MELiSSA Pilot Plant: A facility for ground demonstration of a closed life support system
NASA Astrophysics Data System (ADS)
Godia, Francesc; Fossen, Arnaud; Peiro, Enrique; Gerbi, Olivier; Dussap, Gilles; Leys, Natalie; Arnau, Carolina; Milian, Ernest
MELiSSA (Micro Ecological Life Support System Alternative) is an international collaborative effort focused on the development of a Life Support System for long-term Space missions. The goals of the MELiSSA loop are the recovery of food, water and oxygen from wastes, i.e. CO2 and organic wastes, using light as a source of energy. It is conceived as a series of compartments, each one performing a specific function within this cycle, inspired in the terrestrial ecological systems. Each one of the compartments is colonized with specific bacteria or higher plants depending on its dedicated function. Therefore, its design and operational conditions should guarantee that only a given specific biological activity takes place in each compartment. Moreover, this has to be done in a controlled manner, both at the subsystems level (i.e., compartments) and at the overall system level (i.e., complete loop). In order to achieve the complete operation of such a Closed Ecological System, in a first step each compartment has to be developed at individual level, and its operation demonstrated under its associated control law. In a second step, the complete loop needs to be integrated by the connection of the different compartments in the gas, loop and solid phases. An extensive demonstration of MELiSSA loop under terrestrial conditions is a mandatory step in the process of its adaptation to space. This is the main goal of the MPP. The demonstration scenario for the MPP is the respiration equivalent of a human being, and production of 20 percent of the diet of one person. To serve this goal, the different compartments of the MELiSSA loop have been designed and sized at the pilot scale level, and further characterized. Nowadays, the focus of the MELiSSA Pilot Plant is on the integration of its compartments. To this end, the integration challenge is concentrated in three compartments devoted to the following functions: nitrification (Compartment 3, an axenic co-culture of Nitrosomonas europaea and Nitrobacter winogradskyi), edible biomass and oxygen production (Compartment 4a, an axenic co-culture of Arthrospira platensis) and oxygen consumers (Compartment 5, rats isolator). The presentation will focus on all the necessary elements to achieve this integration, particularly in the start-up of continuous operation of the bioreactors and on the key challenges addressed in the integration of the gas phase of two compartments, 4a and 5, one producing O2 and one consuming it. The design of the integration conditions to ensure the functionality of all the elements will also be discussed. Keywords:, MELiSSA, Pilot Plant, Integration, Arthrospira platensis, Nitrosomonas europaea, Nitrobacter winogradskyi
Eriksson, Stefanie; Elbing, Karin; Söderman, Olle; Lindkvist-Petersson, Karin; Topgaard, Daniel; Lasič, Samo
2017-01-01
Water transport across cell membranes can be measured non-invasively with diffusion NMR. We present a method to quantify the intracellular lifetime of water in cell suspensions with short transverse relaxation times, T2, and also circumvent the confounding effect of different T2 values in the intra- and extracellular compartments. Filter exchange spectroscopy (FEXSY) is specifically sensitive to exchange between compartments with different apparent diffusivities. Our investigation shows that FEXSY could yield significantly biased results if differences in T2 are not accounted for. To mitigate this problem, we propose combining FEXSY with diffusion-relaxation correlation experiment, which can quantify differences in T2 values in compartments with different diffusivities. Our analysis uses a joint constrained fitting of the two datasets and considers the effects of diffusion, relaxation and exchange in both experiments. The method is demonstrated on yeast cells with and without human aquaporins.
Eriksson, Stefanie; Elbing, Karin; Söderman, Olle; Lindkvist-Petersson, Karin; Topgaard, Daniel
2017-01-01
Water transport across cell membranes can be measured non-invasively with diffusion NMR. We present a method to quantify the intracellular lifetime of water in cell suspensions with short transverse relaxation times, T2, and also circumvent the confounding effect of different T2 values in the intra- and extracellular compartments. Filter exchange spectroscopy (FEXSY) is specifically sensitive to exchange between compartments with different apparent diffusivities. Our investigation shows that FEXSY could yield significantly biased results if differences in T2 are not accounted for. To mitigate this problem, we propose combining FEXSY with diffusion-relaxation correlation experiment, which can quantify differences in T2 values in compartments with different diffusivities. Our analysis uses a joint constrained fitting of the two datasets and considers the effects of diffusion, relaxation and exchange in both experiments. The method is demonstrated on yeast cells with and without human aquaporins. PMID:28493928
Peng, Tao; Bonamy, Ghislain M C; Glory-Afshar, Estelle; Rines, Daniel R; Chanda, Sumit K; Murphy, Robert F
2010-02-16
Many proteins or other biological macromolecules are localized to more than one subcellular structure. The fraction of a protein in different cellular compartments is often measured by colocalization with organelle-specific fluorescent markers, requiring availability of fluorescent probes for each compartment and acquisition of images for each in conjunction with the macromolecule of interest. Alternatively, tailored algorithms allow finding particular regions in images and quantifying the amount of fluorescence they contain. Unfortunately, this approach requires extensive hand-tuning of algorithms and is often cell type-dependent. Here we describe a machine-learning approach for estimating the amount of fluorescent signal in different subcellular compartments without hand tuning, requiring only the acquisition of separate training images of markers for each compartment. In testing on images of cells stained with mixtures of probes for different organelles, we achieved a 93% correlation between estimated and expected amounts of probes in each compartment. We also demonstrated that the method can be used to quantify drug-dependent protein translocations. The method enables automated and unbiased determination of the distributions of protein across cellular compartments, and will significantly improve imaging-based high-throughput assays and facilitate proteome-scale localization efforts.
The development of the MELiSSA Pilot Plant Facility
NASA Astrophysics Data System (ADS)
Godia, Francesc; Dussap, Claude-Gilles; Dixon, Mike; Peiro, Enrique; Fossen, Arnaud; Lamaze, Brigitte; Brunet, Jean; Demey, Dries; Mas-Albaigès, Joan L.
MELiSSA (Micro-Ecological Life Support System Alternative) is a closed artificial ecosystem intended as a tool for the development of a bio-regenerative life support system for longterm manned missions. The MELiSSA loop is formed by five interconnected compartments, organized in three different loops (solid, liquid and gas). This compartments are microbial bioreactors and higher plant chambers. The MELiSSA Pilot Plant facility has been designed to achieve the preliminary terrestrial demonstration of the MELiSSA concept at pilot scale, using animals as a model for the crew compartent. The experience gained in the operation of such a facility will be highly relevant for planning future life support systems in Space. In this communication, the latests developments in the MELiSSA Pilot Plant will be reported. Particularly, the completion of the design phase and instalation of all the different compartments will be discussed in detail. Each of the compartments had to be designed and constructed according to very specific characteristics, associated to the biological systems to be cultured, as part of the complete MELiSSA loop (anerobic, oxygenic, thermophilic, heterotrophic, autotrophic, axenic, photosynthetic, etc.). Additionally, the sizing of each reactor (ranging from 8 to 100 Liters, depending of each particular compartment) should compile with the global integration scenario proposed, and with the final goal of connection of all compartments to provide a demonstration of the MELiSSA concept, and generate data for the design and operation of future biological life support systems.
Weiland-Bräuer, Nancy; Neulinger, Sven C.; Pinnow, Nicole; Künzel, Sven; Baines, John F.
2015-01-01
The scyphozoan Aurelia aurita is recognized as a key player in marine ecosystems and a driver of ecosystem change. It is thus intensely studied to address ecological questions, although its associations with microorganisms remain so far undescribed. In the present study, the microbiota associated with A. aurita was visualized with fluorescence in situ hybridization (FISH) analysis, and community structure was analyzed with respect to different life stages, compartments, and populations of A. aurita by 16S rRNA gene amplicon sequencing. We demonstrate that the composition of the A. aurita microbiota is generally highly distinct from the composition of communities present in ambient water. Comparison of microbial communities from different developmental stages reveals evidence for life stage-specific community patterns. Significant restructuring of the microbiota during strobilation from benthic polyp to planktonic life stages is present, arguing for a restructuring during the course of metamorphosis. Furthermore, the microbiota present in different compartments of the adult medusa (exumbrella mucus and gastric cavity) display significant differences, indicating body part-specific colonization. A novel Mycoplasma strain was identified in both compartment-specific microbiota and is most likely present inside the epithelium as indicated by FISH analysis of polyps, indicating potential endosymbiosis. Finally, comparison of polyps of different populations kept under the same controlled laboratory conditions in the same ambient water showed population-specific community patterns, most likely due the genetic background of the host. In conclusion, the presented data indicate that the associated microbiota of A. aurita may play important functional roles, e.g., during the life cycle. PMID:26116680
Pharmacological AMP-kinase activators have compartment-specific effects on cell physiology.
Kodiha, Mohamed; Ho-Wo-Cheong, Dennis; Stochaj, Ursula
2011-12-01
5'-AMP-activated kinase (AMPK) regulates numerous biological events and is an essential target for the treatment of type 2 diabetes. The objectives of the present study were first to determine the compartment-specific effects of three established AMPK activators on Thr172 phosphorylation of the α-subunit, an indicator of AMPK activation. Second, we examined how cytoplasmic and nuclear processes are modulated by pharmacological AMPK activators. Specifically, the impact of phenformin, resveratrol, and 5-aminoimidazole-4-carboxamide riboside (AICAR) on Thr172 phosphorylation in the cytoplasm and nucleus was quantified by different methods. To analyze how these activators change cell physiology, we measured the inactivation of acetyl-CoA-carboxylase 1, a predominantly cytoplasmic enzyme that is crucial for lipid metabolism. As a criterion for activities associated with the nucleus, de novo RNA synthesis in nucleoli was quantified. Our studies demonstrate that pharmacological activators of AMPK can alter the balance between nuclear and cytoplasmic AMPK pools. Thus, phenformin and resveratrol caused a strong activation of AMPK in the cytoplasm, whereas the effect was less pronounced in nuclei. By contrast, AICAR elicited a comparable rise in Thr172 phosphorylation in both compartments. Notably, these activators differed drastically in their effects on physiological processes that are located in distinct subcellular compartments. All compounds led to a substantial inactivation of acetyl-CoA-carboxylase 1 in the cytoplasm, with only minor changes to the nuclear enzyme. In the nucleolus, transcription was strongly inhibited by resveratrol, while a moderate inhibition was observed with phenformin and AICAR. Taken together, the compartment-specific phosphorylation of AMPK and downstream events are determined by the activator.
Raju, Dinesh V; Shah, Deep J; Wright, Terrence M; Hall, Randy A; Smith, Yoland
2006-11-10
The striatum is divided into two compartments named the patch (or striosome) and the matrix. Although these two compartments can be differentiated by their neurochemical content or afferent and efferent projections, the synaptology of inputs to these striatal regions remains poorly characterized. By using the vesicular glutamate transporters vGluT1 and vGluT2, as markers of corticostriatal and thalamostriatal projections, respectively, we demonstrate a differential pattern of synaptic connections of these two pathways between the patch and the matrix compartments. We also demonstrate that the majority of vGluT2-immunolabeled axon terminals form axospinous synapses, suggesting that thalamic afferents, like corticostriatal inputs, terminate preferentially onto spines in the striatum. Within both compartments, more than 90% of vGluT1-containing terminals formed axospinous synapses, whereas 87% of vGluT2-positive terminals within the patch innervated dendritic spines, but only 55% did so in the matrix. To characterize further the source of thalamic inputs that could account for the increase in axodendritic synapses in the matrix, we undertook an electron microscopic analysis of the synaptology of thalamostriatal afferents to the matrix compartments from specific intralaminar, midline, relay, and associative thalamic nuclei in rats. Approximately 95% of PHA-L-labeled terminals from the central lateral, midline, mediodorsal, lateral dorsal, anteroventral, and ventral anterior/ventral lateral nuclei formed axospinous synapses, a pattern reminiscent of corticostriatal afferents but strikingly different from thalamostriatal projections arising from the parafascicular nucleus (PF), which terminated onto dendritic shafts. These findings provide the first evidence for a differential pattern of synaptic organization of thalamostriatal glutamatergic inputs to the patch and matrix compartments. Furthermore, they demonstrate that the PF is the sole source of significant axodendritic thalamic inputs to striatal projection neurons. These observations pave the way for understanding differential regulatory mechanisms of striatal outflow from the patch and matrix compartments by thalamostriatal afferents. 2006 Wiley-Liss, Inc.
Bioelectrical impedance analysis. What does it measure?
NASA Technical Reports Server (NTRS)
Schoeller, D. A.
2000-01-01
Bioelectrical impedance analysis (BIA) has been proposed for measuring fat-free mass, total body water, percent fat, body cell mass, intracellular water, and extracellular water: a veritable laboratory in a box. Although it is unlikely that BIA is quite this versatile, correlations have been demonstrated between BIA and all of these body compartments. At the same time, it is known that all of the compartments are correlated among themselves. Because of this, it is difficult to determine whether BIA is specific for any or all of these compartments. To investigate this question, we induced acute changes in total body water and its compartments over a 3-h period. Using this approach, we demonstrated that multifrequency BIA, using the Cole-Cole model to calculate the zero frequency and infinite frequency resistance, measures extracellular and intracellular water.
Mitrikas, V G
2015-01-01
Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor.
Marusina, Alina I; Ono, Yoko; Merleev, Alexander A; Shimoda, Michiko; Ogawa, Hiromi; Wang, Elizabeth A; Kondo, Kayo; Olney, Laura; Luxardi, Guillaume; Miyamura, Yoshinori; Yilma, Tilahun D; Villalobos, Itzel Bustos; Bergstrom, Jennifer W; Kronenberg, Daniel G; Soulika, Athena M; Adamopoulos, Iannis E; Maverakis, Emanual
2017-02-01
It is widely accepted that central and effector memory CD4 + T cells originate from naïve T cells after they have encountered their cognate antigen in the setting of appropriate co-stimulation. However, if this were true the diversity of T cell receptor (TCR) sequences within the naïve T cell compartment should be far greater than that of the memory T cell compartment, which is not supported by TCR sequencing data. Here we demonstrate that aged mice with far fewer naïve T cells, respond to the model antigen, hen eggwhite lysozyme (HEL), by utilizing the same TCR sequence as their younger counterparts. CD4 + T cell repertoire analysis of highly purified T cell populations from naive animals revealed that the HEL-specific clones displayed effector and central "memory" cell surface phenotypes even prior to having encountered their cognate antigen. Furthermore, HEL-inexperienced CD4 + T cells were found to reside within the naïve, regulatory, central memory, and effector memory T cell populations at similar frequencies and the majority of the CD4 + T cells within the regulatory and memory populations were unexpanded. These findings support a new paradigm for CD4 + T cell maturation in which a specific clone can undergo a differentiation process to exhibit a "memory" or regulatory phenotype without having undergone a clonal expansion event. It also demonstrates that a foreign-specific T cell is just as likely to reside within the regulatory T cell compartment as it would the naïve compartment, arguing against the specificity of the regulatory T cell compartment being skewed towards self-reactive T cell clones. Finally, we demonstrate that the same set of foreign and autoreactive CD4 + T cell clones are repetitively generated throughout adulthood. The latter observation argues against T cell-depleting strategies or autologous stem cell transplantation as therapies for autoimmunity-as the immune system has the ability to regenerate pathogenic clones. Published by Elsevier Ltd.
Salinas, Armando G.; Davis, Margaret I.; Lovinger, David M.; Mateo, Yolanda
2016-01-01
The striatum is typically classified according to its major output pathways, which consist of dopamine D1 and D2 receptor-expressing neurons. The striatum is also divided into striosome and matrix compartments, based on the differential expression of a number of proteins, including the mu opioid receptor, dopamine transporter (DAT), and Nr4a1 (nuclear receptor subfamily 4, group A, member 1). Numerous functional differences between the striosome and matrix compartments are implicated in dopamine-related neurological disorders including Parkinson’s disease and addiction. Using Nr4a1-eGFP mice, we provide evidence that electrically evoked dopamine release differs between the striosome and matrix compartments in a regionally-distinct manner. We further demonstrate that this difference is not due to differences in inhibition of dopamine release by dopamine autoreceptors or nicotinic acetylcholine receptors. Furthermore, cocaine enhanced extracellular dopamine in striosomes to a greater degree than in the matrix and concomitantly inhibited dopamine uptake in the matrix to a greater degree than in striosomes. Importantly, these compartment differences in cocaine sensitivity were limited to the dorsal striatum. These findings demonstrate a level of exquisite microanatomical regulation of dopamine by the DAT in striosomes relative to the matrix. PMID:27036891
ICAM-1 Binding Rhinoviruses A89 and B14 Uncoat in Different Endosomal Compartments
Conzemius, Rick; Ganjian, Haleh; Blaas, Dieter
2016-01-01
ABSTRACT Human rhinovirus A89 (HRV-A89) and HRV-B14 bind to and are internalized by intercellular adhesion molecule 1 (ICAM-1); as demonstrated earlier, the RNA genome of HRV-B14 penetrates into the cytoplasm from endosomal compartments of the lysosomal pathway. Here, we show by immunofluorescence microscopy that HRV-A89 but not HRV-B14 colocalizes with transferrin in the endocytic recycling compartment (ERC). Applying drugs differentially interfering with endosomal recycling and with the pathway to lysosomes, we demonstrate that these two major-group HRVs productively uncoat in distinct endosomal compartments. Overexpression of constitutively active (Rab11-GTP) and dominant negative (Rab11-GDP) mutants revealed that uncoating of HRV-A89 depends on functional Rab11. Thus, two ICAM-1 binding HRVs are routed into distinct endosomal compartments for productive uncoating. IMPORTANCE Based on similarity of their RNA genomic sequences, the more than 150 currently known common cold virus serotypes were classified as species A, B, and C. The majority of HRV-A viruses and all HRV-B viruses use ICAM-1 for cell attachment and entry. Our results highlight important differences of two ICAM-1 binding HRVs with respect to their intracellular trafficking and productive uncoating; they demonstrate that serotypes belonging to species A and B, but entering the cell via the same receptors, direct the endocytosis machinery to ferry them along distinct pathways toward different endocytic compartments for uncoating. PMID:27334586
[Progress of midfacial fat compartments and related clinical applications].
Wen, Lihong; Wang, Jinhuang; Li, Yang; Liu, Dalie
2018-02-01
To review the research progress of midfacial fat compartments, and to thoroughly understand its current state of the anatomy and the aging morphologic characters of midfacial fat compartments, as well as the current status of clinical applications. The recent literature concerning the midfacial fat compartments and related clinical applications were extensively reviewed and analyzed. Midfacial fat layer has been considered as a fusion and a continuous layer, experiencing a global atrophy when aging. As more anatomical researches have done, recent studies have shown that midfacial fat layer is broadly divided into superficial and deep layers, which are both divided into different fat compartments by fascia, ligaments, or muscles. Midfacial fat compartments tend to atrophy with age, specifically in the deep fat compartments while hypertrophy in the superficial fat compartments. Clinical applications show that fat volumetric restoration with deep medial cheek fat and Ristow's space can restore the appearance of midface effectively. In recent years, the researches of midfacial fat compartments have achieved obvious progress, which will provide new ideas and basis for fat volumetric restoration. Corresponding treatments are selected based on different sites and different layers with different aging changes, reshaping a more youthful midface.
Farrokhi, Shawn; Meholic, Brad; Chuang, Wei-Neng; Gustafson, Jonathan A.; Fitzgerald, G. Kelley; Tashman, Scott
2015-01-01
Patients with knee osteoarthritis often present with signs of mixed tibiofemoral and patellofemoral joint disease. It has been suggested that altered frontal and transverse plane knee joint mechanics play a key role in compartment-specific patterns of knee osteoarthritis, but invivo evidence in support of this premise remains limited. Using Dynamic Stereo X-ray techniques, the aim of this study was to compare the frontal and transverse plane tibiofemoral kinematics and patellofemoral malalignments during the loading response phase of downhill gait in three groups of older adults: patients with medial tibiofemoral compartment and coexisting patellofemoral osteoarthritis (n=11); patients with lateral tibiofemoral compartment and coexisting patellofemoral osteoarthritis (n=10); and an osteoarthritis-free control group (n=22). Patients with lateral compartment osteoarthritis walked with greater and increasing degrees of tibiofemoral abduction compared to the medial compartment osteoarthritis and the control groups who walked with increasing degrees of tibiofemoral adduction. Additionally, the medial and lateral compartment osteoarthritis groups demonstrated reduced degrees of tibiofemoral internal rotation compared to the control group. Both medial and lateral compartment osteoarthritis groups also walked with increasing degrees of lateral patella tilt and medial patella translation during the loading response phase of downhill gait. Our findings suggest that despite the differences in frontal and transverse plane tibiofemoral kinematics between patients with medial and lateral compartment osteoarthritis, the malalignments of their arthritic patellofemoral joint appears to be similar. Further research is needed to determine if these kinematic variations are relevant targets for interventions to reduce pain and disease progression in patients with mixed disease. PMID:26087880
Guermonprez, Hélène; Smertenko, Andrei; Crosnier, Marie-Thérèse; Durandet, Monique; Vrielynck, Nathalie; Guerche, Philippe; Hussey, Patrick J; Satiat-Jeunemaitre, Béatrice; Bonhomme, Sandrine
2008-01-01
The organization and dynamics of the plant endomembrane system require both universal and plant-specific molecules and compartments. The latter, despite the growing wealth of information, remains poorly understood. From the study of an Arabidopsis thaliana male gametophytic mutant, it was possible to isolate a gene named POKY POLLEN TUBE (POK) essential for pollen tube tip growth. The similarity between the predicted POK protein sequence and yeast Vps52p, a subunit from the GARP/VFT complex which is involved in the docking of vesicles from the prevacuolar compartment to the Golgi apparatus, suggested that the POK protein plays a role in plant membrane trafficking. Genetic analysis of Arabidopsis mutants affecting AtVPS53 or AtVPS54 genes which encode putative POK partners shows a transmission defect through the male gametophyte for all lines, which is similar to the pok mutant. Using a combination of biochemical approaches and specific antiserum it has been demonstrated that the POK protein is present in phylogenetically divergent plant species, associated with membranes and belongs to a high molecular weight complex. Combination of immunolocalization studies and pharmacological approaches in different plant cells revealed that the POK protein associates with Golgi and post-Golgi compartments. The role of POK in post-Golgi endomembrane trafficking and as a member of a putative plant GARP/VFT complex is discussed.
Bonina, Silvia; Messina, Monica; Chiaretti, Sabina; Ilari, Caterina; Cafforio, Luciana; Raponi, Sara; Mauro, Francesca Romana; Di Maio, Valeria; De Propris, Maria Stefania; Nanni, Mauro; Ciardullo, Carmela; Rossi, Davide; Gaidano, Gianluca; Guarini, Anna; Rabadan, Raul; Foà, Robin
2015-01-01
Summary Whole exome sequencing and copy number aberration (CNA) analysis was performed on cells taken from peripheral blood (PB) and lymph nodes (LN) of patients with chronic lymphocytic leukaemia (CLL). Of 64 non-silent somatic mutations, 54 (84.4%) were clonal in both compartments, 3 (4.7%) were PB-specific and 7 (10.9%) were LN-specific. Most of the LN- or PB-specific mutations were subclonal in the other corresponding compartment (variant frequency 0.5-5.3%). Of 41 CNAs, 27 (65.8%) were shared by both compartments and 7 (17.1%) were LN- or PB-specific. Overall, 6 of 9 cases (66.7%) showed genomic differences between the compartments. At subsequent relapse, Case 10, with 6 LN-specific lesions, and Case 100, with 6 LN-specific and 8 PB-specific lesions, showed, in the PB, the clonal expansion of LN-derived lesions with an adverse impact: SF3B1 mutation, BIRC3 deletion, del8(p23.3-p11.1), del9(p24.3-p13.1) and gain 2(p25.3-p14). CLL shows an intra-patient clonal heterogeneity according to the disease compartment, with both LN and PB-specific mutations/CNAs. The LN microenvironment might contribute to the clonal selection of unfavourable lesions, as LN-derived mutations/CNAs can appear in the PB at relapse. PMID:26597680
The statolith compartment in Chara rhizoids contains carbohydrate and protein.
Wang-Cahill, F; Kiss, J Z
1995-02-01
In contrast to higher plants, the alga Chara has rhizoids with single membrane-bound compartments that function as statoliths in gravity perception. Previous work has demonstrated that these statoliths contain barium sulfate crystals. In this study, we show that statoliths in Chara rhizoids react with a Coomassie Brilliant Blue cytochemical stain for proteins. While statoliths did not react with silver methenamine carbohydrate cytochemistry, the monoclonal antibody CCRC-M2, which is against a carbohydrate (sycamore-maple rhamnogalacturonan I), labeled the statolith compartment. These results demonstrate that in addition to barium sulfate, statoliths in Chara rhizoids have an organic matrix that consists of protein and carbohydrate moieties. Since the statoliths were silver methenamine negative, the carbohydrate in this compartment could be a 3-linked polysaccharide. CCRC-M2 also labeled Golgi cisternae, Golgi-associated vesicles, apical vesicles, and cell walls in the rhizoids. The specificity of CCRC-M2 immunolabeling was verified by several control experiments, including the demonstration that labeling was abolished when the antibody was preabsorbed with its antigen. Since in this and a previous study (John Z. Kiss and L. Andrew Staehelin, American Journal of Botany 80: 273-282, 1993) antibodies against higher plant carbohydrates crossreacted with cell walls of Chara in a specific manner, Characean algae may be a useful model system in biochemical and molecular studies of cell walls.
The statolith compartment in Chara rhizoids contains carbohydrate and protein
NASA Technical Reports Server (NTRS)
Wang-Cahill, F.; Kiss, J. Z.
1995-01-01
In contrast to higher plants, the alga Chara has rhizoids with single membrane-bound compartments that function as statoliths in gravity perception. Previous work has demonstrated that these statoliths contain barium sulfate crystals. In this study, we show that statoliths in Chara rhizoids react with a Coomassie Brilliant Blue cytochemical stain for proteins. While statoliths did not react with silver methenamine carbohydrate cytochemistry, the monoclonal antibody CCRC-M2, which is against a carbohydrate (sycamore-maple rhamnogalacturonan I), labeled the statolith compartment. These results demonstrate that in addition to barium sulfate, statoliths in Chara rhizoids have an organic matrix that consists of protein and carbohydrate moieties. Since the statoliths were silver methenamine negative, the carbohydrate in this compartment could be a 3-linked polysaccharide. CCRC-M2 also labeled Golgi cisternae, Golgi-associated vesicles, apical vesicles, and cell walls in the rhizoids. The specificity of CCRC-M2 immunolabeling was verified by several control experiments, including the demonstration that labeling was abolished when the antibody was preabsorbed with its antigen. Since in this and a previous study (John Z. Kiss and L. Andrew Staehelin, American Journal of Botany 80: 273-282, 1993) antibodies against higher plant carbohydrates crossreacted with cell walls of Chara in a specific manner, Characean algae may be a useful model system in biochemical and molecular studies of cell walls.
Age and gender specific biokinetic model for strontium in humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.
A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitation for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on 90Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic modelmore » for strontium (Sr-AGe model). The Sr-AGe model has similar structure as the ICRP model for the alkaline earth elements. The following parameters were mainly reevaluated: gastro-intestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0–80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general population exposed to ingested strontium radioisotopes.« less
Razumov, A N; Vybornaya, K V; Pogonchenkova, I V; Rozhkova, E A; Akyeva, N K; Klochkova, S V; Alekseeva, N T; Nikityuk, D B
2016-01-01
The article presents the anthropometric parameters of 251 elderly women (75-90 years) and 125 long-liver women (90-98 years) of the Slavic ethnic group, living in Moscow and Moscow region. Significant differences in basic anthropometric characteristics between two age groups have been demonstrated. Average values of body weight and height, circumferences and quantities of skin-fat folds were significantly lower in long-liver women in compare with representatives of the elderly, whereas diameters had no statistical significant differences. Somatotypological analysis revealed a frequency of occurrence of different somatotypes and prevalence of the three main types among elderly and long-liver women - asthenic (32.2-34.0%), pyknic (29.3-30.0%) and europlastic (20.0-21.2%) somatotype. Some features of body composition characteristics of elderly and long-livers women have been demonstrated as well. Estimated absolute amount of bone compartment did not differ in two women groups, while relative amount of bone compartment in elderly women (15.30±0.21%) was lower by 1.11 fold (p<0.05) than in long-liver women (17.05+±0.17%). The content of fat and muscular body compartment was significantly (p<0.05) lower in long-liver women as compared with the elderly women. The absolute amount of fat body compartment in long-liver women was 9.15±1.22 vs 13.13±0.49 kg in elderly women, the relative amount of fat body compartment - 14.39±0.26 vs 18.04±0.05%; the absolute amount of muscular body compartment - 23.04±0.26 vs 28.06±0.47 kg, the relative amount of fat body compartment - 36.22±0.15 vs 38.54±0.16%.
Mikaelyan, Aram; Meuser, Katja; Brune, Andreas
2017-01-01
Symbiotic digestion of lignocellulose in higher termites (family Termitidae) is accomplished by an exclusively prokaryotic gut microbiota. By deep sequencing of amplified 16S rRNA genes, we had identified diet as the primary determinant of bacterial community structure in a broad selection of termites specialized on lignocellulose in different stages of humification. Here, we increased the resolution of our approach to account for the pronounced heterogeneity in microenvironmental conditions and microbial activities in the major hindgut compartments. The community structure of consecutive gut compartments in each species strongly differed, but that of homologous compartments clearly converged, even among unrelated termites. While the alkaline P1 compartments of all termites investigated contained specific lineages of Clostridiales, the posterior hindgut compartments (P3, P4) differed between feeding groups and were predominantly colonized by putatively fiber-associated lineages of Spirochaetes, Fibrobacteres and the TG3 phylum (wood and grass feeders) or diverse assemblages of Clostridiales and Bacteroidetes (humus and soil feeders). The results underscore that bacterial community structure in termite guts is driven by microenvironmental factors, such as pH, available substrates and gradients of O 2 and H 2 , and inspire investigations on the functional roles of specific bacterial taxa in lignocellulose and humus digestion. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Tiffany, Matthew; Szoka, Francis C
2016-11-01
We utilized quantitative high-resolution single particle tracking to study the internalization and endosomal sorting of lipid nanoparticles (LNPs) by HeLa cells in vitro to gain a better understanding of how cells process LNPs that are used for siRNA delivery. We compared the trafficking of three formulations that have been demonstrated to deliver siRNA into cells. They were composed of either a tritratable anionic lipid, formulation of cholesterol hemisuccinate (CHEMS), or a titratatable cationic lipid formulation of 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA) or a non-titratable cationic formulation lipid formulation of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). They also contained either a substantial percentage of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol and 5 mole percent 1,2-dimyristoyl-sn-glycerol-[methoxy(polyethylene glycol)-2000 (PEG-DMG). We optically measured the endosomal pH experienced by individual LNPs, observed the internalization pathways used and tracked the particles as they co-localized with fluorescent protein tags on compartment-specific proteins, during endosomal sorting to the lysosome. The data revealed significant differences in the accumulation in subcellular compartments among the three formulations, which help to explain the observed effects LNP composition exerts on in vitro delivery efficiency.
Ex vivo culture platform for assessment of cartilage repair treatment strategies.
Schwab, Andrea; Meeuwsen, Annick; Ehlicke, Franziska; Hansmann, Jan; Mulder, Lars; Smits, Anthal; Walles, Heike; Kock, Linda
2017-01-01
There is a great need for valuable ex vivo models that allow for assessment of cartilage repair strategies to reduce the high number of animal experiments. In this paper we present three studies with our novel ex vivo osteochondral culture platform. It consists of two separated media compartments for cartilage and bone, which better represents the in vivo situation and enables supply of factors specific to the different needs of bone and cartilage. We investigated whether separation of the cartilage and bone compartments and/or culture media results in the maintenance of viability, structural and functional properties of cartilage tissue. Next, we evaluated for how long we can preserve cartilage matrix stability of osteochondral explants during long-term culture over 84 days. Finally, we determined the optimal defect size that does not show spontaneous self-healing in this culture system. It was demonstrated that separated compartments for cartilage and bone in combination with tissue-specific medium allow for long-term culture of osteochondral explants while maintaining cartilage viability, matrix tissue content, structure and mechanical properties for at least 56 days. Furthermore, we could create critical size cartilage defects of different sizes in the model. The osteochondral model represents a valuable preclinical ex vivo tool for studying clinically relevant cartilage therapies, such as cartilage biomaterials, for their regenerative potential, for evaluation of drug and cell therapies, or to study mechanisms of cartilage regeneration. It will undoubtedly reduce the number of animals needed for in vivo testing.
Zhang, Yanshuai; McNerny, Erin Gatenby; Terajima, Masahiko; Raghavan, Mekhala; Romanowicz, Genevieve; Zhang, Zhanpeng; Zhang, Honghao; Kamiya, Nobuhiro; Tantillo, Margaret; Zhu, Peizhi; Scott, Gregory J.; Ray, Manas K.; Lynch, Michelle; Ma, Peter X.; Morris, Michael D.; Yamauchi, Mitsuo; Kohn, David H.; Mishina, Yuji
2016-01-01
Bone morphogenetic protein (BMP) signaling pathways play critical roles in skeletal development and new bone formation. Our previous study, however, showed a negative impact of BMP signaling on bone mass because of the osteoblast-specific loss of a BMP receptor (i.e. BMPR1A) showing increased trabecular bone volume and mineral density in mice. Here, we investigated the bone quality and biomechanical properties of the higher bone mass associated with BMPR1A deficiency using the osteoblast-specific Bmpr1a conditional knockout (cKO) mouse model. Collagen biochemical analysis revealed greater levels of the mature cross-link pyridinoline in the cKO bones, in parallel with upregulation of collagen modifying enzymes. Raman spectroscopy distinguished increases in the mature to immature cross-link ratio and mineral to matrix ratio in the trabecular compartments of cKO femora, but not in the cortical compartments. The mineral crystallinity was unchanged in the cKO in either the trabecular or cortical compartments. Further, we tested the intrinsic material properties by nanoindentation and found significantly higher hardness and elastic modulus in the cKO trabecular compartments, but not in the cortical compartments. Four point bending tests of cortical compartments showed lower structural biomechanical properties (i.e. strength and stiffness) in the cKO bones due to the smaller cortical areas. However, there were no significant differences in biomechanical performance at the material level, which was consistent with the nanoindentation test results on the cortical compartment. These studies emphasize the pivotal role of BMPR1A in the determination of bone quality and mechanical integrity under physiological conditions, with different impact on femoral cortical and trabecular compartments. PMID:27113526
Defining the core Arabidopsis thaliana root microbiome
Gehring, Jase; Malfatti, Stephanie; Tremblay, Julien; Engelbrektson, Anna; Kunin, Victor; del Rio, Tijana Glavina; Edgar, Robert C.; Eickhorst, Thilo; Ley, Ruth E.; Hugenholtz, Philip; Tringe, Susannah Green; Dangl, Jeffery L.
2014-01-01
Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing therhizosphere(immediately surroundingthe root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation1-3. Colonization of the root occurs despite a sophisticated plant immune system4,5, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities. PMID:22859206
Space tug thermal control. [design criteria and specifications
NASA Technical Reports Server (NTRS)
1974-01-01
It was determined that space tug will require the capability to perform its mission within a broad range of thermal environments with currently planned mission durations of up to seven days, so an investigation was conducted to define a thermal design for the forward and intertank compartments and fuel cell heat rejection system that satisfies tug requirements for low inclination geosynchronous deploy and retrieve missions. Passive concepts were demonstrated analytically for both the forward and intertank compartments, and a worst case external heating environment was determined for use during the study. The thermal control system specifications and designs which resulted from the research are shown.
Weston, David J; Russell, Richard A; Batty, Elizabeth; Jensen, Kirsten; Stephens, David A; Adams, Niall M; Freemont, Paul S
2015-03-06
The nuclei of higher eukaryotic cells display compartmentalization and certain nuclear compartments have been shown to follow a degree of spatial organization. To date, the study of nuclear organization has often involved simple quantitative procedures that struggle with both the irregularity of the nuclear boundary and the problem of handling replicate images. Such studies typically focus on inter-object distance, rather than spatial location within the nucleus. The concern of this paper is the spatial preference of nuclear compartments, for which we have developed statistical tools to quantitatively study and explore nuclear organization. These tools combine replicate images to generate 'aggregate maps' which represent the spatial preferences of nuclear compartments. We present two examples of different compartments in mammalian fibroblasts (WI-38 and MRC-5) that demonstrate new knowledge of spatial preference within the cell nucleus. Specifically, the spatial preference of RNA polymerase II is preserved across normal and immortalized cells, whereas PML nuclear bodies exhibit a change in spatial preference from avoiding the centre in normal cells to exhibiting a preference for the centre in immortalized cells. In addition, we show that SC35 splicing speckles are excluded from the nuclear boundary and localize throughout the nucleoplasm and in the interchromatin space in non-transformed WI-38 cells. This new methodology is thus able to reveal the effect of large-scale perturbation on spatial architecture and preferences that would not be obvious from single cell imaging.
Hoffmann, Ute; Bergler, Tobias; Jung, Bettina; Steege, Andreas; Pace, Claudia; Rümmele, Petra; Reinhold, Stephan; Krüger, Bernd; Krämer, Bernhard K; Banas, Bernhard
2013-01-01
The role of specific subtypes of infiltrating cells in acute kidney allograft rejection is still not clear and was so far not examined by different analyzing methods under standardized conditions of an experimental kidney transplantation model. Immunohistochemical staining of CD3, CD20 and CD68 was performed in rat allografts, in syngeneically transplanted rats and in control rats with a test duration of 6 and 28 days. The detailed expression and localization of infiltrating cells were analyzed manually in different kidney compartments under light microscope and by the two different morphometric software programs. Data were correlated with the corresponding kidney function as well as with histopathological classification. The information provided by the morphometric software programs on the infiltration of the specific cell types after renal transplantation was in accordance with the manual analysis. Morphometric methods were solid to analyze reliably the induction of cellular infiltrates after renal transplantation. By manual analysis we could clearly demonstrate the detailed localization of the specific cell infiltrates in the different kidney compartments. Besides infiltration of CD3 and CD68 infiltrating cells, a robust infiltration of CD20 B-cells in allogeneically transplanted rats, even at early time points after transplantation was detected. Additionally an MHC class I expression could reliable be seen in allogeneically transplanted rats. The infiltration of B-cells and the reliable antigen presentation might act as a silent subclinical trigger for subsequent chronic rejection and premature graft loss. Copyright © 2012 Elsevier B.V. All rights reserved.
Quantification of peptides released during in vitro digestion of cooked meat.
Sayd, T; Chambon, C; Santé-Lhoutellier, V
2016-04-15
We aimed to identify and quantify the peptides generated during in vitro digestion of cooked meat by liquid chromatography coupled with high resolution mass spectrometer. A total of 940 non-redundant peptides in the gastric compartment and 989 non-redundant peptides in the intestinal compartment were quantified and identified. Among the 71 different proteins identified, 43 meat proteins were found in the two digestive compartments, 20 proteins were specific to the gastric compartment and 8 proteins to the intestinal compartment. In terms of estimation, the proteins involved in muscle contraction and structure were preferentially enzymatically hydrolyzed in the small intestine. The effect of cooking provided different but less clear patterns of digestion. To the best of our knowledge, this constitutes the highest number of peptides identified in beef meat digests and provides a comprehensive database for meat protein digestion associated with cooking conditions. Such quantitative and qualitative differences may have important nutritional consequences. Copyright © 2015 Elsevier Ltd. All rights reserved.
Subcellular Distribution of Glutathione Precursors in Arabidopsis thaliana
Koffler, Barbara Eva; Maier, Romana; Zechmann, Bernd
2011-01-01
Abstract Glutathione is an important antioxidant and has many important functions in plant development, growth and defense. Glutathione synthesis and degradation is highly compartment-specific and relies on the subcellular availability of its precursors, cysteine, glutamate, glycine and γ-glutamylcysteine especially in plastids and the cytosol which are considered as the main centers for glutathione synthesis. The availability of glutathione precursors within these cell compartments is therefore of great importance for successful plant development and defense. The aim of this study was to investigate the compartment-specific importance of glutathione precursors in Arabidopsis thaliana. The subcellular distribution was compared between wild type plants (Col-0), plants with impaired glutathione synthesis (glutathione deficient pad2-1 mutant, wild type plants treated with buthionine sulfoximine), and one complemented line (OE3) with restored glutathione synthesis. Immunocytohistochemistry revealed that the inhibition of glutathione synthesis induced the accumulation of the glutathione precursors cysteine, glutamate and glycine in most cell compartments including plastids and the cytosol. A strong decrease could be observed in γ-glutamylcysteine (γ-EC) contents in these cell compartments. These experiments demonstrated that the inhibition of γ-glutamylcysteine synthetase (GSH1) – the first enzyme of glutathione synthesis – causes a reduction of γ-EC levels and an accumulation of all other glutathione precursors within the cells. PMID:22050910
Lipids in the cell: organisation regulates function.
Santos, Ana L; Preta, Giulio
2018-06-01
Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.
Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling
2014-03-01
Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein functions and how these functions were acquired in cells from different organisms or species. A public web interface of PLAST is available at http://plast.bii.a-star.edu.sg.
Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling
2014-01-01
Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein functions and how these functions were acquired in cells from different organisms or species. A public web interface of PLAST is available at http://plast.bii.a-star.edu.sg. PMID:24603469
Effect of Posterior Horn Medial Meniscus Root Tear on In Vivo Knee Kinematics.
Marsh, Chelsea A; Martin, Daniel E; Harner, Christopher D; Tashman, Scott
2014-07-01
Medial meniscus root tear (MMRT) is a recently recognized yet frequently missed meniscal tear pattern that biomechanically creates an environment approaching meniscal deficiency. The purpose of this study was to assess the effect of MMRT on tibiofemoral kinematics and arthrokinematics during daily activities by comparing the injured knees of subjects with isolated MMRT to their uninjured contralateral knees. The hypothesis was that the injured knee will demonstrate significantly more lateral tibial translation and adduction than the uninjured knee, and that the medial compartment will exhibit significantly different arthrokinematics than the lateral compartment in the affected limb. Cross-sectional study; Level of evidence, 3. Seven subjects with isolated MMRT were recruited and volumetric, density-based 3-dimensional models of their distal femurs and proximal tibia were created from computed tomography scans. High-speed, biplane radiographs were obtained of both their affected and unaffected knees. Moving 3-dimensional models of tibiofemoral kinematics were calculated using model-based tracking to assess overall kinematic variables and specific measures of tibiofemoral joint contact. The affected knees of the subjects were then compared to their unaffected contralateral knees. Affected knees demonstrated significantly more lateral tibial translation than the uninjured contralateral limb in all dynamic activities. Additionally, the medial compartment displayed greater amounts of mobility than the lateral compartment in the injured limbs. This study suggests that MMRT causes significant changes in in vivo knee kinematics and arthrokinematics and that the magnitude of these changes is influenced by dynamic task difficulty. Medial meniscus root tears lead to significant changes in joint arthrokinematics, with increased lateral tibial translation and greater medial compartment excursion. With complete root tears, essentially 100% of circumferential fibers are lost. This study will further our knowledge of meniscal deficiency and osteoarthritis and provide a baseline for more common forms of medial meniscal injuries (vertical, horizontal, radial), with various degrees of circumferential fiber function remaining.
2013-01-01
Background Excess light conditions induce the generation of reactive oxygen species (ROS) directly in the chloroplasts but also cause an accumulation and production of ROS in peroxisomes, cytosol and vacuoles. Antioxidants such as ascorbate and glutathione occur in all cell compartments where they detoxify ROS. In this study compartment specific changes in antioxidant levels and related enzymes were monitored among Arabidopsis wildtype plants and ascorbate and glutathione deficient mutants (vtc2-1 and pad2-1, respectively) exposed to different light intensities (50, 150 which was considered as control condition, 300, 700 and 1,500 μmol m-2 s-1) for 4 h and 14 d. Results The results revealed that wildtype plants reacted to short term exposure to excess light conditions with the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol and an increased activity of catalase in the leaves. Long term exposure led to an accumulation of ascorbate and glutathione mainly in chloroplasts. In wildtype plants an accumulation of ascorbate and hydrogen peroxide (H2O2) could be observed in vacuoles when exposed to high light conditions. The pad2-1 mutant reacted to long term excess light exposure with an accumulation of ascorbate in peroxisomes whereas the vtc2-1 mutant reacted with an accumulation of glutathione in the chloroplasts (relative to the wildtype) and nuclei during long term high light conditions indicating an important role of these antioxidants in these cell compartments for the protection of the mutants against high light stress. Conclusion The results obtained in this study demonstrate that the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol is an important reaction of plants to short term high light stress. The accumulation of ascorbate and H2O2 along the tonoplast and in vacuoles during these conditions indicates an important route for H2O2 detoxification under these conditions. PMID:23865417
Promyelocytic leukemia bodies tether to early endosomes during mitosis.
Palibrk, Vuk; Lång, Emma; Lång, Anna; Schink, Kay Oliver; Rowe, Alexander D; Bøe, Stig Ove
2014-01-01
During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.
Wiles, Siouxsie; Lilley, Andrew K; Philp, Jim C; Bailey, Mark J; Whiteley, Andrew S
2005-02-01
We have previously described the development of a panel of site-specific lux-based bioreporters from an industrial wastewater treatment system remediating coking effluents. The Pseudomonad strains carry a stable chromosomal copy of the luxCDABE operon from Photorhabdus luminescens and display proportional responses in bioluminescence decay with increasing phenol concentration up to 800 mg l-1. In this work we describe their deployment to provide a strategic sensing network for protecting bacterial communities involved in the biological breakdown of coking effluents. This evaluation demonstrated the utility of strategic placement of reporters around heavy industry treatment systems and the reliability of the reporter strains under normal operational conditions. Mono-phenol or total phenolic variation within the treatment system accounted for>65-80% of the luminescence response. The reporters exhibited stable luminescence output during normal operations with maximum standard deviations of luminescence over time of c. 5-15% depending on the treatment compartment. Furthermore, deployment of the bioreporters over a 5-month period allowed the determination of an operational range (OR) for each reporter for effluent samples from each compartment. The OR allowed a convenient measure of toxicity effects between treatment compartments and accurately reflected a specific pollution event occurring within compartments of the treatment system. This work demonstrates the utility of genetic modification to provide ecologically relevant bioreporters, extends the sensing capabilities currently obtained through marine derived biosensors and significantly enhances the potential for in situ deployment of reporting agents.
Chatterjee, Soumya; Clark, Carolyn E.; Lugli, Enrico; Roederer, Mario; Nutman, Thomas B.
2015-01-01
Exaggerated CD4+T helper 2-specific cytokine producing memory T cell responses developing concomitantly with a T helper1 response might have a detrimental role in immunity to infection caused by Mycobacterium tuberculosis (Mtb). To assess the dynamics of antigen (Ag)-specific memory T cell compartments in the context of filarial infection we used multiparameter flow cytometry on PBMCs from 25 microfilaremic filarial -infected (Inf) and 14 filarial-uninfected (Uninf) subjects following stimulation with filarial (BmA) or with the Mycobacterium tuberculosis (Mtb)-specific Ag CFP10. Our data demonstrated that the Inf group not only had a marked increase in BmA-specific CD4+IL-4+ cells (Median net frequency compared to baseline (Fo)=0.09% vs. 0.01%, p=0.038) but also to CFP10 (Fo =0.16% vs. 0.007%, p=0.04) and Staphylococcal Enterotoxin B (SEB) (Fo =0.49% vs. 0.26%, p=0.04). The Inf subjects showed a BmA-specific expansion of CD4+CD45RO+IL-4+ producing central memory (TCM, CD45RO+CCR7+CD27+) (Fo =1.1% vs. 0.5%, p=0.04) as well as effector memory (TEM CD45RO+CCR7-CD27-) (Fo =1.5% vs. 0.2%, p=0.03) with a similar but non-significant response to CFP10. In addition, there was expansion of CD4+ IL-4+ CD45RA+ CCR7+CD27+ (naïve-like) in Inf individuals compared to Uninf subjects. Among Inf subjects with definitive latent tuberculosis , there were no differences in frequencies of IL-4 producing cells within any of the memory compartments compared to the Uninf group. Our data suggest that filarial infection induces antigen-specific, exaggerated IL-4 responses in distinct T cell memory compartments to Mtb-specific antigens, which are attenuated in subjects who are able to mount a delayed type hypersensitivity reaction to Mtb. PMID:25667413
In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism
Shih, Yu-Ru; Kang, Heemin; Rao, Vikram; Chiu, Yu-Jui; Kwon, Seong Keun; Varghese, Shyni
2017-01-01
Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues. Specifically, we have developed a synthetic matrix recapitulating the dual-compartment structures by modular assembly of mineralized and nonmineralized macroporous structures. Our results show that these matrices incorporated with BM cells or BM flush transplanted into recipient mice matured into functional bone displaying the cardinal features of both skeletal and hematopoietic compartments similar to native bone tissue. The hematopoietic function of bone tissues was demonstrated by its support for a higher percentage of mixed chimerism compared with i.v. injection and donor hematopoietic cell mobilization in the circulation of nonirradiated recipients. Furthermore, hematopoietic cells sorted from the engineered bone tissues reconstituted the hematopoietic system when transplanted into lethally irradiated secondary recipients. Such engineered bone tissues could potentially be used as ectopic BM surrogates for treatment of nonmalignant BM diseases and as a tool to study hematopoiesis, donor–host cell dynamics, tumor tropism, and hematopoietic cell transplantation. PMID:28484009
In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism.
Shih, Yu-Ru; Kang, Heemin; Rao, Vikram; Chiu, Yu-Jui; Kwon, Seong Keun; Varghese, Shyni
2017-05-23
Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues. Specifically, we have developed a synthetic matrix recapitulating the dual-compartment structures by modular assembly of mineralized and nonmineralized macroporous structures. Our results show that these matrices incorporated with BM cells or BM flush transplanted into recipient mice matured into functional bone displaying the cardinal features of both skeletal and hematopoietic compartments similar to native bone tissue. The hematopoietic function of bone tissues was demonstrated by its support for a higher percentage of mixed chimerism compared with i.v. injection and donor hematopoietic cell mobilization in the circulation of nonirradiated recipients. Furthermore, hematopoietic cells sorted from the engineered bone tissues reconstituted the hematopoietic system when transplanted into lethally irradiated secondary recipients. Such engineered bone tissues could potentially be used as ectopic BM surrogates for treatment of nonmalignant BM diseases and as a tool to study hematopoiesis, donor-host cell dynamics, tumor tropism, and hematopoietic cell transplantation.
Multicompartment Drug Release System for Dynamic Modulation of Tissue Responses.
Morris, Aaron H; Mahal, Rajwant S; Udell, Jillian; Wu, Michelle; Kyriakides, Themis R
2017-10-01
Pharmacological modulation of responses to injury is complicated by the need to deliver multiple drugs with spatiotemporal resolution. Here, a novel controlled delivery system containing three separate compartments with each releasing its contents over different timescales is fabricated. Core-shell electrospun fibers create two of the compartments in the system, while electrosprayed spheres create the third. Utility is demonstrated by targeting the foreign body response to implants because it is a dynamic process resulting in implant failure. Sequential delivery of a drug targeting nuclear factor-κB (NF-κB) and an antifibrotic is characterized in in vitro experiments. Specifically, macrophage fusion and p65 nuclear translocation in the presence of releasate or with macrophages cultured on the surfaces of the constructs are evaluated. In addition, releasate from pirfenidone scaffolds is shown to reduce transforming growth factor-β (TGF-β)-induced pSMAD3 nuclear localization in fibroblasts. In vivo, drug eluting constructs successfully mitigate macrophage fusion at one week and fibrotic encapsulation in a dose-dependent manner at four weeks, demonstrating effective release of both drugs over different timescales. Future studies can employ this system to improve and prolong implant lifetimes, or load it with other drugs to modulate other dynamic processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cellular and extracellular miRNAs are blood-compartment-specific diagnostic targets in sepsis.
Reithmair, Marlene; Buschmann, Dominik; Märte, Melanie; Kirchner, Benedikt; Hagl, Daniel; Kaufmann, Ines; Pfob, Martina; Chouker, Alexander; Steinlein, Ortrud K; Pfaffl, Michael W; Schelling, Gustav
2017-10-01
Septic shock is a common medical condition with a mortality approaching 50% where early diagnosis and treatment are of particular importance for patient survival. Novel biomarkers that serve as prompt indicators of sepsis are urgently needed. High-throughput technologies assessing circulating microRNAs represent an important tool for biomarker identification, but the blood-compartment specificity of these miRNAs has not yet been investigated. We characterized miRNA profiles from serum exosomes, total serum and blood cells (leukocytes, erythrocytes, platelets) of sepsis patients by next-generation sequencing and RT-qPCR (n = 3 × 22) and established differences in miRNA expression between blood compartments. In silico analysis was used to identify compartment-specific signalling functions of differentially regulated miRNAs in sepsis-relevant pathways. In septic shock, a total of 77 and 103 miRNAs were down- and up-regulated, respectively. A majority of these regulated miRNAs (14 in serum, 32 in exosomes and 73 in blood cells) had not been previously associated with sepsis. We found a distinctly compartment-specific regulation of miRNAs between sepsis patients and healthy volunteers. Blood cellular miR-199b-5p was identified as a potential early indicator for sepsis and septic shock. miR-125b-5p and miR-26b-5p were uniquely regulated in exosomes and serum, respectively, while one miRNA (miR-27b-3p) was present in all three compartments. The expression of sepsis-associated miRNAs is compartment-specific. Exosome-derived miRNAs contribute significant information regarding sepsis diagnosis and survival prediction and could serve as newly identified targets for the development of novel sepsis biomarkers. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Scheler, Claudia; Weitbrecht, Karin; Pearce, Simon P.; Hampstead, Anthony; Büttner-Mainik, Annette; Lee, Kieran J.D.; Voegele, Antje; Oracz, Krystyna; Dekkers, Bas J.W.; Wang, Xiaofeng; Wood, Andrew T.A.; Bentsink, Leónie; King, John R.; Knox, J. Paul; Holdsworth, Michael J.; Müller, Kerstin; Leubner-Metzger, Gerhard
2015-01-01
Pectin methylesterase (PME) controls the methylesterification status of pectins and thereby determines the biophysical properties of plant cell walls, which are important for tissue growth and weakening processes. We demonstrate here that tissue-specific and spatiotemporal alterations in cell wall pectin methylesterification occur during the germination of garden cress (Lepidium sativum). These cell wall changes are associated with characteristic expression patterns of PME genes and resultant enzyme activities in the key seed compartments CAP (micropylar endosperm) and RAD (radicle plus lower hypocotyl). Transcriptome and quantitative real-time reverse transcription-polymerase chain reaction analysis as well as PME enzyme activity measurements of separated seed compartments, including CAP and RAD, revealed distinct phases during germination. These were associated with hormonal and compartment-specific regulation of PME group 1, PME group 2, and PME inhibitor transcript expression and total PME activity. The regulatory patterns indicated a role for PME activity in testa rupture (TR). Consistent with a role for cell wall pectin methylesterification in TR, treatment of seeds with PME resulted in enhanced testa permeability and promoted TR. Mathematical modeling of transcript expression changes in germinating garden cress and Arabidopsis (Arabidopsis thaliana) seeds suggested that group 2 PMEs make a major contribution to the overall PME activity rather than acting as PME inhibitors. It is concluded that regulated changes in the degree of pectin methylesterification through CAP- and RAD-specific PME and PME inhibitor expression play a crucial role during Brassicaceae seed germination. PMID:25429110
Liu, Zhou; Shum, Ho Cheung
2013-01-01
In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors.
Liu, Zhou; Shum, Ho Cheung
2013-01-01
In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors. PMID:24404050
Christiansen, Blaine A; Kopperdahl, David L; Kiel, Douglas P; Keaveny, Tony M; Bouxsein, Mary L
2011-01-01
The biomechanical mechanisms underlying sex-specific differences in age-related vertebral fracture rates are ill defined. To gain insight into this issue, we used finite element analysis of clinical computed tomography (CT) scans of the vertebral bodies of L3 and T10 of young and old men and women to assess age- and sex-related differences in the strength of the whole vertebra, the trabecular compartment, and the peripheral compartment (the outer 2 mm of vertebral bone, including the thin cortical shell). We sought to determine whether structural and geometric changes with age differ in men and women, making women more susceptible to vertebral fractures. As expected, we found that vertebral strength decreased with age 2-fold more in women than in men. The strength of the trabecular compartment declined significantly with age for both sexes, whereas the strength of the peripheral compartment decreased with age in women but was largely maintained in men. The proportion of mechanical strength attributable to the peripheral compartment increased with age in both sexes and at both vertebral levels. Taken together, these results indicate that men and women lose vertebral bone differently with age, particularly in the peripheral (cortical) compartment. This differential bone loss explains, in part, a greater decline in bone strength in women and may contribute to the higher incidence of vertebral fractures among women than men. © 2011 American Society for Bone and Mineral Research. PMID:21542000
Szczupak, Alon; Aizik, Dror; Moraïs, Sarah; Vazana, Yael; Barak, Yoav; Bayer, Edward A.; Alfonta, Lital
2017-01-01
The limitation of surface-display systems in biofuel cells to a single redox enzyme is a major drawback of hybrid biofuel cells, resulting in a low copy-number of enzymes per yeast cell and a limitation in displaying enzymatic cascades. Here we present the electrosome, a novel surface-display system based on the specific interaction between the cellulosomal scaffoldin protein and a cascade of redox enzymes that allows multiple electron-release by fuel oxidation. The electrosome is composed of two compartments: (i) a hybrid anode, which consists of dockerin-containing enzymes attached specifically to cohesin sites in the scaffoldin to assemble an ethanol oxidation cascade, and (ii) a hybrid cathode, which consists of a dockerin-containing oxygen-reducing enzyme attached in multiple copies to the cohesin-bearing scaffoldin. Each of the two compartments was designed, displayed, and tested separately. The new hybrid cell compartments displayed enhanced performance over traditional biofuel cells; in the anode, the cascade of ethanol oxidation demonstrated higher performance than a cell with just a single enzyme. In the cathode, a higher copy number per yeast cell of the oxygen-reducing enzyme copper oxidase has reduced the effect of competitive inhibition resulting from yeast oxygen consumption. This work paves the way for the assembly of more complex cascades using different enzymes and larger scaffoldins to further improve the performance of hybrid cells. PMID:28644390
Cross-species genomics matches driver mutations and cell compartments to model ependymoma
Johnson, Robert A.; Wright, Karen D.; Poppleton, Helen; Mohankumar, Kumarasamypet M.; Finkelstein, David; Pounds, Stanley B.; Rand, Vikki; Leary, Sarah E.S.; White, Elsie; Eden, Christopher; Hogg, Twala; Northcott, Paul; Mack, Stephen; Neale, Geoffrey; Wang, Yong-Dong; Coyle, Beth; Atkinson, Jennifer; DeWire, Mariko; Kranenburg, Tanya A.; Gillespie, Yancey; Allen, Jeffrey C.; Merchant, Thomas; Boop, Fredrick A.; Sanford, Robert. A.; Gajjar, Amar; Ellison, David W.; Taylor, Michael D.; Grundy, Richard G.; Gilbertson, Richard J.
2010-01-01
Understanding the biology that underlies histologically similar but molecularly distinct subgroups of cancer has proven difficult since their defining genetic alterations are often numerous, and the cellular origins of most cancers remain unknown1–3. We sought to decipher this heterogeneity by integrating matched genetic alterations and candidate cells of origin to generate accurate disease models. First, we identified subgroups of human ependymoma, a form of neural tumor that arises throughout the central nervous system (CNS). Subgroup specific alterations included amplifications and homozygous deletions of genes not yet implicated in ependymoma. To select cellular compartments most likely to give rise to subgroups of ependymoma, we matched the transcriptomes of human tumors to those of mouse neural stem cells (NSCs), isolated from different regions of the CNS at different developmental stages, with an intact or deleted Ink4a/Arf locus. The transcriptome of human cerebral ependymomas with amplified EPHB2 and deleted INK4A/ARF matched only that of embryonic cerebral Ink4a/Arf−/− NSCs. Remarkably, activation of Ephb2 signaling in these, but not other NSCs, generated the first mouse model of ependymoma, which is highly penetrant and accurately models the histology and transcriptome of one subgroup of human cerebral tumor. Further comparative analysis of matched mouse and human tumors revealed selective deregulation in the expression and copy number of genes that control synaptogenesis, pinpointing disruption of this pathway as a critical event in the production of this ependymoma subgroup. Our data demonstrate the power of cross-species genomics to meticulously match subgroup specific driver mutations with cellular compartments to model and interrogate cancer subgroups. PMID:20639864
Bechstein, Daniel J B; Ng, Elaine; Lee, Jung-Rok; Cone, Stephanie G; Gaster, Richard S; Osterfeld, Sebastian J; Hall, Drew A; Weaver, James A; Wilson, Robert J; Wang, Shan X
2015-11-21
We demonstrate microfluidic partitioning of a giant magnetoresistive sensor array into individually addressable compartments that enhances its effective use. Using different samples and reagents in each compartment enables measuring of cross-reactive species and wide dynamic ranges on a single chip. This compartmentalization technique motivates the employment of high density sensor arrays for highly parallelized measurements in lab-on-a-chip devices.
Vibration of the organ of Corti within the cochlear apex in mice
Gao, Simon S.; Wang, Rosalie; Raphael, Patrick D.; Moayedi, Yalda; Groves, Andrew K.; Zuo, Jian; Applegate, Brian E.
2014-01-01
The tonotopic map of the mammalian cochlea is commonly thought to be determined by the passive mechanical properties of the basilar membrane. The other tissues and cells that make up the organ of Corti also have passive mechanical properties; however, their roles are less well understood. In addition, active forces produced by outer hair cells (OHCs) enhance the vibration of the basilar membrane, termed cochlear amplification. Here, we studied how these biomechanical components interact using optical coherence tomography, which permits vibratory measurements within tissue. We measured not only classical basilar membrane tuning curves, but also vibratory responses from the rest of the organ of Corti within the mouse cochlear apex in vivo. As expected, basilar membrane tuning was sharp in live mice and broad in dead mice. Interestingly, the vibratory response of the region lateral to the OHCs, the “lateral compartment,” demonstrated frequency-dependent phase differences relative to the basilar membrane. This was sharply tuned in both live and dead mice. We then measured basilar membrane and lateral compartment vibration in transgenic mice with targeted alterations in cochlear mechanics. Prestin499/499, Prestin−/−, and TectaC1509G/C1509G mice demonstrated no cochlear amplification but maintained the lateral compartment phase difference. In contrast, SfswapTg/Tg mice maintained cochlear amplification but did not demonstrate the lateral compartment phase difference. These data indicate that the organ of Corti has complex micromechanical vibratory characteristics, with passive, yet sharply tuned, vibratory characteristics associated with the supporting cells. These characteristics may tune OHC force generation to produce the sharp frequency selectivity of mammalian hearing. PMID:24920025
Mysid (Mysidopsis bahia) life-cycle test: Design comparisons and assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lussier, S.M.; Champlin, D.; Kuhn, A.
1996-12-31
This study examines ASTM Standard E1191-90, ``Standard Guide for Conducting Life-cycle Toxicity Tests with Saltwater Mysids,`` 1990, using Mysidopsis bahia, by comparing several test designs to assess growth, reproduction, and survival. The primary objective was to determine the most labor efficient and statistically powerful test design for the measurement of statistically detectable effects on biologically sensitive endpoints. Five different test designs were evaluated varying compartment size, number of organisms per compartment and sex ratio. Results showed that while paired organisms in the ASTM design had the highest rate of reproduction among designs tested, no individual design had greater statistical powermore » to detect differences in reproductive effects. Reproduction was not statistically different between organisms paired in the ASTM design and those with randomized sex ratios using larger test compartments. These treatments had numerically higher reproductive success and lower within tank replicate variance than treatments using smaller compartments where organisms were randomized, or had a specific sex ratio. In this study, survival and growth were not statistically different among designs tested. Within tank replicate variability can be reduced by using many exposure compartments with pairs, or few compartments with many organisms in each. While this improves variance within replicate chambers, it does not strengthen the power of detection among treatments in the test. An increase in the number of true replicates (exposure chambers) to eight will have the effect of reducing the percent detectable difference by a factor of two.« less
Lerner, Zachary F; DeMers, Matthew S; Delp, Scott L; Browning, Raymond C
2015-02-26
Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy of our model and determined the importance of these subject-specific parameters by comparing estimated to measured medial and lateral contact forces during walking in an individual with an instrumented knee replacement and post-operative genu valgum (6°). The errors in the predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, for a model with subject-specific tibiofemoral alignment and contact locations determined through radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. We found that each degree of tibiofemoral alignment deviation altered the first peak medial compartment contact force by 51N (r(2)=0.99), while each millimeter of medial-lateral translation of the compartment contact point locations altered the first peak medial compartment contact force by 41N (r(2)=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the specification of subject-specific joint alignment and compartment contact locations to more accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral alignment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lerner, Zachary F.; DeMers, Matthew S.; Delp, Scott L.; Browning, Raymond C.
2015-01-01
Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy of our model and determined the importance of these subject-specific parameters by comparing estimated to measured medial and lateral contact forces during walking in an individual with an instrumented knee replacement and post-operative genu valgum (6°). The errors in the predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, for a model with subject-specific tibiofemoral alignment and contact locations determined via radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. We found that each degree of tibiofemoral alignment deviation altered the first peak medial compartment contact force by 51N (r2=0.99), while each millimeter of medial-lateral translation of the compartment contact point locations altered the first peak medial compartment contact force by 41N (r2=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the specification of subject-specific joint alignment and compartment contact locations to more accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral alignment. PMID:25595425
NASA Technical Reports Server (NTRS)
Evans, G. L.; Morey-Holton, E.; Turner, R. T.
1998-01-01
In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.
Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio.
Titov, Denis V; Cracan, Valentin; Goodman, Russell P; Peng, Jun; Grabarek, Zenon; Mootha, Vamsi K
2016-04-08
A decline in electron transport chain (ETC) activity is associated with many human diseases. Although diminished mitochondrial adenosine triphosphate production is recognized as a source of pathology, the contribution of the associated reduction in the ratio of the amount of oxidized nicotinamide adenine dinucleotide (NAD(+)) to that of its reduced form (NADH) is less clear. We used a water-forming NADH oxidase from Lactobacillus brevis (LbNOX) as a genetic tool for inducing a compartment-specific increase of the NAD(+)/NADH ratio in human cells. We used LbNOX to demonstrate the dependence of key metabolic fluxes, gluconeogenesis, and signaling on the cytosolic or mitochondrial NAD(+)/NADH ratios. Expression of LbNOX in the cytosol or mitochondria ameliorated proliferative and metabolic defects caused by an impaired ETC. The results underscore the role of reductive stress in mitochondrial pathogenesis and demonstrate the utility of targeted LbNOX for direct, compartment-specific manipulation of redox state. Copyright © 2016, American Association for the Advancement of Science.
Velmurugan, Ramraj; Ramakrishnan, Sreevidhya; Kim, Mingin
2018-01-01
Despite the rapidly expanding use of antibody‐based therapeutics to treat cancer, knowledge of the cellular processes following phagocytosis of antibody‐opsonized tumor cells is limited. Here we report the formation of a phagosome‐associated vacuole that is observed in macrophages as these degradative compartments mature following phagocytosis of HER2‐positive cancer cells in the presence of the HER2‐specific antibody, trastuzumab. We demonstrate that this vacuole is a distinct organelle that is closely apposed to the phagosome. Furthermore, the size of the phagosome‐associated vacuole is increased by inhibition of the mTOR pathway. Collectively, the identification of this vacuolar compartment has implications for understanding the subcellular trafficking processes leading to the destruction of phagocytosed, antibody‐opsonized cancer cells by macrophages. PMID:29437282
Madison, Stephanie L; Nebenführ, Andreas
2011-09-01
In plant cells, the Golgi apparatus consists of numerous stacks that, in turn, are composed of several flattened cisternae with a clear cis-to-trans polarity. During normal functioning within living cells, this unusual organelle displays a wide range of dynamic behaviors such as whole stack motility, constant membrane flux through the cisternae, and Golgi enzyme recycling through the ER. In order to further investigate various aspects of Golgi stack dynamics and integrity, we co-expressed pairs of established Golgi markers in tobacco BY-2 cells to distinguish sub-compartments of the Golgi during monensin treatments, movement, and brefeldin A (BFA)-induced disassembly. A combination of cis and trans markers revealed that Golgi stacks remain intact as they move through the cytoplasm. The Golgi stack orientation during these movements showed a slight preference for the cis side moving ahead, but trans cisternae were also found at the leading edge. During BFA treatments, the different sub-compartments of about half of the observed stacks fused with the ER sequentially; however, no consistent order could be detected. In contrast, the ionophore monensin resulted in swelling of trans cisternae while medial and particularly cis cisternae were mostly unaffected. Our results thus demonstrate a remarkable equivalence of the different cisternae with respect to movement and BFA-induced fusion with the ER. In addition, we propose that a combination of dual-label fluorescence microscopy and drug treatments can provide a simple alternative approach to the determination of protein localization to specific Golgi sub-compartments.
