, Robert D.; Rosenow, Joshua M.; Tate, Matthew C.; Slutzky, Marc W.
2017-01-01
Objective Restoring or replacing function in paralyzed individuals will one day be achieved through the use of brain-machine interfaces (BMIs). Regaining hand function is a major goal for paralyzed patients. Two competing prerequisites for the widespread adoption of any hand neuroprosthesis are: accurate control over the fine details of movement, and minimized invasiveness. Here, we explore the interplay between these two goals by comparing our ability to decode hand movements with subdural and epidural field potentials. Approach We measured the accuracy of decoding continuous hand and finger kinematics during naturalistic grasping motions in five human subjects. We recorded subdural surface potentials (electrocorticography; ECoG) as well as with epidural field potentials (EFPs), with both standard- and high-resolution electrode arrays. Main results In all five subjects, decoding of continuous kinematics significantly exceeded chance, using either EGoG or EFPs. ECoG decoding accuracy compared favorably with prior investigations of grasp kinematics (mean± SD grasp aperture variance accounted for was 0.54± 0.05 across all subjects, 0.75± 0.09 for the best subject). In general, EFP decoding performed comparably to ECoG decoding. The 7–20 Hz and 70–115 Hz spectral bands contained the most information about grasp kinematics, with the 70–115 Hz band containing greater information about more subtle movements. Higher-resolution recording arrays provided clearly superior performance compared to standard-resolution arrays. Significance To approach the fine motor control achieved by an intact brain-body system, it will be necessary to execute motor intent on a continuous basis with high accuracy. The current results demonstrate that this level of accuracy might be achievable not just with ECoG, but with EFPs as well. Epidural placement of electrodes is less invasive, and therefore may incur less risk of encephalitis or stroke than subdural placement of electrodes. Accurately decoding motor commands at the epidural level may be an important step towards a clinically viable brain-machine interface. PMID:27900947
Towards frameless maskless SRS through real-time 6DoF robotic motion compensation
NASA Astrophysics Data System (ADS)
Belcher, Andrew H.; Liu, Xinmin; Chmura, Steven; Yenice, Kamil; Wiersma, Rodney D.
2017-12-01
Stereotactic radiosurgery (SRS) uses precise dose placement to treat conditions of the CNS. Frame-based SRS uses a metal head ring fixed to the patient’s skull to provide high treatment accuracy, but patient comfort and clinical workflow may suffer. Frameless SRS, while potentially more convenient, may increase uncertainty of treatment accuracy and be physiologically confining to some patients. By incorporating highly precise robotics and advanced software algorithms into frameless treatments, we present a novel frameless and maskless SRS system where a robot provides real-time 6DoF head motion stabilization allowing positional accuracies to match or exceed those of traditional frame-based SRS. A 6DoF parallel kinematics robot was developed and integrated with a real-time infrared camera in a closed loop configuration. A novel compensation algorithm was developed based on an iterative closest-path correction approach. The robotic SRS system was tested on six volunteers, whose motion was monitored and compensated for in real-time over 15 min simulated treatments. The system’s effectiveness in maintaining the target’s 6DoF position within preset thresholds was determined by comparing volunteer head motion with and without compensation. Comparing corrected and uncorrected motion, the 6DoF robotic system showed an overall improvement factor of 21 in terms of maintaining target position within 0.5 mm and 0.5 degree thresholds. Although the system’s effectiveness varied among the volunteers examined, for all volunteers tested the target position remained within the preset tolerances 99.0% of the time when robotic stabilization was used, compared to 4.7% without robotic stabilization. The pre-clinical robotic SRS compensation system was found to be effective at responding to sub-millimeter and sub-degree cranial motions for all volunteers examined. The system’s success with volunteers has demonstrated its capability for implementation with frameless and maskless SRS treatments, potentially able to achieve the same or better treatment accuracies compared to traditional frame-based approaches.
A Fast Alignment-Free Approach for De Novo Detection of Protein Conserved Regions
Abnousi, Armen; Broschat, Shira L.; Kalyanaraman, Ananth
2016-01-01
Background Identifying conserved regions in protein sequences is a fundamental operation, occurring in numerous sequence-driven analysis pipelines. It is used as a way to decode domain-rich regions within proteins, to compute protein clusters, to annotate sequence function, and to compute evolutionary relationships among protein sequences. A number of approaches exist for identifying and characterizing protein families based on their domains, and because domains represent conserved portions of a protein sequence, the primary computation involved in protein family characterization is identification of such conserved regions. However, identifying conserved regions from large collections (millions) of protein sequences presents significant challenges. Methods In this paper we present a new, alignment-free method for detecting conserved regions in protein sequences called NADDA (No-Alignment Domain Detection Algorithm). Our method exploits the abundance of exact matching short subsequences (k-mers) to quickly detect conserved regions, and the power of machine learning is used to improve the prediction accuracy of detection. We present a parallel implementation of NADDA using the MapReduce framework and show that our method is highly scalable. Results We have compared NADDA with Pfam and InterPro databases. For known domains annotated by Pfam, accuracy is 83%, sensitivity 96%, and specificity 44%. For sequences with new domains not present in the training set an average accuracy of 63% is achieved when compared to Pfam. A boost in results in comparison with InterPro demonstrates the ability of NADDA to capture conserved regions beyond those present in Pfam. We have also compared NADDA with ADDA and MKDOM2, assuming Pfam as ground-truth. On average NADDA shows comparable accuracy, more balanced sensitivity and specificity, and being alignment-free, is significantly faster. Excluding the one-time cost of training, runtimes on a single processor were 49s, 10,566s, and 456s for NADDA, ADDA, and MKDOM2, respectively, for a data set comprised of approximately 2500 sequences. PMID:27552220
Wang, Shao-Ming; Hu, Shang-Ying; Chen, Wen; Chen, Feng; Zhao, Fang-Hui; He, Wei; Ma, Xin-Ming; Zhang, Yu-Qing; Wang, Jian; Sivasubramaniam, Priya; Qiao, You-Lin
2015-11-04
Liquid-state specimen carriers are inadequate for sample transportation in large-scale screening projects in low-resource settings, which necessitates the exploration of novel non-hazardous solid-state alternatives. Studies investigating the feasibility and accuracy of a solid-state human papillomavirus (HPV) sampling medium in combination with different down-stream HPV DNA assays for cervical cancer screening are needed. We collected two cervical specimens from 396 women, aged 25-65 years, who were enrolled in a cervical cancer screening trial. One sample was stored using DCM preservative solution and the other was applied to a Whatman Indicating FTA Elute® card (FTA card). All specimens were processed using three HPV testing methods, including Hybrid capture 2 (HC2), careHPV™, and Cobas®4800 tests. All the women underwent a rigorous colposcopic evaluation that included using a microbiopsy protocol. Compared to the liquid-based carrier, the FTA card demonstrated comparable sensitivity for detecting high grade Cervical Intraepithelial Neoplasia (CIN) using HC2 (91.7 %), careHPV™ (83.3 %), and Cobas®4800 (91.7 %) tests. Moreover, the FTA card showed a higher specificity compared to a liquid-based carrier for HC2 (79.5 % vs. 71.6 %, P = 0.015), comparable specificity for careHPV™ (78.1 % vs. 73.0 %, P > 0.05), but lower specificity for the Cobas®4800 test (62.4 % vs. 69.9 %, P = 0.032). Generally, the FTA card-based sampling medium's accuracy was comparable with that of liquid-based medium for the three HPV testing assays. FTA cards are a promising sample carrier for cervical cancer screening. With further optimization, it can be utilized for HPV testing in areas of varying economic development.
Melanson, Edward L; Swibas, Tracy; Kohrt, Wendy M; Catenacci, Vicki A; Creasy, Seth A; Plasqui, Guy; Wouters, Loek; Speakman, John R; Berman, Elena S F
2018-02-01
When the doubly labeled water (DLW) method is used to measure total daily energy expenditure (TDEE), isotope measurements are typically performed using isotope ratio mass spectrometry (IRMS). New technologies, such as off-axis integrated cavity output spectroscopy (OA-ICOS) provide comparable isotopic measurements of standard waters and human urine samples, but the accuracy of carbon dioxide production (V̇co 2 ) determined with OA-ICOS has not been demonstrated. We compared simultaneous measurement V̇co 2 obtained using whole-room indirect calorimetry (IC) with DLW-based measurements from IRMS and OA-ICOS. Seventeen subjects (10 female; 22 to 63 yr) were studied for 7 consecutive days in the IC. Subjects consumed a dose of 0.25 g H 2 18 O (98% APE) and 0.14 g 2 H 2 O (99.8% APE) per kilogram of total body water, and urine samples were obtained on days 1 and 8 to measure average daily V̇co 2 using OA-ICOS and IRMS. V̇co 2 was calculated using both the plateau and intercept methods. There were no differences in V̇co 2 measured by OA-ICOS or IRMS compared with IC when the plateau method was used. When the intercept method was used, V̇co 2 using OA-ICOS did not differ from IC, but V̇co 2 measured using IRMS was significantly lower than IC. Accuracy (~1-5%), precision (~8%), intraclass correlation coefficients ( R = 0.87-90), and root mean squared error (30-40 liters/day) of V̇co 2 measured by OA-ICOS and IRMS were similar. Both OA-ICOS and IRMS produced measurements of V̇co 2 with comparable accuracy and precision compared with IC.
Distributed Environment Control Using Wireless Sensor/Actuator Networks for Lighting Applications
Nakamura, Masayuki; Sakurai, Atsushi; Nakamura, Jiro
2009-01-01
We propose a decentralized algorithm to calculate the control signals for lights in wireless sensor/actuator networks. This algorithm uses an appropriate step size in the iterative process used for quickly computing the control signals. We demonstrate the accuracy and efficiency of this approach compared with the penalty method by using Mote-based mesh sensor networks. The estimation error of the new approach is one-eighth as large as that of the penalty method with one-fifth of its computation time. In addition, we describe our sensor/actuator node for distributed lighting control based on the decentralized algorithm and demonstrate its practical efficacy. PMID:22291525
Schaefer, Oliver; Schmidt, Monika; Goebel, Roland; Kuepper, Harald
2012-09-01
The accuracy of impressions has been described in 1 or 2 dimensions, whereas it is most desirable to evaluate the accuracy of impressions spatially, in 3 dimensions. The purpose of this study was to demonstrate the accuracy and reproducibility of a 3-dimensional (3-D) approach to assessing impression preciseness and to quantitatively comparing the occlusal correctness of gypsum dies made with different impression materials. By using an aluminum replica of a maxillary molar, single-step dual viscosity impressions were made with 1 polyether/vinyl polysiloxane hybrid material (Identium), 1 vinyl polysiloxane (Panasil), and 1 polyether (Impregum) (n=5). Corresponding dies were made of Type IV gypsum and were optically digitized and aligned to the virtual reference of the aluminum tooth. Accuracy was analyzed by computing mean quadratic deviations between the virtual reference and the gypsum dies, while deviations of the dies among one another determined the reproducibility of the method. The virtual reference was adapted to create 15 occlusal contact points. The percentage of contact points deviating within a ±10 µm tolerance limit (PDP(10) = Percentage of Deviating Points within ±10 µm Tolerance) was set as the index for assessing occlusal accuracy. Visual results for the difference from the reference tooth were displayed with colors, whereas mean deviation values as well as mean PDP(10) differences were analyzed with a 1-way ANOVA and Scheffé post hoc comparisons (α=.05). Objective characterization of accuracy showed smooth axial surfaces to be undersized, whereas occlusal surfaces were accurate or enlarged when compared to the original tooth. The accuracy of the gypsum replicas ranged between 3 and 6 µm, while reproducibility results varied from 2 to 4 µm. Mean (SD) PDP(10)-values were: Panasil 91% (±11), Identium 77% (±4) and Impregum 29% (±3). One-way ANOVA detected significant differences among the subjected impression materials (P<.001). The accuracy and reproducibility of impressions were determined by 3-D analysis. Results were presented as color images and the newly developed PDP(10)-index was successfully used to quantify spatial dimensions for complex occlusal anatomy. Impression materials with high PDP(10)-values were shown to reproduce occlusal dimensions the most accurately. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Ning, Jia; Schubert, Tilman; Johnson, Kevin M; Roldán-Alzate, Alejandro; Chen, Huijun; Yuan, Chun; Reeder, Scott B
2018-06-01
To propose a simple method to correct vascular input function (VIF) due to inflow effects and to test whether the proposed method can provide more accurate VIFs for improved pharmacokinetic modeling. A spoiled gradient echo sequence-based inflow quantification and contrast agent concentration correction method was proposed. Simulations were conducted to illustrate improvement in the accuracy of VIF estimation and pharmacokinetic fitting. Animal studies with dynamic contrast-enhanced MR scans were conducted before, 1 week after, and 2 weeks after portal vein embolization (PVE) was performed in the left portal circulation of pigs. The proposed method was applied to correct the VIFs for model fitting. Pharmacokinetic parameters fitted using corrected and uncorrected VIFs were compared between different lobes and visits. Simulation results demonstrated that the proposed method can improve accuracy of VIF estimation and pharmacokinetic fitting. In animal study results, pharmacokinetic fitting using corrected VIFs demonstrated changes in perfusion consistent with changes expected after PVE, whereas the perfusion estimates derived by uncorrected VIFs showed no significant changes. The proposed correction method improves accuracy of VIFs and therefore provides more precise pharmacokinetic fitting. This method may be promising in improving the reliability of perfusion quantification. Magn Reson Med 79:3093-3102, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
The effects of stereotype threat and contextual cues on alcohol users' inhibitory control.
Pennington, Charlotte R; Qureshi, Adam; Monk, Rebecca L; Heim, Derek
2016-03-01
Previous research indicates that users of illicit substances exhibit diminished cognitive function under stereotype threat. Advancing this research, the current study aimed to examine the effects of stereotype threat on alcohol users' inhibitory control. It also examined whether drinkers demonstrate a greater approach bias towards alcohol-related relative to neutral stimuli. Fifty-five participants were assigned randomly to a stereotype threat condition, in which they were primed with a negative stereotype linking drinking behavior to cognitive decline, or a non-threat control condition. All participants then completed a modified version of the Cued Go/No-Go Association Test that exposed participants to alcohol-related and neutral pictorial stimuli and sound cues. Stereotype threatened participants demonstrated a speed-accuracy trade off, taking significantly longer to respond to go-trials with equivalent accuracy to the control condition. They also showed reduced response accuracy to both alcohol-related and neutral stimuli in reversed instruction trials. Participants in the control condition were both more accurate and quicker to respond to alcohol-related stimuli compared to neutral stimuli. These results suggest that awareness of negative stereotypes pertaining to alcohol-related impulsivity may have a harmful effect on inhibitive cognitive performance. This may have implications for public health campaigns and for methodological designs with high levels of procedural signaling with respect to not inadvertently inducing stereotype threat and impacting impulsivity. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Morrissey, Liam S.; Nakhla, Sam
2018-07-01
The effect of porosity on elastic modulus in low-porosity materials is investigated. First, several models used to predict the reduction in elastic modulus due to porosity are compared with a compilation of experimental data to determine their ranges of validity and accuracy. The overlapping solid spheres model is found to be most accurate with the experimental data and valid between 3 and 10 pct porosity. Next, a FEM is developed with the objective of demonstrating that a macroscale plate with a center hole can be used to model the effect of microscale porosity on elastic modulus. The FEM agrees best with the overlapping solid spheres model and shows higher accuracy with experimental data than the overlapping solid spheres model.
Optimization and evaluation of the human fall detection system
NASA Astrophysics Data System (ADS)
Alzoubi, Hadeel; Ramzan, Naeem; Shahriar, Hasan; Alzubi, Raid; Gibson, Ryan; Amira, Abbes
2016-10-01
Falls are the most critical health problem for elderly people, which are often, cause significant injuries. To tackle a serious risk that made by the fall, we develop an automatic wearable fall detection system utilizing two devices (mobile phone and wireless sensor) based on three axes accelerometer signals. The goal of this study is to find an effective machine learning method that distinguish falls from activities of daily living (ADL) using only a single triaxial accelerometer. In addition, comparing the performance results for wearable sensor and mobile device data .The proposed model detects the fall by using seven different classifiers and the significant performance is demonstrated using accuracy, recall, precision and F-measure. Our model obtained accuracy over 99% on wearable device data and over 97% on mobile phone data.
Zhang, Le; Lawson, Ken; Yeung, Bernice; Wypych, Jette
2015-01-06
A purity method based on capillary zone electrophoresis (CZE) has been developed for the separation of isoforms of a highly glycosylated protein. The separation was found to be driven by the number of sialic acids attached to each isoform. The method has been characterized using orthogonal assays and shown to have excellent specificity, precision and accuracy. We have demonstrated the CZE method is a useful in-process assay to support cell culture and purification development of this glycoprotein. Compared to isoelectric focusing (IEF), the CZE method provides more quantitative results and higher sample throughput with excellent accuracy, qualities that are required for process development. In addition, the CZE method has been applied in the stability testing of purified glycoprotein samples.
The clinical evaluation of the CADence device in the acoustic detection of coronary artery disease.
Thomas, Joseph L; Ridner, Michael; Cole, Jason H; Chambers, Jeffrey W; Bokhari, Sabahat; Yannopoulos, Demetris; Kern, Morton; Wilson, Robert F; Budoff, Matthew J
2018-06-23
The noninvasive detection of turbulent coronary flow may enable diagnosis of significant coronary artery disease (CAD) using novel sensor and analytic technology. Eligible patients (n = 1013) with chest pain and CAD risk factors undergoing nuclear stress testing were studied using the CADence (AUM Cardiovascular Inc., Northfield MN) acoustic detection (AD) system. The trial was designed to demonstrate non-inferiority of AD for diagnostic accuracy in detecting significant CAD as compared to an objective performance criteria (sensitivity 83% and specificity 80%, with 15% non-inferiority margins) for nuclear stress testing. AD analysis was blinded to clinical, core lab-adjudicated angiographic, and nuclear data. The presence of significant CAD was determined by computed tomographic (CCTA) or invasive angiography. A total of 1013 subjects without prior coronary revascularization or Q-wave myocardial infarction were enrolled. Primary analysis was performed on subjects with complete angiographic and AD data (n = 763) including 111 subjects (15%) with severe CAD based on CCTA (n = 34) and invasive angiography (n = 77). The sensitivity and specificity of AD were 78% (p = 0.012 for non-inferiority) and 35% (p < 0.001 for failure to demonstrate non-inferiority), respectively. AD results had a high 91% negative predictive value for the presence of significant CAD. AD testing failed to demonstrate non-inferior diagnostic accuracy as compared to the historical performance of a nuclear stress OPC due to low specificity. AD sensitivity was non-inferior in detecting significant CAD with a high negative predictive value supporting a potential value in excluding CAD.
Memristor-Based Analog Computation and Neural Network Classification with a Dot Product Engine.
Hu, Miao; Graves, Catherine E; Li, Can; Li, Yunning; Ge, Ning; Montgomery, Eric; Davila, Noraica; Jiang, Hao; Williams, R Stanley; Yang, J Joshua; Xia, Qiangfei; Strachan, John Paul
2018-03-01
Using memristor crossbar arrays to accelerate computations is a promising approach to efficiently implement algorithms in deep neural networks. Early demonstrations, however, are limited to simulations or small-scale problems primarily due to materials and device challenges that limit the size of the memristor crossbar arrays that can be reliably programmed to stable and analog values, which is the focus of the current work. High-precision analog tuning and control of memristor cells across a 128 × 64 array is demonstrated, and the resulting vector matrix multiplication (VMM) computing precision is evaluated. Single-layer neural network inference is performed in these arrays, and the performance compared to a digital approach is assessed. Memristor computing system used here reaches a VMM accuracy equivalent of 6 bits, and an 89.9% recognition accuracy is achieved for the 10k MNIST handwritten digit test set. Forecasts show that with integrated (on chip) and scaled memristors, a computational efficiency greater than 100 trillion operations per second per Watt is possible. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tamhane, Ashish A; Arfanakis, Konstantinos
2009-07-01
Periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and Turboprop MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo (FSE) and gradient and spin-echo (GRASE), respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction are discussed for PROPELLER and Turboprop MRI. (c) 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Senegačnik, Jure; Tavčar, Gregor; Katrašnik, Tomaž
2015-03-01
The paper presents a computationally efficient method for solving the time dependent diffusion equation in a granule of the Li-ion battery's granular solid electrode. The method, called Discrete Temporal Convolution method (DTC), is based on a discrete temporal convolution of the analytical solution of the step function boundary value problem. This approach enables modelling concentration distribution in the granular particles for arbitrary time dependent exchange fluxes that do not need to be known a priori. It is demonstrated in the paper that the proposed method features faster computational times than finite volume/difference methods and Padé approximation at the same accuracy of the results. It is also demonstrated that all three addressed methods feature higher accuracy compared to the quasi-steady polynomial approaches when applied to simulate the current densities variations typical for mobile/automotive applications. The proposed approach can thus be considered as one of the key innovative methods enabling real-time capability of the multi particle electrochemical battery models featuring spatial and temporal resolved particle concentration profiles.
Liu, Changgeng; Thapa, Damber; Yao, Xincheng
2017-01-01
Guidestar hologram based digital adaptive optics (DAO) is one recently emerging active imaging modality. It records each complex distorted line field reflected or scattered from the sample by an off-axis digital hologram, measures the optical aberration from a separate off-axis digital guidestar hologram, and removes the optical aberration from the distorted line fields by numerical processing. In previously demonstrated DAO systems, the optical aberration was directly retrieved from the guidestar hologram by taking its Fourier transform and extracting the phase term. For the direct retrieval method (DRM), when the sample is not coincident with the guidestar focal plane, the accuracy of the optical aberration retrieved by DRM undergoes a fast decay, leading to quality deterioration of corrected images. To tackle this problem, we explore here an image metrics-based iterative method (MIM) to retrieve the optical aberration from the guidestar hologram. Using an aberrated objective lens and scattering samples, we demonstrate that MIM can improve the accuracy of the retrieved aberrations from both focused and defocused guidestar holograms, compared to DRM, to improve the robustness of the DAO. PMID:28380937
Social Power Increases Interoceptive Accuracy
Moeini-Jazani, Mehrad; Knoeferle, Klemens; de Molière, Laura; Gatti, Elia; Warlop, Luk
2017-01-01
Building on recent psychological research showing that power increases self-focused attention, we propose that having power increases accuracy in perception of bodily signals, a phenomenon known as interoceptive accuracy. Consistent with our proposition, participants in a high-power experimental condition outperformed those in the control and low-power conditions in the Schandry heartbeat-detection task. We demonstrate that the effect of power on interoceptive accuracy is not explained by participants’ physiological arousal, affective state, or general intention for accuracy. Rather, consistent with our reasoning that experiencing power shifts attentional resources inward, we show that the effect of power on interoceptive accuracy is dependent on individuals’ chronic tendency to focus on their internal sensations. Moreover, we demonstrate that individuals’ chronic sense of power also predicts interoceptive accuracy similar to, and independent of, how their situationally induced feeling of power does. We therefore provide further support on the relation between power and enhanced perception of bodily signals. Our findings offer a novel perspective–a psychophysiological account–on how power might affect judgments and behavior. We highlight and discuss some of these intriguing possibilities for future research. PMID:28824501
Local staging and assessment of colon cancer with 1.5-T magnetic resonance imaging
Blake, Helena; Jeyadevan, Nelesh; Abulafi, Muti; Swift, Ian; Toomey, Paul; Brown, Gina
2016-01-01
Objective: The aim of this study was to assess the accuracy of 1.5-T MRI in the pre-operative local T and N staging of colon cancer and identification of extramural vascular invasion (EMVI). Methods: Between 2010 and 2012, 60 patients with adenocarcinoma of the colon were prospectively recruited at 2 centres. 55 patients were included for final analysis. Patients received pre-operative 1.5-T MRI with high-resolution T2 weighted, gadolinium-enhanced T1 weighted and diffusion-weighted images. These were blindly assessed by two expert radiologists. Accuracy of the T-stage, N-stage and EMVI assessment was evaluated using post-operative histology as the gold standard. Results: Results are reported for two readers. Identification of T3 disease demonstrated an accuracy of 71% and 51%, sensitivity of 74% and 42% and specificity of 74% and 83%. Identification of N1 disease demonstrated an accuracy of 57% for both readers, sensitivity of 26% and 35% and specificity of 81% and 74%. Identification of EMVI demonstrated an accuracy of 74% and 69%, sensitivity 63% and 26% and specificity 80% and 91%. Conclusion: 1.5-T MRI achieved a moderate accuracy in the local evaluation of colon cancer, but cannot be recommended to replace CT on the basis of this study. Advances in knowledge: This study confirms that MRI is a viable alternative to CT for the local assessment of colon cancer, but this study does not reproduce the very high accuracy reported in the only other study to assess the accuracy of MRI in colon cancer staging. PMID:27226219
An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale.
Obuchowski, Nancy A
2006-02-15
ROC curves and summary measures of accuracy derived from them, such as the area under the ROC curve, have become the standard for describing and comparing the accuracy of diagnostic tests. Methods for estimating ROC curves rely on the existence of a gold standard which dichotomizes patients into disease present or absent. There are, however, many examples of diagnostic tests whose gold standards are not binary-scale, but rather continuous-scale. Unnatural dichotomization of these gold standards leads to bias and inconsistency in estimates of diagnostic accuracy. In this paper, we propose a non-parametric estimator of diagnostic test accuracy which does not require dichotomization of the gold standard. This estimator has an interpretation analogous to the area under the ROC curve. We propose a confidence interval for test accuracy and a statistical test for comparing accuracies of tests from paired designs. We compare the performance (i.e. CI coverage, type I error rate, power) of the proposed methods with several alternatives. An example is presented where the accuracies of two quick blood tests for measuring serum iron concentrations are estimated and compared.
Thomas, Cibu; Ye, Frank Q; Irfanoglu, M Okan; Modi, Pooja; Saleem, Kadharbatcha S; Leopold, David A; Pierpaoli, Carlo
2014-11-18
Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.
