Demonstration Advanced Avionics System (DAAS), Phase 1
NASA Technical Reports Server (NTRS)
Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.
1981-01-01
Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.
ATLAS, an integrated structural analysis and design system. Volume 5: System demonstration problems
NASA Technical Reports Server (NTRS)
Samuel, R. A. (Editor)
1979-01-01
One of a series of documents describing the ATLAS System for structural analysis and design is presented. A set of problems is described that demonstrate the various analysis and design capabilities of the ATLAS System proper as well as capabilities available by means of interfaces with other computer programs. Input data and results for each demonstration problem are discussed. Results are compared to theoretical solutions or experimental data where possible. Listings of all input data are included.
Feasibility and demonstration of a cloud-based RIID analysis system
NASA Astrophysics Data System (ADS)
Wright, Michael C.; Hertz, Kristin L.; Johnson, William C.; Sword, Eric D.; Younkin, James R.; Sadler, Lorraine E.
2015-06-01
A significant limitation in the operational utility of handheld and backpack radioisotope identifiers (RIIDs) is the inability of their onboard algorithms to accurately and reliably identify the isotopic sources of the measured gamma-ray energy spectrum. A possible solution is to move the spectral analysis computations to an external device, the cloud, where significantly greater capabilities are available. The implementation and demonstration of a prototype cloud-based RIID analysis system have shown this type of system to be feasible with currently available communication and computational technology. A system study has shown that the potential user community could derive significant benefits from an appropriately implemented cloud-based analysis system and has identified the design and operational characteristics required by the users and stakeholders for such a system. A general description of the hardware and software necessary to implement reliable cloud-based analysis, the value of the cloud expressed by the user community, and the aspects of the cloud implemented in the demonstrations are discussed.
Deployable antenna phase A study
NASA Technical Reports Server (NTRS)
Schultz, J.; Bernstein, J.; Fischer, G.; Jacobson, G.; Kadar, I.; Marshall, R.; Pflugel, G.; Valentine, J.
1979-01-01
Applications for large deployable antennas were re-examined, flight demonstration objectives were defined, the flight article (antenna) was preliminarily designed, and the flight program and ground development program, including the support equipment, were defined for a proposed space transportation system flight experiment to demonstrate a large (50 to 200 meter) deployable antenna system. Tasks described include: (1) performance requirements analysis; (2) system design and definition; (3) orbital operations analysis; and (4) programmatic analysis.
DOT National Transportation Integrated Search
2012-08-01
This report presents the test plan for conducting the Decision Support System (DSS) Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor Management (ICM) Initiative Demonstration....
Application of structured analysis to a telerobotic system
NASA Technical Reports Server (NTRS)
Dashman, Eric; Mclin, David; Harrison, F. W.; Soloway, Donald; Young, Steven
1990-01-01
The analysis and evaluation of a multiple arm telerobotic research and demonstration system developed by the NASA Intelligent Systems Research Laboratory (ISRL) is described. Structured analysis techniques were used to develop a detailed requirements model of an existing telerobotic testbed. Performance models generated during this process were used to further evaluate the total system. A commercial CASE tool called Teamwork was used to carry out the structured analysis and development of the functional requirements model. A structured analysis and design process using the ISRL telerobotic system as a model is described. Evaluation of this system focused on the identification of bottlenecks in this implementation. The results demonstrate that the use of structured methods and analysis tools can give useful performance information early in a design cycle. This information can be used to ensure that the proposed system meets its design requirements before it is built.
Collection, processing and dissemination of data for the national solar demonstration program
NASA Technical Reports Server (NTRS)
Day, R. E.; Murphy, L. J.; Smok, J. T.