Bilská, Kamila; Šteffeková, Zuzana; Birková, Anna; Mareková, Mária; Ledecký, Valent; Hluchý, Marián; Kisková, Terézia
2016-05-01
We assumed that proteins are most likely responsible for synovial fluid fluorescence and that changes detected in fluorescence intensity are most likely the result of changes in the concentration of fluorescent proteins. Synchronous fluorescent matrices from synovial fluid samples were measured in the excitation wavelength range of 200-350 nm using a luminescence spectrophotometer. The synchronous matrix of synovial fluid consists of 2 dominant fluorescent centers (F1 and F2) in the ultraviolet region. The fluorescence intensities of both centers were significantly higher in pathological samples, with p = 0.001 (a 59% increase of the median value) for the F1 center and p = 0.002 (a 52% increase of the median value) for the F2 center. Receiver operating characteristic analysis confirmed that synovial fluid autofluorescence is a significant predictor of medial compartment disease in dogs, with the area under the curve at 0.776 (F1) and 0.778 (F2). We did not detect any differences in the autofluorescence of synovial fluid between male and female, or any breed-based changes. No position changes of fluorescent centers were recorded in the synovial fluid in diseased dogs compared with healthy dogs. The synovial fluid metabolic fingerprint of canine patients with medial compartment disease differed from that of healthy dogs. Our study demonstrated the feasibility of synovial fluid fingerprinting to identify disease-specific profiles of synovial fluid metabolites. © 2016 The Author(s).
ERIC Educational Resources Information Center
Sajikumar, Sreedharan; Korte, Martin
2011-01-01
The consolidation process from short- to long-term memory depends on the type of stimulation received from a specific neuronal network and on the cooperativity and associativity between different synaptic inputs converging onto a specific neuron. We show here that the plasticity thresholds for inducing LTP are different in proximal and distal…
Membrane order in the plasma membrane and endocytic recycling compartment.
Iaea, David B; Maxfield, Frederick R
2017-01-01
The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.
NASA Astrophysics Data System (ADS)
You, Wonsang; Andescavage, Nickie; Zun, Zungho; Limperopoulos, Catherine
2017-03-01
Intravoxel incoherent motion (IVIM) magnetic resonance imaging is an emerging non-invasive technique that has been recently applied to quantify in vivo global placental perfusion. We propose a robust semi-automated method for segmenting the placenta into fetal and maternal compartments from IVIM data, using a multi-label image segmentation algorithm called `GrowCut'. Placental IVIM data were acquired on a 1.5T scanner from 16 healthy pregnant women between 21-37 gestational weeks. The voxel-wise perfusion fraction was then estimated after non-rigid image registration. The seed regions of the fetal and maternal compartments were determined using structural T2-weighted reference images, and improved progressively through an iterative process of the GrowCut algorithm to accurately encompass fetal and maternal compartments. We demonstrated that the placental perfusion fraction decreased in both fetal (-0.010/week) and maternal compartments (-0.013/week) while their relative difference (ffetal-fmaternal) gradually increased with advancing gestational age (+0.003/week, p=0.065). Our preliminary results show that the proposed method was effective in distinguishing placental compartments using IVIM.
Membrane order in the plasma membrane and endocytic recycling compartment
Iaea, David B.; Maxfield, Frederick R.
2017-01-01
The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles. PMID:29125865
Fan, Denggui; Wang, Qingyun; Su, Jianzhong; Xi, Hongguang
2017-12-01
It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.
Koffler, Barbara E.; Bloem, Elke; Zellnig, Günther; Zechmann, Bernd
2013-01-01
Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger leaves) and 15.1 mM (in the apex of older leaves) were found. The second highest amount of glutathione was found in nuclei (between 5.5 mM and 9.7 mM in the base and the center of younger leaves, respectively) followed by peroxisomes (between 2.6 mM in the edge of younger leaves and 4.8 mM in the base of older leaves, respectively) and the cytosol (2.8 mM in the edge of younger and 4.5 mM in the center of older leaves, respectively). Chloroplasts contained rather low amounts of glutathione (between 1 mM and 1.4 mM). Vacuoles had the lowest concentrations of glutathione (0.01 mM and 0.14 mM) but showed large differences between the different leaf areas. Clear differences in glutathione contents between the different leaf areas could only be found in vacuoles and mitochondria revealing that glutathione in the later cell organelle accumulated with leaf age to concentrations of up to 15 mM and that concentrations of glutathione in vacuoles are quite low in comparison to the other cell compartments. PMID:23265941
NASA Astrophysics Data System (ADS)
Guarnieri, Daniela; Sabella, Stefania; Muscetti, Ornella; Belli, Valentina; Malvindi, Maria Ada; Fusco, Sabato; de Luca, Elisa; Pompa, Pier Paolo; Netti, Paolo A.
2014-08-01
The toxicity of metallic nanoparticles (MNPs) has been fully ascertained, but the mechanisms underlying their cytotoxicity remain still largely unclear. Here we demonstrate that the cytotoxicity of MNPs is strictly reliant on the pathway of cellular internalization. In particular, if otherwise toxic gold, silver, and iron oxide NPs are forced through the cell membrane bypassing any form of active mechanism (e.g., endocytosis), no significant cytotoxic effect is registered. Pneumatically driven NPs across the cell membrane show a different distribution within the cytosol compared to NPs entering the cell by active endocytosis. Specifically, they exhibit free random Brownian motions within the cytosol and do not accumulate in lysosomes. Results suggest that intracellular accumulation of metallic nanoparticles into endo-lysosomal compartments is the leading cause of nanotoxicity, due to consequent nanoparticle degradation and in situ release of metal ions.The toxicity of metallic nanoparticles (MNPs) has been fully ascertained, but the mechanisms underlying their cytotoxicity remain still largely unclear. Here we demonstrate that the cytotoxicity of MNPs is strictly reliant on the pathway of cellular internalization. In particular, if otherwise toxic gold, silver, and iron oxide NPs are forced through the cell membrane bypassing any form of active mechanism (e.g., endocytosis), no significant cytotoxic effect is registered. Pneumatically driven NPs across the cell membrane show a different distribution within the cytosol compared to NPs entering the cell by active endocytosis. Specifically, they exhibit free random Brownian motions within the cytosol and do not accumulate in lysosomes. Results suggest that intracellular accumulation of metallic nanoparticles into endo-lysosomal compartments is the leading cause of nanotoxicity, due to consequent nanoparticle degradation and in situ release of metal ions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02008a
Spatial Distribution of Fungal Communities in an Arable Soil
Moll, Julia; Hoppe, Björn; König, Stephan; Wubet, Tesfaye; Buscot, François; Krüger, Dirk
2016-01-01
Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF) to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a) ploughed soil in 0–10 cm, b) rooted soil in 40–50 cm, c) root-free soil in 60–70 cm soil depth and d) maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit), occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment. PMID:26840453
Burian, Alfred; Kainz, Martin J; Schagerl, Michael; Yasindi, Andrew
2014-06-01
1. The analysis of functional groups with a resolution to the individual species level is a basic requirement to better understand complex interactions in aquatic food webs. Species-specific stable isotope analyses are currently applied to analyse the trophic role of large zooplankton or fish species, but technical constraints complicate their application to smaller-sized plankton. 2. We investigated rotifer food assimilation during a short-term microzooplankton bloom in the East African soda lake Nakuru by developing a method for species-specific sampling of rotifers. 3. The two dominant rotifers, Brachionus plicatilis and Brachionus dimidiatus , were separated to single-species samples (purity >95%) and significantly differed in their isotopic values (4.1‰ in δ 13 C and 1.5‰ in δ 15 N). Bayesian mixing models indicated that isotopic differences were caused by different assimilation of filamentous cyanobacteria and particles <2 μm and underlined the importance of species-specific sampling of smaller plankton compartments. 4. A main difference was that the filamentous cyanobacterium Arthrospira fusiformis , which frequently forms blooms in African soda lakes, was an important food source for the larger-sized B. plicatilis (48%), whereas it was hardly ingested by B. dimidiatus . Overall, A . fusiformis was, relative to its biomass, assimilated to small extents, demonstrating a high grazing resistance of this species. 5. In combination with high population densities, these results demonstrate a strong potential of rotifer blooms to shape phytoplankton communities and are the first in situ demonstration of a quantitatively important direct trophic link between rotifers and filamentous cyanobacteria.
Burian, Alfred; Kainz, Martin J; Schagerl, Michael; Yasindi, Andrew
2014-01-01
1. The analysis of functional groups with a resolution to the individual species level is a basic requirement to better understand complex interactions in aquatic food webs. Species-specific stable isotope analyses are currently applied to analyse the trophic role of large zooplankton or fish species, but technical constraints complicate their application to smaller-sized plankton. 2. We investigated rotifer food assimilation during a short-term microzooplankton bloom in the East African soda lake Nakuru by developing a method for species-specific sampling of rotifers. 3. The two dominant rotifers, Brachionus plicatilis and Brachionus dimidiatus, were separated to single-species samples (purity >95%) and significantly differed in their isotopic values (4.1‰ in δ13C and 1.5‰ in δ15N). Bayesian mixing models indicated that isotopic differences were caused by different assimilation of filamentous cyanobacteria and particles <2 μm and underlined the importance of species-specific sampling of smaller plankton compartments. 4. A main difference was that the filamentous cyanobacterium Arthrospira fusiformis, which frequently forms blooms in African soda lakes, was an important food source for the larger-sized B. plicatilis (48%), whereas it was hardly ingested by B. dimidiatus. Overall, A. fusiformis was, relative to its biomass, assimilated to small extents, demonstrating a high grazing resistance of this species. 5. In combination with high population densities, these results demonstrate a strong potential of rotifer blooms to shape phytoplankton communities and are the first in situ demonstration of a quantitatively important direct trophic link between rotifers and filamentous cyanobacteria. PMID:25866422
Norcross, Stevie; Trull, Keelan J; Snaider, Jordan; Doan, Sara; Tat, Kiet; Huang, Libai; Tantama, Mathew
2017-11-22
Reactive oxygen species (ROS) mediate both intercellular and intraorganellar signaling, and ROS propagate oxidative stress between cellular compartments such as mitochondria and the cytosol. Each cellular compartment contains its own sources of ROS as well as antioxidant mechanisms, which contribute to dynamic fluctuations in ROS levels that occur during signaling, metabolism, and stress. However, the coupling of redox dynamics between cellular compartments has not been well studied because of the lack of available sensors to simultaneously measure more than one subcellular compartment in the same cell. Currently, the redox-sensitive green fluorescent protein, roGFP, has been used extensively to study compartment-specific redox dynamics because it provides a quantitative ratiometric readout and it is amenable to subcellular targeting as a genetically encoded sensor. Here, we report a new family of genetically encoded fluorescent protein sensors that extend the fluorescence emission of roGFP via Förster-type resonance energy transfer to an acceptor red fluorescent protein for dual-color live-cell microscopy. We characterize the redox and optical properties of the sensor proteins, and we demonstrate that they can be used to simultaneously measure cytosolic and mitochondrial ROS in living cells. Furthermore, we use these sensors to reveal cell-to-cell heterogeneity in redox coupling between the cytosol and mitochondria when neuroblastoma cells are exposed to reductive and metabolic stresses.
Efficacy of compression of different capacitance beds in the amelioration of orthostatic hypotension
NASA Technical Reports Server (NTRS)
Denq, J. C.; Opfer-Gehrking, T. L.; Giuliani, M.; Felten, J.; Convertino, V. A.; Low, P. A.
1997-01-01
Orthostatic hypotension (OH) is the most disabling and serious manifestation of adrenergic failure, occurring in the autonomic neuropathies, pure autonomic failure (PAF) and multiple system atrophy (MSA). No specific treatment is currently available for most etiologies of OH. A reduction in venous capacity, secondary to some physical counter maneuvers (e.g., squatting or leg crossing), or the use of compressive garments, can ameliorate OH. However, there is little information on the differential efficacy, or the mechanisms of improvement, engendered by compression of specific capacitance beds. We therefore evaluated the efficacy of compression of specific compartments (calves, thighs, low abdomen, calves and thighs, and all compartments combined), using a modified antigravity suit, on the end-points of orthostatic blood pressure, and symptoms of orthostatic intolerance. Fourteen patients (PAF, n = 9; MSA, n = 3; diabetic autonomic neuropathy, n = 2; five males and nine females) with clinical OH were studied. The mean age was 62 years (range 31-78). The mean +/- SEM orthostatic systolic blood pressure when all compartments were compressed was 115.9 +/- 7.4 mmHg, significantly improved (p < 0.001) over the head-up tilt value without compression of 89.6 +/- 7.0 mmHg. The abdomen was the only single compartment whose compression significantly reduced OH (p < 0.005). There was a significant increase of peripheral resistance index (PRI) with compression of abdomen (p < 0.001) or all compartments (p < 0.001); end-diastolic index and cardiac index did not change. We conclude that denervation increases vascular capacity, and that venous compression improves OH by reducing this capacity and increasing PRI. Compression of all compartments is the most efficacious, followed by abdominal compression, whereas leg compression alone was less effective, presumably reflecting the large capacity of the abdomen relative to the legs.
49 CFR 179.220-9 - Compartment tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Compartment tanks. 179.220-9 Section 179.220-9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-9 Compartment tanks. (a) The inner...
49 CFR 179.220-9 - Compartment tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Compartment tanks. 179.220-9 Section 179.220-9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-9 Compartment tanks. (a...
49 CFR 179.220-9 - Compartment tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Compartment tanks. 179.220-9 Section 179.220-9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-9 Compartment tanks. (a) The inner...
Localization of A-type K+ channel subunit Kv4.2 in rat brain.
Tsaur, M L; Wu, Y L; Huang, F L; Shih, Y H
2001-09-30
Kv4.2, a voltage-gated K+ (Kv) channel subunit, has been suggested to be the key component of the subthreshold A-type K+ currents (I(SA)s) recorded from the specific subcellular compartments of certain CNS neurons. To correlate Kv4.2 localization with the I(SA)s detected, immunohistochemistry will be useful. Although the Kv4.2 immunostaining pattern in the hippocampus and cerebellum has been reported, the Kv4.2 antibody used was not specific. Furthermore, Kv4.2 localization in other brain regions remains unclear. In this report, we first demonstrated the specificity of a new Kv4.2 antibody, and then used it to examine Kv4.2 localization throughout adult rat brain by immunohistochemistry. At the cellular level, Kv4.2 was found in neurons but not glias. At the subcellular level, Kv4.2 was localized in the somatodendritic compartment of most neurons examined. Nevertheless, our preliminary data indicated that Kv4.2 might be also present in the axon/terminal compartment. At the functional level, our data indicates that Kv4.2 localization and I(SA) correlate quite well in some CNS neurons, supporting that Kv4.2 is the key component of some I(SA)s recorded in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, T.E.; Bennett, D.H.
2002-08-01
In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analyticalmore » solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.« less
Dörr, Jonas M; van Coevorden-Hameete, Marleen H; Hoogenraad, Casper C; Killian, J Antoinette
2017-11-01
Extracting membrane proteins from biological membranes by styrene-maleic acid copolymers (SMAs) in the form of nanodiscs has developed into a powerful tool in membrane research. However, the mode of action of membrane (protein) solubilization in a cellular context is still poorly understood and potential specificity for cellular compartments has not been investigated. Here, we use fluorescence microscopy to visualize the process of SMA solubilization of human cells, exemplified by the immortalized human HeLa cell line. Using fluorescent protein fusion constructs that mark distinct subcellular compartments, we found that SMA solubilizes membranes in a concentration-dependent multi-stage process. While all major intracellular compartments were affected without a strong preference, plasma membrane solubilization was found to be generally slower than the solubilization of organelle membranes. Interestingly, some plasma membrane-localized proteins were more resistant against solubilization than others, which might be explained by their presence in specific membrane domains with differing properties. Our results support the general applicability of SMA for the isolation of membrane proteins from different types of (sub)cellular membranes. Copyright © 2017 Elsevier B.V. All rights reserved.
Iborra, Francisco J
2007-04-12
The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin) scattered within domains rich in fast components (protein/RNA). Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.
Quigley, David A; Kandyba, Eve; Huang, Phillips; Halliwill, Kyle D; Sjölund, Jonas; Pelorosso, Facundo; Wong, Christine E; Hirst, Gillian L; Wu, Di; Delrosario, Reyno; Kumar, Atul; Balmain, Allan
2016-07-26
Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
McQueen, Margaret M; Duckworth, Andrew D; Aitken, Stuart A; Court-Brown, Charles M
2013-04-17
The aim of our study was to document the estimated sensitivity and specificity of continuous intracompartmental pressure monitoring for the diagnosis of acute compartment syndrome. From our prospective trauma database, we identified all patients who had sustained a tibial diaphyseal fracture over a ten-year period. A retrospective analysis of 1184 patients was performed to record and analyze the documented use of continuous intracompartmental pressure monitoring and the use of fasciotomy. A diagnosis of acute compartment syndrome was made if there was escape of muscles at fasciotomy and/or color change in the muscles or muscle necrosis intraoperatively. A diagnosis of acute compartment syndrome was considered incorrect if it was possible to close the fasciotomy wounds primarily at forty-eight hours. The absence of acute compartment syndrome was confirmed by the absence of neurological abnormality or contracture at the time of the latest follow-up. Of 979 monitored patients identified, 850 fit the inclusion criteria with a mean age of thirty-eight years (range, twelve to ninety-four years), and 598 (70.4%) were male (p < 0.001). A total of 152 patients (17.9%) underwent fasciotomy for the treatment of acute compartment syndrome: 141 had acute compartment syndrome (true positives), six did not have it (false positives), and five underwent fasciotomy despite having a normal differential pressure reading, with subsequent operative findings consistent with acute compartment syndrome (false negatives). Of the 698 patients (82.1%) who did not undergo fasciotomy, 689 had no evidence of any late sequelae of acute compartment syndrome (true negatives) at a mean follow-up time of fifty-nine weeks. The estimated sensitivity of intracompartmental pressure monitoring for suspected acute compartment syndrome was 94%, with an estimated specificity of 98%, an estimated positive predictive value of 93%, and an estimated negative predictive value of 99%. The estimated sensitivity and specificity of continuous intracompartmental pressure monitoring for the diagnosis of acute compartment syndrome following tibial diaphyseal fracture are high; continuous intracompartmental pressure monitoring should be considered for patients at risk for acute compartment syndrome.
The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks
Samson, Edward B.; Tsao, David S.; Zimak, Jan; McLaughlin, R. Tyler; Trenton, Nicholaus J.; Mace, Emily M.; Orange, Jordan S.; Schweikhard, Volker
2017-01-01
ABSTRACT IQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A). We also show that IQGAP1 appears to both stabilize the actin coating and constrain its growth. Loss of compartmental IQGAP1 initiates a disassembly mechanism involving rapid and unconstrained actin polymerization around the compartment and dispersal of its vesicle contents. Together, these findings suggest IQGAP1 achieves this control by harnessing both stabilizing and antagonistic interactions with actin. They also demonstrate the utility of these compartments for image-based investigations of the spatial and temporal dynamics of IQGAP1 within endosome-specific actin networks. PMID:28455356
Notch and affinity boundaries in Drosophila.
Herranz, Héctor; Milán, Marco
2006-02-01
Cells in multicellular organisms often do not intermingle freely with each other. Differential cell affinities can contribute to organizing cells into different tissues. Drosophila limbs and the vertebrate central nervous system are subdivided into compartments. Cells in adjacent compartments do not mix. Cell interactions mediated by Notch-family receptors have been implicated in the specification of these compartment boundaries. Two recent reports analyze the role of the Notch signaling pathway in the generation of an affinity boundary in the Drosophila wing. The first report analyzes the connection between Notch and the actin cytoskeleton. The second report analyzes the differential requirements of Notch and the transcription factor Suppressor of Hairless in generating the affinity boundary.
Gerlach, Jörg C; Witaschek, Tom; Strobel, Catrin; Brayfield, Candace A; Bornemann, Reinhard; Catapano, Gerardo; Zeilinger, Katrin
2010-06-01
The experimental characterization of the distribution of matter in complex multi-compartment three-dimensional membrane bioreactors for human cell culture is complicated by tracer interactions with the membranes and other bioreactor constituents. This is due to the fact that membranes with a high specific surface area often feature a hydrophobic chemical backbone that may adsorb tracers often used to this purpose, such as proteins and dyes. Membrane selectivity, and its worsening caused by protein adsorption, may also hinder tracer transfer across neighboring compartments, thus preventing effective characterization of the distribution of matter in the whole bioreactor. Tracer experiments with sodium chloride (NaCl) may overcome some of these limitations and be effectively used to characterize the distribution of matter in complex 3D multi-compartments membrane bioreactors for stem cell culture. NaCl freely permeates most used membranes, it does not adsorb on uncharged membranes, and its concentration may be accurately measured in terms of solution conductivity. In this preliminary study, the feasibility of complex multi-compartment membrane bioreactors was investigated with a NaCl concentration pulse challenge to characterize how their distribution of matter changes when they are operated under different conditions. In particular, bioreactors consisting of three different membrane types stacked on top of one another to form a 3D network were characterized under different feed conditions.
Villa, Roberto Federico; Ferrari, Federica; Bagini, Laura; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio
2017-07-15
Alterations in mitochondrial functions have been hypothesized to participate in the pathogenesis of depression, because brain bioenergetic abnormalities have been detected in depressed patients by neuroimaging in vivo studies. However, this hypothesis is not clearly demonstrated in experimental studies: some suggest that antidepressants are inhibitors of mitochondrial metabolism, while others observe the opposite. In this study, the effects of 21-day treatment with desipramine (15 mg/kg) and fluoxetine (10 mg/kg) were examined on the energy metabolism of rat hippocampus, evaluating the catalytic activity of regulatory enzymes of mitochondrial energy-yielding metabolic pathways. Because of the micro-heterogeneity of brain mitochondria, we have distinguished between (a) non-synaptic mitochondria (FM) of neuronal perikaryon (post-synaptic compartment) and (b) intra-synaptic light (LM) and heavy (HM) mitochondria (pre-synaptic compartment). Desipramine and fluoxetine changed the catalytic activity of specific enzymes in the different types of mitochondria: (a) in FM, both drugs enhanced cytochrome oxidase and glutamate dehydrogenase, (b) in LM, the overall bioenergetics was unaffected and (c) in HM only desipramine increased malate dehydrogenase and decreased the activities of Electron Transport Chain Complexes. These results integrate the pharmacodynamic features of desipramine and fluoxetine at subcellular level, overcoming the previous conflicting data about the effects of antidepressants on brain energy metabolism, mainly referred to whole brain homogenates or to bulk of cerebral mitochondria. With the differentiation in non-synaptic and intra-synaptic mitochondria, this study demonstrates that desipramine and fluoxetine lead to adjustments in the mitochondrial bioenergetics respect to the energy requirements of pre- and post-synaptic compartments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modulatory compartments in cortex and local regulation of cholinergic tone.
Coppola, Jennifer J; Ward, Nicholas J; Jadi, Monika P; Disney, Anita A
2016-09-01
Neuromodulatory signaling is generally considered broad in its impact across cortex. However, variations in the characteristics of cortical circuits may introduce regionally-specific responses to diffuse modulatory signals. Features such as patterns of axonal innervation, tissue tortuosity and molecular diffusion, effectiveness of degradation pathways, subcellular receptor localization, and patterns of receptor expression can lead to local modification of modulatory inputs. We propose that modulatory compartments exist in cortex and can be defined by variation in structural features of local circuits. Further, we argue that these compartments are responsible for local regulation of neuromodulatory tone. For the cholinergic system, these modulatory compartments are regions of cortical tissue within which signaling conditions for acetylcholine are relatively uniform, but between which signaling can vary profoundly. In the visual system, evidence for the existence of compartments indicates that cholinergic modulation likely differs across the visual pathway. We argue that the existence of these compartments calls for thinking about cholinergic modulation in terms of finer-grained control of local cortical circuits than is implied by the traditional view of this system as a diffuse modulator. Further, an understanding of modulatory compartments provides an opportunity to better understand and perhaps correct signal modifications that lead to pathological states. Copyright © 2016 Elsevier Ltd. All rights reserved.
Uzbekova, Svetlana; Elis, Sebastien; Teixeira-Gomes, Ana-Paula; Desmarchais, Alice; Maillard, Virginie; Labas, Valerie
2015-01-01
In mammals, oocytes develop inside the ovarian follicles; this process is strongly supported by the surrounding follicular environment consisting of cumulus, granulosa and theca cells, and follicular fluid. In the antral follicle, the final stages of oogenesis require large amounts of energy that is produced by follicular cells from substrates including glucose, amino acids and fatty acids (FAs). Since lipid metabolism plays an important role in acquiring oocyte developmental competence, the aim of this study was to investigate site-specificity of lipid metabolism in ovaries by comparing lipid profiles and expression of FA metabolism-related genes in different ovarian compartments. Using MALDI Mass Spectrometry Imaging, images of porcine ovary sections were reconstructed from lipid ion signals for the first time. Cluster analysis of ion spectra revealed differences in spatial distribution of lipid species among ovarian compartments, notably between the follicles and interstitial tissue. Inside the follicles analysis differentiated follicular fluid, granulosa, theca and the oocyte-cumulus complex. Moreover, by transcript quantification using real time PCR, we showed that expression of five key genes in FA metabolism significantly varied between somatic follicular cells (theca, granulosa and cumulus) and the oocyte. In conclusion, lipid metabolism differs between ovarian and follicular compartments. PMID:25756245
NASA Technical Reports Server (NTRS)
Brown, Ray (Editor)
1993-01-01
In this educational video from the 'Liftoff to Learning' series, astronauts from the STS-56 Mission (Ken Cockrell, Mike Foale, Ellen Ochoa, Steve Oswald, and Ken Cameron) explain and show through demonstrations how microgravity affects the way astronauts live onboard the Space Shuttle, and how these same daily habits or processes differ on Earth. A tour of the Space Shuttle is given, including the sleeping compartments, the kitchen area, the storage compartments, and the Waste Collection System (or WCS, as they call it). Daily habits (brushing teeth, shampooing hair and bathing, eating,...) are explained and actively illustrated, along with reasons of how these applications differ from their employment on Earth.
SChloro: directing Viridiplantae proteins to six chloroplastic sub-compartments.
Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita
2017-02-01
Chloroplasts are organelles found in plants and involved in several important cell processes. Similarly to other compartments in the cell, chloroplasts have an internal structure comprising several sub-compartments, where different proteins are targeted to perform their functions. Given the relation between protein function and localization, the availability of effective computational tools to predict protein sub-organelle localizations is crucial for large-scale functional studies. In this paper we present SChloro, a novel machine-learning approach to predict protein sub-chloroplastic localization, based on targeting signal detection and membrane protein information. The proposed approach performs multi-label predictions discriminating six chloroplastic sub-compartments that include inner membrane, outer membrane, stroma, thylakoid lumen, plastoglobule and thylakoid membrane. In comparative benchmarks, the proposed method outperforms current state-of-the-art methods in both single- and multi-compartment predictions, with an overall multi-label accuracy of 74%. The results demonstrate the relevance of the approach that is eligible as a good candidate for integration into more general large-scale annotation pipelines of protein subcellular localization. The method is available as web server at http://schloro.biocomp.unibo.it gigi@biocomp.unibo.it.
19 CFR 123.24 - Sealing of conveyances or compartments.
Code of Federal Regulations, 2011 CFR
2011-04-01
... in the same manner as less than load or compartment lots; (3) Live animals identifiable by specific... of the parties in interest, in unsealed conveyances or compartments. (b) Seals to be affixed. The carrier shall affix blue in-transit seals to all openings of conveyances and compartments containing in...
Topologically associating domains are stable units of replication-timing regulation.
Pope, Benjamin D; Ryba, Tyrone; Dileep, Vishnu; Yue, Feng; Wu, Weisheng; Denas, Olgert; Vera, Daniel L; Wang, Yanli; Hansen, R Scott; Canfield, Theresa K; Thurman, Robert E; Cheng, Yong; Gülsoy, Günhan; Dennis, Jonathan H; Snyder, Michael P; Stamatoyannopoulos, John A; Taylor, James; Hardison, Ross C; Kahveci, Tamer; Ren, Bing; Gilbert, David M
2014-11-20
Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.
Santos-Medellín, Christian; Edwards, Joseph; Liechty, Zachary; Nguyen, Bao
2017-01-01
ABSTRACT Plant roots support complex microbial communities that can influence plant growth, nutrition, and health. While extensive characterizations of the composition and spatial compartmentalization of these communities have been performed in different plant species, there is relatively little known about the impact of abiotic stresses on the root microbiota. Here, we have used rice as a model to explore the responses of root microbiomes to drought stress. Using four distinct genotypes, grown in soils from three different fields, we tracked the drought-induced changes in microbial composition in the rhizosphere (the soil immediately surrounding the root), the endosphere (the root interior), and unplanted soils. Drought significantly altered the overall bacterial and fungal compositions of all three communities, with the endosphere and rhizosphere compartments showing the greatest divergence from well-watered controls. The overall response of the bacterial microbiota to drought stress was taxonomically consistent across soils and cultivars and was primarily driven by an enrichment of multiple Actinobacteria and Chloroflexi, as well as a depletion of several Acidobacteria and Deltaproteobacteria. While there was some overlap in the changes observed in the rhizosphere and endosphere communities, several drought-responsive taxa were compartment specific, a pattern likely arising from preexisting compositional differences, as well as plant-mediated processes affecting individual compartments. These results reveal that drought stress, in addition to its well-characterized effects on plant physiology, also results in restructuring of root microbial communities and suggest the possibility that constituents of the altered plant microbiota might contribute to plant survival under extreme environmental conditions. PMID:28720730
Apparent exchange rate for breast cancer characterization.
Lasič, Samo; Oredsson, Stina; Partridge, Savannah C; Saal, Lao H; Topgaard, Daniel; Nilsson, Markus; Bryskhe, Karin
2016-05-01
Although diffusion MRI has shown promise for the characterization of breast cancer, it has low specificity to malignant subtypes. Higher specificity might be achieved if the effects of cell morphology and molecular exchange across cell membranes could be disentangled. The quantification of exchange might thus allow the differentiation of different types of breast cancer cells. Based on differences in diffusion rates between the intra- and extracellular compartments, filter exchange spectroscopy/imaging (FEXSY/FEXI) provides non-invasive quantification of the apparent exchange rate (AXR) of water between the two compartments. To test the feasibility of FEXSY for the differentiation of different breast cancer cells, we performed experiments on several breast epithelial cell lines in vitro. Furthermore, we performed the first in vivo FEXI measurement of water exchange in human breast. In cell suspensions, pulsed gradient spin-echo experiments with large b values and variable pulse duration allow the characterization of the intracellular compartment, whereas FEXSY provides a quantification of AXR. These experiments are very sensitive to the physiological state of cells and can be used to establish reliable protocols for the culture and harvesting of cells. Our results suggest that different breast cancer subtypes can be distinguished on the basis of their AXR values in cell suspensions. Time-resolved measurements allow the monitoring of the physiological state of cells in suspensions over the time-scale of hours, and reveal an abrupt disintegration of the intracellular compartment. In vivo, exchange can be detected in a tumor, whereas, in normal tissue, the exchange rate is outside the range experimentally accessible for FEXI. At present, low signal-to-noise ratio and limited scan time allows the quantification of AXR only in a region of interest of relatively large tumors. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Uno, Yuko; Ogawa, Emiyu; Aiyoshi, Eitaro; Arai, Tsunenori
2018-02-01
We constructed the 3-compartment talaporfin sodium pharmacokinetic model for canine by an optimization using the fluorescence measurement data from canine skin to estimate the concentration in the interstitial space. It is difficult to construct the 3-compartment model consisted of plasma, interstitial space, and cell because there is a lack of the dynamic information. Therefore, we proposed the methodology to construct the 3-compartment model using the measured talaporfin sodium skin fluorescence change considering originated tissue part by a histological observation. In a canine animal experiment, the talaporfin sodium concentration time history in plasma was measured by a spectrophotometer with a prepared calibration curve. The time history of talaporfin sodium Q-band fluorescence on left femoral skin of a beagle dog excited by talaporfin sodium Soret-band of 409 nm was measured in vivo by our previously constructed measurement system. The measured skin fluorescence was classified to its source, that is, specific ratio of plasma, interstitial space, and cell. We represented differential rate equations of the talaporfin sodium concentration in plasma, interstitial space, cell. The specific ratios and a converting constant to obtain absolute value of skin concentration were arranged. Minimizing the squared error of the difference between the measured fluorescence data and calculated concentration by the conjugate gradient method in MATLAB, the rate constants in the 3-compartment model were determined. The accuracy of the fitting operation was confirmed with determination coefficient of 0.98. We could construct the 3-compartment pharmacokinetic model for canine using the measured talaporfin sodium fluorescence change from canine skin.
Cha, Kwang Hyun; Lee, Eun Ha; Yoon, Hyo Shin; Lee, Jae Ho; Kim, Joo Yun; Kang, Kyungsu; Park, Jin-Soo; Jin, Jong Beom; Ko, GwangPyo; Pan, Cheol-Ho
2018-10-15
We investigated the impact of a fermented milk product on gut microbiota and their metabolism in 3 different conditions of the colon with a systemic viewpoint. An in vitro semi-continuous anaerobic cultivation was used to assess the colon compartment-specific influence of fermented milk, followed by a multiomics approach combining 16S rDNA amplicon sequencing and nuclear magnetic resonance (NMR) spectroscopy. The microbiome profiling and metabolomic features were significantly different across three colon compartments and after fermented milk treatment. Integrative correlation analysis indicated that the alteration of butyrate-producing microbiota (Veillonella, Roseburia, Lachnospira, and Coprococcus) and some primary metabolites (butyrate, ethanol, lactate, and isobutyrate) in the treatment group had a strong association with the fermented milk microorganisms. Our findings suggested that fermented milk treatment significantly affected microbial population in an in vitro cultivation system as well as the colonic metabolome in different ways in each of colon compartment. Copyright © 2018. Published by Elsevier Ltd.
Pigolkin, Yu I; Dubrovin, I A; Mosoyan, A S; Bychkov, A A
The objective of the present study was to elucidate the characteristic features of the injuries inflicted to the victims of a road traffic accident inside the passenger compartment of a moving car equipped with the modern personal safety systems. The materials available for the present work included the lesions documented in 210 drivers and 150 occupants of the car passenger compartments. Both comparative, morphometric and statistical methods were used to analyze the data obtained. The morphometric analysis included identification of the form of the injury, such as extravasation, wounds, fractures, and lesions of the internal organs (e.g. hemorrhages, ruptures, etc.), their number and localization. Special attention was given to the specific features of the injuries to the occupants of the cars equipped with the modern personal safety systems. The study has demonstrated that the form, frequency, and localization of the injuries inflicted to the victims of a road traffic accident inside the passenger car compartment (including the drivers and other occupants) can be used for determining the positions of the victims at the moment of the accident.
Ubiquitin-Dependent Degradation of Mitochondrial Proteins Regulates Energy Metabolism.
Lavie, Julie; De Belvalet, Harmony; Sonon, Sessinou; Ion, Ana Madalina; Dumon, Elodie; Melser, Su; Lacombe, Didier; Dupuy, Jean-William; Lalou, Claude; Bénard, Giovanni
2018-06-05
The ubiquitin proteasome system (UPS) regulates many cellular functions by degrading key proteins. Notably, the role of UPS in regulating mitochondrial metabolic functions is unclear. Here, we show that ubiquitination occurs in different mitochondrial compartments, including the inner mitochondrial membrane, and that turnover of several metabolic proteins is UPS dependent. We specifically detailed mitochondrial ubiquitination and subsequent UPS-dependent degradation of succinate dehydrogenase subunit A (SDHA), which occurred when SDHA was minimally involved in mitochondrial energy metabolism. We demonstrate that SDHA ubiquitination occurs inside the organelle. In addition, we show that the specific inhibition of SDHA degradation by UPS promotes SDHA-dependent oxygen consumption and increases ATP, malate, and citrate levels. These findings suggest that the mitochondrial metabolic machinery is also regulated by the UPS. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
A versatile nanobody-based toolkit to analyze retrograde transport from the cell surface.
Buser, Dominik P; Schleicher, Kai D; Prescianotto-Baschong, Cristina; Spiess, Martin
2018-06-18
Retrograde transport of membranes and proteins from the cell surface to the Golgi and beyond is essential to maintain homeostasis, compartment identity, and physiological functions. To study retrograde traffic biochemically, by live-cell imaging or by electron microscopy, we engineered functionalized anti-GFP nanobodies (camelid VHH antibody domains) to be bacterially expressed and purified. Tyrosine sulfation consensus sequences were fused to the nanobody for biochemical detection of trans -Golgi arrival, fluorophores for fluorescence microscopy and live imaging, and APEX2 (ascorbate peroxidase 2) for electron microscopy and compartment ablation. These functionalized nanobodies are specifically captured by GFP-modified reporter proteins at the cell surface and transported piggyback to the reporters' homing compartments. As an application of this tool, we have used it to determine the contribution of adaptor protein-1/clathrin in retrograde transport kinetics of the mannose-6-phosphate receptors from endosomes back to the trans -Golgi network. Our experiments establish functionalized nanobodies as a powerful tool to demonstrate and quantify retrograde transport pathways.
Liu, Lanxia; Cao, Fengqiang; Liu, Xiaoxuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Leng, Xigang; Song, Cunxian; Kong, Deling; Ma, Guilei
2016-05-18
Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses.
Correa, Lucero; Rea, Lorrie D; Bentzen, Rebecca; O'Hara, Todd M
2014-05-15
Concentrations of total mercury ([THg]) and selenium ([TSe]) were measured in several tissue compartments in Steller sea lion (Eumetopias jubatus) pups; in addition we determined specific compartment and body burdens of THg. Compartmental and body burdens were calculated by multiplying specific compartment fresh weight by the [THg] (summing compartment burdens equals body burden). In all 6 pup tissue sets (1) highest [THg] was in hair, (2) lowest [THg] was in bone, and (3) pelt, muscle and liver burdens contributed the top three highest percentages of THg body burden. In 5 of 6 pups the Se:Hg molar ratios among compartments ranged from 0.9 to 43.0. The pup with the highest hair [THg] had Se:Hg molar ratios in 9 of 14 compartments that were ⩽ 0.7 potentially indicating an inadequate [TSe] relative to [THg]. Copyright © 2014 Elsevier Ltd. All rights reserved.
Boassa, Daniela; Nguyen, Phuong; Hu, Junru; Ellisman, Mark H; Sosinsky, Gina E
2014-01-01
Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.
Gilmartin-Thomas, Julia Fiona-Maree; Smith, Felicity; Wolfe, Rory; Jani, Yogini
2017-07-01
No published study has been specifically designed to compare medication administration errors between original medication packaging and multi-compartment compliance aids in care homes, using direct observation. Compare the effect of original medication packaging and multi-compartment compliance aids on medication administration accuracy. Prospective observational. Ten Greater London care homes. Nurses and carers administering medications. Between October 2014 and June 2015, a pharmacist researcher directly observed solid, orally administered medications in tablet or capsule form at ten purposively sampled care homes (five only used original medication packaging and five used both multi-compartment compliance aids and original medication packaging). The medication administration error rate was calculated as the number of observed doses administered (or omitted) in error according to medication administration records, compared to the opportunities for error (total number of observed doses plus omitted doses). Over 108.4h, 41 different staff (35 nurses, 6 carers) were observed to administer medications to 823 residents during 90 medication administration rounds. A total of 2452 medication doses were observed (1385 from original medication packaging, 1067 from multi-compartment compliance aids). One hundred and seventy eight medication administration errors were identified from 2493 opportunities for error (7.1% overall medication administration error rate). A greater medication administration error rate was seen for original medication packaging than multi-compartment compliance aids (9.3% and 3.1% respectively, risk ratio (RR)=3.9, 95% confidence interval (CI) 2.4 to 6.1, p<0.001). Similar differences existed when comparing medication administration error rates between original medication packaging (from original medication packaging-only care homes) and multi-compartment compliance aids (RR=2.3, 95%CI 1.1 to 4.9, p=0.03), and between original medication packaging and multi-compartment compliance aids within care homes that used a combination of both medication administration systems (RR=4.3, 95%CI 2.7 to 6.8, p<0.001). A significant difference in error rate was not observed between use of a single or combination medication administration system (p=0.44). The significant difference in, and high overall, medication administration error rate between original medication packaging and multi-compartment compliance aids supports the use of the latter in care homes, as well as local investigation of tablet and capsule impact on medication administration errors and staff training to prevent errors occurring. As a significant difference in error rate was not observed between use of a single or combination medication administration system, common practice of using both multi-compartment compliance aids (for most medications) and original packaging (for medications with stability issues) is supported. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diversity and distribution of Actinobacteria associated with reef coral Porites lutea
Kuang, Weiqi; Li, Jie; Zhang, Si; Long, Lijuan
2015-01-01
Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial and temporal distribution of actinobacteria have been rarely documented. In this study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites lutea and in the surrounding seawater were examined every 3 months for 1 year on Luhuitou fringing reef. The population structures of the P. lutea-associated actinobacteria were analyzed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse actinobacteria profiles in P. lutea. A total of 25 described families and 10 unnamed families were determined in the populations, and 12 genera were firstly detected in corals. The Actinobacteria diversity was significantly different between the P. lutea and the surrounding seawater. Only 10 OTUs were shared by the seawater and coral samples. Redundancy and hierarchical cluster analyses were performed to analyze the correlation between the variations of actinobacteria population within the divergent compartments of P. lutea, seasonal changes, and environmental factors. The actinobacteria communities in the same coral compartment tended to cluster together. Even so, an extremely small fraction of OTUs was common in all three P. lutea compartments. Analysis of the relationship between actinobacteria assemblages and the environmental parameters showed that several genera were closely related to specific environmental factors. This study highlights that coral-associated actinobacteria populations are highly diverse, and spatially structured within P. lutea, and they are distinct from which in the ambient seawater. PMID:26539166
Marasco, Ramona; Rolli, Eleonora; Fusi, Marco; Michoud, Grégoire; Daffonchio, Daniele
2018-01-03
The plant compartments of Vitis vinifera, including the rhizosphere, rhizoplane, root endosphere, phyllosphere and carposphere, provide unique niches that drive specific bacterial microbiome associations. The majority of phyllosphere endophytes originate from the soil and migrate up to the aerial compartments through the root endosphere. Thus, the soil and root endosphere partially define the aerial endosphere in the leaves and berries, contributing to the terroir of the fruit. However, V. vinifera cultivars are invariably grafted onto the rootstocks of other Vitis species and hybrids. It has been hypothesized that the plant species determines the microbiome of the root endosphere and, as a consequence, the aerial endosphere. In this work, we test the first part of this hypothesis. We investigate whether different rootstocks influence the bacteria selected from the surrounding soil, affecting the bacterial diversity and potential functionality of the rhizosphere and root endosphere. Bacterial microbiomes from both the root tissues and the rhizosphere of Barbera cultivars, both ungrafted and grafted on four different rootstocks, cultivated in the same soil from the same vineyard, were characterized by 16S rRNA high-throughput sequencing. To assess the influence of the root genotype on the bacterial communities' recruitment in the root system, (i) the phylogenetic diversity coupled with the predicted functional profiles and (ii) the co-occurrence bacterial networks were determined. Cultivation-dependent approaches were used to reveal the plant-growth promoting (PGP) potential associated with the grafted and ungrafted root systems. Richness, diversity and bacterial community networking in the root compartments were significantly influenced by the rootstocks. Complementary to a shared bacterial microbiome, different subsets of soil bacteria, including those endowed with PGP traits, were selected by the root system compartments of different rootstocks. The interaction between the root compartments and the rootstock exerted a unique selective pressure that enhanced niche differentiation, but rootstock-specific bacterial communities were still recruited with conserved PGP traits. While the rootstock significantly influences the taxonomy, structure and network properties of the bacterial community in grapevine roots, a homeostatic effect on the distribution of the predicted and potential functional PGP traits was found.
Intracellular Localization of Arabidopsis Sulfurtransferases1
Bauer, Michael; Dietrich, Christof; Nowak, Katharina; Sierralta, Walter D.; Papenbrock, Jutta
2004-01-01
Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism. PMID:15181206
Intracellular localization of Arabidopsis sulfurtransferases.
Bauer, Michael; Dietrich, Christof; Nowak, Katharina; Sierralta, Walter D; Papenbrock, Jutta
2004-06-01
Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raza, Haider; John, Annie
Tea polyphenols have been reported to be potent antioxidants and beneficial in oxidative stress related diseases. Prooxidant effects of tea polyphenols have also been reported in cell culture systems. In the present study, we have studied oxidative stress in the subcellular compartments of PC12 cells after treatment with different concentrations of the green tea polyphenol, epigallocatechin-3-gallate (EGCG). We have demonstrated that EGCG has differentially affected the production of reactive oxygen species (ROS), glutathione (GSH) metabolism and cytochrome P450 2E1 activity in the different subcellular compartments in PC12 cells. Our results have shown that although the cell survival was not inhibitedmore » by EGCG, there was, however, an increased DNA breakdown and activation of apoptotic markers, caspase 3 and poly- (ADP-ribose) polymerase (PARP) at higher concentrations of EGCG treatment. Our results suggest that the differential effects of EGCG might be related to the alterations in oxidative stress, GSH pools and CYP2E1 activity in different cellular compartments. These results may have implications in determining the chemopreventive therapeutic use of tea polyphenols in vivo.« less
Strick, David J.; Elferink, Lisa A.
2005-01-01
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways. PMID:16195351
Regulatory T-Cell Distribution within Lung Compartments in COPD.
Sales, Davi S; Ito, Juliana T; Zanchetta, Ivy A; Annoni, Raquel; Aun, Marcelo V; Ferraz, Luiz Fernando S; Cervilha, Daniela A B; Negri, Elnara; Mauad, Thais; Martins, Mílton A; Lopes, Fernanda D T Q S
2017-10-01
The importance of the adaptive immune response, specifically the role of regulatory T (Treg) cells in controlling the obstruction progression in smokers, has been highlighted. To quantify the adaptive immune cells in different lung compartments, we used lung tissues from 21 never-smokers without lung disease, 22 current and/or ex-smokers without lung disease (NOS) and 13 current and/or ex-smokers with chronic obstructive pulmonary disease (COPD) for histological analysis. We observed increased T, B, IL-17 and BAFF + cells in small and large airways of COPD individuals; however, in the NOS, we only observed increase in T and IL-17 + cells only in small airways. A decrease in the density of Treg + , TGF-β + and IL-10 + in small and large airways was observed only in COPD individuals. In the lymphoid tissues, Treg, T,B-cells and BAFF + cells were also increased in COPD; however, changes in Treg inhibitory associated cytokines were not observed in this compartment. Therefore, our results suggest that difference in Treg + cell distributions in lung compartments and the decrease in TGF-β + and IL-10 + cells in the airways may lead to the obstruction in smokers.
Focal calcium monitoring with targeted nanosensors at the cytosolic side of endoplasmic reticulum
NASA Astrophysics Data System (ADS)
Hou, Yanyan; Arai, Satoshi; Takei, Yoshiaki; Murata, Atsushi; Takeoka, Shinji; Suzuki, Madoka
2016-01-01
Ca2+ distribution is spatially and temporally non-uniform inside cells due to cellular compartmentalization. However, Ca2+ sensing with small organic dyes, such as fura-2 and fluo-4, has been practically applied at a single cell level where the averaged signal from freely diffusing dye molecules is acquired. In this study, we aimed to target azide-functionalized fura-2 (N3-fura-2) to a specific site of subcellular compartments to realize focal Ca2+ sensing. Using scAVD (single-chain avidin)-biotin interaction and a copper-free click reaction system, we linked N3-fura-2 to specifically-targeted scAVD protein fused with a red fluorescent protein mCherry, so that Ca2+ sensors conjugated with four N3-fura-2 dyes with dibenzocyclooctyne (DBCO)-PEG4-biotin as a linker were generated at subcellular compartments in living cells. In cytoplasm, N3-fura-2 showed a prolonged retention period after binding to scAVD. Furthermore, the reacted N3-fura-2 was retained inside cells even after free dyes were washed out by methanol fixation. When scAVD was overexpressed on endoplasmic reticulum (ER) membranes, N3-fura-2 was accumulated on ER membranes. Upon histamine stimulation, which increases cytosolic Ca2+ concentration, ER-localized N3-fura-2 successfully sensed the Ca2+ level changes at the cytosolic side of ER membrane. Our study demonstrated specific targeting of N3-fura-2 to subcellular compartments and the ability of sensing focal Ca2+ level changes with the specifically targeted Ca2+ sensors.
Maggini, Valentina; Miceli, Elisangela; Fagorzi, Camilla; Maida, Isabel; Fondi, Marco; Perrin, Elena; Mengoni, Alessio; Bogani, Patrizia; Chiellini, Carolina; Mocali, Stefano; Fabiani, Arturo; Decorosi, Francesca; Giovannetti, Luciana; Firenzuoli, Fabio; Fani, Renato
2018-06-14
A key factor in the study of plant-microbes interaction is the composition of plant microbiota, but little is known about the factors determining its functional and taxonomic organization. Here we investigated the possible forces driving the assemblage of bacterial endophytic and rhizospheric communities, isolated from two congeneric medicinal plants, Echinacea purpurea (L.) Moench and Echinacea angustifolia (DC) Heller, grown in the same soil, by analyzing bacterial strains (isolated from three different compartments, i.e. rhizospheric soil, roots, and stem/leaves) for phenotypic features such as antibiotic resistance, extracellular enzymatic activity, siderophore, and indole 3-acetic acid production, as well as cross antagonistic activities. Data obtained highlighted that bacteria from different plant compartments were characterized by specific antibiotic resistance phenotypes and antibiotic production, suggesting that the bacterial communities themselves could be responsible for structuring their own communities by the production of antimicrobial molecules selecting bacterial adaptive phenotypes for plant tissue colonization.
Influence of Bicompartmental Knee Replacement on Stand-to-Sit Movement
ERIC Educational Resources Information Center
Wang, He; Frame, Jeff; Rolston, Lindsey
2012-01-01
Knee osteoarthritis often occurs in medial and patellofemoral compartments. A bicompartmental knee replacement system replaces these two affected knee compartments and keeps the lateral compartment and cruciate ligaments intact. It is yet to be determined whether limbs with bicompartmental knee systems can demonstrate frontal-plane knee mechanics…
Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress.
Hein, S M; Haricharan, S; Johnston, A N; Toneff, M J; Reddy, J P; Dong, J; Bu, W; Li, Y
2016-03-17
In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.
Luminal Epithelial Cells within the Mammary Gland Can Produce Basal Cells upon Oncogenic Stress
Hein, Sarah M.; Haricharan, Svasti; Johnston, Alyssa N.; Toneff, Michael J.; Reddy, Jay P.; Dong, Jie; Bu, Wen; Li, Yi
2015-01-01
In the normal mammary gland, the basal epithelium is known to be bi-potent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bi-potent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here, we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in vivo lineage tracing work demonstrates that luminal cells are capable of producing basal cells upon activation of either Polyoma Middle T antigen (PyMT) or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer. PMID:26096929
Internalized compartments encapsulated nanogels for targeted drug delivery
NASA Astrophysics Data System (ADS)
Yu, Jicheng; Zhang, Yuqi; Sun, Wujin; Wang, Chao; Ranson, Davis; Ye, Yanqi; Weng, Yuyan; Gu, Zhen
2016-04-01
Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system. Electronic supplementary information (ESI) available: Synthesis of m-HA; synthesis of rhodamine-HA derivative; supplementary data on relative fluorescence intensity of DOX-EN-NGs on HeLa cells. See DOI: 10.1039/c5nr08895j
Meng, Fanchi; Na, Insung; Kurgan, Lukasz; Uversky, Vladimir N.
2015-01-01
The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA (or, in some cases, DNA) and proteins. We analyzed 3005 mouse proteins localized in specific intra-nuclear organelles, such as nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinuclear compartment and compared them with ~29,863 non-nuclear proteins from mouse proteome. Our analysis revealed that intrinsic disorder is enriched in the majority of intra-nuclear compartments, except for the nuclear pore and lamina. These compartments are depleted in proteins that lack disordered domains and enriched in proteins that have multiple disordered domains. Moonlighting proteins found in multiple intra-nuclear compartments are more likely to have multiple disordered domains. Protein-protein interaction networks in the intra-nuclear compartments are denser and include more hubs compared to the non-nuclear proteins. Hubs in the intra-nuclear compartments (except for the nuclear pore) are enriched in disorder compared with non-nuclear hubs and non-nuclear proteins. Therefore, our work provides support to the idea of the functional importance of intrinsic disorder in the cell nucleus and shows that many proteins associated with sub-nuclear organelles in nuclei of mouse cells are enriched in disorder. This high level of disorder in the mouse nuclear proteins defines their ability to serve as very promiscuous binders, possessing both large quantities of potential disorder-based interaction sites and the ability of a single such site to be involved in a large number of interactions. PMID:26712748
Liquid crystal Janus emulsion droplets: preparation, tumbling, and swimming.
Jeong, Joonwoo; Gross, Adam; Wei, Wei-Shao; Tu, Fuquan; Lee, Daeyeon; Collings, Peter J; Yodh, A G
2015-09-14
This study introduces liquid crystal (LC) Janus droplets. We describe a process for the preparation of these droplets, which consist of nematic LC and polymer compartments. The process employs solvent-induced phase separation in emulsion droplets generated by microfluidics. The droplet morphology was systematically investigated and demonstrated to be sensitive to the surfactant concentration in the background phase, the compartment volume ratio, and the possible coalescence of multiple Janus droplets. Interestingly, the combination of a polymer and an anisotropic LC introduces new functionalities into Janus droplets, and these properties lead to unusual dynamical behaviors. The different densities and solubilities of the two compartments produce gravity-induced alignment, tumbling, and directional self-propelled motion of Janus droplets. LC Janus droplets with remarkable optical properties and dynamical behaviors thus offer new avenues for applications of Janus colloids and active soft matter.
Bacterial assemblages differ between compartments within the coral holobiont
NASA Astrophysics Data System (ADS)
Sweet, M. J.; Croquer, A.; Bythell, J. C.
2011-03-01
It is widely accepted that corals are associated with a diverse and host species-specific microbiota, but how they are organized within their hosts remains poorly understood. Previous sampling techniques (blasted coral tissues, coral swabs and milked mucus) may preferentially sample from different compartments such as mucus, tissue and skeleton, or amalgamate them, making comparisons and generalizations between studies difficult. This study characterized bacterial communities of corals with minimal mechanical disruption and contamination from water, air and sediments from three compartments: surface mucus layer (SML), coral tissue and coral skeleton. A novel apparatus (the `snot sucker') was used to separate the SML from tissues and skeleton, and these three compartments were compared to swab samples and milked mucus along with adjacent environmental samples (water column and sediments). Bacterial 16S rRNA gene diversity was significantly different between the various coral compartments and environmental samples (PERMANOVA, F = 6.9, df = 8, P = 0.001), the only exceptions being the complete crushed coral samples and the coral skeleton, which were similar, because the skeleton represents a proportionally large volume and supports a relatively rich microflora. Milked mucus differed significantly from the SML collected with the `snot sucker' and was contaminated with zooxanthellae, suggesting that it may originate at least partially from the gastrovascular cavity rather than the tissue surface. A common method of sampling the SML, surface swabs, produced a bacterial community profile distinct from the SML sampled using our novel apparatus and also showed contamination from coral tissues. Our results indicate that microbial communities are spatially structured within the coral holobiont, and methods used to describe these need to be standardized to allow comparisons between studies.
Douam, Florian; Hrebikova, Gabriela; Albrecht, Yentli E. Soto; Sellau, Julie; Sharon, Yael; Ding, Qiang; Ploss, Alexander
2017-01-01
Positive-sense RNA viruses pose increasing health and economic concerns worldwide. Our limited understanding of how these viruses interact with their host and how these processes lead to virulence and disease seriously hampers the development of anti-viral strategies. Here, we demonstrate the tracking of (+) and (−) sense viral RNA at single-cell resolution within complex subsets of the human and murine immune system in different mouse models. Our results provide insights into how a prototypic flavivirus, yellow fever virus (YFV-17D), differentially interacts with murine and human hematopoietic cells in these mouse models and how these dynamics influence distinct outcomes of infection. We detect (−) YFV-17D RNA in specific secondary lymphoid compartments and cell subsets not previously recognized as permissive for YFV replication, and we highlight potential virus–host interaction events that could be pivotal in regulating flavivirus virulence and attenuation. PMID:28290449
GLUT4 Retention in Adipocytes Requires Two Intracellular Insulin-regulated Transport Steps
Zeigerer, Anja; Lampson, Michael A.; Karylowski, Ola; Sabatini, David D.; Adesnik, Milton; Ren, Mindong; McGraw, Timothy E.
2002-01-01
Insulin regulates glucose uptake into fat and muscle by modulating the distribution of the GLUT4 glucose transporter between the surface and interior of cells. The GLUT4 trafficking pathway overlaps with the general endocytic recycling pathway, but the degree and functional significance of the overlap are not known. In this study of intact adipocytes, we demonstrate, by using a compartment-specific fluorescence-quenching assay, that GLUT4 is equally distributed between two intracellular pools: the transferrin receptor-containing endosomes and a specialized compartment that excludes the transferrin receptor. These pools of GLUT4 are in dynamic communication with one another and with the cell surface. Insulin-induced redistribution of GLUT4 to the surface requires mobilization of both pools. These data establish a role for the general endosomal system in the specialized, insulin-regulated trafficking of GLUT4. Trafficking through the general endosomal system is regulated by rab11. Herein, we show that rab11 is required for the transport of GLUT4 from endosomes to the specialized compartment and for the insulin-induced translocation to the cell surface, emphasizing the importance of the general endosomal pathway in the specialized trafficking of GLUT4. Based on these findings we propose a two-step model for GLUT4 trafficking in which the general endosomal recycling compartment plays a specialized role in the insulin-regulated traffic of GLUT4. This compartment-based model provides the framework for understanding insulin-regulated trafficking at a molecular level. PMID:12134080
GLUT4 retention in adipocytes requires two intracellular insulin-regulated transport steps.
Zeigerer, Anja; Lampson, Michael A; Karylowski, Ola; Sabatini, David D; Adesnik, Milton; Ren, Mindong; McGraw, Timothy E
2002-07-01
Insulin regulates glucose uptake into fat and muscle by modulating the distribution of the GLUT4 glucose transporter between the surface and interior of cells. The GLUT4 trafficking pathway overlaps with the general endocytic recycling pathway, but the degree and functional significance of the overlap are not known. In this study of intact adipocytes, we demonstrate, by using a compartment-specific fluorescence-quenching assay, that GLUT4 is equally distributed between two intracellular pools: the transferrin receptor-containing endosomes and a specialized compartment that excludes the transferrin receptor. These pools of GLUT4 are in dynamic communication with one another and with the cell surface. Insulin-induced redistribution of GLUT4 to the surface requires mobilization of both pools. These data establish a role for the general endosomal system in the specialized, insulin-regulated trafficking of GLUT4. Trafficking through the general endosomal system is regulated by rab11. Herein, we show that rab11 is required for the transport of GLUT4 from endosomes to the specialized compartment and for the insulin-induced translocation to the cell surface, emphasizing the importance of the general endosomal pathway in the specialized trafficking of GLUT4. Based on these findings we propose a two-step model for GLUT4 trafficking in which the general endosomal recycling compartment plays a specialized role in the insulin-regulated traffic of GLUT4. This compartment-based model provides the framework for understanding insulin-regulated trafficking at a molecular level.
Maternal-fetal unit interactions and eutherian neocortical development and evolution
Montiel, Juan F.; Kaune, Heidy; Maliqueo, Manuel
2013-01-01
The conserved brain design that primates inherited from early mammals differs from the variable adult brain size and species-specific brain dominances observed across mammals. This variability relies on the emergence of specialized cerebral cortical regions and sub-compartments, triggering an increase in brain size, areal interconnectivity and histological complexity that ultimately lies on the activation of developmental programs. Structural placental features are not well correlated with brain enlargement; however, several endocrine pathways could be tuned with the activation of neuronal progenitors in the proliferative neocortical compartments. In this article, we reviewed some mechanisms of eutherians maternal–fetal unit interactions associated with brain development and evolution. We propose a hypothesis of brain evolution where proliferative compartments in primates become activated by “non-classical” endocrine placental signals participating in different steps of corticogenesis. Changes in the inner placental structure, along with placenta endocrine stimuli over the cortical proliferative activity would allow mammalian brain enlargement with a concomitant shorter gestation span, as an evolutionary strategy to escape from parent-offspring conflict. PMID:23882189
49 CFR 179.220-9 - Compartment tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-9 Compartment tanks. (a) The inner...
49 CFR 179.220-9 - Compartment tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-9 Compartment tanks. (a) The inner...
NASA Astrophysics Data System (ADS)
Luo, Teng; Levchenko, Svitlana M.; Pliss, Artem; Peng, Xiao; Yan, Wei; Prasad, Paras N.; Liu, Liwei; Qu, Junle
2018-02-01
We present our recent work on the applications of fluorescence lifetime imaging microscopy(FLIM), including the monitoring of macromolecule dynamic changes in the nucleolar compartments and the auxiliary diagnosis of H and E-stained sections. We demonstrated the capability of FLIM to measure protein concentration in the specific cellular compartments in live cells. We proposed to use FLIM to monitor changes in intracellular protein concentration caused by various factors e.g. cell cycle progression, drug treatment etc. In the future, FLIM technology is expected to be combined with super-resolution optical imaging. FLIM with molecular resolution will have the potential to serve as a powerful tool for discovering new phenomena and revealing new mechanisms in biomedical research, which will effectively promote the development of life science.
Genestie, I; Morin, J P; Vannier, B; Lorenzon, G
1995-07-01
A high degree of functional polarity has been obtained in primary cultures of rabbit kidney proximal tubule cells grown on collagen IV-coated porous membranes. Tight confluency was attained 6 days after seeding and maintained for at least 6 more days, as shown by analysis of paracellular inulin diffusion. From day 6 onward, L-lactate, ammonia, and D-glucose concentration gradient and a pH difference of approximately 1 unit developed between the two nutrient medium compartments. Confluent monolayers expressed organic ion transport properties higher than those formerly reported for other cell models. Transcellular transport of 20 microM tetraethylammonium was directed from basal to apical compartment and was specifically inhibited by mepiperphenidol (1 mM). Unidirectional transport of 2.4 microM p-aminohippurate also occurred from basal to apical compartment, was saturable, and specifically inhibited by probenecid (1 mM). These results suggest that rabbit kidney proximal tubule cells, cultured under the experimental conditions described here, may be a useful model for the in vitro study of highly polarized renal transport processes.
Simplifying the complexity of resistance heterogeneity in metastasis
Lavi, Orit; Greene, James M.; Levy, Doron; Gottesman, Michael M.
2014-01-01
The main goal of treatment regimens for metastasis is to control growth rates, not eradicate all cancer cells. Mathematical models offer methodologies that incorporate high-throughput data with dynamic effects on net growth. The ideal approach would simplify, but not over-simplify, a complex problem into meaningful and manageable estimators that predict a patient’s response to specific treatments. Here, we explore three fundamental approaches with different assumptions concerning resistance mechanisms, in which the cells are categorized into either discrete compartments or described by a continuous range of resistance levels. We argue in favor of modeling resistance as a continuum and demonstrate how integrating cellular growth rates, density-dependent versus exponential growth, and intratumoral heterogeneity improves predictions concerning the resistance heterogeneity of metastases. PMID:24491979
49 CFR 179.200-9 - Compartment tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-9 Compartment tanks. (a) When a tank is...
49 CFR 179.200-9 - Compartment tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-9 Compartment tanks. (a) When a tank is...
Definition of Drosophila hemocyte subsets by cell-type specific antigens.
Kurucz, Eva; Váczi, B; Márkus, R; Laurinyecz, Barbara; Vilmos, P; Zsámboki, J; Csorba, Kinga; Gateff, Elisabeth; Hultmark, D; Andó, I
2007-01-01
We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.
Activities of Vacuolar Cysteine Proteases in Plant Senescence.
Martínez, Dana E; Costa, Lorenza; Guiamét, Juan José
2018-01-01
Plant senescence is accompanied by a marked increase in proteolytic activities, and cysteine proteases (Cys-protease) represent the prevailing class among the responsible proteases. Cys-proteases predominantly locate to lytic compartments, i.e., to the central vacuole (CV) and to senescence-associated vacuoles (SAVs), the latter being specific to the photosynthetic cells of senescing leaves. Cellular fractionation of vacuolar compartments may facilitate Cys-proteases purification and their concentration for further analysis. Active Cys-proteases may be analyzed by different, albeit complementary approaches: (1) in vivo examination of proteolytic activity by fluorescence microscopy using specific substrates which become fluorescent upon cleavage by Cys-proteases, (2) protease labeling with specific probes that react irreversibly with the active enzymes, and (3) zymography, whereby protease activities are detected in polyacrylamide gels copolymerized with a substrate for proteases. Here we describe the three methods mentioned above for detection of active Cys-proteases and a cellular fractionation technique to isolate SAVs.
Kunze, Markus; Berger, Johannes
2015-01-01
The proper distribution of proteins between the cytosol and various membrane-bound compartments is crucial for the functionality of eukaryotic cells. This requires the cooperation between protein transport machineries that translocate diverse proteins from the cytosol into these compartments and targeting signal(s) encoded within the primary sequence of these proteins that define their cellular destination. The mechanisms exerting protein translocation differ remarkably between the compartments, but the predominant targeting signals for mitochondria, chloroplasts and the ER share the N-terminal position, an α-helical structural element and the removal from the core protein by intraorganellar cleavage. Interestingly, similar properties have been described for the peroxisomal targeting signal type 2 mediating the import of a fraction of soluble peroxisomal proteins, whereas other peroxisomal matrix proteins encode the type 1 targeting signal residing at the extreme C-terminus. The structural similarity of N-terminal targeting signals poses a challenge to the specificity of protein transport, but allows the generation of ambiguous targeting signals that mediate dual targeting of proteins into different compartments. Dual targeting might represent an advantage for adaptation processes that involve a redistribution of proteins, because it circumvents the hierarchy of targeting signals. Thus, the co-existence of two equally functional import pathways into peroxisomes might reflect a balance between evolutionary constant and flexible transport routes. PMID:26441678
Medial tibial pain: a dynamic contrast-enhanced MRI study.
Mattila, K T; Komu, M E; Dahlström, S; Koskinen, S K; Heikkilä, J
1999-09-01
The purpose of this study was to compare the sensitivity of different magnetic resonance imaging (MRI) sequences to depict periosteal edema in patients with medial tibial pain. Additionally, we evaluated the ability of dynamic contrast-enhanced imaging (DCES) to depict possible temporal alterations in muscular perfusion within compartments of the leg. Fifteen patients with medial tibial pain were examined with MRI. T1-, T2-weighted, proton density axial images and dynamic and static phase post-contrast images were compared in ability to depict periosteal edema. STIR was used in seven cases to depict bone marrow edema. Images were analyzed to detect signs of compartment edema. Region-of-interest measurements in compartments were performed during DCES and compared with controls. In detecting periosteal edema, post-contrast T1-weighted images were better than spin echo T2-weighted and proton density images or STIR images, but STIR depicted the bone marrow edema best. DCES best demonstrated the gradually enhancing periostitis. Four subjects with severe periosteal edema had visually detectable pathologic enhancement during DCES in the deep posterior compartment of the leg. Percentage enhancement in the deep posterior compartment of the leg was greater in patients than in controls. The fast enhancement phase in the deep posterior compartment began slightly slower in patients than in controls, but it continued longer. We believe that periosteal edema in bone stress reaction can cause impairment of venous flow in the deep posterior compartment. MRI can depict both these conditions. In patients with medial tibial pain, MR imaging protocol should include axial STIR images (to depict bone pathology) with T1-weighted axial pre and post-contrast images, and dynamic contrast enhanced imaging to show periosteal edema and abnormal contrast enhancement within a compartment.
Compartment Syndrome of the Hand: A Rare Sequela of Transradial Cardiac Catheterization
Jue, Jennifer; Karam, Joseph A.; Mejia, Alfonso
2017-01-01
A 64-year-old man who underwent percutaneous coronary intervention via right radial artery access reported right-hand pain and swelling 2 hours after the procedure. He had developed compartment syndrome of the hand, specifically with muscular compromise of the thenar compartment but with no involvement of the forearm. He underwent emergency right-hand compartment release and carpal tunnel release, followed by an uneventful postoperative course. In addition to our patient's case, we discuss compartment syndrome of the hand and related issues. PMID:28265219
14 CFR 121.309 - Emergency equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) When carried in a compartment or container, must be carried in a compartment or container marked as to contents and the compartment or container, or the item itself, must be marked as to date of last inspection... accordance with inspection periods established in the operations specifications to ensure its condition for...
14 CFR 121.309 - Emergency equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) When carried in a compartment or container, must be carried in a compartment or container marked as to contents and the compartment or container, or the item itself, must be marked as to date of last inspection... accordance with inspection periods established in the operations specifications to ensure its condition for...
14 CFR 121.309 - Emergency equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) When carried in a compartment or container, must be carried in a compartment or container marked as to contents and the compartment or container, or the item itself, must be marked as to date of last inspection... accordance with inspection periods established in the operations specifications to ensure its condition for...
14 CFR 121.309 - Emergency equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) When carried in a compartment or container, must be carried in a compartment or container marked as to contents and the compartment or container, or the item itself, must be marked as to date of last inspection... accordance with inspection periods established in the operations specifications to ensure its condition for...