Edge, Julie; Acerini, Carlo; Campbell, Fiona; Hamilton-Shield, Julian; Moudiotis, Chris; Rahman, Shakeel; Randell, Tabitha; Smith, Anne; Trevelyan, Nicola
2017-06-01
To determine accuracy, safety and acceptability of the FreeStyle Libre Flash Glucose Monitoring System in the paediatric population. Eighty-nine study participants, aged 4-17 years, with type 1 diabetes were enrolled across 9 diabetes centres in the UK. A factory calibrated sensor was inserted on the back of the upper arm and used for up to 14 days. Sensor glucose measurements were compared with capillary blood glucose (BG) measurements. Sensor results were masked to participants. Clinical accuracy of sensor results versus BG results was demonstrated, with 83.8% of results in zone A and 99.4% of results in zones A and B of the consensus error grid. Overall mean absolute relative difference (MARD) was 13.9%. Sensor accuracy was unaffected by patient factors such as age, body weight, sex, method of insulin administration or time of use (day vs night). Participants were in the target glucose range (3.9-10.0 mmol/L) ∼50% of the time (mean 12.1 hours/day), with an average of 2.2 hours/day and 9.5 hours/day in hypoglycaemia and hyperglycaemia, respectively. Sensor application, wear/use of the device and comparison to self-monitoring of blood glucose were rated favourably by most participants/caregivers (84.3-100%). Five device related adverse events were reported across a range of participant ages. Accuracy, safety and user acceptability of the FreeStyle Libre System were demonstrated for the paediatric population. Accuracy of the system was unaffected by subject characteristics, making it suitable for a broad range of children and young people with diabetes. NCT02388815. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, Yan Jiang; Smith, Arthur-Allen; Mcilvena, David
Purpose: Patients’ interfractional anatomic changes can compromise the initial treatment plan quality. To overcome this issue, adaptive radiotherapy (ART) has been introduced. Deformable image registration (DIR) is an important tool for ART and several deformable phantoms have been built to evaluate the algorithms’ accuracy. However, there is a lack of deformable phantoms that can also provide dosimetric information to verify the accuracy of the whole ART process. The goal of this work is to design and construct a deformable head and neck (HN) ART quality assurance (QA) phantom with in vivo dosimetry. Methods: An axial slice of a HN patientmore » is taken as a model for the phantom construction. Six anatomic materials are considered, with HU numbers similar to a real patient. A filled balloon inside the phantom tissue is inserted to simulate tumor. Deflation of the balloon simulates tumor shrinkage. Nonradiopaque surface markers, which do not influence DIR algorithms, provide the deformation ground truth. Fixed and movable holders are built in the phantom to hold a diode for dosimetric measurements. Results: The measured deformations at the surface marker positions can be compared with deformations calculated by a DIR algorithm to evaluate its accuracy. In this study, the authors selected a Demons algorithm as a DIR algorithm example for demonstration purposes. The average error magnitude is 2.1 mm. The point dose measurements from the in vivo diode dosimeters show a good agreement with the calculated doses from the treatment planning system with a maximum difference of 3.1% of prescription dose, when the treatment plans are delivered to the phantom with original or deformed geometry. Conclusions: In this study, the authors have presented the functionality of this deformable HN phantom for testing the accuracy of DIR algorithms and verifying the ART dosimetric accuracy. The authors’ experiments demonstrate the feasibility of this phantom serving as an end-to-end ART QA phantom.« less
An evaluation of a UAV guidance system with consumer grade GPS receivers
NASA Astrophysics Data System (ADS)
Rosenberg, Abigail Stella
Remote sensing has been demonstrated an important tool in agricultural and natural resource management and research applications, however there are limitations that exist with traditional platforms (i.e., hand held sensors, linear moves, vehicle mounted, airplanes, remotely piloted vehicles (RPVs), unmanned aerial vehicles (UAVs) and satellites). Rapid technological advances in electronics, computers, software applications, and the aerospace industry have dramatically reduced the cost and increased the availability of remote sensing technologies. Remote sensing imagery vary in spectral, spatial, and temporal resolutions and are available from numerous providers. Appendix A presented results of a test project that acquired high-resolution aerial photography with a RPV to map the boundary of a 0.42 km2 fire area. The project mapped the boundaries of the fire area from a mosaic of the aerial images collected and compared this with ground-based measurements. The project achieved a 92.4% correlation between the aerial assessment and the ground truth data. Appendix B used multi-objective analysis to quantitatively assess the tradeoffs between different sensor platform attributes to identify the best overall technology. Experts were surveyed to identify the best overall technology at three different pixel sizes. Appendix C evaluated the positional accuracy of a relatively low cost UAV designed for high resolution remote sensing of small areas in order to determine the positional accuracy of sensor readings. The study evaluated the accuracy and uncertainty of a UAV flight route with respect to the programmed waypoints and of the UAV's GPS position, respectively. In addition, the potential displacement of sensor data was evaluated based on (1) GPS measurements on board the aircraft and (2) the autopilot's circuit board with 3-axis gyros and accelerometers (i.e., roll, pitch, and yaw). The accuracies were estimated based on a 95% confidence interval or similar methods. The accuracy achieved in the second and third manuscripts demonstrates that reasonably priced, high resolution remote sensing via RPVs and UAVs is practical for agriculture and natural resource professionals.
J-Adaptive estimation with estimated noise statistics. [for orbit determination
NASA Technical Reports Server (NTRS)
Jazwinski, A. H.; Hipkins, C.
1975-01-01
The J-Adaptive estimator described by Jazwinski and Hipkins (1972) is extended to include the simultaneous estimation of the statistics of the unmodeled system accelerations. With the aid of simulations it is demonstrated that the J-Adaptive estimator with estimated noise statistics can automatically estimate satellite orbits to an accuracy comparable with the data noise levels, when excellent, continuous tracking coverage is available. Such tracking coverage will be available from satellite-to-satellite tracking.
Detection method of flexion relaxation phenomenon based on wavelets for patients with low back pain
NASA Astrophysics Data System (ADS)
Nougarou, François; Massicotte, Daniel; Descarreaux, Martin
2012-12-01
The flexion relaxation phenomenon (FRP) can be defined as a reduction or silence of myoelectric activity of the lumbar erector spinae muscle during full trunk flexion. It is typically absent in patients with chronic low back pain (LBP). Before any broad clinical utilization of this neuromuscular response can be made, effective, standardized, and accurate methods of identifying FRP limits are needed. However, this phenomenon is clearly more difficult to detect for LBP patients than for healthy patients. The main goal of this study is to develop an automated method based on wavelet transformation that would improve time point limits detection of surface electromyography signals of the FRP in case of LBP patients. Conventional visual identification and proposed automated methods of time point limits detection of relaxation phase were compared on experimental data using criteria of accuracy and repeatability based on physiological properties. The evaluation demonstrates that the use of wavelet transform (WT) yields better results than methods without wavelet decomposition. Furthermore, methods based on wavelet per packet transform are more effective than algorithms employing discrete WT. Compared to visual detection, in addition to demonstrating an obvious saving of time, the use of wavelet per packet transform improves the accuracy and repeatability in the detection of the FRP limits. These results clearly highlight the value of the proposed technique in identifying onset and offset of the flexion relaxation response in LBP subjects.
Spatial Convergence of Three Dimensional Turbulent Flows
NASA Technical Reports Server (NTRS)
Park, Michael A.; Anderson, W. Kyle
2016-01-01
Finite-volume and finite-element schemes, both implemented within the FUN3D flow solver, are evaluated for several test cases described on the Turbulence-Modeling Resource (TMR) web site. The cases include subsonic flow over a hemisphere cylinder, subsonic flow over a swept bump configuration, and supersonic flow in a square duct. The finite- volume and finite-element schemes are both used to obtain solutions for the first two cases, whereas only the finite-volume scheme is used for the supersonic duct. For the hemisphere cylinder, finite-element solutions obtained on tetrahedral meshes are compared with finite- volume solutions on mixed-element meshes. For the swept bump, finite-volume solutions have been obtained for both hexahedral and tetrahedral meshes and are compared with finite-element solutions obtained on tetrahedral meshes. For the hemisphere cylinder and the swept bump, solutions are obtained on a series of meshes with varying grid density and comparisons are made between drag coefficients, pressure distributions, velocity profiles, and profiles of the turbulence working variable. The square duct shows small variation due to element type or the spatial accuracy of turbulence model convection. It is demonstrated that the finite-element scheme on tetrahedral meshes yields similar accuracy as the finite- volume scheme on mixed-element and hexahedral grids, and demonstrates less sensitivity to the mesh topology (biased tetrahedral grids) than the finite-volume scheme.
Tomlinson, Mathew James; Pooley, Karen; Simpson, Tracey; Newton, Thomas; Hopkisson, James; Jayaprakasan, Kannamanadias; Jayaprakasan, Rajisha; Naeem, Asad; Pridmore, Tony
2010-04-01
To determine the accuracy and precision of a novel computer-assisted sperm analysis (CASA) system by comparison with existing recommended manual methods. Prospective study using comparative measurements of sperm concentration and motility on latex beads and immotile and motile sperm. Tertiary referral fertility center with strong academic links. Sperm donors and male partners of couples attending for fertility investigations. None. Achievement of Accubead target value for high and low concentration suspensions. Repeatability as demonstrated by coefficients of variation and intraclass correlation coefficients. Correlation and limits of agreement between CASA and manual methods. The CASA measurements of latex beads and sperm concentrations demonstrated a high level of accuracy and repeatability. Repeated Accubead measurements attained the required target value (mean difference from target of 2.61% and 3.71% for high- and low-concentration suspensions, respectively) and were highly reproducible. Limits of agreement analysis suggested that manual and CASA counts compared directly could be deemed to be interchangeable. Manual and CASA motility measurements were highly correlated for grades a, b, and d but could not be deemed to be interchangeable, and manual motility estimates were consistently higher for motile sperm. The novel CASA system was able to provide semen quality measurements for sperm concentration and motility measurements which were at least as reliable as current manual methods. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Data accuracy assessment using enterprise architecture
NASA Astrophysics Data System (ADS)
Närman, Per; Holm, Hannes; Johnson, Pontus; König, Johan; Chenine, Moustafa; Ekstedt, Mathias
2011-02-01
Errors in business processes result in poor data accuracy. This article proposes an architecture analysis method which utilises ArchiMate and the Probabilistic Relational Model formalism to model and analyse data accuracy. Since the resources available for architecture analysis are usually quite scarce, the method advocates interviews as the primary data collection technique. A case study demonstrates that the method yields correct data accuracy estimates and is more resource-efficient than a competing sampling-based data accuracy estimation method.
Annamalai, Alagappan; Harada, Megan Y; Chen, Melissa; Tran, Tram; Ko, Ara; Ley, Eric J; Nuno, Miriam; Klein, Andrew; Nissen, Nicholas; Noureddin, Mazen
2017-03-01
Critically ill cirrhotics require liver transplantation urgently, but are at high risk for perioperative mortality. The Model for End-stage Liver Disease (MELD) score, recently updated to incorporate serum sodium, estimates survival probability in patients with cirrhosis, but needs additional evaluation in the critically ill. The purpose of this study was to evaluate the predictive power of ICU admission MELD scores and identify clinical risk factors associated with increased mortality. This was a retrospective review of cirrhotic patients admitted to the ICU between January 2011 and December 2014. Patients who were discharged or underwent transplantation (survivors) were compared with those who died (nonsurvivors). Demographic characteristics, admission MELD scores, and clinical risk factors were recorded. Multivariate regression was used to identify independent predictors of mortality, and measures of model performance were assessed to determine predictive accuracy. Of 276 patients who met inclusion criteria, 153 were considered survivors and 123 were nonsurvivors. Survivor and nonsurvivor cohorts had similar demographic characteristics. Nonsurvivors had increased MELD, gastrointestinal bleeding, infection, mechanical ventilation, encephalopathy, vasopressors, dialysis, renal replacement therapy, requirement of blood products, and ICU length of stay. The MELD demonstrated low predictive power (c-statistic 0.73). Multivariate analysis identified MELD score (adjusted odds ratio [AOR] = 1.05), mechanical ventilation (AOR = 4.55), vasopressors (AOR = 3.87), and continuous renal replacement therapy (AOR = 2.43) as independent predictors of mortality, with stronger predictive accuracy (c-statistic 0.87). The MELD demonstrated relatively poor predictive accuracy in critically ill patients with cirrhosis and might not be the best indicator for prognosis in the ICU population. Prognostic accuracy is significantly improved when variables indicating organ support (mechanical ventilation, vasopressors, and continuous renal replacement therapy) are included in the model. Copyright © 2016. Published by Elsevier Inc.
Higher-Order Adaptive Finite-Element Methods for Kohn-Sham Density Functional Theory
2012-07-03
systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemi- cal accuracy...calculations. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of materials systems contain- ing a...benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy
Accuracy of the lattice-Boltzmann method using the Cell processor
NASA Astrophysics Data System (ADS)
Harvey, M. J.; de Fabritiis, G.; Giupponi, G.
2008-11-01
Accelerator processors like the new Cell processor are extending the traditional platforms for scientific computation, allowing orders of magnitude more floating-point operations per second (flops) compared to standard central processing units. However, they currently lack double-precision support and support for some IEEE 754 capabilities. In this work, we develop a lattice-Boltzmann (LB) code to run on the Cell processor and test the accuracy of this lattice method on this platform. We run tests for different flow topologies, boundary conditions, and Reynolds numbers in the range Re=6 350 . In one case, simulation results show a reduced mass and momentum conservation compared to an equivalent double-precision LB implementation. All other cases demonstrate the utility of the Cell processor for fluid dynamics simulations. Benchmarks on two Cell-based platforms are performed, the Sony Playstation3 and the QS20/QS21 IBM blade, obtaining a speed-up factor of 7 and 21, respectively, compared to the original PC version of the code, and a conservative sustained performance of 28 gigaflops per single Cell processor. Our results suggest that choice of IEEE 754 rounding mode is possibly as important as double-precision support for this specific scientific application.
Contextual interference effect on perceptual-cognitive skills training.
Broadbent, David P; Causer, Joe; Ford, Paul R; Williams, A Mark
2015-06-01
Contextual interference (CI) effect predicts that a random order of practice for multiple skills is superior for learning compared to a blocked order. We report a novel attempt to examine the CI effect during acquisition and transfer of anticipatory judgments from simulation training to an applied sport situation. Participants were required to anticipate tennis shots under either a random practice schedule or a blocked practice schedule. Response accuracy was recorded for both groups in pretest, during acquisition, and on a 7-d retention test. Transfer of learning was assessed through a field-based tennis protocol that attempted to assess performance in an applied sport setting. The random practice group had significantly higher response accuracy scores on the 7-d laboratory retention test compared to the blocked group. Moreover, during the transfer of anticipatory judgments to an applied sport situation, the decision times of the random practice group were significantly lower compared to the blocked group. The CI effect extends to the training of anticipatory judgments through simulation techniques. Furthermore, we demonstrate for the first time that the CI effect increases transfer of learning from simulation training to an applied sport task, highlighting the importance of using appropriate practice schedules during simulation training.
NASA Astrophysics Data System (ADS)
Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain
2017-10-01
We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.
Michael, Claudia; Rizzi, Andreas M
2015-02-27
Glycan reductive isotope labeling (GRIL) using (12)C6-/(13)C6-aniline as labeling reagent is reported with the aim of quantitative N-glycan fingerprinting. Porous graphitized carbon (PGC) as stationary phase in capillary scale HPLC coupled to electrospray mass spectrometry with time of flight analyzer was applied for the determination of labeled N-glycans released from glycoproteins. The main benefit of using stable isotope-coding in the context of comparative glycomics lies in the improved accuracy and precision of the quantitative analysis in combined samples and in the potential of correcting for structure-dependent incomplete enzymatic release of oligosaccharides when comparing identical target proteins. The method was validated with respect to mobile phase parameters, reproducibility, accuracy, linearity and limit of detection/quantification (LOD/LOQ) using test glycoproteins. It is shown that the developed method is capable of determining relative amounts of N-glycans (including isomers) comparing two samples in one single HPLC-MS run. The analytical potential and usefulness of GRIL in combination with PGC-ESI-TOF-MS is demonstrated comparing glycosylation in human monoclonal antibodies produced in Chinese hamster ovary cells (CHO) and hybridoma cell lines. Copyright © 2015 Elsevier B.V. All rights reserved.
Neural Substrates of Empathic Accuracy in People With Schizophrenia
Harvey, Philippe-Olivier; Zaki, Jamil; Lee, Junghee; Ochsner, Kevin; Green, Michael F.
2013-01-01
Introduction Empathic deficits in schizophrenia may lead to social dysfunction, but previous studies of schizophrenia have not modeled empathy through paradigms that (1) present participants with naturalistic social stimuli and (2) link brain activity to “accuracy” about inferring other’s emotional states. This study addressed this gap by investigating the neural correlates of empathic accuracy (EA) in schizophrenia. Methods Fifteen schizophrenia patients and 15 controls were scanned while continuously rating the affective state of another person shown in a series of videos (ie, targets). These ratings were compared with targets’ own self-rated affect, and EA was defined as the correlation between participants’ ratings and targets’ self-ratings. Targets’ self-reported emotional expressivity also was measured. We searched for brain regions whose activity tracked parametrically with (1) perceivers’ EA and (2) targets’ expressivity. Results Patients showed reduced EA compared with controls. The left precuneus, left middle frontal gyrus, and bilateral thalamus were significantly more correlated with EA in controls compared with patients. High expressivity in targets was associated with better EA in controls but not in patients. High expressivity was associated with increased brain activity in a large set of regions in controls (eg, fusiform gyrus, medial prefrontal cortex) but not in patients. Discussion These results use a naturalistic performance measure to confirm that schizophrenic patients demonstrate impaired ability to understand others’ internal states. They provide novel evidence about a potential mechanism for this impairment: schizophrenic patients failed to capitalize on targets’ emotional expressivity and also demonstrate reduced neural sensitivity to targets’ affective cues. PMID:22451493
Effectiveness of feature and classifier algorithms in character recognition systems
NASA Astrophysics Data System (ADS)
Wilson, Charles L.
1993-04-01
At the first Census Optical Character Recognition Systems Conference, NIST generated accuracy data for more than character recognition systems. Most systems were tested on the recognition of isolated digits and upper and lower case alphabetic characters. The recognition experiments were performed on sample sizes of 58,000 digits, and 12,000 upper and lower case alphabetic characters. The algorithms used by the 26 conference participants included rule-based methods, image-based methods, statistical methods, and neural networks. The neural network methods included Multi-Layer Perceptron's, Learned Vector Quantitization, Neocognitrons, and cascaded neural networks. In this paper 11 different systems are compared using correlations between the answers of different systems, comparing the decrease in error rate as a function of confidence of recognition, and comparing the writer dependence of recognition. This comparison shows that methods that used different algorithms for feature extraction and recognition performed with very high levels of correlation. This is true for neural network systems, hybrid systems, and statistically based systems, and leads to the conclusion that neural networks have not yet demonstrated a clear superiority to more conventional statistical methods. Comparison of these results with the models of Vapnick (for estimation problems), MacKay (for Bayesian statistical models), Moody (for effective parameterization), and Boltzmann models (for information content) demonstrate that as the limits of training data variance are approached, all classifier systems have similar statistical properties. The limiting condition can only be approached for sufficiently rich feature sets because the accuracy limit is controlled by the available information content of the training set, which must pass through the feature extraction process prior to classification.
An improved parallel fuzzy connected image segmentation method based on CUDA.
Wang, Liansheng; Li, Dong; Huang, Shaohui
2016-05-12
Fuzzy connectedness method (FC) is an effective method for extracting fuzzy objects from medical images. However, when FC is applied to large medical image datasets, its running time will be greatly expensive. Therefore, a parallel CUDA version of FC (CUDA-kFOE) was proposed by Ying et al. to accelerate the original FC. Unfortunately, CUDA-kFOE does not consider the edges between GPU blocks, which causes miscalculation of edge points. In this paper, an improved algorithm is proposed by adding a correction step on the edge points. The improved algorithm can greatly enhance the calculation accuracy. In the improved method, an iterative manner is applied. In the first iteration, the affinity computation strategy is changed and a look up table is employed for memory reduction. In the second iteration, the error voxels because of asynchronism are updated again. Three different CT sequences of hepatic vascular with different sizes were used in the experiments with three different seeds. NVIDIA Tesla C2075 is used to evaluate our improved method over these three data sets. Experimental results show that the improved algorithm can achieve a faster segmentation compared to the CPU version and higher accuracy than CUDA-kFOE. The calculation results were consistent with the CPU version, which demonstrates that it corrects the edge point calculation error of the original CUDA-kFOE. The proposed method has a comparable time cost and has less errors compared to the original CUDA-kFOE as demonstrated in the experimental results. In the future, we will focus on automatic acquisition method and automatic processing.
Caetano, Maria Joana D; Lord, Stephen R; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Menant, Jasmine C
2016-05-01
A large proportion of falls in older people occur when walking. Limitations in gait adaptability might contribute to tripping; a frequently reported cause of falls in this group. To evaluate age-related changes in gait adaptability in response to obstacles or stepping targets presented at short notice, i.e.: approximately two steps ahead. Fifty older adults (aged 74±7 years; 34 females) and 21 young adults (aged 26±4 years; 12 females) completed 3 usual gait speed (baseline) trials. They then completed the following randomly presented gait adaptability trials: obstacle avoidance, short stepping target, long stepping target and no target/obstacle (3 trials of each). Compared with the young, the older adults slowed significantly in no target/obstacle trials compared with the baseline trials. They took more steps and spent more time in double support while approaching the obstacle and stepping targets, demonstrated poorer stepping accuracy and made more stepping errors (failed to hit the stepping targets/avoid the obstacle). The older adults also reduced velocity of the two preceding steps and shortened the previous step in the long stepping target condition and in the obstacle avoidance condition. Compared with their younger counterparts, the older adults exhibited a more conservative adaptation strategy characterised by slow, short and multiple steps with longer time in double support. Even so, they demonstrated poorer stepping accuracy and made more stepping errors. This reduced gait adaptability may place older adults at increased risk of falling when negotiating unexpected hazards. Copyright © 2016 Elsevier B.V. All rights reserved.
Conical-scan tracking with the 64-m-diameter antenna at goldstone
NASA Technical Reports Server (NTRS)
Ohlson, J. E.; Reid, M. S.
1976-01-01
The theory and experimental work which demonstrated the feasibility of conical-scan tracking with a 64 m diameter paraboloid antenna is documented. The purpose of this scheme is to actively track spacecraft and radio sources continuously with an accuracy superior to that obtained by manual correction of the computer driven pointing. The conical-scan implementation gives increased tracking accuracy with X-band spacecraft signals, as demonstrated in the Mariner Venus/Mercury 1973 mission. Also, the high accuracy and ease of measurement with conical-scan tracking allow evaluation of systematic and random antenna tracking errors.
Vandermolen, Brooke I; Hezelgrave, Natasha L; Smout, Elizabeth M; Abbott, Danielle S; Seed, Paul T; Shennan, Andrew H
2016-10-01
Quantitative fetal fibronectin testing has demonstrated accuracy for prediction of spontaneous preterm birth in asymptomatic women with a history of preterm birth. Predictive accuracy in women with previous cervical surgery (a potentially different risk mechanism) is not known. We sought to compare the predictive accuracy of cervicovaginal fluid quantitative fetal fibronectin and cervical length testing in asymptomatic women with previous cervical surgery to that in women with 1 previous preterm birth. We conducted a prospective blinded secondary analysis of a larger observational study of cervicovaginal fluid quantitative fetal fibronectin concentration in asymptomatic women measured with a Hologic 10Q system (Hologic, Marlborough, MA). Prediction of spontaneous preterm birth (<30, <34, and <37 weeks) with cervicovaginal fluid quantitative fetal fibronectin concentration in primiparous women who had undergone at least 1 invasive cervical procedure (n = 473) was compared with prediction in women who had previous spontaneous preterm birth, preterm prelabor rupture of membranes, or late miscarriage (n = 821). Relationship with cervical length was explored. The rate of spontaneous preterm birth <34 weeks in the cervical surgery group was 3% compared with 9% in previous spontaneous preterm birth group. Receiver operating characteristic curves comparing quantitative fetal fibronectin for prediction at all 3 gestational end points were comparable between the cervical surgery and previous spontaneous preterm birth groups (34 weeks: area under the curve, 0.78 [95% confidence interval 0.64-0.93] vs 0.71 [95% confidence interval 0.64-0.78]; P = .39). Prediction of spontaneous preterm birth using cervical length compared with quantitative fetal fibronectin for prediction of preterm birth <34 weeks of gestation offered similar prediction (area under the curve, 0.88 [95% confidence interval 0.79-0.96] vs 0.77 [95% confidence interval 0.62-0.92], P = .12 in the cervical surgery group; and 0.77 [95% confidence interval 0.70-0.84] vs 0.74 [95% confidence interval 0.67-0.81], P = .32 in the previous spontaneous preterm birth group). Prediction of spontaneous preterm birth using cervicovaginal fluid quantitative fetal fibronectin in asymptomatic women with cervical surgery is valid, and has comparative accuracy to that in women with a history of spontaneous preterm birth. Copyright © 2016 Elsevier Inc. All rights reserved.
60 seconds to survival: A pilot study of a disaster triage video game for prehospital providers.