1978-01-01
A national solar data system developed for the DOE by IBM provides for automatic gathering, conversion, transfer, and analysis of demonstration site data. NASA requirements for this system include providing solar site hardware, engineering, data collection, and analysis. The specific tasks include: (1) solar energy system design/integration; (2) developing a site data acquisition subsystem; (3) developing a central data processing system; (4) operating the test facility at Marshall Space Flight Center; (5) collecting and analyzing data. The systematic analysis and evaluation of the data from the National Solar Data System is reflected in a monthly performance report and a solar energy system performance evaluation report.
NASA Technical Reports Server (NTRS)
Perkinson, J. A.
1974-01-01
The application of associative memory processor equipment to conventional host processors type systems is discussed. Efforts were made to demonstrate how such application relieves the task burden of conventional systems, and enhance system speed and efficiency. Data cover comparative theoretical performance analysis, demonstration of expanded growth capabilities, and demonstrations of actual hardware in simulated environment.
Flight Experiment Demonstration System (FEDS) analysis report
NASA Technical Reports Server (NTRS)
Shank, D. E.
1986-01-01
The purpose of the Flight Experiment Demonstration System (FEDS) was to show, in a simulated spacecraft environment, the feasibility of using a microprocessor to automate the onboard orbit determination functions. The software and hardware configuration used to support FEDS during the demonstration and the results of the demonstration are discussed.
A Passive System Reliability Analysis for a Station Blackout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunett, Acacia; Bucknor, Matthew; Grabaskas, David
2015-05-03
The latest iterations of advanced reactor designs have included increased reliance on passive safety systems to maintain plant integrity during unplanned sequences. While these systems are advantageous in reducing the reliance on human intervention and availability of power, the phenomenological foundations on which these systems are built require a novel approach to a reliability assessment. Passive systems possess the unique ability to fail functionally without failing physically, a result of their explicit dependency on existing boundary conditions that drive their operating mode and capacity. Argonne National Laboratory is performing ongoing analyses that demonstrate various methodologies for the characterization of passivemore » system reliability within a probabilistic framework. Two reliability analysis techniques are utilized in this work. The first approach, the Reliability Method for Passive Systems, provides a mechanistic technique employing deterministic models and conventional static event trees. The second approach, a simulation-based technique, utilizes discrete dynamic event trees to treat time- dependent phenomena during scenario evolution. For this demonstration analysis, both reliability assessment techniques are used to analyze an extended station blackout in a pool-type sodium fast reactor (SFR) coupled with a reactor cavity cooling system (RCCS). This work demonstrates the entire process of a passive system reliability analysis, including identification of important parameters and failure metrics, treatment of uncertainties and analysis of results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jianming; Sun, Y.; Kalsi, Karanjit
This document is the second of a two-part report. Part 1 reviewed several demonstrations of transactive control and compared them in terms of their payoff functions, control decisions, information privacy, and mathematical solution concepts. It was suggested in Part 1 that these four listed components should be adopted for meaningful comparison and design of future transactive systems. Part 2 proposes qualitative and quantitative metrics that will be needed to compare alternative transactive systems. It then uses the analysis and design principles from Part 1 while conducting more in-depth analysis of two transactive demonstrations: the American Electric Power (AEP) gridSMART Demonstration,more » which used a double –auction market mechanism, and a consensus method like that used in the Pacific Northwest Smart Grid Demonstration. Ultimately, metrics must be devised and used to meaningfully compare alternative transactive systems. One significant contribution of this report is an observation that the decision function used for thermostat control in the AEP gridSMART Demonstration has superior performance if its decision function is recast to more accurately reflect the power that will be used under for thermostatic control under alternative market outcomes.« less
Oldenburg, M; Peter-Fröhlich, A; Dlabacs, C; Pawlowski, L; Bonhomme, A
2007-01-01
The experience from the EU demonstration project was used for a cost analysis of different sanitation systems with regard to nutrient recycling. The analysis was made for an existing residential area, for which the different sanitation systems have been applied. The cost calculations were made for a lifetime of 50 years. The multiple sewer systems cause higher investment costs, mainly for the installation of the additional facilities; the investment costs for the treatment are lower. The cost analysis did not prove lower costs for the new sanitation concepts in this special case in comparison with the conventional system. Economic benefits are demonstrated for the operation costs. The result will be reinforced by the consideration of an increase of the energy costs. The revenues for the nutrient related products have only a very small impact on the result.