14 CFR 121.309 - Emergency equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) When carried in a compartment or container, must be carried in a compartment or container marked as to contents and the compartment or container, or the item itself, must be marked as to date of last inspection... accordance with inspection periods established in the operations specifications to ensure its condition for...
Wang, Ligong; Salibi, Nouha; Chang, Gregory; Bencardino, Jenny T.; Babb, James S.; Rokito, Andrew; Jazrawi, Laith; Sherman, Orrin; Regatte, Ravinder R.
2014-01-01
Rationale and Objectives The objectives of this study were to investigate the changes in compartment-specific subchondral bone marrow lipids of femoral–tibial bone in acute anterior cruciate ligament (ACL)-injured patients compared to that of healthy volunteers and patients with osteoarthritis (OA) (Kellgren–Lawrence [KL] grade 2–3). Materials and Methods A total of 55 subjects were recruited in the study and subdivided into three subgroups: 17 healthy controls (4 females, 13 males; mean age = 41 ± 16, age range 24–78 years), 17 patients with acute ACL injury (3 females, 14 males; mean age = 30 ± 11, age range 18–61 years), and 21 patients with KL2–3 OA (12 females, 9 males; mean age = 65 ± 12, age range 44–89 years). Routine clinical proton density–weighted fast spin echo images in sagittal (without fat saturation), axial, and coronal (fat saturation) planes were acquired on a 3 T clinical scanner for cartilage morphology using Whole-Organ Magnetic Resonance Imaging Score grading. A voxel of 10 × 10 × 10 mm3 was positioned in the medial and lateral compartments of the tibia and femur for proton magnetic resonance spectroscopy measurements using the single voxel stimulated echo acquisition mode pulse sequence. All proton magnetic resonance data were processed with Java-based magnetic resonance user interface. Wilcoxon rank sum test and mixed model two-way analysis of variance were performed to determine significant differences between different compartments and examine the effect of ACL injury, OA grade and compartment, and their interactions. Results The index of unsaturation in lateral tibial compartment in ACL-injured patients was significantly higher (P < .05) than all compartments except lateral femoral in patients with KL2–3 OA. Significantly lower values (P < .05) were also identified in saturated lipids at 2.03 ppm in all compartments in ACL-injured patients than those of all compartments in patients with KL2–3 OA. Conclusions The preliminary results suggest that the indices of unsaturation in the lateral tibial compartment and the peaks of saturated lipids at 1.3 and 2.03 ppm in medial tibial compartment may be clinically useful to characterize subchondral bone marrow among healthy controls, acute ACL-injured patients, and patients with OA. PMID:24717549
Wang, Ligong; Salibi, Nouha; Chang, Gregory; Bencardino, Jenny T; Babb, James S; Rokito, Andrew; Jazrawi, Laith; Sherman, Orrin; Regatte, Ravinder R
2014-06-01
The objectives of this study were to investigate the changes in compartment-specific subchondral bone marrow lipids of femoral-tibial bone in acute anterior cruciate ligament (ACL)-injured patients compared to that of healthy volunteers and patients with osteoarthritis (OA) (Kellgren-Lawrence [KL] grade 2-3). A total of 55 subjects were recruited in the study and subdivided into three subgroups: 17 healthy controls (4 females, 13 males; mean age = 41 ± 16, age range 24-78 years), 17 patients with acute ACL injury (3 females, 14 males; mean age = 30 ± 11, age range 18-61 years), and 21 patients with KL2-3 OA (12 females, 9 males; mean age = 65 ± 12, age range 44-89 years). Routine clinical proton density-weighted fast spin echo images in sagittal (without fat saturation), axial, and coronal (fat saturation) planes were acquired on a 3 T clinical scanner for cartilage morphology using Whole-Organ Magnetic Resonance Imaging Score grading. A voxel of 10 × 10 × 10 mm(3) was positioned in the medial and lateral compartments of the tibia and femur for proton magnetic resonance spectroscopy measurements using the single voxel stimulated echo acquisition mode pulse sequence. All proton magnetic resonance data were processed with Java-based magnetic resonance user interface. Wilcoxon rank sum test and mixed model two-way analysis of variance were performed to determine significant differences between different compartments and examine the effect of ACL injury, OA grade and compartment, and their interactions. The index of unsaturation in lateral tibial compartment in ACL-injured patients was significantly higher (P < .05) than all compartments except lateral femoral in patients with KL2-3 OA. Significantly lower values (P < .05) were also identified in saturated lipids at 2.03 ppm in all compartments in ACL-injured patients than those of all compartments in patients with KL2-3 OA. The preliminary results suggest that the indices of unsaturation in the lateral tibial compartment and the peaks of saturated lipids at 1.3 and 2.03 ppm in medial tibial compartment may be clinically useful to characterize subchondral bone marrow among healthy controls, acute ACL-injured patients, and patients with OA. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Laroque, P A; Prahalada, S; Molon-Noblot, S; Cohen, S M; Soper, K; Duprat, P; Peter, C P; van Zwieten, M J
1995-09-01
The objective of this study was to determine the effects of 2 different 5-alpha reductase inhibitors (finasteride and MK-0434) on the glandular and stromal compartments of hyperplastic canine prostates. In this study, dogs received 1 of the 2 compounds orally, at a dose of 1 mg/kg/day for 16 weeks; control dogs received a placebo. The morphological changes in the glandular and stromal compartments in the prostate were quantitated by a point-counting method on Masson's trichrome-stained sections. Treatment with 5-alpha reductase inhibitors resulted in significant (P < or = 0.05) decreases in mean prostatic volumes, microscopic evidence of prostatic atrophy, and significant (P < or = 0.05) decreases in the absolute volumes of the prostatic glandular and stromal compartments compared to controls. In finasteride-treated dogs, the mean percent change from baseline was: epithelium, -52; lumens, -58; fibrovascular stroma, -41; and smooth muscle, -29. In MK-0434-treated dogs, the mean percent change from baseline was: epithelium, -77; lumens, -58; fibrovascular stroma, -38; and smooth muscle, -42. The effect on the glandular compartment in dogs treated with MK-0434 was slightly greater than in dogs treated with finasteride; however, the effect on the stroma was similar. These results clearly demonstrate that inhibition of 5-alpha reductase enzyme activity affects growth and maintenance of both glandular and stromal compartments of dog hyperplastic prostates. It is likely that the decrease in size of the prostate in finasteride-treated (Proscar) men is due to shrinkage of both glandular and stromal compartments.
Farrokhi, Shawn; Voycheck, Carrie A.; Klatt, Brian A.; Gustafson, Jonathan A.; Tashman, Scott; Fitzgerald, G. Kelley
2014-01-01
Background To evaluate knee joint contact mechanics and kinematics during the loading response phase of downhill gait in knee osteoarthritis patients with self-reported instability. Methods Forty-three subjects, 11 with medial compartment knee osteoarthritis and self-reported instability (unstable), 7 with medial compartment knee osteoarthritis but no reports of instability (stable), and 25 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a downhill gait task on a treadmill. Findings The medial compartment contact point excursions were longer in the unstable group compared to the stable (p=0.046) and the control groups (p=0.016). The peak medial compartment contact point velocity was also greater for the unstable group compared to the stable (p=0.047) and control groups (p=0.022). Additionally, the unstable group demonstrated a coupled movement pattern of knee extension and external rotation after heel contact which was different than the coupled motion of knee flexion and internal rotation demonstrated by stable and control groups. Interpretation Our findings suggest that knee joint contact mechanics and kinematics are altered during the loading response phase of downhill gait in knee osteoarthritis patients with self-reported instability. The observed longer medial compartment contact point excursions and higher velocities represent objective signs of mechanical instability that may place the arthritic knee joint at increased risk for disease progression. Further research is indicated to explore the clinical relevance of altered contact mechanics and kinematics during other common daily activities and to assess the efficacy of rehabilitation programs to improve altered joint biomechanics in knee osteoarthritis patients with self-reported instability. PMID:24856791
Towards deep learning with segregated dendrites
Guerguiev, Jordan; Lillicrap, Timothy P
2017-01-01
Deep learning has led to significant advances in artificial intelligence, in part, by adopting strategies motivated by neurophysiology. However, it is unclear whether deep learning could occur in the real brain. Here, we show that a deep learning algorithm that utilizes multi-compartment neurons might help us to understand how the neocortex optimizes cost functions. Like neocortical pyramidal neurons, neurons in our model receive sensory information and higher-order feedback in electrotonically segregated compartments. Thanks to this segregation, neurons in different layers of the network can coordinate synaptic weight updates. As a result, the network learns to categorize images better than a single layer network. Furthermore, we show that our algorithm takes advantage of multilayer architectures to identify useful higher-order representations—the hallmark of deep learning. This work demonstrates that deep learning can be achieved using segregated dendritic compartments, which may help to explain the morphology of neocortical pyramidal neurons. PMID:29205151
Towards deep learning with segregated dendrites.
Guerguiev, Jordan; Lillicrap, Timothy P; Richards, Blake A
2017-12-05
Deep learning has led to significant advances in artificial intelligence, in part, by adopting strategies motivated by neurophysiology. However, it is unclear whether deep learning could occur in the real brain. Here, we show that a deep learning algorithm that utilizes multi-compartment neurons might help us to understand how the neocortex optimizes cost functions. Like neocortical pyramidal neurons, neurons in our model receive sensory information and higher-order feedback in electrotonically segregated compartments. Thanks to this segregation, neurons in different layers of the network can coordinate synaptic weight updates. As a result, the network learns to categorize images better than a single layer network. Furthermore, we show that our algorithm takes advantage of multilayer architectures to identify useful higher-order representations-the hallmark of deep learning. This work demonstrates that deep learning can be achieved using segregated dendritic compartments, which may help to explain the morphology of neocortical pyramidal neurons.
Three-dimensional architecture of the whole human soleus muscle in vivo
Finni, Taija; D’Souza, Arkiev; Eguchi, Junya; Clarke, Elizabeth C.; Herbert, Robert D.
2018-01-01
Background Most data on the architecture of the human soleus muscle have been obtained from cadaveric dissection or two-dimensional ultrasound imaging. We present the first comprehensive, quantitative study on the three-dimensional anatomy of the human soleus muscle in vivo using diffusion tensor imaging (DTI) techniques. Methods We report three-dimensional fascicle lengths, pennation angles, fascicle curvatures, physiological cross-sectional areas and volumes in four compartments of the soleus at ankle joint angles of 69 ± 12° (plantarflexion, short muscle length; average ± SD across subjects) and 108 ± 7° (dorsiflexion, long muscle length) of six healthy young adults. Microdissection and three-dimensional digitisation on two cadaveric muscles corroborated the compartmentalised structure of the soleus, and confirmed the validity of DTI-based muscle fascicle reconstructions. Results The posterior compartments of the soleus comprised 80 ± 5% of the total muscle volume (356 ± 58 cm3). At the short muscle length, the average fascicle length, pennation angle and curvature was 37 ± 8 mm, 31 ± 3° and 17 ± 4 /m, respectively. We did not find differences in fascicle lengths between compartments. However, pennation angles were on average 12° larger (p < 0.01) in the posterior compartments than in the anterior compartments. For every centimetre that the muscle-tendon unit lengthened, fascicle lengths increased by 3.7 ± 0.8 mm, pennation angles decreased by −3.2 ± 0.9° and curvatures decreased by −2.7 ± 0.8 /m. Fascicles in the posterior compartments rotated almost twice as much as in the anterior compartments during passive lengthening. Discussion The homogeneity in fascicle lengths and inhomogeneity in pennation angles of the soleus may indicate a functionally different role for the anterior and posterior compartments. The data and techniques presented here demonstrate how DTI can be used to obtain detailed, quantitative measurements of the anatomy of complex skeletal muscles in living humans. PMID:29682414
Kantor, Rami; Bettendorf, Daniel; Bosch, Ronald J.; Mann, Marita; Katzenstein, David; Cu-Uvin, Susan; D’Aquila, Richard; Frenkel, Lisa; Fiscus, Susan; Coombs, Robert
2014-01-01
Background Detectable HIV-1 in body compartments can lead to transmission and antiretroviral resistance. Although sex differences in viral shedding have been demonstrated, mechanisms and magnitude are unclear. We compared RNA levels in blood, genital-secretions and saliva; and drug resistance in plasma and genital-secretions of men and women starting/changing antiretroviral therapy (ART) in the AIDS Clinical Trials Group (ACTG) 5077 study. Methods Blood, saliva and genital-secretions (compartment fluids) were collected from HIV-infected adults (≥13 years) at 14 United-States sites, who were initiating or changing ART with plasma viral load (VL) ≥2,000 copies/mL. VL testing was performed on all compartment fluids and HIV resistance genotyping on plasma and genital-secretions. Spearman rank correlations were used to evaluate concordance and Fisher’s and McNemar’s exact tests to compare VL between sexes and among compartments. Results Samples were available for 143 subjects; 36% treated (23 men, 29 women) and 64% ‘untreated’ (40 men, 51 women). RNA detection was significantly more frequent in plasma (100%) than genital-secretions (57%) and saliva (64%) (P<0.001). A higher proportion of men had genital shedding versus women (78% versus 41%), and RNA detection was more frequent in saliva versus genital-secretions in women when adjusted for censoring at the limit of assay detection. Inter-compartment fluid VL concordance was low in both sexes. In 22 (13 men, 9 women) paired plasma-genital-secretion genotypes from treated subjects, most had detectable resistance in both plasma (77%) and genital-secretions (68%). Resistance discordance was observed between compartments in 14% of subjects. Conclusions HIV shedding and drug resistance detection prior to initiation/change of ART in ACTG 5077 subjects differed among tissues and between sexes, making the gold standard blood-plasma compartment assessment not fully representative of HIV at other tissue sites. Mechanisms of potential sex-dependent tissue compartmentalization should be further characterized to aid in optimizing treatment and prevention of HIV transmission. Trial Registration ClinicalTrials.gov NCT00007488 PMID:24699474
Bremner, J D; Horti, A; Staib, L H; Zea-Ponce, Y; Soufer, R; Charney, D S; Baldwin, R
2000-01-01
Quantitation of the PET benzodiazepine receptor antagonist, [(11)C]Iomazenil, using low specific activity radioligand was recently described. The purpose of this study was to quantitate benzodiazepine receptor binding in human subjects using PET and high specific activity [(11)C]Iomazenil. Six healthy human subjects underwent PET imaging following a bolus injection of high specific activity (>100 Ci/mmol) [(11)C]iomazenil. Arterial samples were collected at multiple time points after injection for measurement of unmetabolized total and nonprotein-bound parent compound in plasma. Time activity curves of radioligand concentration in brain and plasma were analyzed using two and three compartment model. Kinetic rate constants of transfer of radioligand between plasma, nonspecifically bound brain tissue, and specifically bound brain tissue compartments were fitted to the model. Values for fitted kinetic rate constants were used in the calculation of measures of benzodiazepine receptor binding, including binding potential (the ratio of receptor density to affinity), and product of BP and the fraction of free nonprotein-bound parent compound (V(3)'). Use of the three compartment model improved the goodness of fit in comparison to the two compartment model. Values for kinetic rate constants and measures of benzodiazepine receptor binding, including BP and V(3)', were similar to results obtained with the SPECT radioligand [(123)I]iomazenil, and a prior report with low specific activity [(11)C]Iomazenil. Kinetic modeling using the three compartment model with PET and high specific activity [(11)C]Iomazenil provides a reliable measure of benzodiazepine receptor binding. Synapse 35:68-77, 2000. Published 2000 Wiley-Liss, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... feel are relevant to the development of an accurate listing of physical characteristics. Specifically... two interior storage compartments accessible through one or more separate external doors or drawers or... external door or drawer is either a refrigerator compartment or convertible compartment, but is not a...
Ruiz-Arlandis, G; Pieri, L; Bousset, L; Melki, R
2016-02-01
The aggregation of Huntingtin (HTT) protein and of its moiety encoded by its Exon1 (HTTExon1) into fibrillar structures inside neurons is the molecular hallmark of Huntington's disease. Prion-like transmission of these aggregates between cells has been demonstrated. The cell-to-cell transmission mechanisms of these protein aggregates and the susceptibility of different kinds of neuronal cells to these toxic assemblies still need assessment. Here, we documented the binding to and internalization by differentiated and undifferentiated neuroblastoma cells of exogenous fibrillar HTTExon1 and polyglutamine (polyQ) polypeptides containing the same number of glutamines. We assessed the contribution of endocytosis to fibrillar HTTExon1 uptake, their intracellular localization and fate. We observed that undifferentiated neuroblastoma cells were more susceptible to fibrillar HTTExon1 and polyQ than their differentiated counterparts. Furthermore, we demonstrated that exogenous HTTExon1 aggregates are mainly taken up by endocytosis and directed to lysosomal compartments in both mitotic and quiescent cells. These data suggest that the rates of endocytic processes that differ in mitotic and quiescent cells strongly impact the uptake of exogenous HTTExon1 and polyQ fibrils. This may be either the consequence of distinct metabolisms or distributions of specific protein partners for amyloid-like assemblies at the surface of highly dividing versus quiescent cells. Our results highlight the importance of endocytic processes in the internalization of exogenous HTTExon1 fibrils and suggest that a proportion of those assemblies reach the cytosol where they can amplify by recruiting the endogenous protein after escaping, by yet an unknown process, from the endo-lysosomal compartments. © 2015 British Neuropathological Society.
Kirschman, Junghwa; Qi, Mingli; Ding, Lingmei; Hammonds, Jason; Dienger-Stambaugh, Krista; Wang, Jaang-Jiun; Lapierre, Lynne A; Goldenring, James R; Spearman, Paul
2018-03-01
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) encodes specific trafficking signals within its long cytoplasmic tail (CT) that regulate incorporation into HIV-1 particles. Rab11-family interacting protein 1C (FIP1C) and Rab14 are host trafficking factors required for Env particle incorporation, suggesting that Env undergoes sorting from the endosomal recycling compartment (ERC) to the site of particle assembly on the plasma membrane. We disrupted outward sorting from the ERC by expressing a C-terminal fragment of FIP1C (FIP1C 560-649 ) and examined the consequences on Env trafficking and incorporation into particles. FIP1C 560-649 reduced cell surface levels of Env and prevented its incorporation into HIV-1 particles. Remarkably, Env was trapped in an exaggerated perinuclear ERC in a CT-dependent manner. Mutation of either the Yxxϕ endocytic motif or the YW 795 motif in the CT prevented Env trapping in the ERC and restored incorporation into particles. In contrast, simian immunodeficiency virus SIVmac239 Env was not retained in the ERC, while substitution of the HIV-1 CT for the SIV CT resulted in SIV Env retention in this compartment. These results provide the first direct evidence that Env traffics through the ERC and support a model whereby HIV-1 Env is specifically targeted to the ERC prior to FIP1C- and CT-dependent outward sorting to the particle assembly site on the plasma membrane. IMPORTANCE The HIV envelope protein is an essential component of the viral particle. While many aspects of envelope protein structure and function have been established, the pathway it follows in the cell prior to reaching the site of particle assembly is not well understood. The envelope protein has a very long cytoplasmic tail that interacts with the host cell trafficking machinery. Here, we utilized a truncated form of the trafficking adaptor FIP1C protein to arrest the intracellular transport of the envelope protein, demonstrating that it becomes trapped inside the cell within the endosomal recycling compartment. Intracellular trapping resulted in a loss of envelope protein on released particles and a corresponding loss of infectivity. Mutations of specific trafficking motifs in the envelope protein tail prevented its trapping in the recycling compartment. These results establish that trafficking to the endosomal recycling compartment is an essential step in HIV envelope protein particle incorporation. Copyright © 2018 American Society for Microbiology.
Moussa, Lara; Usunier, Benoît; Demarquay, Christelle; Benderitter, Marc; Tamarat, Radia; Sémont, Alexandra; Mathieu, Noëlle
2016-10-01
Ionizing radiation is effective to treat malignant pelvic cancers, but the toxicity to surrounding healthy tissue remains a substantial limitation. Early and late side effects not only limit the escalation of the radiation dose to the tumor but may also be life-threatening in some patients. Numerous preclinical studies determined specific mechanisms induced after irradiation in different compartments of the intestine. This review outlines the complexity of the pathogenesis, highlighting the roles of the epithelial barrier in the vascular network, and the inflammatory microenvironment, which together lead to chronic fibrosis. Despite the large number of pharmacological molecules available, the studies presented in this review provide encouraging proof of concept regarding the use of mesenchymal stromal cell (MSC) therapy to treat radiation-induced intestinal damage. The therapeutic efficacy of MSCs has been demonstrated in animal models and in patients, but an enormous number of cells and multiple injections are needed due to their poor engraftment capacity. Moreover, it has been observed that although MSCs have pleiotropic effects, some intestinal compartments are less restored after a high dose of irradiation. Future research should seek to optimize the efficacy of the injected cells, particularly with regard to extending their life span in the irradiated tissue. Moreover, improving the host microenvironment, combining MSCs with other specific regenerative cells, or introducing new tissue engineering strategies could be tested as methods to treat the severe side effects of pelvic radiotherapy.
Khandha, Ashutosh; Manal, Kurt; Wellsandt, Elizabeth; Capin, Jacob; Snyder-Mackler, Lynn; Buchanan, Thomas S.
2016-01-01
The objective of the study was to evaluate differences in gait mechanics 5 years after unilateral anterior cruciate ligament reconstruction surgery, for non-osteoarthritic (n = 24) versus osteoarthritic (n = 9) subjects. For the involved knee, the osteoarthritic group demonstrated significantly lower peak knee flexion angles (non-osteoarthritic = 24.3 ± 4.6°, osteoarthritic = 19.1 ± 2.9°, p = 0.01) and peak knee flexion moments (non-osteoarthritic = 5.3 ± 1.2% Body Weight × Height, osteoarthritic = 4.4 ± 1.2% Body Weight × Height, p = 0.05). Differences in peak knee adduction moment approached significance, with a higher magnitude for the osteoarthritic group (non-osteoarthritic = 2.4 ±0.8% Body Weight × Height, osteoarthritic = 2.9 ± 0.5% Body Weight × Height, p = 0.09). Peak medial compartment joint load was evaluated using electromyography-informed neuromusculoskeletal modeling. Peak medial compartment joint load in the involved knee for the two groups was not different (non-osteoarthritic = 2.4 ± 0.4 Body Weight, osteoarthritic = 2.3 ± 0.6 Body Weight). The results suggest that subjects with dissimilar peak knee moments can have similar peak medial compartment joint load magnitudes. There was no evidence of inter-limb asymmetry for either group. Given the presence of inter-group differences (non-osteoarthritic vs. osteoarthritic) for the involved knee, but an absence of inter-limb asymmetry in either group, it may be necessary to evaluate how symmetry is achieved, over time, and to differentiate between good versus bad inter-limb symmetry, when evaluating knee gait parameters. PMID:27082166
Cernadas, Manuela; Cavallari, Marco; Watts, Gerald; Mori, Lucia; De Libero, Gennaro; Brenner, Michael B
2010-02-01
A major step in understanding differences in the nature of Ag presentation was the realization that MHC class I samples peptides transported to the endoplasmic reticulum from the cytosol, whereas MHC class II samples peptides from lysosomes. In contrast to MHC class I and II molecules that present protein Ags, CD1 molecules present lipid Ags for recognition by specific T cells. Each of the five members of the CD1 family (CD1a-e) localizes to a distinct subcompartment of endosomes. Accordingly, it has been widely assumed that the distinct trafficking of CD1 isoforms must also have evolved to enable them to sample lipid Ags that traffic via different routes. Among the CD1 isoforms, CD1a is unusual because it does not have a tyrosine-based cytoplasmic sorting motif and uniquely localizes to the early endocytic recycling compartment. This led us to predict that CD1a might have evolved to focus on lipids that localize to early endocytic/recycling compartments. Strikingly, we found that the glycolipid Ag sulfatide also localized almost exclusively to early endocytic and recycling compartments. Consistent with colocalization of CD1a and sulfatide, wild-type CD1a molecules efficiently presented sulfatide to CD1a-restricted, sulfatide-specific T cells. In contrast, CD1a:CD1b tail chimeras, that retain the same Ag-binding capacity as CD1a but traffic based on the cytoplasmic tail of CD1b to lysosomes, failed to present sulfatide efficiently. Thus, the intracellular trafficking route of CD1a is essential for efficient presentation of lipid Ags that traffic through the early endocytic and recycling pathways.
Morphological characterization of ckd in cats: Insights of fibrogenesis to be recognized.
Morais, G B; Viana, D A; Verdugo, J M; Roselló, M G; Porcel, J O; Rocha, D D; Xavier Júnior, F A F; Barbosa, K D S M; Silva, F M O; Brito, G A C; Sampaio, C M S; Evangelista, J S A M
2018-01-01
Renal fibrosis is characterized by glomerulosclerosis and tubulointerstitial fibrosis and its pathogenesis is associated with the activity of mesenchymal cells (fibroblasts), being essentially characterized by a process of excessive accumulation resulting from the deposition of extracellular matrix components. The aim of this study was to characterize the morphological presentation of chronic and fibrotic lesions in the glomerular, tubular, interstitial, and vascular compartments in feline CKD, as well as the possible participation of myofibroblasts in renal fibrotic processes in this species. Cat kidneys were collected and processed according to the conventional techniques for light microscopy, circular polarization, immunohistochemistry, and electron microscopy. Fibrotic alterations were present in all compartments analyzed. The main findings in the glomerular compartment were different degrees of glomerular sclerosis, synechia formation, Bowman's capsule calcification, in addition to glomerular basement membrane thickening and pericapsular fibrosis. The tubulointerstitial compartment had intense tubular degeneration and the immunostaining in tubular cells for mesenchymal cell markers demonstrated the possibility of mesenchymal epithelial transition and consequent involvement of myofibroblasts in the development of interstitial tubule damage. Infiltration of inflammatory cells, added to vessel thickening and fibrosis, demonstrated the severity and role of inflammation in the development and perpetuation of damage. Thus, we may conclude that fibrotic lesions play a relevant role in feline CKD and the mechanism of perpetuation of these lesions need further elucidation regarding the origin and participation of myofibroblasts and consequent mesenchymal epithelial transition in this species. © 2017 Wiley Periodicals, Inc.
Castelletti, Deborah; Alfalah, Marwan; Heine, Martin; Hein, Zeynep; Schmitte, Ruth; Fracasso, Giulio; Colombatti, Marco; Naim, Hassan Y
2008-01-01
Hormone-refractory prostate carcinomas as well as the neovasculature of different tumours express high levels of PSMA (prostate-specific membrane antigen). PSMA is a type II-transmembrane glycoprotein and a potential tumour marker for both diagnosis and passive immunotherapy. Here, we report on the association of PSMA with DRMs (detergent-resistant membranes) at different stages of the protein maturation pathway in human prostate carcinoma LNCaP cells. At least three PSMA glycoforms were biochemically identified based on their extractability behaviour in different non-ionic detergents. In particular, one precursor glycoform of PSMA is associated with Tween 20-insoluble DRMs, whereas the complex glycosylated protein segregates into membrane structures that are insoluble in Lubrol WX and display a different lipid composition. Association of PSMA with these membranes occurs in the Golgi compartment together with the acquisition of a native conformation. PSMA homodimers reach the plasma membrane of LNCaP cells in Lubrol WX-insoluble lipid/protein complexes. At the steady state, the majority of PSMA remains within these membrane microdomains at the cell surface. We conclude that the intracellular transport of PSMA occurs through populations of DRMs distinct for each biosynthetic form and cellular compartment.
Yates, Christian A; Flegg, Mark B
2015-05-06
Spatial reaction-diffusion models have been employed to describe many emergent phenomena in biological systems. The modelling technique most commonly adopted in the literature implements systems of partial differential equations (PDEs), which assumes there are sufficient densities of particles that a continuum approximation is valid. However, owing to recent advances in computational power, the simulation and therefore postulation, of computationally intensive individual-based models has become a popular way to investigate the effects of noise in reaction-diffusion systems in which regions of low copy numbers exist. The specific stochastic models with which we shall be concerned in this manuscript are referred to as 'compartment-based' or 'on-lattice'. These models are characterized by a discretization of the computational domain into a grid/lattice of 'compartments'. Within each compartment, particles are assumed to be well mixed and are permitted to react with other particles within their compartment or to transfer between neighbouring compartments. Stochastic models provide accuracy, but at the cost of significant computational resources. For models that have regions of both low and high concentrations, it is often desirable, for reasons of efficiency, to employ coupled multi-scale modelling paradigms. In this work, we develop two hybrid algorithms in which a PDE in one region of the domain is coupled to a compartment-based model in the other. Rather than attempting to balance average fluxes, our algorithms answer a more fundamental question: 'how are individual particles transported between the vastly different model descriptions?' First, we present an algorithm derived by carefully redefining the continuous PDE concentration as a probability distribution. While this first algorithm shows very strong convergence to analytical solutions of test problems, it can be cumbersome to simulate. Our second algorithm is a simplified and more efficient implementation of the first, it is derived in the continuum limit over the PDE region alone. We test our hybrid methods for functionality and accuracy in a variety of different scenarios by comparing the averaged simulations with analytical solutions of PDEs for mean concentrations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Genetics Home Reference: CLN7 disease
... unknown. The MFSD8 protein is embedded in the membrane of cell compartments called lysosomes , which digest and recycle different types of molecules. Based on the structure of the protein, MFSD8 probably transports molecules across the lysosomal membrane, but the specific molecules it moves have not ...
Optochemical Control of Protein Localization and Activity within Cell-like Compartments.
Caldwell, Reese M; Bermudez, Jessica G; Thai, David; Aonbangkhen, Chanat; Schuster, Benjamin S; Courtney, Taylor; Deiters, Alexander; Hammer, Daniel A; Chenoweth, David M; Good, Matthew C
2018-05-08
We report inducible dimerization strategies for controlling protein positioning, enzymatic activity, and organelle assembly inside synthetic cell-like compartments upon photostimulation. Using a photocaged TMP-Haloligand compound, we demonstrate small molecule and light-induced dimerization of DHFR and Haloenzyme to localize proteins to a compartment boundary and reconstitute tripartite sfGFP assembly. Using photocaged rapamycin and fragments of split TEV protease fused to FRB and FKBP, we establish optical triggering of protease activity inside cell-size compartments. We apply light-inducible protease activation to initiate assembly of membraneless organelles, demonstrating the applicability of these tools for characterizing cell biological processes in vitro. This modular toolkit, which affords spatial and temporal control of protein function in a minimal cell-like system, represents a critical step toward the reconstitution of a tunable synthetic cell, built from the bottom up.
NASA Astrophysics Data System (ADS)
Duyn, Jeff
2013-04-01
This work reviews recent developments in the use of magnetic susceptibility contrast for human MRI, with a focus on the study of brain anatomy. The increase in susceptibility contrast with modern high field scanners has led to novel applications and insights into the sources and mechanism contributing to this contrast in brain tissues. Dedicated experiments have demonstrated that in most of healthy brain, iron and myelin dominate tissue susceptibility variations, although their relative contribution varies substantially. Local variations in these compounds can affect both amplitude and frequency of the MRI signal. In white matter, the myelin sheath introduces an anisotropic susceptibility that has distinct effects on the water compartments inside the axons, between the myelin sheath, and the axonal space, and renders their signals dependent on the angle between the axon and the magnetic field. This offers opportunities to derive tissue properties specific to these cellular compartments.
Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heven Sze
To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionallymore » express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn homeostasis in post-Golgi compartments are critical for secretory activities. Moreover, perturbation of the secretory machinery limits growth possibly by upsetting the synthesis, processing and assembly of cell wall components. Analyses of whole genome transcriptome of pollen shows that a subset of Ca pump genes are developmentally regulated. Each ECA Ca pump is localized to distinct endomembrane compartments and regulate Ca and Mn homeostasis required for optimal growth and for tolerance to high Mn stress. Ca and Mn levels within endomembrane lumen appear to be critical for activities of the secretory machinery including post-Golgi compartments that coordinate membrane traffic and sorting of materials to the vacuole and the cell wall. Significance: Thus sorting of Ca/Mn by ECA pumps in endomembranes is critical for membrane trafficking pattern which serves as a central coordinator of plant growth, development and adaptation to abiotic and biotic stress.« less
49 CFR 38.127 - Sleeping compartments.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Intercity Rail Cars and Systems § 38.127 Sleeping compartments. (a...., heating and air conditioning controls, lighting controls, call buttons, electrical outlets, etc.) shall be...
49 CFR 38.127 - Sleeping compartments.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Intercity Rail Cars and Systems § 38.127 Sleeping compartments. (a...., heating and air conditioning controls, lighting controls, call buttons, electrical outlets, etc.) shall be...
49 CFR 38.127 - Sleeping compartments.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Intercity Rail Cars and Systems § 38.127 Sleeping compartments. (a...., heating and air conditioning controls, lighting controls, call buttons, electrical outlets, etc.) shall be...
49 CFR 38.127 - Sleeping compartments.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Intercity Rail Cars and Systems § 38.127 Sleeping compartments. (a...., heating and air conditioning controls, lighting controls, call buttons, electrical outlets, etc.) shall be...
49 CFR 38.127 - Sleeping compartments.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Intercity Rail Cars and Systems § 38.127 Sleeping compartments. (a...., heating and air conditioning controls, lighting controls, call buttons, electrical outlets, etc.) shall be...
On dependency properties of the ISIs generated by a two-compartmental neuronal model.
Benedetto, Elisa; Sacerdote, Laura
2013-02-01
One-dimensional leaky integrate and fire neuronal models describe interspike intervals (ISIs) of a neuron as a renewal process and disregarding the neuron geometry. Many multi-compartment models account for the geometrical features of the neuron but are too complex for their mathematical tractability. Leaky integrate and fire two-compartment models seem a good compromise between mathematical tractability and an improved realism. They indeed allow to relax the renewal hypothesis, typical of one-dimensional models, without introducing too strong mathematical difficulties. Here, we pursue the analysis of the two-compartment model studied by Lansky and Rodriguez (Phys D 132:267-286, 1999), aiming of introducing some specific mathematical results used together with simulation techniques. With the aid of these methods, we investigate dependency properties of ISIs for different values of the model parameters. We show that an increase of the input increases the strength of the dependence between successive ISIs.
Regulation of Glutathione in a Rat Diploid Hepatic Epithelial Cell Line
1990-06-01
supporting the contention that they are not pre-neoplastic (60). Metabolic cooperation by gap- junctional intercellular communication has been demonstrated...counted. The resulting population statistics allowed calculation and display of cycle-specific cell characteristics and compartment transit times (see...was repeated in chinese hamster V79 cells to see if the effect is idiosyncratic. It is not - V79 cells respond to CYC in the same fashion as WB344(s) if
Serapide, M F; Parenti, R; Pantò, M R; Zappalà, A; Cicirata, F
2002-06-01
Compartmentalization (alternating labelled and unlabelled stripes) of mossy fibre terminals was found in the cerebellar cortex after iontophoretic injections of biotinylated dextran amine into discrete regions of the nucleus reticularis tegmenti pontis (NRTP). The zonal pattern was only observed when volumes of nuclear tissue ranging from 4.5 x 106 to 17.66 x 106 microm3 were impregnated. Up to nine compartments (i.e. up to five stripes separated by four interstripes) were found in crus I and in vermal lobule VI. Up to seven compartments (four stripes and three interstripes) were found in crus II; up to five compartments (three stripes and two interstripes) were identified in the lobulus simplex, the paraflocculus and vermal lobules IV, V and VII; up to three compartments (two stripes and one interstripe) were identified in the paramedian lobule and, finally, up to two compartments (one stripe and one interstripe) were identified in the copula pyramidis, in the flocculus and in vermal lobules II, III, VIII and IX. The projections of the NRTP are arranged according to a divergent/convergent projection pattern. From single injections in the NRTP, projections were traced to a set of cortical stripes widely distributed over the cerebellar cortex. The set of stripes labelled from different regions of the NRTP partially overlapped but complete overlap was never found. This finding revealed that the topographic combination of the projections of the NRTP to the cerebellar cortex is specific for each region of the NRTP. Finally, the projections to single cortical areas were arranged according to a pattern of compartmentalization that is specific for each cortical area, independent of the site of injection in the NRTP and of the number of stripes evident in the cortex.
Postnatal Innate Immune Development: From Birth to Adulthood
Georgountzou, Anastasia; Papadopoulos, Nikolaos G.
2017-01-01
It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed. PMID:28848557
Acute compartment syndrome caused by uncontrolled hypothyroidism.
Modi, Anar; Amin, Hari; Salzman, Matthew; Morgan, Farah
2017-06-01
Acute compartment syndrome is increased tissue pressure exceeding perfusion pressure in a closed compartment resulting in nerve and muscle ischemia. Common precipitating causes are crush injuries, burns, substance abuse, osseous or vascular limb trauma. This is a case of 42year old female with history of hypothyroidism who presented to emergency room with acute onset of severe pain and swelling in right lower extremity. Physical examination was concerning for acute compartment syndrome of right leg which was confirmed by demonstration of elevated compartmental pressures. No precipitating causes were readily identified. Further laboratory testing revealed uncontrolled hypothyroidism. Management included emergent fasciotomy and initiating thyroid hormone replacement. This case represents a rare association between acute compartment syndrome and uncontrolled hypothyroidism. We also discuss the pathogenesis of compartment syndrome in hypothyroid patients and emphasize the importance of evaluating for less common causes, particularly in setting of non-traumatic compartment syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.
Application of separable parameter space techniques to multi-tracer PET compartment modeling.
Zhang, Jeff L; Michael Morey, A; Kadrmas, Dan J
2016-02-07
Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.
Application of separable parameter space techniques to multi-tracer PET compartment modeling
NASA Astrophysics Data System (ADS)
Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.
2016-02-01
Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.
Localization of mRNA in vertebrate axonal compartments by in situ hybridization.
Sotelo-Silveira, José Roberto; Calliari, Aldo; Kun, Alejandra; Elizondo, Victoria; Canclini, Lucía; Sotelo, José Roberto
2011-01-01
The conclusive demonstration of RNA in vertebrate axons by in situ hybridization (ISH) has been elusive. We review the most important reasons for difficulties, including low concentration of axonal RNAs, localization in specific cortical domains, and the need to isolate axons. We demonstrate the importance of axon micro-dissection to obtain a whole mount perspective of mRNA distribution in the axonal territory. We describe a protocol to perform fluorescent ISH in isolated axons and guidelines for the preservation of structural and molecular integrity of cortical RNA-containing domains (e.g., Periaxoplasmic Ribosomal Plaques, or PARPs) in isolated axoplasm.
Image-guided spatial localization of heterogeneous compartments for magnetic resonance
An, Li; Shen, Jun
2015-01-01
Purpose: Image-guided localization SPectral Localization Achieved by Sensitivity Heterogeneity (SPLASH) allows rapid measurement of signals from irregularly shaped anatomical compartments without using phase encoding gradients. Here, the authors propose a novel method to address the issue of heterogeneous signal distribution within the localized compartments. Methods: Each compartment was subdivided into multiple subcompartments and their spectra were solved by Tikhonov regularization to enforce smoothness within each compartment. The spectrum of a given compartment was generated by combining the spectra of the components of that compartment. The proposed method was first tested using Monte Carlo simulations and then applied to reconstructing in vivo spectra from irregularly shaped ischemic stroke and normal tissue compartments. Results: Monte Carlo simulations demonstrate that the proposed regularized SPLASH method significantly reduces localization and metabolite quantification errors. In vivo results show that the intracompartment regularization results in ∼40% reduction of error in metabolite quantification. Conclusions: The proposed method significantly reduces localization errors and metabolite quantification errors caused by intracompartment heterogeneous signal distribution. PMID:26328977
Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth
Fiore, Michele; Strazewski, Peter
2016-01-01
It is still uncertain how the first minimal cellular systems evolved to the complexity required for life to begin, but it is obvious that the role of amphiphilic compounds in the origin of life is one of huge relevance. Over the last four decades a number of studies have demonstrated how amphiphilic molecules can be synthesized under plausibly prebiotic conditions. The majority of these experiments also gave evidence for the ability of so formed amphiphiles to assemble in closed membranes of vesicles that, in principle, could have compartmented first biological processes on early Earth, including the emergence of self-replicating systems. For a competitive selection of the best performing molecular replicators to become operative, some kind of bounded units capable of harboring them are indispensable. Without the competition between dynamic populations of different compartments, life itself could not be distinguished from an otherwise disparate array or network of molecular interactions. In this review, we describe experiments that demonstrate how different prebiotically-available building blocks can become precursors of phospholipids that form vesicles. We discuss the experimental conditions that resemble plausibly those of the early Earth (or elsewhere) and consider the analytical methods that were used to characterize synthetic products. Two brief sections focus on phosphorylating agents, catalysts and coupling agents with particular attention given to their geochemical context. In Section 5, we describe how condensing agents such as cyanamide and urea can promote the abiotic synthesis of phospholipids. We conclude the review by reflecting on future studies of phospholipid compartments, particularly, on evolvable chemical systems that include giant vesicles composed of different lipidic amphiphiles. PMID:27043635
Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.
2017-01-01
Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201
Automatic fire-extinguishing system for inhabited pressurized compartments of manned spacecraft
NASA Astrophysics Data System (ADS)
Bolodian, Ivan; Melikhov, Anatoliy; Tanklevskiy, Leonid
2017-06-01
There is an innovational fire-extinguishing technology implemented via equipage of inhabited pressurized modules of the space station "Mir" and compartments of the Russian segment of International space station by automatic fire extinguishing systems in an orbital flight. Fire-safety in inhabited pressurized compartments of spacecraft (further - InPC SC) became one of the most dangerous factors during an orbital flight after a number of fire-hazardous situations occurred in different countries during preparation and execution of spaceflights [1,2]. High fire-risk in InPC of manned SC is determined by the following specific peculiarities of a arrangement and usage conditions of these items: - atmosphere of inhabited compartments is considerably enriched with oxygen - up to 25-40%; - there are many structural non-metal materials (here and after - materials) in order to lower the weight of InPC SC, most part of these materials is combustible under a given concentration of oxygen (here and after - Cox) in the atmosphere of InPC SC; - ventilation flow (here and after - Vvf) under normal operation of ventilation means in InPC SC considerably increases a possibility of fast fire-spread in InPC. - inhabited pressurized compartments of SC are filled with electrical equipment, which elements during failures even in low-current circuits became fire sources in oxygen-rich atmosphere; - indoor spaces of inhabited pressurized compartments of SC, as a rule, have complicated figuration with isolated for usage of local fire extinguishing zones with elements of electrical devices.
[Common intralobular microcirculatory module peculliarities in cholestasis in white rats].
Sulaberidze, G D; Kardzvia, D Dzh; Kikalishvili, L A; Khomeriki, Ts T
2006-03-01
The dynamics of intralobular microcirculatory module transformation in cholestasis was investigated. The liver tissues of 54 white Wistar rats were studied by Histology, TEM, TEM after injection of 1% Pb(NO(3))(3), vie common bile duct (CBD), SEM of corrosion casts prepared after methylmethacrylate injection vie CBD. It is demonstrated that liver is the basis of microcirculation of 4 different liquids: blood, bile, connective tissue liquid and lymph. Accordingly, in normal condition 4 different well formed compartments bordered from each-others by different types of cells exist. In the yearly stages of cholestasis (3-6 days) the function of bile drainage is partially overtaken by lymph pathways. This is accompanied by the beginning of the destruction of structures bordering above-mentioned microcirculatory beds. In the later stages of cholestasis (12-18 days) the final disorganization of microcirculatory compartments with mixture of all liquids is observed. It is accompanied by increased dystrophy of liver cells population.
Coping with the diagnostic complexities of the compartment syndrome
NASA Technical Reports Server (NTRS)
Mubarak, S. J.; Hargens, A. R.; Karkal, S. S.
1988-01-01
This review recognizes that, given the various complexities associated with the condition, no pat answers can be given to fit every patient with the compartment syndrome. The authors first give a definition of the syndrome, together with a brief account of how this self-perpetuating pathologic cycle is triggered. Next, they delineate specific anatomical features of compartments that are likely to be involved, and follow this with an inventory of symptoms and signs to look for in suspected cases. After sorting out the entities that can mimic the compartment syndrome, the authors describe three essential techniques of measuring tissue pressure, which can prove invaluable in diagnosing the compartment syndrome.
Fenrich, Keith K; Zhao, Ethan Y; Wei, Yuan; Garg, Anirudh; Rose, P Ken
2014-04-15
Isolating specific cellular and tissue compartments from 3D image stacks for quantitative distribution analysis is crucial for understanding cellular and tissue physiology under normal and pathological conditions. Current approaches are limited because they are designed to map the distributions of synapses onto the dendrites of stained neurons and/or require specific proprietary software packages for their implementation. To overcome these obstacles, we developed algorithms to Grow and Shrink Volumes of Interest (GSVI) to isolate specific cellular and tissue compartments from 3D image stacks for quantitative analysis and incorporated these algorithms into a user-friendly computer program that is open source and downloadable at no cost. The GSVI algorithm was used to isolate perivascular regions in the cortex of live animals and cell membrane regions of stained spinal motoneurons in histological sections. We tracked the real-time, intravital biodistribution of injected fluorophores with sub-cellular resolution from the vascular lumen to the perivascular and parenchymal space following a vascular microlesion, and mapped the precise distributions of membrane-associated KCC2 and gephyrin immunolabeling in dendritic and somatic regions of spinal motoneurons. Compared to existing approaches, the GSVI approach is specifically designed for isolating perivascular regions and membrane-associated regions for quantitative analysis, is user-friendly, and free. The GSVI algorithm is useful to quantify regional differences of stained biomarkers (e.g., cell membrane-associated channels) in relation to cell functions, and the effects of therapeutic strategies on the redistributions of biomolecules, drugs, and cells in diseased or injured tissues. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yungui; Li, Qingqing; Chen, Baoliang
2016-03-01
The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants.
Li, Yungui; Li, Qingqing; Chen, Baoliang
2016-03-24
The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants.
The role of the seagrass Posidonia oceanica in the cycling of trace elements
NASA Astrophysics Data System (ADS)
Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.
2012-03-01
The aim of this work was to study the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in the different compartments of P. oceanica (leaves, rhizomes, roots and epibiota) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epibiota was the compartment which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. For most trace elements, translocation seemed to be low and acropetal. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.
The role of the seagrass Posidonia oceanica in the cycling of trace elements
NASA Astrophysics Data System (ADS)
Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.
2012-07-01
The aim of this study was to investigate the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in different compartments of P. oceanica (leaves, rhizomes, roots and epiphytes) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epiphytes were the compartment, which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. Trace element translocation in P. oceanica seemed to be low and acropetal in most cases. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi showed the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.
Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model.
Dresing, Iska; Zeiter, Stephan; Auer, Jörg; Alini, Mauro; Eglin, David
2014-07-01
The purpose of this study was to evaluate the impact on osteochondral healing of press-fitted multiphasic osteochondral scaffolds consisting of poly(ester-urethane) (PUR) and hydroxyapatite into a cylindric osteochondral defect in the distal non-weight bearing femoral trochlear ridge of the rabbit. Two scaffolds were investigated, one with and one without an intermediate microporous membrane between the cartilage and the bone compartment of the scaffold. A control group without a scaffold placed into the defect was included. After 12 weeks macroscopic and histomorphological analyses were performed. The scaffold was easily press-fitted and provided a stable matrix for tissue repair. The membrane did not demonstrate a detrimental effect on tissue healing compared with the scaffold without membrane. However, the control group had statistically superior healing as reflected by histological differences in the cartilage and subchondral bone compartment between control group and each scaffold group. A more detailed analysis revealed that the difference was localized in the bone compartment healing. The present study demonstrates that an elastomeric PUR scaffold can easily be press-fitted into an osteochondral defect and provides a stable matrix for tissue repair. However, the multi-phasic scaffold did not provide a clear advantage for tissue healing. Future investigations should refine especially the bone phase of the implant to increase its stiffness, biocompatibility and osteoconductive activity. A more precise fabrication technique would be necessary for the matching of tissue organisation.
Samad, Abdul; Trognitz, Friederike; Compant, Stéphane; Antonielli, Livio; Sessitsch, Angela
2017-04-01
Weeds and crop plants select their microbiota from the same pool of soil microorganisms, however, the ecology of weed microbiomes is poorly understood. We analysed the microbiomes associated with roots and rhizospheres of grapevine and four weed species (Lamium amplexicaule L., Veronica arvensis L., Lepidium draba L. and Stellaria media L.) growing in proximity in the same vineyard using 16S rRNA gene sequencing. We also isolated and characterized 500 rhizobacteria and root endophytes from L. draba and grapevine. Microbiome data analysis revealed that all plants hosted significantly different microbiomes in the rhizosphere as well as in root compartment, however, differences were more pronounced in the root compartment. The shared microbiome of grapevine and the four weed species contained 145 OTUs (54.2%) in the rhizosphere, but only nine OTUs (13.2%) in the root compartment. Seven OTUs (12.3%) were shared in all plants and compartments. Approximately 56% of the major OTUs (>1%) showed more than 98% identity to bacteria isolated in this study. Moreover, weed-associated bacteria generally showed a higher species richness in the rhizosphere, whereas the root-associated bacteria were more diverse in the perennial plants grapevine and L. draba. Overall, weed isolates showed more plant growth-promoting characteristics compared with grapevine isolates. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Martel-Pelletier, Johanne; Raynauld, Jean-Pierre; Dorais, Marc; Abram, François; Pelletier, Jean-Pierre
2016-04-01
Limited studies have explored the association between adipokines and knee OA structural progression using quantitative MRI (qMRI), and very few have included total knee replacement (TKR) as a disease outcome. The objective of this study was to compare serum levels of five adipokines to cartilage volume loss (CVL) and investigate their predictive value for TKR. The according-to-protocol population (n = 138) of a knee OA trial was used. Serum levels of adipsin (complement factor D), leptin, adiponectin, resistin and serpin E1, and cartilage volume were determined at baseline and 24 months with specific ELISAs and qMRI, respectively. Study knee TKR incidence up to 4 years post-trial was also assessed. Greater baseline values of adipsin and leptin correlated with increased CVL in the global knee and medial femur (P ⩽ 0.032) and of adipsin in the lateral compartment and femur (P ⩽ 0.028). Adiponectin showed an inverse correlation in the medial compartment and femur (P ⩽ 0.027). Resistin and serpin E1 were not associated with CVL. Multivariate analyses revealed that patients in the highest tertile at baseline of adipsin presented a greater odds ratio of CVL in the lateral compartment and femur (⩾2.87; P ⩽ 0.011), and those in the highest tertile of leptin in the medial compartment (2.78; P = 0.038). Most clinically relevant, patients in the highest tertile of adipsin or leptin at baseline had significantly greater incidence of TKR (P = 0.027). Data demonstrate that both adipsin and leptin predict greater CVL over time in the lateral and medial compartment, respectively. Importantly, this study also demonstrates that higher baseline levels of adipsin or leptin are associated with higher incidence of TKR. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Adipose Tissue Quantification by Imaging Methods: A Proposed Classification
Shen, Wei; Wang, ZiMian; Punyanita, Mark; Lei, Jianbo; Sinav, Ahmet; Kral, John G.; Imielinska, Celina; Ross, Robert; Heymsfield, Steven B.
2007-01-01
Recent advances in imaging techniques and understanding of differences in the molecular biology of adipose tissue has rendered classical anatomy obsolete, requiring a new classification of the topography of adipose tissue. Adipose tissue is one of the largest body compartments, yet a classification that defines specific adipose tissue depots based on their anatomic location and related functions is lacking. The absence of an accepted taxonomy poses problems for investigators studying adipose tissue topography and its functional correlates. The aim of this review was to critically examine the literature on imaging of whole body and regional adipose tissue and to create the first systematic classification of adipose tissue topography. Adipose tissue terminology was examined in over 100 original publications. Our analysis revealed inconsistencies in the use of specific definitions, especially for the compartment termed “visceral” adipose tissue. This analysis leads us to propose an updated classification of total body and regional adipose tissue, providing a well-defined basis for correlating imaging studies of specific adipose tissue depots with molecular processes. PMID:12529479
A hybrid continuous-discrete method for stochastic reaction-diffusion processes.
Lo, Wing-Cheong; Zheng, Likun; Nie, Qing
2016-09-01
Stochastic fluctuations in reaction-diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the diffusion. While the approach is convenient in terms of its implementation, its computational cost may become prohibitive when diffusive jumps occur significantly more frequently than reactions, as in the case of rapid diffusion. Here, we present a hybrid continuous-discrete method in which diffusion is simulated using continuous approximation while reactions are based on the Gillespie algorithm. Specifically, the diffusive jumps are approximated as continuous Gaussian random vectors with time-dependent means and covariances, allowing use of a large time step, even for rapid diffusion. By considering the correlation among diffusive jumps, the approximation is accurate for the second moment of the diffusion process. In addition, a criterion is obtained for identifying the region in which such diffusion approximation is required to enable adaptive calculations for better accuracy. Applications to a linear diffusion system and two nonlinear systems of morphogens demonstrate the effectiveness and benefits of the new hybrid method.
Static knee alignment and its association with radiographic knee osteoarthritis.
Teichtahl, A J; Cicuttini, F M; Janakiramanan, N; Davis, S R; Wluka, A E
2006-09-01
Although knee alignment is associated with the progression of knee osteoarthritis (OA), it is unclear which features that characterize radiographic OA are related to alignment. The aim of this study was to examine the relationship between static knee joint alignment (measured as a continuous variable) and the radiographic features of knee OA (joint space narrowing and osteophytes). One hundred and twenty one adults with symptomatic knee OA were recruited using a combined strategy including referral from specialist centres, arthritis support groups and media advertising. X-rays were performed to classify the severity of disease and to determine static knee alignment. Increasing varus knee alignment was associated with increasing risk of medial compartment joint space narrowing (P < 0.001) and osteophytes (P = 0.005). Increasing valgus knee alignment was associated with an increased risk for lateral compartment joint space narrowing (P < 0.001) and osteophytes (P = 0.002). This study has demonstrated that the static knee angle, measured as a continuous variable, is an important determinant of the compartment-specific features of radiographic knee OA. Further work is required to determine whether interventions aimed at correcting these relatively minor levels of varus and valgus angulation will have an effect on the risk of tibiofemoral OA.
The Angiocrine Factor Rspondin3 Is a Key Determinant of Liver Zonation.
Rocha, Ana Sofia; Vidal, Valerie; Mertz, Marjolijn; Kendall, Timothy J; Charlet, Aurelie; Okamoto, Hitoshi; Schedl, Andreas
2015-12-01
Liver zonation, the spatial separation of different metabolic pathways along the liver sinusoids, is fundamental for proper functioning of this organ, and its disruption can lead to the development of metabolic disorders such as hyperammonemia. Metabolic zonation involves the induction of β-catenin signaling around the central veins, but how this patterned activity is established and maintained is unclear. Here, we show that the signaling molecule Rspondin3 is specifically expressed within the endothelial compartment of the central vein. Conditional deletion of Rspo3 in mice disrupts activation of central fate, demonstrating its crucial role in determining and maintaining β-catenin-dependent zonation. Moreover, ectopic expression of Rspo1, a close family member of Rspo3, induces the expression of pericentral markers, demonstrating Rspondins to be sufficient to imprint a more central fate. Thus, Rspo3 is a key angiocrine factor that controls metabolic zonation of liver hepatocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Percival, J M; Thomas, G; Cock, T A; Gardiner, E M; Jeffrey, P L; Lin, J J; Weinberger, R P; Gunning, P
2000-11-01
The nonmuscle actin cytoskeleton consists of multiple networks of actin microfilaments. Many of these filament systems are bound by the actin-binding protein tropomyosin (Tm). We investigated whether Tm isoforms could be cell cycle regulated during G0 and G1 phases of the cell cycle in synchronised NIH 3T3 fibroblasts. Using Tm isoform-specific antibodies, we investigated protein expression levels of specific Tms in G0 and G1 phases and whether co-expressed isoforms could be sorted into different compartments. Protein levels of Tms 1, 2, 5a, 6, from the alpha Tm(fast) and beta-Tm genes increased approximately 2-fold during mid-late G1. Tm 3 levels did not change appreciably during G1 progression. In contrast, Tm 5NM gene isoform levels (Tm 5NM-1-11) increased 2-fold at 5 h into G1 and this increase was maintained for the following 3 h. However, Tm 5NM-1 and -2 levels decreased by a factor of three during this time. Comparison of the staining of the antibodies CG3 (detects all Tm 5NM gene products), WS5/9d (detects only two Tms from the Tm 5NM gene, Tm 5NM-1 and -2) and alpha(f)9d (detects specific Tms from the alpha Tm(fast) and beta-Tm genes) antibodies revealed 3 spatially distinct microfilament systems. Tm isoforms detected by alpha(f)9d were dramatically sorted from isoforms from the Tm 5NM gene detected by CG3. Tm 5NM-1 and Tm 5NM-2 were not incorporated into stress fibres, unlike other Tm 5NM isoforms, and marked a discrete, punctate, and highly polarised compartment in NIH 3T3 fibroblasts. All microfilament systems, excluding that detected by the WS5/9d antibody, were observed to coalign into parallel stress fibres at 8 h into G1. However, Tms detected by the CG3 and alpha(f)9d antibodies were incorporated into filaments at different times indicating distinct temporal control mechanisms. Microfilaments in NIH 3T3 cells containing Tm 5NM isoforms were more resistant to cytochalasin D-mediated actin depolymerisation than filaments containing isoforms from the alpha Tm(fast) and beta-Tm genes. This suggests that Tm 5NM isoforms may be in different microfilaments to alpha Tm(fast) and beta-Tm isoforms even when present in the same stress fibre. Staining of primary mouse fibroblasts showed identical Tm sorting patterns to those seen in cultured NIH 3T3 cells. Furthermore, we demonstrate that sorting of Tms is not restricted to cultured cells and can be observed in human columnar epithelial cells in vivo. We conclude that the expression and localisation of Tm isoforms are differentially regulated in G0 and G1 phase of the cell cycle. Tms mark multiple microfilament compartments with restricted tropomyosin composition. The creation of distinct microfilament compartments by differential sorting of Tm isoforms is observable in primary fibroblasts, cultured 3T3 cells and epithelial cells in vivo. Copyright 2000 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisiger, R.A.; Mendel, C.M.; Cavalieri, R.R.
1986-03-01
Two general models have been proposed for predicting the effects of metabolism, protein binding, and plasma flow on the removal of drugs by the liver. These models differ in the degree of plasma mixing assumed to exist within each hepatic sinusoid. The venous equilibrium model treats the sinusoid as a single well-stirred compartment, whereas the sinusoidal model effectively breaks up the sinusoid into a large number of sequentially perfused compartments which do not exchange their contents except through plasma flow. As a consequence, the sinusoidal model, but not the venous equilibrium model, predicts that the concentration of highly extracted drugsmore » will decline as the plasma flows through the hepatic lobule. To determine which of these alternative models best describes the hepatic uptake process, we looked for evidence that concentration gradients are formed during the uptake of (/sup 125/I)thyroxine by the perfused rat liver. Autoradiography of tissue slices after perfusion of the portal vein at physiologic flow rates with protein-free buffer containing (/sup 125/I)thyroxine demonstrated a rapid exponential fall in grain density with distance from the portal venule, declining by half for each 8% of the mean length of the sinusoid. Reversing the direction of perfusate flow reversed the direction of the autoradiographic gradients, indicating that they primarily reflect differences in the concentration of thyroxine within the hepatic sinusoids rather than differences in the uptake capacity of portal and central hepatocytes. Analysis of the data using models in which each sinusoid was represented by different numbers of sequentially perfused compartments (1-20) indicated that at least eight compartments were necessary to account for the magnitude of the gradients seen.« less
Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea
2011-01-01
Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.
Stiti, Naim; Missihoun, Tagnon D.; Kotchoni, Simeon O.; Kirch, Hans-Hubert; Bartels, Dorothea
2011-01-01
Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected Arabidopsis ALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities. PMID:22639603
NASA Astrophysics Data System (ADS)
Wei, Xile; Si, Kaili; Yi, Guosheng; Wang, Jiang; Lu, Meili
2016-07-01
In this paper, we use a reduced two-compartment neuron model to investigate the interaction between extracellular subthreshold electric field and synchrony in small world networks. It is observed that network synchronization is closely related to the strength of electric field and geometric properties of the two-compartment model. Specifically, increasing the electric field induces a gradual improvement in network synchrony, while increasing the geometric factor results in an abrupt decrease in synchronization of network. In addition, increasing electric field can make the network become synchronous from asynchronous when the geometric parameter is set to a given value. Furthermore, it is demonstrated that network synchrony can also be affected by the firing frequency and dynamical bifurcation feature of single neuron. These results highlight the effect of weak field on network synchrony from the view of biophysical model, which may contribute to further understanding the effect of electric field on network activity.
Engineering triterpene metabolism in tobacco
Shuiqin, Wu; Zuodong, Jiang; Chase, Kempinski; Eric Nybo, S.; Husodo, Satrio; Williams, Robert
2013-01-01
Terpenes comprise a distinct class of natural products that serve a diverse range of physiological functions, provide for interactions between plants and their environment and represent a resource for many kinds of practical applications. To better appreciate the importance of terpenes to overall growth and development, and to create a production capacity for specific terpenes of industrial interest, we have pioneered the development of strategies for diverting carbon flow from the native terpene biosynthetic pathways operating in the cytosol and plastid compartments of tobacco for the generation of specific classes of terpenes. In the current work, we demonstrate how difficult it is to divert the 5-carbon intermediates DMAPP and IPP from the mevalonate pathway operating in the cytoplasm for triterpene biosynthesis, yet diversion of the same intermediates from the methylerythritol phosphate pathway operating in the plastid compartment leads to the accumulation of very high levels of the triterpene squalene. This was assessed by the co-expression of an avian farnesyl diphosphate synthase and yeast squalene synthase genes targeting metabolism in the cytoplasm or chloroplast. We also evaluated the possibility of directing this metabolism to the secretory trichomes of tobacco by comparing the effects of trichome-specific gene promoters to strong, constitutive viral promoters. Surprisingly, when transgene expression was directed to trichomes, high-level squalene accumulation was observed, but overall plant growth and physiology were reduced up to 80 % of the non-transgenic controls. Our results support the notion that the biosynthesis of a desired terpene can be dramatically improved by directing that metabolism to a non-native cellular compartment, thus avoiding regulatory mechanisms that might attenuate carbon flux within an engineered pathway. PMID:22729821
Application of separable parameter space techniques to multi-tracer PET compartment modeling
Zhang, Jeff L; Morey, A Michael; Kadrmas, Dan J
2016-01-01
Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. PMID:26788888
Calvetti, Daniela; Cheng, Yougan; Somersalo, Erkki
2016-12-01
Identifying feasible steady state solutions of a brain energy metabolism model is an inverse problem that allows infinitely many solutions. The characterization of the non-uniqueness, or the uncertainty quantification of the flux balance analysis, is tantamount to identifying the degrees of freedom of the solution. The degrees of freedom of multi-compartment mathematical models for energy metabolism of a neuron-astrocyte complex may offer a key to understand the different ways in which the energetic needs of the brain are met. In this paper we study the uncertainty in the solution, using techniques of linear algebra to identify the degrees of freedom in a lumped model, and Markov chain Monte Carlo methods in its extension to a spatially distributed case. The interpretation of the degrees of freedom in metabolic terms, more specifically, glucose and oxygen partitioning, is then leveraged to derive constraints on the free parameters to guarantee that the model is energetically feasible. We demonstrate how the model can be used to estimate the stoichiometric energy needs of the cells as well as the household energy based on the measured oxidative cerebral metabolic rate of glucose and glutamate cycling. Moreover, our analysis shows that in the lumped model the net direction of lactate dehydrogenase (LDH) in the cells can be deduced from the glucose partitioning between the compartments. The extension of the lumped model to a spatially distributed multi-compartment setting that includes diffusion fluxes from capillary to tissue increases the number of degrees of freedom, requiring the use of statistical sampling techniques. The analysis of the distributed model reveals that some of the conclusions valid for the spatially lumped model, e.g., concerning the LDH activity and glucose partitioning, may no longer hold.
Jespersen, Sune Nørhøj; Lundell, Henrik; Sønderby, Casper Kaae; Dyrby, Tim B
2013-12-01
Pulsed field gradient diffusion sequences (PFG) with multiple diffusion encoding blocks have been indicated to offer new microstructural tissue information, such as the ability to detect nonspherical compartment shapes in macroscopically isotropic samples, i.e. samples with negligible directional signal dependence on diffusion gradients in standard diffusion experiments. However, current acquisition schemes are not rotationally invariant in the sense that the derived metrics depend on the orientation of the sample, and are affected by the interplay of sampling directions and compartment orientation dispersion when applied to macroscopically anisotropic systems. Here we propose a new framework, the d-PFG 5-design, to enable rotationally invariant estimation of double wave vector diffusion metrics (d-PFG). The method is based on the idea that an appropriate orientational average of the signal emulates the signal from a powder preparation of the same sample, where macroscopic anisotropy is absent by construction. Our approach exploits the theory of exact numerical integration (quadrature) of polynomials on the rotation group, and we exemplify the general procedure with a set consisting of 60 pairs of diffusion wave vectors (the d-PFG 5-design) facilitating a theoretically exact determination of the fourth order Taylor or cumulant expansion of the orientationally averaged signal. The d-PFG 5-design is evaluated with numerical simulations and ex vivo high field diffusion MRI experiments in a nonhuman primate brain. Specifically, we demonstrate rotational invariance when estimating compartment eccentricity, which we show offers new microstructural information, complementary to that of fractional anisotropy (FA) from diffusion tensor imaging (DTI). The imaging observations are supported by a new theoretical result, directly relating compartment eccentricity to FA of individual pores. Copyright © 2013 John Wiley & Sons, Ltd.
A novel optical assay system for the quantitative measurement of chemotaxis.
Kanegasaki, Shiro; Nomura, Yuka; Nitta, Nao; Akiyama, Shuichi; Tamatani, Takuya; Goshoh, Yasuhiro; Yoshida, Takashi; Sato, Tsuyoshi; Kikuchi, Yuji
2003-11-01
We have developed an optically accessible, horizontal chemotaxis apparatus consisting of an etched silicon substrate and a flat glass plate, both of which form two compartments with a 5-microm-deep microchannel in between. The device is held together with a stainless steel holder with holes for injecting cells and a chemoattractant to the different compartments. Migration of cells in the channel is traced with time-lapse intervals using a CCD camera. By developing a method for aligning cells at the edge of the channel, we could successfully reduce the number of cells required for a chemotactic assay, depending on the experiment, to 100 or less. To prevent ceaseless flow of contents between the adjacent compartments via the communicating microchannel, a space at the top end of the holder was filled with medium after aligning the cells. By using a fluorescent probe, we demonstrated experimentally that a stable concentration gradient could be maintained. Furthermore, we determined theoretical details of the gradient established using a model chemokine and a computational fluid dynamics code. Reproducible kinetic results of cell migration were obtained using human neutrophils and IL-8 as a model. Migration of other cells such as eosinophils, basophils and Jurkat lymphocytes toward the appropriate chemokines were also demonstrated.
Figueiredo, Luisa M.; Rocha, Eduardo P. C.; Mancio-Silva, Liliana; Prevost, Christine; Hernandez-Verdun, Danièle; Scherf, Artur
2005-01-01
Telomerase replicates chromosome ends, a function necessary for maintaining genome integrity. We have identified the gene that encodes the catalytic reverse transcriptase (RT) component of this enzyme in the malaria parasite Plasmodium falciparum (PfTERT) as well as the orthologous genes from two rodent and one simian malaria species. PfTERT is predicted to encode a basic protein that contains the major sequence motifs previously identified in known telomerase RTs (TERTs). At ∼2500 amino acids, PfTERT is three times larger than other characterized TERTs. We observed remarkable sequence diversity between TERT proteins of different Plasmodial species, with conserved domains alternating with hypervariable regions. Immunofluorescence analysis revealed that PfTERT is expressed in asexual blood stage parasites that have begun DNA synthesis. Surprisingly, rather than at telomere clusters, PfTERT typically localizes into a discrete nuclear compartment. We further demonstrate that this compartment is associated with the nucleolus, hereby defined for the first time in P.falciparum. PMID:15722485
Kersemans, Veerle; Cornelissen, Bart; Bacher, Klaus; Kersemans, Ken; Thierens, Hubert; Dierckx, Rudi A; De Spiegeleer, Bart; Slegers, Guido; Mertens, John
2005-12-01
Earlier reports described the preferential uptake of d-amino acids in tumor-bearing mice. Moreover, it was shown that in tumor cells in vitro the L-amino acid transporter system seemed to lack stereospecificity. Because of the successful results with 123/125I-2-iodo-L-phenylalanine, 123/125I-2-iodo-D-phenylalanine was developed, and its tumor-detecting characteristics were evaluated in vivo. 123I labeling of 2-iodo-D-phenylalanine was performed with a kit formulation by use of Cu1+-assisted nucleophilic exchange. 123I-2-Iodo-D-phenylalanine was evaluated in R1M tumor-bearing athymic mice by dynamic planar imaging (DPI) and dissection. The in vivo stability of the tracer was tested by high-performance liquid chromatography. Tumor tracer retention and tracer contrast were evaluated as a function of time. Two-compartment blood modeling from DPI results and dosimetric calculations from biodistribution results were carried out. Moreover, 125I-2-iodo-D-phenylalanine and 18F-FDG uptake in acute inflammation was investigated. 123I-2-Iodo-D-phenylalanine was metabolically stable. Fast, high, and specific tumor retention was observed. Two-compartment modeling confirmed the fast clearance of the tracer through the kidneys to the bladder, as observed by DPI and dissection. Moreover, compared with the L-isomer, 123I-2-iodo-D-phenylalanine demonstrated faster clearance and faster uptake in the peripheral compartment. No accumulation in the abdomen or in the brain was noted. Dosimetry revealed that 123I-2-iodo-D-phenylalanine demonstrated a low radiation burden comparable to those of 123I-2-iodo-L-phenylalanine and 123I-2-iodo-L-tyrosine. Although 123I-2-iodo-D-phenylalanine showed a tumor retention of only 4%, the tumor contrast was increased up to 350% at 19 h after injection. 123I-2-Iodo-D-phenylalanine is a promising tracer for diagnostic oncologic imaging because of its high, fast, and specific tumor uptake and fast clearance from blood.