Cicero, Mark X; Whitfill, Travis; Munjal, Kevin; Madhok, Manu; Diaz, Maria Carmen G; Scherzer, Daniel J; Walsh, Barbara M; Bowen, Angela; Redlener, Michael; Goldberg, Scott A; Symons, Nadine; Burkett, James; Santos, Joseph C; Kessler, David; Barnicle, Ryan N; Paesano, Geno; Auerbach, Marc A
2017-01-01
Disaster triage training for emergency medical service (EMS) providers is not standardized. Simulation training is costly and time-consuming. In contrast, educational video games enable low-cost and more time-efficient standardized training. We hypothesized that players of the video game "60 Seconds to Survival" (60S) would have greater improvements in disaster triage accuracy compared to control subjects who did not play 60S. Participants recorded their demographics and highest EMS training level and were randomized to play 60S (intervention) or serve as controls. At baseline, all participants completed a live school-shooting simulation in which manikins and standardized patients depicted 10 adult and pediatric victims. The intervention group then played 60S at least three times over the course of 13 weeks (time 2). Players triaged 12 patients in three scenarios (school shooting, house fire, tornado), and received in-game performance feedback. At time 2, the same live simulation was conducted for all participants. Controls had no disaster training during the study. The main outcome was improvement in triage accuracy in live simulations from baseline to time 2. Physicians and EMS providers predetermined expected triage level (RED/YELLOW/GREEN/BLACK) via modified Delphi method. There were 26 participants in the intervention group and 21 in the control group. There was no difference in gender, level of training, or years of EMS experience (median 5.5 years intervention, 3.5 years control, p = 0.49) between the groups. At baseline, both groups demonstrated median triage accuracy of 80 percent (IQR 70-90 percent, p = 0.457). At time 2, the intervention group had a significant improvement from baseline (median accuracy = 90 percent [IQR: 80-90 percent], p = 0.005), while the control group did not (median accuracy = 80 percent [IQR:80-95], p = 0.174). However, the mean improvement from baseline was not significant between the two groups (difference = 6.5, p = 0.335). The intervention demonstrated a significant improvement in accuracy from baseline to time 2 while the control did not. However, there was no significant difference in the improvement between the intervention and control groups. These results may be due to small sample size. Future directions include assessment of the game's effect on triage accuracy with a larger, multisite site cohort and iterative development to improve 60S.
Song, Na; Du, Yong; He, Bin; Frey, Eric C.
2011-01-01
Purpose: The radionuclide 131I has found widespread use in targeted radionuclide therapy (TRT), partly due to the fact that it emits photons that can be imaged to perform treatment planning or posttherapy dose verification as well as beta rays that are suitable for therapy. In both the treatment planning and dose verification applications, it is necessary to estimate the activity distribution in organs or tumors at several time points. In vivo estimates of the 131I activity distribution at each time point can be obtained from quantitative single-photon emission computed tomography (QSPECT) images and organ activity estimates can be obtained either from QSPECT images or quantification of planar projection data. However, in addition to the photon used for imaging, 131I decay results in emission of a number of other higher-energy photons with significant abundances. These higher-energy photons can scatter in the body, collimator, or detector and be counted in the 364 keV photopeak energy window, resulting in reduced image contrast and degraded quantitative accuracy; these photons are referred to as downscatter. The goal of this study was to develop and evaluate a model-based downscatter compensation method specifically designed for the compensation of high-energy photons emitted by 131I and detected in the imaging energy window. Methods: In the evaluation study, we used a Monte Carlo simulation (MCS) code that had previously been validated for other radionuclides. Thus, in preparation for the evaluation study, we first validated the code for 131I imaging simulation by comparison with experimental data. Next, we assessed the accuracy of the downscatter model by comparing downscatter estimates with MCS results. Finally, we combined the downscatter model with iterative reconstruction-based compensation for attenuation (A) and scatter (S) and the full (D) collimator-detector response of the 364 keV photons to form a comprehensive compensation method. We evaluated this combined method in terms of quantitative accuracy using the realistic 3D NCAT phantom and an activity distribution obtained from patient studies. We compared the accuracy of organ activity estimates in images reconstructed with and without addition of downscatter compensation from projections with and without downscatter contamination. Results: We observed that the proposed method provided substantial improvements in accuracy compared to no downscatter compensation and had accuracies comparable to reconstructions from projections without downscatter contamination. Conclusions: The results demonstrate that the proposed model-based downscatter compensation method is effective and may have a role in quantitative 131I imaging. PMID:21815394
In vivo study of flow-rate accuracy of the MedStream Programmable Infusion System.
Venugopalan, Ramakrishna; Ginggen, Alec; Bork, Toralf; Anderson, William; Buffen, Elaine
2011-01-01
Flow-rate accuracy and precision are important parameters to optimizing the efficacy of programmable intrathecal (IT) infusion pump delivery systems. Current programmable IT pumps are accurate within ±14.5% of their programmed infusion rate when assessed under ideal environmental conditions and specific flow-rate settings in vitro. We assessed the flow-rate accuracy of a novel programmable pump system across its entire flow-rate range under typical conditions in sheep (in vivo) and nominal conditions in vitro. The flow-rate accuracy of the MedStream Programmable Pump was assessed in both the in vivo and in vitro settings. In vivo flow-rate accuracy was assessed in 16 sheep at various flow-rates (producing 90 flow intervals) more than 90 ± 3 days. Pumps were then explanted, re-sterilized and in vitro flow-rate accuracy was assessed at 37°C and 1013 mBar (80 flow intervals). In vivo (sheep body temperatures 38.1°C-39.8°C), mean ± SD flow-rate error was 9.32% ± 9.27% and mean ± SD leak-rate was 0.028 ± 0.08 mL/day. Following explantation, mean in vitro flow-rate error and leak-rate were -1.05% ± 2.55% and 0.003 ± 0.004 mL/day (37°C, 1013 mBar), respectively. The MedStream Programmable Pump demonstrated high flow-rate accuracy when tested in vivo and in vitro at normal body temperature and environmental pressure as well as when tested in vivo at variable sheep body temperature. The flow-rate accuracy of the MedStream Programmable Pump across its flow-rate range, compares favorably to the accuracy of current clinically utilized programmable IT infusion pumps reported at specific flow-rate settings and conditions. © 2011 International Neuromodulation Society.
Analysis of near infrared spectra for age-grading of wild populations of Anopheles gambiae.
Krajacich, Benjamin J; Meyers, Jacob I; Alout, Haoues; Dabiré, Roch K; Dowell, Floyd E; Foy, Brian D
2017-11-07
Understanding the age-structure of mosquito populations, especially malaria vectors such as Anopheles gambiae, is important for assessing the risk of infectious mosquitoes, and how vector control interventions may impact this risk. The use of near-infrared spectroscopy (NIRS) for age-grading has been demonstrated previously on laboratory and semi-field mosquitoes, but to date has not been utilized on wild-caught mosquitoes whose age is externally validated via parity status or parasite infection stage. In this study, we developed regression and classification models using NIRS on datasets of wild An. gambiae (s.l.) reared from larvae collected from the field in Burkina Faso, and two laboratory strains. We compared the accuracy of these models for predicting the ages of wild-caught mosquitoes that had been scored for their parity status as well as for positivity for Plasmodium sporozoites. Regression models utilizing variable selection increased predictive accuracy over the more common full-spectrum partial least squares (PLS) approach for cross-validation of the datasets, validation, and independent test sets. Models produced from datasets that included the greatest range of mosquito samples (i.e. different sampling locations and times) had the highest predictive accuracy on independent testing sets, though overall accuracy on these samples was low. For classification, we found that intramodel accuracy ranged between 73.5-97.0% for grouping of mosquitoes into "early" and "late" age classes, with the highest prediction accuracy found in laboratory colonized mosquitoes. However, this accuracy was decreased on test sets, with the highest classification of an independent set of wild-caught larvae reared to set ages being 69.6%. Variation in NIRS data, likely from dietary, genetic, and other factors limits the accuracy of this technique with wild-caught mosquitoes. Alternative algorithms may help improve prediction accuracy, but care should be taken to either maximize variety in models or minimize confounders.
Meta-analysis of stratus OCT glaucoma diagnostic accuracy.
Chen, Hsin-Yi; Chang, Yue-Cune
2014-09-01
To evaluate the diagnostic accuracy of glaucoma in different stages, different types of glaucoma, and different ethnic groups using Stratus optical coherence tomography (OCT). We searched MEDLINE to identify available articles on diagnostic accuracy of glaucoma published between January 2004 and December 2011. A PubMed (National Center for Biotechnology Information) search using medical subject headings and keywords was executed using the following terms: "diagnostic accuracy" or "receiver operator characteristic" or "area under curve" or "AUC" and "Stratus OCT" and "glaucoma." The search was subsequently limited to publications in English. The area under a receiver operator characteristic (AUC) curve was used to measure the diagnostic performance. A random-effects model was used to estimate the pooled AUC value of the 17 parameters (average retinal nerve fiber layer thickness, temporal quadrant, superior quadrant, nasal quadrant, inferior quadrant, and 1 to 12 o'clock). Meta-regression analysis was used to check the significance of some important factors: (1) glaucoma severity (five stages), (2) glaucoma types (four types), and (3) ethnicity (four categories). The orders of accuracy among those parameters were as follows: average > inferior > superior > 7 o'clock > 6 o'clock > 11 o'clock > 12 o'clock > 1 o'clock > 5 o'clock > nasal > temporal > 2 o'clock > 10 o'clock > 8 o'clock > 9 o'clock > 4 o'clock > 3 o'clock. After adjusting for the effects of age, glaucoma severity, glaucoma types, and ethnicity, the average retinal nerve fiber layer thickness provided highest accuracy compared with the other parameters of OCT. The diagnostic accuracy in Asian populations was significantly lower than that in whites and the other two ethnic types. Stratus OCT demonstrated good diagnostic capability in differentiating glaucomatous from normal eyes. However, we should be more cautious in applying this instrument in Asian groups in glaucoma management.
NASA Astrophysics Data System (ADS)
Wielicki, B. A.
2016-12-01
The CLARREO (Climate Absolute Radiance and Refractivity) Pathfinder mission is a new mission started by NASA in 2016. CLARREO Pathfinder will fly a new generation of high accuracy reflected solar spectrometer in orbit on the Inernational Space Station (ISS) to demonstrate the ability to increase accuracy of reflected solar observations from space by a factor of 3 to 20. The spectrometer will use the sun and moon as calibration sources with a baseline objective of 0.3% (1 sigma) reflectance calibration uncertainty for the contiguous spectrum from 350nm to 2300nm, covering over 95% of the Earth's reflected solar spectrum. Spectral sampling is 3nm with resolution of 6nm. The spectrometer is mounted on a 2-axis gimbal enabling a new ability to use the same optical path to view the sun, moon, and Earth. Planned launch is 2020 with at least 1 year on orbit to demonstrate the new capability. The mission will also demonstrate the ability to use the new spectrometer as a reference transfer spectrometer in orbit to achieve intercalibration of reflected solar instruments to within 0.3% (1 sigma) using space, time, spectral, and angle matched observations across the full scan width of remote sensing instruments. Intercalibration to 0.3% will be demonstrated across the full scan width of the NASA CERES broadband radiometer and the NOAA VIIRS imager reflected solar spectral channels. This mission will demonstrate reflected solar intercalibration across the full swath width as opposed to current nadir only intercalibration used by GSICS (Global Space Based InterCalibration System). Intercalibration will include a new capability to determine scan angle dependence of polarization sensitivity of instruments like VIIRS. The high accuracy goals of this mission are driven primarily by the accuracy required to more rapidly and accurately observe climate change signals such as cloud feedback (see Wielicki et al. 2013 Bulletin of the American Meteorological Society). The new high accuracy and intercalibration capability will also be very useful for serving as a reference calibrator for constellations of operational instruments in Geostationary or Low Earth Orbit (e.g. land resource imagers, ocean color, cloud imagers). The higher accuracy will enable operational sensors to more effectively serve as climate change sensors.
Speaker-sensitive emotion recognition via ranking: Studies on acted and spontaneous speech☆
Cao, Houwei; Verma, Ragini; Nenkova, Ani
2014-01-01
We introduce a ranking approach for emotion recognition which naturally incorporates information about the general expressivity of speakers. We demonstrate that our approach leads to substantial gains in accuracy compared to conventional approaches. We train ranking SVMs for individual emotions, treating the data from each speaker as a separate query, and combine the predictions from all rankers to perform multi-class prediction. The ranking method provides two natural benefits. It captures speaker specific information even in speaker-independent training/testing conditions. It also incorporates the intuition that each utterance can express a mix of possible emotion and that considering the degree to which each emotion is expressed can be productively exploited to identify the dominant emotion. We compare the performance of the rankers and their combination to standard SVM classification approaches on two publicly available datasets of acted emotional speech, Berlin and LDC, as well as on spontaneous emotional data from the FAU Aibo dataset. On acted data, ranking approaches exhibit significantly better performance compared to SVM classification both in distinguishing a specific emotion from all others and in multi-class prediction. On the spontaneous data, which contains mostly neutral utterances with a relatively small portion of less intense emotional utterances, ranking-based classifiers again achieve much higher precision in identifying emotional utterances than conventional SVM classifiers. In addition, we discuss the complementarity of conventional SVM and ranking-based classifiers. On all three datasets we find dramatically higher accuracy for the test items on whose prediction the two methods agree compared to the accuracy of individual methods. Furthermore on the spontaneous data the ranking and standard classification are complementary and we obtain marked improvement when we combine the two classifiers by late-stage fusion. PMID:25422534
Speaker-sensitive emotion recognition via ranking: Studies on acted and spontaneous speech☆
Cao, Houwei; Verma, Ragini; Nenkova, Ani
2015-01-01
We introduce a ranking approach for emotion recognition which naturally incorporates information about the general expressivity of speakers. We demonstrate that our approach leads to substantial gains in accuracy compared to conventional approaches. We train ranking SVMs for individual emotions, treating the data from each speaker as a separate query, and combine the predictions from all rankers to perform multi-class prediction. The ranking method provides two natural benefits. It captures speaker specific information even in speaker-independent training/testing conditions. It also incorporates the intuition that each utterance can express a mix of possible emotion and that considering the degree to which each emotion is expressed can be productively exploited to identify the dominant emotion. We compare the performance of the rankers and their combination to standard SVM classification approaches on two publicly available datasets of acted emotional speech, Berlin and LDC, as well as on spontaneous emotional data from the FAU Aibo dataset. On acted data, ranking approaches exhibit significantly better performance compared to SVM classification both in distinguishing a specific emotion from all others and in multi-class prediction. On the spontaneous data, which contains mostly neutral utterances with a relatively small portion of less intense emotional utterances, ranking-based classifiers again achieve much higher precision in identifying emotional utterances than conventional SVM classifiers. In addition, we discuss the complementarity of conventional SVM and ranking-based classifiers. On all three datasets we find dramatically higher accuracy for the test items on whose prediction the two methods agree compared to the accuracy of individual methods. Furthermore on the spontaneous data the ranking and standard classification are complementary and we obtain marked improvement when we combine the two classifiers by late-stage fusion.
Rigge, Matthew B.; Gass, Leila; Homer, Collin G.; Xian, George Z.
2017-10-26
The National Land Cover Database (NLCD) provides thematic land cover and land cover change data at 30-meter spatial resolution for the United States. Although the NLCD is considered to be the leading thematic land cover/land use product and overall classification accuracy across the NLCD is high, performance and consistency in the vast shrub and grasslands of the Western United States is lower than desired. To address these issues and fulfill the needs of stakeholders requiring more accurate rangeland data, the USGS has developed a method to quantify these areas in terms of the continuous cover of several cover components. These components include the cover of shrub, sagebrush (Artemisia spp), big sagebrush (Artemisia tridentata spp.), herbaceous, annual herbaceous, litter, and bare ground, and shrub and sagebrush height. To produce maps of component cover, we collected field data that were then associated with spectral values in WorldView-2 and Landsat imagery using regression tree models. The current report outlines the procedures and results of converting these continuous cover components to three thematic NLCD classes: barren, shrubland, and grassland. To accomplish this, we developed a series of indices and conditional models using continuous cover of shrub, bare ground, herbaceous, and litter as inputs. The continuous cover data are currently available for two large regions in the Western United States. Accuracy of the “cross-walked” product was assessed relative to that of NLCD 2011 at independent validation points (n=787) across these two regions. Overall thematic accuracy of the “cross-walked” product was 0.70, compared to 0.63 for NLCD 2011. The kappa value was considerably higher for the “cross-walked” product at 0.41 compared to 0.28 for NLCD 2011. Accuracy was also evaluated relative to the values of training points (n=75,000) used in the development of the continuous cover components. Again, the “cross-walked” product outperformed NLCD 2011, with an overall accuracy of 0.81, compared to 0.66 for NLCD 2011. These results demonstrated that our continuous cover predictions and models were successful in increasing thematic classification accuracy in Western United States shrublands. We plan to directly use the “cross-walked” product, where available, in the NLCD 2016 product.
Basaki, Kinga; Alkumru, Hasan; De Souza, Grace; Finer, Yoav
To assess the three-dimensional (3D) accuracy and clinical acceptability of implant definitive casts fabricated using a digital impression approach and to compare the results with those of a conventional impression method in a partially edentulous condition. A mandibular reference model was fabricated with implants in the first premolar and molar positions to simulate a patient with bilateral posterior edentulism. Ten implant-level impressions per method were made using either an intraoral scanner with scanning abutments for the digital approach or an open-tray technique and polyvinylsiloxane material for the conventional approach. 3D analysis and comparison of implant location on resultant definitive casts were performed using laser scanner and quality control software. The inter-implant distances and interimplant angulations for each implant pair were measured for the reference model and for each definitive cast (n = 20 per group); these measurements were compared to calculate the magnitude of error in 3D for each definitive cast. The influence of implant angulation on definitive cast accuracy was evaluated for both digital and conventional approaches. Statistical analysis was performed using t test (α = .05) for implant position and angulation. Clinical qualitative assessment of accuracy was done via the assessment of the passivity of a master verification stent for each implant pair, and significance was analyzed using chi-square test (α = .05). A 3D error of implant positioning was observed for the two impression techniques vs the reference model, with mean ± standard deviation (SD) error of 116 ± 94 μm and 56 ± 29 μm for the digital and conventional approaches, respectively (P = .01). In contrast, the inter-implant angulation errors were not significantly different between the two techniques (P = .83). Implant angulation did not have a significant influence on definitive cast accuracy within either technique (P = .64). The verification stent demonstrated acceptable passive fit for 11 out of 20 casts and 18 out of 20 casts for the digital and conventional methods, respectively (P = .01). Definitive casts fabricated using the digital impression approach were less accurate than those fabricated from the conventional impression approach for this simulated clinical scenario. A significant number of definitive casts generated by the digital technique did not meet clinically acceptable accuracy for the fabrication of a multiple implant-supported restoration.
Neuhaus, Philipp; Doods, Justin; Dugas, Martin
2015-01-01
Automatic coding of medical terms is an important, but highly complicated and laborious task. To compare and evaluate different strategies a framework with a standardized web-interface was created. Two UMLS mapping strategies are compared to demonstrate the interface. The framework is a Java Spring application running on a Tomcat application server. It accepts different parameters and returns results in JSON format. To demonstrate the framework, a list of medical data items was mapped by two different methods: similarity search in a large table of terminology codes versus search in a manually curated repository. These mappings were reviewed by a specialist. The evaluation shows that the framework is flexible (due to standardized interfaces like HTTP and JSON), performant and reliable. Accuracy of automatically assigned codes is limited (up to 40%). Combining different semantic mappers into a standardized Web-API is feasible. This framework can be easily enhanced due to its modular design.
Sadeghipour, F; Veuthey, J L
1997-11-07
A rapid, sensitive and selective liquid chromatographic method with fluorimetric detection was developed for the separation and quantification of four methylenedioxylated amphetamines without interference of other drugs of abuse and common substances found in illicit tablets. The method was validated by examining linearity, precision and accuracy as well as detection and quantification limits. Methylenedioxylated amphetamines were quantified in eight tablets from illicit drug seizures and results were quantitatively compared to HPLC-UV analyses. To demonstrate the better sensitivity of the fluorimetric detection, methylenedioxylated amphetamines were analyzed in serum after a liquid-liquid extraction procedure and results were also compared to HPLC-UV analyses.
Application of XGBoost algorithm in hourly PM2.5 concentration prediction
NASA Astrophysics Data System (ADS)
Pan, Bingyue
2018-02-01
In view of prediction techniques of hourly PM2.5 concentration in China, this paper applied the XGBoost(Extreme Gradient Boosting) algorithm to predict hourly PM2.5 concentration. The monitoring data of air quality in Tianjin city was analyzed by using XGBoost algorithm. The prediction performance of the XGBoost method is evaluated by comparing observed and predicted PM2.5 concentration using three measures of forecast accuracy. The XGBoost method is also compared with the random forest algorithm, multiple linear regression, decision tree regression and support vector machines for regression models using computational results. The results demonstrate that the XGBoost algorithm outperforms other data mining methods.
NASA Technical Reports Server (NTRS)
Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.
1998-01-01
We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.
TOPEX/POSEIDON operational orbit determination results using global positioning satellites
NASA Technical Reports Server (NTRS)
Guinn, J.; Jee, J.; Wolff, P.; Lagattuta, F.; Drain, T.; Sierra, V.
1994-01-01
Results of operational orbit determination, performed as part of the TOPEX/POSEIDON (T/P) Global Positioning System (GPS) demonstration experiment, are presented in this article. Elements of this experiment include the GPS satellite constellation, the GPS demonstration receiver on board T/P, six ground GPS receivers, the GPS Data Handling Facility, and the GPS Data Processing Facility (GDPF). Carrier phase and P-code pseudorange measurements from up to 24 GPS satellites to the seven GPS receivers are processed simultaneously with the GDPF software MIRAGE to produce orbit solutions of T/P and the GPS satellites. Daily solutions yield subdecimeter radial accuracies compared to other GPS, LASER, and DORIS precision orbit solutions.
Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows
NASA Technical Reports Server (NTRS)
Wilson, Robert V.; Demuren, Ayodeji O.; Carpenter, Mark
1998-01-01
A higher order accurate numerical procedure has been developed for solving incompressible Navier-Stokes equations for 2D or 3D fluid flow problems. It is based on low-storage Runge-Kutta schemes for temporal discretization and fourth and sixth order compact finite-difference schemes for spatial discretization. The particular difficulty of satisfying the divergence-free velocity field required in incompressible fluid flow is resolved by solving a Poisson equation for pressure. It is demonstrated that for consistent global accuracy, it is necessary to employ the same order of accuracy in the discretization of the Poisson equation. Special care is also required to achieve the formal temporal accuracy of the Runge-Kutta schemes. The accuracy of the present procedure is demonstrated by application to several pertinent benchmark problems.
Lightning Mapping With an Array of Fast Antennas
NASA Astrophysics Data System (ADS)
Wu, Ting; Wang, Daohong; Takagi, Nobuyuki
2018-04-01
Fast Antenna Lightning Mapping Array (FALMA), a low-frequency lightning mapping system comprising an array of fast antennas, was developed and established in Gifu, Japan, during the summer of 2017. Location results of two hybrid flashes and a cloud-to-ground flash comprising 11 return strokes (RSs) are described in detail in this paper. Results show that concurrent branches of stepped leaders can be readily resolved, and K changes and dart leaders with speeds up to 2.4 × 107 m/s are also well imaged. These results demonstrate that FALMA can reconstruct three-dimensional structures of lightning flashes with great details. Location accuracy of FALMA is estimated by comparing the located striking points of successive RSs in cloud-to-ground flashes. Results show that distances between successive RSs are mainly below 25 m, indicating exceptionally high location accuracy of FALMA.
NASA Astrophysics Data System (ADS)
Saadeddin, Kamal; Abdel-Hafez, Mamoun F.; Jaradat, Mohammad A.; Jarrah, Mohammad Amin
2013-12-01
In this paper, a low-cost navigation system that fuses the measurements of the inertial navigation system (INS) and the global positioning system (GPS) receiver is developed. First, the system's dynamics are obtained based on a vehicle's kinematic model. Second, the INS and GPS measurements are fused using an extended Kalman filter (EKF) approach. Subsequently, an artificial intelligence based approach for the fusion of INS/GPS measurements is developed based on an Input-Delayed Adaptive Neuro-Fuzzy Inference System (IDANFIS). Experimental tests are conducted to demonstrate the performance of the two sensor fusion approaches. It is found that the use of the proposed IDANFIS approach achieves a reduction in the integration development time and an improvement in the estimation accuracy of the vehicle's position and velocity compared to the EKF based approach.
Meat and Fish Freshness Inspection System Based on Odor Sensing
Hasan, Najam ul; Ejaz, Naveed; Ejaz, Waleed; Kim, Hyung Seok
2012-01-01
We propose a method for building a simple electronic nose based on commercially available sensors used to sniff in the market and identify spoiled/contaminated meat stocked for sale in butcher shops. Using a metal oxide semiconductor-based electronic nose, we measured the smell signature from two of the most common meat foods (beef and fish) stored at room temperature. Food samples were divided into two groups: fresh beef with decayed fish and fresh fish with decayed beef. The prime objective was to identify the decayed item using the developed electronic nose. Additionally, we tested the electronic nose using three pattern classification algorithms (artificial neural network, support vector machine and k-nearest neighbor), and compared them based on accuracy, sensitivity, and specificity. The results demonstrate that the k-nearest neighbor algorithm has the highest accuracy. PMID:23202222
Incorporating conditional random fields and active learning to improve sentiment identification.
Zhang, Kunpeng; Xie, Yusheng; Yang, Yi; Sun, Aaron; Liu, Hengchang; Choudhary, Alok
2014-10-01
Many machine learning, statistical, and computational linguistic methods have been developed to identify sentiment of sentences in documents, yielding promising results. However, most of state-of-the-art methods focus on individual sentences and ignore the impact of context on the meaning of a sentence. In this paper, we propose a method based on conditional random fields to incorporate sentence structure and context information in addition to syntactic information for improving sentiment identification. We also investigate how human interaction affects the accuracy of sentiment labeling using limited training data. We propose and evaluate two different active learning strategies for labeling sentiment data. Our experiments with the proposed approach demonstrate a 5%-15% improvement in accuracy on Amazon customer reviews compared to existing supervised learning and rule-based methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
[The development and evaluation of software to verify diagnostic accuracy].