Tolerance analysis through computational imaging simulations
NASA Astrophysics Data System (ADS)
Birch, Gabriel C.; LaCasse, Charles F.; Stubbs, Jaclynn J.; Dagel, Amber L.; Bradley, Jon
2017-11-01
The modeling and simulation of non-traditional imaging systems require holistic consideration of the end-to-end system. We demonstrate this approach through a tolerance analysis of a random scattering lensless imaging system.
NASA Astrophysics Data System (ADS)
Vainshtein, Igor; Baruch, Shlomi; Regev, Itai; Segal, Victor; Filis, Avishai; Riabzev, Sergey
2018-05-01
The growing demand for EO applications that work around the clock 24hr/7days a week, such as in border surveillance systems, emphasizes the need for a highly reliable cryocooler having increased operational availability and optimized system's Integrated Logistic Support (ILS). In order to meet this need, RICOR developed linear and rotary cryocoolers which achieved successfully this goal. Cryocoolers MTTF was analyzed by theoretical reliability evaluation methods, demonstrated by normal and accelerated life tests at Cryocooler level and finally verified by field data analysis derived from Cryocoolers operating at system level. The following paper reviews theoretical reliability analysis methods together with analyzing reliability test results derived from standard and accelerated life demonstration tests performed at Ricor's advanced reliability laboratory. As a summary for the work process, reliability verification data will be presented as a feedback from fielded systems.
Analysis and Comparison of Some Automatic Vehicle Monitoring Systems
DOT National Transportation Integrated Search
1973-07-01
In 1970 UMTA solicited proposals and selected four companies to develop systems to demonstrate the feasibility of different automatic vehicle monitoring techniques. The demonstrations culminated in experiments in Philadelphia to assess the performanc...
Initial Multidisciplinary Design and Analysis Framework
NASA Technical Reports Server (NTRS)
Ozoroski, L. P.; Geiselhart, K. A.; Padula, S. L.; Li, W.; Olson, E. D.; Campbell, R. L.; Shields, E. W.; Berton, J. J.; Gray, J. S.; Jones, S. M.;
2010-01-01
Within the Supersonics (SUP) Project of the Fundamental Aeronautics Program (FAP), an initial multidisciplinary design & analysis framework has been developed. A set of low- and intermediate-fidelity discipline design and analysis codes were integrated within a multidisciplinary design and analysis framework and demonstrated on two challenging test cases. The first test case demonstrates an initial capability to design for low boom and performance. The second test case demonstrates rapid assessment of a well-characterized design. The current system has been shown to greatly increase the design and analysis speed and capability, and many future areas for development were identified. This work has established a state-of-the-art capability for immediate use by supersonic concept designers and systems analysts at NASA, while also providing a strong base to build upon for future releases as more multifidelity capabilities are developed and integrated.
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.
2016-01-01
Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...
2017-01-24
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.
Haley, Daniel; Bagot, Paul A J; Moody, Michael P
2017-04-01
In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.
NASA Technical Reports Server (NTRS)
1995-01-01
Analyses have been performed at the NASA Lewis Research Center's Power Systems Project Office to support the design and development of the joint U.S./Russian Solar Dynamic Flight Demonstration Project. The optical analysis of the concentrator and solar flux predictions on target receiver surfaces have an important influence on receiver design and control of the Brayton engine.