Fu, Feng; Nowak, Martin A.; Bonhoeffer, Sebastian
2015-01-01
Acquired resistance is one of the major barriers to successful cancer therapy. The development of resistance is commonly attributed to genetic heterogeneity. However, heterogeneity of drug penetration of the tumor microenvironment both on the microscopic level within solid tumors as well as on the macroscopic level across metastases may also contribute to acquired drug resistance. Here we use mathematical models to investigate the effect of drug heterogeneity on the probability of escape from treatment and the time to resistance. Specifically we address scenarios with sufficiently potent therapies that suppress growth of all preexisting genetic variants in the compartment with the highest possible drug concentration. To study the joint effect of drug heterogeneity, growth rate, and evolution of resistance, we analyze a multi-type stochastic branching process describing growth of cancer cells in multiple compartments with different drug concentrations and limited migration between compartments. We show that resistance is likely to arise first in the sanctuary compartment with poor drug penetrations and from there populate non-sanctuary compartments with high drug concentrations. Moreover, we show that only below a threshold rate of cell migration does spatial heterogeneity accelerate resistance evolution, otherwise deterring drug resistance with excessively high migration rates. Our results provide new insights into understanding why cancers tend to quickly become resistant, and that cell migration and the presence of sanctuary sites with little drug exposure are essential to this end. PMID:25789469
Atmosphere stabilization and element recycle in an experimental mouse-algal system
NASA Technical Reports Server (NTRS)
Smernoff, David T.
1986-01-01
Life support systems based on bioregeneration rely on the control and manipulation of organisms. Experiments conducted with a gas-closed mouse-algal system designed to investigate principles of photosynthetic gas exchange focus primarily on observing gas exchange phenomena under varying algal environmental conditions and secondarily on studying element cycling through compartments of the experimental system. Inherent instabilities exit between the uptake and release of carbon dioxide CO2 and oxygen O2 by the mouse and algae. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable maintenance of physiologic concentrations of CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations have been examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system. Elemental mass balances through the experimental systems compartments are being studied with the concurrent development of a mathematical simulation model. Element cycling experiments include quantification of elemental flows through system compartments and wet oxidation of system waste materials for use as an algal nutrient source. Oxidized waste products demonstrate inhibitory properties although dilution has been shown to allow normal growth.
Compartment-specific control of signaling from a DNA-sensing immune receptor.
Engel, Alex; Barton, Gregory M
2010-11-30
Many cell signaling events are spatially organized, enabling control of specificity, amplitude, and duration. Toll-like receptor 9 (TLR9) binds to nucleic acid sequences present in bacteria or DNA viruses and initiates a signaling pathway that culminates in the transcriptional induction of genes important for host defense, such as those encoding proinflammatory cytokines and type I interferon. A specialized membrane trafficking pathway has been described that is required for a specific branch of TLR9 signaling: the production of type I interferon. Cells deficient for the clathrin adaptor complex AP-3 failed to traffic TLR9 to a specific endosomal compartment and were unable to produce type I interferon despite normal increases in the abundance of interleukin-12p40, a proinflammatory cytokine. These findings support a model in which the targets of TLR9 engagement are controlled by the compartment in which TLR9 is activated.
Frozen section analysis and sentinel lymph node biopsy in well differentiated thyroid cancer
2013-01-01
Background The aim of this study is to prospectively review the role of sentinel lymph node (SLN) biopsy in the management of well differentiated thyroid carcinoma (WDTC), and to determine the efficacy of intraoperative frozen section analysis at detecting SLN metastasis and central compartment involvement. Methods The SLN biopsy protocol using 1% methylene blue was performed in 300 patients undergoing thyroidectomy for WDTC. A limited pretracheal central compartment neck dissection (CCND) was performed on all patients. Lymph nodes staining blue were considered as SLN’s. Both frozen and permanent section analyses were performed. Results SLN’s with metastasis were found in 14.3% (43/300) of cases. Of this, 11% (33/300) were positive on intraoperative frozen section analysis. Frozen section results failed in predicting central compartment involvement in 15 cases (5%) whereas central neck compartment involvement was missed in 5 cases (1.7%) when based on permanent section results. On frozen section analysis, the sensitivity, specificity, positive predictive value and negative predictive value (95% CI) of our SLN biopsy technique aiming to remove all disease from the central compartment was 68.8% (53.6-80.9), 100% (98.1-100), 100% (87.0-100) and 94.4% (90.7-96.7) respectively with P < 0.0001. On permanent section analysis, the values were 89.6% (76.6-96.1), 100% (98.1-100), 100% (89.8-100), and 98.1% (95.3-99.3) with P < 0.0001. Conclusion This data series demonstrates that patients with WDTC have positive SLN’s in 14.3% of cases. Moreover, when the SLN’s are negative for metastasis on frozen section, the central compartment was disease-free in 94.4% of cases. Finally, this study shows that 23.3% of positive SLN’s were false negatives on intraoperative frozen section. According to this data, SLN involvement is an accurate predictor of central compartment metastasis, however surgeons should use caution when relying on intraoperative frozen section to determine whether to perform a CCND. PMID:24025621
Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats
NASA Technical Reports Server (NTRS)
Bloomfield, S. A.; Allen, M. R.; Hogan, H. A.; Delp, M. D.
2002-01-01
The purpose of this study was to examine site- and compartment-specific changes in bone induced by hindlimb unloading (HU) in the mature adult male rat (6 months old). Tibiae, femora, and humeri were removed after 14, 21, and 28 days of HU for determination of bone mineral density (BMD) and geometry by peripheral quantitative computed tomography (pQCT), mechanical properties, and bone formation rate (BFR), and compared with baseline (0 day) and aging (28 day) controls. HU resulted in 20%-21% declines in cancellous BMD at the proximal tibia and femoral neck after 28 day HU vs. 0 day controls (CON). Cortical shell BMD at these sites was greater (by 4%-6%) in both 28 day HU and 28 day CON vs. 0 day CON animals, and nearly identical to that gain seen in the weight-bearing humerus. Mechanical properties at the proximal tibia exhibited a nonsignificant decline after HU vs. those of 0 day CON rats. At the femoral neck, a 10% decrement was noted in ultimate load in 28 day HU rats vs. 28 day CON animals. Middiaphyseal tibial bone increased slightly in density and area during HU; no differences in structural and material properties between 28 day HU and 28 day CON rats were noted. BFR at the tibial midshaft was significantly lower (by 90%) after 21 day HU vs. 0 day CON; this decline was maintained throughout 28 day HU. These results suggest there are compartment-specific differences in the mature adult skeletal response to hindlimb unloading, and that the major impact over 28 days of unloading is on cancellous bone sites. Given the sharp decline in BFR for midshaft cortical bone, it appears likely that deficits in BMD, area, or mechanical properties would develop with longer duration unloading.
Fuel cell and system for supplying electrolyte thereto
Adlhart, Otto J.; Feigenbaum, Haim
1984-01-01
An electrolyte distribution and supply system for use with a fuel cell having means for drawing electrolyte therein is formed by a set of containers of electrolyte joined to respective fuel cells in a stack of such cells. The electrolyte is separately stored so as to provide for electrical isolation between electrolytes of the individual cells of the stack. Individual storage compartments are coupled by capillary tubes to the respective fuel cells. Hydrostatic pressure is maintained individually for each of the fuel cells by separately elevating each compartment of the storing means to a specific height above the corresponding fuel cell which is to be fed from that compartment of the storing means. The individual compartments are filled with electrolyte by allowing the compartments to overflow thereby maintaining the requisite depth of electrolyte in each of the storage compartments.
Balaratnasingam, Chandrakumar; Kang, Min H; Yu, Paula; Chan, Geoffrey; Morgan, William H; Cringle, Stephen J; Yu, Dao-Yi
2014-04-01
Retinal ganglion cell (RGC) axonal structure and function in the optic nerve head (ONH) is predominantly supported by astrocytes and capillaries. There is good experimental evidence to demonstrate that RGC axons are perturbed in a non-uniform manner following ONH injury and it is likely that the pattern of RGC axonal modification bears some correlation with the quantitative properties of astrocytes and capillaries within laminar compartments. Although there have been some excellent topographic studies concerning glial and microvascular networks in the ONH our knowledge regarding the quantitative properties of these structures are limited. This report is an in-depth quantitative, structural analysis of astrocytes and capillaries in the pre laminar, lamina cribrosa and post laminar compartments of the ONH. 49 optic nerves from human (n = 10), pig (n = 12), horse (n = 6), rat (n = 11) and rabbit (n = 10) eyes are studied. Immunohistochemical and high-magnification confocal microscopy techniques are used to co-localise astrocytes, capillaries and nuclei in the mid-portion of the optic nerve. Quantitative methodology is used to determine the area occupied by astrocyte processes, microglia processes, nuclei density and the area occupied by capillaries in each laminar compartment. Comparisons are made within and between species. Relationships between ONH histomorphometry and astrocyte-capillary constitution are also explored. This study demonstrates that there are significant differences in the quantitative properties of capillaries and astrocytes between the laminar compartments of the human ONH. Astrocyte processes occupied the greatest area in the lamina cribrosa compartment of the human ONH implicating it as an area of great metabolic demands. Microglia were found to occupy only a small proportion of tissue in the rat, rabbit and pig optic nerve suggesting that the astrocyte is the predominant glia cell type in the optic nerve. This study also demonstrates that there is significant uniformity, with respect to astrocyte and capillary constitution, in the post laminar region of species with an unmyelinated anterior optic nerve. This implicates an important role served by oligodendrocytes and myelin in governing the structural characteristics of the post laminar optic nerve. Finally, this study demonstrates that eyes with similar lamina cribrosa structure do not necessarily share an identical cellular constitution with respect to astrocytes. The quantitative properties of astrocytes in the pre laminar and lamina cribrosa regions of the rat, which has a rudimentary lamina cribrosa with only a few collagenous beams, shared more similarities to the human eye than the pig or horse. The quantitative properties of astrocytes and capillaries in the laminar compartments of the ONH provide a basis for understanding the pathogenic mechanisms that are involved in diseases such as glaucoma and ischemic optic neuropathy. The findings in this study also provide valuable information about the distinct advantages of different animal models for studying human optic nerve diseases. Utilisation of structural data provided in this report together with emerging in vivo technology may potentially permit the early identification of RGC axonal injury by quantifying changes in ONH capillaries and astrocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Krautkrämer, Martina
2017-01-01
Subcellular compartmentalization of receptor signaling is an emerging principle in innate immunity. However, the functional integration of receptor signaling pathways into membrane trafficking routes and its physiological relevance for immune responses is still largely unclear. In this study, using Lyst-mutant beige mice, we show that lysosomal trafficking regulator Lyst links endolysosomal organization to the selective control of toll-like receptor 3 (TLR3)– and TLR4-mediated proinflammatory responses. Consequently, Lyst-mutant mice showed increased susceptibility to bacterial infection and were largely resistant to endotoxin-induced septic shock. Mechanistic analysis revealed that Lyst specifically controls TLR3- and TLR4-induced endosomal TRIF (TIR domain–containing adapter-inducing interferon β) signaling pathways. Loss of functional Lyst leads to dysregulated phagosomal maturation, resulting in a failure to form an activation-induced Rab7+ endosomal/phagosomal compartment. This specific Rab7+ compartment was further demonstrated to serve as a major site for active TRIF signaling events, thus linking phagosomal maturation to specific TLR signaling pathways. The immunoregulatory role of Lyst on TLR signaling pathways was confirmed in human cells by CRISPR/Cas9-mediated gene inactivation. As mutations in LYST cause human Chédiak-Higashi syndrome, a severe immunodeficiency, our findings also contribute to a better understanding of human disease mechanisms. PMID:27881733
2009-03-01
compartment modeling on breast 3D DCE-MRI data, to relate kinetic curves to the underlying physiology of the lesions (14–18). However, for low time...classification provided high sensitivity and low specificity in diagnosing malignant lesions. The results demonstrated that the modified EMM fit the 3D...lesion localization and characterization.11 However, for low time resolution 3D DCEMRI data, the accuracy of physiological parameters ob- tained from
Mayhew, T M; Desoye, G
2004-07-01
Colloidal gold-labelling, combined with transmission electron microscopy, is a valuable technique for high-resolution immunolocalization of identified antigens in different subcellular compartments. Whilst the technique has been applied to placental tissues, few quantitative studies have been made. Subcellular compartments exist in three main categories (viz. organelles, membranes, filaments/tubules) and this affects the possibilities for quantification. Generally, gold particles are counted in order to compare either (a) compartments within an experimental group or (b) compartmental labelling distributions between groups. For the former, recent developments make it possible to test whether or not there is differential (nonrandom) labelling of compartments. The methods (relative labelling index and labelling density) are ideally suited to analysing label in one category of compartment (organelle or membrane or filament) but may be adapted to deal with a mixture of categories. They also require information about compartment size (e.g. profile area or trace length). Here, a simple and efficient method for drawing between-group comparisons of labelling distributions is presented. The method does not require information about compartment size or specimen magnification. It relies on multistage random sampling of specimens and unbiased counting of gold particles associated with different compartments. Distributions of observed gold counts in different experimental groups are compared by contingency table analysis with degrees of freedom for chi-squared (chi(2)) values being determined by the numbers of compartments and experimental groups. Compartmental values of chi(2)which contribute substantially to total chi(2)identify the principal subcellular sites of between-group differences. The method is illustrated using datasets from immunolabelling studies on the localization of GLUT1 glucose transporters in cultured human trophoblast cells exposed to different treatments.
Immune Mediators of Rotavirus Antigenemia Clearance in Mice ▿
Marcelin, Glendie; Miller, Amber D.; Blutt, Sarah E.; Conner, Margaret E.
2011-01-01
The immunological mediators that clear rotavirus antigenemia or viremia remain undefined. Immunodeficient mice and antibody transfer were used to test whether lymphocytes or rotavirus-specific serum antibodies are essential for resolving antigenemia. Clearance of antigenemia required lymphocytes, but neither T nor B lymphocytes were absolutely required. Transfer of convalescent-phase or nonneutralizing rotavirus-specific serum antibodies to the systemic compartment of severe-combined-immunodeficient (SCID) mice temporarily suppressed the onset or level of chronic rotavirus antigenemia. Our findings provide the first report demonstrating that clearance of rotavirus antigenemia and possibly viremia are mediated by multiple effector lymphocyte subsets and serum antibodies. PMID:21593155
Subcellular storage compartments of bacteriopheophorbide sensitizers
NASA Astrophysics Data System (ADS)
Moser, Joerg G.; Dembeck, U.; Hubert, M.; Spengler, Bernhard; Bayer, Rainer; Wagner, Birgit
1994-03-01
Fluorescence colocalization with the Golgi specific stain, NBD-ceramide, and the mitochondrial localizing stain, Rhodamine 123, confirmed the earlier assumption that the Golgi apparatus is one of the prominent storage compartments for bacteriopheophorbide esters in OAT 75 SCLC cells and several amelanotic melanoma cell lines (A375, Melur SP18, SkAMel 25). Furthermore, a diffuse staining of mitochondria, of non-structured cytoplasm, and an additional storage in melanine vesicles of the amelanotic melanoma cells suggests further storage compartments with quantitatively different contributions to the phototoxicity of bacteriochlorophyll-derived photosensitizers. Independent observations of early phototoxic effects on microfilamentous networks, enzymatic activities (succinate dehydrogenase, lactate dehydrogenase), and redistribution phenomena following primary uptake of the sensitizers let us assume that only a part of the 108 molecules taken up by a cell contribute directly to phototoxicity. Thus it may be asked if a proper subcellular positioning of only a few sensitizer molecules may have similar phototoxic effects as the huge amounts stored at apparently ineffective sites.
Kassas, Nawal; Tanguy, Emeline; Thahouly, Tamou; Fouillen, Laetitia; Heintz, Dimitri; Chasserot-Golaz, Sylvette; Bader, Marie-France; Grant, Nancy J; Vitale, Nicolas
2017-03-10
Phosphatidic acid (PA) is the simplest phospholipid naturally existing in living organisms, but it constitutes only a minor fraction of total cell lipids. PA has attracted considerable attention because it is a phospholipid precursor, a lipid second messenger, and a modulator of membrane shape, and it has thus been proposed to play key cellular functions. The dynamics of PA in cells and in subcellular compartments, however, remains an open question. The recent generation of fluorescent probes for PA, by fusing GFP to PA-binding domains, has provided direct evidence for PA dynamics in different intracellular compartments. Here, three PA sensors were characterized in vitro, and their preferences for different PA species in particular lipidic environments were compared. In addition, the localization of PA in macrophages during frustrated phagocytosis was examined using these PA sensors and was combined with a lipidomic analysis of PA in intracellular compartments. The results indicate that the PA sensors display some preferences for specific PA species, depending on the lipid environment, and the localization study in macrophages revealed the complexity of intracellular PA dynamics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Knee Joint Loading during Gait in Healthy Controls and Individuals with Knee Osteoarthritis
Kumar, Deepak; Manal, Kurt T.; Rudolph, Katherine S.
2013-01-01
Objective People with knee osteoarthritis (OA) are thought to walk with high loads at the knee which are yet to be quantfied using modeling techniques that account for subject specific EMG patterns, kinematics and kinetics. The objective was to estimate medial and lateral loading for people with knee OA and controls using an approach that is sensitive to subject specific muscle activation patterns. Methods 16 OA and 12 control (C) subjects walked while kinematic, kinetic and EMG data were collected. Muscle forces were calculated using an EMG-Driven model and loading was calculated by balancing the external moments with internal muscle and contact forces Results OA subjects walked slower and had greater laxity, static and dynamic varus alignment, less flexion and greater knee adduction moment (KAM). Loading (normalized to body weight) was no different between the groups but OA subjects had greater absolute medial load than controls and maintained a greater %total load on the medial compartment. These patterns were associated with body mass, sagittal and frontal plane moments, static alignment and close to signficance for dynamic alignment. Lateral compartment unloading during mid-late stance was observed in 50% of OA subjects. Conclusions Loading for control subjects was similar to data from instrumented prostheses. Knee OA subjects had high medial contact loads in early stance and half of the OA cohort demonstared lateral compartment lift-off. Results suggest that interventions aimed at reducing body weight and dynamic malalignment might be effective in reducing medial compartment loading and establishing normal medio-lateral load sharing patterns. PMID:23182814
Reiff, Donald A; McGwin, Gerald; Metzger, Jesse; Windham, Samuel T; Doss, Marilyn; Rue, Loring W
2002-12-01
Diaphragmatic rupture (DR) remains a diagnostic challenge because of the lack of an accurate test demonstrating the injury. Our purpose was to identify motor vehicle collision (MVC) characteristics and patient injuries that collectively could identify the presence of a DR. The National Automotive Sampling System was used to identify occupants involved in MVCs from 1995 to 1999 who sustained abdominal (Abbreviated Injury Scale score >or= 2) and/or thoracic injuries (Abbreviated Injury Scale score >or= 2). Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to quantify the association between patient injuries, vehicle collision characteristics, and DR. Sensitivity and specificity were also calculated to determine the ability of organ injury and MVC characteristics to correctly classify patients with and without DR. Overall, occupants sustaining a DR had a significantly higher delta-V (DeltaV) (49.8 kilometers per hour [kph] vs. 33.8 kph, p< 0.0001) and a greater degree of occupant compartment intrusion (70.6 cm vs. 48.3 cm, p< 0.0001). Specific abdominal and thoracic organ injuries were associated with DR, including thoracic aortic tears (OR, 5.2; 95% CI, 2.2-12.5), splenic injury (OR, 8.4; 95% CI, 3.9-17.8), pelvic fractures (OR, 4.7; 95% CI, 2.7-8.0), and hepatic injuries (OR, 4.2; 95% CI, 1.7-10.6). Combining frontal or near-side lateral occupant compartment intrusion >or= 30 cm or DeltaV >or= 40 kph with specific organ injuries generated a sensitivity for indicating the likelihood of diaphragm injury ranging from 68% to 89%. Patients with any of the following characteristics had a sensitivity for detecting DR of 91%: splenic injury, pelvic fracture, DeltaV >or= 40 kph, or occupant compartment intrusion from any direction >or= 30 cm. Specific MVC characteristics combined with patient injuries have been identified that are highly suggestive of DR. For this subpopulation, additional invasive procedures including exploratory laparotomy, laparoscopy, or thoracoscopy may be warranted to exclude DR.
Betekhtin, Alexander; Milewska-Hendel, Anna; Lusinska, Joanna; Chajec, Lukasz; Kurczynska, Ewa; Hasterok, Robert
2018-03-03
The plant cell wall shows a great diversity regarding its chemical composition, which may vary significantly even during different developmental stages. In this study, we analysed the distribution of several cell wall epitopes in embryos of Brachypodium distachyon (Brachypodium). We also described the variations in the nucleus shape and the number of nucleoli that occurred in some embryo cells. The use of transmission electron microscopy, and histological and immunolocalisation techniques permitted the distribution of selected arabinogalactan proteins, extensins, pectins, and hemicelluloses on the embryo surface, internal cell compartments, and in the context of the cell wall ultrastructure to be demonstrated. We revealed that the majority of arabinogalactan proteins and extensins were distributed on the cell surface and that pectins were the main component of the seed coat and other parts, such as the mesocotyl cell walls and the radicula. Hemicelluloses were localised in the cell wall and outside of the radicula protodermis, respectively. The specific arrangement of those components may indicate their significance during embryo development and seed germination, thus suggesting the importance of their protective functions. Despite the differences in the cell wall composition, we found that some of the antibodies can be used as markers to identify specific cells and the parts of the developing Brachypodium embryo.
Martin, François-Pierre J; Montoliu, Ivan; Kochhar, Sunil; Rezzi, Serge
2010-12-01
Over the past decade, the analysis of metabolic data with advanced chemometric techniques has offered the potential to explore functional relationships among biological compartments in relation to the structure and function of the intestine. However, the employed methodologies, generally based on regression modeling techniques, have given emphasis to region-specific metabolic patterns, while providing only limited insights into the spatiotemporal metabolic features of the complex gastrointestinal system. Hence, novel approaches are needed to analyze metabolic data to reconstruct the metabolic biological space associated with the evolving structures and functions of an organ such as the gastrointestinal tract. Here, we report the application of multivariate curve resolution (MCR) methodology to model metabolic relationships along the gastrointestinal compartments in relation to its structure and function using data from our previous metabonomic analysis. The method simultaneously summarizes metabolite occurrence and contribution to continuous metabolic signatures of the different biological compartments of the gut tract. This methodology sheds new light onto the complex web of metabolic interactions with gut symbionts that modulate host cell metabolism in surrounding gut tissues. In the future, such an approach will be key to provide new insights into the dynamic onset of metabolic deregulations involved in region-specific gastrointestinal disorders, such as Crohn's disease or ulcerative colitis.
CrosstalkNet: A Visualization Tool for Differential Co-expression Networks and Communities.
Manem, Venkata; Adam, George Alexandru; Gruosso, Tina; Gigoux, Mathieu; Bertos, Nicholas; Park, Morag; Haibe-Kains, Benjamin
2018-04-15
Variations in physiological conditions can rewire molecular interactions between biological compartments, which can yield novel insights into gain or loss of interactions specific to perturbations of interest. Networks are a promising tool to elucidate intercellular interactions, yet exploration of these large-scale networks remains a challenge due to their high dimensionality. To retrieve and mine interactions, we developed CrosstalkNet, a user friendly, web-based network visualization tool that provides a statistical framework to infer condition-specific interactions coupled with a community detection algorithm for bipartite graphs to identify significantly dense subnetworks. As a case study, we used CrosstalkNet to mine a set of 54 and 22 gene-expression profiles from breast tumor and normal samples, respectively, with epithelial and stromal compartments extracted via laser microdissection. We show how CrosstalkNet can be used to explore large-scale co-expression networks and to obtain insights into the biological processes that govern cross-talk between different tumor compartments. Significance: This web application enables researchers to mine complex networks and to decipher novel biological processes in tumor epithelial-stroma cross-talk as well as in other studies of intercompartmental interactions. Cancer Res; 78(8); 2140-3. ©2018 AACR . ©2018 American Association for Cancer Research.
Mirzarezaee, Mitra; Araabi, Babak N; Sadeghi, Mehdi
2010-12-19
It has been understood that biological networks have modular organizations which are the sources of their observed complexity. Analysis of networks and motifs has shown that two types of hubs, party hubs and date hubs, are responsible for this complexity. Party hubs are local coordinators because of their high co-expressions with their partners, whereas date hubs display low co-expressions and are assumed as global connectors. However there is no mutual agreement on these concepts in related literature with different studies reporting their results on different data sets. We investigated whether there is a relation between the biological features of Saccharomyces Cerevisiae's proteins and their roles as non-hubs, intermediately connected, party hubs, and date hubs. We propose a classifier that separates these four classes. We extracted different biological characteristics including amino acid sequences, domain contents, repeated domains, functional categories, biological processes, cellular compartments, disordered regions, and position specific scoring matrix from various sources. Several classifiers are examined and the best feature-sets based on average correct classification rate and correlation coefficients of the results are selected. We show that fusion of five feature-sets including domains, Position Specific Scoring Matrix-400, cellular compartments level one, and composition pairs with two and one gaps provide the best discrimination with an average correct classification rate of 77%. We study a variety of known biological feature-sets of the proteins and show that there is a relation between domains, Position Specific Scoring Matrix-400, cellular compartments level one, composition pairs with two and one gaps of Saccharomyces Cerevisiae's proteins, and their roles in the protein interaction network as non-hubs, intermediately connected, party hubs and date hubs. This study also confirms the possibility of predicting non-hubs, party hubs and date hubs based on their biological features with acceptable accuracy. If such a hypothesis is correct for other species as well, similar methods can be applied to predict the roles of proteins in those species.
Tritium levels in milk in the vicinity of chronic tritium releases.
Le Goff, P; Guétat, Ph; Vichot, L; Leconte, N; Badot, P M; Gaucheron, F; Fromm, M
2016-01-01
Tritium is the radioactive isotope of hydrogen. It can be integrated into most biological molecules. Even though its radiotoxicity is weak, the effects of tritium can be increased following concentration in critical compartments of living organisms. For a better understanding of tritium circulation in the environment and to highlight transfer constants between compartments, we studied the tritiation of different agricultural matrices chronically exposed to tritium. Milk is one of the most frequently monitored foodstuffs in the vicinity of points known for chronic release of radionuclides firstly because dairy products find their way into most homes but also because it integrates deposition over large areas at a local scale. It is a food which contains all the main nutrients, especially proteins, carbohydrates and lipids. We thus studied the tritium levels of milk in chronic exposure conditions by comparing the tritiation of the main hydrogenated components of milk, first, component by component, then, sample by sample. Significant correlations were found between the specific activities of drinking water and free water of milk as well as between the tritium levels of cattle feed dry matter and of the main organic components of milk. Our findings stress the importance of the metabolism on the distribution of tritium in the different compartments. Overall, dilution of hydrogen in the environmental compartments was found to play an important role dimming possible isotopic effects even in a food chain chronically exposed to tritium. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Yungui; Li, Qingqing; Chen, Baoliang
2016-01-01
The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants. PMID:27009902
Sobol, Eyal; Bialer, Meir
2005-03-01
It is well known that in the two-compartment open body model the values of apparent volume of distribution (V(beta)) and volume of distribution at steady state (V(ss)) are never identical. There are at least two conditions when V(beta) significantly overestimates V(ss). The first is when most of a drug is eliminated relatively rapidly but a small fraction of the dose persists and gives rise to an extremely long half-life. The second is when a drug is rapidly cleared from the central compartment with a short half-life. The primary purpose of the current paper was to investigate how different two-compartment disposition profiles affect the magnitude of difference between V(beta) and V(ss). Novel equations have been developed that relate the V(beta)/V(ss) ratio to f1 (fraction of drug elimination associated with the distributive phase) and to beta/alpha (ratio of the exponential coefficients). This paper demonstrates mathematically that an increasing value of f1 is associated with a greater divergence between V(beta) and V(ss). A similar relationship was also found for the divergence between the terminal half-life (t(1/2beta)) and the mean residence time (MRT). An increase in the beta/alpha ratio results in a substantial decrease of this discrepancy and provides a maximal possible value, or an upper limit to the V(beta)/V(ss) ratio. The newly derived equations along with their graphical presentation may serve as an excellent predictive tool for checking the accuracy of the experimentally obtained values of V(beta) and V(ss). Copyright 2004 John Wiley & Sons, Ltd.
Lyons, John D; Klingensmith, Nathan J; Otani, Shunsuke; Mittal, Rohit; Liang, Zhe; Ford, Mandy L; Coopersmith, Craig M
2017-12-01
Cell production and death are tightly regulated in the rapidly renewing gut epithelium, with proliferation confined to crypts and apoptosis occurring in villi and crypts. This study sought to determine how stress alters these compartmentalized processes. Wild-type mice made septic via cecal ligation and puncture had decreased crypt proliferation and increased crypt and villus apoptosis. Fabpi -TAg mice expressing large T-antigen solely in villi had ectopic enterocyte proliferation with increased villus apoptosis in unmanipulated animals. Septic fabpi -TAg mice had an unexpected increase in villus proliferation compared with unmanipulated littermates, whereas crypt proliferation was decreased. Cell cycle regulators cyclin D1 and cyclin D2 were decreased in jejunal tissue in septic transgenic mice. In contrast, villus and crypt apoptosis were increased in septic fabpi -TAg mice. To examine the relationship between apoptosis and proliferation in a compartment-specific manner, fabpi -TAg mice were crossed with fabpl -Bcl-2 mice, resulting in expression of both genes in the villus but Bcl-2 alone in the crypt. Septic bi-transgenic animals had decreased crypt apoptosis but had a paradoxical increase in villus apoptosis compared with septic fabpi -TAg mice, associated with decreased proliferation in both compartments. Thus, sepsis unmasks compartment-specific proliferative and apoptotic regulation that is not present under homeostatic conditions.-Lyons, J. D., Klingensmith, N. J., Otani, S., Mittal, R., Liang, Z., Ford, M. L., Coopersmith, C. M. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle. © FASEB.
The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles.
Fan, Denggui; Liao, Fucheng; Wang, Qingyun
2017-07-01
Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE→TC→Cortex. Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE 1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE 1 →TC 1 →Cortex 1 and Cortex 1 →Cortex 2 →Cortex 3 projecting paths, respectively. Overall, those results imply that RE possesses the pacemaker function in controlling SWDs and spindling oscillations, which computationally provide causal support for the involvement of RE in absence seizures and sleep spindles.
A multiobjective modeling approach to locate multi-compartment containers for urban-sorted waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tralhao, Lino, E-mail: lmlrt@inescc.p; Coutinho-Rodrigues, Joao, E-mail: coutinho@dec.uc.p; Alcada-Almeida, Luis, E-mail: alcada@inescc.p
2010-12-15
The location of multi-compartment sorted waste containers for recycling purposes in cities is an important problem in the context of urban waste management. The costs associated with those facilities and the impacts placed on populations are important concerns. This paper introduces a mixed-integer, multiobjective programming approach to identify the locations and capacities of such facilities. The approach incorporates an optimization model in a Geographical Information System (GIS)-based interactive decision support system that includes four objectives. The first objective minimizes the total investment cost; the second one minimizes the average distance from dwellings to the respective multi-compartment container; the last twomore » objectives address the 'pull' and 'push' characteristics of the decision problem, one by minimizing the number of individuals too close to any container, and the other by minimizing the number of dwellings too far from the respective multi-compartment container. The model determines the number of facilities to be opened, the respective container capacities, their locations, their respective shares of the total waste of each type to be collected, and the dwellings assigned to each facility. The approach proposed was tested with a case study for the historical center of Coimbra city, Portugal, where a large urban renovation project, addressing about 800 buildings, is being undertaken. This paper demonstrates that the models and techniques incorporated in the interactive decision support system (IDSS) can be used to assist a decision maker (DM) in analyzing this complex problem in a realistically sized urban application. Ten solutions consisting of different combinations of underground containers for the disposal of four types of sorted waste in 12 candidate sites, were generated. These solutions and tradeoffs among the objectives are presented to the DM via tables, graphs, color-coded maps and other graphics. The DM can then use this information to 'guide' the IDSS in identifying additional solutions of potential interest. Nevertheless, this research showed that a particular solution with a better objective balance can be identified. The actual sequence of additional solutions generated will depend upon the objectives and preferences of the DM in a specific application.« less
The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles
NASA Astrophysics Data System (ADS)
Fan, Denggui; Liao, Fucheng; Wang, Qingyun
2017-07-01
Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE → TC → Cortex . Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE 1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE 1 → TC 1 → Cortex 1 and Cortex 1 → Cortex 2 → Cortex 3 projecting paths, respectively. Overall, those results imply that RE possesses the pacemaker function in controlling SWDs and spindling oscillations, which computationally provide causal support for the involvement of RE in absence seizures and sleep spindles.
Detecting Tie2, an endothelial growth factor receptor, by using immunohistochemistry in mouse lungs.
Guha, Prajna P; David, Sascha A; Ghosh, Chandra C
2014-01-01
Immunohistochemical (IHC) staining is an invaluable, sensitive, and effective method to detect the presence and localization of proteins in the cellular compartment in tissues. The basic concept of IHC is detecting the antigen in tissues by means of specific antibody binding, which is then demonstrated with a colored histochemical reaction that can be observed under a light microscope. The most challenging aspect of IHC techniques is optimizing the precise experimental conditions that are required to get a specific and a strong signal. The critical steps of IHC are specimen acquisition, fixation, permeabilization, detection system, and selection of the antigen specific antibody and its optimization. Here, we elaborate the technique using the endothelial growth factor binding receptor Tie2 in mouse lungs.
Allele-specific control of replication timing and genome organization during development.
Rivera-Mulia, Juan Carlos; Dimond, Andrew; Vera, Daniel; Trevilla-Garcia, Claudia; Sasaki, Takayo; Zimmerman, Jared; Dupont, Catherine; Gribnau, Joost; Fraser, Peter; Gilbert, David M
2018-05-07
DNA replication occurs in a defined temporal order known as the replication-timing (RT) program. RT is regulated during development in discrete chromosomal units, coordinated with transcriptional activity and 3D genome organization. Here, we derived distinct cell types from F1 hybrid musculus X castaneus mouse crosses and exploited the high single nucleotide polymorphism (SNP) density to characterize allelic differences in RT (Repli-seq), genome organization (Hi-C and promoter-capture Hi-C), gene expression (total nuclear RNA-seq) and chromatin accessibility (ATAC-seq). We also present HARP: a new computational tool for sorting SNPs in phased genomes to efficiently measure allele-specific genome-wide data. Analysis of six different hybrid mESC clones with different genomes (C57BL/6, 129/sv and CAST/Ei), parental configurations and gender revealed significant RT asynchrony between alleles across ~12% of the autosomal genome linked to sub-species genomes but not to parental origin, growth conditions or gender. RT asynchrony in mESCs strongly correlated with changes in Hi-C compartments between alleles but not SNP density, gene expression, imprinting or chromatin accessibility. We then tracked mESC RT asynchronous regions during development by analyzing differentiated cell types including extraembryonic endoderm stem (XEN) cells, 4 male and female primary mouse embryonic fibroblasts (MEFs) and neural precursor cells (NPCs) differentiated in vitro from mESCs with opposite parental configurations. We found that RT asynchrony and allelic discordance in Hi-C compartments seen in mESCs was largely lost in all differentiated cell types, coordinated with a more uniform Hi-C compartment arrangement, suggesting that genome organization of homologues converges to similar folding patterns during cell fate commitment. Published by Cold Spring Harbor Laboratory Press.
Henne, Melina; König, Nicolas; Triulzi, Tiziana; Baroni, Sara; Forlani, Fabio; Scheibe, Renate; Papenbrock, Jutta
2015-01-01
Sulfurtransferases (Strs) and thioredoxins (Trxs) are members of large protein families. Trxs are disulfide reductases and play an important role in redox-related cellular processes. They interact with a broad range of proteins. Strs catalyze the transfer of a sulfur atom from a suitable sulfur donor to nucleophilic sulfur acceptors in vitro, but the physiological roles of these enzymes are not well defined. Several studies in different organisms demonstrate protein-protein interactions of Strs with members of the Trx family. We are interested in investigating the specificity of the interaction between Str and Trx isoforms. In order to use the bimolecular fluorescence complementation (BiFC), several Str and Trx sequences from Arabidopsis thaliana were cloned into the pUC-SPYNE and pUC-SPYCE split-YFP vectors, respectively. Each couple of plasmids containing the sequences for the putative interaction partners were transformed into Arabidopsis protoplasts and screened using a confocal laser scanning microscope. Compartment- and partner-specific interactions could be observed in transformed protoplasts. Replacement of cysteine residues in the redox-active site of Trxs abolished the interaction signal. Therefore, the redox site is not only involved in the redox reaction but also responsible for the interaction with partner proteins. Biochemical assays support a specific interaction among Strs and certain Trxs. Based on the results obtained, the interaction of Strs and Trxs indicates a role of Strs in the maintenance of the cellular redox homeostasis.
The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Claire Y.-H., E-mail: CHuang1@cdc.go; Butrapet, Siritorn; Moss, Kelly J.
The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could notmore » re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.« less
NASA Astrophysics Data System (ADS)
Damania, Dhwanil; Subramanian, Hariharan; Backman, Vadim; Anderson, Eric C.; Wong, Melissa H.; McCarty, Owen J. T.; Phillips, Kevin G.
2014-01-01
Cells contributing to the pathogenesis of cancer possess cytoplasmic and nuclear structural alterations that accompany their aberrant genetic, epigenetic, and molecular perturbations. Although it is known that architectural changes in primary and metastatic tumor cells can be quantified through variations in cellular density at the nanometer and micrometer spatial scales, the interdependent relationships among nuclear and cytoplasmic density as a function of tumorigenic potential has not been thoroughly investigated. We present a combined optical approach utilizing quantitative phase microscopy and partial wave spectroscopic microscopy to perform parallel structural characterizations of cellular architecture. Using the isogenic SW480 and SW620 cell lines as a model of pre and postmetastatic transition in colorectal cancer, we demonstrate that nuclear and cytoplasmic nanoscale disorder, micron-scale dry mass content, mean dry mass density, and shape metrics of the dry mass density histogram are uniquely correlated within and across different cellular compartments for a given cell type. The correlations of these physical parameters can be interpreted as networks whose nodal importance and level of connection independence differ according to disease stage. This work demonstrates how optically derived biophysical parameters are linked within and across different cellular compartments during the architectural orchestration of the metastatic phenotype.
Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun
2010-07-01
This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.
Casbon, Amy-Jo; Allen, Lee-Ann H; Dunn, Kenneth W; Dinauer, Mary C
2009-02-15
Flavocytochrome b(558), the catalytic core of the phagocytic NADPH oxidase, mediates the transfer of electrons from NADPH to molecular oxygen to generate superoxide for host defense. Flavocytochrome b is a membrane heterodimer consisting of a large subunit gp91(phox) (NOX2) and a smaller subunit, p22(phox). Although in neutrophils flavocytochrome b has been shown to localize to the plasma membrane and specific granules, little is known about its distribution in macrophages. Using immunofluorescent staining and live cell imaging of fluorescently tagged gp91(phox) and p22(phox), we demonstrate in a Chinese hamster ovary cell model system and in RAW 264.7 and primary murine bone marrow-derived macrophages that flavocytochrome b is found in the Rab11-positive recycling endocytic compartment, as well as in Rab5-positive early endosomes and plasma membrane. Additionally, we show that unassembled p22(phox) and gp91(phox) subunits localize to the endoplasmic reticulum, which redistribute to the cell surface and endosomal compartments following heterodimer formation. These studies show for the first time that flavocytochrome b localizes to intracellular compartments in macrophages that recycle to the plasma membrane, which may act as a reservoir to deliver flavocytochrome b to the cell surface and phagosome membranes.
A hybrid continuous-discrete method for stochastic reaction–diffusion processes
Zheng, Likun; Nie, Qing
2016-01-01
Stochastic fluctuations in reaction–diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the diffusion. While the approach is convenient in terms of its implementation, its computational cost may become prohibitive when diffusive jumps occur significantly more frequently than reactions, as in the case of rapid diffusion. Here, we present a hybrid continuous-discrete method in which diffusion is simulated using continuous approximation while reactions are based on the Gillespie algorithm. Specifically, the diffusive jumps are approximated as continuous Gaussian random vectors with time-dependent means and covariances, allowing use of a large time step, even for rapid diffusion. By considering the correlation among diffusive jumps, the approximation is accurate for the second moment of the diffusion process. In addition, a criterion is obtained for identifying the region in which such diffusion approximation is required to enable adaptive calculations for better accuracy. Applications to a linear diffusion system and two nonlinear systems of morphogens demonstrate the effectiveness and benefits of the new hybrid method. PMID:27703710
Herrmann, Andreas; Kortylewski, Marcin; Kujawski, Maciej; Zhang, Chunyan; Reckamp, Karen; Armstrong, Brian; Wang, Lin; Kowolik, Claudia; Deng, Jiehui; Robert, Figlin; Yu, Hua
2010-01-01
Improving effector T cell functions is highly desirable for preventive or therapeutic interventions of diverse diseases. Stat3 in the myeloid compartment constrains Th-1 type immunity, dampening natural and induced antitumor immune responses. We have recently developed an in vivo siRNA delivery platform by conjugating a TLR9 agonist with siRNA that efficiently targets myeloid and B cells. Here we show that either ablating the Stat3 alleles in the myeloid compartment and B cells combined with CpG triggering or administrating the CpG-Stat3siRNA conjugates drastically augments effector functions of adoptively transferred CD8+ T cells. Specifically, we demonstrate that both approaches are capable of increasing dendritic cell and CD8+ T cell engagement in tumor draining lymph nodes. Furthermore, both approaches can significantly activate the transferred CD8+ T cells in vivo, upregulating effector molecules such as perforin, granzyme B and IFN-γ. Intravital multiphoton microscopy reveals that Stat3 silencing combined with CpG triggering greatly increases killing activity and tumor infiltration of transferred T cells. These results suggest the use of CpG-Stat3siRNA, and possibly other Stat3 inhibitors, as a potent adjuvant to improve T cell therapies. PMID:20841481
Functional significance of brain glycogen in sustaining glutamatergic neurotransmission.
Sickmann, Helle M; Walls, Anne B; Schousboe, Arne; Bouman, Stephan D; Waagepetersen, Helle S
2009-05-01
The involvement of brain glycogen in sustaining neuronal activity has previously been demonstrated. However, to what extent energy derived from glycogen is consumed by astrocytes themselves or is transferred to the neurons in the form of lactate for oxidative metabolism to proceed is at present unclear. The significance of glycogen in fueling glutamate uptake into astrocytes was specifically addressed in cultured astrocytes. Moreover, the objective was to elucidate whether glycogen derived energy is important for maintaining glutamatergic neurotransmission, induced by repetitive exposure to NMDA in co-cultures of cerebellar neurons and astrocytes. In the astrocytes it was shown that uptake of the glutamate analogue D-[3H]aspartate was impaired when glycogen degradation was inhibited irrespective of the presence of glucose, signifying that energy derived from glycogen degradation is important for the astrocytic compartment. By inhibiting glycogen degradation in co-cultures it was evident that glycogen provides energy to sustain glutamatergic neurotransmission, i.e. release and uptake of glutamate. The relocation of glycogen derived lactate to the neuronal compartment was investigated by employing d-lactate, a competitive substrate for the monocarboxylate transporters. Neurotransmitter release was affected by the presence of d-lactate indicating that glycogen derived energy is important not only in the astrocytic but also in the neuronal compartment.
Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe
2009-01-15
We have developed a certification framework (CF) for certifying the safety and effectiveness of geologic carbon sequestration (GCS) sites. Safety and effectiveness are achieved if CO{sub 2} and displaced brine have no significant impact on humans, other living things, resources, or the environment. In the CF, we relate effective trapping to CO{sub 2} leakage risk which takes into account both the impact and probability of leakage. We achieve simplicity in the CF by using (1) wells and faults as the potential leakage pathways, (2) compartments to represent environmental resources that may be impacted by leakage, (3) CO{sub 2} fluxes andmore » concentrations in the compartments as proxies for impact to vulnerable entities, (4) broad ranges of storage formation properties to generate a catalog of simulated plume movements, and (5) probabilities of intersection of the CO{sub 2} plume with the conduits and compartments. We demonstrate the approach on a hypothetical GCS site in a Texas Gulf Coast saline formation. Through its generality and flexibility, the CF can contribute to the assessment of risk of CO{sub 2} and brine leakage as part of the certification process for licensing and permitting of GCS sites around the world regardless of the specific regulations in place in any given country.« less
Xu, Aiping; Cui, Shan
2016-01-01
Background: Major depressive disorder is characterized as persistent low mood. A chronically stressful life in genetically susceptible individuals is presumably the major etiology that leads to dysfunctions of monoamine and hypothalamus-pituitary-adrenal axis. These pathogenic factors cause neuron atrophy in the limbic system for major depressive disorder. Cell-specific pathophysiology is unclear, so we investigated prelimbic cortical GABAergic neurons and their interaction with glutamatergic neurons in depression-like mice. Methods: Mice were treated with chronic unpredictable mild stress for 3 weeks until they expressed depression-like behaviors confirmed by sucrose preference, Y-maze, and forced swimming tests. The structures and functions of GABAergic and glutamatergic units in prelimbic cortices were studied by cell imaging and electrophysiology in chronic unpredictable mild stress-induced depression mice vs controls. Results: In depression-like mice, prelimbic cortical GABAergic neurons show incoordination among the subcellular compartments, such as decreased excitability and synaptic outputs as well as increased reception from excitatory inputs. GABAergic synapses on glutamatergic cells demonstrate decreased presynaptic innervation and increased postsynaptic responsiveness. Conclusions: Chronic unpredictable mild stress-induced incoordination in prelimbic cortical GABAergic and glutamatergic neurons dysregulates their target neurons, which may be the pathological basis for depressive mood. The rebalance of compatibility among subcellular compartments would be an ideal strategy to treat neural disorders. PMID:26506857
Multi-compartment microscopic diffusion imaging
Kaden, Enrico; Kelm, Nathaniel D.; Carson, Robert P.; Does, Mark D.; Alexander, Daniel C.
2017-01-01
This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microscopic tissue structure. This technique can be immediately used in the clinic for the assessment of various neurological conditions, as it requires only a widely available off-the-shelf sequence with two b-shells and high-angular gradient resolution achievable within clinically feasible scan times. To demonstrate the developed method, we use high-quality diffusion data acquired with a bespoke scanner system from the Human Connectome Project. This study establishes the normative values of the new biomarkers for a large cohort of healthy young adults, which may then support clinical diagnostics in patients. Moreover, we show that the microscopic diffusion indices offer direct sensitivity to pathological tissue alterations, exemplified in a preclinical animal model of Tuberous Sclerosis Complex (TSC), a genetic multi-organ disorder which impacts brain microstructure and hence may lead to neurological manifestations such as autism, epilepsy and developmental delay. PMID:27282476
Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii.
Boyle, Nanette R; Sengupta, Neelanjan; Morgan, John A
2017-01-01
Despite the wealth of knowledge available for C. reinhardtii, the central metabolic fluxes of growth on acetate have not yet been determined. In this study, 13C-metabolic flux analysis (13C-MFA) was used to determine and quantify the metabolic pathways of primary metabolism in C. reinhardtii cells grown under heterotrophic conditions with acetate as the sole carbon source. Isotopic labeling patterns of compartment specific biomass derived metabolites were used to calculate the fluxes. It was found that acetate is ligated with coenzyme A in the three subcellular compartments (cytosol, mitochondria and plastid) included in the model. Two citrate synthases were found to potentially be involved in acetyl-coA metabolism; one localized in the mitochondria and the other acting outside the mitochondria. Labeling patterns demonstrate that Acetyl-coA synthesized in the plastid is directly incorporated in synthesis of fatty acids. Despite having a complete TCA cycle in the mitochondria, it was also found that a majority of the malate flux is shuttled to the cytosol and plastid where it is converted to oxaloacetate providing reducing equivalents to these compartments. When compared to predictions by flux balance analysis, fluxes measured with 13C-MFA were found to be suboptimal with respect to biomass yield; C. reinhardtii sacrifices biomass yield to produce ATP and reducing equivalents.
Hearn, Arron; York, Ian A.; Bishop, Courtney; Rock, Kenneth L.
2010-01-01
Many MHC class I binding peptides are generated as N-extended precursors during protein degradation by the proteasome. These peptides can be subsequently trimmed by aminopeptidases in the cytosol and/or the ER to produce mature epitope. However, the contribution and specificity of each of these subcellular compartments in removing N-terminal amino acids for antigen presentation is not well defined. Here we investigate this issue for antigenic precursors that are expressed in the cytosol. By systematically varying the N-terminal flanking sequences of peptides we show that the amino acids upstream of an epitope precursor are a major determinant of the amount of antigen presentation. In many cases MHC class I binding peptides are produced through sequential trimming in both the cytosol and ER. Trimming of flanking residues in the cytosol contributes most to sequences that are poorly trimmed in the ER. Since N-terminal trimming has different specificity in the cytosol and ER, the cleavage of peptides in both of these compartments serves to broaden the repertoire of sequences that are presented. PMID:20351195
Jensen, J Eric; Miller, Jodi; Williamson, Peter C; Neufeld, Richard W J; Menon, Ravi S; Malla, Ashok; Manchanda, Rahul; Schaefer, Betsy; Densmore, Maria; Drost, Dick J
2006-03-31
Altered high energy and membrane metabolism, measured with phosphorus magnetic resonance spectroscopy (31P-MRS), has been inconsistently reported in schizophrenic patients in several anatomical brain regions implicated in the pathophysiology of this illness, with little attention to the effects of brain tissue type on the results. Tissue regression analysis correlates brain tissue type to measured metabolite levels, allowing for the extraction of "pure" estimated grey and white matter compartment metabolite levels. We use this tissue analysis technique on a clinical dataset of first episode schizophrenic patients and matched controls to investigate the effect of brain tissue specificity on altered energy and membrane metabolism. In vivo brain spectra from two regions, (a) the fronto-temporal-striatal region and (b) the frontal-lobes, were analyzed from 12 first episode schizophrenic patients and 11 matched controls from a (31)P chemical shift imaging (CSI) study at 4 Tesla (T) field strength. Tissue regression analyses using voxels from each region were performed relating metabolite levels to tissue content, examining phosphorus metabolite levels in grey and white matter compartments. Compared with controls, the first episode schizophrenic patient group showed significantly increased adenosine triphosphate levels (B-ATP) in white matter and decreased B-ATP levels in grey matter in the fronto-temporal-striatal region. No significant metabolite level differences were found in grey or white matter compartments in the frontal cortex. Tissue regression analysis reveals grey and white matter specific aberrations in high-energy phosphates in first episode schizophrenia. Although past studies report inconsistent regional differences in high-energy phosphate levels in schizophrenia, the present analysis suggests more widespread differences that seem to be strongly related to tissue type. Our data suggest that differences in grey and white matter tissue content between past studies may account for some of the variance in the literature.
Chen, Qiu Lan; Liu, Zhou; Shum, Ho Cheung
2014-11-01
In this work, we demonstrate the use of stereolithographic 3D printing to fabricate millifluidic devices, which are used to engineer particles with multiple compartments. As the 3D design is directly transferred to the actual prototype, this method accommodates 3D millimeter-scaled features that are difficult to achieve by either lithographic-based microfabrication or traditional macrofabrication techniques. We exploit this approach to produce millifluidic networks to deliver multiple fluidic components. By taking advantage of the laminar flow, the fluidic components can form liquid jets with distinct patterns, and each pattern has clear boundaries between the liquid phases. Afterwards, droplets with controlled size are fabricated by spraying the liquid jet in an electric field, and subsequently converted to particles after a solidification step. As a demonstration, we fabricate calcium alginate particles with structures of (1) slice-by-slice multiple lamellae, (2) concentric core-shells, and (3) petals surrounding the particle centers. Furthermore, distinct hybrid particles combining two or more of the above structures are also obtained. These compartmentalized particles impart spatially dependent functionalities and properties. To show their applicability, various ingredients, including fruit juices, drugs, and magnetic nanoparticles are encapsulated in the different compartments as proof-of-concepts for applications, including food, drug delivery, and bioassays. Our 3D printed electro-millifluidic approach represents a convenient and robust method to extend the range of structures of functional particles.
Purification and proteomics of pathogen-modified vacuoles and membranes
Herweg, Jo-Ana; Hansmeier, Nicole; Otto, Andreas; Geffken, Anna C.; Subbarayal, Prema; Prusty, Bhupesh K.; Becher, Dörte; Hensel, Michael; Schaible, Ulrich E.; Rudel, Thomas; Hilbi, Hubert
2015-01-01
Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation. PMID:26082896
Abdala Valencia, H; Loffredo, L F; Misharin, A V; Berdnikovs, S
2016-02-01
Eosinophil recruitment in asthma is a multistep process, involving both trans-endothelial migration to the lung interstitium and trans-epithelial migration into the airways. While the trans-endothelial step is well studied, trans-epithelial recruitment is less understood. To contrast eosinophil recruitment between these two compartments, we employed a murine kinetics model of asthma. Eosinophils were phenotyped by multicolor flow cytometry in digested lung tissue and bronchoalveolar lavage (BAL) simultaneously, 6 h after each ovalbumin (OVA) challenge. There was an early expansion of tissue eosinophils after OVA challenge followed by eosinophil buildup in both compartments and a shift in phenotype over the course of the asthma model. Gradual transition from a Siglec-F(med) CD11c(-) to a Siglec-F(high) CD11c(low) phenotype in lung tissue was associated with eosinophil recruitment to the airways, as all BAL eosinophils were of the latter phenotype. Secondary microarray analysis of tissue-activated eosinophils demonstrated upregulation of specific integrin and chemokine receptor signature suggesting interaction with the mucosa. Using adhesion assays, we demonstrated that integrin CD11c mediated adhesion of eosinophils to fibrinogen, a significant component of epithelial barrier repair and remodeling. To the best of our knowledge, this is the only report to date dissecting compartmentalization of eosinophil recruitment as it unfolds during allergic inflammation. By capturing the kinetics of eosinophil phenotypic change in both tissue and BAL using flow cytometry and sorting, we were able to demonstrate a previously undocumented association between phenotypic shift of tissue-recruited eosinophils and their trans-epithelial movement, which implicates the existence of a specific mechanism targeting these cells to mucosal airways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
46 CFR 174.075 - Compartments assumed flooded: general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments assumed flooded: general. 174.075 Section 174.075 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling...
46 CFR 174.075 - Compartments assumed flooded: general.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Compartments assumed flooded: general. 174.075 Section 174.075 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling...
Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties
Casale, Amanda E.; Foust, Amanda J.; Bal, Thierry
2015-01-01
The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca2+-activated K+ channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. SIGNIFICANCE STATEMENT Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main compartments: dendritic, somatic, and axonal. How the neurons receive information, process it, and pass on new information depends upon how these three compartments operate. While it has long been assumed that axons are simply for conducting information from the cell body to the synapses, here we demonstrate that the axons of different types of interneurons, the inhibitory cells, possess differing electrophysiological properties. This result implies that differing types of interneurons perform different tasks in the cortex, not only through their anatomical connections, but also through how their axons operate. PMID:26609152
Müller, Hans-Peter; Niessen, Heiko G; Kaulisch, Thomas; Ludolph, Albert C; Kassubek, Jan; Stiller, Detlef
2013-09-01
Body fat distribution changes are associated with multiple alterations in metabolism. Therefore, the assessment of body fat compartments by MRI in animal models is a promising approach to obesity research. Standard T1-weighted (T1w) whole body MRI was used here to quantify different effects in the subcutaneous and visceral fat compartments in rats under treatment with an anorexiant. Twenty rats on a high caloric diet were investigated by the identical MRI protocol at baseline and after seven weeks. Ten rats received a treatment with sibutramine, 10 rats served as vehicle control group. To longitudinally assess body fat components, MRI analysis was used with two approaches: 2D slicewise graphic analysis (SGA) was compared with an automated 3D analysis algorithm (3DA). At the group level, fat volume differences showed a longitudinal increase of subcutaneous and visceral fat volumes for the control group, whereas the sibutramine group showed stable subcutaneous fat volumes and decrease in visceral fat volumes. SGA and 3DA volume determination showed significant correlations for subcutaneous fat volume (C=0.85, p<0.001), visceral fat volume (C=0.87, p<0.001), and total fat volume (C=0.90, p<0.001). It could be demonstrated that computer-based analysis of T1w MRI could be used to longitudinally assess changes in body fat compartments in rats at the group level. In detail, it was possible to investigate the effect of sibutramine separate on the fat compartments in rats. Copyright © 2013 Elsevier Inc. All rights reserved.
The Representation of Orientation in Macaque V2: Four Stripes Not Three
Felleman, Daniel J.; Lim, Heejin; Xiao, Youping; Wang, Yi; Eriksson, Anastasia; Parajuli, Arun
2015-01-01
Area V2 of macaque monkeys is traditionally thought to consist of 3 distinct functional compartments with characteristic cortical connections and functional properties. Orientation selectivity is one property that has frequently been used to distinguish V2 stripes, however, this receptive field property has been found in a high percentage of neurons across V2 compartments. Using quantitative intrinsic cortical imaging, we derived maps of preferred orientation, orientation selectivity, and orientation gradient in thin stripes, thick stripes, and interstripes in area V2. Orientation-selective responses were found in each V2 stripe, but the magnitude and organization of orientation selectivity differed significantly from stripe to stripe. Remarkably, the 2 pale stripes flanking each cytochrome oxidase dense stripe differed significantly in their representation of orientation resulting in their distinction as type-I and type-II interstripes. V2 orientation maps are characterized by clockwise and anticlockwise “orientation pinwheels”, but unlike V1, they are not homogeneously distributed across V2. Furthermore, V2 stripes contain large-scale sequences of preferred orientation. These analyses demonstrate that V2 consists of 4 distinct functional compartments; thick stripes and type-II interstripes, which are strongly orientation selective and thin stripes and type-I interstripes, which are significantly less selective for orientation and exhibit larger orientation gradient magnitudes. PMID:24614951
D'Souza, Sushila; Romano, Marta; Korf, Johanna; Wang, Xiao-Ming; Adnet, Pierre-Yves; Huygen, Kris
2006-05-01
Reactivation tuberculosis (TB) is a serious problem in immunocompromised individuals, especially those with human immunodeficiency virus (HIV) coinfection. The adaptive immune response mediated by CD4+ and CD8+ T cells is known to confer protection against TB. Hence, vaccines against TB are designed to activate these two components of the immune system. Anti-TB DNA vaccines encoding the immunodominant proteins Ag85A, Ag85B, and PstS-3 from Mycobacterium tuberculosis are ineffective in mice lacking CD4+ T cells (CD4-/- mice). In this study, we demonstrate that reconstitution of the T-cell compartment in CD4-/- mice restores vaccine-specific antibody and gamma interferon (IFN-gamma) responses to these DNA vaccines. The magnitude of the immune responses correlated with the extent of reconstitution of the CD4+-T-cell compartment. Reconstituted mice vaccinated with DNA encoding PstS-3, known to encode a dominant D(b)-restricted CD8+-T-cell epitope, displayed CD8+-T-cell responses not observed in CD4-/- mice. M. tuberculosis challenge in reconstituted mice led to the extravasation of IFN-gamma-producing CD4+ and CD8+ T cells into lungs, the primary site of bacterial replication. Importantly, a reconstitution of 12 to 15% of the CD4+-T-cell compartment resulted in Ag85B plasmid DNA-mediated protection against a challenge M. tuberculosis infection. Our findings provide evidence that anti-TB DNA vaccines could be effective in immunodeficient individuals after CD4+-T-lymphocyte reconstitution, as may occur following antiretroviral therapy in HIV+ patients.
Zhang, Li; Cham, Jason; Paciorek, Alan; Trager, James; Sheikh, Nadeem; Fong, Lawrence
2017-02-27
Cancer immunotherapy has demonstrated significant clinical activity in different cancers. T cells represent a crucial component of the adaptive immune system and are thought to mediate anti-tumoral immunity. Antigen-specific recognition by T cells is via the T cell receptor (TCR) which is unique for each T cell. Next generation sequencing (NGS) of the TCRs can be used as a platform to profile the T cell repertoire. Though there are a number of software tools available for processing repertoire data by mapping antigen receptor segments to sequencing reads and assembling the clonotypes, most of them are not designed to track and examine the dynamic nature of the TCR repertoire across multiple time points or between different biologic compartments (e.g., blood and tissue samples) in a clinical context. We integrated different diversity measures to assess the T cell repertoire diversity and examined the robustness of the diversity indices. Among those tested, Clonality was identified for its robustness as a key metric for study design and the first choice to measure TCR repertoire diversity. To evaluate the dynamic nature of T cell clonotypes across time, we utilized several binary similarity measures (such as Baroni-Urbani and Buser overlap index), relative clonality and Morisita's overlap index, as well as the intraclass correlation coefficient, and performed fold change analysis, which was further extended to investigate the transition of clonotypes among different biological compartments. Furthermore, the application of differential testing enabled the detection of clonotypes which were significantly changed across time. By applying the proposed "3D" analysis pipeline to the real example of prostate cancer subjects who received sipuleucel-T, an FDA-approved immunotherapy, we were able to detect changes in TCR sequence frequency and diversity thus demonstrating that sipuleucel-T treatment affected TCR repertoire in blood and in prostate tissue. We also found that the increase in common TCR sequences between tissue and blood after sipuleucel-T treatment supported the hypothesis that treatment-induced T cell migrated into the prostate tissue. In addition, a second example of prostate cancer subjects treated with Ipilimumab and granulocyte macrophage colony stimulating factor (GM-CSF) was presented in the supplementary documents to further illustrate assessing the treatment-associated change in a clinical context by the proposed workflow. Our paper provides guidance to study the diversity and dynamics of NGS-based TCR repertoire profiling in a clinical context to ensure consistency and reproducibility of post-analysis. This analysis pipeline will provide an initial workflow for TCR sequencing data with serial time points and for comparing T cells in multiple compartments for a clinical study.
Hydrogen Peroxide Probes Directed to Different Cellular Compartments
Malinouski, Mikalai; Zhou, You; Belousov, Vsevolod V.; Hatfield, Dolph L.; Gladyshev, Vadim N.
2011-01-01
Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells. PMID:21283738
On being the right size: scaling effects in designing a human-on-a-chip
Moraes, Christopher; Labuz, Joseph M.; Leung, Brendan M.; Inoue, Mayumi; Chun, Tae-Hwa; Takayama, Shuichi
2013-01-01
Developing a human-on-a-chip by connecting multiple model organ systems would provide an intermediate screen for therapeutic efficacy and toxic side effects of drugs prior to conducting expensive clinical trials. However, correctly designing individual organs and scaling them relative to each other to make a functional microscale human analog is challenging, and a generalized approach has yet to be identified. In this work, we demonstrate the importance of rational design of both the individual organ and its relationship with other organs, using a simple two-compartment system simulating insulin-dependent glucose uptake in adipose tissues. We demonstrate that inter-organ scaling laws depend on both the number of cells, and on the spatial arrangement of those cells within the microfabricated construct. We then propose a simple and novel inter-organ ‘metabolically-supported functional scaling’ approach predicated on maintaining in vivo cellular basal metabolic rates, by limiting resources available to cells on the chip. This approach leverages findings from allometric scaling models in mammals that limited resources in vivo prompts cells to behave differently than in resource-rich in vitro cultures. Although applying scaling laws directly to tissues can result in systems that would be quite challenging to implement, engineering workarounds may be used to circumvent these scaling issues. Specific workarounds discussed include the limited oxygen carrying capacity of cell culture media when used as a blood substitute and the ability to engineer non-physiological structures to augment organ function, to create the transport-accessible, yet resource-limited environment necessary for cells to mimic in vivo functionality. Furthermore, designing the structure of individual tissues in each organ compartment may be a useful strategy to bypass scaling concerns at the inter-organ level. PMID:23925524
The dynamical analysis of modified two-compartment neuron model and FPGA implementation
NASA Astrophysics Data System (ADS)
Lin, Qianjin; Wang, Jiang; Yang, Shuangming; Yi, Guosheng; Deng, Bin; Wei, Xile; Yu, Haitao
2017-10-01
The complexity of neural models is increasing with the investigation of larger biological neural network, more various ionic channels and more detailed morphologies, and the implementation of biological neural network is a task with huge computational complexity and power consumption. This paper presents an efficient digital design using piecewise linearization on field programmable gate array (FPGA), to succinctly implement the reduced two-compartment model which retains essential features of more complicated models. The design proposes an approximate neuron model which is composed of a set of piecewise linear equations, and it can reproduce different dynamical behaviors to depict the mechanisms of a single neuron model. The consistency of hardware implementation is verified in terms of dynamical behaviors and bifurcation analysis, and the simulation results including varied ion channel characteristics coincide with the biological neuron model with a high accuracy. Hardware synthesis on FPGA demonstrates that the proposed model has reliable performance and lower hardware resource compared with the original two-compartment model. These investigations are conducive to scalability of biological neural network in reconfigurable large-scale neuromorphic system.
Wang, Junqi; Li, Yubing; Lo, Sze Wan; Hillmer, Stefan; Sun, Samuel S.M.; Robinson, David G.; Jiang, Liwen
2007-01-01
Plants accumulate and store proteins in protein storage vacuoles (PSVs) during seed development and maturation. Upon seed germination, these storage proteins are mobilized to provide nutrients for seedling growth. However, little is known about the molecular mechanisms of protein degradation during seed germination. Here we test the hypothesis that vacuolar sorting receptor (VSR) proteins play a role in mediating protein degradation in germinating seeds. We demonstrate that both VSR proteins and hydrolytic enzymes are synthesized de novo during mung bean (Vigna radiata) seed germination. Immunogold electron microscopy with VSR antibodies demonstrate that VSRs mainly locate to the peripheral membrane of multivesicular bodies (MVBs), presumably as recycling receptors in day 1 germinating seeds, but become internalized to the MVB lumen, presumably for degradation at day 3 germination. Chemical cross-linking and immunoprecipitation with VSR antibodies have identified the cysteine protease aleurain as a specific VSR-interacting protein in germinating seeds. Further confocal immunofluorescence and immunogold electron microscopy studies demonstrate that VSR and aleurain colocalize to MVBs as well as PSVs in germinating seeds. Thus, MVBs in germinating seeds exercise dual functions: as a storage compartment for proteases that are physically separated from PSVs in the mature seed and as an intermediate compartment for VSR-mediated delivery of proteases from the Golgi apparatus to the PSV for protein degradation during seed germination. PMID:17322331
Jordens, Ingrid; Molle, Dorothee; Xiong, Wenyong; Keller, Susanna R.
2010-01-01
Insulin stimulates glucose uptake by regulating translocation of the GLUT4 glucose transporter from intracellular compartments to the plasma membrane. In the absence of insulin GLUT4 is actively sequestered away from the general endosomes into GLUT4-specialized compartments, thereby controlling the amount of GLUT4 at the plasma membrane. Here, we investigated the role of the aminopeptidase IRAP in GLUT4 trafficking. In unstimulated IRAP knockdown adipocytes, plasma membrane GLUT4 levels are elevated because of increased exocytosis, demonstrating an essential role of IRAP in GLUT4 retention. Current evidence supports the model that AS160 RabGAP, which is required for basal GLUT4 retention, is recruited to GLUT4 compartments via an interaction with IRAP. However, here we show that AS160 recruitment to GLUT4 compartments and AS160 regulation of GLUT4 trafficking were unaffected by IRAP knockdown. These results demonstrate that AS160 is recruited to membranes by an IRAP-independent mechanism. Consistent with a role independent of AS160, we showed that IRAP functions in GLUT4 sorting from endosomes to GLUT4-specialized compartments. This is revealed by the relocalization of GLUT4 to endosomes in IRAP knockdown cells. Although IRAP knockdown has profound effects on GLUT4 traffic, GLUT4 knockdown does not affect IRAP trafficking, demonstrating that IRAP traffics independent of GLUT4. In sum, we show that IRAP is both cargo and a key regulator of the insulin-regulated pathway. PMID:20410133
Leypoldt, John K; Akonur, Alp; Agar, Baris U; Culleton, Bruce F
2012-10-01
The kinetics of plasma phosphorus concentrations during hemodialysis (HD) are complex and cannot be described by conventional one- or two-compartment kinetic models. It has recently been shown by others that the physiologic (or apparent distribution) volume for phosphorus (Vr-P) increases with increasing treatment time and shows a large variation among patients treated by thrice weekly and daily HD. Here, we describe the dependence of Vr-P on treatment time and predialysis plasma phosphorus concentration as predicted by a novel pseudo one-compartment model. The kinetics of plasma phosphorus during conventional and six times per week daily HD were simulated as a function of treatment time per session for various dialyzer phosphate clearances and patient-specific phosphorus mobilization clearances (K(M)). Vr-P normalized to extracellular volume from these simulations were reported and compared with previously published empirical findings. Simulated results were relatively independent of dialyzer phosphate clearance and treatment frequency. In contrast, Vr-P was strongly dependent on treatment time per session; the increase in Vr-P with treatment time was larger for higher values of K(M). Vr-P was inversely dependent on predialysis plasma phosphorus concentration. There was significant variation among predicted Vr-P values, depending largely on the value of K(M). We conclude that a pseudo one-compartment model can describe the empirical dependence of the physiologic volume of phosphorus on treatment time and predialysis plasma phosphorus concentration. Further, the variation in physiologic volume of phosphorus among HD patients is largely due to differences in patient-specific phosphorus mobilization clearance. © 2012 The Authors. Hemodialysis International © 2012 International Society for Hemodialysis.