Jensen, Rodrigo; de Moraes Lopes, Maria Helena Baena; Silveira, Paulo Sérgio Panse; Ortega, Neli Regina Siqueira
2012-02-01
This article describes the development and evaluation of software that verifies the accuracy of diagnoses made by nursing students. The software was based on a model that uses fuzzy logic concepts, including PERL, the MySQL database for Internet accessibility, and the NANDA-I 2007-2008 classification system. The software was evaluated in terms of its technical quality and usability through specific instruments. The activity proposed in the software involves four stages in which students establish the relationship values between nursing diagnoses, defining characteristics/risk factors and clinical cases. The relationship values determined by students are compared to those of specialists, generating performance scores for the students. In the evaluation, the software demonstrated satisfactory outcomes regarding the technical quality and, according to the students, helped in their learning and may become an educational tool to teach the process of nursing diagnosis.
Structured light system calibration method with optimal fringe angle.
Li, Beiwen; Zhang, Song
2014-11-20
For structured light system calibration, one popular approach is to treat the projector as an inverse camera. This is usually performed by projecting horizontal and vertical sequences of patterns to establish one-to-one mapping between camera points and projector points. However, for a well-designed system, either horizontal or vertical fringe images are not sensitive to depth variation and thus yield inaccurate mapping. As a result, the calibration accuracy is jeopardized if a conventional calibration method is used. To address this limitation, this paper proposes a novel calibration method based on optimal fringe angle determination. Experiments demonstrate that our calibration approach can increase the measurement accuracy up to 38% compared to the conventional calibration method with a calibration volume of 300(H) mm×250(W) mm×500(D) mm.
Meshless Solution of the Problem on the Static Behavior of Thin and Thick Laminated Composite Beams
NASA Astrophysics Data System (ADS)
Xiang, S.; Kang, G. W.
2018-03-01
For the first time, the static behavior of laminated composite beams is analyzed using the meshless collocation method based on a thin-plate-spline radial basis function. In the approximation of a partial differential equation by using a radial basis function, the shape parameter has an important role in ensuring the numerical accuracy. The choice of a shape parameter in the thin plate spline radial basis function is easier than in other radial basis functions. The governing differential equations are derived based on Reddy's third-order shear deformation theory. Numerical results are obtained for symmetric cross-ply laminated composite beams with simple-simple and cantilever boundary conditions under a uniform load. The results found are compared with available published ones and demonstrate the accuracy of the present method.
Real-time driver fatigue detection based on face alignment
NASA Astrophysics Data System (ADS)
Tao, Huanhuan; Zhang, Guiying; Zhao, Yong; Zhou, Yi
2017-07-01
The performance and robustness of fatigue detection largely decrease if the driver with glasses. To address this issue, this paper proposes a practical driver fatigue detection method based on face alignment at 3000 FPS algorithm. Firstly, the eye regions of the driver are localized by exploiting 6 landmarks surrounding each eye. Secondly, the HOG features of the extracted eye regions are calculated and put into SVM classifier to recognize the eye state. Finally, the value of PERCLOS is calculated to determine whether the driver is drowsy or not. An alarm will be generated if the eye is closed for a specified period of time. The accuracy and real-time on testing videos with different drivers demonstrate that the proposed algorithm is robust and obtain better accuracy for driver fatigue detection compared with some previous method.
Prediction of clinical behaviour and treatment for cancers.
Futschik, Matthias E; Sullivan, Mike; Reeve, Anthony; Kasabov, Nikola
2003-01-01
Prediction of clinical behaviour and treatment for cancers is based on the integration of clinical and pathological parameters. Recent reports have demonstrated that gene expression profiling provides a powerful new approach for determining disease outcome. If clinical and microarray data each contain independent information then it should be possible to combine these datasets to gain more accurate prognostic information. Here, we have used existing clinical information and microarray data to generate a combined prognostic model for outcome prediction for diffuse large B-cell lymphoma (DLBCL). A prediction accuracy of 87.5% was achieved. This constitutes a significant improvement compared to the previously most accurate prognostic model with an accuracy of 77.6%. The model introduced here may be generally applicable to the combination of various types of molecular and clinical data for improving medical decision support systems and individualising patient care.
A comparison of modified versions of the Static-99 and the Sex Offender Risk Appraisal Guide.
Nunes, Kevin L; Firestone, Philip; Bradford, John M; Greenberg, David M; Broom, Ian
2002-07-01
The predictive validity of 2 risk assessment instruments for sex offenders, modified versions of the Static-99 and the Sex Offender Risk Appraisal Guide, was examined and compared in a sample of 258 adult male sex offenders. In addition, the independent contributions to the prediction of recidivism made by each instrument and by various phallometric indices were explored. Both instruments demonstrated moderate levels of predictive accuracy for sexual and violent (including sexual) recidivism. They were not significantly different in terms of their predictive accuracy for sexual or violent recidivism, nor did they contribute independently to the prediction of sexual or violent recidivism. Of the phallometric indices examined, only the pedophile index added significantly to the prediction of sexual recidivism, but not violent recidivism, above the Static-99 alone.
A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes
NASA Astrophysics Data System (ADS)
Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.
2018-06-01
A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.
Multiclass cancer diagnosis using tumor gene expression signatures
Ramaswamy, S.; Tamayo, P.; Rifkin, R.; ...
2001-12-11
The optimal treatment of patients with cancer depends on establishing accurate diagnoses by using a complex combination of clinical and histopathological data. In some instances, this task is difficult or impossible because of atypical clinical presentation or histopathology. To determine whether the diagnosis of multiple common adult malignancies could be achieved purely by molecular classification, we subjected 218 tumor samples, spanning 14 common tumor types, and 90 normal tissue samples to oligonucleotide microarray gene expression analysis. The expression levels of 16,063 genes and expressed sequence tags were used to evaluate the accuracy of a multiclass classifier based on a supportmore » vector machine algorithm. Overall classification accuracy was 78%, far exceeding the accuracy of random classification (9%). Poorly differentiated cancers resulted in low-confidence predictions and could not be accurately classified according to their tissue of origin, indicating that they are molecularly distinct entities with dramatically different gene expression patterns compared with their well differentiated counterparts. Taken together, these results demonstrate the feasibility of accurate, multiclass molecular cancer classification and suggest a strategy for future clinical implementation of molecular cancer diagnostics.« less
Knowledge discovery by accuracy maximization
Cacciatore, Stefano; Luchinat, Claudio; Tenori, Leonardo
2014-01-01
Here we describe KODAMA (knowledge discovery by accuracy maximization), an unsupervised and semisupervised learning algorithm that performs feature extraction from noisy and high-dimensional data. Unlike other data mining methods, the peculiarity of KODAMA is that it is driven by an integrated procedure of cross-validation of the results. The discovery of a local manifold’s topology is led by a classifier through a Monte Carlo procedure of maximization of cross-validated predictive accuracy. Briefly, our approach differs from previous methods in that it has an integrated procedure of validation of the results. In this way, the method ensures the highest robustness of the obtained solution. This robustness is demonstrated on experimental datasets of gene expression and metabolomics, where KODAMA compares favorably with other existing feature extraction methods. KODAMA is then applied to an astronomical dataset, revealing unexpected features. Interesting and not easily predictable features are also found in the analysis of the State of the Union speeches by American presidents: KODAMA reveals an abrupt linguistic transition sharply separating all post-Reagan from all pre-Reagan speeches. The transition occurs during Reagan’s presidency and not from its beginning. PMID:24706821
Yan, Jun; Yu, Kegen; Chen, Ruizhi; Chen, Liang
2017-05-30
In this paper a two-phase compressive sensing (CS) and received signal strength (RSS)-based target localization approach is proposed to improve position accuracy by dealing with the unknown target population and the effect of grid dimensions on position error. In the coarse localization phase, by formulating target localization as a sparse signal recovery problem, grids with recovery vector components greater than a threshold are chosen as the candidate target grids. In the fine localization phase, by partitioning each candidate grid, the target position in a grid is iteratively refined by using the minimum residual error rule and the least-squares technique. When all the candidate target grids are iteratively partitioned and the measurement matrix is updated, the recovery vector is re-estimated. Threshold-based detection is employed again to determine the target grids and hence the target population. As a consequence, both the target population and the position estimation accuracy can be significantly improved. Simulation results demonstrate that the proposed approach achieves the best accuracy among all the algorithms compared.
Model-based phase-shifting interferometer
NASA Astrophysics Data System (ADS)
Liu, Dong; Zhang, Lei; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian
2015-10-01
A model-based phase-shifting interferometer (MPI) is developed, in which a novel calculation technique is proposed instead of the traditional complicated system structure, to achieve versatile, high precision and quantitative surface tests. In the MPI, the partial null lens (PNL) is employed to implement the non-null test. With some alternative PNLs, similar as the transmission spheres in ZYGO interferometers, the MPI provides a flexible test for general spherical and aspherical surfaces. Based on modern computer modeling technique, a reverse iterative optimizing construction (ROR) method is employed for the retrace error correction of non-null test, as well as figure error reconstruction. A self-compiled ray-tracing program is set up for the accurate system modeling and reverse ray tracing. The surface figure error then can be easily extracted from the wavefront data in forms of Zernike polynomials by the ROR method. Experiments of the spherical and aspherical tests are presented to validate the flexibility and accuracy. The test results are compared with those of Zygo interferometer (null tests), which demonstrates the high accuracy of the MPI. With such accuracy and flexibility, the MPI would possess large potential in modern optical shop testing.
A modified adjoint-based grid adaptation and error correction method for unstructured grid
NASA Astrophysics Data System (ADS)
Cui, Pengcheng; Li, Bin; Tang, Jing; Chen, Jiangtao; Deng, Youqi
2018-05-01
Grid adaptation is an important strategy to improve the accuracy of output functions (e.g. drag, lift, etc.) in computational fluid dynamics (CFD) analysis and design applications. This paper presents a modified robust grid adaptation and error correction method for reducing simulation errors in integral outputs. The procedure is based on discrete adjoint optimization theory in which the estimated global error of output functions can be directly related to the local residual error. According to this relationship, local residual error contribution can be used as an indicator in a grid adaptation strategy designed to generate refined grids for accurately estimating the output functions. This grid adaptation and error correction method is applied to subsonic and supersonic simulations around three-dimensional configurations. Numerical results demonstrate that the sensitive grids to output functions are detected and refined after grid adaptation, and the accuracy of output functions is obviously improved after error correction. The proposed grid adaptation and error correction method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to the traditional featured-based grid adaptation.
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Choi, Sang H.; Chrisman, Dan A., Jr.; Samms, Richard W.
1987-01-01
Dynamic models and computer simulations were developed for the radiometric sensors utilized in the Earth Radiation Budget Experiment (ERBE). The models were developed to understand performance, improve measurement accuracy by updating model parameters and provide the constants needed for the count conversion algorithms. Model simulations were compared with the sensor's actual responses demonstrated in the ground and inflight calibrations. The models consider thermal and radiative exchange effects, surface specularity, spectral dependence of a filter, radiative interactions among an enclosure's nodes, partial specular and diffuse enclosure surface characteristics and steady-state and transient sensor responses. Relatively few sensor nodes were chosen for the models since there is an accuracy tradeoff between increasing the number of nodes and approximating parameters such as the sensor's size, material properties, geometry, and enclosure surface characteristics. Given that the temperature gradients within a node and between nodes are small enough, approximating with only a few nodes does not jeopardize the accuracy required to perform the parameter estimates and error analyses.
Galileo: The Added Value for Integrity in Harsh Environments.
Borio, Daniele; Gioia, Ciro
2016-01-16
A global navigation satellite system (GNSS)-based navigation is a challenging task in a signal-degraded environments where GNSS signals are distorted by multipath and attenuated by fading effects: the navigation solution may be inaccurate or unavailable. A possible approach to improve accuracy and availability is the joint use of measurements from different GNSSs and quality check algorithms; this approach is investigated here using live GPS and Galileo signals. A modified receiver autonomous integrity monitoring (RAIM) algorithm, including geometry and separability checks, is proposed to detect and exclude erroneous measurements: the multi-constellation approach provides redundant measurements, and RAIM exploits them to exclude distorted observations. The synergy between combined GPS/Galileo navigation and RAIM is analyzed using live data; the performance is compared to the accuracy and availability of a GPS-only solution. The tests performed demonstrate that the methods developed are effective techniques for GNSS-based navigation in signal-degraded environments. The joint use of the multi-constellation approach and of modified RAIM algorithms improves the performance of the navigation system in terms of both accuracy and availability.
Galileo: The Added Value for Integrity in Harsh Environments
Borio, Daniele; Gioia, Ciro
2016-01-01
A global navigation satellite system (GNSS)-based navigation is a challenging task in a signal-degraded environments where GNSS signals are distorted by multipath and attenuated by fading effects: the navigation solution may be inaccurate or unavailable. A possible approach to improve accuracy and availability is the joint use of measurements from different GNSSs and quality check algorithms; this approach is investigated here using live GPS and Galileo signals. A modified receiver autonomous integrity monitoring (RAIM) algorithm, including geometry and separability checks, is proposed to detect and exclude erroneous measurements: the multi-constellation approach provides redundant measurements, and RAIM exploits them to exclude distorted observations. The synergy between combined GPS/Galileo navigation and RAIM is analyzed using live data; the performance is compared to the accuracy and availability of a GPS-only solution. The tests performed demonstrate that the methods developed are effective techniques for GNSS-based navigation in signal-degraded environments. The joint use of the multi-constellation approach and of modified RAIM algorithms improves the performance of the navigation system in terms of both accuracy and availability. PMID:26784205
Wang, Cong; Du, Hua-qiang; Zhou, Guo-mo; Xu, Xiao-jun; Sun, Shao-bo; Gao, Guo-long
2015-05-01
This research focused on the application of remotely sensed imagery from unmanned aerial vehicle (UAV) with high spatial resolution for the estimation of crown closure of moso bamboo forest based on the geometric-optical model, and analyzed the influence of unconstrained and fully constrained linear spectral mixture analysis (SMA) on the accuracy of the estimated results. The results demonstrated that the combination of UAV remotely sensed imagery and geometric-optical model could, to some degrees, achieve the estimation of crown closure. However, the different SMA methods led to significant differentiation in the estimation accuracy. Compared with unconstrained SMA, the fully constrained linear SMA method resulted in higher accuracy of the estimated values, with the coefficient of determination (R2) of 0.63 at 0.01 level, against the measured values acquired during the field survey. Root mean square error (RMSE) of approximate 0.04 was low, indicating that the usage of fully constrained linear SMA could bring about better results in crown closure estimation, which was closer to the actual condition in moso bamboo forest.
Dai, Yifei; Scuderi, Giles R; Bischoff, Jeffrey E; Bertin, Kim; Tarabichi, Samih; Rajgopal, Ashok
2014-12-01
The aim of this study was to comprehensively evaluate contemporary tibial component designs against global tibial anatomy. We hypothesized that anatomically designed tibial components offer increased morphological fit to the resected proximal tibia with increased alignment accuracy compared to symmetric and asymmetric designs. Using a multi-ethnic bone dataset, six contemporary tibial component designs were investigated, including anatomic, asymmetric, and symmetric design types. Investigations included (1) measurement of component conformity to the resected tibia using a comprehensive set of size and shape metrics; (2) assessment of component coverage on the resected tibia while ensuring clinically acceptable levels of rotation and overhang; and (3) evaluation of the incidence and severity of component downsizing due to adherence to rotational alignment and overhang requirements, and the associated compromise in tibial coverage. Differences in coverage were statistically compared across designs and ethnicities, as well as between placements with or without enforcement of proper rotational alignment. Compared to non-anatomic designs investigated, the anatomic design exhibited better conformity to resected tibial morphology in size and shape, higher tibial coverage (92% compared to 85-87%), more cortical support (posteromedial region), lower incidence of downsizing (3% compared to 39-60%), and less compromise of tibial coverage (0.5% compared to 4-6%) when enforcing proper rotational alignment. The anatomic design demonstrated meaningful increase in tibial coverage with accurate rotational alignment compared to symmetric and asymmetric designs, suggesting its potential for less intra-operative compromises and improved performance. III.
NASA Astrophysics Data System (ADS)
Matongera, Trylee Nyasha; Mutanga, Onisimo; Dube, Timothy; Sibanda, Mbulisi
2017-05-01
Bracken fern is an invasive plant that presents serious environmental, ecological and economic problems around the world. An understanding of the spatial distribution of bracken fern weeds is therefore essential for providing appropriate management strategies at both local and regional scales. The aim of this study was to assess the utility of the freely available medium resolution Landsat 8 OLI sensor in the detection and mapping of bracken fern at the Cathedral Peak, South Africa. To achieve this objective, the results obtained from Landsat 8 OLI were compared with those derived using the costly, high spatial resolution WorldView-2 imagery. Since previous studies have already successfully mapped bracken fern using high spatial resolution WorldView-2 image, the comparison was done to investigate the magnitude of difference in accuracy between the two sensors in relation to their acquisition costs. To evaluate the performance of Landsat 8 OLI in discriminating bracken fern compared to that of Worldview-2, we tested the utility of (i) spectral bands; (ii) derived vegetation indices as well as (iii) the combination of spectral bands and vegetation indices based on discriminant analysis classification algorithm. After resampling the training and testing data and reclassifying several times (n = 100) based on the combined data sets, the overall accuracies for both Landsat 8 and WorldView-2 were tested for significant differences based on Mann-Whitney U test. The results showed that the integration of the spectral bands and derived vegetation indices yielded the best overall classification accuracy (80.08% and 87.80% for Landsat 8 OLI and WorldView-2 respectively). Additionally, the use of derived vegetation indices as a standalone data set produced the weakest overall accuracy results of 62.14% and 82.11% for both the Landsat 8 OLI and WorldView-2 images. There were significant differences {U (100) = 569.5, z = -10.8242, p < 0.01} between the classification accuracies derived based on Landsat OLI 8 and those derived using WorldView-2 sensor. Although there were significant differences between Landsat and WorldView-2 accuracies, the magnitude of variation (9%) between the two sensors was within an acceptable range. Therefore, the findings of this study demonstrated that the recently launched Landsat 8 OLI multispectral sensor provides valuable information that could aid in the long term continuous monitoring and formulation of effective bracken fern management with acceptable accuracies that are comparable to those obtained from the high resolution WorldView-2 commercial sensor.
A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System
Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju
2014-01-01
Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor. PMID:25006998
Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.
Parr, Andreas; Miesen, Robert; Vossiek, Martin
2016-06-25
In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements.
Decision time and confidence predict choosers' identification performance in photographic showups
Sagana, Anna; Sporer, Siegfried L.; Wixted, John T.
2018-01-01
In vast contrast to the multitude of lineup studies that report on the link between decision time, confidence, and identification accuracy, only a few studies looked at these associations for showups, with results varying widely across studies. We therefore set out to test the individual and combined value of decision time and post-decision confidence for diagnosing the accuracy of positive showup decisions using confidence-accuracy characteristic curves and Bayesian analyses. Three-hundred-eighty-four participants viewed a stimulus event and were subsequently presented with two showups which could be target-present or target-absent. As expected, we found a negative decision time-accuracy and a positive post-decision confidence-accuracy correlation for showup selections. Confidence-accuracy characteristic curves demonstrated the expected additive effect of combining both postdictors. Likewise, Bayesian analyses, taking into account all possible target-presence base rate values showed that fast and confident identification decisions were more diagnostic than slow or less confident decisions, with the combination of both being most diagnostic for postdicting accurate and inaccurate decisions. The postdictive value of decision time and post-decision confidence was higher when the prior probability that the suspect is the perpetrator was high compared to when the prior probability that the suspect is the perpetrator was low. The frequent use of showups in practice emphasizes the importance of these findings for court proceedings. Overall, these findings support the idea that courts should have most trust in showup identifications that were made fast and confidently, and least in showup identifications that were made slowly and with low confidence. PMID:29346394
Decision time and confidence predict choosers' identification performance in photographic showups.
Sauerland, Melanie; Sagana, Anna; Sporer, Siegfried L; Wixted, John T
2018-01-01
In vast contrast to the multitude of lineup studies that report on the link between decision time, confidence, and identification accuracy, only a few studies looked at these associations for showups, with results varying widely across studies. We therefore set out to test the individual and combined value of decision time and post-decision confidence for diagnosing the accuracy of positive showup decisions using confidence-accuracy characteristic curves and Bayesian analyses. Three-hundred-eighty-four participants viewed a stimulus event and were subsequently presented with two showups which could be target-present or target-absent. As expected, we found a negative decision time-accuracy and a positive post-decision confidence-accuracy correlation for showup selections. Confidence-accuracy characteristic curves demonstrated the expected additive effect of combining both postdictors. Likewise, Bayesian analyses, taking into account all possible target-presence base rate values showed that fast and confident identification decisions were more diagnostic than slow or less confident decisions, with the combination of both being most diagnostic for postdicting accurate and inaccurate decisions. The postdictive value of decision time and post-decision confidence was higher when the prior probability that the suspect is the perpetrator was high compared to when the prior probability that the suspect is the perpetrator was low. The frequent use of showups in practice emphasizes the importance of these findings for court proceedings. Overall, these findings support the idea that courts should have most trust in showup identifications that were made fast and confidently, and least in showup identifications that were made slowly and with low confidence.
Double absorbing boundaries for finite-difference time-domain electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu
We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.
Navier-Stokes computations for circulation control airfoils
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.; Jespersen, Dennis C.; Barth, Timothy J.
1987-01-01
Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.
Navier-Stokes computations for circulation controlled airfoils
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Jesperen, D. C.; Barth, T. J.
1986-01-01
Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.
Analysis of eye-tracking experiments performed on a Tobii T60
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, David C
2008-01-01
Commercial eye-gaze trackers have the potential to be an important tool for quantifying the benefits of new visualization techniques. The expense of such trackers has made their use relatively infrequent in visualization studies. As such, it is difficult for researchers to compare multiple devices obtaining several demonstration models is impractical in cost and time, and quantitative measures from real-world use are not readily available. In this paper, we present a sample protocol to determine the accuracy of a gaze-tacking device.
A simple three dimensional wide-angle beam propagation method
NASA Astrophysics Data System (ADS)
Ma, Changbao; van Keuren, Edward
2006-05-01
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
A simple three dimensional wide-angle beam propagation method.
Ma, Changbao; Van Keuren, Edward
2006-05-29
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
A Dynamic Precision Evaluation Method for the Star Sensor in the Stellar-Inertial Navigation System.
Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang
2017-06-28
Integrating the advantages of INS (inertial navigation system) and the star sensor, the stellar-inertial navigation system has been used for a wide variety of applications. The star sensor is a high-precision attitude measurement instrument; therefore, determining how to validate its accuracy is critical in guaranteeing its practical precision. The dynamic precision evaluation of the star sensor is more difficult than a static precision evaluation because of dynamic reference values and other impacts. This paper proposes a dynamic precision verification method of star sensor with the aid of inertial navigation device to realize real-time attitude accuracy measurement. Based on the gold-standard reference generated by the star simulator, the altitude and azimuth angle errors of the star sensor are calculated for evaluation criteria. With the goal of diminishing the impacts of factors such as the sensors' drift and devices, the innovative aspect of this method is to employ static accuracy for comparison. If the dynamic results are as good as the static results, which have accuracy comparable to the single star sensor's precision, the practical precision of the star sensor is sufficiently high to meet the requirements of the system specification. The experiments demonstrate the feasibility and effectiveness of the proposed method.
Performance analysis of a compact and low-cost mapping-grade mobile laser scanning system
NASA Astrophysics Data System (ADS)
Julge, Kalev; Vajakas, Toivo; Ellmann, Artu
2017-10-01
The performance of a low-cost, self-contained, compact, and easy to deploy mapping-grade mobile laser scanning (MLS) system, which is composed of a light detection and ranging sensor Velodyne VLP-16 and a dual antenna global navigation satellite system/inertial navigation system SBG Systems Ellipse-D, is analyzed. The field tests were carried out in car-mounted and backpack modes for surveying road engineering structures (such as roads, parking lots, underpasses, and tunnels) and coastal erosion zones, respectively. The impact of applied calculation principles on trajectory postprocessing, direct georeferencing, and the theoretical accuracy of the system is analyzed. A calibration method, based on Bound Optimization BY Quadratic Approximation, for finding the boresight angles of an MLS system is proposed. The resulting MLS point clouds are compared with high-accuracy static terrestrial laser scanning data and survey-grade MLS data from a commercially manufactured MLS system. The vertical, horizontal, and relative accuracy are assessed-the root-mean-square error (RMSE) values were determined to be 8, 15, and 3 cm, respectively. Thus, the achieved mapping-grade accuracy demonstrates that this relatively compact and inexpensive self-assembled MLS can be successfully used for surveying the geometry and deformations of terrain, buildings, road, and other engineering structures.
A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG
Chen, Duo; Wan, Suiren; Xiang, Jing; Bao, Forrest Sheng
2017-01-01
In the past decade, Discrete Wavelet Transform (DWT), a powerful time-frequency tool, has been widely used in computer-aided signal analysis of epileptic electroencephalography (EEG), such as the detection of seizures. One of the important hurdles in the applications of DWT is the settings of DWT, which are chosen empirically or arbitrarily in previous works. The objective of this study aimed to develop a framework for automatically searching the optimal DWT settings to improve accuracy and to reduce computational cost of seizure detection. To address this, we developed a method to decompose EEG data into 7 commonly used wavelet families, to the maximum theoretical level of each mother wavelet. Wavelets and decomposition levels providing the highest accuracy in each wavelet family were then searched in an exhaustive selection of frequency bands, which showed optimal accuracy and low computational cost. The selection of frequency bands and features removed approximately 40% of redundancies. The developed algorithm achieved promising performance on two well-tested EEG datasets (accuracy >90% for both datasets). The experimental results of the developed method have demonstrated that the settings of DWT affect its performance on seizure detection substantially. Compared with existing seizure detection methods based on wavelet, the new approach is more accurate and transferable among datasets. PMID:28278203
Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.
2014-01-01
Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer’s accuracy of 93% and a user’s accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.