Failure Mode, Effects, and Criticality Analysis (FMECA)
1993-04-01
Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the Brayton Isotope Power System Ground Demonstration System, Report No. TID 27301...No. TID/SNA - 3015, Aeroject Nuclear Systems Co., Sacramento, California: 1970. 95. Taylor , J.R. A Formalization of Failure Mode Analysis of Control...Roskilde, Denmark: 1973. 96. Taylor , J.R. A Semi-Automatic Method for Oualitative Failure Mode Analysis. Report No. RISO-M-1707. Available from a
DOT National Transportation Integrated Search
2000-01-01
This report demonstrates the benefits and potential pitfalls of deploying and operating an integrated freeway and arterial management system. In particular, it discusses the lessons learned about the Medical Center Corridor (MCC) Project deployed in ...
Demonstration of a Safety Analysis on a Complex System
NASA Technical Reports Server (NTRS)
Leveson, Nancy; Alfaro, Liliana; Alvarado, Christine; Brown, Molly; Hunt, Earl B.; Jaffe, Matt; Joslyn, Susan; Pinnell, Denise; Reese, Jon; Samarziya, Jeffrey;
1997-01-01
For the past 17 years, Professor Leveson and her graduate students have been developing a theoretical foundation for safety in complex systems and building a methodology upon that foundation. The methodology includes special management structures and procedures, system hazard analyses, software hazard analysis, requirements modeling and analysis for completeness and safety, special software design techniques including the design of human-machine interaction, verification, operational feedback, and change analysis. The Safeware methodology is based on system safety techniques that are extended to deal with software and human error. Automation is used to enhance our ability to cope with complex systems. Identification, classification, and evaluation of hazards is done using modeling and analysis. To be effective, the models and analysis tools must consider the hardware, software, and human components in these systems. They also need to include a variety of analysis techniques and orthogonal approaches: There exists no single safety analysis or evaluation technique that can handle all aspects of complex systems. Applying only one or two may make us feel satisfied, but will produce limited results. We report here on a demonstration, performed as part of a contract with NASA Langley Research Center, of the Safeware methodology on the Center-TRACON Automation System (CTAS) portion of the air traffic control (ATC) system and procedures currently employed at the Dallas/Fort Worth (DFW) TRACON (Terminal Radar Approach CONtrol). CTAS is an automated system to assist controllers in handling arrival traffic in the DFW area. Safety is a system property, not a component property, so our safety analysis considers the entire system and not simply the automated components. Because safety analysis of a complex system is an interdisciplinary effort, our team included system engineers, software engineers, human factors experts, and cognitive psychologists.
DISPLA: decision information system for procurement and logistics analysis
NASA Astrophysics Data System (ADS)
Calvo, Alberto B.; Danish, Alexander J.; Lamonakis, Gregory G.
2002-08-01
This paper describes an information-exchange system for Display systems acquisition and logistics support. DISPLA (Decision Information System for Procurement and Logistics Analysis) is an Internet-based system concept for bringing sellers (display system and component suppliers) and buyers (Government Program Offices and System Integrators) together in an electronic exchange to improve the acquisition and logistics analysis support of Flat Panel Displays for the military. A proof-of-concept demonstration is presented in this paper using sample data from vendor Web sites and Government data sources.
Economic Evaluation of Observatory Solar-Energy System
NASA Technical Reports Server (NTRS)
1982-01-01
Long-term economic performance of a commercial solar-energy system was analyzed and used to predict economic performance at four additional sites. Analysis described in report was done to demonstrate viability of design over a broad range of environmental/economic conditions. Topics covered are system description, study approach, economic analysis and system optimization.
Demonstration of Active Combustion Control
NASA Technical Reports Server (NTRS)
Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.
2008-01-01
The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.
Analysis of noise in quorum sensing.