A Multi-Compartment 3-D Finite Element Model of Rectocele and Its Interaction with Cystocele
Luo, Jiajia; Chen, Luyun; Fenner, Dee E.; Ashton-Miller, James A.; DeLancey, John O. L.
2015-01-01
We developed a subject-specific 3-D finite element model to understand the mechanics underlying formation of female pelvic organ prolapse, specifically a rectocele and its interaction with a cystocele. The model was created from MRI 3-D geometry of a healthy 45 year-old multiparous woman. It included anterior and posterior vaginal walls, levator ani muscle, cardinal and uterosacral ligaments, anterior and posterior arcus tendineus fascia pelvis, arcus tendineus levator ani, perineal body, perineal membrane and anal sphincter. Material properties were mostly from the literature. Tissue impairment was modeled as decreased tissue stiffness based on previous clinical studies. Model equations were solved using Abaqus v 6.11. The sensitivity of anterior and posterior vaginal wall geometry was calculated for different combinations tissue impairments under increasing intraabdominal pressure. Prolapse size was reported as POP-Q point at point Bp for rectocele and point Ba for cystocele. Results show that a rectocele resulted from impairments of the levator ani and posterior compartment support. For 20% levator and 85% posterior support impairments, simulated rectocele size (at POP-Q point: Bp) increased 0.29 mm/cm H2O without apical impairment and 0.36 mm/cm H2O with 60% apical impairment, as intraabdominal pressures increased from 0 to 150 cm H2O. Apical support impairment could result in the development of either a cystocele or rectocele. Simulated repair of posterior compartment support decreased rectocele but increased a preexisting cystocele. We conclude that development of rectocele and cystocele depend on the presence of anterior, posterior, levator and/or or apical support impairments, as well as the interaction of the prolapse with the opposing compartment. PMID:25757664
Bradford, James R.; Farren, Matthew; Powell, Steve J.; Runswick, Sarah; Weston, Susie L.; Brown, Helen; Delpuech, Oona; Wappett, Mark; Smith, Neil R.; Carr, T. Hedley; Dry, Jonathan R.; Gibson, Neil J.; Barry, Simon T.
2013-01-01
Pre-clinical models of tumour biology often rely on propagating human tumour cells in a mouse. In order to gain insight into the alignment of these models to human disease segments or investigate the effects of different therapeutics, approaches such as PCR or array based expression profiling are often employed despite suffering from biased transcript coverage, and a requirement for specialist experimental protocols to separate tumour and host signals. Here, we describe a computational strategy to profile transcript expression in both the tumour and host compartments of pre-clinical xenograft models from the same RNA sample using RNA-Seq. Key to this strategy is a species-specific mapping approach that removes the need for manipulation of the RNA population, customised sequencing protocols, or prior knowledge of the species component ratio. The method demonstrates comparable performance to species-specific RT-qPCR and a standard microarray platform, and allowed us to quantify gene expression changes in both the tumour and host tissue following treatment with cediranib, a potent vascular endothelial growth factor receptor tyrosine kinase inhibitor, including the reduction of multiple murine transcripts associated with endothelium or vessels, and an increase in genes associated with the inflammatory response in response to cediranib. In the human compartment, we observed a robust induction of hypoxia genes and a reduction in cell cycle associated transcripts. In conclusion, the study establishes that RNA-Seq can be applied to pre-clinical models to gain deeper understanding of model characteristics and compound mechanism of action, and to identify both tumour and host biomarkers. PMID:23840389
Xu, Fenglian; Luk, Collin C; Wiersma-Meems, Ryanne; Baehre, Kelly; Herman, Cameron; Zaidi, Wali; Wong, Noelle; Syed, Naweed I
2014-08-20
Proper synapse formation is pivotal for all nervous system functions. However, the precise mechanisms remain elusive. Moreover, compared with the neuromuscular junction, steps regulating the synaptogenic program at central cholinergic synapses remain poorly defined. In this study, we identified different roles of neuronal compartments (somal vs extrasomal) in chemical and electrical synaptogenesis. Specifically, the electrically synapsed Lymnaea pedal dorsal A cluster neurons were used to study electrical synapses, whereas chemical synaptic partners, visceral dorsal 4 (presynaptic, cholinergic), and left pedal dorsal 1 (LPeD1; postsynaptic) were explored for chemical synapse formation. Neurons were cultured in a soma-soma or soma-axon configuration and synapses explored electrophysiologically. We provide the first direct evidence that electrical synapses develop in a soma-soma, but not soma-axon (removal of soma) configuration, indicating the requirement of gene transcription regulation in the somata of both synaptic partners. In addition, the soma-soma electrical coupling was contingent upon trophic factors present in Lymnaea brain-conditioned medium. Further, we demonstrate that chemical (cholinergic) synapses between soma-soma and soma-axon pairs were indistinguishable, with both exhibiting a high degree of contact site and target cell type specificity. We also provide direct evidence that presynaptic cell contact-mediated, clustering of postsynaptic cholinergic receptors at the synaptic site requires transmitter-receptor interaction, receptor internalization, and a protein kinase C-dependent lateral migration toward the contact site. This study provides novel insights into synaptogenesis between central neurons revealing both distinct and synergistic roles of cell-cell signaling and extrinsic trophic factors in executing the synaptogenic program. Copyright © 2014 the authors 0270-6474/14/3411304-12$15.00/0.
A modular approach for multifunctional polymersomes with controlled adhesive properties.
Petit, Julien; Thomi, Laura; Schultze, Jennifer; Makowski, Marcin; Negwer, Inka; Koynov, Kaloian; Herminghaus, Stephan; Wurm, Frederik R; Bäumchen, Oliver; Landfester, Katharina
2018-02-14
The bottom-up approach in synthetic biology involves the engineering of synthetic cells by designing biological and chemical building blocks, which can be combined in order to mimic cellular functions. The first step for mimicking a living cell is the design of an appropriate compartment featuring a multifunctional membrane. This is of particular interest since it allows for the selective attachment of different groups or molecules to the membrane. In this context, we report on a modular approach for polymeric vesicles, so-called polymersomes, with a multifunctional surface, namely hydroxyl, alkyne and acrylate groups. We demonstrate that the surface of the polymersome can be functionalized to facilitate imaging, via fluorescent dyes, or to improve the specific adhesion to surfaces by using a biotin functionalization. This generally applicable multifunctionality allows for the covalent integration of various molecules in the membrane of a synthetic cell.
Paquet, Sophie; Daude, Nathalie; Courageot, Marie-Pierre; Chapuis, Jérôme; Laude, Hubert; Vilette, Didier
2007-01-01
We have studied the interactions of exogenous prions with an epithelial cell line inducibly expressing PrPc protein and permissive to infection by a sheep scrapie agent. We demonstrate that abnormal PrP (PrPSc) and prion infectivity are efficiently internalized in Rov cells, whether or not PrPc is expressed. At odds with earlier studies implicating cellular heparan sulfates in PrPSc internalization, we failed to find any involvement of such molecules in Rov cells, indicating that prions can enter target cells by several routes. We further show that PrPSc taken up in the absence of PrPc was unable to promote efficient prion multiplication once PrPc expression was restored in the cells. This observation argues that interaction of PrPSc with PrPc has to occur early, in a specific subcellular compartment(s), and is consistent with the view that the first prion multiplication events may occur at the cell surface. PMID:17626095
Pluta, R
2003-01-01
This study examined the late microvascular consequences of brain ischemia due to cardiac arrest in rats. In reacted vibratome sections scattered foci of extravasated horseradish peroxidase were noted throughout the brain and did not appear to be restricted to any specific area of brain. Ultrastructural investigation of leaky sites frequently presented platelets adhering to the endothelium of venules and capillaries. Endothelial cells demonstrated pathological changes with evidence of perivascular astrocytic swelling. At the same time, we noted C-terminal of amyloid precursor protein/beta-amyloid peptide (CAPP/betaA) deposits in cerebral blood vessels, with a halo of CAPP/betaA immunoreactivity in the surrounding parenchyma suggested diffusion of CAPP/betaA out of the vascular compartment. Changes predominated in the hippocampus, cerebral and entorhinal cortex, corpus callosum, thalamus, basal ganglia and around the lateral ventricles. These data implicate delayed abnormal endothelial function of vessels following ischemia-reperfusion brain injury as a primary event in the pathogenesis of the recurrent cerebral infarction.
What does it take to have a high-grade pivot shift?
Tanaka, M; Vyas, D; Moloney, G; Bedi, A; Pearle, A D; Musahl, V
2012-04-01
The pivot shift is the most specific clinical test to assess pathological knee joint rotatory laxity following ACL injury. This article attempts to describe the anatomic structures responsible for creating a high-grade pivot shift and their potential role in customizing ACL reconstruction. A review of the literature demonstrates that disruption of the secondary stabilizers of anterior translation of the lateral compartment including the lateral meniscus, anterolateral capsule, and IT band contributes to a high-grade pivot shift in the ACL-deficient knee. The morphology of the lateral tibial plateau, including increased posteroinferior tibial slope and small size, can also contribute to high-grade pivot shift. Factors that may decrease the grade of the pivot shift include medial compartment injury, MCL injury, patient guarding, and osteoarthritis. In conclusion, a high-grade pivot shift in the ACL-deficient knee is often associated with incompetence of the lateral soft tissue envelope. Rotatory laxity as assessed by the pivot shift may also be falsely underestimated by concomitant injuries. IV.
NASA Astrophysics Data System (ADS)
Roques, C.; Bour, O.; Aquilina, L.; Longuevergne, L.; Dewandel, B.; Hochreutener, R.; Schroetter, J.; Labasque, T.; Lavenant, N.
2012-12-01
Hard-rock aquifers constitute in general a limited groundwater resource whose upper part is particularly sensitive to anthropogenic activities. Locally, some high production aquifers can be encountered, typically near regional tectonic discontinuities which may constitute preferential flow paths. However, this kind of aquifer, in particular their interactions with sub-surface, is often very difficult to characterize. We investigated the hydrogeological functioning of a deep vertical conductive fractured zone, focusing on the interactions between hydrologic compartments, thanks to a multidisciplinary approach and a variety of field experiments. A specific field site located in north east of French Brittany, in crystalline bedrock, was selected because of high measured yields during drilling (100 m3/h), essentially related to permeable fractures at 120 m depth and deeper. Three deep boreholes 80 to 250 deep were drilled at relatively short distances (typically 30 meters); one of them has been cored for detailed geological information. Shallower boreholes were also drilled (7 to 20 m deep) to characterize the upper weathered compartment and the hydraulic connections with the deep compartment. The system was characterized both in natural conditions and during a 9-week large scale pumping test carried out at a pumping rate of 45 m3/h. To describe the hydraulic properties and the functioning of the deep hydraulic structure, we used a multidisciplinary approach: (a) well head variations and traditional pumping test interpretations, (b) high-resolution flow loggings to identify fracture connectivity, (c) tracer tests to estimate transfer times and groundwater fluxes between main compartments and (d) multi-parameters fluid logging, geochemistry and groundwater dating to identify water origin and mixing processes between different reservoirs. The geometry of the main permeable structure has been identified combining geological information and hydraulic interpretations. It shows a clear compartmentalization of the aquifer with a strong spatial heterogeneity in permeability. Although using a packer to force the pumping to be deeper than 80 meters, a very fast reaction of the upper aquifer during pumping with clear leaky effects was observed. Heat-Pulse Flowmeter logs also show the interconnections between compartments. During the pumping, we also monitored a high decrease of groundwater ages of the water pumped. Combination of all these methods allowed the flow connections between compartments to be identified and the fluxes between the different compartments to be quantified. We show in particular how the deep groundwater resource is strongly dependent of shallower compartments. Identifying flow properties and origin of water in a deep aquifer is an important issue to optimize the management of such groundwater resources. In particular the estimation of the groundwater capacity, and also to predict groundwater quality changes are essential. This study allows quantifying fluxes between compartments both in natural and pumping conditions. Such a characterization is crucial to assess the sustainability of deep hard-rock aquifers for groundwater supply.
Microbial community composition but not diversity changes along succession in arctic sand dunes.
Poosakkannu, Anbu; Nissinen, Riitta; Männistö, Minna; Kytöviita, Minna-Maarit
2017-02-01
The generality of increasing diversity of fungi and bacteria across arctic sand dune succession was tested. Microbial communities were examined by high-throughput sequencing of 16S rRNA genes (bacteria) and internal transcribed spacer (ITS) regions (fungi). We studied four microbial compartments (inside leaf, inside root, rhizosphere and bulk soil) and characterized microbes associated with a single plant species (Deschampsia flexuosa) across two sand dune successional stages (early and late). Bacterial richness increased across succession in bulk soil and leaf endosphere. In contrast, soil fungal richness remained constant while root endosphere fungal richness increased across succession. There was, however, no significant difference in Shannon diversity indices between early and late successional stage in any compartment. There was a significant difference in the composition of microbial communities between early and late successional stage in all compartments, although the major microbial OTUs were shared between early and late successional stage. Co-occurrence network analysis revealed successional stage-specific microbial groups. There were more co-occurring modules in early successional stage than in late stage. Altogether, these results emphasize that succession strongly affects distribution of microbial species, but not microbial diversity in arctic sand dune ecosystem and that fungi and bacteria may not follow the same successional trajectories. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Naito, Tomoaki; Mulet, Céline; De Castro, Cristina; Molinaro, Antonio; Saffarian, Azadeh; Nigro, Giulia; Bérard, Marion; Clerc, Mélanie; Pedersen, Amy B.; Pédron, Thierry
2017-01-01
ABSTRACT We identified a crypt-specific core microbiota (CSCM) dominated by strictly aerobic, nonfermentative bacteria in murine cecal and proximal colonic (PC) crypts and hypothesized that, among its possible functions, it may affect epithelial regeneration. In the present work, we isolated representative CSCM strains using selective media based upon our initial 16S rRNA-based molecular identification (i.e., Acinetobacter, Delftia, and Stenotrophomonas). Their tropism for the crypt was confirmed, and their influence on epithelial regeneration was demonstrated in vivo by monocolonization of germfree mice. We also showed that lipopolysaccharide (LPS), through its endotoxin activity, was the dominant bacterial agonist controlling proliferation. The relevant molecular mechanisms were analyzed using colonic crypt-derived organoids exposed to bacterial sonicates or highly purified LPS as agonists. We identified a Toll-like receptor 4 (TLR4)-dependent program affecting crypts at different stages of epithelial differentiation. LPS played a dual role: it repressed cell proliferation through RIPK3-mediated necroptosis of stem cells and cells of the transit-amplifying compartment and concurrently enhanced cell differentiation, particularly the goblet cell lineage. PMID:29042502
van Rhenen, Anna; van Dongen, Guus A M S; Kelder, Angèle; Rombouts, Elwin J; Feller, Nicole; Moshaver, Bijan; Stigter-van Walsum, Marijke; Zweegman, Sonja; Ossenkoppele, Gert J; Jan Schuurhuis, Gerrit
2007-10-01
In CD34(+) acute myeloid leukemia (AML), the malignant stem cells reside in the CD38(-) compartment. We have shown before that the frequency of such CD34(+)CD38(-) cells at diagnosis correlates with minimal residual disease (MRD) frequency after chemotherapy and with survival. Specific targeting of CD34(+)CD38(-) cells might thus offer therapeutic options. Previously, we found that C-type lectin-like molecule-1 (CLL-1) has high expression on the whole blast compartment in the majority of AML cases. We now show that CLL-1 expression is also present on the CD34(+)CD38(-) stem- cell compartment in AML (77/89 patients). The CD34(+)CLL-1(+) population, containing the CD34(+)CD38(-)CLL-1(+) cells, does engraft in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with outgrowth to CLL-1(+) blasts. CLL-1 expression was not different between diagnosis and relapse (n = 9). In remission, both CLL-1(-) normal and CLL-1(+) malignant CD34(+)CD38(-) cells were present. A high CLL-1(+) fraction was associated with quick relapse. CLL-1 expression is completely absent both on CD34(+)CD38(-) cells in normal (n = 11) and in regenerating bone marrow controls (n = 6). This AML stem-cell specificity of the anti-CLL-1 antibody under all conditions of disease and the leukemia-initiating properties of CD34(+)CLL-1(+) cells indicate that anti-CLL-1 antibody enables both AML-specific stem-cell detection and possibly antigen-targeting in future.
Influence of clinostat rotation on fertilized amphibian egg pattern specification
NASA Technical Reports Server (NTRS)
Neff, A. W.; Smith, R. C.; Malacinski, G. M.; Chung, H.-M.
1984-01-01
Pattern specification in fertile Xenopus eggs rotated on horizontal clinostats was monitored with respect to primary embryonic axis formation, subsequent morphogenesis, and compartmentalization of the cytoplasm. At the speeds of 1 to 24 rpm (which are believed to simulate microgravity) a large percentage of eggs developed normal axial structures. Eggs clinostated at 12 rpm showed a randomization of dorsal/ventral polarity. The cytoplasmic compartments showed some clinostat effects but no abnormal mixing, disruption or dislocation of compartments. It is predicted that Xenopus eggs fertilized and allowed to develop in space will retain normal cytoplasmic density compartments, establish primary axes and undergo normal morphogenesis in space. Their dorsal/ventral polarity may not, however, be determined by the sperm entrance site (as is the case for 1 g eggs).
Evaluation of TLR Agonists as Potential Mucosal Adjuvants for HIV gp140 and Tetanus Toxoid in Mice
Buffa, Viviana; Klein, Katja; Fischetti, Lucia; Shattock, Robin J.
2012-01-01
In the present study we investigate the impact of a range of TLR ligands and chitosan as potential adjuvants for different routes of mucosal immunisation (sublingual (SL), intranasal (IN), intravaginal (IVag) and a parenteral route (subcutaneous (SC)) in the murine model. We assess their ability to enhance antibody responses to HIV-1 CN54gp140 (gp140) and Tetanus toxoid (TT) in systemic and vaginal compartments. A number of trends were observed by route of administration. For non-adjuvanted antigen, SC>SL>IN immunisation with respect to systemic IgG responses, where endpoint titres were greater for TT than for gp140. In general, co-administration with adjuvants increased specific IgG responses where IN = SC>SL, while in the vaginal compartment IN>SL>SC for specific IgA. In contrast, for systemic and mucosal IgA responses to antigen alone SL>IN = SC. A number of adjuvants increased specific systemic IgA responses where in general IN>SL>SC immunisation, while for mucosal responses IN = SL>SC. In contrast, direct intravaginal immunisation failed to induce any detectable systemic or mucosal responses to gp140 even in the presence of adjuvant. However, significant systemic IgG responses to TT were induced by intravaginal immunisation with or without adjuvant, and detectable mucosal responses IgG and IgA were observed when TT was administered with FSL-1 or Poly I∶C. Interestingly some TLRs displayed differential activity dependent upon the route of administration. MPLA (TLR4) suppressed systemic responses to SL immunisation while enhancing responses to IN or SC immunisation. CpG B enhanced SL and IN responses, while having little or no impact on SC immunisation. These data demonstrate important route, antigen and adjuvant effects that need to be considered in the design of mucosal vaccine strategies. PMID:23272062
Isolation of the Lateral Border Recycling Compartment using a diaminobenzidine-induced density shift
Sullivan, David P.; Rüffer, Claas; Muller, William A.
2014-01-01
The migration of leukocytes across the endothelium and into tissue is critical to mounting an inflammatory response. The Lateral Border Recycling Compartment (LBRC), a complex vesicular-tubule invagination of the plasma membrane found at endothelial cell borders, plays an important role in the this process. Although a few proteins have been shown to be present in the LBRC, no unique marker is known. Here we detail methods that can be used to characterize a subcellular compartment that lacks an identifying marker. Initial characterization of the LBRC was performed using standard subcellular fractionation with sucrose gradients and took advantage of the observation that the compartment migrated at a lower density than other membrane compartments. To isolate larger quantities of the compartment, we modified a classic technique known as a diaminobenzidine (DAB)-induced density shift. The DAB-induced density shift allowed for specific isolation of membranes labeled with HRP conjugated antibody. Because the LBRC could be differentially labeled at 4°C and 37°C, we were able to identify proteins that are enriched in the compartment, despite lacking a unique marker. These methods serve as a model to others studying poorly characterized compartments and organelles and are applicable to a wide variety of biological systems. PMID:24915828
Clark, Robert A.
2015-01-01
Vertical fusional vergence (VFV) normally compensates for slight vertical heterophorias. We employed magnetic resonance imaging to clarify extraocular muscle contributions to VFV induced by monocular two-prism diopter (1.15°) base-up prism in 14 normal adults. Fusion during prism viewing requires monocular infraduction. Scans were repeated without prism, and with prism shifted contralaterally. Contractility indicated by morphometric indexes was separately analyzed in medial and lateral vertical rectus and superior oblique (SO) putative compartments, and superior and inferior horizontal rectus extraocular muscle putative compartments, but in the whole inferior oblique (IO). Images confirmed appropriate VFV that was implemented by the inferior rectus (IR) medial compartment contracting ipsilateral and relaxing contralateral to prism. There was no significant contractility in the IR lateral compartment. The superior but not inferior lateral rectus (LR) compartment contracted significantly in the prism viewing eye, but not contralateral to prism. The IO contracted ipsilateral but not contralateral to the prism. In the infraducting eye, the SO medial compartment relaxed significantly, while the lateral compartment was unchanged; contralateral to prism, the SO lateral compartment contracted, while the medial compartment was unchanged. There was no contractility in the superior or medial rectus muscles in either eye. There was no globe retraction. We conclude that the vertical component of VFV is primarily implemented by IR medial compartment contraction. Since appropriate vertical rotation is not directly implemented, or is opposed, by associated differential LR and SO compartmental activity, and IO contraction, these actions probably implement a torsional component of VFV. PMID:25589593
On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection.
Kongsuphol, Patthara; Liu, Yunxiao; Ramadan, Qasem
2016-10-01
Cytokine profiling and immunophenotyping offer great potential for understanding many disease mechanisms, personalized diagnosis, and immunotherapy. Here, we demonstrate a time-resolved detection of cytokine from a single cell cluster using an in situ magnetic immune assay. An array of triple-layered microfluidic chambers was fabricated to enable simultaneous cell culture under perfusion flow and detection of the induced cytokines at multiple time-points. Each culture chamber comprises three fluidic compartments which are dedicated to, cell culture, perfusion and immunoassay. The three compartments are separated by porous membranes, which allow the diffusion of fresh nutrient from the perfusion compartment into the cell culture compartment and cytokines secretion from the cell culture compartment into the immune assay compartment. This structure hence enables capturing the released cytokines without disturbing the cell culture and without minimizing benefit gain from perfusion. Functionalized magnetic beads were used as a solid phase carrier for cytokine capturing and quantification. The cytokines released from differential stimuli were quantified in situ in non-differentiated U937 monocytes and differentiated macrophages.
Mayhew, Terry M; Lucocq, John M
2011-03-01
Various methods for quantifying cellular immunogold labelling on transmission electron microscope thin sections are currently available. All rely on sound random sampling principles and are applicable to single immunolabelling across compartments within a given cell type or between different experimental groups of cells. Although methods are also available to test for colocalization in double/triple immunogold labelling studies, so far, these have relied on making multiple measurements of gold particle densities in defined areas or of inter-particle nearest neighbour distances. Here, we present alternative two-step approaches to codistribution and colocalization assessment that merely require raw counts of gold particles in distinct cellular compartments. For assessing codistribution over aggregate compartments, initial statistical evaluation involves combining contingency table and chi-squared analyses to provide predicted gold particle distributions. The observed and predicted distributions allow testing of the appropriate null hypothesis, namely, that there is no difference in the distribution patterns of proteins labelled by different sizes of gold particle. In short, the null hypothesis is that of colocalization. The approach for assessing colabelling recognises that, on thin sections, a compartment is made up of a set of sectional images (profiles) of cognate structures. The approach involves identifying two groups of compartmental profiles that are unlabelled and labelled for one gold marker size. The proportions in each group that are also labelled for the second gold marker size are then compared. Statistical analysis now uses a 2 × 2 contingency table combined with the Fisher exact probability test. Having identified double labelling, the profiles can be analysed further in order to identify characteristic features that might account for the double labelling. In each case, the approach is illustrated using synthetic and/or experimental datasets and can be refined to correct observed labelling patterns to specific labelling patterns. These simple and efficient approaches should be of more immediate utility to those interested in codistribution and colocalization in multiple immunogold labelling investigations.
Zeglin, Lydia H.
2015-01-01
The importance of microbial activity to ecosystem function in aquatic ecosystems is well established, but microbial diversity has been less frequently addressed. This review and synthesis of 100s of published studies on stream microbial diversity shows that factors known to drive ecosystem processes, such as nutrient availability, hydrology, metal contamination, contrasting land-use and temperature, also cause heterogeneity in bacterial diversity. Temporal heterogeneity in stream bacterial diversity was frequently observed, reflecting the dynamic nature of both stream ecosystems and microbial community composition. However, within-stream spatial differences in stream bacterial diversity were more commonly observed, driven specifically by different organic matter (OM) compartments. Bacterial phyla showed similar patterns in relative abundance with regard to compartment type across different streams. For example, surface water contained the highest relative abundance of Actinobacteria, while epilithon contained the highest relative abundance of Cyanobacteria and Bacteroidetes. This suggests that contrasting physical and/or nutritional habitats characterized by different stream OM compartment types may select for certain bacterial lineages. When comparing the prevalence of physicochemical effects on stream bacterial diversity, effects of changing metal concentrations were most, while effects of differences in nutrient concentrations were least frequently observed. This may indicate that although changing nutrient concentrations do tend to affect microbial diversity, other environmental factors are more likely to alter stream microbial diversity and function. The common observation of connections between ecosystem process drivers and microbial diversity suggests that microbial taxonomic turnover could mediate ecosystem-scale responses to changing environmental conditions, including both microbial habitat distribution and physicochemical factors. PMID:26042102
Bendz, Henriette; Ruhland, Sibylle C; Pandya, Maya J; Hainzl, Otmar; Riegelsberger, Stefan; Braüchle, Christoph; Mayer, Matthias P; Buchner, Johannes; Issels, Rolf D; Noessner, Elfriede
2007-10-26
Heat shock proteins (HSPs) have shown promise for the optimization of protein-based vaccines because they can transfer exogenous antigens to dendritic cells and at the same time induce their maturation. Great care must be exercised in interpretating HSP-driven studies, as by-products linked to the recombinant generation of these proteins have been shown to mediate immunological effects. We generated highly purified human recombinant Hsp70 and demonstrated that it strongly enhances the cross-presentation of exogenous antigens resulting in better antigen-specific T cell stimulation. Augmentation of T cell stimulation was a direct function of the degree of complex formation between Hsp70 and peptides and correlated with improved antigen delivery to endosomal compartments. The Hsp70 activity was independent of TAP proteins and was not inhibited by exotoxin A or endosomal acidification. Consequently, Hsp70 enhanced cross-presentation of various antigenic sequences, even when they required different post-uptake processing and trafficking, as exemplified by the tumor antigens tyrosinase and Melan-A/MART-1. Furthermore, Hsp70 enhanced cross-presentation by different antigen-presenting cells (APCs), including dendritic cells and B cells. Importantly, enhanced cross-presentation and antigen-specific T cell activation were observed in the absence of innate signals transmitted by Hsp70. As Hsp70 supports the cross-presentation of different antigens and APCs and is inert to APC function, it may show efficacy in various settings of immune modulation, including induction of antigen-specific immunity or tolerance.
Romero, María del Mar; Fernández-López, José Antonio; Remesar, Xavier; Alemany, Marià
2012-01-01
It is generally assumed that steroid hormones are carried in the blood free and/or bound to plasma proteins. We investigated whether blood cells were also able to bind/carry sex-related hormones: estrone, estradiol, DHEA and testosterone. Wistar male and female rats were fed a cafeteria diet for 30 days, which induced overweight. The rats were fed the standard rat diet for 15 additional days to minimize the immediate effects of excess ingested energy. Controls were always kept on standard diet. After the rats were killed, their blood was used for 1) measuring plasma hormone levels, 2) determining the binding of labeled hormones to washed red blood cells (RBC), 3) incubating whole blood with labeled hormones and determining the distribution of label between plasma and packed cells, discounting the trapped plasma volume, 4) determining free plasma hormone using labeled hormones, both through membrane ultrafiltration and dextran-charcoal removal. The results were computed individually for each rat. Cells retained up to 32% estrone, and down to 10% of testosterone, with marked differences due to sex and diet (the latter only for estrogens, not for DHEA and testosterone). Sex and diet also affected the concentrations of all hormones, with no significant diet effects for estradiol and DHEA, but with considerable interaction between both factors. Binding to RBC was non-specific for all hormones. Estrogen distribution in plasma compartments was affected by sex and diet. In conclusion: a) there is a large non-specific RBC-carried compartment for estrone, estradiol, DHEA and testosterone deeply affected by sex; b) Prior exposure to a cafeteria (hyperlipidic) diet induced hormone distribution changes, affected by sex, which hint at sex-related structural differences in RBC membranes; c) We postulate that the RBC compartment may contribute to maintain free (i.e., fully active) sex hormone levels in a way similar to plasma proteins non-specific binding. PMID:22479617
Saraswat, Anju; Bach, John; Watson, William D; Elliott, John O; Dominguez, Edward P
2017-08-01
Current surgical education relies on simulated educational experiences or didactic sessions to teach low-frequency clinical events such as abdominal compartment syndrome (ACS). The purpose of this pilot study was to evaluate if simulation would improve performance and knowledge retention of ACS better than a didactic lecture. Nineteen general surgery residents were block randomized by postgraduate year level to a didactic or a simulation session. After 3 months, all residents completed a knowledge assessment before participating in an additional simulation. Two independent reviewers assessed resident performance via audio-video recordings. No baseline differences in ACS experience were noted between groups. The observational evaluation demonstrated a significant difference in performance between the didactic and simulation groups: 9.9 vs 12.5, P = .037 (effect size = 1.15). Knowledge retention was equivalent between groups. This pilot study suggests that simulation-based education may be more effective for teaching the basic concepts of ACS. Copyright © 2016 Elsevier Inc. All rights reserved.
Cario, Elke; Brown, Dennis; McKee, Mary; Lynch-Devaney, Kathryn; Gerken, Guido; Podolsky, Daniel K.
2002-01-01
Commensal-associated molecular patterns, the major products of nonpathogenic bacteria, are present at high concentrations at the apical surface of the intestinal epithelium. However, the nature of the interaction of commensal-associated molecular patterns with the lumenal surface of the epithelium has not been defined. We have recently demonstrated that intestinal epithelial cells constitutively express several Toll-like receptors (TLRs) in vitro and in vivo that seem to be the key receptors responsible for immune cell activation in response to various bacterial products. In this study we characterize the subcellular distribution of two major TLRs, TLR2 and TLR4, and their ligand-specific dynamic regulation in the model human intestinal epithelial cell line T84. Immunocytochemical studies indicate that TLR2 and TLR4 are constitutively expressed at the apical pole of differentiated T84 cells. After stimulation with lipopolysaccharide or peptidoglycan, TLRs selectively traffic to cytoplasmic compartments near the basolateral membrane. Thus, we demonstrate that TLRs are positioned at the apical pole where they are poised to monitor the sensitive balance of the lumenal microbial array. The results of this dynamic epithelial surveillance can then be conveyed to the underlying cell populations of the lamina propria via these innate immune pattern recognition receptors. PMID:11786410
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
... significantly delay issuance of the design approval and thus delivery of the affected aircraft. In addition, the... specific portion of the special conditions, explain the reason for any recommended change, and include... compartment configuration that affect crew member emergency egress or any other procedures affecting the...
NASA Technical Reports Server (NTRS)
Ward, William Douglas (Inventor)
2014-01-01
The different advantageous embodiments provide for identifying gas leakage in a platform. A processor unit identifies a rate of the gas of the substance leaking from a container in a first compartment for a platform. The processor unit also identifies an amount of gas that has leaked from the container at a selected time based on the rate of the gas of the substance leaking from the container and a total time. The processor unit identifies an amount of the gas of the substance present in a number of compartments associated with the first compartment using the amount of gas leaked from the container in the first compartment and a pressure for each compartment in the number of compartments. The processor unit determines whether the amount of gas in at least one of the first compartment and the number of compartments is outside of a desired amount for the gas.
Nakayama, Hidenari; Kimura, Hiroshi; Fujii, Teruo; Sakai, Yasuyuki
2014-06-01
We recently developed a polydimethylsiloxane (PDMS)-based three-compartment microfluidic cocultivation device enabling real-time interactions of different cell populations as an advanced physiologically-relevant cell-based assay. This device had valves and small magnetic stirrer-based internal pumps for easy and flexible perfusion operations. In this study, we applied this device for the evaluation of Irinotecan (CPT-11) toxicity to the lung, because it is detoxified by the liver and accumulated in the fat in humans. We successfully cultured representative three different tissue model cells in each compartment under the individual culture conditions and also in entire perfusion. Growth inhibition of rat lung epithelial cell line L-2, was measured when administered with 50 μM CPT-11 under various cocultivation conditions with respect to the presences and absence of primary rat hepatocytes (liver tissue model) and adipocyte-like cells (fat tissue model) induced from a mouse fibroblast cell line, 3T3-L1. Although CPT-11 showed moderate toxicity to the pure culture of L-2 cells in the device after 72 h of perfusion culture, this was lowered mainly in the presence of the liver tissue. Inhibition of the L-2 cell growth agreed with the area under curve (AUC) values obtained from fluorescent image-based analyses in each compartment. These results demonstrate that developed simple and flexible microfluidic cocultivation device, with appropriate image-based analyses, can be used in evaluating toxicokinetic behaviors of drug candidates in systemic levels. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Identification of symplasmic domains in the embryo and seed of Sedum acre L. (Crassulaceae).
Wróbel-Marek, Justyna; Kurczyńska, Ewa; Płachno, Bartosz J; Kozieradzka-Kiszkurno, Małgorzata
2017-03-01
Our study demonstrated that symplasmic communication between Sedum acre seed compartments and the embryo proper is not uniform. The presence of plasmodesmata (PD) constitutes the structural basis for information exchange between cells, and symplasmic communication is involved in the regulation of cell differentiation and plant development. Most recent studies concerning an analysis of symplasmic communication between seed compartments and the embryo have been predominantly performed on Arabidopsis thaliana. The results presented in this paper describe the analysis of symplasmic communication on the example of Sedum acre seeds, because the ultrastructure of the seed compartments and the embryo proper, including the PD, have already been described, and this species represents an embryonic type of development different to Arabidopsis. Moreover, in this species, an unusual electron-dense dome associated with plasmodesmata on the border between the basal cell/chalazal suspensor cells and the basal cell/the endosperm has been described. This prompted the question as to whether these plasmodesmata are functional. Thus, the aim of this study was to describe the movement of symplasmic transport fluorochromes between different Sedum seed compartments, with particular emphasis on the movement between the basal cell and the embryo proper and endosperm, to answer the following questions: (1) are seeds divided into symplasmic domains; (2) if so, are they stable or do they change with the development? The results have shown that symplasmic tracers movement: (a) from the external integument to internal integument is restricted; (b) from the basal cell to the other part of the embryo proper and from the basal cell to the endosperm is also restricted; (c) the embryo is a single symplasmic domain with respect to molecules of a molecular weight below 0.5 kDa.
Effects of long-duration bed rest on structural compartments of m. soleus in man
NASA Technical Reports Server (NTRS)
Belozerova, I.; Shenkman, B.; Mazin, M.; Leblanc, A.; LeBlanc, A. D. (Principal Investigator)
2001-01-01
Magnetic resonance imaging (MRI), histomorphometry and electron microscopy of muscle demonstrate that long-term exposure to actual or simulated weightlessness (including head down bed rest) leads to decreased volume of antigravity muscles in mammals. In muscles interbundle space is occupied by the connective tissue. Rat studies show that hindlimb unloading induces muscle fiber atrophy along with increase in muscle non-fiber connective tissue compartment. Beside that, usually 20% of the muscle fiber volume is comprised by non-contractile (non-myofibrillar) compartment. The aim of the present study was to compare changes in muscle volume, and in muscle fiber size with alterations in myofibrillar apparatus, and in connective tissue compartment in human m. soleus under conditions of 120 day long head down bed rest (HDBR).
Neurite-specific Ca2+ dynamics underlying sound processing in an auditory interneurone.
Baden, T; Hedwig, B
2007-01-01
Concepts on neuronal signal processing and integration at a cellular and subcellular level are driven by recording techniques and model systems available. The cricket CNS with the omega-1-neurone (ON1) provides a model system for auditory pattern recognition and directional processing. Exploiting ON1's planar structure we simultaneously imaged free intracellular Ca(2+) at both input and output neurites and recorded the membrane potential in vivo during acoustic stimulation. In response to a single sound pulse the rate of Ca(2+) rise followed the onset spike rate of ON1, while the final Ca(2+) level depended on the mean spike rate. Ca(2+) rapidly increased in both dendritic and axonal arborizations and only gradually in the axon and the cell body. Ca(2+) levels were particularly high at the spike-generating zone. Through the activation of a Ca(2+)-sensitive K(+) current this may exhibit a specific control over the cell's electrical response properties. In all cellular compartments presentation of species-specific calling song caused distinct oscillations of the Ca(2+) level in the chirp rhythm, but not the faster syllable rhythm. The Ca(2+)-mediated hyperpolarization of ON1 suppressed background spike activity between chirps, acting as a noise filter. During directional auditory processing, the functional interaction of Ca(2+)-mediated inhibition and contralateral synaptic inhibition was demonstrated. Upon stimulation with different sound frequencies, the dendrites, but not the axonal arborizations, demonstrated a tonotopic response profile. This mirrored the dominance of the species-specific carrier frequency and resulted in spatial filtering of high frequency auditory inputs. (c) 2006 Wiley Periodicals, Inc.
Ecotoxicity of boric acid in standard laboratory tests with plants and soil organisms.
Princz, Juliska; Becker, Leonie; Scheffczyk, Adam; Stephenson, Gladys; Scroggins, Rick; Moser, Thomas; Römbke, Jörg
2017-05-01
To verify the continuous sensitivity of ecotoxicological tests (mainly the test organisms), reference substances with known toxicity are regularly tested. Ideally, this substance(s) would lack specificity in its mode action, be bioavailable and readily attainable with cost-effective means of chemical characterization. Boric acid has satisfied these criteria, but has most recently been characterized as a substance of very high concern, due to reproductive effects in humans, thus limiting its recommendation as an ideal reference toxicant. However, there is probably no other chemical for which ecotoxicity in soil has been so intensively studied; an extensive literature review yielded lethal (including avoidance) and sublethal data for 38 taxa. The ecotoxicity data were evaluated using species sensitivity distributions, collectively across all taxa, and separately according to species type, endpoints, soil type and duration. The lack of specificity in the mode of action yielded broad toxicity among soil taxa and soil types, and provided a collective approach to assessing species sensitivity, while taking into consideration differences in test methodologies and exposure durations. Toxicity was species-specific with Folsomia candida and enchytraied species demonstrating the most sensitivity; among plants, the following trend occurred: dicotyledonous (more sensitive) ≫ monocotyledonous ≫ gymnosperm species. Sensitivity was also time and endpoint specific, with endpoints such as lethality and avoidance being less sensitive than reproduction effects. Furthermore, given the breadth of data and toxicity demonstrated by boric acid, lessons learned from its evaluation are discussed to recommend the properties required by an ideal reference substance for the soil compartment.
Barbero, P; Rovère, C; De Bie, I; Seidah, N; Beaudet, A; Kitabgi, P
1998-09-25
Among the members of the proprotein convertase (PC) family, PC1 and PC2 have well established roles as prohormone convertases. Another good candidate for this role is PC5-A that has been shown to be present in the regulated secretory pathway of certain neuroendocrine tissues, but evidence that it can process prohormones is lacking. To determine whether PC5-A could function as a prohormone convertase and to compare its cleavage specificity with that of PC1 and PC2, we stably transfected the rat pheochromocytoma PC12 cell line with PC5-A and analyzed the biosynthesis and subcellular localization of the enzyme, as well as its ability to process pro-neurotensin/neuromedin N (pro-NT/NN) into active peptides. Our data showed that in transfected PC12 cells, PC5-A was converted from its 126-kDa precursor form into a 117-kDa mature form and, to a lesser extent, into a C-terminally truncated 65-kDa form of the 117-kDa product. Metabolic and immunochemical studies showed that PC5-A was sorted to early compartments of the regulated secretory pathway where it colocalized with immunoreactive NT. Furthermore, pro-NT/NN was processed in these compartments according to a pattern that differed from that previously described in PC1- and PC2-transfected PC12 cells. This pattern resembled that previously reported for pro-NT/NN processing in the adrenal medulla, a tissue known to express high levels of PC5-A. Altogether, these data demonstrate for the first time the ability of PC5-A to function as a prohormone convertase in the regulated secretory pathway and suggest a role for this enzyme in the physiological processing of pro-NT/NN.
Saraswathula, Anirudh; Reap, Elizabeth A; Choi, Bryan D; Schmittling, Robert J; Norberg, Pamela K; Sayour, Elias J; Herndon, James E; Healy, Patrick; Congdon, Kendra L; Archer, Gerald E; Sanchez-Perez, Luis; Sampson, John H
2016-02-01
Regulatory B cells that secrete IL-10 (IL-10(+) Bregs) represent a suppressive subset of the B cell compartment with prominent anti-inflammatory capacity, capable of suppressing cellular and humoral responses to cancer and vaccines. B lymphocyte stimulator (BLyS) is a key regulatory molecule in IL-10(+) Breg biology with tightly controlled serum levels. However, BLyS levels can be drastically altered upon chemotherapeutic intervention. We have previously shown that serum BLyS levels are elevated, and directly associated, with increased antigen-specific antibody titers in patients with glioblastoma (GBM) undergoing lymphodepletive temozolomide chemotherapy and vaccination. In this study, we examined corresponding IL-10(+) Breg responses within this patient population and demonstrate that the IL-10(+) Breg compartment remains constant before and after administration of the vaccine, despite elevated BLyS levels in circulation. IL-10(+) Breg frequencies were not associated with serum BLyS levels, and ex vivo stimulation with a physiologically relevant concentration of BLyS did not increase IL-10(+) Breg frequency. However, BLyS stimulation did increase the frequency of the overall B cell compartment and promoted B cell proliferation upon B cell receptor engagement. Therefore, using BLyS as an adjuvant with therapeutic peptide vaccination could promote humoral immunity with no increase in immunosuppressive IL-10(+) Bregs. These results have implications for modulating humoral responses in human peptide vaccine trials in patients with GBM.
Borborema, Samanta Etel Treiger; Osso, João Alberto; Andrade, Heitor Franco de; Nascimento, Nanci do
2013-08-01
Pentavalent antimonials such as meglumine antimoniate (MA) are the primary treatments for leishmaniasis, a complex disease caused by protozoan parasites of the genus Leishmania . Despite over 70 years of clinical use, their mechanisms of action, toxicity and pharmacokinetics have not been fully elucidated. Radiotracer studies performed on animals have the potential to play a major role in pharmaceutical development. The aims of this study were to prepare an antimony radiotracer by neutron irradiation of MA and to determine the biodistribution of MA in healthy and Leishmania (Leishmania) infantum chagasi-infected mice. MA (Glucantime®) was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes, ¹²²Sb and ¹²⁴Sb, with high radionuclidic purity and good specific activity. This irradiated compound presented anti-leishmanial activity similar to that of non-irradiated MA in both in vitro and in vivo evaluations. In the biodistribution studies, healthy mice showed higher uptake of antimony in the liver than infected mice and elimination occurred primarily through biliary excretion, with a small proportion of the drug excreted by the kidneys. The serum kinetic curve was bi-exponential, with two compartments: the central compartment and another compartment associated with drug excretion. Radiotracers, which can be easily produced by neutron irradiation, were demonstrated to be an interesting tool for answering several questions regarding antimonial pharmacokinetics and chemotherapy.
Torres, César I; Lee, Hyung-Sool; Rittmann, Bruce E
2008-12-01
Anodes of biological fuel cells (BFCs) normally must operate at a near-neutral pH in the presence of various ionic species required for the function of the biological catalyst (e.g., substrate, nutrients, and buffers). These ionic species are in higher concentration than protons (H+) and hydroxides (OH-); slow transport of H+ and OH- equivalents between anode and cathode compartments can lead to a large pH gradient that can inhibit the function of biological components, decrease voltage efficiency in BFCs, or both. We evaluate the use of carbonate species as OH- carriers from the cathode to the anode compartment. This is achieved by adding CO2 to the influent air in the cathode. CO2 is an acid that combines with OH- in the cathode to produce bicarbonate and carbonate. These species can migrate to the anode compartment as OH- carriers at a rate much greater than can OH- itself when the pH is not extremely high in the cathode compartment We demonstrate this concept by feeding different air/CO2 mixtures to the cathode of a dual-chamber microbial fuel cell (MFC) fed with acetate as substrate. Our results show a 45% increase in power density (from 1.9 to 2.8 W/m2) by feeding air augmented with 2-10% CO2. The cell voltage increased by as much as 120 mV, indicating that the pH gradient decreased by as much as 2 pH units. Analysis of the anode effluent showed an average increase of 4.9 mM in total carbonate, indicating that mostly carbonate was transferred from the cathode compartment This process provides a simple way to minimize potential losses in BFCs due to pH gradients between anode and cathode compartments.
Clifford, Alexander M; Weinrauch, Alyssa M; Edwards, Susan L; Wilkie, Michael P; Goss, Greg G
2017-08-01
Hagfish consume carrion, potentially exposing them to hypoxia, hypercapnia, and high environmental ammonia (HEA). We investigated branchial and cutaneous ammonia handling strategies by which Pacific hagfish ( Eptatretus stoutii ) tolerate and recover from high ammonia loading. Hagfish were exposed to HEA (20 mmol/l) for 48 h to elevate plasma total ammonia (T Amm ) levels before placement into divided chambers for a 4-h recovery period in ammonia-free seawater where ammonia excretion ( J Amm ) was measured independently in the anterior and posterior compartments. Localized HEA exposures were also conducted by subjecting hagfish to HEA in either the anterior or posterior compartments. During recovery, HEA-exposed animals increased J Amm in both compartments, with the posterior compartment comprising ~20% of the total J Amm compared with ~11% in non-HEA-exposed fish. Plasma T Amm increased substantially when whole hagfish and the posterior regions were exposed to HEA. Alternatively, plasma T Amm did not elevate after anterior localized HEA exposure. J Amm was concentration dependent (0.05-5 mmol/l) across excised skin patches at up to eightfold greater rates than in skin sections that were excised from HEA-exposed hagfish. Skin excised from more posterior regions displayed greater J Amm than those from more anterior regions. Immunohistochemistry with hagfish-specific anti-rhesus glycoprotein type c (α-hRhcg; ammonia transporter) antibody was characterized by staining on the basal aspect of hagfish epidermis while Western blotting demonstrated greater expression of Rhcg in more posterior skin sections. We conclude that cutaneous Rhcg proteins are involved in cutaneous ammonia excretion by Pacific hagfish and that this mechanism could be particularly important during feeding. Copyright © 2017 the American Physiological Society.
Ravichandiran, Mayoorendra; Ravichandiran, Nisanthini; Ravichandiran, Kajeandra; McKee, Nancy H; Richardson, Denyse; Oliver, Michele; Agur, Anne M
2012-04-01
Differential activation of specific regions within a skeletal muscle has been linked to the presence of neuromuscular compartments. However, few studies have investigated the extra- or intramuscular innervation throughout the muscle volume of extensor carpi radialis longus (ECRL) and brevis (ECRB). The aim of this study was to determine the presence of neuromuscular partitions in ECRL and ECRB based on the extra- and intramuscular innervation using three-dimensional modeling. The extra- and intramuscular nerve distribution was digitized and reconstructed in 3D in all the muscle volumes using Autodesk Maya in seven formalin embalmed cadaveric specimens (mean age, 75.7 ± 15.2 years). The intramuscular nerve distribution was modeled in all the muscle volumes. ECRL was found to have two neuromuscular compartments, superficial and deep. One branch from the radial nerve proper was found to innervate ECRL. This branch was divided into anterior and posterior branches to the superficial and deep compartments, respectively. Five innervation patterns were identified in ECRB with partitioning of the muscle belly into two, three, or four compartments, in a proximal to distal direction depending on the number of nerve branches entering the muscle belly. The ECRL and ECRB both demonstrated neuromuscular compartmentalization based on intramuscular innervation. According to the partitioning hypothesis, a muscle may be differentially activated depending on the required function of the muscle, thus allowing multifunctional muscles to contribute to a variety of movements. Therefore, the increased number of neuromuscular partitions in ECRB when compared with ECRL could be due to the need for more differential recruitment in the ECRB depending on force requirements. Copyright © 2011 Wiley Periodicals, Inc.
Gouveia, Luísa; Neves, Carole; Sebastião, Diogo; Nobre, Beatriz P; Matos, Cristina T
2014-02-01
This study demonstrates the simultaneous production of bioelectricity and added-value pigments in a Photosynthetic Alga Microbial Fuel Cell (PAMFC). A PAMFC was operated using Chlorella vulgaris in the cathode compartment and a bacterial consortium in the anode. The system was studied at two different light intensities and the maximum power produced was 62.7 mW/m(2) with a light intensity of 96 μE/(m(2)s). The results showed that increasing light intensity from 26 to 96 μE/(m(2)s) leads to an increase of about 6-folds in the power produced. Additionally, the pigments produced by the microalga were analysed and the results showed that the light intensity and PAMFC operation potentiated the carotenogenesis in the cathode compartment. The demonstrated possibility of producing added-value microalgae biomass in microbial fuel cell cathodes will increase the economic feasibility of these bioelectrochemical systems, allowing the development of energy efficient systems for wastewater treatment and carbon fixation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Characteristics of patients with chronic exertional compartment syndrome.
Davis, Daniel E; Raikin, Steven; Garras, David N; Vitanzo, Peter; Labrador, Hallie; Espandar, Ramin
2013-10-01
Chronic exertional compartment syndrome (CECS) is a condition that causes reversible ischemia and lower extremity pain during exercise. To date there are few large studies examining the characteristics of patients with CECS. This study aimed to present these characteristics by examining the largest published series of patients with a confirmed diagnosis of the disorder. An IRB-approved, retrospective review was undertaken of patients with a suspected diagnosis of CECS undergoing pre- and postexercise compartment pressure testing between 2000 and 2012. Patients were evaluated for gender, age, duration of symptoms, pain level, specific compartments involved, compartment pressure measurements, and participation and type of athletics. Two-hundred twenty-six patients (393 legs) underwent compartment pressure testing. A diagnosis of CECS was made in 153 (67.7%) patients and 250 (63.6%) legs with elevated compartment measurements; average age of the patients was 24 years (range, 13-69 years). Female patients accounted for 92 (60.1%) of those with elevated pressures. Anterior and lateral compartment pressures were elevated most frequently, with 200 (42.5%) and 167 (35.5%) compartments, respectively. One hundred forty-one (92.2%) patients reported participation in sports, with running being the most common individual sport and soccer being the most common team sport. Duration of pain prior to diagnosis averaged 28 months. Although there is ample literature pertaining to the diagnostic criteria and treatment algorithm of the condition, few papers have described the type of patient most likely to develop CECS. This is the largest study to date to evaluate the type of patient likely to present with chronic exertional compartment syndrome. Level III, retrospective review.
Characterization of MRP RNA–protein interactions within the perinucleolar compartment
Pollock, Callie; Daily, Kelly; Nguyen, Van Trung; Wang, Chen; Lewandowska, Marzena Anna; Bensaude, Olivier; Huang, Sui
2011-01-01
The perinucleolar compartment (PNC) forms in cancer cells and is highly enriched with a subset of polymerase III RNAs and RNA-binding proteins. Here we report that PNC components mitochondrial RNA–processing (MRP) RNA, pyrimidine tract–binding protein (PTB), and CUG-binding protein (CUGBP) interact in vivo, as demonstrated by coimmunoprecipitation and RNA pull-down experiments. Glycerol gradient analyses show that this complex is large and sediments at a different fraction from known MRP RNA–containing complexes, the MRP ribonucleoprotein ribozyme and human telomerase reverse transcriptase. Tethering PNC components to a LacO locus recruits other PNC components, further confirming the in vivo interactions. These interactions are present both in PNC-containing and -lacking cells. High-resolution localization analyses demonstrate that MRP RNA, CUGBP, and PTB colocalize at the PNC as a reticulated network, intertwining with newly synthesized RNA. Furthermore, green fluorescent protein (GFP)–PTB and GFP-CUGBP show a slower rate of fluorescence recovery after photobleaching at the PNC than in the nucleoplasm, illustrating the different molecular interaction of the complexes associated with the PNC. These findings support a working model in which the MRP RNA–protein complex becomes nucleated at the PNC in cancer cells and may play a role in gene expression regulation at the DNA locus that associates with the PNC. PMID:21233287
Characterization of MRP RNA-protein interactions within the perinucleolar compartment.
Pollock, Callie; Daily, Kelly; Nguyen, Van Trung; Wang, Chen; Lewandowska, Marzena Anna; Bensaude, Olivier; Huang, Sui
2011-03-15
The perinucleolar compartment (PNC) forms in cancer cells and is highly enriched with a subset of polymerase III RNAs and RNA-binding proteins. Here we report that PNC components mitochondrial RNA-processing (MRP) RNA, pyrimidine tract-binding protein (PTB), and CUG-binding protein (CUGBP) interact in vivo, as demonstrated by coimmunoprecipitation and RNA pull-down experiments. Glycerol gradient analyses show that this complex is large and sediments at a different fraction from known MRP RNA-containing complexes, the MRP ribonucleoprotein ribozyme and human telomerase reverse transcriptase. Tethering PNC components to a LacO locus recruits other PNC components, further confirming the in vivo interactions. These interactions are present both in PNC-containing and -lacking cells. High-resolution localization analyses demonstrate that MRP RNA, CUGBP, and PTB colocalize at the PNC as a reticulated network, intertwining with newly synthesized RNA. Furthermore, green fluorescent protein (GFP)-PTB and GFP-CUGBP show a slower rate of fluorescence recovery after photobleaching at the PNC than in the nucleoplasm, illustrating the different molecular interaction of the complexes associated with the PNC. These findings support a working model in which the MRP RNA-protein complex becomes nucleated at the PNC in cancer cells and may play a role in gene expression regulation at the DNA locus that associates with the PNC.
A general multiple-compartment model for the transport of trace elements through animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assimakopoulos, P.A.; Ioannides, K.G.; Pakou, A.A.
1991-08-01
Multiple-compartment models employed in the analysis of trace element transport in animals are often based on linear differential equations which relate the rate of change of contaminant (or contaminant concentration) in each compartment to the amount of contaminant (or contaminant concentration) in every other compartment in the system. This has the serious disadvantage of mixing intrinsic physiological properties with the geometry of the animal. The basic equations on which the model presented here is developed are derived from the actual physical process under way and are capable of separating intrinsic physiological properties from geometry. It is thus expected that ratemore » coefficients determined through this model will be applicable to a wider category of physiologically similar animals. A specific application of the model for the study of contamination of sheep--or indeed for any ruminant--is presented, and the temporal evolution of contaminant concentration in the various compartments of the animal is calculated. The application of this model to a system of compartments with changing geometry is also presented.« less
Chronic In Vivo Load Alteration Induces Degenerative Changes in the Rat Tibiofemoral Joint
Roemhildt, M. L.; Beynnon, B. D.; Gauthier, A. E.; Gardner-Morse, M.; Ertem, F.; Badger, G. J.
2012-01-01
Objective We investigated the relationship between the magnitude and duration of sustained compressive load alteration and the development of degenerative changes in the rat tibiofemoral joint. Methods A varus loading device was attached to the left hind limb of mature rats to apply increased compression to the medial compartment and decreased compression to the lateral compartment of the tibiofemoral joint of either 0% or 100% body weight for 0, 6 or 20 weeks. Compartment-specific assessment of the tibial plateaus included biomechanical measures (articular cartilage aggregate modulus, permeability and Poisson’s ratio, and subchondral bone modulus) and histological assessments (articular cartilage, calcified cartilage, and subchondral bone thicknesses, degenerative scoring parameters, and articular cartilage cellularity). Results Increased compression in the medial compartment produced significant degenerative changes consistent with the development of osteoarthritis including a progressive decrease in cartilage aggregate modulus (43% and 77% at 6 and 20 weeks), diminished cellularity (38% and 51% at 6 and 20 weeks), and increased histological degeneration. At 20 weeks, medial compartment articular cartilage thickness deceased 30% while subchondral bone thickness increased 32% and subchondral bone modulus increased 99%. Decreased compression in the lateral compartment increased calcified cartilage thickness, diminished region-specific subchondral bone thickness and revealed trends for reduced cellularity and decreased articular cartilage thickness at 20 weeks. Conclusions Altered chronic joint loading produced degenerative changes consistent with those observed clinically with the development of osteoarthritis and may replicate the slow development of non-traumatic osteoarthritis in which mechanical loads play a primary etiological role. PMID:23123358
Roth, Joshua D; Howell, Stephen M; Hull, Maury L
2018-06-01
Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Peter H., E-mail: peter.graham@sesiahs.health.nsw.gov.au; Plant, Natalie; Graham, Jennifer L.
2013-05-01
Purpose: A previous, unblinded study demonstrated that an alcohol-free barrier film containing an acrylate terpolymer (ATP) was effective in reducing skin reactions compared with a 10% glycerine cream (sorbolene). The different appearances of these products precluded a blinded comparison. To test the acrylate terpolymer principle in a double-blinded manner required the use of an alternative cream formulation, a moisturizing durable barrier cream (MDBC); the study was conducted by the Trans Tasman Radiation Oncology Group (TROG) as protocol 04.01. Methods and Materials: A total of 333 patients were randomized; 1 patient was ineligible and 14 patients withdrew or had less thanmore » 7 weeks' observations, leaving 318 for analysis. The chest wall was divided into medial and lateral compartments, and patients were randomized to have MDBC applied daily to the medial or lateral compartment and sorbolene to the other compartment. Weekly observations, photographs, and symptom scores (pain and pruritus) were collected to week 12 or resolution of skin reactions if earlier. Skin dose was confirmed by centrally calibrated thermoluminescent dosimeters. Results: Rates of medial and lateral compartment Common Toxicity Criteria (CTC), version 3, greater than or equal to grade 3 skin reactions were 23% and 41%, but rates by skin care product were identical at 32%. There was no significant difference between MDBC and sorbolene in the primary endpoint of peak skin reactions or secondary endpoints of area-under-the-curve skin reaction scores. Conclusions: The MDBC did not reduce the peak skin reaction compared to sorbolene. It is possible that this is related to the difference in the formulation of the cream compared with the film formulation. Skin dosimetry verification and double blinding are essential for radiation skin care comparative studies.« less
Mbua, Ngalle Eric; Flanagan-Steet, Heather; Johnson, Steven; Wolfert, Margreet A.; Boons, Geert-Jan; Steet, Richard
2013-01-01
Niemann–Pick type C (NPC) disease is characterized by impaired cholesterol efflux from late endosomes and lysosomes and secondary accumulation of lipids. Although impaired trafficking of individual glycoproteins and glycolipids has been noted in NPC cells and other storage disorders, there is currently no effective way to monitor their localization and movement en masse. Using a chemical reporter strategy in combination with pharmacologic treatments, we demonstrate a disease-specific and previously unrecognized accumulation of a diverse set of glycoconjugates in NPC1-null and NPC2-deficient fibroblasts within endocytic compartments. These labeled vesicles do not colocalize with the cholesterol-laden compartments of NPC cells. Experiments using the endocytic uptake marker dextran show that the endosomal accumulation of sialylated molecules can be largely attributed to impaired recycling as opposed to altered fusion of vesicles. Treatment of either NPC1-null or NPC2-deficient cells with cyclodextrin was effective in reducing cholesterol storage as well as the endocytic accumulation of sialoglycoproteins, demonstrating a direct link between cholesterol storage and abnormal recycling. Our data further demonstrate that this accumulation is largely glycoproteins, given that inhibitors of O-glycan initiation or N-glycan processing led to a significant reduction in staining intensity. Taken together, our results provide a unique perspective on the trafficking defects in NPC cells, and highlight the utility of this methodology in analyzing cells with altered recycling and turnover of glycoproteins. PMID:23733943
Barkman, Todd J.; Chenery, Gordon; McNeal, Joel R.; Lyons-Weiler, James; Ellisens, Wayne J.; Moore, Gerry; Wolfe, Andrea D.; dePamphilis, Claude W.
2000-01-01
Plant phylogenetic estimates are most likely to be reliable when congruent evidence is obtained independently from the mitochondrial, plastid, and nuclear genomes with all methods of analysis. Here, results are presented from separate and combined genomic analyses of new and previously published data, including six and nine genes (8,911 bp and 12,010 bp, respectively) for different subsets of taxa that suggest Amborella + Nymphaeales (water lilies) are the first-branching angiosperm lineage. Before and after tree-independent noise reduction, most individual genomic compartments and methods of analysis estimated the Amborella + Nymphaeales basal topology with high support. Previous phylogenetic estimates placing Amborella alone as the first extant angiosperm branch may have been misled because of a series of specific problems with paralogy, suboptimal outgroups, long-branch taxa, and method dependence. Ancestral character state reconstructions differ between the two topologies and affect inferences about the features of early angiosperms. PMID:11069280
Bartonella entry mechanisms into mammalian host cells.
Eicher, Simone C; Dehio, Christoph
2012-08-01
The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment. © 2012 Blackwell Publishing Ltd.
A Molecular Probe for the Detection of Polar Lipids in Live Cells
Bader, Christie A.; Shandala, Tetyana; Carter, Elizabeth A.; Ivask, Angela; Guinan, Taryn; Hickey, Shane M.; Werrett, Melissa V.; Wright, Phillip J.; Simpson, Peter V.; Stagni, Stefano; Voelcker, Nicolas H.; Lay, Peter A.; Massi, Massimiliano; Brooks, Douglas A.
2016-01-01
Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular compartments. PMID:27551717
Wachten, Sebastian; Masada, Nanako; Ayling, Laura-Jo; Ciruela, Antonio; Nikolaev, Viacheslav O; Lohse, Martin J; Cooper, Dermot M F
2010-01-01
Microdomains have been proposed to explain specificity in the myriad of possible cellular targets of cAMP. Local differences in cAMP levels can be generated by phosphodiesterases, which control the diffusion of cAMP. Here, we address the possibility that adenylyl cyclases, the source of cAMP, can be primary architects of such microdomains. Distinctly regulated adenylyl cyclases often contribute to total cAMP levels in endogenous cellular settings, making it virtually impossible to determine the contribution of a specific isoform. To investigate cAMP dynamics with high precision at the single-isoform level, we developed a targeted version of Epac2-camps, a cAMP sensor, in which the sensor was tagged to a catalytically inactive version of the Ca(2+)-stimulable adenylyl cyclase 8 (AC8). This sensor, and less stringently targeted versions of Epac2-camps, revealed opposite regulation of cAMP synthesis in response to Ca(2+) in GH(3)B(6) pituitary cells. Ca(2+) release triggered by thyrotropin-releasing hormone stimulated the minor endogenous AC8 species. cAMP levels were decreased by inhibition of AC5 and AC6, and simultaneous activation of phosphodiesterases, in different compartments of the same cell. These findings demonstrate the existence of distinct adenylyl-cyclase-centered cAMP microdomains in live cells and open the door to their molecular micro-dissection.
Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.
Casale, Amanda E; Foust, Amanda J; Bal, Thierry; McCormick, David A
2015-11-25
The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main compartments: dendritic, somatic, and axonal. How the neurons receive information, process it, and pass on new information depends upon how these three compartments operate. While it has long been assumed that axons are simply for conducting information from the cell body to the synapses, here we demonstrate that the axons of different types of interneurons, the inhibitory cells, possess differing electrophysiological properties. This result implies that differing types of interneurons perform different tasks in the cortex, not only through their anatomical connections, but also through how their axons operate. Copyright © 2015 the authors 0270-6474/15/3515555-13$15.00/0.
Apolipoprotein D Internalization Is a Basigin-dependent Mechanism.
Najyb, Ouafa; Brissette, Louise; Rassart, Eric
2015-06-26
Apolipoprotein D (apoD), a member of the lipocalin family, is a 29-kDa secreted glycoprotein that binds and transports small lipophilic molecules. Expressed in several tissues, apoD is up-regulated under different stress stimuli and in a variety of pathologies. Numerous studies have revealed that overexpression of apoD led to neuroprotection in various mouse models of acute stress and neurodegeneration. This multifunctional protein is internalized in several cells types, but the specific internalization mechanism remains unknown. In this study, we demonstrate that the internalization of apoD involves a specific cell surface receptor in 293T cells, identified as the transmembrane glycoprotein basigin (BSG, CD147); more particularly, its low glycosylated form. Our results show that internalized apoD colocalizes with BSG into vesicular compartments. Down-regulation of BSG disrupted the internalization of apoD in cells. In contrast, overexpression of basigin in SH-5YSY cells, which poorly express BSG, restored the uptake of apoD. Cyclophilin A, a known ligand of BSG, competitively reduced apoD internalization, confirming that BSG is a key player in the apoD internalization process. In summary, our results demonstrate that basigin is very likely the apoD receptor and provide additional clues on the mechanisms involved in apoD-mediated functions, including neuroprotection. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Schoeffl, V; Klee, S; Strecker, W
2004-01-01
Background: Chronic exertional compartment syndromes (CECS) are well known in sports medicine. Most commonly affected is the tibialis anterior muscle compartment in runners and walkers. Only a few cases of CECS of the forearm flexor muscles have been reported. Objectives: To determine pressure levels inside the deep flexor compartment of the forearms during a sport specific stress test. Method: Ten healthy, high level climbers were enrolled in a prospective study. All underwent climbing specific ergometry, using a rotating climbing wall (step test, total climbing time 9–15 minutes). Pressure was measured using a slit catheter placed in the deep flexor compartment of the forearm. Pressure, blood lactate, and heart rate were recorded every three minutes and during recovery. Results: In all the subjects, physical exhaustion of the forearms defined the end point of the climbing ergometry. Blood lactate increased with physical stress, reaching a mean of 3.48 mmol/l. Compartment pressure was related to physical stress, exceeding 30 mm Hg in only three subjects. A critical pressure of more than 40 mm Hg was never observed. After the test, the pressure decreased to normal levels within three minutes in seven subjects. The three with higher pressure levels (>30 mm Hg) required a longer time to recover. Conclusions: For further clinical and therapeutic consequences, an algorithm was derived. Basic pressure below 15 mm Hg and stress pressure below 30 mm Hg as well as pressures during the 15 minute recovery period below 15 mm Hg are physiological. Pressures of 15–30 mm Hg during recovery suggest high risk of CECS, and pressures above 30 mm Hg confirm CECS. PMID:15273176
Body composition in elderly people: effect of criterion estimates on predictive equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.
1991-06-01
The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, {sup 3}H{sub 2}O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (Pmore » less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition.« less
Compartments in a marine food web associated with phylogeny, body mass, and habitat structure.
Rezende, Enrico L; Albert, Eva M; Fortuna, Miguel A; Bascompte, Jordi
2009-08-01
A long-standing question in community ecology is whether food webs are organized in compartments, where species within the same compartment interact frequently among themselves, but show fewer interactions with species from other compartments. Finding evidence for this community organization is important since compartmentalization may strongly affect food web robustness to perturbation. However, few studies have found unequivocal evidence of compartments, and none has quantified the suite of mechanisms generating such a structure. Here, we combine computational tools from the physics of complex networks with phylogenetic statistical methods to show that a large marine food web is organized in compartments, and that body size, phylogeny, and spatial structure are jointly associated with such a compartmentalized structure. Sharks account for the majority of predatory interactions within their compartments. Phylogenetically closely related shark species tend to occupy different compartments and have divergent trophic levels, suggesting that competition may play an important role structuring some of these compartments. Current overfishing of sharks has the potential to change the structural properties, which might eventually affect the stability of the food web.
An earthquake instability model based on faults containing high fluid-pressure compartments
Lockner, D.A.; Byerlee, J.D.