Ahmad, Meraj; Sinha, Anubhav; Ghosh, Sreya; Kumar, Vikrant; Davila, Sonia; Yajnik, Chittaranjan S; Chandak, Giriraj R
2017-07-27
Imputation is a computational method based on the principle of haplotype sharing allowing enrichment of genome-wide association study datasets. It depends on the haplotype structure of the population and density of the genotype data. The 1000 Genomes Project led to the generation of imputation reference panels which have been used globally. However, recent studies have shown that population-specific panels provide better enrichment of genome-wide variants. We compared the imputation accuracy using 1000 Genomes phase 3 reference panel and a panel generated from genome-wide data on 407 individuals from Western India (WIP). The concordance of imputed variants was cross-checked with next-generation re-sequencing data on a subset of genomic regions. Further, using the genome-wide data from 1880 individuals, we demonstrate that WIP works better than the 1000 Genomes phase 3 panel and when merged with it, significantly improves the imputation accuracy throughout the minor allele frequency range. We also show that imputation using only South Asian component of the 1000 Genomes phase 3 panel works as good as the merged panel, making it computationally less intensive job. Thus, our study stresses that imputation accuracy using 1000 Genomes phase 3 panel can be further improved by including population-specific reference panels from South Asia.
Impact of cause of death adjudication on the results of the European prostate cancer screening trial
Walter, Stephen D; de Koning, Harry J; Hugosson, Jonas; Talala, Kirsi; Roobol, Monique J; Carlsson, Sigrid; Zappa, Marco; Nelen, Vera; Kwiatkowski, Maciej; Páez, Álvaro; Moss, Sue; Auvinen, Anssi
2017-01-01
Background: The European Randomised Study of Prostate Cancer Screening has shown a 21% relative reduction in prostate cancer mortality at 13 years. The causes of death can be misattributed, particularly in elderly men with multiple comorbidities, and therefore accurate assessment of the underlying cause of death is crucial for valid results. To address potential unreliability of end-point assessment, and its possible impact on mortality results, we analysed the study outcome adjudication data in six countries. Methods: Latent class statistical models were formulated to compare the accuracy of individual adjudicators, and to assess whether accuracy differed between the trial arms. We used the model to assess whether correcting for adjudication inaccuracies might modify the study results. Results: There was some heterogeneity in adjudication accuracy of causes of death, but no consistent differential accuracy by trial arm. Correcting the estimated screening effect for misclassification did not alter the estimated mortality effect of screening. Conclusions: Our findings were consistent with earlier reports on the European screening trial. Observer variation, while demonstrably present, is unlikely to have materially biased the main study results. A bias in assigning causes of death that might have explained the mortality reduction by screening can be effectively ruled out. PMID:27855442
Makeyev, Oleksandr; Joe, Cody; Lee, Colin; Besio, Walter G
2017-07-01
Concentric ring electrodes have shown promise in non-invasive electrophysiological measurement demonstrating their superiority to conventional disc electrodes, in particular, in accuracy of Laplacian estimation. Recently, we have proposed novel variable inter-ring distances concentric ring electrodes. Analytic and finite element method modeling results for linearly increasing distances electrode configurations suggested they may decrease the truncation error resulting in more accurate Laplacian estimates compared to currently used constant inter-ring distances configurations. This study assesses statistical significance of Laplacian estimation accuracy improvement due to novel variable inter-ring distances concentric ring electrodes. Full factorial design of analysis of variance was used with one categorical and two numerical factors: the inter-ring distances, the electrode diameter, and the number of concentric rings in the electrode. The response variables were the Relative Error and the Maximum Error of Laplacian estimation computed using a finite element method model for each of the combinations of levels of three factors. Effects of the main factors and their interactions on Relative Error and Maximum Error were assessed and the obtained results suggest that all three factors have statistically significant effects in the model confirming the potential of using inter-ring distances as a means of improving accuracy of Laplacian estimation.
Jia, Cang-Zhi; He, Wen-Ying; Yao, Yu-Hua
2017-03-01
Hydroxylation of proline or lysine residues in proteins is a common post-translational modification event, and such modifications are found in many physiological and pathological processes. Nonetheless, the exact molecular mechanism of hydroxylation remains under investigation. Because experimental identification of hydroxylation is time-consuming and expensive, bioinformatics tools with high accuracy represent desirable alternatives for large-scale rapid identification of protein hydroxylation sites. In view of this, we developed a supporter vector machine-based tool, OH-PRED, for the prediction of protein hydroxylation sites using the adapted normal distribution bi-profile Bayes feature extraction in combination with the physicochemical property indexes of the amino acids. In a jackknife cross validation, OH-PRED yields an accuracy of 91.88% and a Matthew's correlation coefficient (MCC) of 0.838 for the prediction of hydroxyproline sites, and yields an accuracy of 97.42% and a MCC of 0.949 for the prediction of hydroxylysine sites. These results demonstrate that OH-PRED increased significantly the prediction accuracy of hydroxyproline and hydroxylysine sites by 7.37 and 14.09%, respectively, when compared with the latest predictor PredHydroxy. In independent tests, OH-PRED also outperforms previously published methods.
NASA Astrophysics Data System (ADS)
Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.
2014-01-01
Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer's accuracy of 93% and a user's accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.
NASA Astrophysics Data System (ADS)
Li, Jiawen; Ma, Teng; Mohar, Dilbahar; Correa, Adrian; Minami, Hataka; Jing, Joseph; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping
2014-03-01
Intravascular ultrasound (IVUS) imaging and optical coherence tomography (OCT), two commonly used intracoronary imaging modalities, play important roles in plaque evaluation. The combined use of IVUS (to visualize the entire plaque volume) and OCT (to quantify the thickness of the plaque cap, if any) is hypothesized to increase plaque diagnostic accuracy. Our group has developed a fully-integrated dual-modality IVUS-OCT imaging system and 3.6F catheter for simultaneous IVUS-OCT imaging with a high resolution and deep penetration depth. However, the diagnostic accuracy of an integrated IVUS-OCT system has not been investigated. In this study, we imaged 175 coronary artery sites (241 regions of interest) from 20 cadavers using our previous reported integrated IVUS-OCT system. IVUS-OCT images were read by two skilled interventional cardiologists. Each region of interest was classified as either calcification, lipid pool or fibrosis. Comparing the diagnosis by cardiologists using IVUSOCT images with the diagnosis by the pathologist, we calculated the sensitivity and specificity for characterization of calcification, lipid pool or fibrosis with this integrated system. In vitro imaging of cadaver coronary specimens demonstrated the complementary nature of these two modalities for plaques classification. A higher accuracy was shown than using a single modality alone.
Classification of urban features using airborne hyperspectral data
NASA Astrophysics Data System (ADS)
Ganesh Babu, Bharath
Accurate mapping and modeling of urban environments are critical for their efficient and successful management. Superior understanding of complex urban environments is made possible by using modern geospatial technologies. This research focuses on thematic classification of urban land use and land cover (LULC) using 248 bands of 2.0 meter resolution hyperspectral data acquired from an airborne imaging spectrometer (AISA+) on 24th July 2006 in and near Terre Haute, Indiana. Three distinct study areas including two commercial classes, two residential classes, and two urban parks/recreational classes were selected for classification and analysis. Four commonly used classification methods -- maximum likelihood (ML), extraction and classification of homogeneous objects (ECHO), spectral angle mapper (SAM), and iterative self organizing data analysis (ISODATA) - were applied to each data set. Accuracy assessment was conducted and overall accuracies were compared between the twenty four resulting thematic maps. With the exception of SAM and ISODATA in a complex commercial area, all methods employed classified the designated urban features with more than 80% accuracy. The thematic classification from ECHO showed the best agreement with ground reference samples. The residential area with relatively homogeneous composition was classified consistently with highest accuracy by all four of the classification methods used. The average accuracy amongst the classifiers was 93.60% for this area. When individually observed, the complex recreational area (Deming Park) was classified with the highest accuracy by ECHO, with an accuracy of 96.80% and 96.10% Kappa. The average accuracy amongst all the classifiers was 92.07%. The commercial area with relatively high complexity was classified with the least accuracy by all classifiers. The lowest accuracy was achieved by SAM at 63.90% with 59.20% Kappa. This was also the lowest accuracy in the entire analysis. This study demonstrates the potential for using the visible and near infrared (VNIR) bands from AISA+ hyperspectral data in urban LULC classification. Based on their performance, the need for further research using ECHO and SAM is underscored. The importance incorporating imaging spectrometer data in high resolution urban feature mapping is emphasized.
Liao, Yuliang; Wang, Linjing; Xu, Xiangdong; Chen, Haibin; Chen, Jiawei; Zhang, Guoqian; Lei, Huaiyu; Wang, Ruihao; Zhang, Shuxu; Gu, Xuejun; Zhen, Xin; Zhou, Linghong
2017-06-01
To design and construct a three-dimensional (3D) anthropomorphic abdominal phantom for geometric accuracy and dose summation accuracy evaluations of deformable image registration (DIR) algorithms for adaptive radiation therapy (ART). Organ molds, including liver, kidney, spleen, stomach, vertebra, and two metastasis tumors, were 3D printed using contours from an ovarian cancer patient. The organ molds were molded with deformable gels made of different mixtures of polyvinyl chloride (PVC) and the softener dioctyl terephthalate. Gels with different densities were obtained by a polynomial fitting curve that described the relation between the Hounsfield unit (HU) and PVC-softener blending ratio. The rigid vertebras were constructed by molding of white cement and cellulose pulp. The final abdominal phantom was assembled by arranging all the fabricated organs inside a hollow dummy according to their anatomies, and sealed by deformable gel with averaged HU of muscle and fat. Fiducial landmarks were embedded inside the phantom for spatial accuracy and dose accumulation accuracy studies. Two channels were excavated to facilitate ionization chamber insertion for dosimetric measurements. Phantom properties such as deformable gel elasticity and HU stability were studied. The dosimetric measurement accuracy in the phantom was performed, and the DIR accuracies of three DIR algorithms available in the open source DIR toolkit-DIRART were also validated. The constructed deformable gel showed elastic behavior and was stable in HU values over times, proving to be a practical material for the deformable phantom. The constructed abdominal phantom consisted of realistic anatomies in terms of both anatomical shapes and densities when compared with its reference patient. The dosimetric measurements showed a good agreement with the calculated doses from the treatment planning system. Fiducial-based accuracy analysis conducted on the constructed phantom demonstrated the feasibility of applying the phantom for organ-wise DIR accuracy assessment. We have designed and constructed an anthropomorphic abdominal deformable phantom with satisfactory elastic property, realistic organ density, and anatomy. This physical phantom can be used for routine validations of DIR geometric accuracy and dose accumulation accuracy in ART. © 2017 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome
2016-01-01
In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.
Fladung, Anne-Katharina; Kiefer, Markus
2016-11-01
Men have been frequently found to perform more accurately than women in mental rotation tasks. However, men and women also differ with regard to the habitual use of emotion regulation strategies, particularly with regard to expressive suppression, i.e., the suppression of emotional expression in behavior. As emotional suppression is more often used by men, emotion regulation strategies might be a variable modulating gender differences in mental rotation performance. The present study, therefore, examined the influences of gender and emotion regulation strategies on mental rotation performance accuracy and feedback processing. Twenty-eight men and 28 women matched for relevant demographic variables performed mental rotation tasks of varying difficulty over a prolonged time. Emotional feedback was given immediately after each trial. Results showed that women reported to use expressive suppression less frequently than men. Women made more errors in the mental rotation task than men confirming earlier demonstrations of gender differences. Furthermore, women were more impaired by the negative feedback as indicated by the increased likelihood of subsequent errors compared with men. Task performance of women not habitually using expressive suppression was most inferior and most strongly influenced by failure feedback compared with men. Women using expressive suppression more habitually did not significantly differ in mental rotation accuracy and feedback processing from men. Hence, expressive suppression reduces gender differences in mental rotation accuracy by improving cognitive performance following failure feedback.
Azevedo Peixoto, Leonardo de; Laviola, Bruno Galvêas; Alves, Alexandre Alonso; Rosado, Tatiana Barbosa; Bhering, Leonardo Lopes
2017-01-01
Genomic wide selection is a promising approach for improving the selection accuracy in plant breeding, particularly in species with long life cycles, such as Jatropha. Therefore, the objectives of this study were to estimate the genetic parameters for grain yield (GY) and the weight of 100 seeds (W100S) using restricted maximum likelihood (REML); to compare the performance of GWS methods to predict GY and W100S; and to estimate how many markers are needed to train the GWS model to obtain the maximum accuracy. Eight GWS models were compared in terms of predictive ability. The impact that the marker density had on the predictive ability was investigated using a varying number of markers, from 2 to 1,248. Because the genetic variance between evaluated genotypes was significant, it was possible to obtain selection gain. All of the GWS methods tested in this study can be used to predict GY and W100S in Jatropha. A training model fitted using 1,000 and 800 markers is sufficient to capture the maximum genetic variance and, consequently, maximum prediction ability of GY and W100S, respectively. This study demonstrated the applicability of genome-wide prediction to identify useful genetic sources of GY and W100S for Jatropha breeding. Further research is needed to confirm the applicability of the proposed approach to other complex traits.
Broch, Ole; Bein, Berthold; Gruenewald, Matthias; Masing, Sarah; Huenges, Katharina; Haneya, Assad; Steinfath, Markus; Renner, Jochen
2016-01-01
Objective. Today, there exist several different pulse contour algorithms for calculation of cardiac output (CO). The aim of the present study was to compare the accuracy of nine different pulse contour algorithms with transpulmonary thermodilution before and after cardiopulmonary bypass (CPB). Methods. Thirty patients scheduled for elective coronary surgery were studied before and after CPB. A passive leg raising maneuver was also performed. Measurements included CO obtained by transpulmonary thermodilution (CO TPTD ) and by nine pulse contour algorithms (CO X1-9 ). Calibration of pulse contour algorithms was performed by esophageal Doppler ultrasound after induction of anesthesia and 15 min after CPB. Correlations, Bland-Altman analysis, four-quadrant, and polar analysis were also calculated. Results. There was only a poor correlation between CO TPTD and CO X1-9 during passive leg raising and in the period before and after CPB. Percentage error exceeded the required 30% limit. Four-quadrant and polar analysis revealed poor trending ability for most algorithms before and after CPB. The Liljestrand-Zander algorithm revealed the best reliability. Conclusions. Estimation of CO by nine different pulse contour algorithms revealed poor accuracy compared with transpulmonary thermodilution. Furthermore, the less-invasive algorithms showed an insufficient capability for trending hemodynamic changes before and after CPB. The Liljestrand-Zander algorithm demonstrated the highest reliability. This trial is registered with NCT02438228 (ClinicalTrials.gov).
Heijtel, D F R; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; Petersen, E T; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; Vanbavel, E; Boellaard, R; Lammertsma, A A; Nederveen, A J
2014-05-15
Measurements of the cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide useful information about cerebrovascular condition and regional metabolism. Pseudo-continuous arterial spin labeling (pCASL) is a promising non-invasive MRI technique to quantitatively measure the CBF, whereas additional hypercapnic pCASL measurements are currently showing great promise to quantitatively assess the CVR. However, the introduction of pCASL at a larger scale awaits further evaluation of the exact accuracy and precision compared to the gold standard. (15)O H₂O positron emission tomography (PET) is currently regarded as the most accurate and precise method to quantitatively measure both CBF and CVR, though it is one of the more invasive methods as well. In this study we therefore assessed the accuracy and precision of quantitative pCASL-based CBF and CVR measurements by performing a head-to-head comparison with (15)O H₂O PET, based on quantitative CBF measurements during baseline and hypercapnia. We demonstrate that pCASL CBF imaging is accurate during both baseline and hypercapnia with respect to (15)O H₂O PET with a comparable precision. These results pave the way for quantitative usage of pCASL MRI in both clinical and research settings. Copyright © 2014 Elsevier Inc. All rights reserved.
Kang, Le; Carter, Randy; Darcy, Kathleen; Kauderer, James; Liao, Shu-Yuan
2013-01-01
In this article we use a latent class model (LCM) with prevalence modeled as a function of covariates to assess diagnostic test accuracy in situations where the true disease status is not observed, but observations on three or more conditionally independent diagnostic tests are available. A fast Monte Carlo EM (MCEM) algorithm with binary (disease) diagnostic data is implemented to estimate parameters of interest; namely, sensitivity, specificity, and prevalence of the disease as a function of covariates. To obtain standard errors for confidence interval construction of estimated parameters, the missing information principle is applied to adjust information matrix estimates. We compare the adjusted information matrix based standard error estimates with the bootstrap standard error estimates both obtained using the fast MCEM algorithm through an extensive Monte Carlo study. Simulation demonstrates that the adjusted information matrix approach estimates the standard error similarly with the bootstrap methods under certain scenarios. The bootstrap percentile intervals have satisfactory coverage probabilities. We then apply the LCM analysis to a real data set of 122 subjects from a Gynecologic Oncology Group (GOG) study of significant cervical lesion (S-CL) diagnosis in women with atypical glandular cells of undetermined significance (AGC) to compare the diagnostic accuracy of a histology-based evaluation, a CA-IX biomarker-based test and a human papillomavirus (HPV) DNA test. PMID:24163493
NASA Astrophysics Data System (ADS)
Setty, Srinivas J.; Cefola, Paul J.; Montenbruck, Oliver; Fiedler, Hauke
2016-05-01
Catalog maintenance for Space Situational Awareness (SSA) demands an accurate and computationally lean orbit propagation and orbit determination technique to cope with the ever increasing number of observed space objects. As an alternative to established numerical and analytical methods, we investigate the accuracy and computational load of the Draper Semi-analytical Satellite Theory (DSST). The standalone version of the DSST was enhanced with additional perturbation models to improve its recovery of short periodic motion. The accuracy of DSST is, for the first time, compared to a numerical propagator with fidelity force models for a comprehensive grid of low, medium, and high altitude orbits with varying eccentricity and different inclinations. Furthermore, the run-time of both propagators is compared as a function of propagation arc, output step size and gravity field order to assess its performance for a full range of relevant use cases. For use in orbit determination, a robust performance of DSST is demonstrated even in the case of sparse observations, which is most sensitive to mismodeled short periodic perturbations. Overall, DSST is shown to exhibit adequate accuracy at favorable computational speed for the full set of orbits that need to be considered in space surveillance. Along with the inherent benefits of a semi-analytical orbit representation, DSST provides an attractive alternative to the more common numerical orbit propagation techniques.
Accuracy of localization of prostate lesions using manual palpation and ultrasound elastography
NASA Astrophysics Data System (ADS)
Kut, Carmen; Schneider, Caitlin; Carter-Monroe, Naima; Su, Li-Ming; Boctor, Emad; Taylor, Russell
2009-02-01
Purpose: To compare the accuracy of detecting tumor location and size in the prostate using both manual palpation and ultrasound elastography (UE). Methods: Tumors in the prostate were simulated using both synthetic and ex vivo tissue phantoms. 25 participants were asked to provide the presence, size and depth of these simulated lesions using manual palpation and UE. Ultrasound images were captured using a laparoscopic ultrasound probe, fitted with a Gore-Tetrad transducer with frequency of 7.5 MHz and a RF capture depth of 4-5 cm. A MATLAB GUI application was employed to process the RF data for ex vivo phantoms, and to generate UE images using a cross-correlation algorithm. Ultrasonix software was used to provide real time elastography during laparoscopic palpation of the synthetic phantoms. Statistical analyses were performed based on a two-tailed, student t-test with α = 0.05. Results: UE displays both a higher accuracy and specificity in tumor detection (sensitivity = 84%, specificity = 74%). Tumor diameters and depths are better estimated using ultrasound elastography when compared with manual palpation. Conclusions: Our results indicate that UE has strong potential in assisting surgeons to intra-operatively evaluate the tumor depth and size. We have also demonstrated that ultrasound elastography can be implemented in a laparoscopic environment, in which manual palpation would not be feasible. With further work, this application can provide accurate and clinically relevant information for surgeons during prostate resection.
NASA Astrophysics Data System (ADS)
Du, Liang; Shi, Guangming; Guan, Weibin; Zhong, Yuansheng; Li, Jin
2014-12-01
Geometric error is the main error of the industrial robot, and it plays a more significantly important fact than other error facts for robot. The compensation model of kinematic error is proposed in this article. Many methods can be used to test the robot accuracy, therefore, how to compare which method is better one. In this article, a method is used to compare two methods for robot accuracy testing. It used Laser Tracker System (LTS) and Three Coordinate Measuring instrument (TCM) to test the robot accuracy according to standard. According to the compensation result, it gets the better method which can improve the robot accuracy apparently.
Accuracy of digital American Board of Orthodontics Discrepancy Index measurements.
Dragstrem, Kristina; Galang-Boquiren, Maria Therese S; Obrez, Ales; Costa Viana, Maria Grace; Grubb, John E; Kusnoto, Budi
2015-07-01
A digital analysis that is shown to be accurate will ease the demonstration of initial case complexity. To date, no literature exists on the accuracy of the digital American Board of Orthodontics Discrepancy Index (DI) calculations when applied to pretreatment digital models. Plaster models were obtained from 45 previous patients with varying degrees of malocclusion. Total DI scores and the target disorders were computed manually with a periodontal probe on the original plaster casts (gold standard) and digitally using Ortho Insight 3D (Motion View Software, Hixson, Tenn) and OrthoCAD (Cadent, Carlstadt, NJ). Intrarater and interrater reliabilities were assessed for 15 subjects using the Spearman rho correlation test. Accuracies of the DI scores and target disorders were assessed for all 45 subjects using Wilcoxon signed ranks tests. Intrarater and interrater reliabilities were high for total DI scores and most target disorders (r > 0.8). No significant difference was found between total DI score when measured with OrthoCAD compared with manual calculations. The total DI scores calculated by Ortho Insight 3D were found to be significantly greater than those by manual calculation by 2.71 points. The findings indicate that a DI calculated by Ortho Insight 3D may lead the clinician to overestimate case complexity. OrthoCAD's DI module was demonstrated to be a clinically acceptable alternative to manual calculation of the total scores. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardan, R; Popple, R; Dobelbower, M
Purpose: To demonstrate the ability to quickly generate an accurate collision avoidance map using multiple stereotactic cameras during simulation. Methods: Three Kinect stereotactic cameras were placed in the CT simulation room and optically calibrated to the DICOM isocenter. Immediately before scanning, the patient was optically imaged to generate a 3D polygon mesh, which was used to calculate the collision avoidance area using our previously developed framework. The mesh was visually compared to the CT scan body contour to ensure accurate coordinate alignment. To test the accuracy of the collision calculation, the patient and machine were physically maneuvered in the treatmentmore » room to calculated collision boundaries. Results: The optical scan and collision calculation took 38.0 seconds and 2.5 seconds to complete respectively. The collision prediction accuracy was determined using a receiver operating curve (ROC) analysis, where the true positive, true negative, false positive and false negative values were 837, 821, 43, and 79 points respectively. The ROC accuracy was 93.1% over the sampled collision space. Conclusion: We have demonstrated a framework which is fast and accurate for predicting collision avoidance for treatment which can be determined during the normal simulation process. Because of the speed, the system could be used to add a layer of safety with a negligible impact on the normal patient simulation experience. This information could be used during treatment planning to explore the feasible geometries when optimizing plans. Research supported by Varian Medical Systems.« less
AI-augmented time stretch microscopy
NASA Astrophysics Data System (ADS)
Mahjoubfar, Ata; Chen, Claire L.; Lin, Jiahao; Jalali, Bahram
2017-02-01
Cell reagents used in biomedical analysis often change behavior of the cells that they are attached to, inhibiting their native signaling. On the other hand, label-free cell analysis techniques have long been viewed as challenging either due to insufficient accuracy by limited features, or because of low throughput as a sacrifice of improved precision. We present a recently developed artificial-intelligence augmented microscope, which builds upon high-throughput time stretch quantitative phase imaging (TS-QPI) and deep learning to perform label-free cell classification with record high-accuracy. Our system captures quantitative optical phase and intensity images simultaneously by frequency multiplexing, extracts multiple biophysical features of the individual cells from these images fused, and feeds these features into a supervised machine learning model for classification. The enhanced performance of our system compared to other label-free assays is demonstrated by classification of white blood T-cells versus colon cancer cells and lipid accumulating algal strains for biofuel production, which is as much as five-fold reduction in inaccuracy. This system obtains the accuracy required in practical applications such as personalized drug development, while the cells remain intact and the throughput is not sacrificed. Here, we introduce a data acquisition scheme based on quadrature phase demodulation that enables interruptionless storage of TS-QPI cell images. Our proof of principle demonstration is capable of saving 40 TB of cell images in about four hours, i.e. pictures of every single cell in 10 mL of a sample.
Jarvis, Melanie; Guy, Katelyn J; König, Kai
2013-06-01
To study the impact on newborn behavioural states and accuracy of three infrared thermometers compared with digital axillary thermometer measurements in very low birth weight infants. Single-centre prospective observational study. Preterm infants born <1500-g birth weight were eligible. Infants were observed for pre-measurement behaviour state using a five-point neonatal behaviour observation tool. One infrared temperature was taken from each of the devices, followed by an axillary measurement. Further behaviour-state observations were recorded following infrared and axillary measurements. One hundred measurements were collected from each infrared device among a cohort of 42 very low birth weight infants. Only one infrared device showed satisfactory agreement with bias -0.071 (95% limits of agreement -0.68 to 0.54). The other two devices demonstrated poor agreement: bias -1.34; 95% limits of agreement -2.62 to -0.5 and bias -0.56; 95% limits of agreement -1.38 to 0.25. Neonatal behavioural scores showed only minimal changes when infrared measurements were performed but increased significantly following axillary measurements. The difference between the two modalities was statistically significant with a mean increase of 1.44 points following axillary measurements (95% confidence interval 1.21 to 1.67, P < 0.001). Temperature measurements taken with infrared thermometers demonstrated less disruption to preterm infants' behavioural state, however accuracy of devices varied. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
Using Smartphone Sensors for Improving Energy Expenditure Estimation
Zhu, Jindan; Das, Aveek K.; Zeng, Yunze; Mohapatra, Prasant; Han, Jay J.