Cox, Chris D; Peterson, Gregory D; Allen, Michael S; Lancaster, Joseph M; McCollum, James M; Austin, Derek; Yan, Ling; Sayler, Gary S; Simpson, Michael L
2003-01-01
Noise may play a pivotal role in gene circuit functionality, as demonstrated for the genetic switch in the bacterial phage lambda. Like the lambda switch, bacterial quorum sensing (QS) systems operate within a population and contain a bistable switching element, making it likely that noise plays a functional role in QS circuit operation. Therefore, a detailed analysis of the noise behavior of QS systems is needed. We have developed a set of tools generally applicable to the analysis of gene circuits, with an emphasis on investigations in the frequency domain (FD), that we apply here to the QS system in the marine bacterium Vibrio fischeri. We demonstrate that a tight coupling between exact stochastic simulation and FD analysis provides insights into the structure/function relationships in the QS circuit. Furthermore, we argue that a noise analysis is incomplete without consideration of the power spectral densities (PSDs) of the important molecular output signals. As an example we consider reversible reactions in the QS circuit, and show through analysis and exact stochastic simulation that these circuits make significant and dynamic modifications to the noise spectra. In particular, we demonstrate a "whitening" effect, which occurs as the noise is processed through these reversible reactions.
Demonstration of a Balloon Borne Arc-Second Pointer Design
NASA Technical Reports Server (NTRS)
DeWeese, Keith D.; Ward, Philip R.
2006-01-01
Many designs for utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments have been proposed throughout the years. A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target. A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range. This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement. The test results of a demonstration prototype of the design with similar ability are also presented. Discussion of a high fidelity controller simulation for design analysis is presented. The flexibility of the flight train is represented through generalized modal analysis. A multiple controller scheme is utilized for coarse and fine pointing. Coarse azimuth pointing is accomplished by an established pointing system, with extensive flight history, residing above the gondola structure. A pitch-yaw gimbal mount is used for fine pointing, providing orthogonal axes when nominally on target. Fine pointing actuation is from direct drive dc motors, eliminating backlash problems. An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static friction are provided. A unique bearing hub design is introduced that eliminates static friction from the system dynamics. A control scheme involving linear accelerometers for enhanced disturbance rejection is also presented. Results from a linear analysis of the total system and the high fidelity simulation are given. Results from a generalized demonstration prototype are presented. Commercial off-the-shelf (COTS) hardware was used to demonstrate the efficacy and performance of the pointer design for a mock instrument. Sub-arcsecond pointing ability from a ground hang test setup is shown from the testing results. This paper establishes that the proposed control strategy can be made robustly stable with significant design margins. Also demonstrated is the efficacy of the proposed system in rejecting disturbances larger than those considered realistic. The system is implemented and demonstrates sub arc second pointing ability using COTS hardware. Finally, we see that sub arc-second pointing stability can be achieved for a large instrument pointing at an inertial target.
Validation of a Scalable Solar Sailcraft
NASA Technical Reports Server (NTRS)
Murphy, D. M.
2006-01-01
The NASA In-Space Propulsion (ISP) program sponsored intensive solar sail technology and systems design, development, and hardware demonstration activities over the past 3 years. Efforts to validate a scalable solar sail system by functional demonstration in relevant environments, together with test-analysis correlation activities on a scalable solar sail system have recently been successfully completed. A review of the program, with descriptions of the design, results of testing, and analytical model validations of component and assembly functional, strength, stiffness, shape, and dynamic behavior are discussed. The scaled performance of the validated system is projected to demonstrate the applicability to flight demonstration and important NASA road-map missions.