1995-01-01
It has been proposed that large strike-slip faults such as the San Andreas contain water in seal-bounded compartments. Arguments based on heat flow and stress orientation suggest that in most of the compartments, the water pressure is so high that the average shear strength of the fault is less than 20 MPa. We propose a variation of this basic model in which most of the shear stress on the fault is supported by a small number of compartments where the pore pressure is relatively low. As a result, the fault gouge in these compartments is compacted and lithified and has a high undisturbed strength. When one of these locked regions fails, the system made up of the neighboring high and low pressure compartments can become unstable. Material in the high fluid pressure compartments is initially underconsolidated since the low effective confining pressure has retarded compaction. As these compartments are deformed, fluid pressure remains nearly unchanged so that they offer little resistance to shear. The low pore pressure compartments, however, are overconsolidated and dilate as they are sheared. Decompression of the pore fluid in these compartments lowers fluid pressure, increasing effective normal stress and shear strength. While this effect tends to stabilize the fault, it can be shown that this dilatancy hardening can be more than offset by displacement weakening of the fault (i.e., the drop from peak to residual strength). If the surrounding rock mass is sufficiently compliant to produce an instability, slip will propagate along the fault until the shear fracture runs into a low-stress region. Frictional heating and the accompanying increase in fluid pressure that are suggested to occur during shearing of the fault zone will act as additional destabilizers. However, significant heating occurs only after a finite amount of slip and therefore is more likely to contribute to the energetics of rupture propagation than to the initiation of the instability. We present results of a one-dimensional dynamic Burridge-Knopoff-type model to demonstrate various aspects of the fluid-assisted fault instability described above. In the numerical model, the fault is represented by a series of blocks and springs, with fault rheology expressed by static and dynamic friction. In addition, the fault surface of each block has associated with it pore pressure, porosity and permeability. All of these variables are allowed to evolve with time, resulting in a wide range of phenomena related to fluid diffusion, dilatancy, compaction and heating. These phenomena include creep events, diffusion-controlled precursors, triggered earthquakes, foreshocks, aftershocks, and multiple earthquakes. While the simulations have limitations inherent to 1-D fault models, they demonstrate that the fluid compartment model can, in principle, provide the rich assortment of phenomena that have been associated with earthquakes. ?? 1995 Birkha??user Verlag.
Tardif, Stacie; Yergeau, Étienne; Tremblay, Julien; Legendre, Pierre; Whyte, Lyle G.; Greer, Charles W.
2016-01-01
The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology. PMID:27660624
Survival, Physiology, and Lysis of Lactococcus lactis in the Digestive Tract
Drouault, Sophie; Corthier, Gérard; Ehrlich, S. Dusko; Renault, Pierre
1999-01-01
The survival and the physiology of lactococcal cells in the different compartments of the digestive tracts of rats were studied in order to know better the fate of ingested lactic acid bacteria after oral administration. For this purpose, we used strains marked with reporter genes, the luxA-luxB gene of Vibrio harveyi and the gfp gene of Aequora victoria, that allowed us to differentiate the inoculated bacteria from food and the other intestinal bacteria. Luciferase was chosen to measure the metabolic activity of Lactococcus lactis in the digestive tract because it requires NADH, which is available only in metabolically active cells. The green fluorescent protein was used to assess the bacterial lysis independently of death. We report not only that specific factors affect the cell viability and integrity in some digestive tract compartments but also that the way bacteria are administrated has a dramatic impact. Lactococci which transit with the diet are quite resistant to gastric acidity (90 to 98% survival). In contrast, only 10 to 30% of bacteria survive in the duodenum. Viable cells are metabolically active in each compartment of the digestive tract, whereas most dead cells appear to be subject to rapid lysis. This property suggests that lactococci could be used as a vector to deliver specifically into the duodenum the proteins produced in the cytoplasm. This type of delivery vector would be particularly appropriate for targeting digestive enzymes such as lipase to treat pancreatic deficiencies. PMID:10543799
Keijsers, Joep G.S.; Maroulis, Jerry; Visser, Saskia M.
2014-01-01
Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the measurement compartments and the analysis approach used. In this study, we analyse the uncertainty of these measurements by investigating the vertical cumulative distribution and relative sediment flux derived from both wind tunnel and field studies. Vertical flux data was examined using existing data in combination with a newly acquired dataset; comprising meteorological data and sediment fluxes from six different events, using three customized catchers at Ameland beaches in northern Netherlands. Fast-temporal data collected in a wind tunnel shows that the median transport height has a scattered pattern between impact and fluid threshold, that increases linearly with shear velocities above the fluid threshold. For finer sediment, a larger proportion was transported closer to the surface compared to coarser sediment fractions. It was also shown that errors originating from the distribution of sampling compartments, specifically the location of the lowest sediment trap relative to the surface, can be identified using the relative sediment flux. In the field, surface conditions such as surface moisture, surface crusts or frozen surfaces have a more pronounced but localized effect than shear velocity. Uncertainty in aeolian mass flux estimates can be reduced by placing multiple compartments in closer proximity to the surface. PMID:25071984
Rico, Andreu; Jacobs, Rianne; Van den Brink, Paul J; Tello, Alfredo
2017-12-01
Estimating antibiotic pollution and antibiotic resistance development risks in environmental compartments is important to design management strategies that advance our stewardship of antibiotics. In this study we propose a modelling approach to estimate the risk of antibiotic resistance development in environmental compartments and demonstrate its application in aquaculture production systems. We modelled exposure concentrations for 12 antibiotics used in Vietnamese Pangasius catfish production using the ERA-AQUA model. Minimum selective concentration (MSC) distributions that characterize the selective pressure of antibiotics on bacterial communities were derived from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) Minimum Inhibitory Concentration dataset. The antibiotic resistance development risk (RDR) for each antibiotic was calculated as the probability that the antibiotic exposure distribution exceeds the MSC distribution representing the bacterial community. RDRs in pond sediments were nearly 100% for all antibiotics. Median RDR values in pond water were high for the majority of the antibiotics, with rifampicin, levofloxacin and ampicillin having highest values. In the effluent mixing area, RDRs were low for most antibiotics, with the exception of amoxicillin, ampicillin and trimethoprim, which presented moderate risks, and rifampicin and levofloxacin, which presented high risks. The RDR provides an efficient means to benchmark multiple antibiotics and treatment regimes in the initial phase of a risk assessment with regards to their potential to develop resistance in different environmental compartments, and can be used to derive resistance threshold concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dragović, S; Nedić, O; Stanković, S; Bacić, G
2004-01-01
The aim of this work was (i) to determine the activity levels of 137Cs in mosses from highland ecosystems of Serbia and Montenegro, (ii) to find out if radiocesium is associated with essential biomacromolecules, and (iii) to investigate 137Cs distribution among intracellular compartments. It was found that biomolecules of mosses do not bind significant amounts of radiocesium (2.3-3.3% of the absorbed 137Cs), a behavior that was independent of the moss species. Cellular fractionation of mosses showed that membranes are the primary 137Cs-binding sites at the cellular level. They contained 26.1-43.1% of the initial radiocesium activity. It seems that 137Cs-binding molecules in different mosses are of similar chemical nature, and their distribution between various cellular compartments is not species specific.
Biology of Epstein-Barr virus during infectious mononucleosis.
Sitki-Green, Diane L; Edwards, Rachel Hood; Covington, Mary M; Raab-Traub, Nancy
2004-02-01
Infectious mononucleosis is the clinical manifestation of primary infection with Epstein-Barr virus (EBV). We monitored primary infection during convalescence and during the establishment of persistent infection. The profiles of EBV strains in the oral cavity and in peripheral blood were determined by use of a heteroduplex tracking assay specific for the EBV gene encoding latent membrane protein 1. Multiple EBV strains were detected in most patients and persisted in and were possibly transmitted among 3 distinct compartments of infection, including the oral cavity, peripheral blood lymphocytes, and the cell-free fraction of the blood plasma. We also tracked transmission of multiple strains from an asymptomatic carrier to a patient diagnosed with primary EBV infection. These data reveal that primary EBV infection is complex, with transmission of multiple strains and clear differences in relative abundance of strains in distinct compartments.
Zhou, Huimin; Xiao, Qiaoling; Tan, Wen; Zhan, Yiyi; Pistolozzi, Marco
2017-09-10
Several molecules containing carbamate groups are metabolized by cholinesterases. This metabolism includes a time-dependent catalytic step which temporary inhibits the enzymes. In this paper we demonstrate that the analysis of the area under the inhibition versus time curve (AUIC) can be used to obtain a quantitative estimation of the amount of carbamate metabolized by the enzyme. (R)-bambuterol monocarbamate and plasma butyrylcholinesterase were used as model carbamate-cholinesterase system. The inhibition of different concentrations of the enzyme was monitored for 5h upon incubation with different concentrations of carbamate and the resulting AUICs were analyzed. The amount of carbamate metabolized could be estimated with <15% accuracy (RE%) and ≤23% precision (RSD%). Since the knowledge of the inhibition kinetics is not required for the analysis, this approach could be used to determine the amount of drug metabolized by cholinesterases in a selected compartment in which the cholinesterase is confined (e.g. in vitro solutions, tissues or body fluids), either in vitro or in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.
Okoye, Afam A.; Rohankhedkar, Mukta; Abana, Chike; Pattenn, Audrie; Reyes, Matthew; Pexton, Christopher; Lum, Richard; Sylwester, Andrew; Planer, Shannon L.; Legasse, Alfred; Park, Byung S.; Piatak, Michael; Lifson, Jeffrey D.; Axthelm, Michael K.
2012-01-01
The development of AIDS in chronic HIV/simian immunodeficiency virus (SIV) infection has been closely linked to progressive failure of CD4+ memory T cell (TM) homeostasis. CD4+ naive T cells (TN) also decline in these infections, but their contribution to disease progression is less clear. We assessed the role of CD4+ TN in SIV pathogenesis using rhesus macaques (RMs) selectively and permanently depleted of CD4+ TN before SIV infection. CD4+ TN-depleted and CD4+ TN-repleted RMs were created by subjecting juvenile RMs to thymectomy versus sham surgery, respectively, followed by total CD4+ T cell depletion and recovery from this depletion. Although thymectomized and sham-treated RMs manifested comparable CD4+ TM recovery, only sham-treated RMs reconstituted CD4+ TN. CD4+ TN-depleted RMs responded to SIVmac239 infection with markedly attenuated SIV-specific CD4+ T cell responses, delayed SIVenv-specific Ab responses, and reduced SIV-specific CD8+ T cell responses. However, CD4+ TN-depleted and -repleted groups showed similar levels of SIV replication. Moreover, CD4+ TN deficiency had no significant effect on CD4+ TM homeostasis (either on or off anti-retroviral therapy) or disease progression. These data demonstrate that the CD4+ TN compartment is dispensable for CD4+ TM homeostasis in progressive SIV infection, and they confirm that CD4+ TM comprise a homeostatically independent compartment that is intrinsically capable of self-renewal. PMID:22451717
Environmental enrichment choices of shelter cats.
Ellis, J J; Stryhn, H; Spears, J; Cockram, M S
2017-08-01
Choices made by cats between different types of environmental enrichment may help shelters to prioritize how to most effectively enrich cat housing, especially when limited by space or funds. This study investigates the environmental enrichment use of cats in a choice test. Twenty-six shelter cats were kept singularly in choice chambers for 10days. Each chamber had a central area and four centrally-linked compartments containing different types of environmental enrichment: 1) an empty control, 2) a prey-simulating toy, 3) a perching opportunity, and 4) a hiding opportunity. Cat movement between compartments was quantitatively recorded using a data-logger. Enriched compartments were visited significantly more frequently during the light period than during the dark period. Cats spent a significantly greater percentage of time in the hiding compartment (median=55%, IQR=46) than in the toy compartment (median=2%, IQR=9), or in the empty control compartment (median=4%, IQR=4). These results provide additional evidence to support the value of a hiding box to cats housed in a novel environment, in that they choose hiding relative to other types of environmental enrichment. Copyright © 2017 Elsevier B.V. All rights reserved.
Bradford, James R; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T
2016-04-12
The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX).Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment.In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery.
Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.
2015-01-01
Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916
Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C
2015-04-01
Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Age structure of a southern pine stand following 72 years of uneven-aged silviculture
Don C. Bragg
2012-01-01
Work on uneven-aged silviculture in southern pine stands on the Crossett Experimental Forest (CEF) began in the 1930s, when a number of 16.2-ha compartments were placed into a series of demonstration projects and studies (Reynolds 1980). Two of these compartments, the Good and Poor Farm Forestry Forties, have been maintained continuously in this silvicultural regime...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrell, Permila C.; McCawley, Lisa J.; Fingleton, Barbara
2005-02-15
Matrix metalloproteinase-7 (MMP-7) is primarily expressed in glandular epithelium. Therefore, its mechanism of action may be influenced by its regulated vectorial release to either the apical and/or basolateral compartments, where it would act on its various substrates. To gain a better understanding of where MMP-7 is released in polarized epithelium, we have analyzed its pattern of secretion in polarized MDCK cells expressing stably transfected human MMP-7 (MDCK-MMP-7), and HCA-7 and Caco2 human colon cancer cell lines. In all cell lines, latent MMP-7 was secreted to both cellular compartments, but was 1.5- to 3-fold more abundant in the basolateral compartment asmore » compared to the apical. However, studies in the MDCK system demonstrated that MMP-7 activity was 2-fold greater in the apical compartment of MDCK-MMP-7{sup HIGH}-polarized monolayers, which suggests the apical co-release of an MMP-7 activator. In functional assays, MMP-7 over-expression increased cell saturation density as a result of increased cell proliferation with no effect on apoptosis. Apical MMP-7 activity was shown to be responsible for the proliferative effect, which occurred, as demonstrated by media transfer experiments, through cleavage of an apical substrate and not through the generation of a soluble factor. Taken together, our findings demonstrate the importance of MMP-7 secretion in relation to its mechanism of action when expressed in a polarized epithelium.« less
Duncan, Stephen T; Khazzam, Michael S; Burnham, Jeremy M; Spindler, Kurt P; Dunn, Warren R; Wright, Rick W
2015-02-01
The purpose of this study was to perform a systematic review of the available literature to define the level of quality evidence for determining the sensitivity and specificity of different radiographic views in detecting knee osteoarthritis and to determine the impact of different grading systems on the ability to detect knee osteoarthritis. A systematic review of the literature was conducted to identify studies that evaluated the standing anteroposterior (AP) and 45° posteroanterior (PA) views for tibiofemoral and patellofemoral arthritis and those comparing the use of the Kellgren-Lawrence versus the joint space narrowing (JSN) radiographic grading systems using arthroscopy as the gold standard. A comprehensive search of PubMed, Scopus, CINAHL, the Cochrane Database, Clinicaltrial.gov, and EMBASE was performed using the keywords "osteoarthritis," "knee," "x-ray," "sensitivity," and "arthroscopy." Six studies were included in the evaluation. The 45° flexion PA view showed a higher sensitivity than the standing AP view for detecting severe arthritis involving either the medial or lateral tibiofemoral compartment. There was no difference in the specificities for the 2 views. The direct comparison of the Kellgren-Lawrence and the JSN radiographic grading systems found no clinical difference between the 2 systems regarding the sensitivities, although the specificity was greater for the JSN system. The ability to detect knee osteoarthritis continues to be difficult without using advanced imaging. However, as an inexpensive screening tool, the 45° flexion PA view is more sensitive than the standing AP view to detect severe tibiofemoral osteoarthritis. When evaluating the radiograph for severe osteoarthritis using either the Kellgren-Lawrence or JSN grading system, there is no clinical difference in the sensitivity between the 2 methods; however, the JSN may be more specific for ruling in severe osteoarthritis in the medial compartment. Level I, systematic review of Level I studies. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ceballos-Núñez, Verónika; Richardson, Andrew; Sierra, Carlos
2017-04-01
The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. However, it is uncertain how some vegetation dynamics such as the allocation of carbon to different ecosystem compartments should be represented in models. The assumptions behind model structures may result in highly divergent model predictions. Here, we asses model performance by calculating the age of the carbon in the system and in each compartment, and the overall transit time of C in the system. We used these diagnostics to assess the influence of three different carbon allocation schemes on the rates of C cycling in vegetation. First, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find the best set of parameters for the different model structures. Second, we calculated C stocks, respiration fluxes, radiocarbon values, ages, and transit times. We found a good fit of the three model structures to the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed and reduce model equifinality. Differences in model structures had a small impact on predicting ecosystem C compartments, but overall they resulted in very different predictions of age and transit time distributions. In particular, the inclusion of a storage compartment had an important impact on predicting system ages and transit times. In the case of the models with 1 or 2 storage compartments, the age of carbon in the system and in each of the compartments was distributed more towards younger ages than in the model that had no storage; the mean system age of these two models with storage was 80 years younger than in the model without storage. As expected from these age distributions, the mean transit time for the two models with storage compartments was 50 years faster than for the model without storage. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure and could largely help to reduce uncertainties in model predictions. Furthermore, by considering age and transit times of C in vegetation compartments as distributions, not only their mean values, we obtain additional insights on the temporal dynamics of carbon use, storage, and allocation to plant parts, which not only depends on the rate at which this C is transferred in and out of the compartments, but also on the stochastic nature of the process itself.
Kashiha, Mohammad Amin; Green, Angela R; Sales, Tatiana Glogerley; Bahr, Claudia; Berckmans, Daniel; Gates, Richard S
2014-10-01
Image processing systems have been widely used in monitoring livestock for many applications, including identification, tracking, behavior analysis, occupancy rates, and activity calculations. The primary goal of this work was to quantify image processing performance when monitoring laying hens by comparing length of stay in each compartment as detected by the image processing system with the actual occurrences registered by human observations. In this work, an image processing system was implemented and evaluated for use in an environmental animal preference chamber to detect hen navigation between 4 compartments of the chamber. One camera was installed above each compartment to produce top-view images of the whole compartment. An ellipse-fitting model was applied to captured images to detect whether the hen was present in a compartment. During a choice-test study, mean ± SD success detection rates of 95.9 ± 2.6% were achieved when considering total duration of compartment occupancy. These results suggest that the image processing system is currently suitable for determining the response measures for assessing environmental choices. Moreover, the image processing system offered a comprehensive analysis of occupancy while substantially reducing data processing time compared with the time-intensive alternative of manual video analysis. The above technique was used to monitor ammonia aversion in the chamber. As a preliminary pilot study, different levels of ammonia were applied to different compartments while hens were allowed to navigate between compartments. Using the automated monitor tool to assess occupancy, a negative trend of compartment occupancy with ammonia level was revealed, though further examination is needed. ©2014 Poultry Science Association Inc.
FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.
Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad
2015-10-01
Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.
NASA Astrophysics Data System (ADS)
Ceballos-Núñez, Verónika; Richardson, Andrew D.; Sierra, Carlos A.
2018-03-01
The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. These dynamics, as well as processes such as the mixing of old and newly fixed carbon, have been studied using ecosystem models, but different assumptions regarding the carbon allocation strategies and other model structures may result in highly divergent model predictions. We assessed the influence of three different carbon allocation schemes on the C cycling in vegetation. First, we described each model with a set of ordinary differential equations. Second, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find suitable parameters for the different model structures. And third, we calculated C stocks, release fluxes, radiocarbon values (based on the bomb spike), ages, and transit times. We obtained model simulations in accordance with the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed, and reduce model equifinality. Although the simulated C stocks in ecosystem compartments were similar, the different model structures resulted in very different predictions of age and transit time distributions. In particular, the inclusion of two storage compartments resulted in the prediction of a system mean age that was 12-20 years older than in the models with one or no storage compartments. The age of carbon in the wood compartment of this model was also distributed towards older ages, whereas fast cycling compartments had an age distribution that did not exceed 5 years. As expected, models with C distributed towards older ages also had longer transit times. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure and could largely help to reduce uncertainties in model predictions. Furthermore, by considering age and transit times of C in vegetation compartments as distributions, not only their mean values, we obtain additional insights into the temporal dynamics of carbon use, storage, and allocation to plant parts, which not only depends on the rate at which this C is transferred in and out of the compartments but also on the stochastic nature of the process itself.
Pereira, Luis M
2010-06-01
Pharmacokinetics (PK) has been traditionally dealt with under the homogeneity assumption. However, biological systems are nowadays comprehensively understood as being inherently fractal. Specifically, the microenvironments where drug molecules interact with membrane interfaces, metabolic enzymes or pharmacological receptors, are unanimously recognized as unstirred, space-restricted, heterogeneous and geometrically fractal. Therefore, classical Fickean diffusion and the notion of the compartment as a homogeneous kinetic space must be revisited. Diffusion in fractal spaces has been studied for a long time making use of fractional calculus and expanding on the notion of dimension. Combining this new paradigm with the need to describe and explain experimental data results in defining time-dependent rate constants with a characteristic fractal exponent. Under the one-compartment simplification this strategy is straightforward. However, precisely due to the heterogeneity of the underlying biology, often at least a two-compartment model is required to address macroscopic data such as drug concentrations. This simple modelling step-up implies significant analytical and numerical complications. However, a few methods are available that make possible the original desideratum. In fact, exploring the full range of parametric possibilities and looking at different drugs and respective biological concentrations, it may be concluded that all PK modelling approaches are indeed particular cases of the fractal PK theory.
Ene-Obong, Abasi; Clear, Andrew J.; Watt, Jennifer; Wang, Jun; Fatah, Rewas; Riches, John C.; Marshall, John F.; Chin-Aleong, Joanne; Chelala, Claude; Gribben, John G.; Ramsay, Alan G.; Kocher, Hemant M.
2013-01-01
Background & Aims Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic microenvironment that contains many different immune cells. Activated pancreatic stellate cells (PSCs) contribute to the desmoplasia. We investigated whether distinct stromal compartments are differentially infiltrated by different types of immune cells. Method We used tissue microarray analysis to compare immune cell infiltration of different pancreatico-biliary diseased tissues (PDAC, ampullary carcinoma, cholangiocarcinoma, mucinous cystic neoplasm, chronic inflammation, and chronic pancreatitis), and juxtatumoral stromal (<100 μm from tumor) and panstromal compartments. We investigated the association between immune infiltrate and patient survival times. We analyzed T-cell migration and tumor infiltration in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mice, and the effects of all-trans retinoic acid (ATRA) on these processes. Results Juxtatumoral compartments in PDAC samples from 2 independent groups of patients contained increased numbers of myeloperoxidase+ and CD68+ cells, compared with panstromal compartments. However, juxtatumoral compartments of PDACs contained fewer CD8+, FoxP3+, CD56+, or CD20+ cells than panstromal compartments, a distinction absent in ampullary carcinomas and cholangiocarcinomas. Patients with PDACs that had high densities of CD8+ T-cells in the juxtatumoral compartment had longer survival times than patients with lower densities. In KPC mice, administration of ATRA, which renders PSCs quiescent, increased numbers of CD8+ T-cells in juxtatumoral compartments. We found that activated PSCs express cytokines, chemokines, and adhesion molecules that regulate T-cell migration. In vitro migration assays showed that CD8+ T-cells from PDAC patients had increased chemotaxis towards activated PSCs, which secrete CXCL12, compared with quiescent PSC or tumor cells. These effects could be reversed by knockdown of CXCL12 or treatment of PSCs with ATRA. Conclusion Based on studies of human PDAC samples and KPC mice, activated PSCs appear to reduce migration of CD8+ T-cells to juxtatumoral stromal compartments, preventing their access to cancer cells. Deregulated signaling by activated PSCs could prevent an effective anti-tumor immune response. PMID:23891972
Specificity in ROS Signaling and Transcript Signatures
Vaahtera, Lauri; Brosché, Mikael; Wrzaczek, Michael
2014-01-01
Abstract Significance: Reactive oxygen species (ROS), important signaling molecules in plants, are involved in developmental control and stress adaptation. ROS production can trigger broad transcriptional changes; however, it is not clear how specificity in transcriptional regulation is achieved. Recent Advances: A large collection of public transcriptome data from the model plant Arabidopsis thaliana is available for analysis. These data can be used for the analysis of biological processes that are associated with ROS signaling and for the identification of suitable transcriptional indicators. Several online tools, such as Genevestigator and Expression Angler, have simplified the task to analyze, interpret, and visualize this wealth of data. Critical Issues: The analysis of the exact transcriptional responses to ROS requires the production of specific ROS in distinct subcellular compartments with precise timing, which is experimentally difficult. Analyses are further complicated by the effect of ROS production in one subcellular location on the ROS accumulation in other compartments. In addition, even subtle differences in the method of ROS production or treatment can lead to significantly different outcomes when various stimuli are compared. Future Directions: Due to the difficulty of inducing ROS production specifically with regard to ROS type, subcellular localization, and timing, we propose that the concept of a “ROS marker gene” should be re-evaluated. We suggest guidelines for the analysis of transcriptional data in ROS signaling. The use of “ROS signatures,” which consist of a set of genes that together can show characteristic and indicative responses, should be preferred over the use of individual marker genes. Antioxid. Redox Signal. 21, 1422–1441. PMID:24180661
Nitrogen removal from landfill leachate using single or combined processes.
He, P J; Shao, L M; Guo, H D; Li, G J; Lee, D J
2005-04-01
The municipal solids waste (MSW) collected at Shanghai includes a high proportion of food waste, which is easily hydrolyzed to generate ammonia-nitrogen in leachate. This study investigated the efficiency of nitrogen removal from landfill leachate employing four different treatment processes. The simulated rainfall and direct leachate recycling produced strong leachate with high ammonia-nitrogen content, and resulted in the removal of only a small amount of nitrogen. Although pretreating the leachate using an aerobic reactor removed some nitrogen, most of which was transformed to biomass because of the high organic loading applied. Using the three-compartment system, which comprises a landfill column with fresh MSW, a column with well-decomposed refuse layer as the methane generator, and a nitrifier, the ammonia-nitrogen was converted into nitrogen gas and hence removed. Experimental results demonstrated the feasibility of adopting the three-compartment system for managing nitrogen in landfill leachate generated from high-nitrogen-content MSW.
Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy.
Martell, Jeffrey D; Deerinck, Thomas J; Sancak, Yasemin; Poulos, Thomas L; Mootha, Vamsi K; Sosinsky, Gina E; Ellisman, Mark H; Ting, Alice Y
2012-11-01
Electron microscopy (EM) is the standard method for imaging cellular structures with nanometer resolution, but existing genetic tags are inactive in most cellular compartments or require light and can be difficult to use. Here we report the development of 'APEX', a genetically encodable EM tag that is active in all cellular compartments and does not require light. APEX is a monomeric 28-kDa peroxidase that withstands strong EM fixation to give excellent ultrastructural preservation. We demonstrate the utility of APEX for high-resolution EM imaging of a variety of mammalian organelles and specific proteins using a simple and robust labeling procedure. We also fused APEX to the N or C terminus of the mitochondrial calcium uniporter (MCU), a recently identified channel whose topology is disputed. These fusions give EM contrast exclusively in the mitochondrial matrix, suggesting that both the N and C termini of MCU face the matrix. Because APEX staining is not dependent on light activation, APEX should make EM imaging of any cellular protein straightforward, regardless of the size or thickness of the specimen.
Stationary semi-solid battery module and method of manufacture
Slocum, Alexander; Doherty, Tristan; Bazzarella, Ricardo; Cross, III, James C.; Limthongkul, Pimpa; Duduta, Mihai; Disko, Jeffry; Yang, Allen; Wilder, Throop; Carter, William Craig; Chiang, Yet-Ming
2015-12-01
A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.
Naito, Tomoaki; Mulet, Céline; De Castro, Cristina; Molinaro, Antonio; Saffarian, Azadeh; Nigro, Giulia; Bérard, Marion; Clerc, Mélanie; Pedersen, Amy B; Sansonetti, Philippe J; Pédron, Thierry
2017-10-17
We identified a crypt-specific core microbiota (CSCM) dominated by strictly aerobic, nonfermentative bacteria in murine cecal and proximal colonic (PC) crypts and hypothesized that, among its possible functions, it may affect epithelial regeneration. In the present work, we isolated representative CSCM strains using selective media based upon our initial 16S rRNA-based molecular identification (i.e., Acinetobacter , Delftia , and Stenotrophomonas ). Their tropism for the crypt was confirmed, and their influence on epithelial regeneration was demonstrated in vivo by monocolonization of germfree mice. We also showed that lipopolysaccharide (LPS), through its endotoxin activity, was the dominant bacterial agonist controlling proliferation. The relevant molecular mechanisms were analyzed using colonic crypt-derived organoids exposed to bacterial sonicates or highly purified LPS as agonists. We identified a Toll-like receptor 4 (TLR4)-dependent program affecting crypts at different stages of epithelial differentiation. LPS played a dual role: it repressed cell proliferation through RIPK3-mediated necroptosis of stem cells and cells of the transit-amplifying compartment and concurrently enhanced cell differentiation, particularly the goblet cell lineage. IMPORTANCE The LPS from crypt-specific core microbiota controls intestinal epithelium proliferation through necroptosis of stem cells and enhances cell differentiation, mainly the goblet cell lineage. Copyright © 2017 Naito et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, H.C.; Yang, H.; Lasekan, J.
1990-02-26
Male, Sprague-Dawley rats (154{plus minus}1 g) were fed diets containing 2% corn oil (CO) + 14% butterfat (BF), beef tallow (BT), olive oil (OO) or coconut oil (CN) vs a 16% CO control diet for 5 weeks. Changes in plasma TG specific activity (dpm/mg TG) were determined in individual unanesthetized rats after injection of 100 {mu}Ci (2-{sup 3}H)-glycerol via a carotid cannula. Fractional rate constants were obtained using a 2-compartment model and nonlinear regression analysis. Results demonstrated no difference in the fractional rate constants among dietary groups; but, differences in the rates of hepatic TG secretion were noted. Rats fedmore » BT showed a higher rate of hepatic TG secretion than rats fed CO. Rats fed BF, OO or CN showed somewhat higher rates of hepatic TG secretion than CO. VLDL TG, phospholipid, and apolipoprotein B and E levels were higher with saturated fats vs CO. The data suggest that the higher plasma TG levels noted in response to feeding saturated fats vs corn oil can be explained, in part, by an increased flux of hepatic TG secretion.« less
Architectural properties of the neuromuscular compartments in selected forearm skeletal muscles
Liu, An-Tang; Liu, Ben-Li; Lu, Li-Xuan; Chen, Gang; Yu, Da-Zhi; Zhu, Lie; Guo, Rong; Dang, Rui-Shan; Jiang, Hua
2014-01-01
The purposes f this study were to (i) explore the possibility of splitting the selected forearm muscles into separate compartments in human subjects; (ii) quantify the architectural properties of each neuromuscular compartment; and (iii) discuss the implication of these properties in split tendon transfer procedures. Twenty upper limbs from 10 fresh human cadavers were used in this study. Ten limbs of five cadavers were used for intramuscular nerve study by modified Sihler's staining technique, which confirmed the neuromuscular compartments. The other 10 limbs were included for architectural analysis of neuromuscular compartments. The architectural features of the compartments including muscle weight, muscle length, fiber length, pennation angle, and sarcomere length were determined. Physiological cross-sectional area and fiber length/muscle length ratio were calculated. Five of the selected forearm muscles were ideal candidates for splitting, including flexor carpi ulnaris, flexor carpi radials, extensor carpi radialis brevis, extensor carpi ulnaris and pronator teres. The humeral head of pronator teres contained the longest fiber length (6.23 ± 0.31 cm), and the radial compartment of extensor carpi ulnaris contained the shortest (2.90 ± 0.28 cm). The ulnar compartment of flexor carpi ulnaris had the largest physiological cross-sectional area (5.17 ± 0.59 cm2), and the ulnar head of pronator teres had the smallest (0.67 ± 0.06 cm2). Fiber length/muscle length ratios of the neuromuscular compartments were relatively low (average 0.27 ± 0.09, range 0.18–0.39) except for the ulnar head of pronator teres, which had the highest one (0.72 ± 0.05). Using modified Sihler's technique, this research demonstrated that each compartment of these selected forearm muscles has its own neurovascular supply after being split along its central tendon. Data of the architectural properties of each neuromuscular compartment provide insight into the ‘design’ of their functional capability. In addition to improving our understanding of muscle anatomy and function, elucidation of forearm neuromuscular compartments architecture may ultimately provide information useful for selection of muscle subdivisions used in tendon transfer. PMID:24836406
Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics
NASA Astrophysics Data System (ADS)
Weiss, Marian; Frohnmayer, Johannes Patrick; Benk, Lucia Theresa; Haller, Barbara; Janiesch, Jan-Willi; Heitkamp, Thomas; Börsch, Michael; Lira, Rafael B.; Dimova, Rumiana; Lipowsky, Reinhard; Bodenschatz, Eberhard; Baret, Jean-Christophe; Vidakovic-Koch, Tanja; Sundmacher, Kai; Platzman, Ilia; Spatz, Joachim P.
2018-01-01
Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed `droplet-stabilized giant unilamellar vesicles (dsGUVs)’. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.
Simulating wall and corner fire tests on wood products with the OSU room fire model
H. C. Tran
1994-01-01
This work demonstrates the complexity of modeling wall and corner fires in a compartment. The model chosen for this purpose is the Ohio State University (OSU) room fire model. This model was designed to simulate fire growth on walls in a compartment and therefore lends itself to direct comparison with standard room test results. The model input were bench-scale data...
Vyas, Jatin M; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J Christopher; Van der Veen, Annemarthe G; Ploegh, Hidde L
2007-06-01
Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP.
Multi-compartment medication devices and patient compliance.
McGraw, Caroline
2004-07-01
Multi-compartment medication compliance devices are widely used in primary care. The aim of this review is to reveal whether they are effective in promoting adherence among non-adherent adults living at home. Searches were undertaken using two electronic databases (Medline (1966-2003) and International Pharmaceutical Abstracts (1970-2002)). Only randomized controlled trials (including crossover studies) were included in the review. Participants had to be non-institutionalized adults receiving one or more prescription medicines each day and displaying problems with adherence. Studies had to compare multi-compartment medication compliance devices to standard packaging and outcome measures and to include either pill counts, biological assays and/or clinical response. Articles were selected if they described a follow up period of at least three months and demonstrated that over 80% of participants had completed the trial. Two studies were identified that met the criteria, reporting data on a total of 148 patients. The findings from the first study found diabetic patients receiving medication in a compliance device demonstrated better glucose control than patients receiving medication in standard packaging. The second study found compliance devices had no impact on blood pressure control in hypertensive patients. Further research needs to be conducted to assess the effectiveness of multi-compartment medication compliance devices in promoting adherence among non-adherent adults living at home.
Combined effect of IL-17 and blockade of nitric oxide biosynthesis on haematopoiesis in mice.
Krstić, A; Santibanez, J F; Okić, I; Mojsilović, S; Kocić, J; Jovcić, G; Milenković, P; Bugarski, D
2010-05-01
The study was undertaken to extend our investigation concerning both the in vivo activity of interleukin (IL)-17 and the specific role of nitric oxide (NO) in IL-17-induced effects in the process of haematopoiesis. CBA mice were simultaneously treated with IL-17 and/or nitric oxide synthase (NOS) inhibitor, l-NAME, for 5 days and changes within various haematopoietic cell lineages in bone marrow, spleen and peripheral blood were analysed. Findings showed that administration of both IL-17 and l-NAME stimulated increase in net haematopoiesis in normal mice. IL-17-enhanced myelopoiesis was characterized by stimulation of both femoral and splenic haematopoietic progenitor cells and morphologically recognizable granulocytes. Additionally, IL-17 induced alterations in the frequency of erythroid progenitor cells in both bone marrow and spleen, accompanied with their mobilization to the peripheral blood. As a consequence of these changes in the erythroid cell compartments, significant reticulocytosis was observed, which evidenced that in IL-17-treated mice effective erythropoiesis occurred. Exposure of mice to NOS inhibitor also increased the number of both granulocyte-macrophage and erythroid progenitors in bone marrow and spleens, and these alterations were followed by the mobilization of erythroid progenitors and elevated content of reticulocytes in peripheral blood. The specific role of NO in IL-17-induced haematopoiesis was demonstrated only in the IL-17-reducing effect on bone marrow late stage erythroid progenitors, CFU-E. The results demonstrated the involvement of both IL-17 and NO in the regulation of haematopoietic cell activity in various haematopoietic compartments. They further suggest that IL-17 effects are differentially mediated depending on the haematopoietic microenvironments.
Qi, Hui-Xin; Gharbawie, Omar A; Wong, Peiyan; Kaas, Jon H
2011-03-01
The architectonic features of the ventroposterior nucleus (VP) were visualized in coronal brain sections from two macaque monkeys, two owl monkeys, two squirrel monkeys, and three galagos that were processed for cytochrome oxidase, Nissl bodies, or the vesicular glutamate transporter 2 (vGluT2). The traditional ventroposterior medial (VPM) and ventroposterior lateral (VPL) subnuclei were easily identified, as well as the forelimb and hindlimb compartments of VPL, as they were separated by poorly staining, cell-poor septa. Septa also separated other cell groups within VPM and VPL, specifically in the medial compartment of VPL representing the hand (hand VPL). In one squirrel monkey and one galago we demonstrated that these five groups of cells represent digits 1-5 in a mediolateral sequence by injecting tracers into the cortical representation of single digits, defined by microelectrode recordings, and relating concentrations of labeled neurons to specific cell groups in hand VPL. The results establish the existence of septa that isolate the representation of the five digits in VPL of primates and demonstrate that the isolated cell groups represent digits 1-5 in a mediolateral sequence. The present results show that the septa are especially prominent in brain sections processed for vGluT2, which is expressed in the synaptic terminals of excitatory neurons in most nuclei of the brainstem and thalamus. As vGluT2 is expressed in the synaptic terminations from dorsal columns and trigeminal brainstem nuclei, the effectiveness of vGluT2 preparations in revealing septa in VP likely reflects a lack of synapses using glutamate in the septa. Copyright © 2010 Wiley-Liss, Inc.
Qi, Hui-Xin; Gharbawie, Omar A.; Wong, Peiyan; Kaas, Jon H.
2013-01-01
The architectonic features of the ventroposterior nucleus (VP) were visualized in coronal brain sections from two macaque monkeys, two owl monkeys, two squirrel monkeys, and three galagos that were processed for cytochrome oxidase, Nissl bodies, or the vesicular glutamate transporter 2 (vGluT2). The traditional ventroposterior medial (VPM) and ventroposterior lateral (VPL) subnuclei were easily identified, as well as the forelimb and hindlimb compartments of VPL, as they were separated by poorly staining, cell-poor septa. Septa also separated other cell groups within VPM and VPL, specifically in the medial compartment of VPL representing the hand (hand VPL). In one squirrel monkey and one galago we demonstrated that these five groups of cells represent digits 1–5 in a mediolateral sequence by injecting tracers into the cortical representation of single digits, defined by microelectrode recordings, and relating concentrations of labeled neurons to specific cell groups in hand VPL. The results establish the existence of septa that isolate the representation of the five digits in VPL of primates and demonstrate that the isolated cell groups represent digits 1–5 in a mediolateral sequence. The present results show that the septa are especially prominent in brain sections processed for vGluT2, which is expressed in the synaptic terminals of excitatory neurons in most nuclei of the brainstem and thalamus. As vGluT2 is expressed in the synaptic terminations from dorsal columns and trigeminal brainstem nuclei, the effectiveness of vGluT2 preparations in revealing septa in VP likely reflects a lack of synapses using glutamate in the septa. J. Comp. Neurol. 519:738–758, 2011. PMID:21246552
LIM domain protein TES changes its conformational states in different cellular compartments.
Zhong, Yingli; Zhu, Jiaolian; Wang, Yan; Zhou, Jianlin; Ren, Kaiqun; Ding, Xiaofeng; Zhang, Jian
2009-01-01
The human TESTIN (TES) is a putative tumor suppressor and localizes to the cytoplasm as a component of focal adhesions and cell contacts. TES contains a PET domain in the NH(2)-terminus and three tandem LIM domains in the COOH-terminus. It has been hypothesized that interactions between two termini of TES might lead to a "closed" conformational state of the protein. Here, we provide evidence for different conformational states of TES. We confirmed that the NH(2)-terminus of TES can interact with its third LIM domain in the COOH-terminus by GST pull-down assays. In addition, antisera against the full-length or two truncations of TES were prepared to examine the relationship between the conformation and cellular distribution of the protein. We found that these antisera recognize different regions of TES and showed that TES is co-localised with the marker protein B23 in nucleolus, in addition to its localization in endoplasmic reticulum (ER). Furthermore, our co-immunoprecipitation (co-IP) analysis of TES and B23 demonstrated their co-existence in the same complex. Taken together, our results suggest that TES has different conformational states in different cellular compartments, and a "closed" conformational state of TES may be involved in nucleolar localization.
May Exercise Prevent Addiction?
Fontes-Ribeiro, C. A; Marques, E; Pereira, F. C; Silva, A. P; Macedo, T. R. A
2011-01-01
Amphetamines exert their persistent addictive effects by activating brain's reward pathways, perhaps through the release of dopamine in the nucleus accumbens (and/or in other places). On the other hand, there is a relationship between dopamine and all behavioural aspects that involve motor activity and it has been demonstrated that exercise leads to an increase in the synthesis and release of dopamine, stimulates neuroplasticity and promotes feelings of well-being. Moreover, exercise and drugs of abuse activate overlapping neural systems. Thus, our aim was to study the influence of chronic exercise in the mechanism of addiction using an amphetamine-induced conditioned-place-preference in rats. Adult male Sprague-Dawley rats were randomly separated in groups with and without chronic exercise. Chronic exercise consisted in a 8 week treadmill running program, with increasing intensity. The conditioned place preference test was performed in both groups using a procedure and apparatus previously established. A 2 mg.kg-1 amphetamine or saline solution was administered intraperitonially according to the schedule of the conditioned place preference. Before conditioning none of the animals showed preference for a specific compartment of the apparatus. The used amphetamine dose in the conditioning phase was able to produce a marked preference towards the drug-associated compartment in the group without exercise. In the animals with exercise a significant preference by the compartment associated with saline was observed. These results lead us to conclude that a previous practice of regular physical activity may help preventing amphetamine addiction in the conditions used in this test. PMID:21886560
IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates.
Picker, Louis J; Reed-Inderbitzin, Edward F; Hagen, Shoko I; Edgar, John B; Hansen, Scott G; Legasse, Alfred; Planer, Shannon; Piatak, Michael; Lifson, Jeffrey D; Maino, Vernon C; Axthelm, Michael K; Villinger, Francois
2006-06-01
HIV infection selectively targets CD4+ effector memory T (T EM) cells, resulting in dramatic depletion of CD4+ T cells in mucosal effector sites in early infection. Regeneration of the T EM cell compartment is slow and incomplete, even when viral replication is controlled by antiretroviral therapy (ART). Here, we demonstrate that IL-15 dramatically increases in vivo proliferation of rhesus macaque (RM) CD4+ and CD8+ T EM cells with little effect on the naive or central memory T (T CM) cell subsets, a response pattern that is quite distinct from that of either IL-2 or IL-7. T EM cells produced in response to IL-15 did not accumulate in blood. Rather, 5-bromo-2'-deoxyuridine (BrdU) labeling studies suggest that many of these cells rapidly disperse to extralymphoid effector sites, where they manifest (slow) decay kinetics indistinguishable from that of untreated controls. In RMs with uncontrolled SIV infection and highly activated immune systems, IL-15 did not significantly increase CD4+ T EM cell proliferation, but with virologic control and concomitant reduction in immune activation by ART, IL-15 responsiveness was again observed. These data suggest that therapeutic use of IL-15 in the setting of ART might facilitate specific restoration of the CD4 + T cell compartment that is the primary target of HIV with less risk of exhausting precursor T cell compartments or generating potentially deleterious regulatory subsets.
IL-15 induces CD4+ effector memory T cell production and tissue emigration in nonhuman primates
Picker, Louis J.; Reed-Inderbitzin, Edward F.; Hagen, Shoko I.; Edgar, John B.; Hansen, Scott G.; Legasse, Alfred; Planer, Shannon; Piatak, Michael; Lifson, Jeffrey D.; Maino, Vernon C.; Axthelm, Michael K.; Villinger, Francois
2006-01-01
HIV infection selectively targets CD4+ effector memory T (TEM) cells, resulting in dramatic depletion of CD4+ T cells in mucosal effector sites in early infection. Regeneration of the TEM cell compartment is slow and incomplete, even when viral replication is controlled by antiretroviral therapy (ART). Here, we demonstrate that IL-15 dramatically increases in vivo proliferation of rhesus macaque (RM) CD4+ and CD8+ TEM cells with little effect on the naive or central memory T (TCM) cell subsets, a response pattern that is quite distinct from that of either IL-2 or IL-7. TEM cells produced in response to IL-15 did not accumulate in blood. Rather, 5-bromo-2′-deoxyuridine (BrdU) labeling studies suggest that many of these cells rapidly disperse to extralymphoid effector sites, where they manifest (slow) decay kinetics indistinguishable from that of untreated controls. In RMs with uncontrolled SIV infection and highly activated immune systems, IL-15 did not significantly increase CD4+ TEM cell proliferation, but with virologic control and concomitant reduction in immune activation by ART, IL-15 responsiveness was again observed. These data suggest that therapeutic use of IL-15 in the setting of ART might facilitate specific restoration of the CD4+ T cell compartment that is the primary target of HIV with less risk of exhausting precursor T cell compartments or generating potentially deleterious regulatory subsets. PMID:16691294
Proapoptotic Bak and Bax guard against fatal systemic and organ-specific autoimmune disease
Mason, Kylie D.; Lin, Ann; Robb, Lorraine; Josefsson, Emma C.; Henley, Katya J.; Gray, Daniel H. D.; Kile, Benjamin T.; Roberts, Andrew W.; Strasser, Andreas; Huang, David C. S.; Waring, Paul; O’Reilly, Lorraine A.
2013-01-01
Dysregulation of the “intrinsic” apoptotic pathway is associated with the development of cancer and autoimmune disease. Bak and Bax are two proapoptotic members of the Bcl-2 protein family with overlapping, essential roles in the intrinsic apoptotic pathway. Their activity is critical for the control of cell survival during lymphocyte development and homeostasis, best demonstrated by defects in thymic T-cell differentiation and peripheral lymphoid homeostasis caused by their combined loss. Because most bak−/−bax−/− mice die perinatally, the roles of Bax and Bak in immunological tolerance and prevention of autoimmune disease remain unclear. We show that mice reconstituted with a Bak/Bax doubly deficient hematopoietic compartment develop a fatal systemic lupus erythematosus-like autoimmune disease characterized by hypergammaglobulinemia, autoantibodies, lymphadenopathy, glomerulonephritis, and vasculitis. Importantly, these mice also develop a multiorgan autoimmune disease with autoantibodies against most solid glandular structures and evidence of glandular atrophy and necrotizing vasculitis. Interestingly, similar albeit less severe pathology was observed in mice containing a hematopoietic compartment deficient for only Bak, a phenotype reminiscent of the disease seen in patients with point mutations in BAK. These studies demonstrate a critical role for Bak and an ancillary role for Bax in safeguarding immunological tolerance and prevention of autoimmune disease. This suggests that direct activators of the intrinsic apoptotic pathway, such as BH3 mimetics, may be useful for treatment of diverse autoimmune diseases. PMID:23349374
Plants and fungi in the era of heterogeneous plasma membranes.
Opekarová, M; Malinsky, J; Tanner, W
2010-09-01
Examples from yeast and plant cells are described that show that their plasma membrane is laterally compartmented. Distinct lateral domains encompassing both specific lipids and integral proteins coexist within the plane of the plasma membrane. The compartments are either spatially stable and include distinct sets of proteins, or they are transiently formed to accomplish diverse functions. They are not related to lipid rafts or their clusters, as defined for mammalian cells. This review summarises only well-documented compartments of plasma membranes from plants and fungi, which have been recognised using microscopic approaches. In several cases, physiological functions of the membrane compartmentation are revealed.
Gomes, Helena I; Dias-Ferreira, Celia; Ottosen, Lisbeth M; Ribeiro, Alexandra B
2015-07-01
Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero valent iron particles in a two-compartment cell is tested and compared to a more conventional combination of electrokinetic remediation and nZVI in a three-compartment cell. In the new two-compartment cell, the soil is suspended and stirred simultaneously with the addition of zero valent iron nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two-compartment and the three-compartment cell, respectively. The highest removal with Soil 2 were 58% and 45%, in the two-compartment and the three-compartment cell, respectively, in the experiments without direct current. The pH of the soil suspension in the two-compartment treatment appears to be a determining factor for the PCB dechlorination, and this cell allowed a uniform distribution of the nanoparticles in the soil, while there was iron accumulation in the injection reservoir in the three-compartment cell. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aldehyde Dehydrogenase 2 in Aplastic Anemia, Fanconi Anemia and Hematopoietic Stem Cells
Van Wassenhove, Lauren D.; Mochly-Rosen, Daria; Weinberg, Kenneth I.
2016-01-01
Maintenance of the hematopoietic stem cell (HSC) compartment depends on the ability to metabolize exogenously and endogenously generated toxins, and to repair cellular damage caused by such toxins. Reactive aldehydes have been demonstrated to cause specific genotoxic injury, namely DNA interstrand cross-links. Aldehyde dehydrogenase 2 (ALDH2) is a member of a 19 isoenzyme ALDH family with different substrate specificities, subcellular localization, and patterns of expression. ALDH2 is localized in mitochondria and is essential for the metabolism of acetaldehyde, thereby placing it directly downstream of ethanol metabolism. Deficiency in ALDH2 expression and function are caused by a single nucleotide substitution and resulting amino acid change, called ALDH2*2. This genetic polymorphism affects 35–45% of East Asians (about ~560 million people), and causes the well-known Asian flushing syndrome, which results in disulfiram-like reactions after ethanol consumption. Recently, the ALDH2*2 genotype has been found to be associated with marrow failure, with both an increased risk of sporadic aplastic anemia and more rapid progression of Fanconi Anemia. This review discusses the unexpected interrelationship between aldehydes, ALDH2 and hematopoietic stem cell biology, and in particular its relationship to Fanconi anemia. PMID:27650066
Liu, Huolong; Li, Mingzhong
2014-11-20
In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Varrall, Kevin; Pretrel, Hugues; Vaux, Samuel; Vauquelin, Olivier
2017-10-01
The exchange flow through a horizontal vent linking two compartments (one above the other) is studied experimentally. This exchange is here governed by both the buoyant natural effect due to the temperature difference of the fluids in both compartments, and the effect of a (forced) mechanical ventilation applied in the lower compartment. Such a configuration leads to uni- or bi-directional flows through the vent. In the experiments, buoyancy is induced in the lower compartment thanks to an electrical resistor. The forced ventilation is applied in exhaust or supply modes and three different values of the vent area. To estimate both velocity fields and flow rates at the vent, measurements are realized at thermal steady state, flush the vent in the upper compartment using stereoscopic particle image velocimetry (SPIV), which is original for this kind of flow. The SPIV measurements allows the area occupied by both upward and downward flows to be determined.
Method for preparing dosimeter for measuring skin dose
Jones, Donald E.; Parker, DeRay; Boren, Paul R.
1982-01-01
A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with neutron-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.
Dosimeter for measuring skin dose and more deeply penetrating radiation
Jones, Donald E.; Parker, DeRay; Boren, Paul R.
1981-01-01
A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.
Optimized protocol for combined PALM-dSTORM imaging.
Glushonkov, O; Réal, E; Boutant, E; Mély, Y; Didier, P
2018-06-08
Multi-colour super-resolution localization microscopy is an efficient technique to study a variety of intracellular processes, including protein-protein interactions. This technique requires specific labels that display transition between fluorescent and non-fluorescent states under given conditions. For the most commonly used label types, photoactivatable fluorescent proteins and organic fluorophores, these conditions are different, making experiments that combine both labels difficult. Here, we demonstrate that changing the standard imaging buffer of thiols/oxygen scavenging system, used for organic fluorophores, to the commercial mounting medium Vectashield increased the number of photons emitted by the fluorescent protein mEos2 and enhanced the photoconversion rate between its green and red forms. In addition, the photophysical properties of organic fluorophores remained unaltered with respect to the standard imaging buffer. The use of Vectashield together with our optimized protocol for correction of sample drift and chromatic aberrations enabled us to perform two-colour 3D super-resolution imaging of the nucleolus and resolve its three compartments.
Use of near infrared spectroscopy for the clinical monitoring of adult brain
NASA Astrophysics Data System (ADS)
Kirkpatrick, Peter J.; Smielewski, P.; Lam, J. M.; Al-Rawi, P.
1996-10-01
Adult near infrared spectroscopy (NIRS) is a potential method for noninvasively assessing changes in cerebral oxygenation. Unlike neonatal NIRS, access of light to the adult rain requires penetration through thick extracranial tissues, and hence detection of changed in cerebral chromophore concentration can only be achieved by using NIRS in the reflectance mode. This adds variables that are difficult to control. They include the effects of a different intraoptode distance, intersubject anatomical variation, and the influence of a pathological extra- to intracranial collateral blood supply. Although studies showing movements of oxyhemoglobin concentration following specific cerebral stimuli have been published, the separation of changes occurring in the extracranial and intracranial compartments remains a challenge. Experience with NIRS in the three adult clinical scenarios of carotid endarterectomy, head injury, and carbon dioxide stress testing is presented. The influence of extracranial contamination is demonstrated, as are the methods adopted to help control for extracranial blood flow changes. Provisional experience with spatially responded spectroscopy technology is also discussed.
Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism.
Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti
2014-01-01
Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.
NASA Astrophysics Data System (ADS)
Zhang, Huiming; Xie, Yang; Ji, Tongyu
2007-06-01
The off-resonance rotating frame technique based on the spin relaxation properties of off-resonance T1 ρ can significantly increase the sensitivity of detecting paramagnetic labeling at high magnetic fields by MRI. However, the in vivo detectable dimension for labeled cell clusters/tissues in T1 ρ-weighted images is limited by the water diffusion-exchange between mesoscopic scale compartments. An experimental investigation of the effect of water diffusion-exchange between compartments on the paramagnetic relaxation enhancement of paramagnetic agent compartment is presented for in vitro/ in vivo models. In these models, the size of paramagnetic agent compartment is comparable to the mean diffusion displacement of water molecules during the long RF pulses that are used to generate the off-resonance rotating frame. The three main objectives of this study were: (1) to qualitatively correlate the effect of water diffusion-exchange with the RF parameters of the long pulse and the rates of water diffusion, (2) to explore the effect of water diffusion-exchange on the paramagnetic relaxation enhancement in vitro, and (3) to demonstrate the paramagnetic relaxation enhancement in vivo. The in vitro models include the water permeable dialysis tubes or water permeable hollow fibers embedded in cross-linked proteins gels. The MWCO of the dialysis tubes was chosen from 0.1 to 15 kDa to control the water diffusion rate. Thin hollow fibers were chosen to provide sub-millimeter scale compartments for the paramagnetic agents. The in vivo model utilized the rat cerebral vasculatures as a paramagnetic agent compartment, and intravascular agents (Gd-DTPA) 30-BSA were administrated into the compartment via bolus injections. Both in vitro and in vivo results demonstrate that the paramagnetic relaxation enhancement is predominant in the T1 ρ-weighted image in the presence of water diffusion-exchange. The T1 ρ contrast has substantially higher sensitivity than the conventional T1 contrast in detecting paramagnetic agents, especially at low paramagnetic agent volumetric fractions, low paramagnetic agent concentrations, and low RF amplitudes. Short pulse duration, short pulse recycle delay and efficient paramagnetic relaxation can reduce the influence of water diffusion-exchange on the paramagnetic enhancement. This study paves the way for the design of off-resonance rotating experiments to detect labeled cell clusters/tissue compartments in vivo at a sub-millimeter scale.
The MELISSA pilot plant facility as as integration test-bed for advanced life support systems
NASA Technical Reports Server (NTRS)
Godia, F.; Albiol, J.; Perez, J.; Creus, N.; Cabello, F.; Montras, A.; Masot, A.; Lasseur, Ch
2004-01-01
The different advances in the Micro Ecological Life Support System Alternative project (MELISSA), fostered and coordinated by the European Space Agency, as well as in other associated technologies, are integrated and demonstrated in the MELISSA Pilot Plant laboratory. During the first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re-designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of biological systems such as MELISSA as life support systems. The facility will also serve as a test bed to study the robustness and stability of the continuous operation of a complex biological system. This includes testing of the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the system, as well as tracking the genetic stability of the microbial strains used. The new period is envisaged as a contribution to the further development of more complete biological life support systems for long-term manned missions, that should be better defined from the knowledge to be gained from this integration phase. This contribution summarizes the current status of the Pilot Plant and the planned steps for the new period. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Expression of VGRNb-PE immunotoxin in transplastomic lettuce (Lactuca sativa L.).
Mirzaee, Malihe; Jalali-Javaran, Mokhtar; Moieni, Ahmad; Zeinali, Sirous; Behdani, Mahdi
2018-05-01
This research has shown, for the first time, that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins and the transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. Angiogenesis refers to the formation of new blood vessels, which resulted in the growth, invasion and metastasis of cancer. The vascular endothelial growth factor receptor 2 (VEGFR2) plays a major role in angiogenesis and blocking of its signaling inhibits neovascularization and tumor metastasis. Immunotoxins are promising therapeutics for targeted cancer therapy. They consist of an antibody linked to a protein toxin and are designed to specifically kill the tumor cells. In our previous study, VGRNb-PE immunotoxin protein containing anti-VEGFR2 nanobody fused to the truncated form of Pseudomonas exotoxin A has been established. Here, we expressed this immunotoxin in lettuce chloroplasts. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, multigene engineering in a single transformation event and maternal inheritance of the transgenes. Site specific integration of transgene into chloroplast genomes, and homoplasmy were confirmed. Immunotoxin levels reached up to 1.1% of total soluble protein or 33.7 µg per 100 mg of leaf tissue (fresh weight). We demonstrated that transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. These results indicate that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins.
[Bioimpedometry and its utilization in dialysis therapy].
Lopot, František
2016-01-01
Measurement of living tissue impedance - bioimpedometry - started to be used in medicine some 50 years ago, first exclusively for estimation of extracellular and intracellular compartment volumes. Its most simple single frequency (50 kHz) version works directly with the measured impedance vector. Technically more sophisticated versions convert the measured impedance in values of volumes of different compartments of body fluids and calculate also principal markers of nutritional status (lean body mass, adipose tissue mass). The latest version specifically developed for application in dialysis patients includes body composition modelling and provides even absolute value of overhydration (excess fluid). Still in experimental phase is the bioimpedance exploitation for more precise estimation of residual glomerular filtration. Not yet standardized is also segmental bioimpedance measurement which should enable separate assessment of hydration status of the trunk segment and ultrafiltration capacity of peritoneum in peritoneal dialysis patients.Key words: assessment - bioimpedance - excess fluid - fluid status - glomerular filtration - haemodialysis - nutritional status - peritoneal dialysis.
Rossmassler, Karen; Dietrich, Carsten; Thompson, Claire; Mikaelyan, Aram; Nonoh, James O; Scheffrahn, Rudolf H; Sillam-Dussès, David; Brune, Andreas
2015-11-26
Termites are important contributors to carbon and nitrogen cycling in tropical ecosystems. Higher termites digest lignocellulose in various stages of humification with the help of an entirely prokaryotic microbiota housed in their compartmented intestinal tract. Previous studies revealed fundamental differences in community structure between compartments, but the functional roles of individual lineages in symbiotic digestion are mostly unknown. Here, we conducted a highly resolved analysis of the gut microbiota in six species of higher termites that feed on plant material at different levels of humification. Combining amplicon sequencing and metagenomics, we assessed similarities in community structure and functional potential between the major hindgut compartments (P1, P3, and P4). Cluster analysis of the relative abundances of orthologous gene clusters (COGs) revealed high similarities among wood- and litter-feeding termites and strong differences to humivorous species. However, abundance estimates of bacterial phyla based on 16S rRNA genes greatly differed from those based on protein-coding genes. Community structure and functional potential of the microbiota in individual gut compartments are clearly driven by the digestive strategy of the host. The metagenomics libraries obtained in this study provide the basis for future studies that elucidate the fundamental differences in the symbiont-mediated breakdown of lignocellulose and humus by termites of different feeding groups. The high proportion of uncultured bacterial lineages in all samples calls for a reference-independent approach for the correct taxonomic assignment of protein-coding genes.
Meisslitzer-Ruppitsch, Claudia; Röhrl, Clemens; Ranftler, Carmen; Neumüller, Josef; Vetterlein, Monika; Ellinger, Adolf; Pavelka, Margit
2011-02-01
In this study, the ceramide-enriched trans-Golgi compartments representing sites of synthesis of sphingomyelin and higher organized lipids were visualized in control and ATP-depleted hepatoma and endothelial cells using internalization of BODIPY-ceramide and the diaminobenzidine photooxidation method for combined light-electron microscopical exploration. Metabolic stress induced by lowering the cellular ATP-levels leads to reorganizations of the Golgi apparatus and the appearance of tubulo-glomerular bodies and networks. The results obtained with three different protocols, in which BODIPY-ceramide either was applied prior to, concomitantly with, or after ATP-depletion, revealed that the ceramide-enriched compartments reorganize together with other parts of the Golgi apparatus under these conditions. They were found closely associated with and integrated in the tubulo-glomerular bodies formed in response to ATP-depletion. This is in line with the changes of the staining patterns obtained with the Helix pomatia lectin and the GM130 and TGN46 immuno-reactions occurring in response to ATP-depletion and is confirmed by 3D electron tomography. The 3D reconstructions underlined the glomerular character of the reorganized Golgi apparatus and demonstrated continuities of ceramide positive and negative parts. Most interestingly, BODIPY-ceramide becomes concentrated in compartments of the tubulo-glomerular Golgi bodies, even though the reorganization took place before BODIPY-ceramide administration. This indicates maintained functionalities although the regular Golgi stack organization is abolished; the results provide novel insights into Golgi structure-function relationships, which might be relevant for cells affected by metabolic stress.
Cromwell, Mandy A.; Veazey, Ronald S.; Altman, John D.; Mansfield, Keith G.; Glickman, Rhona; Allen, Todd M.; Watkins, David I.; Lackner, Andrew A.; Johnson, R. Paul
2000-01-01
Induction of virus-specific T-cell responses in mucosal as well as systemic compartments of the immune system is likely to be a critical feature of an effective AIDS vaccine. We investigated whether virus-specific CD8+ lymphocytes induced in rhesus macaques by immunization with attenuated simian immunodeficiency virus (SIV), an approach that is highly effective in eliciting protection against mucosal challenge, express the mucosa-homing receptor α4β7 and traffic to the intestinal mucosa. SIV-specific CD8+ T cells expressing α4β7 were detected in peripheral blood and intestine of macaques infected with attenuated SIV. In contrast, virus-specific T cells in blood of animals immunized cutaneously by a combined DNA-modified vaccinia virus Ankara regimen did not express α4β7. These results demonstrate the selective induction of SIV-specific CD8+ T lymphocytes expressing α4β7 by a vaccine approach that replicates in mucosal tissue and suggest that induction of virus-specific lymphocytes that are able to home to mucosal sites may be an important characteristic of a successful AIDS vaccine. PMID:10954580
Krause Neto, Walter; Silva, Wellington de Assis; Ciena, Adriano P.; de Souza, Romeu R.; Anaruma, Carlos A.; Gama, Eliane F.
2017-01-01
The present study aimed to analyze the morphology of the peripheral nerve, postsynaptic compartment, skeletal muscles and weight-bearing capacity of Wistar rats at specific ages. Twenty rats were divided into groups: 10 months-old (ADULT) and 24 months-old (OLD). After euthanasia, we prepared and analyzed the tibial nerve using transmission electron microscopy and the soleus and plantaris muscles for cytofluorescence and histochemistry. For the comparison of the results between groups we used dependent and independent Student's t-test with level of significance set at p ≤ 0.05. For the tibial nerve, the OLD group presented the following alterations compared to the ADULT group: larger area and diameter of both myelinated fibers and axons, smaller area occupied by myelinated and unmyelinated axons, lower numerical density of myelinated fibers, and fewer myelinated fibers with normal morphology. Both aged soleus and plantaris end-plate showed greater total perimeter, stained perimeter, total area and stained area compared to ADULT group (p < 0.05). Yet, aged soleus end-plate presented greater dispersion than ADULT samples (p < 0.05). For the morphology of soleus and plantaris muscles, density of the interstitial volume was greater in the OLD group (p < 0.05). No statistical difference was found between groups in the weight-bearing tests. The results of the present study demonstrated that the aging process induces changes in the peripheral nerve and postsynaptic compartment without any change in skeletal muscles and ability to carry load in Wistar rats. PMID:29326543
NASA Astrophysics Data System (ADS)
Xu, Xiaochun; Sinha, Lagnojita; Singh, Aparna; Yang, Cynthia; Xiang, Jialing; Tichauer, Kenneth M.
2015-03-01
Immunofluorescence staining is a robust way to visualize the distribution of targeted biomolecules invasively in in fixed tissues and tissue culture. Despite the fact that these methods has been a well-established method in fixed tissue imaging for over 70 years, quantification of receptor concentration still simply assumes that the signal from the targeted fluorescent marker after incubation and sufficient rinsing is directly proportional to the concentration of targeted biomolecules, thus neglecting the experimental inconsistencies in incubation and rinsing procedures and assuming no, nonspecific binding of the fluorescent markers. This work presents the first imaging approach capable of quantifying the concentration of cell surface receptor on cancer cells grown in vitro based on compartment modeling in a nondestructive way. The approach utilizes a dual-tracer protocol where any non-specific retention or variability in incubation and rinsing of a receptor-targeted imaging agent is corrected by simultaneously imaging the retention of a chemically similar, "untargeted" imaging agent. Various different compartment models were used to analyze the data in order to find the optimal procedure for extracting estimates of epidermal growth factor receptor (EGFR) concentration (a receptor overexpressed in many cancers and a key target for emerging molecular therapies) in tissue cultures with varying concentrations of human glioma cells (U251). Preliminary results demonstrated a need to model nonspecific binding of both the targeted and untargeted imaging agents used. The approach could be used to carry out the first repeated measures of cell surface receptor dynamics during 3D tumor mass development, in addition to the receptor response to therapies.
Coupled near-field and far-field exposure assessment framework for chemicals in consumer products.
Fantke, Peter; Ernstoff, Alexi S; Huang, Lei; Csiszar, Susan A; Jolliet, Olivier
2016-09-01
Humans can be exposed to chemicals in consumer products through product use and environmental emissions over the product life cycle. Exposure pathways are often complex, where chemicals can transfer directly from products to humans during use or exchange between various indoor and outdoor compartments until sub-fractions reach humans. To consistently evaluate exposure pathways along product life cycles, a flexible mass balance-based assessment framework is presented structuring multimedia chemical transfers in a matrix of direct inter-compartmental transfer fractions. By matrix inversion, we quantify cumulative multimedia transfer fractions and exposure pathway-specific product intake fractions defined as chemical mass taken in by humans per unit mass of chemical in a product. Combining product intake fractions with chemical mass in the product yields intake estimates for use in life cycle impact assessment and chemical alternatives assessment, or daily intake doses for use in risk-based assessment and high-throughput screening. Two illustrative examples of chemicals used in personal care products and flooring materials demonstrate how this matrix-based framework offers a consistent and efficient way to rapidly compare exposure pathways for adult and child users and for the general population. This framework constitutes a user-friendly approach to develop, compare and interpret multiple human exposure scenarios in a coupled system of near-field ('user' environment), far-field and human intake compartments, and helps understand the contribution of individual pathways to overall human exposure in various product application contexts to inform decisions in different science-policy fields for which exposure quantification is relevant. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wojtyniak, Martin; Brear, Andrea G.; O'Halloran, Damien M.; Sengupta, Piali
2013-01-01
Summary Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions. PMID:23886944
Wojtyniak, Martin; Brear, Andrea G; O'Halloran, Damien M; Sengupta, Piali
2013-10-01
Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions.
Contamination control of the space shuttle Orbiter crew compartment
NASA Technical Reports Server (NTRS)
Bartelson, Donald W.
1986-01-01
Effective contamination control as applied to manned space flight environments is a discipline characterized and controlled by many parameters. An introduction is given to issues involving Orbiter crew compartment contamination control. An effective ground processing contamination control program is an essential building block to a successful shuttle mission. Personnel are required to don cleanroom-grade clothing ensembles before entering the crew compartment and follow cleanroom rules and regulations. Prior to crew compartment entry, materials and equipment must be checked by an orbiter integrity clerk stationed outside the white-room entrance for compliance to program requirements. Analysis and source identification of crew compartment debris studies have been going on for two years. The objective of these studies is to determine and identify particulate generating materials and activities in the crew compartment. Results show a wide spectrum of many different types of materials. When source identification is made, corrective action is implemented to minimize or curtail further contaminate generation.
Topologically-associating domains are stable units of replication-timing regulation
Pope, Benjamin D.; Ryba, Tyrone; Dileep, Vishnu; Yue, Feng; Wu, Weisheng; Denas, Olgert; Vera, Daniel L.; Wang, Yanli; Hansen, R. Scott; Canfield, Theresa K.; Thurman, Robert E.; Cheng, Yong; Gülsoy, Günhan; Dennis, Jonathan H.; Snyder, Michael P.; Stamatoyannopoulos, John A.; Taylor, James; Hardison, Ross C.; Kahveci, Tamer; Ren, Bing; Gilbert, David M.
2014-01-01
Summary Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program1. During mammalian development, at least half the genome changes replication timing, primarily in units of 400–800 kb (“replication domains”; RDs), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements2–7. Early and late replication correlate strongly with open and closed chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, lamina-associated domains (LADs)4,5,8,9. Recent Hi-C mapping has unveiled a substructure of topologically-associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to RDs8,10. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale11,12. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure8,9,13. Here, we localize boundaries of RDs to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, RD boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure RD boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell type specific sub-nuclear compartmentalization with developmentally stable chromosome domains and offer a unified model for large-scale chromosome structure and function. PMID:25409831
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.
Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34{sup +}/K15{sup +}/p63{sup +} keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 andmore » keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in tumors induced in these two murine models suggesting the specificity of Notch pathway in this regard. These data provide a novel role of ODC in augmenting tumorigenesis via negatively regulated Notch-mediated expansion of stem cell compartment.« less
NASA Astrophysics Data System (ADS)
Soulie-Begu, Sylvie; Devoisselle, Jean-Marie; Mordon, Serge R.
1995-04-01
Liposomes are known to be uptaken by the liver cells after intraveinous injection. Only few techniques are available to follow this process in vivo like nuclear magnetic resonance spectroscopy or scintigraphy. Intracellular pathway and liposomes localization in the different liver cells require sacrifice of the animals, cells separation and electronic microscopy, then little is known about liposomes kinetic uptake by the acidic intracellular compartments in vivo. We propose in this study a new method to follow liposomes uptake in the liver in vivo using a fluorescent pH sensitive probe 5,6-carboxyfluorescein and two different composition of liposomes: phospholipids DSPC/Chol and DMPC in order to evaluate the influence of the formulation on the release characteristics of liposomes in the lysosomes. We have already demonstrated the ability of the fluorescence spectroscopy and imaging using a pH dependent probe to monitor pH in living tissues. As pH of lysosomes is very low, the kinetic liposomes uptake in this intracellular acidic compartment is followed by monitoring the pH of the whole liver in vivo and ex vivo. Carboxyfluorescein is used at high concentration (100 mM) in order to quench its fluorescence. Liposomes are injected to Wistar rats into the penil vein. After laparotomy, fluorescence spectra and images are recorded during two hours. Results show a clear relationship between formulation of liposomes and stability in the acidic compartments of hepatic cells. After sacrifice and flush with cold saline solution, pH of the liver ex vivo is found to be 5.0-5.5. Data show a rapid clearance of release dye and an uptake of liposomes by the liver cells and, as liposomes penetrate in the acidic compartment, dye is released from liposomes and is delivered in lysosomes leading to the decrease of the pH.
Gerlach, Jörg C; Lübberstedt, Marc; Edsbagge, Josefina; Ring, Alexander; Hout, Mariah; Baun, Matt; Rossberg, Ingrid; Knöspel, Fanny; Peters, Grant; Eckert, Klaus; Wulf-Goldenberg, Annika; Björquist, Petter; Stachelscheid, Harald; Urbaniak, Thomas; Schatten, Gerald; Miki, Toshio; Schmelzer, Eva; Zeilinger, Katrin
2010-01-01
We describe hollow fiber-based three-dimensional (3D) dynamic perfusion bioreactor technology for embryonic stem cells (ESC) which is scalable for laboratory and potentially clinical translation applications. We added 2 more compartments to the typical 2-compartment devices, namely an additional media capillary compartment for countercurrent 'arteriovenous' flow and an oxygenation capillary compartment. Each capillary membrane compartment can be perfused independently. Interweaving the 3 capillary systems to form repetitive units allows bioreactor scalability by multiplying the capillary units and provides decentralized media perfusion while enhancing mass exchange and reducing gradient distances from decimeters to more physiologic lengths of <1 mm. The exterior of the resulting membrane network, the cell compartment, is used as a physically active scaffold for cell aggregation; adjusting intercapillary distances enables control of the size of cell aggregates. To demonstrate the technology, mouse ESC (mESC) were cultured in 8- or 800-ml cell compartment bioreactors. We were able to confirm the hypothesis that this bioreactor enables mESC expansion qualitatively comparable to that obtained with Petri dishes, but on a larger scale. To test this, we compared the growth of 129/SVEV mESC in static two-dimensional Petri dishes with that in 3D perfusion bioreactors. We then tested the feasibility of scaling up the culture. In an 800-ml prototype, we cultured approximately 5 x 10(9) cells, replacing up to 800 conventional 100-mm Petri dishes. Teratoma formation studies in mice confirmed protein expression and gene expression results with regard to maintaining 'stemness' markers during cell expansion. Copyright 2010 S. Karger AG, Basel.
Santos-Medellín, Christian; Edwards, Joseph; Liechty, Zachary; Nguyen, Bao; Sundaresan, Venkatesan
2017-07-18
Plant roots support complex microbial communities that can influence plant growth, nutrition, and health. While extensive characterizations of the composition and spatial compartmentalization of these communities have been performed in different plant species, there is relatively little known about the impact of abiotic stresses on the root microbiota. Here, we have used rice as a model to explore the responses of root microbiomes to drought stress. Using four distinct genotypes, grown in soils from three different fields, we tracked the drought-induced changes in microbial composition in the rhizosphere (the soil immediately surrounding the root), the endosphere (the root interior), and unplanted soils. Drought significantly altered the overall bacterial and fungal compositions of all three communities, with the endosphere and rhizosphere compartments showing the greatest divergence from well-watered controls. The overall response of the bacterial microbiota to drought stress was taxonomically consistent across soils and cultivars and was primarily driven by an enrichment of multiple Actinobacteria and Chloroflexi , as well as a depletion of several Acidobacteria and Deltaproteobacteria While there was some overlap in the changes observed in the rhizosphere and endosphere communities, several drought-responsive taxa were compartment specific, a pattern likely arising from preexisting compositional differences, as well as plant-mediated processes affecting individual compartments. These results reveal that drought stress, in addition to its well-characterized effects on plant physiology, also results in restructuring of root microbial communities and suggest the possibility that constituents of the altered plant microbiota might contribute to plant survival under extreme environmental conditions. IMPORTANCE With the likelihood that changes in global climate will adversely affect crop yields, the potential role of microbial communities in enhancing plant performance makes it important to elucidate the responses of plant microbiomes to environmental variation. By detailed characterization of the effect of drought stress on the root-associated microbiota of the crop plant rice, we show that the rhizosphere and endosphere communities undergo major compositional changes that involve shifts in the relative abundances of a taxonomically diverse set of bacteria in response to drought. These drought-responsive microbes, in particular those enriched under water deficit conditions, could potentially benefit the plant as they could contribute to tolerance to drought and other abiotic stresses, as well as provide protection from opportunistic infection by pathogenic microbes. The identification and future isolation of microbes that promote plant tolerance to drought could potentially be used to mitigate crop losses arising from adverse shifts in climate. Copyright © 2017 Santos-Medellín et al.
Okoye, Afam A; Rohankhedkar, Mukta; Abana, Chike; Pattenn, Audrie; Reyes, Matthew; Pexton, Christopher; Lum, Richard; Sylwester, Andrew; Planer, Shannon L; Legasse, Alfred; Park, Byung S; Piatak, Michael; Lifson, Jeffrey D; Axthelm, Michael K; Picker, Louis J
2012-04-09
The development of AIDS in chronic HIV/simian immunodeficiency virus (SIV) infection has been closely linked to progressive failure of CD4(+) memory T cell (T(M)) homeostasis. CD4(+) naive T cells (T(N)) also decline in these infections, but their contribution to disease progression is less clear. We assessed the role of CD4(+) T(N) in SIV pathogenesis using rhesus macaques (RMs) selectively and permanently depleted of CD4(+) T(N) before SIV infection. CD4(+) T(N)-depleted and CD4(+) T(N)-repleted RMs were created by subjecting juvenile RMs to thymectomy versus sham surgery, respectively, followed by total CD4(+) T cell depletion and recovery from this depletion. Although thymectomized and sham-treated RMs manifested comparable CD4(+) T(M) recovery, only sham-treated RMs reconstituted CD4(+) T(N). CD4(+) T(N)-depleted RMs responded to SIVmac239 infection with markedly attenuated SIV-specific CD4(+) T cell responses, delayed SIVenv-specific Ab responses, and reduced SIV-specific CD8(+) T cell responses. However, CD4(+) T(N)-depleted and -repleted groups showed similar levels of SIV replication. Moreover, CD4(+) T(N) deficiency had no significant effect on CD4(+) T(M) homeostasis (either on or off anti-retroviral therapy) or disease progression. These data demonstrate that the CD4(+) T(N) compartment is dispensable for CD4(+) T(M) homeostasis in progressive SIV infection, and they confirm that CD4(+) T(M) comprise a homeostatically independent compartment that is intrinsically capable of self-renewal.
Heidrich, Katharina; Wirthmueller, Lennart; Tasset, Céline; Pouzet, Cécile; Deslandes, Laurent; Parker, Jane E
2011-12-09
Pathogen effectors are intercepted by plant intracellular nucleotide binding-leucine-rich repeat (NB-LRR) receptors. However, processes linking receptor activation to downstream defenses remain obscure. Nucleo-cytoplasmic basal resistance regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) is indispensible for immunity mediated by TIR (Toll-interleukin-1 receptor)-NB-LRR receptors. We show that Arabidopsis EDS1 molecularly connects TIR-NB-LRR disease resistance protein RPS4 recognition of bacterial effector AvrRps4 to defense pathways. RPS4-EDS1 and AvrRps4-EDS1 complexes are detected inside nuclei of living tobacco cells after transient coexpression and in Arabidopsis soluble leaf extracts after resistance activation. Forced AvrRps4 localization to the host cytoplasm or nucleus reveals cell compartment-specific RPS4-EDS1 defense branches. Although nuclear processes restrict bacterial growth, programmed cell death and transcriptional resistance reinforcement require nucleo-cytoplasmic coordination. Thus, EDS1 behaves as an effector target and activated TIR-NB-LRR signal transducer for defenses across cell compartments.
Methods to measure target site penetration of antibiotics in critically ill patients.
Schwameis, Richard; Zeitlinger, Markus
2013-02-01
While several tools are necessary to repair a car, the engineer knows exactly which instrument he has to utilize at different parts of the broken machine. Likewise, depending on the information we are interested in, we have to choose different tools to investigate and consecutively understand the multiple aspects that are involved in pharmacokinetics of antimicrobial agents in critically ill patients. Some techniques, like blood sampling, microdialysis or positrons emission tomography (PET) will allow for obtaining continues concentration time profiles while others like bronchoalveolar lavage (BAL), biopsy or surgical tissue samples can only be used a limited number of times per subject. PET and methods based on tissue homogenization will deliver an average of the actual concentrations in intra - and extracellular compartments while investigations in isolated blood cells or microdialysis allow for more distinguished allocation of a concentration to a defined compartment. The present review aims at discussing the advantages and disadvantages of the various methods used for assessing pharmacokinetics in critically ill patients with regard to specific aspects of pharmacokinetic research and further reviews data of selected antibiotics as examples for applications of the individual techniques.
A computer program for the simulation of fiber deposition in the human respiratory tract.
Sturm, Robert; Hofmann, Werner
2006-11-01
As inhaled fibers may lead to a variety of lung diseases, detailed information on their deposition in the human respiratory tract is an indispensable requirement in medical science. In the work presented here, a Visual Basic((R)) computer program, termed FIBROS, is described which enables the simulation of fibrous particle deposition in both the extrathoracic region and different parts of the lung itself, including the results of published numerical studies on inertial/interceptional as well as diffusional and gravitational deposition. The input window of FIBROS includes the selection of specific breathing conditions by variation of the tidal volume and breathing cycle. Furthermore, the user is able to determine fiber properties such as diameter, aspect ratio, specific weight, and fiber orientation with respect to the air stream in the upper and lower airways of the lungs. Besides the offer of various deposition formulae for each region of the respiratory tract, thereby also allowing a distinction between mouth and nose breathing, the user may select between different morphometric datasets of the lung and respective airway scaling procedures. Analysis routines of FIBROS include the estimation of regional deposition fractions, thereby distinguishing between extrathoracic, bronchial, and acinar compartments, and a calculation of generation-by-generation deposition probabilities within tubular and alveolar structures. Preliminary results presented here should demonstrate the effects on fiber deposition due to variations of the breathing behaviour and the particle properties.
Cell-specific STORM superresolution imaging reveals nanoscale organization of cannabinoid signaling
Szabó, Szilárd I.; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G.; Henstridge, Christopher M.; Balla, Gyula Y.; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István
2014-01-01
A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell-type-, and subcellular compartment-specific manner. We therefore developed a novel approach combining cell-specific physiological and anatomical characterization with superresolution imaging, and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically-projecting GABAergic interneurons possess increased CB1 receptor number, active-zone complexity, and receptor/effector ratio compared to dendritically-projecting interneurons, in agreement with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ9-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked dramatic CB1-downregulation in a dose-dependent manner. Full receptor recovery required several weeks after cessation of Δ9-tetrahydrocannabinol treatment. These findings demonstrate that cell-type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits, and identify novel molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction. PMID:25485758
Radionuclide imaging of bone marrow disorders
Agool, Ali; Glaudemans, Andor W. J. M.; Boersma, Hendrikus H.; Dierckx, Rudi A. J. O.; Vellenga, Edo
2010-01-01
Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed. PMID:20625724
Comparison of multiple methods to measure maternal fat mass in late gestation12
Marshall, Nicole E; Murphy, Elizabeth J; King, Janet C; Haas, E Kate; Lim, Jeong Y; Wiedrick, Jack; Thornburg, Kent L; Purnell, Jonathan Q
2016-01-01
Background: Measurements of maternal fat mass (FM) are important for studies of maternal and fetal health. Common methods of estimating FM have not been previously compared in pregnancy with measurements using more complete body composition models. Objectives: The goal of this pilot study was to compare multiple methods that estimate FM, including 2-, 3- and 4-compartment models in pregnant women at term, and to determine how these measures compare with FM by dual-energy X-ray absorptiometry (DXA) 2 wk postpartum. Design: Forty-one healthy pregnant women with prepregnancy body mass index (in kg/m2) 19 to 46 underwent skinfold thickness (SFT), bioelectrical impedance analysis (BIA), body density (Db) via air displacement plethysmography (ADP), and deuterium dilution of total body water (TBW) with and without adjustments for gestational age using van Raaij (VRJ) equations at 37–38 wk of gestation and 2 wk postpartum to derive 8 estimates of maternal FM. Deming regression analysis and Bland-Altman plots were used to compare methods of FM assessment. Results: Systematic differences in FM estimates were found. Methods for FM estimates from lowest to highest were 4-compartment, DXA, TBW(VRJ), 3-compartment, Db(VRJ), BIA, air displacement plethysmography body density, and SFT ranging from a mean ± SD of 29.5 ± 13.2 kg via 4-compartment to 39.1 ± 11.7 kg via SFT. Compared with postpartum DXA values, Deming regressions revealed no substantial departures from trend lines in maternal FM in late pregnancy for any of the methods. The 4-compartment method showed substantial negative (underestimating) constant bias, and the air displacement plethysmography body density and SFT methods showed positive (overestimating) constant bias. ADP via Db(VRJ) and 3-compartment methods had the highest precision; BIA had the lowest. Conclusions: ADP that uses gestational age-specific equations may provide a reasonable and practical measurement of maternal FM across a spectrum of body weights in late pregnancy. SFT would be acceptable for use in larger studies. This trial was registered at clinicaltrials.gov as NCT02586714. PMID:26888714
Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil.
Ke, Xiubin; Angel, Roey; Lu, Yahai; Conrad, Ralf
2013-08-01
The dynamics of populations and activities of ammonia-oxidizing and nitrite-oxidizing microorganisms were investigated in rice microcosms treated with two levels of nitrogen. Different soil compartments (surface, bulk, rhizospheric soil) and roots (young and old roots) were collected at three time points (the panicle initiation, heading and maturity periods) of the season. The population dynamics of bacterial (AOB) and archaeal (AOA) ammonia oxidizers was assayed by determining the abundance (using qPCR) and composition (using T-RFLP and cloning/sequencing) of their amoA genes (coding for a subunit of ammonia monooxygenase), that of nitrite oxidizers (NOB) by quantifying the nxrA gene (coding for a subunit of nitrite oxidase of Nitrobacter spp.) and the 16S rRNA gene of Nitrospira spp. The activity of the nitrifiers was determined by measuring the rates of potential ammonia oxidation and nitrite oxidation and by quantifying the copy numbers of amoA and nxrA transcripts. Potential nitrite oxidation activity was much higher than potential ammonia oxidation activity and was not directly affected by nitrogen amendment demonstrating the importance of ammonia oxidizers as pace makers for nitrite oxidizer populations. Marked differences in the distribution of bacterial and archaeal ammonia oxidizers, and of Nitrobacter-like and Nitrospira-like nitrite oxidizers were found in the different compartments of planted paddy soil indicating niche differentiation. In bulk soil, ammonia-oxidizing bacteria (Nitrosospira and Nitrosomonas) were at low abundance and displayed no activity, but in surface soil their activity and abundance was high. Nitrite oxidation in surface soil was dominated by Nitrospira spp. By contrast, ammonia-oxidizing Thaumarchaeota and Nitrobacter spp. seemed to dominate nitrification in rhizospheric soil and on rice roots. In contrast to soil compartment, the level of N fertilization and the time point of sampling had only little effect on the abundance, composition and activity of the nitrifying communities. The results of our study show that in rice fields population dynamics and activity of nitrifiers is mainly differentiated by the soil compartments rather than by nitrogen amendment or season. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
2012-10-01
studies demonstrated that NIRS measurement of hemoglobin oxygen saturation in the tibial compartment provided reliable and sensitive correlation to...pressure increases with muscle damage, there is not a complete loss of tissue oxygen saturation in the tissue over the 14 hours of the protocol. In...allow greater detail of information and flexibility in the analysis of tissue oxygenation levels. Although the 7610 oximeter has not been
Sokolova, I M; Ringwood, A H; Johnson, C
2005-09-10
Cadmium distribution was studied in different subcellular fractions of gill and hepatopancreas tissues of eastern oysters Crassostrea virginica. Oysters were exposed for up to 21 days to low sublethal Cd concentrations (25 microg L(-1)). Gill and hepatopancreas tissues were sampled and divided into organelle fractions and cytosol by differential centrifugation. Organelle content of different fractions was verified by activities of marker enzymes, citrate synthase and acid phosphatase for mitochondria and lysosomes, respectively. In both tissue types, there was a significant accumulation of cadmium in cytosol reaching 230-350 ng mg(-1) protein. Among organelles, mitochondria were the main target for Cd bioaccumulation in gills (250-300 ng mg(-1) protein), whereas in hepatopancreas tissues, the highest cadmium accumulation occurred in lysosomes (90-94 ng mg(-1) protein). Although 75-83% of total cadmium burden was associated with the cytosol reflecting high volume fraction of this compartment, Cd concentrations in organelle fractions reached levels that could cause dysfunction of mitochondria and lysosomes. Organ- and organelle-specific patterns of cadmium bioaccumulation support our previous in vivo studies, which showed adverse effects of cadmium exposures on mitochondrial oxidation in gills and on the lysosomal system of hepatopancreas. This may have important implications for the development of biomarkers of effect for heavy metals and for understanding the mechanisms of toxic effects of metals.
Vyas, Jatin M.; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J. Christopher; Van der Veen, Annemarthe G.; Ploegh, Hidde L.
2009-01-01
Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP. PMID:17513769
Thirkell, Tom J; Cameron, Duncan D; Hodge, Angela
2016-08-01
Arbuscular mycorrhizal fungi (AMF) can transfer nitrogen (N) to host plants, but the ecological relevance is debated, as total plant N and biomass do not generally increase. The extent to which the symbiosis is mutually beneficial is thought to rely on the stoichiometry of N, phosphorus (P) and carbon (C) availability. While inorganic N fertilization has been shown to elicit strong mutualism, characterized by improved plant and fungal growth and mineral nutrition, similar responses following organic N addition are lacking. Using a compartmented microcosm experiment, we determined the significance to a mycorrhizal plant of placing a (15) N-labelled, nitrogen-rich patch of organic matter in a compartment to which only AMF hyphae had access. Control microcosms denied AMF hyphal access to the patch compartment. When permitted access to the patch compartment, the fungus proliferated extensively in the patch and transferred substantial quantities of N to the plant. Moreover, our data demonstrate that allowing hyphal access to an organic matter patch enhanced total plant N and P contents, with a simultaneous and substantial increase in plant biomass. Furthermore, we demonstrate that organic matter fertilization of arbuscular mycorrhizal plants can foster a mutually beneficial symbiosis based on nitrogen transfer, a phenomenon previously thought irrelevant. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Aliverti, Andrea; Pedotti, Antonio; Ferrigno, Giancarlo; Macklem, P. T.
1998-07-01
Although from a respiratory point of view, compartmental volume change or lack of it is the most crucial variable, it has not been possible to measure the volume of chest wall compartments directly. Recently we developed a new method based on a optoelectronic motion analyzer that can give the three-dimensional location of many markers with the temporal and spatial accuracy required for respiratory measurements. Marker's configuration has been designed specifically to measure the volume of three chest wall compartments, the pulmonary and abdominal rib cage compartments and the abdomen, directly. However, it can not track the exact border between the two rib cage compartments (pulmonary and abdominal) which is determined by the cephalic extremity of the area of apposition of the diaphragm to the inner surface of the rib cage, and which can change systematically as a result of disease processes. The diaphragm displacement can be detected by ultrasonography. In the present study, we propose an integrated system able to investigate the relationships between external (chest wall) and internal (diaphragm) movements of the different respiratory structures by simultaneous external imaging with the optoelectronic system combined with internal kinematic imaging using ultrasounds. 2D digitized points belonging to the lower lung margin, taken from ultrasonographic views, are mapped into the 3D space, where chest wall markers are acquired. Results are shown in terms of accuracy of 3D probe location, relative movement between the probe and the body landmarks, dynamic relationships between chest wall volume and position of the diaphragm during quiet breathing, slow inspirations, relaxations and exercise.
2010-01-01
Background Molecular chaperones have been shown to be important in the growth of the malaria parasite Plasmodium falciparum and inhibition of chaperone function by pharmacological agents has been shown to abrogate parasite growth. A recent study has demonstrated that clinical isolates of the parasite have distinct physiological states, one of which resembles environmental stress response showing up-regulation of specific molecular chaperones. Methods Chaperone networks operational in the distinct physiological clusters in clinical malaria parasites were constructed using cytoscape by utilizing their clinical expression profiles. Results Molecular chaperones show distinct profiles in the previously defined physiologically distinct states. Further, expression profiles of the chaperones from different cellular compartments correlate with specific patient clusters. While cluster 1 parasites, representing a starvation response, show up-regulation of organellar chaperones, cluster 2 parasites, which resemble active growth based on glycolysis, show up-regulation of cytoplasmic chaperones. Interestingly, cytoplasmic Hsp90 and its co-chaperones, previously implicated as drug targets in malaria, cluster in the same group. Detailed analysis of chaperone expression in the patient cluster 2 reveals up-regulation of the entire Hsp90-dependent pro-survival circuitries. In addition, cluster 2 also shows up-regulation of Plasmodium export element (PEXEL)-containing Hsp40s thought to have regulatory and host remodeling roles in the infected erythrocyte. Conclusion In all, this study demonstrates an intimate involvement of parasite-encoded chaperones, PfHsp90 in particular, in defining pathogenesis of malaria. PMID:20719001
Bogan, Jonathan S.; McKee, Adrienne E.; Lodish, Harvey F.
2001-01-01
In fat and muscle, insulin stimulates glucose uptake by rapidly mobilizing the GLUT4 glucose transporter from a specialized intracellular compartment to the plasma membrane. We describe a method to quantify the relative proportion of GLUT4 at the plasma membrane, using flow cytometry to measure a ratio of fluorescence intensities corresponding to the cell surface and total amounts of a tagged GLUT4 reporter in individual living cells. Using this assay, we demonstrate that both 3T3-L1 and CHO cells contain intracellular compartments from which GLUT4 is rapidly mobilized by insulin and that the initial magnitude and kinetics of redistribution to the plasma membrane are similar in these two cell types when they are cultured identically. Targeting of GLUT4 to a highly insulin-responsive compartment in CHO cells is modulated by culture conditions. In particular, we find that amino acids regulate distribution of GLUT4 to this kinetically defined compartment through a rapamycin-sensitive pathway. Amino acids also modulate the magnitude of insulin-stimulated translocation in 3T3-L1 adipocytes. Our results indicate a novel link between glucose and amino acid metabolism. PMID:11416153
Localization of ATP Sulfurylase and O-Acetylserine(thiol)lyase in Spinach Leaves.
Lunn, J E; Droux, M; Martin, J; Douce, R
1990-11-01
The intracellular compartmentation of ATP sulfurylase and O-acetylserine(thiol)lyase in spinach (Spinacia oleracea L.) leaves has been investigated by isolation of organelles and fractionation of protoplasts. ATP sulfurylase is located predominantly in the chloroplasts, but is also present in the cytosol. No evidence was found for ATP sulfurylase activity in the mitochondria. Two forms of ATP sulfurylase were separated by anion-exchange chromatography. The more abundant form is present in the chloroplasts, the second is cytosolic. O-Acetylserine(thiol)lyase activity is located primarily in the chloroplasts and cytosol, but is also present in the mitochondria. Three forms of O-acetylserine(thiol)lyase were separated by anion-exchange chromatography, and each was found to be specific to one intracellular compartment. The cytosolic ATP sulfurylase may not be active in vivo due to the unfavorable equilibrium constant of the reaction, and the presence of micromolar concentrations of inorganic pyrophosphate in the cytosol, therefore its role remains unknown. It is suggested that the plant cell may be unable to transport cysteine between the different compartments, so that the cysteine required for protein synthesis must be synthesized in situ, hence the presence of O-acetylserine(thiol)lyase in the three compartments where proteins are synthesized.
Localization of ATP Sulfurylase and O-Acetylserine(thiol)lyase in Spinach Leaves
Lunn, John E.; Droux, Michel; Martin, Jacqueline; Douce, Roland
1990-01-01
The intracellular compartmentation of ATP sulfurylase and O-acetylserine(thiol)lyase in spinach (Spinacia oleracea L.) leaves has been investigated by isolation of organelles and fractionation of protoplasts. ATP sulfurylase is located predominantly in the chloroplasts, but is also present in the cytosol. No evidence was found for ATP sulfurylase activity in the mitochondria. Two forms of ATP sulfurylase were separated by anion-exchange chromatography. The more abundant form is present in the chloroplasts, the second is cytosolic. O-Acetylserine(thiol)lyase activity is located primarily in the chloroplasts and cytosol, but is also present in the mitochondria. Three forms of O-acetylserine(thiol)lyase were separated by anion-exchange chromatography, and each was found to be specific to one intracellular compartment. The cytosolic ATP sulfurylase may not be active in vivo due to the unfavorable equilibrium constant of the reaction, and the presence of micromolar concentrations of inorganic pyrophosphate in the cytosol, therefore its role remains unknown. It is suggested that the plant cell may be unable to transport cysteine between the different compartments, so that the cysteine required for protein synthesis must be synthesized in situ, hence the presence of O-acetylserine(thiol)lyase in the three compartments where proteins are synthesized. PMID:16667839
Leypoldt, John K; Agar, Baris U; Akonur, Alp; Gellens, Mary E; Culleton, Bruce F
2012-11-01
Mathematical models of phosphorus kinetics and mass balance during hemodialysis are in early development. We describe a theoretical phosphorus steady state mass balance model during hemodialysis based on a novel pseudo one-compartment kinetic model. The steady state mass balance model accounted for net intestinal absorption of phosphorus and phosphorus removal by both dialysis and residual kidney function. Analytical mathematical solutions were derived to describe time-dependent intradialytic and interdialytic serum phosphorus concentrations assuming hemodialysis treatments were performed symmetrically throughout a week. Results from the steady state phosphorus mass balance model are described for thrice weekly hemodialysis treatment prescriptions only. The analysis predicts 1) a minimal impact of dialyzer phosphorus clearance on predialysis serum phosphorus concentration using modern, conventional hemodialysis technology, 2) variability in the postdialysis-to-predialysis phosphorus concentration ratio due to differences in patient-specific phosphorus mobilization, and 3) the importance of treatment time in determining the predialysis serum phosphorus concentration. We conclude that a steady state phosphorus mass balance model can be developed based on a pseudo one-compartment kinetic model and that predictions from this model are consistent with previous clinical observations. The predictions from this mass balance model are theoretical and hypothesis-generating only; additional prospective clinical studies will be required for model confirmation.
Khan, Abdul Arif; Khan, Zakir; Kalam, Mohd Abul; Khan, Azmat Ali
2018-01-01
Microbial pathogenesis involves several aspects of host-pathogen interactions, including microbial proteins targeting host subcellular compartments and subsequent effects on host physiology. Such studies are supported by experimental data, but recent detection of bacterial proteins localization through computational eukaryotic subcellular protein targeting prediction tools has also come into practice. We evaluated inter-kingdom prediction certainty of these tools. The bacterial proteins experimentally known to target host subcellular compartments were predicted with eukaryotic subcellular targeting prediction tools, and prediction certainty was assessed. The results indicate that these tools alone are not sufficient for inter-kingdom protein targeting prediction. The correct prediction of pathogen's protein subcellular targeting depends on several factors, including presence of localization signal, transmembrane domain and molecular weight, etc., in addition to approach for subcellular targeting prediction. The detection of protein targeting in endomembrane system is comparatively difficult, as the proteins in this location are channelized to different compartments. In addition, the high specificity of training data set also creates low inter-kingdom prediction accuracy. Current data can help to suggest strategy for correct prediction of bacterial protein's subcellular localization in host cell. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Intramuscular pressures in antigravity muscles using gravity-independent, pneumatic hardware.
Macias, Brandon R; Minocha, Ranjeet; Cutuk, Adnan A; Hill, James; Shiau, Jonathon; Hargens, Alan R
2008-08-01
Resistive exercise helps prevent muscle atrophy in microgravity, but better exercise equipment is needed. Therefore, the purpose of this study was to determine if a pneumatic, gravity-independent leg-press device (LPD) provides sufficient force to leg musculature. We hypothesized that intramuscular pressure (IMP), a quantitative index of muscle force, is greater in the antigravity superficial posterior and deep posterior compartments than in the non-antigravity anterior compartment during bilateral leg-press exercise. Millar pressure transducers were inserted into the anterior, lateral, superficial posterior, and deep posterior muscle compartments of the left leg of eight healthy subjects (three women, five men). Subjects were supine on the Keiser SX-1, a pneumatic LPD. Then maximal voluntary contraction (MVC) was determined; each subject performed three consecutive voluntary contractions at approximately 18%, 50%, and 100% MVC while continuously measuring IMP. Repeated measures ANOVA were used to determine differences of IMPs between compartments and loads. The magnitudes of IMP (mean +/- SEM) at 18 - 3% (abbreviated approximately 18%), 50%, and 100% MVC in the superficial and deep posterior compartments were significantly greater than that in the anterior compartment during exercise (P < 0.05). Additionally, IMPs in all four compartments significantly rose as resistance increased at approximately 18%, 50%, and 100% MVC (P < 0.05). The LPD provides significantly increased resistance to all four compartments, but with greater loading of the antigravity compartments as compared to the non-antigravity compartment. Since antigravity muscles of the leg are contained primarily in the superficial and deep posterior compartments, the LPD may help prevent muscle atrophy associated with microgravity.
Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa.
Rapicavoli, Jeannette N; Blanco-Ulate, Barbara; Muszyński, Artur; Figueroa-Balderas, Rosa; Morales-Cruz, Abraham; Azadi, Parastoo; Dobruchowska, Justyna M; Castro, Claudia; Cantu, Dario; Roper, M Caroline
2018-01-26
Lipopolysaccharides (LPS) are among the known pathogen-associated molecular patterns (PAMPs). LPSs are potent elicitors of PAMP-triggered immunity (PTI), and bacteria have evolved intricate mechanisms to dampen PTI. Here we demonstrate that Xylella fastidiosa (Xf), a hemibiotrophic plant pathogenic bacterium, possesses a long chain O-antigen that enables it to delay initial plant recognition, thereby allowing it to effectively skirt initial elicitation of innate immunity and establish itself in the host. Lack of the O-antigen modifies plant perception of Xf and enables elicitation of hallmarks of PTI, such as ROS production specifically in the plant xylem tissue compartment, a tissue not traditionally considered a spatial location of PTI. To explore translational applications of our findings, we demonstrate that pre-treatment of plants with Xf LPS primes grapevine defenses to confer tolerance to Xf challenge.
Hu, Yan; Wang, Dazhou; Li, Yu
2016-07-01
The environmental behaviors of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in a Chinese oilfield were investigated using a steady-state multimedia aquivalence (SMA) model. The modeling results showed good agreement with the actual measured values, with average residual errors of 0.69, 0.83, 0.35, 0.16, and 0.54 logarithmic units for air, water, soil, sediment, and vegetation compartments, respectively. Model results indicated that most heavy metals were buried in sediment, and that transfers between adjacent compartments were mainly deposition from the water to the sediment compartment (48.59 %) and from the air to the soil compartment (47.74 %) via atmospheric dry/wet deposition. Sediment and soil were the dominant sinks, accounting for 68.80 and 25.26 % of all the heavy metals in the multimedia system, respectively. The potential ecological risks from the five heavy metals in the sediment and soil compartments were assessed by the potential ecological risk index (PERI). The assessment results demonstrate that the heavy metals presented low levels of ecological risk in the sediment compartment, and that Cd was the most significant contributor to the integrated potential ecological risk in the oilfield. The SMA model provided useful simulations of the transport and fate of heavy metals and is a useful tool for ecological risk assessment and contaminated site management.
Housler, Greggory J; Miki, Toshio; Schmelzer, Eva; Pekor, Christopher; Zhang, Xiaokui; Kang, Lin; Voskinarian-Berse, Vanessa; Abbot, Stewart; Zeilinger, Katrin; Gerlach, Jörg C
2012-02-01
Continuous production of red blood cells (RBCs) in an automated closed culture system using hematopoietic stem cell (HSC) progenitor cell populations is of interest for clinical application because of the high demand for blood transfusions. Previously, we introduced a four-compartment bioreactor that consisted of two bundles of hollow fiber microfiltration membranes for transport of culture medium (forming two medium compartments), interwoven with one bundle of hollow fiber membranes for transport of oxygen (O(2)), carbon dioxide (CO(2)), and other gases (forming one gas compartment). Small-scale prototypes were developed of the three-dimensional (3D) perfusion cell culture systems, which enable convection-based mass transfer and integral oxygenation in the cell compartment. CD34(+) HSC were isolated from human cord blood units using a magnetic separation procedure. Cells were inoculated into 2- or 8-mL scaled-down versions of the previously designed 800-mL cell compartment devices and perfused with erythrocyte proliferation and differentiation medium. First, using the small-scale 2-mL analytical scale bioreactor, with an initial seeding density of 800,000 cells/mL, we demonstrated approximately 100-fold cell expansion and differentiation after 7 days of culture. An 8-mL laboratory-scale bioreactor was then used to show pseudocontinuous production by intermediately harvesting cells. Subsequently, we were able to use a model to demonstrate semicontinuous production with up to 14,288-fold expansion using seeding densities of 800,000 cells/mL. The down-scaled culture technology allows for expansion of CD34(+) cells and stimulating these progenitors towards RBC lineage, expressing approximately 40% CD235(+) and enucleation. The 3D perfusion technology provides an innovative tool for studies on RBC production, which is scalable.
Housler, Greggory J.; Miki, Toshio; Schmelzer, Eva; Pekor, Christopher; Zhang, Xiaokui; Kang, Lin; Voskinarian-Berse, Vanessa; Abbot, Stewart; Zeilinger, Katrin
2012-01-01
Continuous production of red blood cells (RBCs) in an automated closed culture system using hematopoietic stem cell (HSC) progenitor cell populations is of interest for clinical application because of the high demand for blood transfusions. Previously, we introduced a four-compartment bioreactor that consisted of two bundles of hollow fiber microfiltration membranes for transport of culture medium (forming two medium compartments), interwoven with one bundle of hollow fiber membranes for transport of oxygen (O2), carbon dioxide (CO2), and other gases (forming one gas compartment). Small-scale prototypes were developed of the three-dimensional (3D) perfusion cell culture systems, which enable convection-based mass transfer and integral oxygenation in the cell compartment. CD34+ HSC were isolated from human cord blood units using a magnetic separation procedure. Cells were inoculated into 2- or 8-mL scaled-down versions of the previously designed 800-mL cell compartment devices and perfused with erythrocyte proliferation and differentiation medium. First, using the small-scale 2-mL analytical scale bioreactor, with an initial seeding density of 800,000 cells/mL, we demonstrated approximately 100-fold cell expansion and differentiation after 7 days of culture. An 8-mL laboratory-scale bioreactor was then used to show pseudocontinuous production by intermediately harvesting cells. Subsequently, we were able to use a model to demonstrate semicontinuous production with up to 14,288-fold expansion using seeding densities of 800,000 cells/mL. The down-scaled culture technology allows for expansion of CD34+ cells and stimulating these progenitors towards RBC lineage, expressing approximately 40% CD235+ and enucleation. The 3D perfusion technology provides an innovative tool for studies on RBC production, which is scalable. PMID:21933020
Shemesh, Noam; Alvarez, Gonzalo A; Frydman, Lucio
2013-12-01
Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N-1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N-1)x+y≡TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.
Sintering-Resistant Nanoparticles in Wide-Mouthed Compartments for Sustained Catalytic Performance
NASA Astrophysics Data System (ADS)
Liu, Jia; Ji, Qingmin; Imai, Tsubasa; Ariga, Katsuhiko; Abe, Hideki
2017-02-01
Particle sintering is one of the most significant impediments to functional nanoparticles in many valuable applications especially catalysis. Herein, we report that sintering-resistant nanoparticle systems can be realized through a simple materials-design which maximizes the particle-to-particle traveling distance of neighbouring nanoparticles. As a demonstration, Pt nanoparticles were placed apart from each other in wide-mouthed compartments tailored on the surface of self-assembled silica nanosheets. These Pt nanoparticles retained their particle size after calcination at elevated temperatures because the compartment wall elongates the particle-to-particle traveling distance to preclude the possibility of sintering. Moreover, these Pt nanoparticles in wide-mouthed compartments were fully accessible to the environment and exhibited much higher catalytic activity for CO oxidation than the nanoparticles confined in the nanochannels of mesoporous silica. The proposed materials-design strategy is applicable not only to industrial catalysts operating in harsh conditions, but also opens up possibilities in developing advanced nanoparticle-based materials with sustained performance.
Rossmassler, Karen; Dietrich, Carsten; Thompson, Claire; ...
2015-11-26
Termites are important contributors to carbon and nitrogen cycling in tropical ecosystems. Higher termites digest lignocellulose in various stages of humification with the help of an entirely prokaryotic microbiota housed in their compartmented intestinal tract. Previous studies revealed fundamental differences in community structure between compartments, but the functional roles of individual lineages in symbiotic digestion are mostly unknown. Furthermore, we conducted a highly resolved analysis of the gut microbiota in six species of higher termites that feed on plant material at different levels of humification. Combining amplicon sequencing and metagenomics, we assessed similarities in community structure and functional potential betweenmore » the major hindgut compartments (P1, P3, and P4). Cluster analysis of the relative abundances of orthologous gene clusters (COGs) revealed high similarities among woodand litter-feeding termites and strong differences to humivorous species. However, abundance estimates of bacterial phyla based on 16S rRNA genes greatly differed from those based on protein-coding genes. In conclusion, the community structure and functional potential of the microbiota in individual gut compartments are clearly driven by the digestive strategy of the host. The metagenomics libraries obtained in this study provide the basis for future studies that elucidate the fundamental differences in the symbiont-mediated breakdown of lignocellulose and humus by termites of different feeding groups. The high proportion of uncultured bacterial lineages in all samples calls for a reference-independent approach for the correct taxonomic assignment of protein-coding genes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossmassler, Karen; Dietrich, Carsten; Thompson, Claire
Termites are important contributors to carbon and nitrogen cycling in tropical ecosystems. Higher termites digest lignocellulose in various stages of humification with the help of an entirely prokaryotic microbiota housed in their compartmented intestinal tract. Previous studies revealed fundamental differences in community structure between compartments, but the functional roles of individual lineages in symbiotic digestion are mostly unknown. Furthermore, we conducted a highly resolved analysis of the gut microbiota in six species of higher termites that feed on plant material at different levels of humification. Combining amplicon sequencing and metagenomics, we assessed similarities in community structure and functional potential betweenmore » the major hindgut compartments (P1, P3, and P4). Cluster analysis of the relative abundances of orthologous gene clusters (COGs) revealed high similarities among woodand litter-feeding termites and strong differences to humivorous species. However, abundance estimates of bacterial phyla based on 16S rRNA genes greatly differed from those based on protein-coding genes. In conclusion, the community structure and functional potential of the microbiota in individual gut compartments are clearly driven by the digestive strategy of the host. The metagenomics libraries obtained in this study provide the basis for future studies that elucidate the fundamental differences in the symbiont-mediated breakdown of lignocellulose and humus by termites of different feeding groups. The high proportion of uncultured bacterial lineages in all samples calls for a reference-independent approach for the correct taxonomic assignment of protein-coding genes.« less
Jalani, Ghulam; Jung, Chan Woo; Lee, Jae Sang; Lim, Dong Woo
2014-01-01
Stimuli-responsive, polymer-based nanostructures with anisotropic compartments are of great interest as advanced materials because they are capable of switching their shape via environmentally-triggered conformational changes, while maintaining discrete compartments. In this study, a new class of stimuli-responsive, anisotropic nanofiber scaffolds with physically and chemically distinct compartments was prepared via electrohydrodynamic cojetting with side-by-side needle geometry. These nanofibers have a thermally responsive, physically-crosslinked compartment, and a chemically-crosslinked compartment at the nanoscale. The thermally responsive compartment is composed of physically crosslinkable poly(N-isopropylacrylamide) poly(NIPAM) copolymers, and poly(NIPAM-co-stearyl acrylate) poly(NIPAM-co-SA), while the thermally-unresponsive compartment is composed of polyethylene glycol dimethacrylates. The two distinct compartments were physically crosslinked by the hydrophobic interaction of the stearyl chains of poly(NIPAM-co-SA) or chemically stabilized via ultraviolet irradiation, and were swollen in physiologically relevant buffers due to their hydrophilic polymer networks. Bicompartmental nanofibers with the physically-crosslinked network of the poly(NIPAM-co-SA) compartment showed a thermally-triggered shape change due to thermally-induced aggregation of poly(NIPAM-co-SA). Furthermore, when bovine serum albumin and dexamethasone phosphate were separately loaded into each compartment, the bicompartmental nanofibers with anisotropic actuation exhibited decoupled, controlled release profiles of both drugs in response to a temperature. A new class of multicompartmental nanofibers could be useful for advanced nanofiber scaffolds with two or more drugs released with different kinetics in response to environmental stimuli. PMID:24872702
Joseph, Gabby B.; McCulloch, Charles E.; Nevitt, Michael C.; Heilmeier, Ursula; Nardo, Lorenzo; Lynch, John A.; Liu, Felix; Baum, Thomas; Link, Thomas M.
2015-01-01
Objective The purpose of this study was 1) to establish a gender- and BMI-specific reference database of cartilage T2 values, and 2) to assess the associations between cartilage T2 values and gender, age, and BMI in knees without radiographic osteoarthritis or MRI-based (WORMS 0/1) evidence of cartilage degeneration. Design 481 subjects between the ages of 45-65 years with Kellgren-Lawrence Scores 0/1 in the study knee were selected from the Osteoarthritis Initiative database. Baseline morphologic cartilage 3T MRI readings (WORMS scoring) and T2 measurements (resolution=0.313mmx0.446mm) were performed in the medial femur, lateral femur, medial tibia, lateral tibia, and patella compartments. In order to create a reference database, a logarithmic transformation was applied to the data to obtain the 5th-95th percentile values for T2. Results Significant differences in mean cartilage T2 values were observed between joint compartments. Although females had slightly higher T2 values than males in a majority of compartments, the differences were only significant in the medial femur (p<0.0001). A weak positive association was seen between age and T2 in all compartments, and was most pronounced in the patella (3.27% increase in median T2/10 years, p=0.009). Significant associations between BMI and T2 were observed, and were most pronounced in the lateral tibia (5.33% increase in median T2/5 kg/m2 increase in BMI, p<0.0001), and medial tibia (4.81% increase in median T2 /5 kg/m2 increase in BMI, p<0.0001). Conclusions This study established the first reference database of T2 values in a large sample of morphologically normal cartilage plates in knees without radiographic knee osteoarthritis. While cartilage T2 values were weakly associated with age and gender, they had the highest correlations with BMI. PMID:25680652
Singh, R P; Setlow, B; Setlow, P
1977-06-01
We have determined the amounts of a number of small molecules and enzymes in the mother cell compartment and the developing forespore during sporulation of Bacillus megaterium. Significant amounts of adenosine 5'-triphosphate and reduced nicotinamide adenine dinucleotide were present in the forespore compartment before accumulation of dipicolinic acid (DPA), but these compounds disappeared as DPA was accumulated. 3-Phosphoglyceric acid (3-PGA) accumulated only within the developing forespore, beginning 1 to 2 h before DPA accumulation. Throughout its development the forespore contained constant levels of enzymes of both 3-PGA synthesis (phosphoglycerate kinase and glyceraldehyde-3-phosphate dehydrogenase) and 3-PGA utilization (phosphoglycerate mutase, enolase, and pyruvate kinase) at levels similar to those in the mother cell and the dormant spore. Despite the presence of enzymes for 3-PGA utilization, this compound was stable within isolated forespores. Two acid-soluble proteins (A and B proteins) also accumulated only in the forespore, beginning 1 to 2 h before DPA accumulation. At this time the specific protease involved in degradation of the A and B proteins during germination also appeared, but only in the forespore compartment. Nevertheless, the A and B proteins were stable within isolated forespores. Arginine and glutamic acid accumulated within the forespore in parallel with DPA accumulation. The forespore also contained the enzyme arginase at a level similar to that in the mother cell and a level of glutamic acid decarboxylase 2- to 25-fold higher than that in the mother cell, depending on when in sporulation the forespores were isolated. The specific activities of several other enzymes (protease active on hemoglobin, ornithine transcarbamylase, malate dehydrogenase, aconitase, and isocitrate dehydrogenase) in forespores were about 10% or less of the values in the mother cell. Aminopeptidase was present at similar levels in both compartments; threonine deaminase was not found in either compartment.
Plant subcellular proteomics: Application for exploring optimal cell function in soybean.
Wang, Xin; Komatsu, Setsuko
2016-06-30
Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of subcellular proteomics are presented, and functional proteins regulated among different subcellular are discussed. Subcellular proteomics contributes greatly to uncovering responses and interactions among subcellular compartments during development and under stressful environmental conditions in soybean. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.
2013-12-01
Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results.
Sommer, Felix; Bäckhed, Fredrik
2016-05-01
Interactions between the host and its associated microbiota differ spatially and the local cross talk determines organ function and physiology. Animals and their organs are not uniform but contain several functional and cellular compartments and gradients. In the intestinal tract, different parts of the gut carry out different functions, tissue structure varies accordingly, epithelial cells are differentially distributed and gradients exist for several physicochemical parameters such as nutrients, pH, or oxygen. Consequently, the microbiota composition also differs along the length of the gut, but also between lumen and mucosa of the same intestinal segment, and even along the crypt-villus axis in the epithelium. Thus, host-microbiota interactions are highly site-specific and the local cross talk determines intestinal function and physiology. Here we review recent advances in our understanding of site-specific host-microbiota interactions and discuss their functional relevance for host physiology. © 2016 WILEY Periodicals, Inc.
HAMLET - A protein-lipid complex with broad tumoricidal activity.
Ho, James C S; Nadeem, Aftab; Svanborg, Catharina
2017-01-15
HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a tumoricidal protein-lipid complex with broad effects against cancer cells of different origin. The therapeutic potential is emphasized by a high degree of specificity for tumor tissue. Here we review early studies of HAMLET, in collaboration with the Orrenius laboratory, and some key features of the subsequent development of the HAMLET project. The early studies focused on the apoptotic response that accompanies death in HAMLET treated tumor cells and the role of mitochondria in this process. In subsequent studies, we have identified a sequence of interactions that starts with the membrane integration of HAMLET and the activation of ion fluxes followed by HAMLET internalization, progressive inhibition of MAPK kinases and GTPases and sorting of HAMLET to different cellular compartments, including the nuclei. Therapeutic efficacy of HAMLET has been demonstrated in animal models of glioblastoma, bladder cancer and intestinal cancer. In clinical studies, HAMLET has been shown to target skin papillomas and bladder cancers. The findings identify HAMLET as a new drug candidate with promising selectivity for cancer cells and a strong therapeutic potential. Copyright © 2016 Elsevier Inc. All rights reserved.
Hippo Signaling Regulates Pancreas Development through Inactivation of Yap
Day, Caroline E.; Boerner, Brian P.; Johnson, Randy L.; Sarvetnick, Nora E.
2012-01-01
The mammalian pancreas is required for normal metabolism, with defects in this vital organ commonly observed in cancer and diabetes. Development must therefore be tightly controlled in order to produce a pancreas of correct size, cell type composition, and physiologic function. Through negative regulation of Yap-dependent proliferation, the Hippo kinase cascade is a critical regulator of organ growth. To investigate the role of Hippo signaling in pancreas biology, we deleted Hippo pathway components in the developing mouse pancreas. Unexpectedly, the pancreas from Hippo-deficient offspring was reduced in size, with defects evident throughout the organ. Increases in the dephosphorylated nuclear form of Yap are apparent throughout the exocrine compartment and correlate with increases in levels of cell proliferation. However, the mutant exocrine tissue displays extensive disorganization leading to pancreatitis-like autodigestion. Interestingly, our results suggest that Hippo signaling does not directly regulate the pancreas endocrine compartment as Yap expression is lost following endocrine specification through a Hippo-independent mechanism. Altogether, our results demonstrate that Hippo signaling plays a crucial role in pancreas development and provide novel routes to a better understanding of pathological conditions that affect this organ. PMID:23071096
Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation
Li, Xiling; Goel, Pragya; Chen, Catherine; Angajala, Varun; Chen, Xun
2018-01-01
Postsynaptic compartments can be specifically modulated during various forms of synaptic plasticity, but it is unclear whether this precision is shared at presynaptic terminals. Presynaptic homeostatic plasticity (PHP) stabilizes neurotransmission at the Drosophila neuromuscular junction, where a retrograde enhancement of presynaptic neurotransmitter release compensates for diminished postsynaptic receptor functionality. To test the specificity of PHP induction and expression, we have developed a genetic manipulation to reduce postsynaptic receptor expression at one of the two muscles innervated by a single motor neuron. We find that PHP can be induced and expressed at a subset of synapses, over both acute and chronic time scales, without influencing transmission at adjacent release sites. Further, homeostatic modulations to CaMKII, vesicle pools, and functional release sites are compartmentalized and do not spread to neighboring pre- or post-synaptic structures. Thus, both PHP induction and expression mechanisms are locally transmitted and restricted to specific synaptic compartments. PMID:29620520
[The perichromatin compartment of the cell nucleus].
Bogoliubov, D S
2014-01-01
In this review, the data on the structure and composition of the perichromatin compartment, a special border area between the condensed chromatin and the interchromatin space of the cell nucleus, are discussed in the light of the concept of nuclear functions in complex nuclear architectonics. Morphological features, molecular composition and functions of main extrachromosomal structures of the perichromatin compartment, perichromatin fibrils (PFs) and perichromatin granules (PGs) including nuclear stress-bodies (nSBs) that are derivates of the PGs under heat shock, are presented. A special attention was paid to the features of the molecular compositions of PFs and PGs in different cell types and at different physiological conditions.
2013-10-01
demonstrated that NIRS measurement of hemoglobin oxygen saturation in the tibial compartment provided reliable and sensitive correlation to increases...on 60 healthy participants. Our results indicated that NIRS was able to detect changes in oxygen saturation of muscle with exercise in all 60...Model 41 Introduction 42 Over the last two decades, tissue oxygenation saturation (StO2) measured by near infrared 43 spectroscopy (NIRS) has
STS-35 crewmembers in sleep station compartments on OV-102's middeck
1990-12-11
Though they are not actually asleep, three STS-35 crewmembers demonstrate the bunk-style sleep compartments onboard Columbia's, Orbiter Vehicle (OV) 102's, middeck. From top to bottom are Payload Specialist Samuel T. Durrance, Mission Specialist (MS) Jeffrey A. Hoffman, and MS John M. Lounge. At the left is the shuttle amateur radio experiment (SAREX). The crew escape pole (CES) is visible overhead and the open airlock hatch in the foreground. The sleep station is located against the middeck starboard wall.
Ferrarini, Alessia; Righetti, Laura; Martínez, Ma Paz; Fernández-López, Mariano; Mastrangelo, Annalaura; Horcajada, Juan P; Betbesé, Antoni; Esteban, Andrés; Ordóñez, Jordi; Gea, Joaquín; Cabello, Jesús Ruiz; Pellati, Federica; Lorente, José A; Nin, Nicolás; Rupérez, Francisco J
2017-09-01
Acute respiratory distress syndrome (ARDS) is a serious complication of influenza A (H1N1) virus infection. Its pathogenesis is unknown and biomarkers are lacking. Untargeted metabolomics allows the analysis of the whole metabolome in a biological compartment, identifying patterns associated with specific conditions. We hypothesized that LC-MS could help identify discriminant metabolites able to define the metabolic alterations occurring in patients with influenza A (H1N1) virus infection that developed ARDS. Serum samples from patients diagnosed with 2009 influenza A (H1N1) virus infection with (n = 25) or without (n = 32) ARDS were obtained on the day of hospital admission and analyzed by LC-MS/MS. Metabolite identification was determined by MS/MS analysis and analysis of standards. The specificity of the patterns identified was confirmed in patients without 2009 influenza A(H1N1) virus pneumonia (15 without and 17 with ARDS). Twenty-three candidate biomarkers were found to be significantly different between the two groups, including lysophospholipids and sphingolipids related to inflammation; bile acids, tryptophan metabolites, and thyroxine, related to the metabolism of the gut microflora. Confirmation results demonstrated the specificity of major alterations occurring in ARDS patients with influenza A (H1N1) virus infection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kerstein, Anja; Schüler, Silke; Cabral-Marques, Otávio; Fazio, Juliane; Häsler, Robert; Müller, Antje; Pitann, Silke; Moosig, Frank; Klapa, Sebastian; Haas, Christian; Kabelitz, Dieter; Riemekasten, Gabriela; Wolters, Steffen; Lamprecht, Peter
2017-03-01
Autoimmune diseases are initiated by a combination of predisposing genetic and environmental factors resulting in self-perpetuating chronic inflammation and tissue damage. Autoantibody production and an imbalance of effector and regulatory T-cells are hallmarks of autoimmune dysregulation. While expansion of circulating effector memory T-cells is linked to disease pathogenesis and progression, the causes driving alterations of the peripheral T-cell compartment have remained poorly understood so far. In granulomatosis with polyangiitis (GPA), a prototypical autoimmune disorder of unknown aetiology, we performed for the first time a combined approach using phenotyping, transcriptome and functional analyses of T-cell populations to evaluate triggers of memory T-cell expansion. In more detail, we found increased percentages of circulating CD4+CD28-, CD8+CD28- and CD4+CD161+ single-positive and CD4+CD8+ double-positive T-cells in GPA. Transcriptomic profiling of sorted T-cell populations showed major differences between GPA and healthy controls reflecting antigen- (bacteria, viruses, fungi) and cytokine-driven impact on T-cell populations in GPA. Concomitant cytomegalovirus (CMV) and Epstein-Barr virus (EBV) - positivity was associated with a significant increase in the percentage of CD28- T-cells in GPA-patients compared to sole CMV- or EBV-positivity or CMV- and EBV-negativity. T-cells specific for other viruses (influenza A virus, metapneumovirus, respiratory syncytial virus) and the autoantigen proteinase 3 (PR3) were infrequently detected in GPA. Antigen-specific T-cells were not specifically enriched in any of the T-cell subsets. Altogether, on a genetic and cellular basis, here we show that alterations of the peripheral T-cell compartment are driven by inflammation and various environmental factors including concomitant CMV and EBV infection. Our study provides novel insights into mechanisms driving autoimmune disease and on potential therapeutic targets. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Liu, Xue-Wen; Wang, Ling; Li, Hui; Zhang, Rong; Geng, Zhi-Jun; Wang, De-Ling; Xie, Chuan-Miao
2014-01-01
The parapharyngeal space (PPS) is an inverted pyramid-shaped deep space in the head and neck region, and a variety of tumors, such as salivary gland tumors, neurogenic tumors, nasopharyngeal carcinomas with parapharyngeal invasion, and lymphomas, can be found in this space. The differential diagnosis of PPS tumors remains challenging for radiologists. This study aimed to develop and test a modified method for locating PPS tumors on magnetic resonance (MR) images to improve preoperative differential diagnosis. The new protocol divided the PPS into three compartments: a prestyloid compartment, the carotid sheath, and the areas outside the carotid sheath. PPS tumors were located in these compartments according to the displacements of the tensor veli palatini muscle and the styloid process, with or without blood vessel separations and medial pterygoid invasion. This protocol, as well as a more conventional protocol that is based on displacements of the internal carotid artery (ICA), was used to assess MR images captured from a series of 58 PPS tumors. The consequent distributions of PPS tumor locations determined by both methods were compared. Of all 58 tumors, our new method determined that 57 could be assigned to precise PPS compartments. Nearly all (13/14; 93%) tumors that were located in the pre-styloid compartment were salivary gland tumors. All 15 tumors within the carotid sheath were neurogenic tumors. The vast majority (18/20; 90%) of trans-spatial lesions were malignancies. However, according to the ICA-based method, 28 tumors were located in the pre-styloid compartment, and 24 were located in the post-styloid compartment, leaving 6 tumors that were difficult to locate. Lesions located in both the pre-styloid and the post-styloid compartments comprised various types of tumors. Compared with the conventional ICA-based method, our new method can help radiologists to narrow the differential diagnosis of PPS tumors to specific compartments. PMID:25104280
Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters
NASA Astrophysics Data System (ADS)
Nott, Timothy J.; Craggs, Timothy D.; Baldwin, Andrew J.
2016-06-01
Membraneless organelles are cellular compartments made from drops of liquid protein inside a cell. These compartments assemble via the phase separation of disordered regions of proteins in response to changes in the cellular environment and the cell cycle. Here we demonstrate that the solvent environment within the interior of these cellular bodies behaves more like an organic solvent than like water. One of the most-stable biological structures known, the DNA double helix, can be melted once inside the liquid droplet, and simultaneously structures formed from regulatory single-stranded nucleic acids are stabilized. Moreover, proteins are shown to have a wide range of absorption or exclusion from these bodies, and can act as importers for otherwise-excluded nucleic acids, which suggests the existence of a protein-mediated trafficking system. A common strategy in organic chemistry is to utilize different solvents to influence the behaviour of molecules and reactions. These results reveal that cells have also evolved this capability by exploiting the interiors of membraneless organelles.
Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells.
Asensio, Y; Fernandez-Marchante, C M; Lobato, J; Cañizares, P; Rodrigo, M A
2016-08-01
This manuscript focuses on the evaluation of the use of different types and dosages of fuels in the performance of double-compartment microbial fuel cell equipped with carbon felt electrodes and cationic membrane. Five types of fuels (ethanol, glycerol, acetate, propionate and fructose) have been tested for the same organic load (5,000 mg L(-1) measured as COD) and for one of them (acetate), the range of dosages between 500 and 20,000 mg L(-1) of COD was also studied. Results demonstrate that production of electricity depends strongly on the fuel used. Carboxylic acids are much more efficient than alcohols or fructose for the same organic load and within the range 500-5,000 mg L(-1) of acetate the production of electricity increases linearly with the amount of acetate fed but over these concentrations a change in the population composition may explain a worse performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Imai, Jun; Otani, Mayu; Sakai, Takahiro; Hatta, Shinichi
2017-08-21
Dendritic cells (DCs) are highly capable of processing and presenting internalized exogenous antigens upon major histocompatibility class (MHC) I molecules also known as cross-presentation (CP). CP plays an important role not only in the stimulation of naïve CD8 + T cells and memory CD8 + T cells for infectious and tumor immunity but also in the inactivation of self-acting naïve T cells by T cell anergy or T cell deletion. Although the critical molecular mechanism of CP remains to be elucidated, accumulating evidence indicates that exogenous antigens are processed through endoplasmic reticulum-associated degradation (ERAD) after export from non-classical endocytic compartments. Until recently, characterizations of these endocytic compartments were limited because there were no specific molecular markers other than exogenous antigens. The method described here is a new vesicle isolation protocol, which allows for the purification of these endocytic compartments. Using this purified microsome, we reconstituted the ERAD-like transport, ubiquitination, and processing of the exogenous antigen in vitro, suggesting that the ubiquitin-proteasome system processed the exogenous antigen after export from this cellular compartment. This protocol can be further applied to other cell types to clarify the molecular mechanism of CP.
A Role for EHD4 in the Regulation of Early Endosomal Transport
Sharma, Mahak; Naslavsky, Naava; Caplan, Steve
2009-01-01
All four of the C-terminal Eps15 homology domain (EHD) proteins have been implicated in the regulation of endocytic trafficking. However, the high level of amino acid sequence identity among these proteins has made it challenging to elucidate the precise function of individual EHD proteins. We demonstrate here with specific peptide antibodies that endogenous EHD4 localizes to Rab5-, early embryonic antigen 1 (EEA1)- and Arf6-containing endosomes and colocalizes with internalized transferrin in the cell periphery. Knock-down of EHD4 expression by both small interfering RNA and short hairpin RNA leads to the generation of enlarged early endosomal structures that contain Rab5 and EEA1 as well as internalized transferrin or major histocompatibility complex class I molecules. In addition, cargo destined for degradation, such as internalized low-density lipoprotein, also accumulates in the enlarged early endosomes in EHD4-depleted cells. Moreover, we have demonstrated that these enlarged early endosomes are enriched in levels of the activated GTP-bound Rab5. Finally, we show that endogenous EHD4 and EHD1 interact in cells, suggesting coordinated involvement in the regulation of receptor transport along the early endosome to endocytic recycling compartment axis. The results presented herein provide evidence that EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward both the recycling compartment and the late endocytic pathway. PMID:18331452
A human cadaver fascial compartment pressure measurement model.
Messina, Frank C; Cooper, Dylan; Huffman, Gretchen; Bartkus, Edward; Wilbur, Lee
2013-10-01
Fresh human cadavers provide an effective model for procedural training. Currently, there are no realistic models to teach fascial compartment pressure measurement. We created a human cadaver fascial compartment pressure measurement model and studied its feasibility with a pre-post design. Three faculty members, following instructions from a common procedure textbook, used a standard handheld intra-compartment pressure monitor (Stryker(®), Kalamazoo, MI) to measure baseline pressures ("unembalmed") in the anterior, lateral, deep posterior, and superficial posterior compartments of the lower legs of a fresh human cadaver. The right femoral artery was then identified by superficial dissection, cannulated distally towards the lower leg, and connected to a standard embalming machine. After a 5-min infusion, the same three faculty members re-measured pressures ("embalmed") of the same compartments on the cannulated right leg. Unembalmed and embalmed readings for each compartment, and baseline readings for each leg, were compared using a two-sided paired t-test. The mean baseline compartment pressures did not differ between the right and left legs. Using the embalming machine, compartment pressure readings increased significantly over baseline for three of four fascial compartments; all in mm Hg (±SD): anterior from 40 (±9) to 143 (±44) (p = 0.08); lateral from 22 (±2.5) to 160 (±4.3) (p < 0.01); deep posterior from 34 (±7.9) to 161 (±15) (p < 0.01); superficial posterior from 33 (±0) to 140 (±13) (p < 0.01). We created a novel and measurable fascial compartment pressure measurement model in a fresh human cadaver using a standard embalming machine. Set-up is minimal and the model can be incorporated into teaching curricula. Copyright © 2013 Elsevier Inc. All rights reserved.
Li, Xinshu; Feng, Zhihua; Xu, Juntian
2016-01-01
Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs). However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli’s acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC) and elevated (HC) CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA) and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure. PMID:28033367
Gao, Guang; Liu, Yameng; Li, Xinshu; Feng, Zhihua; Xu, Juntian
2016-01-01
Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs). However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli's acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC) and elevated (HC) CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA) and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure.
The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish
Hall, Chris; Flores, Maria Vega; Storm, Thilo; Crosier, Kathy; Crosier, Phil
2007-01-01
Background How different immune cell compartments contribute to a successful immune response is central to fully understanding the mechanisms behind normal processes such as tissue repair and the pathology of inflammatory diseases. However, the ability to observe and characterize such interactions, in real-time, within a living vertebrate has proved elusive. Recently, the zebrafish has been exploited to model aspects of human disease and to study specific immune cell compartments using fluorescent reporter transgenic lines. A number of blood-specific lines have provided a means to exploit the exquisite optical clarity that this vertebrate system offers and provide a level of insight into dynamic inflammatory processes previously unavailable. Results We used regulatory regions of the zebrafish lysozyme C (lysC) gene to drive enhanced green fluorescent protein (EGFP) and DsRED2 expression in a manner that completely recapitulated the endogenous expression profile of lysC. Labeled cells were shown by co-expression studies and FACS analysis to represent a subset of macrophages and likely also granulocytes. Functional assays within transgenic larvae proved that these marked cells possess hallmark traits of myelomonocytic cells, including the ability to migrate to inflammatory sources and phagocytose bacteria. Conclusion These reporter lines will have utility in dissecting the genetic determinants of commitment to the myeloid lineage and in further defining how lysozyme-expressing cells participate during inflammation. PMID:17477879
Dosage Compensation of the Sex Chromosomes
Disteche, Christine M.
2013-01-01
Differentiated sex chromosomes evolved because of suppressed recombination once sex became genetically controlled. In XX/XY and ZZ/ZW systems, the heterogametic sex became partially aneuploid after degeneration of the Y or W. Often, aneuploidy causes abnormal levels of gene expression throughout the entire genome. Dosage compensation mechanisms evolved to restore balanced expression of the genome. These mechanisms include upregulation of the heterogametic chromosome as well as repression in the homogametic sex. Remarkably, strategies for dosage compensation differ between species. In organisms where more is known about molecular mechanisms of dosage compensation, specific protein complexes containing noncoding RNAs are targeted to the X chromosome. In addition, the dosage-regulated chromosome often occupies a specific nuclear compartment. Some genes escape dosage compensation, potentially resulting in sex-specific differences in gene expression. This review focuses on dosage compensation in mammals, with comparisons to fruit flies, nematodes, and birds. PMID:22974302
Pedersen, Kristine B; Lejon, Tore; Jensen, Pernille E; Ottosen, Lisbeth M
2016-05-01
Multivariate methodology was employed for finding optimum remediation conditions for electrodialytic remediation of harbour sediment from an Arctic location in Norway. The parts of the experimental domain in which both sediment- and technology-specific remediation objectives were met were identified. Objectives targeted were removal of the sediment-specific pollutants Cu and Pb, while minimising the effect on the sediment matrix by limiting the removal of naturally occurring metals while maintaining low energy consumption. Two different cell designs for electrochemical remediation were tested and final concentrations of Cu and Pb were below background levels in large parts of the experimental domain when operating at low current densities (<0.12 mA/cm(2)). However, energy consumption, remediation times and the effect on naturally occurring metals were different for the 2- and 3-compartment cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shin splints--a literature review.
Bates, P
1985-09-01
"Shin splints" is not a specific diagnosis. It is merely a descriptive term that describes chronic exertional shin pain in an athlete. The evidence seems clear that shin splint pain has many different causes and this reflects the variation in the anatomy. It would be preferable to describe shin splint pain by location and aetiology, for example, lower medial tibial pain due to periostitis or upper lateral tibial pain due to elevated compartment pressure. This would aid communication between physicians and also direct therapy more accurately.
Molecular Mechanisms of Neuroplasticity: An Expanding Universe.
Gulyaeva, N V
2017-03-01
Biochemical processes in synapses and other neuronal compartments underlie neuroplasticity (functional and structural alterations in the brain enabling adaptation to the environment, learning, memory, as well as rehabilitation after brain injury). This basic molecular level of brain plasticity covers numerous specific proteins (enzymes, receptors, structural proteins, etc.) participating in many coordinated and interacting signal and metabolic processes, their modulation forming a molecular basis for brain plasticity. The articles in this issue are focused on different "hot points" in the research area of biochemical mechanisms supporting neuroplasticity.
Ku, Chia-Chi; Chang, Yi-Hsuan; Chien, Yun; Lee, Tsung-Lin
2016-01-01
Varicella-zoster virus (VZV) is the causative agent of varicella and zoster. The immediate-early protein, IE62 is the predominant VZ virion tegument protein, transactivating the expression of all kinetic classes of VZV genes. IE62 is localized to punctae that form DNA replication compartments in the nuclei of VZV infected cells. The morphological changes and the increase in the size of replication compartments that express IE62 are correlated with production of VZ virions. Mammalian Mediator serves as a coactivator of IE62 and functions by bridging DNA-binding transcription factors¸ RNA polymerase II (RNAP II) and their target DNAs for VZV replication. While VZV is highly sensitive to type I interferons (IFNs), how IFN-α inhibits early events during VZV replication is poorly understood. In this study, we performed in situ analysis to investigate the effects of IFN-α on the dynamic interactions of IE62 with the Mediator MED25 subunit and the RNAP II negative regulator cycle-dependent kinase 8 (CDK8) in VZV infected cells by confocal immunofluorescence. We found that in addition to dose-dependent inhibition of the yields of infectious virus by IFN treatment, IFN-α prominently impeded the development of large IE62(+) nuclear compartments and significantly decreased transcription of VZV genes. Both the expression level and stable recruitment of MED25 to IE62(+) replication compartments were inhibited by IFN-α. While IFN-α treatment upregulated CDK8 expression, redistribution and recruitment of CDK8 to IE62(+) replication compartments in infected cells was not affected by VZV. IFN-α exerts multiple inhibitory activities against virus infections. In this study, we provide visionary demonstration that continuous translocation of MED25 into VZV replication compartments ensures production of virions. IFN-α greatly impedes the formation of a stable complex between IE62 and the Mediator complex thereby suppresses VZV gene transcription. Our demonstration that IFN-α-induced antiviral effect against VZV infection is through inhibiting the reorganization of nuclear components uncovers a novel function of IFN-α. Targeting the interaction between IE62 and MED25 may offer a novel approach to the development of antiviral agents against VZV infection.