2015-01-01
Energy expenditure (EE) estimation is an important factor in tracking personal activity and preventing chronic diseases, such as obesity and diabetes. Accurate and real-time EE estimation utilizing small wearable sensors is a difficult task, primarily because the most existing schemes work offline or use heuristics. In this paper, we focus on accurate EE estimation for tracking ambulatory activities (walking, standing, climbing upstairs, or downstairs) of a typical smartphone user. We used built-in smartphone sensors (accelerometer and barometer sensor), sampled at low frequency, to accurately estimate EE. Using a barometer sensor, in addition to an accelerometer sensor, greatly increases the accuracy of EE estimation. Using bagged regression trees, a machine learning technique, we developed a generic regression model for EE estimation that yields upto 96% correlation with actual EE. We compare our results against the state-of-the-art calorimetry equations and consumer electronics devices (Fitbit and Nike+ FuelBand). The newly developed EE estimation algorithm demonstrated superior accuracy compared with currently available methods. The results were calibrated against COSMED K4b2 calorimeter readings. PMID:27170901
A new strategy for genome assembly using short sequence reads and reduced representation libraries.
Young, Andrew L; Abaan, Hatice Ozel; Zerbino, Daniel; Mullikin, James C; Birney, Ewan; Margulies, Elliott H
2010-02-01
We have developed a novel approach for using massively parallel short-read sequencing to generate fast and inexpensive de novo genomic assemblies comparable to those generated by capillary-based methods. The ultrashort (<100 base) sequences generated by this technology pose specific biological and computational challenges for de novo assembly of large genomes. To account for this, we devised a method for experimentally partitioning the genome using reduced representation (RR) libraries prior to assembly. We use two restriction enzymes independently to create a series of overlapping fragment libraries, each containing a tractable subset of the genome. Together, these libraries allow us to reassemble the entire genome without the need of a reference sequence. As proof of concept, we applied this approach to sequence and assembled the majority of the 125-Mb Drosophila melanogaster genome. We subsequently demonstrate the accuracy of our assembly method with meaningful comparisons against the current available D. melanogaster reference genome (dm3). The ease of assembly and accuracy for comparative genomics suggest that our approach will scale to future mammalian genome-sequencing efforts, saving both time and money without sacrificing quality.
How Mood and Task Complexity Affect Children's Recognition of Others’ Emotions
Cummings, Andrew J.; Rennels, Jennifer L.
2013-01-01
Previous studies examined how mood affects children's accuracy in matching emotional expressions and labels (label-based tasks). This study was the first to assess how induced mood (positive, neutral, or negative) influenced 5- to 8-year-olds’ accuracy and reaction time using both context-based tasks, which required inferring a character's emotion from a vignette, and label-based tasks. Both tasks required choosing one of four facial expressions to respond. Children responded more accurately to label-based questions relative to context-based questions at 5 to 7 years of age, but showed no differences at 8 years of age, and when the emotional expression being identified was happiness, sadness, or surprise, but not disgust. For the context-based questions, children were more accurate at inferring sad and disgusted emotions compared to happy and surprised emotions. Induced positive mood facilitated 5-year-olds’ processing (decreased reaction time) in both tasks compared to induced negative and neutral moods. Results demonstrate how task type and children's mood influence children's emotion processing at different ages. PMID:24489442
NASA Astrophysics Data System (ADS)
Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Subbotina, I. E.; Shichkin, A. V.; Sergeeva, M. V.; Lvova, O. A.
2017-06-01
The work deals with the application of neural networks residual kriging (NNRK) to the spatial prediction of the abnormally distributed soil pollutant (Cr). It is known that combination of geostatistical interpolation approaches (kriging) and neural networks leads to significantly better prediction accuracy and productivity. Generalized regression neural networks and multilayer perceptrons are classes of neural networks widely used for the continuous function mapping. Each network has its own pros and cons; however both demonstrated fast training and good mapping possibilities. In the work, we examined and compared two combined techniques: generalized regression neural network residual kriging (GRNNRK) and multilayer perceptron residual kriging (MLPRK). The case study is based on the real data sets on surface contamination by chromium at a particular location of the subarctic Novy Urengoy, Russia, obtained during the previously conducted screening. The proposed models have been built, implemented and validated using ArcGIS and MATLAB environments. The networks structures have been chosen during a computer simulation based on the minimization of the RMSE. MLRPK showed the best predictive accuracy comparing to the geostatistical approach (kriging) and even to GRNNRK.
Development of a Cost-Effective Modular Pixelated NaI(Tl) Detector for Clinical SPECT Applications
Rozler, Mike; Liang, Haoning; Chang, Wei
2013-01-01
A new pixelated detector for high-resolution clinical SPECT applications was designed and tested. The modular detector is based on a scintillator block comprised of 2.75×2.75×10 mm3 NaI(Tl) pixels and decoded by an array of 51 mm diameter single-anode PMTs. Several configurations, utilizing two types of PMTs, were evaluated using a collimated beam source to measure positioning accuracy directly. Good pixel separation was observed, with correct pixel identification ranging from 60 to 72% averaged over the entire area of the modules, depending on the PMT type and configuration. This translates to a significant improvement in positioning accuracy compared to continuous slab detectors of the same thickness, along with effective reduction of “dead” space at the edges. The observed 10% average energy resolution compares well to continuous slab detectors. The combined performance demonstrates the suitability of pixelated detectors decoded with a relatively small number of medium-sized PMTs as a cost-effective approach for high resolution clinical SPECT applications, in particular those involving curved detector geometries. PMID:24146436
Wang, Shui-Hua; Phillips, Preetha; Sui, Yuxiu; Liu, Bin; Yang, Ming; Cheng, Hong
2018-03-26
Alzheimer's disease (AD) is a progressive brain disease. The goal of this study is to provide a new computer-vision based technique to detect it in an efficient way. The brain-imaging data of 98 AD patients and 98 healthy controls was collected using data augmentation method. Then, convolutional neural network (CNN) was used, CNN is the most successful tool in deep learning. An 8-layer CNN was created with optimal structure obtained by experiences. Three activation functions (AFs): sigmoid, rectified linear unit (ReLU), and leaky ReLU. The three pooling-functions were also tested: average pooling, max pooling, and stochastic pooling. The numerical experiments demonstrated that leaky ReLU and max pooling gave the greatest result in terms of performance. It achieved a sensitivity of 97.96%, a specificity of 97.35%, and an accuracy of 97.65%, respectively. In addition, the proposed approach was compared with eight state-of-the-art approaches. The method increased the classification accuracy by approximately 5% compared to state-of-the-art methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaenko, Alexander; Windus, Theresa L.; Sosonkina, Masha
2012-10-19
The design and development of scientific software components to provide an interface to the effective fragment potential (EFP) methods are reported. Multiscale modeling of physical and chemical phenomena demands the merging of software packages developed by research groups in significantly different fields. Componentization offers an efficient way to realize new high performance scientific methods by combining the best models available in different software packages without a need for package readaptation after the initial componentization is complete. The EFP method is an efficient electronic structure theory based model potential that is suitable for predictive modeling of intermolecular interactions in large molecularmore » systems, such as liquids, proteins, atmospheric aerosols, and nanoparticles, with an accuracy that is comparable to that of correlated ab initio methods. The developed components make the EFP functionality accessible for any scientific component-aware software package. The performance of the component is demonstrated on a protein interaction model, and its accuracy is compared with results obtained with coupled cluster methods.« less
Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah
2014-01-01
Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084
Point-based and model-based geolocation analysis of airborne laser scanning data
NASA Astrophysics Data System (ADS)
Sefercik, Umut Gunes; Buyuksalih, Gurcan; Jacobsen, Karsten; Alkan, Mehmet
2017-01-01
Airborne laser scanning (ALS) is one of the most effective remote sensing technologies providing precise three-dimensional (3-D) dense point clouds. A large-size ALS digital surface model (DSM) covering the whole Istanbul province was analyzed by point-based and model-based comprehensive statistical approaches. Point-based analysis was performed using checkpoints on flat areas. Model-based approaches were implemented in two steps as strip to strip comparing overlapping ALS DSMs individually in three subareas and comparing the merged ALS DSMs with terrestrial laser scanning (TLS) DSMs in four other subareas. In the model-based approach, the standard deviation of height and normalized median absolute deviation were used as the accuracy indicators combined with the dependency of terrain inclination. The results demonstrate that terrain roughness has a strong impact on the vertical accuracy of ALS DSMs. From the relative horizontal shifts determined and partially improved by merging the overlapping strips and comparison of the ALS, and the TLS, data were found not to be negligible. The analysis of ALS DSM in relation to TLS DSM allowed us to determine the characteristics of the DSM in detail.
Using Smartphone Sensors for Improving Energy Expenditure Estimation.
Pande, Amit; Zhu, Jindan; Das, Aveek K; Zeng, Yunze; Mohapatra, Prasant; Han, Jay J
2015-01-01
Energy expenditure (EE) estimation is an important factor in tracking personal activity and preventing chronic diseases, such as obesity and diabetes. Accurate and real-time EE estimation utilizing small wearable sensors is a difficult task, primarily because the most existing schemes work offline or use heuristics. In this paper, we focus on accurate EE estimation for tracking ambulatory activities (walking, standing, climbing upstairs, or downstairs) of a typical smartphone user. We used built-in smartphone sensors (accelerometer and barometer sensor), sampled at low frequency, to accurately estimate EE. Using a barometer sensor, in addition to an accelerometer sensor, greatly increases the accuracy of EE estimation. Using bagged regression trees, a machine learning technique, we developed a generic regression model for EE estimation that yields upto 96% correlation with actual EE. We compare our results against the state-of-the-art calorimetry equations and consumer electronics devices (Fitbit and Nike+ FuelBand). The newly developed EE estimation algorithm demonstrated superior accuracy compared with currently available methods. The results were calibrated against COSMED K4b2 calorimeter readings.
Jung, Chanho; Kim, Changick
2014-08-01
Automatic segmentation of cell nuclei clusters is a key building block in systems for quantitative analysis of microscopy cell images. For that reason, it has received a great attention over the last decade, and diverse automatic approaches to segment clustered nuclei with varying levels of performance under different test conditions have been proposed in literature. To the best of our knowledge, however, so far there is no comparative study on the methods. This study is a first attempt to fill this research gap. More precisely, the purpose of this study is to present an objective performance comparison of existing state-of-the-art segmentation methods. Particularly, the impact of their accuracy on classification of thyroid follicular lesions is also investigated "quantitatively" under the same experimental condition, to evaluate the applicability of the methods. Thirteen different segmentation approaches are compared in terms of not only errors in nuclei segmentation and delineation, but also their impact on the performance of system to classify thyroid follicular lesions using different metrics (e.g., diagnostic accuracy, sensitivity, specificity, etc.). Extensive experiments have been conducted on a total of 204 digitized thyroid biopsy specimens. Our study demonstrates that significant diagnostic errors can be avoided using more advanced segmentation approaches. We believe that this comprehensive comparative study serves as a reference point and guide for developers and practitioners in choosing an appropriate automatic segmentation technique adopted for building automated systems for specifically classifying follicular thyroid lesions. © 2014 International Society for Advancement of Cytometry.
Manjila, Sunil; Knudson, Kathleen E; Johnson, Carleton; Sloan, Andrew E
2016-06-01
Stereotactic biopsy is an important and minimally invasive technique used for a variety of indications in neurosurgery. Initially, this technique required a frame, but recently there have been a number of newer, less cumbersome approaches to biopsy including robotic arms, fixed arms, and, more recently, skull-mounted miniframes. Miniframes are attractive because they are disposable and low profile. However, the relatively limited degree of freedom offered by currently available devices necessitates a preplanned burr hole, which in turn limits flexibility and multiple trajectories. The AXiiiS device is a skull-mounted, magnetic resonance imaging-compatible miniframe that provides a similar degree of freedom with a frame while maintaining a low-profile, disposable platform. To assess the image-guided trajectory alignment accuracy using AXiiiS stereotactic miniframe biopsy of intracranial lesions. The accuracy of the AXiiiS device is compared with the Navigus Trajectory Guide as platforms. After approval by our institutional review board, medical records of 10 neurosurgical patients with intracranial pathologies were chosen for AXiiiS stereotactic miniframe biopsy, and histological correlation was obtained. Ten reported cases demonstrate the precision and ease of using the AXiiiS stereotactic miniframe for biopsy of intracranial lesions in conjunction with preoperative magnetic resonance imaging. Multiple trajectories and angles have been used with precision and safety. The AXiiiS stereotactic miniframe is a feasible, safe, and disposable platform for multitrajectory intracranial biopsies. Compared with existing platforms, this novel device provides a more stable base and wider limits of trajectory angles with comparable accuracy and precision.
Satellite SAR geocoding with refined RPC model
NASA Astrophysics Data System (ADS)
Zhang, Lu; Balz, Timo; Liao, Mingsheng
2012-04-01
Recent studies have proved that the Rational Polynomial Camera (RPC) model is able to act as a reliable replacement of the rigorous Range-Doppler (RD) model for the geometric processing of satellite SAR datasets. But its capability in absolute geolocation of SAR images has not been evaluated quantitatively. Therefore, in this article the problems of error analysis and refinement of SAR RPC model are primarily investigated to improve the absolute accuracy of SAR geolocation. Range propagation delay and azimuth timing error are identified as two major error sources for SAR geolocation. An approach based on SAR image simulation and real-to-simulated image matching is developed to estimate and correct these two errors. Afterwards a refined RPC model can be built from the error-corrected RD model and then used in satellite SAR geocoding. Three experiments with different settings are designed and conducted to comprehensively evaluate the accuracies of SAR geolocation with both ordinary and refined RPC models. All the experimental results demonstrate that with RPC model refinement the absolute location accuracies of geocoded SAR images can be improved significantly, particularly in Easting direction. In another experiment the computation efficiencies of SAR geocoding with both RD and RPC models are compared quantitatively. The results show that by using the RPC model such efficiency can be remarkably improved by at least 16 times. In addition the problem of DEM data selection for SAR image simulation in RPC model refinement is studied by a comparative experiment. The results reveal that the best choice should be using the proper DEM datasets of spatial resolution comparable to that of the SAR images.
Systematic review of discharge coding accuracy
Burns, E.M.; Rigby, E.; Mamidanna, R.; Bottle, A.; Aylin, P.; Ziprin, P.; Faiz, O.D.
2012-01-01
Introduction Routinely collected data sets are increasingly used for research, financial reimbursement and health service planning. High quality data are necessary for reliable analysis. This study aims to assess the published accuracy of routinely collected data sets in Great Britain. Methods Systematic searches of the EMBASE, PUBMED, OVID and Cochrane databases were performed from 1989 to present using defined search terms. Included studies were those that compared routinely collected data sets with case or operative note review and those that compared routinely collected data with clinical registries. Results Thirty-two studies were included. Twenty-five studies compared routinely collected data with case or operation notes. Seven studies compared routinely collected data with clinical registries. The overall median accuracy (routinely collected data sets versus case notes) was 83.2% (IQR: 67.3–92.1%). The median diagnostic accuracy was 80.3% (IQR: 63.3–94.1%) with a median procedure accuracy of 84.2% (IQR: 68.7–88.7%). There was considerable variation in accuracy rates between studies (50.5–97.8%). Since the 2002 introduction of Payment by Results, accuracy has improved in some respects, for example primary diagnoses accuracy has improved from 73.8% (IQR: 59.3–92.1%) to 96.0% (IQR: 89.3–96.3), P= 0.020. Conclusion Accuracy rates are improving. Current levels of reported accuracy suggest that routinely collected data are sufficiently robust to support their use for research and managerial decision-making. PMID:21795302
Guiberson, Mark; Rodríguez, Barbara L; Dale, Philip S
2011-10-01
The purpose of the current study was to examine the concurrent validity and classification accuracy of 3 parent report measures of language development in Spanish-speaking toddlers. Forty-five Spanish-speaking parents and their 2-year-old children participated. Twenty-three children had expressive language delays (ELDs) as determined through multiple sources of information, and 22 had typical language development (TD). Parents completed the Spanish version of the Ages and Stages Questionnaire (Spanish ASQ; Squires, Potter, & Bricker, 1999) and the short-form of the Inventarios del Desarrollo de Habilidades Comunicativas Palabras y Enunciados (INV-II; Jackson-Maldonado, Bates, & Thal, 1992; Jackson-Maldonado et al., 2003), which is the Spanish version of the MacArthur-Bates Communicative Development Inventories Words and Sentences form, and reported children's 3 longest utterances (M3L-W). Children were administered the Preschool Language Scale, Fourth Edition, Spanish Edition (SPLS-4; Zimmerman, Steiner, & Pond, 2002) at early childhood centers. All 3 parent report measures were significantly correlated with the SPLS-4, establishing their concurrent validity. Children with ELDs scored significantly lower than TD children on all 3 parent report measures. The Spanish ASQ demonstrated less than desirable levels of sensitivity and specificity; both the short-form INV-II and M3L-W measures demonstrated favorable sensitivity and specificity. Of these measures, M3L-W demonstrated the strongest classification accuracy qualities, including sensitivity, negative predictive value, and area under the receiver operating characteristics curve. The short-form INV-II and M3L-W demonstrated highly satisfactory classification accuracy of ELDs, but M3L-W demonstrated slightly stronger accuracy. These results indicate that these measures may be useful in screening for ELDs in Spanish-speaking toddlers.
NASA Technical Reports Server (NTRS)
Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.;
2016-01-01
We used one-way laser ranging data from International Laser Ranging Service (ILRS) ground stations to NASA's Lunar Reconnaissance Orbiter (LRO) for a demonstration of orbit determination. In the one-way setup, the state of LRO and the parameters of the spacecraft and all involved ground station clocks must be estimated simultaneously. This setup introduces many correlated parameters that are resolved by using a priori constraints. More over the observation data coverage and errors accumulating from the dynamical and the clock modeling limit the maximum arc length. The objective of this paper is to investigate the effect of the arc length, the dynamical and modeling accuracy and the observation data coverage on the accuracy of the results. We analyzed multiple arcs using lengths of 2 and 7 days during a one-week period in Science Mission phase 02 (SM02,November2010) and compared the trajectories, the post-fit measurement residuals and the estimated clock parameters. We further incorporated simultaneous passes from multiple stations within the observation data to investigate the expected improvement in positioning. The estimated trajectories were compared to the nominal LRO trajectory and the clock parameters (offset, rate and aging) to the results found in the literature. Arcs estimated with one-way ranging data had differences of 5-30 m compared to the nominal LRO trajectory. While the estimated LRO clock rates agreed closely with the a priori constraints, the aging parameters absorbed clock modeling errors with increasing clock arc length. Because of high correlations between the different ground station clocks and due to limited clock modeling accuracy, their differences only agreed at the order of magnitude with the literature. We found that the incorporation of simultaneous passes requires improved modeling in particular to enable the expected improvement in positioning. We found that gaps in the observation data coverage over 12h (approximately equals 6 successive LRO orbits) prevented the successful estimation of arcs with lengths shorter or longer than 2 or 7 days with our given modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Kang, S; Eom, J
Purpose: Photon-counting detectors (PCDs) allow multi-energy X-ray imaging without additional exposures and spectral overlap. This capability results in the improvement of accuracy of material decomposition for dual-energy X-ray imaging and the reduction of radiation dose. In this study, the PCD-based contrast-enhanced dual-energy mammography (CEDM) was compared with the conventional CDEM in terms of radiation dose, image quality and accuracy of material decomposition. Methods: A dual-energy model was designed by using Beer-Lambert’s law and rational inverse fitting function for decomposing materials from a polychromatic X-ray source. A cadmium zinc telluride (CZT)-based PCD, which has five energy thresholds, and iodine solutions includedmore » in a 3D half-cylindrical phantom, which composed of 50% glandular and 50% adipose tissues, were simulated by using a Monte Carlo simulation tool. The low- and high-energy images were obtained in accordance with the clinical exposure conditions for the conventional CDEM. Energy bins of 20–33 and 34–50 keV were defined from X-ray energy spectra simulated at 50 kVp with different dose levels for implementing the PCD-based CDEM. The dual-energy mammographic techniques were compared by means of absorbed dose, noise property and normalized root-mean-square error (NRMSE). Results: Comparing to the conventional CEDM, the iodine solutions were clearly decomposed for the PCD-based CEDM. Although the radiation dose for the PCD-based CDEM was lower than that for the conventional CEDM, the PCD-based CDEM improved the noise property and accuracy of decomposition images. Conclusion: This study demonstrates that the PCD-based CDEM allows the quantitative material decomposition, and reduces radiation dose in comparison with the conventional CDEM. Therefore, the PCD-based CDEM is able to provide useful information for detecting breast tumor and enhancing diagnostic accuracy in mammography.« less
NASA Technical Reports Server (NTRS)
Lin, Z.; Stamnes, S.; Jin, Z.; Laszlo, I.; Tsay, S. C.; Wiscombe, W. J.; Stamnes, K.
2015-01-01
A successor version 3 of DISORT (DISORT3) is presented with important upgrades that improve the accuracy, efficiency, and stability of the algorithm. Compared with version 2 (DISORT2 released in 2000) these upgrades include (a) a redesigned BRDF computation that improves both speed and accuracy, (b) a revised treatment of the single scattering correction, and (c) additional efficiency and stability upgrades for beam sources. In DISORT3 the BRDF computation is improved in the following three ways: (i) the Fourier decomposition is prepared "off-line", thus avoiding the repeated internal computations done in DISORT2; (ii) a large enough number of terms in the Fourier expansion of the BRDF is employed to guarantee accurate values of the expansion coefficients (default is 200 instead of 50 in DISORT2); (iii) in the post processing step the reflection of the direct attenuated beam from the lower boundary is included resulting in a more accurate single scattering correction. These improvements in the treatment of the BRDF have led to improved accuracy and a several-fold increase in speed. In addition, the stability of beam sources has been improved by removing a singularity occurring when the cosine of the incident beam angle is too close to the reciprocal of any of the eigenvalues. The efficiency for beam sources has been further improved from reducing by a factor of 2 (compared to DISORT2) the dimension of the linear system of equations that must be solved to obtain the particular solutions, and by replacing the LINPAK routines used in DISORT2 by LAPACK 3.5 in DISORT3. These beam source stability and efficiency upgrades bring enhanced stability and an additional 5-7% improvement in speed. Numerical results are provided to demonstrate and quantify the improvements in accuracy and efficiency of DISORT3 compared to DISORT2.
The Arrival of Robotics in Spine Surgery: A Review of the Literature.
Ghasem, Alexander; Sharma, Akhil; Greif, Dylan N; Alam, Milad; Maaieh, Motasem Al
2018-04-18
Systematic Review. The authors aim to review comparative outcome measures between robotic and free-hand spine surgical procedures including: accuracy of spinal instrumentation, radiation exposure, operative time, hospital stay, and complication rates. Misplacement of pedicle screws in conventional open as well as minimally invasive surgical procedures has prompted the need for innovation and allowed the emergence of robotics in spine surgery. Prior to incorporation of robotic surgery in routine practice, demonstration of improved instrumentation accuracy, operative efficiency, and patient safety is required. A systematic search of the PubMed, OVID-MEDLINE, and Cochrane databases was performed for papers relevant to robotic assistance of pedicle screw placement. Inclusion criteria were constituted by English written randomized control trials, prospective and retrospective cohort studies involving robotic instrumentation in the spine. Following abstract, title, and full-text review, 32 articles were selected for study inclusion. Intrapedicular accuracy in screw placement and subsequent complications were at least comparable if not superior in the robotic surgery cohort. There is evidence supporting that total operative time is prolonged in robot assisted surgery compared to conventional free-hand. Radiation exposure appeared to be variable between studies; radiation time did decrease in the robot arm as the total number of robotic cases ascended, suggesting a learning curve effect. Multi-level procedures appeared to tend toward earlier discharge in patients undergoing robotic spine surgery. The implementation of robotic technology for pedicle screw placement yields an acceptable level of accuracy on a highly consistent basis. Surgeons should remain vigilant about confirmation of robotic assisted screw trajectory, as drilling pathways have been shown to be altered by soft tissue pressures, forceful surgical application, and bony surface skiving. However, the effective consequence of robot-assistance on radiation exposure, length of stay, and operative time remains unclear and requires meticulous examination in future studies. 4.
Aubin, Carl-Eric; Bellefleur, Christian; Joncas, Julie; de Lanauze, Dominic; Kadoury, Samuel; Blanke, Kathy; Parent, Stefan; Labelle, Hubert
2011-05-20
Radiographic software measurement analysis in adult scoliosis. To assess the accuracy as well as the intra- and interobserver reliability of measuring different indices on preoperative adult scoliosis radiographs using a novel measurement software that includes a calibration procedure and semiautomatic features to facilitate the measurement process. Scoliosis requires a careful radiographic evaluation to assess the deformity. Manual and computer radiographic process measures have been studied extensively to determine the reliability and reproducibility in adolescent idiopathic scoliosis. Most studies rely on comparing given measurements, which are repeated by the same user or by an expert user. A given measure with a small intra- or interobserver error might be deemed as good repeatability, but all measurements might not be truly accurate because the ground-truth value is often unknown. Thorough accuracy assessment of radiographic measures is necessary to assess scoliotic deformities, compare these measures at different stages or to permit valid multicenter studies. Thirty-four sets of adult scoliosis digital radiographs were measured two times by three independent observers using a novel radiographic measurement software that includes semiautomatic features to facilitate the measurement process. Twenty different measures taken from the Spinal Deformity Study Group radiographic measurement manual were performed on the coronal and sagittal images. Intra- and intermeasurer reliability for each measure was assessed. The accuracy of the measurement software was also assessed using a physical spine model in six different scoliotic configurations as a true reference. The majority of the measures demonstrated good to excellent intra- and intermeasurer reliability, except for sacral obliquity. The standard variation of all the measures was very small: ≤ 4.2° for Cobb angles, ≤ 4.2° for the kyphosis, ≤ 5.7° for the lordosis, ≤ 3.9° for the pelvic angles, and ≤5.3° for the sacral angles. The variability in the linear measurements (distances) was <4 mm. The variance of the measures was 1.7 and 2.6 times greater, respectively, for the angular and linear measures between the inter- and intrameasurer reliability. The image quality positively influenced the intermeasurer reliability especially for the proximal thoracic Cobb angle, T10-L2 lordosis, sacral slope and L5 seating. The accuracy study revealed that on average the difference in the angular measures was < 2° for the Cobb angles, and < 4° for the other angles, except T2-T12 kyphosis (5.3°). The linear measures were all <3.5 mm difference on average. The majority of the measures, which were analyzed in this study demonstrated good to excellent reliability and accuracy. The novel semiautomatic measurement software can be recommended for use for clinical, research or multicenter study purposes.
NASA Astrophysics Data System (ADS)
Scholten, Sarah K.; Perrella, Christopher; Anstie, James D.; White, Richard T.; Al-Ashwal, Waddah; Hébert, Nicolas Bourbeau; Genest, Jérôme; Luiten, Andre N.
2018-05-01
Real-time and accurate measurements of gas properties are highly desirable for numerous real-world applications. Here, we use an optical-frequency comb to demonstrate absolute number-density and temperature measurements of a sample gas with state-of-the-art precision and accuracy. The technique is demonstrated by measuring the number density of 12C16O2 with an accuracy of better than 1% and a precision of 0.04% in a measurement and analysis cycle of less than 1 s. This technique is transferable to numerous molecular species, thus offering an avenue for near-universal gas concentration measurements.
Demonstration of intercontinental DSN clock synchronization by VLBI
NASA Technical Reports Server (NTRS)
Hurd, W. J.
1973-01-01
The prototype system for Deep Space Network clock synchronization by VLBI has been demonstrated to operate successfully over intercontinental baselines in a series of experiments between Deep Space Stations at Madrid, Spain, and Goldstone, California. As predicted by analysis and short baseline demonstration, the system achieves reliable synchronization between 26m and 64m antenna stations with 17 and 37K nominal system temperatures using under one million bits of data from each station. Semi-real-time operation is feasible since this small amount of data can be transmitted to JPL and processed within minutes. The system resolution is 50 to 400ns, depending on the amount of data processed and the source intensity. The accuracy is believed to be comparable to the resolution, although it could be independently confirmed to only about 5 microseconds using LORAN C.
Empirical evidence of the importance of comparative studies of diagnostic test accuracy.
Takwoingi, Yemisi; Leeflang, Mariska M G; Deeks, Jonathan J
2013-04-02
Systematic reviews that "compare" the accuracy of 2 or more tests often include different sets of studies for each test. To investigate the availability of direct comparative studies of test accuracy and to assess whether summary estimates of accuracy differ between meta-analyses of noncomparative and comparative studies. Systematic reviews in any language from the Database of Abstracts of Reviews of Effects and the Cochrane Database of Systematic Reviews from 1994 to October 2012. 1 of 2 assessors selected reviews that evaluated at least 2 tests and identified meta-analyses that included both noncomparative studies and comparative studies. 1 of 3 assessors extracted data about review and study characteristics and test performance. 248 reviews compared test accuracy; of the 6915 studies, 2113 (31%) were comparative. Thirty-six reviews (with 52 meta-analyses) had adequate studies to compare results of noncomparative and comparative studies by using a hierarchical summary receiver-operating characteristic meta-regression model for each test comparison. In 10 meta-analyses, noncomparative studies ranked tests in the opposite order of comparative studies. A total of 25 meta-analyses showed more than a 2-fold discrepancy in the relative diagnostic odds ratio between noncomparative and comparative studies. Differences in accuracy estimates between noncomparative and comparative studies were greater than expected by chance (P < 0.001). A paucity of comparative studies limited exploration of direction in bias. Evidence derived from noncomparative studies often differs from that derived from comparative studies. Robustly designed studies in which all patients receive all tests or are randomly assigned to receive one or other of the tests should be more routinely undertaken and are preferred for evidence to guide test selection. National Institute for Health Research (United Kingdom).
A Very High Order, Adaptable MESA Implementation for Aeroacoustic Computations
NASA Technical Reports Server (NTRS)
Dydson, Roger W.; Goodrich, John W.
2000-01-01
Since computational efficiency and wave resolution scale with accuracy, the ideal would be infinitely high accuracy for problems with widely varying wavelength scales. Currently, many of the computational aeroacoustics methods are limited to 4th order accurate Runge-Kutta methods in time which limits their resolution and efficiency. However, a new procedure for implementing the Modified Expansion Solution Approximation (MESA) schemes, based upon Hermitian divided differences, is presented which extends the effective accuracy of the MESA schemes to 57th order in space and time when using 128 bit floating point precision. This new approach has the advantages of reducing round-off error, being easy to program. and is more computationally efficient when compared to previous approaches. Its accuracy is limited only by the floating point hardware. The advantages of this new approach are demonstrated by solving the linearized Euler equations in an open bi-periodic domain. A 500th order MESA scheme can now be created in seconds, making these schemes ideally suited for the next generation of high performance 256-bit (double quadruple) or higher precision computers. This ease of creation makes it possible to adapt the algorithm to the mesh in time instead of its converse: this is ideal for resolving varying wavelength scales which occur in noise generation simulations. And finally, the sources of round-off error which effect the very high order methods are examined and remedies provided that effectively increase the accuracy of the MESA schemes while using current computer technology.
Comparison of performance of three commercial platforms for warfarin sensitivity genotyping.
Babic, Nikolina; Haverfield, Eden V; Burrus, Julie A; Lozada, Anthony; Das, Soma; Yeo, Kiang-Teck J
2009-08-01
We performed a 3-way comparison on the Osmetech eSensor, AutoGenomics INFINITI, and a real-time PCR method (Paragonx reagents/Stratagene RT-PCR platform) for their FDA-cleared warfarin panels, and additional polymorphisms (CYP2C9*5, *6, and 11 and extended VKORC1 panels) where available. One hundred de-identified DNA samples were used in this IRB-approved study. Accuracy was determined by comparison of genotyping results across three platforms. Any discrepancy was resolved by bi-directional sequencing. The CYP4F2 on Osmetech was validated by bi-directional sequencing. Accuracies for CYP2C9*2 and *3 were 100% for all 3 platforms. VKORC1 3673 genotyping accuracies were 100% on eSensor and 97% on Infiniti. CYP2C9*5, *6 and *11 showed 100% concordance between eSensor and Infiniti. VKORC1 6484 and 9041 variants compared between ParagonDx and Infiniti analyzer were 100% (6484) and 99% (9041) concordant. CYP4F2 was 100% concordant with sequencing results. The time required to generate the results from automated DNA extraction-to-result was approximately 8h on Infiniti, and 4h on eSensor and ParagonDx, respectively. Overall, we observed excellent CYP2C9*2 and *3 genotyping accuracy for all three platforms. For VKORC1 3673 genotyping, eSensor demonstrated a slightly higher accuracy than the Infiniti, and CYP4F2 on Osmetech was 100% accurate.
Marciano, David; Soize, Sébastien; Metaxas, Georgios; Portefaix, Christophe; Pierot, Laurent
2017-02-01
Data about non-invasive follow-up of aneurysm after stent-assisted coiling is scarce. We aimed to compare time-of-flight (TOF) magnetic resonance angiography (MRA) (3D-TOF-MRA) and contrast-enhanced MRA (CE-MRA) at 3-Tesla, with digital subtraction angiography (DSA) for evaluating aneurysm occlusion and parent artery patency after stent-assisted coiling. In this retrospective single-center study, patients were included if they had an intracranial aneurysm treated by stent-assisted coiling between March 2008 and June 2015, followed with both MRA sequences (3D-TOF-MRA and CE-MRA) at 3-Tesla and DSA, performed in an interval<48hours. Thirty-five aneurysms were included. Regarding aneurysm occlusion evaluation, agreement with DSA was better for CE-MRA (K=0.53) than 3D-TOF-MRA (K=0.28). Diagnostic accuracies for aneurysm remnant depiction were similar for 3D-TOF-MRA and CE-MRA (P=1). Both 3D-TOF-MRA (K=0.05) and CE-MRA (K=-0.04) were unable to detect pathological vessel compared to DSA, without difference in accuracy (P=0.68). For parent artery occlusion detection, agreement with DSA was substantial for 3D-TOF-MRA (K=0.64) and moderate for CE-MRA (K=0.45), with similar good diagnostic accuracies (P=1). After stent-assisted coiling treatment, 3D-TOF-MRA and CE-MRA demonstrated good accuracy to detect aneurysm remnant (but tended to overestimation). Although CE-MRA agreement with DSA was better, there was no statistical difference between 3D-TOF-MRA and CE-MRA accuracies. Both MRAs were unable to provide a precise evaluation of in-stent status but could detect parent vessel occlusion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
House, Rachael; Lasso, Andras; Harish, Vinyas; Baum, Zachary; Fichtinger, Gabor
2017-03-01
PURPOSE: Optical pose tracking of medical instruments is often used in image-guided interventions. Unfortunately, compared to commonly used computing devices, optical trackers tend to be large, heavy, and expensive devices. Compact 3D vision systems, such as Intel RealSense cameras can capture 3D pose information at several magnitudes lower cost, size, and weight. We propose to use Intel SR300 device for applications where it is not practical or feasible to use conventional trackers and limited range and tracking accuracy is acceptable. We also put forward a vertebral level localization application utilizing the SR300 to reduce risk of wrong-level surgery. METHODS: The SR300 was utilized as an object tracker by extending the PLUS toolkit to support data collection from RealSense cameras. Accuracy of the camera was tested by comparing to a high-accuracy optical tracker. CT images of a lumbar spine phantom were obtained and used to create a 3D model in 3D Slicer. The SR300 was used to obtain a surface model of the phantom. Markers were attached to the phantom and a pointer and tracked using Intel RealSense SDK's built-in object tracking feature. 3D Slicer was used to align CT image with phantom using landmark registration and display the CT image overlaid on the optical image. RESULTS: Accuracy of the camera yielded a median position error of 3.3mm (95th percentile 6.7mm) and orientation error of 1.6° (95th percentile 4.3°) in a 20x16x10cm workspace, constantly maintaining proper marker orientation. The model and surface correctly aligned demonstrating the vertebral level localization application. CONCLUSION: The SR300 may be usable for pose tracking in medical procedures where limited accuracy is acceptable. Initial results suggest the SR300 is suitable for vertebral level localization.
Devito, Dennis P; Kaplan, Leon; Dietl, Rupert; Pfeiffer, Michael; Horne, Dale; Silberstein, Boris; Hardenbrook, Mitchell; Kiriyanthan, George; Barzilay, Yair; Bruskin, Alexander; Sackerer, Dieter; Alexandrovsky, Vitali; Stüer, Carsten; Burger, Ralf; Maeurer, Johannes; Donald, Gordon D; Gordon, Donald G; Schoenmayr, Robert; Friedlander, Alon; Knoller, Nachshon; Schmieder, Kirsten; Pechlivanis, Ioannis; Kim, In-Se; Meyer, Bernhard; Shoham, Moshe
2010-11-15
Retrospective, multicenter study of robotically-guided spinal implant insertions. Clinical acceptance of the implants was assessed by intraoperative radiograph, and when available, postoperative computed tomography (CT) scans were used to determine placement accuracy. To verify the clinical acceptance and accuracy of robotically-guided spinal implants and compare to those of unguided free-hand procedures. SpineAssist surgical robot has been used to guide implants and guide-wires to predefined locations in the spine. SpineAssist which, to the best of the authors' knowledge, is currently the sole robot providing surgical assistance in positioning tools in the spine, guided over 840 cases in 14 hospitals, between June 2005 and June 2009. Clinical acceptance of 3271 pedicle screws and guide-wires inserted in 635 reported cases was assessed by intraoperative fluoroscopy, where placement accuracy of 646 pedicle screws inserted in 139 patients was measured using postoperative CT scans. Screw placements were found to be clinically acceptable in 98% of the cases when intraoperatively assessed by fluoroscopic images. Measurements derived from postoperative CT scans demonstrated that 98.3% of the screws fell within the safe zone, where 89.3% were completely within the pedicle and 9% breached the pedicle by up to 2 mm. The remaining 1.4% of the screws breached between 2 and 4 mm, while only 2 screws (0.3%) deviated by more than 4 mm from the pedicle wall. Neurologic deficits were observed in 4 cases yet, following revisions, no permanent nerve damage was encountered, in contrast to the 0.6% to 5% of neurologic damage reported in the literature. SpineAssist offers enhanced performance in spinal surgery when compared to free-hand surgeries, by increasing placement accuracy and reducing neurologic risks. In addition, 49% of the cases reported herein used a percutaneous approach, highlighting the contribution of SpineAssist in procedures without anatomic landmarks.
Estimation of Center of Mass Trajectory using Wearable Sensors during Golf Swing.
Najafi, Bijan; Lee-Eng, Jacqueline; Wrobel, James S; Goebel, Ruben
2015-06-01
This study suggests a wearable sensor technology to estimate center of mass (CoM) trajectory during a golf swing. Groups of 3, 4, and 18 participants were recruited, respectively, for the purpose of three validation studies. Study 1 examined the accuracy of the system to estimate a 3D body segment angle compared to a camera-based motion analyzer (Vicon®). Study 2 assessed the accuracy of three simplified CoM trajectory models. Finally, Study 3 assessed the accuracy of the proposed CoM model during multiple golf swings. A relatively high agreement was observed between wearable sensors and the reference (Vicon®) for angle measurement (r > 0.99, random error <1.2° (1.5%) for anterior-posterior; <0.9° (2%) for medial-lateral; and <3.6° (2.5%) for internal-external direction). The two-link model yielded a better agreement with the reference system compared to one-link model (r > 0.93 v. r = 0.52, respectively). On the same note, the proposed two-link model estimated CoM trajectory during golf swing with relatively good accuracy (r > 0.9, A-P random error <1cm (7.7%) and <2cm (10.4%) for M-L). The proposed system appears to accurately quantify the kinematics of CoM trajectory as a surrogate of dynamic postural control during an athlete's movement and its portability, makes it feasible to fit the competitive environment without restricting surface type. Key pointsThis study demonstrates that wearable technology based on inertial sensors are accurate to estimate center of mass trajectory in complex athletic task (e.g., golf swing)This study suggests that two-link model of human body provides optimum tradeoff between accuracy and minimum number of sensor module for estimation of center of mass trajectory in particular during fast movements.Wearable technologies based on inertial sensors are viable option for assessing dynamic postural control in complex task outside of gait laboratory and constraints of cameras, surface, and base of support.
Modeling Mediterranean forest structure using airborne laser scanning data
NASA Astrophysics Data System (ADS)
Bottalico, Francesca; Chirici, Gherardo; Giannini, Raffaello; Mele, Salvatore; Mura, Matteo; Puxeddu, Michele; McRoberts, Ronald E.; Valbuena, Ruben; Travaglini, Davide
2017-05-01
The conservation of biological diversity is recognized as a fundamental component of sustainable development, and forests contribute greatly to its preservation. Structural complexity increases the potential biological diversity of a forest by creating multiple niches that can host a wide variety of species. To facilitate greater understanding of the contributions of forest structure to forest biological diversity, we modeled relationships between 14 forest structure variables and airborne laser scanning (ALS) data for two Italian study areas representing two common Mediterranean forests, conifer plantations and coppice oaks subjected to irregular intervals of unplanned and non-standard silvicultural interventions. The objectives were twofold: (i) to compare model prediction accuracies when using two types of ALS metrics, echo-based metrics and canopy height model (CHM)-based metrics, and (ii) to construct inferences in the form of confidence intervals for large area structural complexity parameters. Our results showed that the effects of the two study areas on accuracies were greater than the effects of the two types of ALS metrics. In particular, accuracies were less for the more complex study area in terms of species composition and forest structure. However, accuracies achieved using the echo-based metrics were only slightly greater than when using the CHM-based metrics, thus demonstrating that both options yield reliable and comparable results. Accuracies were greatest for dominant height (Hd) (R2 = 0.91; RMSE% = 8.2%) and mean height weighted by basal area (R2 = 0.83; RMSE% = 10.5%) when using the echo-based metrics, 99th percentile of the echo height distribution and interquantile distance. For the forested area, the generalized regression (GREG) estimate of mean Hd was similar to the simple random sampling (SRS) estimate, 15.5 m for GREG and 16.2 m SRS. Further, the GREG estimator with standard error of 0.10 m was considerable more precise than the SRS estimator with standard error of 0.69 m.
From 16-bit to high-accuracy IDCT approximation: fruits of single architecture affliation
NASA Astrophysics Data System (ADS)
Liu, Lijie; Tran, Trac D.; Topiwala, Pankaj
2007-09-01
In this paper, we demonstrate an effective unified framework for high-accuracy approximation of the irrational co-effcient floating-point IDCT by a single integer-coeffcient fixed-point architecture. Our framework is based on a modified version of the Loeffler's sparse DCT factorization, and the IDCT architecture is constructed via a cascade of dyadic lifting steps and butterflies. We illustrate that simply varying the accuracy of the approximating parameters yields a large family of standard-compliant IDCTs, from rare 16-bit approximations catering to portable computing to ultra-high-accuracy 32-bit versions that virtually eliminate any drifting effect when pairing with the 64-bit floating-point IDCT at the encoder. Drifting performances of the proposed IDCTs along with existing popular IDCT algorithms in H.263+, MPEG-2 and MPEG-4 are also demonstrated.
Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W
2015-01-01
Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.
Hu, Eric Y.; Bouteiller, Jean-Marie C.; Song, Dong; Baudry, Michel; Berger, Theodore W.
2015-01-01
Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations. PMID:26441622
Differential neural contributions to native- and foreign-language talker identification
Perrachione, Tyler K.; Pierrehumbert, Janet B.; Wong, Patrick C.M.
2009-01-01
Humans are remarkably adept at identifying individuals by the sound of their voice, a behavior supported by the nervous system’s ability to integrate information from voice and speech perception. Talker-identification abilities are significantly impaired when listeners are unfamiliar with the language being spoken. Recent behavioral studies describing the language-familiarity effect implicate functionally integrated neural systems for speech and voice perception, yet specific neuroscientific evidence demonstrating the basis for such integration has not yet been shown. Listeners in the present study learned to identify voices speaking a familiar (native) or unfamiliar (foreign) language. The talker-identification performance of neural circuitry in each cerebral hemisphere was assessed using dichotic listening. To determine the relative contribution of circuitry in each hemisphere to ecological (binaural) talker identification abilities, we compared the predictive capacity of dichotic performance on binaural performance across languages. We found listeners’ right-ear (left hemisphere) performance to be a better predictor of overall accuracy in their native language than a foreign one. The enhanced predictive capacity of the classically language-dominant left-hemisphere on overall talker-identification accuracy demonstrates functionally integrated neural systems for speech and voice perception during natural talker identification. PMID:19968445
Calus, M P L; de Haas, Y; Veerkamp, R F
2013-10-01
Genomic selection holds the promise to be particularly beneficial for traits that are difficult or expensive to measure, such that access to phenotypes on large daughter groups of bulls is limited. Instead, cow reference populations can be generated, potentially supplemented with existing information from the same or (highly) correlated traits available on bull reference populations. The objective of this study, therefore, was to develop a model to perform genomic predictions and genome-wide association studies based on a combined cow and bull reference data set, with the accuracy of the phenotypes differing between the cow and bull genomic selection reference populations. The developed bivariate Bayesian stochastic search variable selection model allowed for an unbalanced design by imputing residuals in the residual updating scheme for all missing records. The performance of this model is demonstrated on a real data example, where the analyzed trait, being milk fat or protein yield, was either measured only on a cow or a bull reference population, or recorded on both. Our results were that the developed bivariate Bayesian stochastic search variable selection model was able to analyze 2 traits, even though animals had measurements on only 1 of 2 traits. The Bayesian stochastic search variable selection model yielded consistently higher accuracy for fat yield compared with a model without variable selection, both for the univariate and bivariate analyses, whereas the accuracy of both models was very similar for protein yield. The bivariate model identified several additional quantitative trait loci peaks compared with the single-trait models on either trait. In addition, the bivariate models showed a marginal increase in accuracy of genomic predictions for the cow traits (0.01-0.05), although a greater increase in accuracy is expected as the size of the bull population increases. Our results emphasize that the chosen value of priors in Bayesian genomic prediction models are especially important in small data sets. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Crowdsourcing for translational research: analysis of biomarker expression using cancer microarrays
Lawson, Jonathan; Robinson-Vyas, Rupesh J; McQuillan, Janette P; Paterson, Andy; Christie, Sarah; Kidza-Griffiths, Matthew; McDuffus, Leigh-Anne; Moutasim, Karwan A; Shaw, Emily C; Kiltie, Anne E; Howat, William J; Hanby, Andrew M; Thomas, Gareth J; Smittenaar, Peter
2017-01-01
Background: Academic pathology suffers from an acute and growing lack of workforce resource. This especially impacts on translational elements of clinical trials, which can require detailed analysis of thousands of tissue samples. We tested whether crowdsourcing – enlisting help from the public – is a sufficiently accurate method to score such samples. Methods: We developed a novel online interface to train and test lay participants on cancer detection and immunohistochemistry scoring in tissue microarrays. Lay participants initially performed cancer detection on lung cancer images stained for CD8, and we measured how extending a basic tutorial by annotated example images and feedback-based training affected cancer detection accuracy. We then applied this tutorial to additional cancer types and immunohistochemistry markers – bladder/ki67, lung/EGFR, and oesophageal/CD8 – to establish accuracy compared with experts. Using this optimised tutorial, we then tested lay participants' accuracy on immunohistochemistry scoring of lung/EGFR and bladder/p53 samples. Results: We observed that for cancer detection, annotated example images and feedback-based training both improved accuracy compared with a basic tutorial only. Using this optimised tutorial, we demonstrate highly accurate (>0.90 area under curve) detection of cancer in samples stained with nuclear, cytoplasmic and membrane cell markers. We also observed high Spearman correlations between lay participants and experts for immunohistochemistry scoring (0.91 (0.78, 0.96) and 0.97 (0.91, 0.99) for lung/EGFR and bladder/p53 samples, respectively). Conclusions: These results establish crowdsourcing as a promising method to screen large data sets for biomarkers in cancer pathology research across a range of cancers and immunohistochemical stains. PMID:27959886
Energy Expenditure in Critically Ill Elderly Patients: Indirect Calorimetry vs Predictive Equations.
Segadilha, Nara L A L; Rocha, Eduardo E M; Tanaka, Lilian M S; Gomes, Karla L P; Espinoza, Rodolfo E A; Peres, Wilza A F
2017-07-01
Predictive equations (PEs) are used for estimating resting energy expenditure (REE) when the measurements obtained from indirect calorimetry (IC) are not available. This study evaluated the degree of agreement and the accuracy between the REE measured by IC (REE-IC) and REE estimated by PE (REE-PE) in mechanically ventilated elderly patients admitted to the intensive care unit (ICU). REE-IC of 97 critically ill elderly patients was compared with REE-PE by 6 PEs: Harris and Benedict (HB) multiplied by the correction factor of 1.2; European Society for Clinical Nutrition and Metabolism (ESPEN) using the minimum (ESPENmi), average (ESPENme), and maximum (ESPENma) values; Mifflin-St Jeor; Ireton-Jones (IJ); Fredrix; and Lührmann. Degree of agreement between REE-PE and REE-IC was analyzed by the interclass correlation coefficient and the Bland-Altman test. The accuracy was calculated by the percentage of male and/or female patients whose REE-PE values differ by up to ±10% in relation to REE-IC. For both sexes, there was no difference for average REE-IC in kcal/kg when the values obtained with REE-PE by corrected HB and ESPENme were compared. A high level of agreement was demonstrated by corrected HB for both sexes, with greater accuracy for women. The best accuracy in the male group was obtained with the IJ equation but with a low level of agreement. The effectiveness of PEs is limited for estimating REE of critically ill elderly patients. Nonetheless, HB multiplied by a correction factor of 1.2 can be used until a specific PE for this group of patients is developed.
NASA Astrophysics Data System (ADS)
Linte, Cristian A.; Rettmann, Maryam E.; Dilger, Ben; Gunawan, Mia S.; Arunachalam, Shivaram P.; Holmes, David R., III; Packer, Douglas L.; Robb, Richard A.
2012-02-01
The novel prototype system for advanced visualization for image-guided left atrial ablation therapy developed in our laboratory permits ready integration of multiple imaging modalities, surgical instrument tracking, interventional devices and electro-physiologic data. This technology allows subject-specific procedure planning and guidance using 3D dynamic, patient-specific models of the patient's heart, augmented with real-time intracardiac echocardiography (ICE). In order for the 2D ICE images to provide intuitive visualization for accurate catheter to surgical target navigation, the transducer must be tracked, so that the acquired images can be appropriately presented with respect to the patient-specific anatomy. Here we present the implementation of a previously developed ultrasound calibration technique for a magnetically tracked ICE transducer, along with a series of evaluation methods to ensure accurate imaging and faithful representation of the imaged structures. Using an engineering-designed phantom, target localization accuracy is assessed by comparing known target locations with their transformed locations inferred from the tracked US images. In addition, the 3D volume reconstruction accuracy is also estimated by comparing a truth volume to that reconstructed from sequential 2D US images. Clinically emulating validation studies are conducted using a patient-specific left atrial phantom. Target localization error of clinically-relevant surgical targets represented by nylon fiducials implanted within the endocardial wall of the phantom was assessed. Our studies have demonstrated 2.4 +/- 0.8 mm target localization error in the engineering-designed evaluation phantoms, 94.8 +/- 4.6 % volume reconstruction accuracy, and 3.1 +/- 1.2 mm target localization error in the left atrial-mimicking phantom. These results are consistent with those disseminated in the literature and also with the accuracy constraints imposed by the employed technology and the clinical application.
Genomic selection for fruit quality traits in apple (Malus×domestica Borkh.).