Mutch, Sarah A.; Gadd, Jennifer C.; Fujimoto, Bryant S.; Kensel-Hammes, Patricia; Schiro, Perry G.; Bajjalieh, Sandra M.; Chiu, Daniel T.
2013-01-01
This protocol describes a method to determine both the average number and variance of proteins in the few to tens of copies in isolated cellular compartments, such as organelles and protein complexes. Other currently available protein quantification techniques either provide an average number but lack information on the variance or are not suitable for reliably counting proteins present in the few to tens of copies. This protocol entails labeling the cellular compartment with fluorescent primary-secondary antibody complexes, TIRF (total internal reflection fluorescence) microscopy imaging of the cellular compartment, digital image analysis, and deconvolution of the fluorescence intensity data. A minimum of 2.5 days is required to complete the labeling, imaging, and analysis of a set of samples. As an illustrative example, we describe in detail the procedure used to determine the copy number of proteins in synaptic vesicles. The same procedure can be applied to other organelles or signaling complexes. PMID:22094731
NASA Astrophysics Data System (ADS)
Huber, Matthias C.; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R.; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M.
2015-01-01
Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally ‘program’ the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.
Subiaul, Francys; Krajkowski, Edward; Price, Elizabeth E; Etz, Alexander
2015-01-01
Children are exceptional, even 'super,' imitators but comparatively poor independent problem-solvers or innovators. Yet, imitation and innovation are both necessary components of cumulative cultural evolution. Here, we explored the relationship between imitation and innovation by assessing children's ability to generate a solution to a novel problem by imitating two different action sequences demonstrated by two different models, an example of imitation by combination, which we refer to as "summative imitation." Children (N = 181) from 3 to 5 years of age and across three experiments were tested in a baseline condition or in one of six demonstration conditions, varying in the number of models and opening techniques demonstrated. Across experiments, more than 75% of children evidenced summative imitation, opening both compartments of the problem box and retrieving the reward hidden in each. Generally, learning different actions from two different models was as good (and in some cases, better) than learning from 1 model, but the underlying representations appear to be the same in both demonstration conditions. These results show that summative imitation not only facilitates imitation learning but can also result in new solutions to problems, an essential feature of innovation and cumulative culture.
Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC
Gupta, Ravi; Fischer, Kari R.; Choi, Hyejin; El Rayes, Tina; Ryu, Seongho; Nasar, Abu; Spinelli, Cathy F.; Andrews, Weston; Elemento, Olivier; Nolan, Daniel; Stiles, Brendon; Rafii, Shahin; Narula, Navneet; Davuluri, Ramana; Altorki, Nasser K.; Mittal, Vivek
2015-01-01
Lung cancer is the leading cause of cancer related mortality worldwide, with non-small cell lung cancer (NSCLC) as the most prevalent form. Despite advances in treatment options including minimally invasive surgery, CT-guided radiation, novel chemotherapeutic regimens, and targeted therapeutics, prognosis remains dismal. Therefore, further molecular analysis of NSCLC is necessary to identify novel molecular targets that impact prognosis and the design of new-targeted therapies. In recent years, tumor “activated/reprogrammed” stromal cells that promote carcinogenesis have emerged as potential therapeutic targets. However, the contribution of stromal cells to NSCLC is poorly understood. Here, we show increased numbers of bone marrow (BM)-derived hematopoietic cells in the tumor parenchyma of NSCLC patients compared with matched adjacent non-neoplastic lung tissue. By sorting specific cellular fractions from lung cancer patients, we compared the transcriptomes of intratumoral myeloid compartments within the tumor bed with their counterparts within adjacent non-neoplastic tissue from NSCLC patients. The RNA sequencing of specific myeloid compartments (immature monocytic myeloid cells and polymorphonuclear neutrophils) identified differentially regulated genes and mRNA isoforms, which were inconspicuous in whole tumor analysis. Genes encoding secreted factors, including osteopontin (OPN), chemokine (C-C motif) ligand 7 (CCL7) and thrombospondin 1 (TSP1) were identified, which enhanced tumorigenic properties of lung cancer cells indicative of their potential as targets for therapy. This study demonstrates that analysis of homogeneous stromal populations isolated directly from fresh clinical specimens can detect important stromal genes of therapeutic value. PMID:26046767
Perturbations in the Urinary Exosome in Transplant Rejection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigdel, Tara K.; NG, Yolanda; Lee, Sangho
Background: Urine exosomes, vesicles exocytosed into urine by all renal epithelial cell types, occur under normal physiologic and disease states. Exosome contents may mirror disease-specific proteome perturbations in kidney injury. Analysis methodologies for the exosomal fraction of the urinary proteome were developed and for comparing the urinary exosomal fraction versus unfractionated proteome for biomarker discovery. Methods: Urine exosomes were isolated by centrifugal filtration from mid-stream, second morning void, urine samples collected from kidney transplant recipients with and without biopsy matched acute rejection. The proteomes of unfractionated whole urine (Uw) and urine exosomes (Uexo) underwent mass spectrometry-based quantitative proteomics analysis. Themore » proteome data were analyzed for significant differential protein abundances in acute rejection (AR). Results: Identifications of 1018 and 349 proteins, Uw and Uexo fractions, respectively, demonstrated a 279 protein overlap between the two urinary compartments with 25%(70) of overlapping proteins unique to Uexoand represented membrane bound proteins (p=9.31e-7). Of 349 urine exosomal proteins identified in transplant patients 220 were not previously identified in the normal urine exosomal fraction. Uexo proteins (11), functioning in the inflammatory / stress response, were more abundant in patients with biopsy-confirmed acute rejection, 3 of which were exclusive to Uexo. Uexo AR-specific biomarkers (8) were also detected in Uw, but since they were observed at significantly lower abundances in Uw, they were not significant for AR in Uw. Conclusions: A rapid urinary exosome isolation method and quantitative measurement of enriched Uexo proteins was applied. Urine proteins specific to the exosomal fraction were detected either in unfractionated urine (at low abundances) or by Uexo fraction analysis. Perturbed proteins in the exosomal compartment of urine collected from kidney transplant patients were specific to inflammatory responses, and were not observed in the Uexo fraction from normal healthy subjects. Uexo specific protein alterations in renal disease provide potential mechanistic insights and offer a unique panel of sensitive biomarkers for monitoring for acute transplant rejection.« less
Calzolari, Simone; Terriente, Javier; Pujades, Cristina
2014-01-01
Segregating cells into compartments during embryonic development is essential for growth and pattern formation. Physical mechanisms shaping compartment boundaries were recently explored in Drosophila, where actomyosin-based barriers were revealed to be important for keeping cells apart. In vertebrates, interhombomeric boundaries are straight interfaces, which often serve as signaling centers that pattern the surrounding tissue. Here, we demonstrate that in the hindbrain of zebrafish embryos cell sorting sharpens the molecular boundaries and, once borders are straight, actomyosin barriers are key to keeping rhombomeric cells segregated. Actomyosin cytoskeletal components are enriched at interhombomeric boundaries, forming cable-like structures in the apical side of the neuroepithelial cells by the time morphological boundaries are visible. When myosin II function is inhibited, cable structures do not form, leading to rhombomeric cell mixing. Downregulation of EphA4a compromises actomyosin cables and cells with different rhombomeric identity intermingle, and the phenotype is rescued enhancing myosin II activity. Moreover, enrichment of actomyosin structures is obtained when EphA4 is ectopically expressed in even-numbered rhombomeres. These findings suggest that mechanical barriers act downstream of EphA/ephrin signaling to segregate cells from different rhombomeres. PMID:24569501
NASA Astrophysics Data System (ADS)
Li, Shanshan; Zhang, Guoshan; Wang, Jiang; Chen, Yingyuan; Deng, Bin
2018-02-01
This paper proposes that modified two-compartment Pinsky-Rinzel (PR) neural model can be used to develop the simple form of central pattern generator (CPG). The CPG is called as 'half-central oscillator', which constructed by two inhibitory chemical coupled PR neurons with time delay. Some key properties of PR neural model related to CPG are studied and proved to meet the requirements of CPG. Using the simple CPG network, we first study the relationship between rhythmical output and key factors, including ambient noise, sensory feedback signals, morphological character of single neuron as well as the coupling delay time. We demonstrate that, appropriate intensity noise can enhance synchronization between two coupled neurons. Different output rhythm of CPG network can be entrained by sensory feedback signals. We also show that the morphology of single neuron has strong effect on the output rhythm. The phase synchronization indexes decrease with the increase of morphology parameter's difference. Through adjusting coupled delay time, we can get absolutely phase synchronization and antiphase state of CPG. Those results of simulation show the feasibility of PR neural model as a valid CPG as well as the emergent behaviors of the particularly CPG.
Localization of azithromycin in Toxoplasma gondii-infected cells.
Schwab, J C; Cao, Y; Slowik, M R; Joiner, K A
1994-01-01
Agents effective against intracellular pathogens must enter infected cells, crossing vacuolar membranes surrounding the organisms and then penetrating into the microbe and localizing to the microbial target site. We have characterized these parameters for azithromycin entry into Toxoplasma gondii-infected Chinese hamster ovary cells and murine macrophage-like J774 cells. Azithromycin uptake into infected host cells was concentrative and was dependent upon proton gradients. Subcellular fractionation of azithromycin-loaded infected CHO cells demonstrated > 95% intracellular drug in host cell lysosomes and cytosol, with < 5% associated with the parasite. Uptake of azithromycin into the T. gondii vacuole increased if parasites were coated with antibody prior to internalization by murine J774 cells, conditions which result in the formation of acidified phagolysosomes. No redistribution or retention of azithromycin in the parasite was observed when drug efflux from antibiotic-loaded infected CHO cells was monitored. Azithromycin entry into extracellular T. gondii was concentrative, was temperature and pH dependent, and was not different when azithromycin-sensitive and -resistant parasites were compared. These results demonstrate that azithromycin concentrates primarily in acidified compartments in parasites and host cells. The high concentration of azithromycin within these compartments may not be biologically relevant to inhibition of intracellular parasite growth by this agent. PMID:7979295
RABA Members Act in Distinct Steps of Subcellular Trafficking of the FLAGELLIN SENSING2 Receptor[W
Choi, Seung-won; Tamaki, Takayuki; Ebine, Kazuo; Uemura, Tomohiro; Ueda, Takashi; Nakano, Akihiko
2013-01-01
Cell surface proteins play critical roles in the perception of environmental stimuli at the plasma membrane (PM) and ensuing signal transduction. Intracellular localization of such proteins must be strictly regulated, which requires elaborate integration of exocytic and endocytic trafficking pathways. Subcellular localization of Arabidopsis thaliana FLAGELLIN SENSING2 (FLS2), a receptor that recognizes bacterial flagellin, also depends on membrane trafficking. However, our understanding about the mechanisms involved is still limited. In this study, we visualized ligand-induced endocytosis of FLS2 using green fluorescent protein (GFP)-tagged FLS2 expressed in Nicotiana benthamiana. Upon treatment with the flg22 peptide, internalized FLS2-GFP from the PM was transported to a compartment with properties intermediate between the trans-Golgi network (TGN) and the multivesicular endosome. This compartment gradually discarded the TGN characteristics as it continued along the trafficking pathway. We further found that FLS2 endocytosis involves distinct RABA/RAB11 subgroups at different steps. Moreover, we demonstrated that transport of de novo–synthesized FLS2 to the PM also involves a distinct RABA/RAB11 subgroup. Our results demonstrate the complex regulatory system for properly localizing FLS2 and functional differentiation in RABA members in endo- and exocytosis. PMID:23532067
Expression and distribution patterns of spermine, spermidine, and putrescine in rat hair follicle.
Yamamoto, Yutaro; Makino, Takamitsu; Kudo, Hideo; Ihn, Hironobu; Murakami, Yasuko; Matsufuji, Senya; Fujiwara, Kunio; Shin, Masashi
2018-02-01
No expression and distribution patterns of polyamines (PAs), spermine, spermidine, and their precursor putrescine in mammalian hair follicle are available, although polyamines are known to correlate well with hair growth and epidermal tumor genesis. Immunohistochemistry (IHC) using our original two monoclonal antibodies (mAbs) ASPM-29 specific for spermine or spermidine, and APUT-32 specific for putrescine allowed us to detect immunoreactivity for polyamines in hair follicles from normal adult rats. A wide range of immunoreactivity for the total spermine and spermidine was observed in the compartments of hair follicle: The highest degree of immunoreactivity for polyamines was observed in the matrix, in the Huxley's layer, in the deeper Henle's layer, and in the cuticle of the inner root sheath/the hair cuticle, while moderate immunoreactivity existed in the lower-to-mid cortex and the companion layer, followed by lower immunoreactivity in the outer root sheath, including the bulge region and in the deeper medulla, in which the immunoreactivity was also evident in their nuclei. In addition, somewhat surprisingly, with IHC by APUT-32 mAb, we detected significant levels of putrescine in the compartments, in which the immunostaining pattern was the closely similar to that of the total spermine and spermidine. Thus, among these compartments, the cell types of the matrix, the Huxley's layer, the deeper Henle's layer, and the cuticle of the inner root sheath/the hair cuticle seem to have the biologically higher potential in compartments of anagen hair follicle, maybe suggesting that they are involved more critically in the biological event of hair growth. In addition, we noted sharp differences of immunostaining by IHCs between ASPM-29 mAb and APUT-32 mAb in the epidermis cells and fibroblast. ASPM-29 mAb resulted in strong staining in both the cell types, but APUT-32 mAb showed only very light staining in both types. Consequently, the use of the two IHCs could be extremely useful in further studies on hair cycle and epidermal tumor genesis experimentally or clinically.
Wiederkehr, Andreas; Avaro, Sandrine; Prescianotto-Baschong, Cristina; Haguenauer-Tsapis, Rosine; Riezman, Howard
2000-01-01
In Saccharomyces cerevisiae, endocytic material is transported through different membrane-bound compartments before it reaches the vacuole. In a screen for mutants that affect membrane trafficking along the endocytic pathway, we have identified a novel mutant disrupted for the gene YJL204c that we have renamed RCY1 (recycling 1). Deletion of RCY1 leads to an early block in the endocytic pathway before the intersection with the vacuolar protein sorting pathway. Mutation of RCY1 leads to the accumulation of an enlarged compartment that contains the t-SNARE Tlg1p and lies close to areas of cell expansion. In addition, endocytic markers such as Ste2p and the fluorescent dyes, Lucifer yellow and FM4-64, were found in a similar enlarged compartment after their internalization. To determine whether rcy1Δ is defective for recycling, we have developed an assay that measures the recycling of previously internalized FM4-64. This method enables us to follow the recycling pathway in yeast in real time. Using this assay, it could be demonstrated that recycling of membranes is rapid in S. cerevisiae and that a major fraction of internalized FM4-64 is secreted back into the medium within a few minutes. The rcy1Δ mutant is strongly defective in recycling. PMID:10769031
The longest telomeres: a general signature of adult stem cell compartments
Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.
2008-01-01
Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121
Ayllón, Daniel; Grimm, Volker; Attinger, Sabine; Hauhs, Michael; Simmer, Clemens; Vereecken, Harry; Lischeid, Gunnar
2018-05-01
Terrestrial environmental systems are characterised by numerous feedback links between their different compartments. However, scientific research is organized into disciplines that focus on processes within the respective compartments rather than on interdisciplinary links. Major feedback mechanisms between compartments might therefore have been systematically overlooked so far. Without identifying these gaps, initiatives on future comprehensive environmental monitoring schemes and experimental platforms might fail. We performed a comprehensive overview of feedbacks between compartments currently represented in environmental sciences and explores to what degree missing links have already been acknowledged in the literature. We focused on process models as they can be regarded as repositories of scientific knowledge that compile findings of numerous single studies. In total, 118 simulation models from 23 model types were analysed. Missing processes linking different environmental compartments were identified based on a meta-review of 346 published reviews, model intercomparison studies, and model descriptions. Eight disciplines of environmental sciences were considered and 396 linking processes were identified and ascribed to the physical, chemical or biological domain. There were significant differences between model types and scientific disciplines regarding implemented interdisciplinary links. The most wide-spread interdisciplinary links were between physical processes in meteorology, hydrology and soil science that drive or set the boundary conditions for other processes (e.g., ecological processes). In contrast, most chemical and biological processes were restricted to links within the same compartment. Integration of multiple environmental compartments and interdisciplinary knowledge was scarce in most model types. There was a strong bias of suggested future research foci and model extensions towards reinforcing existing interdisciplinary knowledge rather than to open up new interdisciplinary pathways. No clear pattern across disciplines exists with respect to suggested future research efforts. There is no evidence that environmental research would clearly converge towards more integrated approaches or towards an overarching environmental systems theory. Copyright © 2017 Elsevier B.V. All rights reserved.
Cytochemical Localization of Glycolate Dehydrogenase in Mitochondria of Chlamydomonas1
Beezley, Belinda B.; Gruber, Peter J.; Frederick, Sue Ellen
1976-01-01
Mildly disrupted cells of Chlamydomonas reinhardi Dangeard were incubated in a reaction medium containing glycolate, ferricyanide, and cupric ions, and then processed for electron microscopy. As a result of the cytochemical treatment, an electron opaque product was deposited specifically in the outer compartment of mitochondria; other cellular components, including microbodies, did not accumulate stain. Incubation with d-lactate yielded similar results, while treatment with l-lactate produced only a weak reaction. Oxamate, which inhibits glycolate dehydrogenase activity in cell-free extracts, also inhibited the cytochemical reaction. These findings demonstrate in situ that glycolate dehydrogenase is localized in mitochondria, and thus corroborate similar conclusions reached on the basis of enzymic studies of isolated algal organelles. Images PMID:16659670
Wang, M.; Ford, R.M.; Harvey, R.W.
2008-01-01
The inter-relationship of growth and chemotactic response exhibited by two common soil-inhabiting bacteria was investigated to determine its impact on bacterial migration. Filter-chambers were used to simulate aquifer sediments characterized by vertical gradients of organic contaminants in both artificial groundwater flow systems in the laboratory and within the screened intervals of observation wells in a sandy aquifer. A labile model contaminant (acetate) was added to the top compartments of the three-part chambers, whereas bacteria with a demonstrated propensity to grow on and chemotactically respond to acetate were introduced to the lower compartments, The motility and chemotactic response of Pseudomonas putida F1 resulted in 40 to 110% greater abundances in the upper compartments and concomitant 22 to 70% depletions in the lower compartments relative to the nonchemotactic controls over 2 days. Bacteria were in greatest abundance within the sand plug that separated the upper and lower compartments where sharp acetate gradients induced a strong chemotactic response. This observation was consistent with predictions from a mathematical model. In agreement with the laboratory results, the down-well filter-chamber incubations with Pseudomonas stutzeri in the aquifer indicated that 91% fewer bacteria resided in the lower compartment than the control experiment without acetate at 15 h. The combination of chemotaxis and growth greatly accelerated the migration of bacteria toward and subsequent abundance at the higher acetate concentration. ?? 2008 American Chemical Society.
Regulating mechanical tension at compartment boundaries in Drosophila.
Michel, Marcus; Dahmann, Christian
2016-10-01
During animal development, cells with similar function and fate often stay together and sort out from cells with different fates. In Drosophila wing imaginal discs, cells of anterior and posterior fates are separated by a straight compartment boundary. Separation of anterior and posterior cells requires the homeodomain-containing protein Engrailed, which is expressed in posterior cells. Engrailed induces the expression of the short-range signaling molecule Hedgehog in posterior cells and confines Hedgehog signal transduction to anterior cells. Transduction of the Hedgehog signal in anterior cells is required for the separation of anterior and posterior cells. Previous work showed that this separation of cells involves a local increase in mechanical tension at cell junctions along the compartment boundary. However, how mechanical tension was locally increased along the compartment boundary remained unknown. A recent paper now shows that the difference in Hedgehog signal transduction between anterior and posterior cells is necessary and sufficient to increase mechanical tension. The local increase in mechanical tension biases junctional rearrangements during cell intercalations to maintain the straight shape of the compartment boundary. These data highlight how developmental signals can generate patterns of mechanical tension important for tissue organization.
Taylor, P. R.; Baker, R. E.; Simpson, M. J.; Yates, C. A.
2016-01-01
Numerous processes across both the physical and biological sciences are driven by diffusion. Partial differential equations are a popular tool for modelling such phenomena deterministically, but it is often necessary to use stochastic models to accurately capture the behaviour of a system, especially when the number of diffusing particles is low. The stochastic models we consider in this paper are ‘compartment-based’: the domain is discretized into compartments, and particles can jump between these compartments. Volume-excluding effects (crowding) can be incorporated by blocking movement with some probability. Recent work has established the connection between fine- and coarse-grained models incorporating volume exclusion, but only for uniform lattices. In this paper, we consider non-uniform, hybrid lattices that incorporate both fine- and coarse-grained regions, and present two different approaches to describe the interface of the regions. We test both techniques in a range of scenarios to establish their accuracy, benchmarking against fine-grained models, and show that the hybrid models developed in this paper can be significantly faster to simulate than the fine-grained models in certain situations and are at least as fast otherwise. PMID:27383421
Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ucciferri, Nadia; Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa; Sbrana, Tommaso
2014-12-17
Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting differentmore » cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.« less
Marschall, Robert; Schumacher, Julia; Siegmund, Ulrike; Tudzynski, Paul
2016-05-01
Reactive oxygen species (ROS) are important molecules influencing intracellular developmental processes as well as plant pathogen interactions. They are produced at the infection site and affect the intracellular redox homeostasis. However, knowledge of ROS signaling pathways, their connection to other signaling cascades, and tools for the visualization of intra- and extracellular ROS levels and their impact on the redox state are scarce. By using the genetically encoded biosensor roGFP2 we studied for the first time the differences between the redox states of the cytosol, the intermembrane space of mitochondria and the ER in the filamentous fungus Botrytis cinerea. We showed that the ratio of oxidized to reduced glutathione inside of the cellular compartments differ and that the addition of hydrogen peroxide (H2O2), calcium chloride (CaCl2) and the fluorescent dye calcofluor white (CFW) have a direct impact on the cellular redox states. Dependent on the type of stress agents applied, the redox states were affected in the different cellular compartments in a temporally shifted manner. By integrating the biosensor in deletion mutants of bcnoxA, bcnoxB, bctrx1 and bcltf1 we further elucidated the putative roles of the different proteins in distinct stress-response pathways. We showed that the redox states of ΔbcnoxA and ΔbcnoxB display a wild-type pattern upon exposure to H2O2, but appear to be strongly affected by CaCl2 and CFW. Moreover, we demonstrated the involvement of the light-responsive transcription factor BcLtf1 in the maintenance of the redox state in the intermembrane space of the mitochondria. Finally, we report that CaCl2 as well as cell wall stress-inducing agents stimulate ROS production and that ΔbcnoxB produces significantly less ROS than the wild type and ΔbcnoxA. Copyright © 2016 Elsevier Inc. All rights reserved.
Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors
NASA Astrophysics Data System (ADS)
Carlson, Marjorie; Watson, Adrienne L.; Anderson, Leah; Largaespada, David A.; Provenzano, Paolo P.
2017-11-01
Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored. Here, we demonstrate imaging of doxorubicin intensity and lifetimes in archival formalin-fixed paraffin-embedded sections from mouse models of human cancer with multiphoton excitation and multiphoton fluorescence lifetime imaging microscopy (FLIM). Multiphoton excitation imaging reveals robust doxorubicin emission in tissue sections and captures spatial heterogeneity in cells and tissues. However, quantifying the amount of doxorubicin signal in distinct cell compartments, particularly the nucleus, often remains challenging due to strong signals in multiple compartments. The addition of FLIM analysis to display the spatial distribution of excited state lifetimes clearly distinguishes between signals in distinct compartments such as the cell nuclei versus cytoplasm and allows for quantification of doxorubicin signal in each compartment. Furthermore, we observed a shift in lifetime values in the nuclei of transformed cells versus nontransformed cells, suggesting a possible diagnostic role for doxorubicin lifetime imaging to distinguish normal versus transformed cells. Thus, data here demonstrate that multiphoton FLIM is a highly sensitive platform for imaging doxorubicin distribution in normal and diseased archival tissues.
NASA Astrophysics Data System (ADS)
Vittecoq, B.; Reninger, P. A.; Violette, S.; Martelet, G.; Dewandel, B.; Audru, J. C.
2015-10-01
We conducted a multidisciplinary study to analyze the structure and the hydrogeological functioning of an andesitic coastal aquifer and to highlight the importance of faults and associated rock fracturing on groundwater flow. A helicopter-borne geophysical survey with an unprecedented resolution (SkyTEM) was flown over this aquifer in 2013. TDEM resistivity, total magnetic intensity, geological and hydrogeological data from 30 boreholes and two pumping tests were correlated, including one which lasted an exceptional 15 months. We demonstrate that heterogeneous hydrodynamic properties and channelized flows result from tectonically-controlled aquifer compartmentalization along the structural directions of successive tectonic phases. Significant fracturing of the central compartment results in enhanced hydrodynamic properties of the aquifer and an inverse relationship between electrical resistivity and transmissivity. Basalts within the fractured compartment have lower resistivity and higher permeability than basalts outside the compartment. Pumping tests demonstrate that the key factor is the hydraulic conductivity contrast between compartments rather than the hydrodynamic properties of the fault structure. In addition, compartmentalization and associated transmissivity contrasts protect the aquifer from seawater intrusion. Finally, unlike basaltic volcanic islands, the age of the volcanic formations is not the key factor that determines hydrodynamic properties of andesitic islands. Basalts that are several million years old (15 Ma here) have favorable hydrodynamic properties that are generated or maintained by earthquakes/faulting that result from active subduction beneath these islands, which is superimposed on their primary permeability.
Large-eddy simulation of human-induced contaminant transport in room compartments.
Choi, J-I; Edwards, J R
2012-02-01
A large-eddy simulation is used to investigate contaminant transport owing to complex human and door motions and vent-system activity in room compartments where a contaminated and clean room are connected by a vestibule. Human and door motions are simulated with an immersed boundary procedure. We demonstrate the details of contaminant transport owing to human- and door-motion-induced wake development during a short-duration event involving the movement of a person (or persons) from a contaminated room, through a vestibule, into a clean room. Parametric studies that capture the effects of human walking pattern, door operation, over-pressure level, and vestibule size are systematically conducted. A faster walking speed results in less mass transport from the contaminated room into the clean room. The net effect of increasing the volume of the vestibule is to reduce the contaminant transport. The results show that swinging-door motion is the dominant transport mechanism and that human-induced wake motion enhances compartment-to-compartment transport. The effect of human activity on contaminant transport may be important in design and operation of clean or isolation rooms in chemical or pharmaceutical industries and intensive care units for airborne infectious disease control in a hospital. The present simulations demonstrate details of contaminant transport in such indoor environments during human motion events and show that simulation-based sensitivity analysis can be utilized for the diagnosis of contaminant infiltration and for better environmental protection. © 2011 John Wiley & Sons A/S.
Intracellular trafficking of silicon particles and logic-embedded vectors
NASA Astrophysics Data System (ADS)
Ferrati, Silvia; Mack, Aaron; Chiappini, Ciro; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro; Serda, Rita E.
2010-08-01
Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments.Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments. Electronic supplementary information (ESI) available: Confocal microscopy image showing internalized negative particles, and movie of the intracellular migration of silicon particles. See DOI: 10.1039/c0nr00227e
Cao, Zhenbo; Subramaniam, Suraj; Bulleid, Neil J.
2014-01-01
Typical 2-Cys peroxiredoxins are required to remove hydrogen peroxide from several different cellular compartments. Their activity can be regulated by hyperoxidation and consequent inactivation of the active-site peroxidatic cysteine. Here we developed a simple assay to quantify the hyperoxidation of peroxiredoxins. Hyperoxidation of peroxiredoxins can only occur efficiently in the presence of a recycling system, usually involving thioredoxin and thioredoxin reductase. We demonstrate that there is a marked difference in the sensitivity of the endoplasmic reticulum-localized peroxiredoxin to hyperoxidation compared with either the cytosolic or mitochondrial enzymes. Each enzyme is equally sensitive to hyperoxidation in the presence of a robust recycling system. Our results demonstrate that peroxiredoxin IV recycling in the endoplasmic reticulum is much less efficient than in the cytosol or mitochondria, leading to the protection of peroxiredoxin IV from hyperoxidation. PMID:24403061
Khan, Zainab A; Thomas, Lee; Emery, Simon J
2014-12-01
To evaluate the anatomical, functional and post-operative outcomes of polypropylene mesh (Prolift™) in the surgical management of pelvic organ prolapse (POP). A single-centre observational study of 106 successive patients, who underwent Prolift™ mesh repair (POP ≥ 2) with a median follow-up of 4 years, was performed. Outcomes of interest measured included patient demographics, intra and post-operative complications, concomitant procedures for POP or urinary incontinence. Using the Baden-Walker classification, grade ≥2 prolapses in the operated compartment were deemed as surgical failure. Validated questionnaires including ICIQ-VS and ICIQ-UI were used to assess functional outcome. Of the 106 patients, 56 had an anterior, 36 a posterior and 14 a total Prolift™. 101 patients were available for follow-up (median 4 years). 82 women underwent a clinical follow-up whilst 19 underwent a telephonic follow-up. Peri-operative bladder injury was noted in 2 (1.9 %) cases. Six (5.6 %) patients developed mesh exposure post-operatively. Re-operation rates for recurrent prolapse in the operated compartment were 2.8 % (n = 3). At follow-up, prolapse recurrence in the operated compartment was noted in another 7.3 % (n = 6) patients. Combining re-operations for POP and recurrences noted during follow-up, the revised failure rate was 10.1 % (n = 9). De novo prolapse in the non-operated compartment occurred in 19.5 % (n = 16) women. Our study demonstrates that Prolift™ vaginal mesh surgery offers anatomical cure rates of 89.9 %. A higher rate of de novo recurrence in the non-operated compartment was noted suggesting that surgical correction in one compartment may exacerbate recurrence in other compartments.
Clifford, Anton G; Gabriel, Stefan M; O’Connell, Mary; Lowe, David; Miller, Larry E; Block, Jon E
2013-01-01
Symptomatic medial compartment knee osteoarthritis (OA) is the leading cause of musculoskeletal pain and disability in adults. Therapies intended to unload the medial knee compartment have yielded unsatisfactory results due to low patient compliance with conservative treatments and high complication rates with surgical options. There is no widely available joint-unloading treatment for medial knee OA that offers clinically important symptom alleviation, low complication risk, and high patient acceptance. The KineSpring® Knee Implant System (Moximed, Inc, Hayward, CA, USA) is a first-of-its-kind, implantable, extra-articular, extra-capsular prosthesis intended to alleviate knee OA-related symptoms by reducing medial knee compartment loading while overcoming the limitations of traditional joint-unloading therapies. Preclinical and clinical studies have demonstrated excellent prosthesis durability, substantial reductions in medial compartment and total joint loads, and clinically important improvements in OA-related pain and function. The purpose of this report is to describe the KineSpring System, including implant characteristics, principles of operation, indications for use, patient selection criteria, surgical technique, postoperative care, preclinical testing, and clinical experience. The KineSpring System has potential to bridge the gap between ineffective conservative treatments and irreversible surgical interventions for medial compartment knee OA. PMID:23717052
FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development.
Brown, Aaron C; Adams, Derek; de Caestecker, Mark; Yang, Xuehui; Friesel, Robert; Oxburgh, Leif
2011-12-01
Recent studies indicate that nephron progenitor cells of the embryonic kidney are arranged in a series of compartments of an increasing state of differentiation. The earliest progenitor compartment, distinguished by expression of CITED1, possesses greater capacity for renewal and differentiation than later compartments. Signaling events governing progression of nephron progenitor cells through stages of increasing differentiation are poorly understood, and their elucidation will provide key insights into normal and dysregulated nephrogenesis, as well as into regenerative processes that follow kidney injury. In this study, we found that the mouse CITED1(+) progenitor compartment is maintained in response to receptor tyrosine kinase (RTK) ligands that activate both FGF and EGF receptors. This RTK signaling function is dependent on RAS and PI3K signaling but not ERK. In vivo, RAS inactivation by expression of sprouty 1 (Spry1) in CITED1(+) nephron progenitors results in loss of characteristic molecular marker expression and in increased death of progenitor cells. Lineage tracing shows that surviving Spry1-expressing progenitor cells are impaired in their subsequent epithelial differentiation, infrequently contributing to epithelial structures. These findings demonstrate that the survival and developmental potential of cells in the earliest embryonic nephron progenitor cell compartment are dependent on FGF/EGF signaling through RAS.
Spatially restricted G protein-coupled receptor activity via divergent endocytic compartments.
Jean-Alphonse, Frederic; Bowersox, Shanna; Chen, Stanford; Beard, Gemma; Puthenveedu, Manojkumar A; Hanyaloglu, Aylin C
2014-02-14
Postendocytic sorting of G protein-coupled receptors (GPCRs) is driven by their interactions between highly diverse receptor sequence motifs with their interacting proteins, such as postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), zonula occludens-1 protein (zo-1) (PDZ) domain proteins. However, whether these diverse interactions provide an underlying functional specificity, in addition to driving sorting, is unknown. Here we identify GPCRs that recycle via distinct PDZ ligand/PDZ protein pairs that exploit their recycling machinery primarily for targeted endosomal localization and signaling specificity. The luteinizing hormone receptor (LHR) and β2-adrenergic receptor (B2AR), two GPCRs sorted to the regulated recycling pathway, underwent divergent trafficking to distinct endosomal compartments. Unlike B2AR, which traffics to early endosomes (EE), LHR internalizes to distinct pre-early endosomes (pre-EEs) for its recycling. Pre-EE localization required interactions of the LHR C-terminal tail with the PDZ protein GAIP-interacting protein C terminus, inhibiting its traffic to EEs. Rerouting the LHR to EEs, or EE-localized GPCRs to pre-EEs, spatially reprograms MAPK signaling. Furthermore, LHR-mediated activation of MAPK signaling requires internalization and is maintained upon loss of the EE compartment. We propose that combinatorial specificity between GPCR sorting sequences and interacting proteins dictates an unprecedented spatiotemporal control in GPCR signal activity.
Programmed release triggered by osmotic gradients in multicomponent vesicles
NASA Astrophysics Data System (ADS)
Dong, Ruo-Yu; Jang, Hyun-Sook; Granick, Steve
Polymersomes, a good candidate for encapsulation and delivery of active ingredients, can be constructed with inter-connected multiple compartments. These so-called multisomes on the one hand enable the spatial separation of various incompatible contents or processes, and on the other hand provide an efficient route for inter-compartment communication via the interface semipermeable membrane. Here we show that by establishing osmotic imbalances between different compartments, interesting synergetic morphology changes of the multisomes can be observed. And by further carefully adjusting the osmotic gradients and the arrangement of compartments, we can realize a cascade rupture of these individual units, which may be a new step towards controlled mixing and timed sequences of chemical reactions.
Aldehyde dehydrogenase 2 in aplastic anemia, Fanconi anemia and hematopoietic stem cells.
Van Wassenhove, Lauren D; Mochly-Rosen, Daria; Weinberg, Kenneth I
2016-09-01
Maintenance of the hematopoietic stem cell (HSC) compartment depends on the ability to metabolize exogenously and endogenously generated toxins, and to repair cellular damage caused by such toxins. Reactive aldehydes have been demonstrated to cause specific genotoxic injury, namely DNA interstrand cross-links. Aldehyde dehydrogenase 2 (ALDH2) is a member of a 19 isoenzyme ALDH family with different substrate specificities, subcellular localization, and patterns of expression. ALDH2 is localized in mitochondria and is essential for the metabolism of acetaldehyde, thereby placing it directly downstream of ethanol metabolism. Deficiency in ALDH2 expression and function are caused by a single nucleotide substitution and resulting amino acid change, called ALDH2*2. This genetic polymorphism affects 35-45% of East Asians (about ~560 million people), and causes the well-known Asian flushing syndrome, which results in disulfiram-like reactions after ethanol consumption. Recently, the ALDH2*2 genotype has been found to be associated with marrow failure, with both an increased risk of sporadic aplastic anemia and more rapid progression of Fanconi anemia. This review discusses the unexpected interrelationship between aldehydes, ALDH2 and hematopoietic stem cell biology, and in particular its relationship to Fanconi anemia. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Nonreceptor Protein-Tyrosine Kinases in Neutrophil Activation
Welch; Mauran; Maridonneau-Parini
1996-06-01
Nonreceptor protein-tyrosine kinases are involved in the regulation of almost all neutrophil responses such as adhesion, chemotaxis, priming, oxidative burst, and degranulation. Here, we show that phagocytosis is also regulated by protein-tyrosine kinase activity. Using various protein-tyrosine kinase inhibitors, we further demonstrate that opsonized zymosan-induced degranulation of specific and azurophil granules is regulated by protein-tyrosine kinase activity, whereas phorbol ester-induced degranulation is not. Several of the nonreceptor protein-tyrosine kinases involving in neutrophil signal transduction are known, including Fgr, Hck, Lyn, Yes, and Syk. Among these, Hck and Fgr are localized on the azurophil and specific granules, suggesting the involvement of these two protein-tyrosine kinases in the regulation of degranulation. In this report, we characterize some of the molecular properties of Hck and Fgr. We discuss the methods generally used for the measurement of protein-tyrosine kinase activities in neutrophils highlighting precautions against proteolysis. In addition, we show that in subcellular fractions of retinoic acid-differentiated neutrophil-like NB4 cells, the 59- and 61-kDa forms of Hck are attached to the membranes of their respective compartments by different mechanisms. Finally, we discuss the functional roles of protein-tyrosine kinases in the regulation of neutrophil activation and speculate on the importance of their subcellular localization.
Enhanced pyruvate production in Candida glabrata by carrier engineering.
Luo, Zhengshan; Liu, Song; Du, Guocheng; Xu, Sha; Zhou, Jingwen; Chen, Jian
2018-02-01
Pyruvate is an important organic acid that plays a key role in the central metabolic pathway. Manipulating transporters is an efficient strategy to enhance production of target organic acids and a means to understand the effects of altered intracellular pyruvate content on global metabolic networks. Efforts have been made to manipulate mitochondrial pyruvate carrier (MPC) to transport pyruvate into different subcellular compartments in Candida glabrata to demonstrate the effects of the subcellular distribution of pyruvate on central carbon metabolism. By increasing the mitochondrial pyruvate content through enhancing the rate of pyruvate transport into mitochondria, a high central carbon metabolism rate, specific growth rate and specific pyruvate production rate were obtained. Comparing the intracellular pyruvate content of engineered and control strains showed that higher intracellular pyruvate levels were not conducive to improving pyruvate productivity or central carbon metabolism. Plasma membrane expression of MPCs significantly increased the expression levels of key rate-limiting glycolytic enzymes. Moreover, pyruvate production of CGΔura3-Sp-MPC1, CGΔura3-Sp-MPC2, and CGΔura3-Sp-MPC1-Sp-MPC2 increased 134.4%, 120.3%, and 30.0%, respectively. In conclusion, lower intracellular pyruvate content enhanced central carbon metabolism and provided useful clues for improving the production of other organic acids in microorganisms. © 2017 Wiley Periodicals, Inc.
Martins, Patrícia; Cleary, Daniel F R; Pires, Ana C C; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C M
2013-01-01
The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.
Martins, Patrícia; Cleary, Daniel F. R.; Pires, Ana C. C.; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C. M.
2013-01-01
The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments. PMID:24278329
Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe
2016-03-10
In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.
Effects of colored light-emitting diode illumination on behavior and performance of laying hens.
Huber-Eicher, B; Suter, A; Spring-Stähli, P
2013-04-01
The best method for lighting poultry houses has been an issue for many decades, generating much interest in any new systems that become available. Poultry farmers are now increasingly using colored LED (light-emitting diodes) to illuminate hen houses (e.g., in Germany, Austria, the Netherlands, and England). In Switzerland all newly installed systems are now equipped with LED, preferably green ones. The LED give monochromatic light from different wavelengths and have several advantages over conventional illuminants, including high energy efficiency, long life, high reliability, and low maintenance costs. The following study examines the effects of illumination with white, red, and green LED on behavior and production parameters of laying hens. Light intensities in the 3 treatments were adjusted to be perceived by hens as equal. Twenty-four groups of 25 laying hens were kept in identical compartments (5.0 × 3.3 m) equipped with a litter area, raised perches, feed and drinking facilities, and nest boxes. Initially, they were kept under white LED for a 2-wk adaptation period. For the next 4 wk, 8 randomly chosen compartments were lit with red LED (640 nm) and 8 others with green LED (520 nm). Behavior was monitored during the last 2 wk of the trial. Additionally weight gain, feed consumption, onset of lay, and laying performance were recorded. The results showed minor effects of green light on explorative behavior, whereas red light reduced aggressiveness compared with white light. The accelerating effect of red light on sexual development of laying hens was confirmed, and the trial demonstrated that this effect was due to the specific wavelength and not the intensity of light. However, an additional effect of light intensity may exist and should not be excluded.
Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres
Ørtenblad, Niels; Andersson, Erik; Plomgaard, Peter; Holmberg, Hans‐Christer; Nielsen, Joachim
2016-01-01
Key points Glycogen is stored in local spatially distinct compartments within skeletal muscle fibres and is the main energy source during supramaximal exercise.Using quantitative electron microscopy, we show that supramaximal exercise induces a differential depletion of glycogen from these compartments and also demonstrate how this varies with fibre types.Repeated exercise alters this compartmentalized glycogen depletion.The results obtained in the present study help us understand the muscle metabolic dynamics of whole body repeated supramaximal exercise, and suggest that the muscle has a compartmentalized local adaptation to repeated exercise, which affects glycogen depletion. Abstract Skeletal muscle glycogen is heterogeneously distributed in three separated compartments (intramyofibrillar, intermyofibrillar and subsarcolemmal). Although only constituting 3–13% of the total glycogen volume, the availability of intramyofibrillar glycogen is of particular importance to muscle function. The present study aimed to investigate the depletion of these three subcellular glycogen compartments during repeated supramaximal exercise in elite athletes. Ten elite cross‐country skiers (aged 25 ± 4 years, V˙O2 max : 65 ± 4 ml kg−1 min−1; mean ± SD) performed four ∼4 min supramaximal sprint time trials (STT 1–4) with 45 min of recovery. The subcellular glycogen volumes in musculus triceps brachii were quantified from electron microscopy images before and after both STT 1 and 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type 1 fibres [−52%; (−89:−15%)] than type 2 fibres [−15% (−52:22%)] (P = 0.02), whereas the depletion of intermyofibrillar glycogen [main effect: −19% (−33:0%), P = 0.006] and subsarcolemmal glycogen [main effect: −35% (−66:0%), P = 0.03] was similar between fibre types. By contrast, only intermyofibrillar glycogen volume was significantly reduced during STT 4, in both fibre types [main effect: −31% (−50:−11%), P = 0.002]. Furthermore, for each of the subcellular compartments, the depletion of glycogen during STT 1 was associated with the volumes of glycogen before STT 1. In conclusion, the depletion of spatially distinct glycogen compartments differs during supramaximal exercise. Furthermore, the depletion changes with repeated exercise and is fibre type‐dependent. PMID:27689320
Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres.
Gejl, Kasper D; Ørtenblad, Niels; Andersson, Erik; Plomgaard, Peter; Holmberg, Hans-Christer; Nielsen, Joachim
2017-05-01
Glycogen is stored in local spatially distinct compartments within skeletal muscle fibres and is the main energy source during supramaximal exercise. Using quantitative electron microscopy, we show that supramaximal exercise induces a differential depletion of glycogen from these compartments and also demonstrate how this varies with fibre types. Repeated exercise alters this compartmentalized glycogen depletion. The results obtained in the present study help us understand the muscle metabolic dynamics of whole body repeated supramaximal exercise, and suggest that the muscle has a compartmentalized local adaptation to repeated exercise, which affects glycogen depletion. Skeletal muscle glycogen is heterogeneously distributed in three separated compartments (intramyofibrillar, intermyofibrillar and subsarcolemmal). Although only constituting 3-13% of the total glycogen volume, the availability of intramyofibrillar glycogen is of particular importance to muscle function. The present study aimed to investigate the depletion of these three subcellular glycogen compartments during repeated supramaximal exercise in elite athletes. Ten elite cross-country skiers (aged 25 ± 4 years, V̇O2 max : 65 ± 4 ml kg -1 min -1 ; mean ± SD) performed four ∼4 min supramaximal sprint time trials (STT 1-4) with 45 min of recovery. The subcellular glycogen volumes in musculus triceps brachii were quantified from electron microscopy images before and after both STT 1 and 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type 1 fibres [-52%; (-89:-15%)] than type 2 fibres [-15% (-52:22%)] (P = 0.02), whereas the depletion of intermyofibrillar glycogen [main effect: -19% (-33:0%), P = 0.006] and subsarcolemmal glycogen [main effect: -35% (-66:0%), P = 0.03] was similar between fibre types. By contrast, only intermyofibrillar glycogen volume was significantly reduced during STT 4, in both fibre types [main effect: -31% (-50:-11%), P = 0.002]. Furthermore, for each of the subcellular compartments, the depletion of glycogen during STT 1 was associated with the volumes of glycogen before STT 1. In conclusion, the depletion of spatially distinct glycogen compartments differs during supramaximal exercise. Furthermore, the depletion changes with repeated exercise and is fibre type-dependent. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Acevedo, Gonzalo R.; Longhi, Silvia A.; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P.; Santos, Radleigh
2017-01-01
The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host’s immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient’s memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells. PMID:28552984
Acevedo, Gonzalo R; Longhi, Silvia A; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P; Santos, Radleigh; Judkowski, Valeria A; Pinilla, Clemencia; Gómez, Karina A
2017-01-01
The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host's immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient's memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells.
Stupák, Ivan; Pavloková, Sylvie; Vysloužil, Jakub; Dohnal, Jiří; Čulen, Martin
2017-11-23
Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus-Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium), we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.
FlpStop, a tool for conditional gene control in Drosophila
Fisher, Yvette E; Yang, Helen H; Isaacman-Beck, Jesse; Xie, Marjorie; Gohl, Daryl M; Clandinin, Thomas R
2017-01-01
Manipulating gene function cell type-specifically is a common experimental goal in Drosophila research and has been central to studies of neural development, circuit computation, and behavior. However, current cell type-specific gene disruption techniques in flies often reduce gene activity incompletely or rely on cell division. Here we describe FlpStop, a generalizable tool for conditional gene disruption and rescue in post-mitotic cells. In proof-of-principle experiments, we manipulated apterous, a regulator of wing development. Next, we produced conditional null alleles of Glutamic acid decarboxylase 1 (Gad1) and Resistant to dieldrin (Rdl), genes vital for GABAergic neurotransmission, as well as cacophony (cac) and paralytic (para), voltage-gated ion channels central to neuronal excitability. To demonstrate the utility of this approach, we manipulated cac in a specific visual interneuron type and discovered differential regulation of calcium signals across subcellular compartments. Thus, FlpStop will facilitate investigations into the interactions between genes, circuits, and computation. DOI: http://dx.doi.org/10.7554/eLife.22279.001 PMID:28211790
2011-10-01
accuracy and reliability of a specific NIRS sensor (Equanox 7600 Oximeter, Nonin , Inc, Plymouth, MN) in diagnosing acute compartment syndrome in injured...conduct at the conclusion of this research project. The current FDA approved indication for the Nonin Equanox Oximeter is for "monitoring" regional...Somanetics, Inc to Covidien, Inc. producing a need to find a new NIRS COTS provider ( Nonin , Inc. the NIRS COTS provider for the METRC Acute
2014-10-01
validate the accuracy and reliability of a specific NIRS sensor (Equanox, Nonin , Inc, Plymouth, MN) in diagnosing acute compartment syndrome in...clinical studies (the Nonin EquanoxTM 7600 oximeter) is for monitoring regional tissue oxygenation. This device has been validated and is currently...between Nonin , Inc and J+M Shuler – Completed in Year 2 4b: Begin reduction to practice process – Completed in Period 4. The process of reducing to
Genetic and Epigenetic Events Generate Multiple Pathways in Colorectal Cancer Progression
Pancione, Massimo; Remo, Andrea; Colantuoni, Vittorio
2012-01-01
Colorectal cancer (CRC) is one of the most common causes of death, despite decades of research. Initially considered as a disease due to genetic mutations, it is now viewed as a complex malignancy because of the involvement of epigenetic abnormalities. A functional equivalence between genetic and epigenetic mechanisms has been suggested in CRC initiation and progression. A hallmark of CRC is its pathogenetic heterogeneity attained through at least three distinct pathways: a traditional (adenoma-carcinoma sequence), an alternative, and more recently the so-called serrated pathway. While the alternative pathway is more heterogeneous and less characterized, the traditional and serrated pathways appear to be more homogeneous and clearly distinct. One unsolved question in colon cancer biology concerns the cells of origin and from which crypt compartment the different pathways originate. Based on molecular and pathological evidences, we propose that the traditional and serrated pathways originate from different crypt compartments explaining their genetic/epigenetic and clinicopathological differences. In this paper, we will discuss the current knowledge of CRC pathogenesis and, specifically, summarize the role of genetic/epigenetic changes in the origin and progression of the multiple CRC pathways. Elucidation of the link between the molecular and clinico-pathological aspects of CRC would improve our understanding of its etiology and impact both prevention and treatment. PMID:22888469
Apparatus for leaching core material from clad nuclear fuel pin segments
Yarbro, Orlan O.
1980-01-01
This invention relates to improved apparatus for counter-currently contacting liquids and solids to dissolve, or leach, a selected component of the solids while minimizing back-mixing of the liquid phase. The apparatus includes an elongated drum which is rotatable about its longitudinal axis in either direction and is partitioned radially into a solids-inlet/liquid-outlet compartment at one end, a solids-outlet/liquid-inlet compartment at its other end, and leaching compartments therebetween. The drum is designed to operate with its acid-inlet end elevated and with the longitudinal axis of the drum at an angle in the range of from about 3.degree. to 14.degree. to the horizontal. Each leaching compartment contains a chute assembly for advancing solids into the next compartment in the direction of solids flow when the drum is rotated in a selected direction. The chute assembly includes a solids-transfer baffle and a chute in the form of a slotted, skewed, conical frustum portion. When the drum is rotated in the direction opposite to that effecting solids transfer, the solids-transfer baffles continually separate and re-mix the solids and liquids in their respective compartments. The partitions defining the leaching compartments are formed with corresponding outer, annular, imperforate regions, each region extending inwardly from the partition rim to an annular array of perforations concentric with the rim. In each leaching compartment, the spacing between the rim and the perforations determines the depth of liquid at the liquid-outlet end of the compartment. The liquid input to the drum assembly flows continuously through the compartments, preventing back-mixing due to density differences, whereas backflow due to waves generated by the solids-transfer baffles is virtually eliminated because of the tilted orientation of the drum assembly.
[Orbital compartment syndrome. The most frequent cause of blindness following facial trauma].
Klenk, Gusztáv; Katona, József; Kenderfi, Gábor; Lestyán, János; Gombos, Katalin; Hirschberg, Andor
2017-09-01
Although orbital compartment syndrome is a rare condition, it is still the most common cause of blindness following simple or complicated facial fractures. Its pathomechanism is similar to the compartment syndrome in the limb. Little extra fluid (blood, oedema, brain, foreign body) in a non-space yielding space results with increasingly higher pressures within a short period of time. Unless urgent surgical intervention is performed the blocked circulation of the central retinal artery will result irreversible ophthalmic nerve damage and blindness. Aim, material and method: A retrospective analysis of ten years, 2007-2017, in our hospital among those patients referred to us with facial-head trauma combined with blindness. 571 patients had fractures involving the orbit. 23 patients become blind from different reasons. The most common cause was orbital compartment syndrome in 17 patients; all had retrobulbar haematomas as well. 6 patients with retrobulbar haematoma did not develop compartment syndrome. Compartment syndrome was found among patient with extensive and minimal fractures such as with large and minimal haematomas. Early lateral canthotomy and decompression saved 7 patients from blindness. We can not predict and do not know why some patients develop orbital compartment syndrome. Compartment syndrome seems independent from fracture mechanism, comminution, dislocation, amount of orbital bleeding. All patients are in potential risk with midface fractures. We have a high suspicion that orbital compartment syndrome has been somehow missed out in the recommended textbooks of our medical universities and in the postgraduate trainings. Thus compartment syndrome is not recognized. Teaching, training and early surgical decompression is the only solution to save the blind eye. Orv Hetil. 2017; 158(36): 1410-1420.
Separating attoliter-sized compartments using fluid pore-spanning lipid bilayers.
Lazzara, Thomas D; Carnarius, Christian; Kocun, Marta; Janshoff, Andreas; Steinem, Claudia
2011-09-27
Anodic aluminum oxide (AAO) is a porous material having aligned cylindrical compartments with 55-60 nm diameter pores, and being several micrometers deep. A protocol was developed to generate pore-spanning fluid lipid bilayers separating the attoliter-sized compartments of the nanoporous material from the bulk solution, while preserving the optical transparency of the AAO. The AAO was selectively functionalized by silane chemistry to spread giant unilamellar vesicles (GUVs) resulting in large continuous membrane patches covering the pores. Formation of fluid single lipid bilayers through GUV rupture could be readily observed by fluorescence microscopy and further supported by conservation of membrane surface area, before and after GUV rupture. Fluorescence recovery after photobleaching gave low immobile fractions (5-15%) and lipid diffusion coefficients similar to those found for bilayers on silica. The entrapment of molecules within the porous underlying cylindrical compartments, as well as the exclusion of macromolecules from the nanopores, demonstrate the barrier function of the pore-spanning membranes and could be investigated in three-dimensions using confocal laser scanning fluorescence imaging. © 2011 American Chemical Society
The penis: a new target and source of estrogen in male reproduction.
Mowa, C N; Jesmin, S; Miyauchi, T
2006-01-01
In the past decade, interest and knowledge in the role of estrogen in male reproduction and fertility has gained significant momentum. More recently, the cellular distribution and activity of estrogen receptors (alpha and beta)(ER) and aromatase (estrogen synthesis) has been reported in the penis, making the penis the latest "frontier" in the study of estrogen in male reproduction. ER and aromatase are broadly and abundantly expressed in various penile compartments and cell types (erectile tissues, urethral epithelia, vascular and neuronal cells), suggesting the complexity and significance of the estrogen-ER system in penile events. Unraveling this complexity is important and will require utilization of the various resources that are now at our disposal including, animal models and human lacking or deficient in ER and aromatase and the use of advanced and sensitive techniques. Some of the obvious areas that require our attention include: 1) a comprehensive mapping of ER-alpha and -beta cellular expression in the different penile compartments and subpopulations of cells, 2) delineation of the specific roles of estrogen in the different subpopulations of cells, 3) establishing the relationship of the estrogen-ER system with the androgen-androgen receptor system, if any, and 4) characterizing the specific penile phenotypes in human and animals lacking or deficient in estrogen and ER. Some data generated thus far, although preliminary, appear to challenge the long held dogma that, overall, androgens have a regulatory monopoly of penile development and function.
Theron, Grant; Peter, Jonny; Calligaro, Greg; Meldau, Richard; Hanrahan, Colleen; Khalfey, Hoosain; Matinyenya, Brian; Muchinga, Tapuwa; Smith, Liezel; Pandie, Shaheen; Lenders, Laura; Patel, Vinod; Mayosi, Bongani M.; Dheda, Keertan
2014-01-01
The determinants of Xpert MTB/RIF sensitivity, a widely used PCR test for the diagnosis of tuberculosis (TB) are poorly understood. We compared culture time-to-positivity (TTP; a surrogate of bacterial load), MTB/RIF TB-specific and internal positive control (IPC)-specific CT values, and clinical characteristics in patients with suspected TB who provided expectorated (n = 438) or induced sputum (n = 128), tracheal aspirates (n = 71), bronchoalveolar lavage fluid (n = 152), pleural fluid (n = 76), cerebral spinal fluid (CSF; n = 152), pericardial fluid (n = 131), or urine (n = 173) specimens. Median bacterial load (TTP in days) was the strongest associate of MTB/RIF positivity in each fluid. TTP correlated with CT values in pulmonary specimens but not extrapulmonary specimens (Spearman's coefficient 0.5043 versus 0.1437; p = 0.030). Inhibition affected a greater proportion of pulmonary specimens than extrapulmonary specimens (IPC CT > 34: 6% (47/731) versus 1% (4/381; p < 0.0001). Pulmonary specimens had greater load than extrapulmonary specimens [TTPs (interquartile range) of 11 (7–16) versus 22 (18–33.5) days; p < 0.0001]. HIV-infection was associated with a decreased likelihood of MTB/RIF-positivity in pulmonary specimens but an increased likelihood in extrapulmonary specimens. Mycobacterial load, which displays significant variation across different body compartments, is the main determinant of MTB/RIF-positivity rather than PCR inhibition. MTB/RIF CT is a poor surrogate of load in extrapulmonary specimens. PMID:25014250
Carreira, Guido Correia; Gemeinhardt, Ole; Gorenflo, Rudolf; Beyersdorff, Dirk; Franiel, Tobias; Plendl, Johanna; Lüdemann, Lutz
2011-06-01
Dynamic contrast-enhanced magnetic resonance imaging commonly uses compartment models to estimate tissue parameters in general and perfusion parameters in particular. Compartment models assume a homogeneous distribution of the injected tracer throughout the compartment volume. Since tracer distribution within a compartment cannot be assessed, the parameters obtained by means of a compartment model might differ from the actual physical values. This work systematically examines the widely used permeability-surface-limited one-compartment model to determine the reliability of the parameters obtained by comparing them with their actual values. A computer simulation was used to model spatial tracer distribution within the interstitial volume using diffusion of contrast agent in tissue. Vascular parameters were varied as well as tissue parameters. The vascular parameters used were capillary radius (4 and 12 μm), capillary permeability (from 0.03 to 3.3 μm/s) and intercapillary distances from 30 to 300 μm. The tissue parameters used were tortuosity (λ), porosity (α) and interstitial volume fraction (v(e)). Our results suggest that the permeability-surface-limited compartment model generally underestimates capillary permeability for capillaries with a radius of 4 μm by factors from ≈0.03 for α=0.04, to ≈ 0.1 for α=0.2, to ≈ 0.5 for α=1.0. An overestimation of actual capillary permeability for capillaries with a radius of 12 μm by a factor of ≥1.3 was found for α=1.0, while α=0.2 yielded an underestimation by a factor of ≈0.3 and α=0.04 by a factor of ≈ 0.03. The interstitial volume fraction, v(e), obtained by the compartment model differed with increasing intercapillary distances and for low vessel permeability, whereas v(e) was found to be estimated approximately accurately for P=0.3 μm/s and P=3.3 μm/s for vessel distances <100 μm. Copyright © 2011 Elsevier Inc. All rights reserved.
Quantitative imaging with fluorescent biosensors.
Okumoto, Sakiko; Jones, Alexander; Frommer, Wolf B
2012-01-01
Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.
Neve, Jonathan; Burger, Kaspar; Li, Wencheng; Hoque, Mainul; Patel, Radhika; Tian, Bin; Gullerova, Monika; Furger, Andre
2016-01-01
Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3′ UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type–specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3′ UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice. PMID:26546131
The Tribolium castaneum Ortholog of Sex combs reduced Controls Dorsal Ridge Development
Shippy, Teresa D.; Rogers, Carmelle D.; Beeman, Richard W.; Brown, Susan J.; Denell, Robin E.
2006-01-01
In insects, the boundary between the embryonic head and thorax is formed by the dorsal ridge, a fused structure composed of portions of the maxillary and labial segments. However, the mechanisms that promote development of this unusual structure remain a mystery. In Drosophila, mutations in the Hox genes Sex combs reduced and Deformed have been reported to cause abnormal dorsal ridge formation, but the significance of these abnormalities is not clear. We have identified three mutant allele classes of Cephalothorax, the Tribolium castaneum (red flour beetle) ortholog of Sex combs reduced, each of which has a different effect on dorsal ridge development. By using Engrailed expression to monitor dorsal ridge development in these mutants, we demonstrate that Cephalothorax promotes the fusion and subsequent dorsolateral extension of the maxillary and labial Engrailed stripes (posterior compartments) during dorsal ridge formation. Molecular and genetic analysis of these alleles indicates that the N terminus of Cephalothorax is important for the fusion step, but is dispensable for Engrailed stripe extension. Thus, we find that specific regions of Cephalothorax are required for discrete steps in dorsal ridge formation. PMID:16849608
Light-controlled intracellular transport in Caenorhabditis elegans.
Harterink, Martin; van Bergeijk, Petra; Allier, Calixte; de Haan, Bart; van den Heuvel, Sander; Hoogenraad, Casper C; Kapitein, Lukas C
2016-02-22
To establish and maintain their complex morphology and function, neurons and other polarized cells exploit cytoskeletal motor proteins to distribute cargoes to specific compartments. Recent studies in cultured cells have used inducible motor protein recruitment to explore how different motors contribute to polarized transport and to control the subcellular positioning of organelles. Such approaches also seem promising avenues for studying motor activity and organelle positioning within more complex cellular assemblies, but their applicability to multicellular in vivo systems has so far remained unexplored. Here, we report the development of an optogenetic organelle transport strategy in the in vivo model system Caenorhabditis elegans. We demonstrate that movement and pausing of various organelles can be achieved by recruiting the proper cytoskeletal motor protein with light. In neurons, we find that kinesin and dynein exclusively target the axon and dendrite, respectively, revealing the basic principles for polarized transport. In vivo control of motor attachment and organelle distributions will be widely useful in exploring the mechanisms that govern the dynamic morphogenesis of cells and tissues, within the context of a developing animal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization of the Expression, Localization, and Secretion of PANDER in α–Cells
Carnegie, Jason R.; Robert-Cooperman, Claudia E.; Wu, Jianmei; Young, Robert A.; Wolf, Bryan A.; Burkhardt, Brant R.
2010-01-01
The novel islet-specific protein PANcreatic DERived Factor (PANDER; FAM3B) has beenextensively characterized with respect to the β–cell, and these studies suggest a potential function for PANDER in the regulation of glucose homeostasis. Little is known regarding PANDER in pancreatic α–cells, which are critically involved in maintaining euglycemia. Here we present the first report elucidating the expression and regulation of PANDER within the α–cell. Pander mRNA and protein aredetected in α–cells, with primary localization to a glucagon-negative granular cytosolic compartment. PANDER secretion from α–cells is nutritionally and hormonally regulated by L-arginine and insulin, demonstrating similarities and differences with glucagon. Signaling via the insulin receptor (IR) through the PI3K and Akt/PKB node is required for insulin-stimulated PANDER release. The separate localization of PANDER and glucagon is consistent with their differential regulation, and the effect of insulin suggests a paracrine/endocrine effect on PANDER release. This provides further insight into the potential glucose-regulatory role of PANDER. PMID:20638985
Characterization of the expression, localization, and secretion of PANDER in alpha-cells.
Carnegie, Jason R; Robert-Cooperman, Claudia E; Wu, Jianmei; Young, Robert A; Wolf, Bryan A; Burkhardt, Brant R
2010-08-30
The novel islet-specific protein PANcreatic DERived Factor (PANDER; FAM3B) has been extensively characterized with respect to the beta-cell, and these studies suggest a potential function for PANDER in the regulation of glucose homeostasis. Little is known regarding PANDER in pancreatic -cells, which are critically involved in maintaining euglycemia. Here we present the first report elucidating the expression and regulation of PANDER within the alpha-cell. Pander mRNA and protein are detected in alpha-cells, with primary localization to a glucagon-negative granular cytosolic compartment. PANDER secretion from alpha-cells is nutritionally and hormonally regulated by l-arginine and insulin, demonstrating similarities and differences with glucagon. Signaling via the insulin receptor (IR) through the PI3K and Akt/PKB node is required for insulin-stimulated PANDER release. The separate localization of PANDER and glucagon is consistent with their differential regulation, and the effect of insulin suggests a paracrine/endocrine effect on PANDER release. This provides further insight into the potential glucose-regulatory role of PANDER. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Coupling Between Metabolism and Compartmentalization: Vesicle Growth in the Presence of Dipeptides
NASA Technical Reports Server (NTRS)
Wei, C.; Pohorille, A.
2017-01-01
A fundamental unresolved question in studies on the origin of life is: how different, ubiquitous protocellular functions begun to work in concert setting the stage for Darwinian evolution of nascent life? From this perspective, of particular significance is coupling between growth of protocellular compartments and the encapsulated, primordial metabolism, which is one of the focal topics of the current ISSOL meeting. Specifically, growth and division of cells facilitated by the products of a metabolic reaction would confer an evolutionary advantage on protocells encapsulating this reaction, as their population would increase at the expense of other protocells. Along these lines, Adamala and Szostak have recently demonstrated that a dipeptide captured inside fatty acid vesicles catalyzes the formation of other dipeptides from activated monomers. Some of the newly synthesized dipeptides, in turn, are capable to promote competitive growth of vesicles in the presence of fatty acid micelles. As vesicles become larger, they adapt filamentous shape, which has been shown to promote their division. On the basis of computer simulations, we provide a molecularly detailed explanation of this process and draw conclusions about its generality.
Chitambar, C R; Seligman, P A
1986-01-01
We have previously shown that human leukemic cells proliferate normally in serum-free media containing various transferrin forms, but the addition of transferrin-gallium leads to inhibition of cellular proliferation. Because gallium has therapeutic potential, the effects of transferrin-gallium on leukemic cell proliferation, transferrin receptor expression, and cellular iron utilization were studied. The cytotoxicity of gallium is considerably enhanced by its binding to transferrin and cytotoxicity can be reversed by transferrin-iron but not by other transferrin forms. Exposure to transferrin-gallium leads to a marked increase in cell surface transferrin binding sites, but despite this, cellular 59Fe incorporation is inappropriately low. Although shunting of transferrin-gallium to another cellular compartment has not been ruled out, other studies suggest that transferrin-gallium impairs intracellular release of 59Fe from transferrin by interfering with processes responsible for intracellular acidification. These studies, taken together, demonstrate that inhibition of cellular iron incorporation by transferrin-gallium is a prerequisite for inhibition of cellular proliferation. PMID:3465751
Ng, Julian; Browning, Alyssa; Lechner, Lorenz; Terada, Masako; Howard, Gillian; Jefferis, Gregory S. X. E.
2016-01-01
Large dimension, high-resolution imaging is important for neural circuit visualisation as neurons have both long- and short-range patterns: from axons and dendrites to the numerous synapses at terminal endings. Electron Microscopy (EM) is the favoured approach for synaptic resolution imaging but how such structures can be segmented from high-density images within large volume datasets remains challenging. Fluorescent probes are widely used to localise synapses, identify cell-types and in tracing studies. The equivalent EM approach would benefit visualising such labelled structures from within sub-cellular, cellular, tissue and neuroanatomical contexts. Here we developed genetically-encoded, electron-dense markers using miniSOG. We demonstrate their ability in 1) labelling cellular sub-compartments of genetically-targeted neurons, 2) generating contrast under different EM modalities, and 3) segmenting labelled structures from EM volumes using computer-assisted strategies. We also tested non-destructive X-ray imaging on whole Drosophila brains to evaluate contrast staining. This enabled us to target specific regions for EM volume acquisition. PMID:27958322
Hargens, A R; Akeson, W H; Mubarak, S J; Owen, C A; Evans, K L; Garetto, L P; Gonsalves, M R; Schmidt, D A
1978-06-01
Fluid homeostasis within muscle compartments is maintained by four pressures: capillary blood pressure, capillary blood oncotic pressure, tissue-fluid pressure, and tissue fluid oncotic pressure. As determined in the canine anterolateral compartment, capillary blood pressure is 25 +/- 3 millimeters of mercury; capillary blood oncotic pressure, 26 +/- 3 millimeters of mercury, tissue-pbessure, -2 +/- 2 millimeters of mercury; and tissue-fluid oncotic pressure, 11 +/- 1 millimeters of mercury. The wick technique allows direct measurement of tissue-fluid pressure in skeletal muscle and, with minor modifications, is adapted to collect microsamples of interstitial fluid for determinations of tissue-fluid oncotic pressure. The wick technique detects very slight fluctuations in intracompartmental pressure such as light finger compression, injection of small volumes of fluid, and even pulsation due to adjacent arterial pressure. Adjacent muscle compartments may contain different tissue-fluid pressure due to impermeable osseofascial barriers. Our results obtained in canine muscle compartments pressurized by infusion of autologous plasma suggest that risks of muscle damage are significant at intracompartmental pressures greater than thirty millimeters of mercury.