Kumar, Satish; Chagné, David; Bink, Marco C A M; Volz, Richard K; Whitworth, Claire; Carlisle, Charmaine
2012-01-01
The genome sequence of apple (Malus×domestica Borkh.) was published more than a year ago, which helped develop an 8K SNP chip to assist in implementing genomic selection (GS). In apple breeding programmes, GS can be used to obtain genomic breeding values (GEBV) for choosing next-generation parents or selections for further testing as potential commercial cultivars at a very early stage. Thus GS has the potential to accelerate breeding efficiency significantly because of decreased generation interval or increased selection intensity. We evaluated the accuracy of GS in a population of 1120 seedlings generated from a factorial mating design of four females and two male parents. All seedlings were genotyped using an Illumina Infinium chip comprising 8,000 single nucleotide polymorphisms (SNPs), and were phenotyped for various fruit quality traits. Random-regression best liner unbiased prediction (RR-BLUP) and the Bayesian LASSO method were used to obtain GEBV, and compared using a cross-validation approach for their accuracy to predict unobserved BLUP-BV. Accuracies were very similar for both methods, varying from 0.70 to 0.90 for various fruit quality traits. The selection response per unit time using GS compared with the traditional BLUP-based selection were very high (>100%) especially for low-heritability traits. Genome-wide average estimated linkage disequilibrium (LD) between adjacent SNPs was 0.32, with a relatively slow decay of LD in the long range (r(2) = 0.33 and 0.19 at 100 kb and 1,000 kb respectively), contributing to the higher accuracy of GS. Distribution of estimated SNP effects revealed involvement of large effect genes with likely pleiotropic effects. These results demonstrated that genomic selection is a credible alternative to conventional selection for fruit quality traits.
Faciszewski, T; Broste, S K; Fardon, D
1997-10-01
The purpose of the present study was to evaluate the accuracy of data regarding diagnoses of spinal disorders in administrative databases at eight different institutions. The records of 189 patients who had been managed for a disorder of the lumbar spine were independently reviewed by a physician who assigned the appropriate diagnostic codes according to the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). The age range of the 189 patients was seventeen to eighty-four years. The six major diagnostic categories studied were herniation of a lumbar disc, a previous operation on the lumbar spine, spinal stenosis, cauda equina syndrome, acquired spondylolisthesis, and congenital spondylolisthesis. The diagnostic codes assigned by the physician were compared with the codes that had been assigned during the ordinary course of events by personnel in the medical records department of each of the eight hospitals. The accuracy of coding was also compared among the eight hospitals, and it was found to vary depending on the diagnosis. Although there were both false-negative and false-positive codes at each institution, most errors were related to the low sensitivity of coding for previous spinal operations: only seventeen (28 per cent) of sixty-one such diagnoses were coded correctly. Other errors in coding were less frequent, but their implications for conclusions drawn from the information in administrative databases depend on the frequency of a diagnosis and its importance in an analysis. This study demonstrated that the accuracy of a diagnosis of a spinal disorder recorded in an administrative database varies according to the specific condition being evaluated. It is necessary to document the relative accuracy of specific ICD-9-CM diagnostic codes in order to improve the ability to validate the conclusions derived from investigations based on administrative databases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jiahua; Penfold, Scott N., E-mail: scott.penfold@adelaide.edu.au
Purpose: The accuracy of proton dose calculation is dependent on the ability to correctly characterize patient tissues with medical imaging. The most common method is to correlate computed tomography (CT) numbers obtained via single-energy CT (SECT) with proton stopping power ratio (SPR). CT numbers, however, cannot discriminate between a change in mass density and change in chemical composition of patient tissues. This limitation can have consequences on SPR calibration accuracy. Dual-energy CT (DECT) is receiving increasing interest as an alternative imaging modality for proton therapy treatment planning due to its ability to discriminate between changes in patient density and chemicalmore » composition. In the current work we use a phantom of known composition to demonstrate the dosimetric advantages of proton therapy treatment planning with DECT over SECT. Methods: A phantom of known composition was scanned with a clinical SECT radiotherapy CT-simulator. The phantom was rescanned at a lower X-ray tube potential to generate a complimentary DECT image set. A set of reference materials similar in composition to the phantom was used to perform a stoichiometric calibration of SECT CT number to proton SPRs. The same set of reference materials was used to perform a DECT stoichiometric calibration based on effective atomic number. The known composition of the phantom was used to assess the accuracy of SPR calibration with SECT and DECT. Intensity modulated proton therapy (IMPT) treatment plans were generated with the SECT and DECT image sets to assess the dosimetric effect of the imaging modality. Isodose difference maps and root mean square (RMS) error calculations were used to assess dose calculation accuracy. Results: SPR calculation accuracy was found to be superior, on average, with DECT relative to SECT. Maximum errors of 12.8% and 2.2% were found for SECT and DECT, respectively. Qualitative examination of dose difference maps clearly showed the dosimetric advantages of DECT imaging, compared to SECT imaging for IMPT dose calculation for the case investigated. Quantitatively, the maximum dose calculation error in the SECT plan was 7.8%, compared to a value of 1.4% in the DECT plan. When considering the high dose target region, the root mean square (RMS) error in dose calculation was 2.1% and 0.4% for SECT and DECT, respectively. Conclusions: DECT-based proton treatment planning in a commercial treatment planning system was successfully demonstrated for the first time. DECT is an attractive imaging modality for proton therapy treatment planning owing to its ability to characterize density and chemical composition of patient tissues. SECT and DECT scans of a phantom of known composition have been used to demonstrate the dosimetric advantages obtainable in proton therapy treatment planning with DECT over the current approach based on SECT.« less
Accuracy testing of electric groundwater-level measurement tapes
Jelinski, Jim; Clayton, Christopher S.; Fulford, Janice M.
2015-01-01
The accuracy tests demonstrated that none of the electric-tape models tested consistently met the suggested USGS accuracy of ±0.01 ft. The test data show that the tape models in the study should give a water-level measurement that is accurate to roughly ±0.05 ft per 100 ft without additional calibration. To meet USGS accuracy guidelines, the electric-tape models tested will need to be individually calibrated. Specific conductance also plays a part in tape accuracy. The probes will not work in water with specific conductance values near zero, and the accuracy of one probe was unreliable in very high conductivity water (10,000 microsiemens per centimeter).
Matsuda, Eriko; Fukuhara, Takahiro; Donishi, Ryohei; Kawamoto, Katsuyuki; Hirooka, Yasuaki; Takeuchi, Hiromi
2018-01-01
Background Ultrasonographic homogeneity is an important differential finding between Warthin tumor and pleomorphic adenoma, two types of benign parotid gland tumors, with the former likely to be heterogeneous and the latter homogeneous. However, differences in the performance of ultrasound machines or the homogeneity cut-off level affect the judgment of ultrasonographic homogeneity. Therefore, in this study, we adopted a novel system for classifying the composition of tumors via ultrasonography, using anechoic area as a substitute for differences in homogeneity to differentiate between Warthin tumors and pleomorphic adenomas. Methods We evaluated 68 tumors that were histopathologically diagnosed as Warthin tumor or pleomorphic adenoma between July 2009 and November 2015. Ultrasonographic images of the tumors were evaluated on the basis of key differentiating features, including features on B-mode imaging and color Doppler imaging. Additionally, the tumors were classified into four groups based on anechoic area, and findings were compared between Warthin tumors and pleomorphic adenomas. Results While 38 of the tumors were pleomorphic adenomas, 30 were Warthin tumors. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy for detection of Warthin tumors using our novel classification system were 73.3%, 76.3%, 71.0%, 78.4% and 75.0%, respectively. Compared to pleomorphic adenomas, Warthin tumors showed large or sponge-like anechoic areas, rich vascularization and an oval shape even at large tumor sizes, and the difference was significant. On defining Warthin tumor as a tumor demonstrating two or more of the findings noted above, the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy for its detection were 73.3%, 84.2%, 78.6%, 80.0% and 79.4%, respectively. Conclusion Our novel classification system based on anechoic area patterns demonstrated by the tumors had high sensitivity, specificity and diagnostic accuracy for differentiating Warthin tumors from pleomorphic adenomas. PMID:29434491
Matsuda, Eriko; Fukuhara, Takahiro; Donishi, Ryohei; Kawamoto, Katsuyuki; Hirooka, Yasuaki; Takeuchi, Hiromi
2017-12-01
Ultrasonographic homogeneity is an important differential finding between Warthin tumor and pleomorphic adenoma, two types of benign parotid gland tumors, with the former likely to be heterogeneous and the latter homogeneous. However, differences in the performance of ultrasound machines or the homogeneity cut-off level affect the judgment of ultrasonographic homogeneity. Therefore, in this study, we adopted a novel system for classifying the composition of tumors via ultrasonography, using anechoic area as a substitute for differences in homogeneity to differentiate between Warthin tumors and pleomorphic adenomas. We evaluated 68 tumors that were histopathologically diagnosed as Warthin tumor or pleomorphic adenoma between July 2009 and November 2015. Ultrasonographic images of the tumors were evaluated on the basis of key differentiating features, including features on B-mode imaging and color Doppler imaging. Additionally, the tumors were classified into four groups based on anechoic area, and findings were compared between Warthin tumors and pleomorphic adenomas. While 38 of the tumors were pleomorphic adenomas, 30 were Warthin tumors. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy for detection of Warthin tumors using our novel classification system were 73.3%, 76.3%, 71.0%, 78.4% and 75.0%, respectively. Compared to pleomorphic adenomas, Warthin tumors showed large or sponge-like anechoic areas, rich vascularization and an oval shape even at large tumor sizes, and the difference was significant. On defining Warthin tumor as a tumor demonstrating two or more of the findings noted above, the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy for its detection were 73.3%, 84.2%, 78.6%, 80.0% and 79.4%, respectively. Our novel classification system based on anechoic area patterns demonstrated by the tumors had high sensitivity, specificity and diagnostic accuracy for differentiating Warthin tumors from pleomorphic adenomas.
Li, T; Zhao, S; Liu, J; Yang, L; Huang, Z; Li, J; Luo, C; Li, X
2017-10-01
To investigate the use of second-generation dual-source high-pitch computed tomography in obtaining confident diagnostic image quality using a low radiation dose in young patients with congenital heart disease (CHD). From July 2014 to June 2016, 50 consecutive children <4 years with complex CHD underwent electrocardiography (ECG)-triggered dual-source computed tomography (CT). The patients were assigned randomly to two groups: high-pitch (pitch 3.4) spiral dual-source CT acquisition (group A) and retrospectively spiral dual-source CT acquisition (group B). The image quality, diagnostic accuracy, coronary artery origin, course demonstration, and radiation exposure were compared between the two groups. Fifty examinations were performed (group A, 25; group B, 25). There were no significant differences in image quality, diagnostic accuracy, coronary artery origin, and course demonstration between the two groups. The image quality scores were 1.3±0.4 in group A and 1.1±0.3 in group B (p=0.2). The diagnostic accuracy was 100% in both groups. The coronary arteries were traceable in 80% in group A and 84% in group B (p=0.7). A single coronary artery was identified in one case in group A and the left anterior descending (LAD) branch originated from the right coronary artery (RCA) in one case in group B. There were significant differences in the effective doses between the two groups (0.40±0.20 mSv in group A and 2.7±1.0 mSv in group B, p<0.05). Intra-cardiac and extra-cardiac malformation, coronary artery origin, and course malformation can be visualised clearly using a high-pitch ECG-triggered dual-source CT with a low radiation dose and good image quality in patients with CHD. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shoko, C.; Mutanga, O.
2017-07-01
C3 and C4 grass species discrimination has increasingly become relevant in understanding their response to environmental changes and to monitor their integrity in providing goods and services. While remotely-sensed data provide robust, cost-effective and repeatable monitoring tools for C3 and C4 grasses, this has been largely limited by the scarcity of sensors with better earth imaging characteristics. The recent launch of the advanced Sentinel 2 MultiSpectral Instrument (MSI) presents a new prospect for discriminating C3 and C4 grasses. The present study tested the potential of Sentinel 2, characterized by refined spatial resolution and more unique spectral bands in discriminating between Festuca (C3) and Themeda (C4) grasses. To evaluate the performance of Sentinel 2 MSI; spectral bands, vegetation indices and spectral bands plus indices were used. Findings from Sentinel 2 were compared with those derived from the widely-used Worldview 2 commercial sensor and the Landsat 8 Operational Land Imager (OLI). Overall classification accuracies have shown that Sentinel 2 bands have potential (90.36%), than indices (85.54%) and combined variables (88.61%). The results were comparable to Worldview 2 sensor, which produced slightly higher accuracies using spectral bands (95.69%), indices (86.02%) and combined variables (87.09%), and better than Landsat 8 OLI spectral bands (75.26%), indices (82.79%) and combined variables (86.02%). Sentinel 2 bands produced lower errors of commission and omission (between 4.76 and 14.63%), comparable to Worldview 2 (between 1.96 and 7.14%), than Landsat 8 (between 18.18 and 30.61%), when classifying the two species. The classification accuracy from Sentinel 2 also did not differ significantly (z = 1.34) from Worldview 2, using standard bands; it was significantly (z > 1.96) different using indices and combined variables, whereas when compared to Landsat 8, Sentinel 2 accuracies were significantly different (z > 1.96) using all variables. These results demonstrated that key vegetation species discrimination could be improved by the use of the freely and improved Sentinel 2 MSI data.
Paliwal, Nikhil; Damiano, Robert J; Varble, Nicole A; Tutino, Vincent M; Dou, Zhongwang; Siddiqui, Adnan H; Meng, Hui
2017-12-01
Computational fluid dynamics (CFD) is a promising tool to aid in clinical diagnoses of cardiovascular diseases. However, it uses assumptions that simplify the complexities of the real cardiovascular flow. Due to high-stakes in the clinical setting, it is critical to calculate the effect of these assumptions in the CFD simulation results. However, existing CFD validation approaches do not quantify error in the simulation results due to the CFD solver's modeling assumptions. Instead, they directly compare CFD simulation results against validation data. Thus, to quantify the accuracy of a CFD solver, we developed a validation methodology that calculates the CFD model error (arising from modeling assumptions). Our methodology identifies independent error sources in CFD and validation experiments, and calculates the model error by parsing out other sources of error inherent in simulation and experiments. To demonstrate the method, we simulated the flow field of a patient-specific intracranial aneurysm (IA) in the commercial CFD software star-ccm+. Particle image velocimetry (PIV) provided validation datasets for the flow field on two orthogonal planes. The average model error in the star-ccm+ solver was 5.63 ± 5.49% along the intersecting validation line of the orthogonal planes. Furthermore, we demonstrated that our validation method is superior to existing validation approaches by applying three representative existing validation techniques to our CFD and experimental dataset, and comparing the validation results. Our validation methodology offers a streamlined workflow to extract the "true" accuracy of a CFD solver.
Artificial Intelligence Systems as Prognostic and Predictive Tools in Ovarian Cancer.
Enshaei, A; Robson, C N; Edmondson, R J
2015-11-01
The ability to provide accurate prognostic and predictive information to patients is becoming increasingly important as clinicians enter an era of personalized medicine. For a disease as heterogeneous as epithelial ovarian cancer, conventional algorithms become too complex for routine clinical use. This study therefore investigated the potential for an artificial intelligence model to provide this information and compared it with conventional statistical approaches. The authors created a database comprising 668 cases of epithelial ovarian cancer during a 10-year period and collected data routinely available in a clinical environment. They also collected survival data for all the patients, then constructed an artificial intelligence model capable of comparing a variety of algorithms and classifiers alongside conventional statistical approaches such as logistic regression. The model was used to predict overall survival and demonstrated that an artificial neural network (ANN) algorithm was capable of predicting survival with high accuracy (93 %) and an area under the curve (AUC) of 0.74 and that this outperformed logistic regression. The model also was used to predict the outcome of surgery and again showed that ANN could predict outcome (complete/optimal cytoreduction vs. suboptimal cytoreduction) with 77 % accuracy and an AUC of 0.73. These data are encouraging and demonstrate that artificial intelligence systems may have a role in providing prognostic and predictive data for patients. The performance of these systems likely will improve with increasing data set size, and this needs further investigation.
A Machine Learning-based Method for Question Type Classification in Biomedical Question Answering.
Sarrouti, Mourad; Ouatik El Alaoui, Said
2017-05-18
Biomedical question type classification is one of the important components of an automatic biomedical question answering system. The performance of the latter depends directly on the performance of its biomedical question type classification system, which consists of assigning a category to each question in order to determine the appropriate answer extraction algorithm. This study aims to automatically classify biomedical questions into one of the four categories: (1) yes/no, (2) factoid, (3) list, and (4) summary. In this paper, we propose a biomedical question type classification method based on machine learning approaches to automatically assign a category to a biomedical question. First, we extract features from biomedical questions using the proposed handcrafted lexico-syntactic patterns. Then, we feed these features for machine-learning algorithms. Finally, the class label is predicted using the trained classifiers. Experimental evaluations performed on large standard annotated datasets of biomedical questions, provided by the BioASQ challenge, demonstrated that our method exhibits significant improved performance when compared to four baseline systems. The proposed method achieves a roughly 10-point increase over the best baseline in terms of accuracy. Moreover, the obtained results show that using handcrafted lexico-syntactic patterns as features' provider of support vector machine (SVM) lead to the highest accuracy of 89.40 %. The proposed method can automatically classify BioASQ questions into one of the four categories: yes/no, factoid, list, and summary. Furthermore, the results demonstrated that our method produced the best classification performance compared to four baseline systems.
Online health information on obesity in pregnancy: a systematic review.
Al Wattar, Bassel H; Pidgeon, Connie; Learner, Hazel; Zamora, Javier; Thangaratinam, Shakila
2016-11-01
To assess the quality of health information available online for healthcare users on obesity in pregnancy and evaluate the role of the internet as an effective medium to advocate a healthy lifestyle in pregnancy. We used the poly-search engine Polymeta and complimented the results with Google searches (till July 2015) to identify relevant websites. All open access websites in English providing advice on the risks and management of obesity in pregnancy. Two independent reviewers assessed the quality of information provided in each of the included websites for credibility, accuracy, readability, content quality and technology. We compared websites 'quality according to their target population, health topic and source of funding'. Fifty-three websites were included. A third of websites were focused on obesity in pregnancy and two thirds targeted healthcare users. The median value for the overall credibility was 5/9, 7/12 for accuracy, 57.6/100 for readability, 45/80 for content quality and 75/100 for technology. Obesity specific websites provided lower credibility compared to general health websites (p=0.008). Websites targeting health users were easier to read (p=0.001). Non-governmental funded websites demonstrated higher content quality (p=0.005). Websites that are obesity focused, targeting health users and funded by non-governmental bodies demonstrated higher composite quality scores (p=0.048). Online information on obesity in pregnancy is varied. Governmental bodies in particular need to invest more efforts to improve the quality of online health information. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Katki, Hormuzd A; Schiffman, Mark
2018-05-01
Our work involves assessing whether new biomarkers might be useful for cervical-cancer screening across populations with different disease prevalences and biomarker distributions. When comparing across populations, we show that standard diagnostic accuracy statistics (predictive values, risk-differences, Youden's index and Area Under the Curve (AUC)) can easily be misinterpreted. We introduce an intuitively simple statistic for a 2 × 2 table, Mean Risk Stratification (MRS): the average change in risk (pre-test vs. post-test) revealed for tested individuals. High MRS implies better risk separation achieved by testing. MRS has 3 key advantages for comparing test performance across populations with different disease prevalences and biomarker distributions. First, MRS demonstrates that conventional predictive values and the risk-difference do not measure risk-stratification because they do not account for test-positivity rates. Second, Youden's index and AUC measure only multiplicative relative gains in risk-stratification: AUC = 0.6 achieves only 20% of maximum risk-stratification (AUC = 0.9 achieves 80%). Third, large relative gains in risk-stratification might not imply large absolute gains if disease is rare, demonstrating a "high-bar" to justify population-based screening for rare diseases such as cancer. We illustrate MRS by our experience comparing the performance of cervical-cancer screening tests in China vs. the USA. The test with the worst AUC = 0.72 in China (visual inspection with acetic acid) provides twice the risk-stratification (i.e. MRS) of the test with best AUC = 0.83 in the USA (human papillomavirus and Pap cotesting) because China has three times more cervical precancer/cancer. MRS could be routinely calculated to better understand the clinical/public-health implications of standard diagnostic accuracy statistics. Published by Elsevier Inc.
Winokur, Elizabeth J; Pai, Debra; Rutledge, Dana N; Vogel, Kate; Al-Majid, Sadeeka; Marshall, Christine; Sheikewitz, Paul
2014-07-01
Lack of specific guidelines regarding collection of blood for culture from central venous catheters (CVCs) has led to inconsistencies in policies among hospitals. Currently, no specific professional or regulatory recommendations exist in relation to using, reinfusing, or discarding blood drawn from CVCs before drawing blood for a culture. Repeated wasting of blood may harm immunocompromised pediatric oncology patients. The purpose of this comparative study was to determine whether differences exist between blood cultures obtained from the first 5 mL of blood drawn from a CVC line when compared with the second 5 mL drawn. During 2009-2011, 62 pediatric oncology patients with CVCs and orders for blood cultures to determine potential sepsis were enrolled during ED visits. Trained study nurses aseptically drew blood and injected the normally discarded first 5 mL and the second specimen (usual care) into separate culture bottles. Specimens were processed in the microbiology laboratory per hospital policy. Positive cultures were evaluated to assess agreement between specimen results and to determine that the identified pathogen was not a contaminant. Out of 186 blood culture pairs, 4.8% demonstrated positive results. In all positive-positive matches, the normal discard specimen contained the same organism as the usual care specimen. In 4 matches, the normally discarded specimen demonstrated notably earlier time to positivity (4 to 31 hours) compared with the usual care specimen, which resulted in earlier initiation of definitive antibiotics. These findings support the accuracy of the specimen that is normally discarded and suggest the need to reconsider its use for blood culture testing. Copyright © 2014 Emergency Nurses Association. Published by Mosby, Inc. All rights reserved.
Salvador, Cathrin L.; Hartmann, Anders; Åsberg, Anders; Bergan, Stein; Rowe, Alexander D.; Mørkrid, Lars
2017-01-01
Background Assessment of glomerular filtration rate (GFR) is important in kidney transplantation. The aim was to develop a kidney transplant specific equation for estimating GFR and evaluate against published equations commonly used for GFR estimation in these patients. Methods Adult kidney recipients (n = 594) were included, and blood samples were collected 10 weeks posttransplant. GFR was measured by 51Cr-ethylenediaminetetraacetic acid clearance. Patients were randomized into a reference group (n = 297) to generate a new equation and a test group (n = 297) for comparing it with 7 alternative equations. Results Two thirds of the test group were males. The median (2.5-97.5 percentile) age was 52 (23-75) years, cystatin C, 1.63 (1.00-3.04) mg/L; creatinine, 117 (63-220) μmol/L; and measured GFR, 51 (29-78) mL/min per 1.73 m2. We also performed external evaluation in 133 recipients without the use of trimethoprim, using iohexol clearance for measured GFR. The Modification of Diet in Renal Disease equation was the most accurate of the creatinine-equations. The new equation, estimated GFR (eGFR) = 991.15 × (1.120sex/([age0.097] × [cystatin C0.306] × [creatinine0.527]); where sex is denoted: 0, female; 1, male, demonstrating a better accuracy with a low bias as well as good precision compared with reference equations. Trimethoprim did not influence the performance of the new equation. Conclusions The new equation demonstrated superior accuracy, precision, and low bias. The Modification of Diet in Renal Disease equation was the most accurate of the creatinine-based equations. PMID:29536033
Jette, Alan M.; McDonough, Christine M.; Haley, Stephen M.; Ni, Pengsheng; Olarsch, Sippy; Latham, Nancy; Hambleton, Ronald K.; Felson, David; Kim, Young-jo; Hunter, David
2012-01-01
Objective To develop and evaluate a prototype measure (OA-DISABILITY-CAT) for osteoarthritis research using Item Response Theory (IRT) and Computer Adaptive Test (CAT) methodologies. Study Design and Setting We constructed an item bank consisting of 33 activities commonly affected by lower extremity (LE) osteoarthritis. A sample of 323 adults with LE osteoarthritis reported their degree of limitation in performing everyday activities and completed the Health Assessment Questionnaire-II (HAQ-II). We used confirmatory factor analyses to assess scale unidimensionality and IRT methods to calibrate the items and examine the fit of the data. Using CAT simulation analyses, we examined the performance of OA-DISABILITY-CATs of different lengths compared to the full item bank and the HAQ-II. Results One distinct disability domain was identified. The 10-item OA-DISABILITY-CAT demonstrated a high degree of accuracy compared with the full item bank (r=0.99). The item bank and the HAQ-II scales covered a similar estimated scoring range. In terms of reliability, 95% of OA-DISABILITY reliability estimates were over 0.83 versus 0.60 for the HAQ-II. Except at the highest scores the 10-item OA-DISABILITY-CAT demonstrated superior precision to the HAQ-II. Conclusion The prototype OA-DISABILITY-CAT demonstrated promising measurement properties compared to the HAQ-II, and is recommended for use in LE osteoarthritis research. PMID:19216052
Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint.
Gao, Zhi; Lao, Mingjie; Sang, Yongsheng; Wen, Fei; Ramesh, Bharath; Zhai, Ruifang
2018-05-06
Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency.
Wire-positioning algorithm for coreless Hall array sensors in current measurement
NASA Astrophysics Data System (ADS)
Chen, Wenli; Zhang, Huaiqing; Chen, Lin; Gu, Shanyun
2018-05-01
This paper presents a scheme of circular-arrayed, coreless Hall-effect current transformers. It can satisfy the demands of wide dynamic range and bandwidth current in the distribution system, as well as the demand of AC and DC simultaneous measurements. In order to improve the signal to noise ratio (SNR) of the sensor, a wire-positioning algorithm is proposed, which can improve the measurement accuracy based on the post-processing of measurement data. The simulation results demonstrate that the maximum errors are 70%, 6.1% and 0.95% corresponding to Ampère’s circuital method, approximate positioning algorithm and precise positioning algorithm, respectively. It is obvious that the accuracy of the positioning algorithm is significantly improved when compared with that of the Ampère’s circuital method. The maximum error of the positioning algorithm is smaller in the experiment.