Bailey, Sarah F; Scheible, Melissa K; Williams, Christopher; Silva, Deborah S B S; Hoggan, Marina; Eichman, Christopher; Faith, Seth A
2017-11-01
Next-generation Sequencing (NGS) is a rapidly evolving technology with demonstrated benefits for forensic genetic applications, and the strategies to analyze and manage the massive NGS datasets are currently in development. Here, the computing, data storage, connectivity, and security resources of the Cloud were evaluated as a model for forensic laboratory systems that produce NGS data. A complete front-to-end Cloud system was developed to upload, process, and interpret raw NGS data using a web browser dashboard. The system was extensible, demonstrating analysis capabilities of autosomal and Y-STRs from a variety of NGS instrumentation (Illumina MiniSeq and MiSeq, and Oxford Nanopore MinION). NGS data for STRs were concordant with standard reference materials previously characterized with capillary electrophoresis and Sanger sequencing. The computing power of the Cloud was implemented with on-demand auto-scaling to allow multiple file analysis in tandem. The system was designed to store resulting data in a relational database, amenable to downstream sample interpretations and databasing applications following the most recent guidelines in nomenclature for sequenced alleles. Lastly, a multi-layered Cloud security architecture was tested and showed that industry standards for securing data and computing resources were readily applied to the NGS system without disadvantageous effects for bioinformatic analysis, connectivity or data storage/retrieval. The results of this study demonstrate the feasibility of using Cloud-based systems for secured NGS data analysis, storage, databasing, and multi-user distributed connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
1987-04-01
Volume D3 - Part I Structural Analysis of System DTIC ELECTE a MApril 1987 SE 03 O0 Contract Number DAAA21-86-C-0047 FMC CORPORATION Northern Ordnance... system , In turn. facilitated crew reductilon via hydraulic emplacement, .four-way Joystick tube- lay, and _power ralming. . MC completed C;oncep)t...D3 Structural Analysis of System PART I D3/050 Table of Contents D3/100 Structural Analysis of SystemUD3/110 CXL Memo: October 3, 1986 D3/120 o
Optical design and system characterization of an imaging microscope at 121.6 nm
NASA Astrophysics Data System (ADS)
Gao, Weichuan; Finan, Emily; Kim, Geon-Hee; Kim, Youngsik; Milster, Thomas D.
2018-03-01
We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.
Cost-volume-profit and net present value analysis of health information systems.
McLean, R A
1998-08-01
The adoption of any information system should be justified by an economic analysis demonstrating that its projected benefits outweigh its projected costs. Analysis differ, however, on which methods to employ for such a justification. Accountants prefer cost-volume-profit analysis, and economists prefer net present value analysis. The article explains the strengths and weaknesses of each method and shows how they can be used together so that well-informed investments in information systems can be made.
Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system.
Zhang, Ziyi; Bao, Xiaoyi
2008-07-07
A fully distributed optical fiber vibration sensor is demonstrated based on spectrum analysis of Polarization-OTDR system. Without performing any data averaging, vibration disturbances up to 5 kHz is successfully demonstrated in a 1km fiber link with 10m spatial resolution. The FFT is performed at each spatial resolution; the relation of the disturbance at each frequency component versus location allows detection of multiple events simultaneously with different and the same frequency components.
AEP Ohio gridSMART Demonstration Project Real-Time Pricing Demonstration Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widergren, Steven E.; Subbarao, Krishnappa; Fuller, Jason C.
2014-02-01
This report contributes initial findings from an analysis of significant aspects of the gridSMART® Real-Time Pricing (RTP) – Double Auction demonstration project. Over the course of four years, Pacific Northwest National Laboratory (PNNL) worked with American Electric Power (AEP), Ohio and Battelle Memorial Institute to design, build, and operate an innovative system to engage residential consumers and their end-use resources in a participatory approach to electric system operations, an incentive-based approach that has the promise of providing greater efficiency under normal operating conditions and greater flexibility to react under situations of system stress. The material contained in this report supplementsmore » the findings documented by AEP Ohio in the main body of the gridSMART report. It delves into three main areas: impacts on system operations, impacts on households, and observations about the sensitivity of load to price changes.« less
14 CFR Appendix E to Part 417 - Flight Termination System Testing and Analysis
Code of Federal Regulations, 2012 CFR
2012-01-01
... contains requirements for tests and analyses that apply to all flight termination systems and the... termination system components that satisfy the requirements of this appendix. (b) Component tests and analyses. A component must satisfy each test or analysis required by any table of this appendix to demonstrate...
14 CFR Appendix E to Part 417 - Flight Termination System Testing and Analysis
Code of Federal Regulations, 2010 CFR
2010-01-01
... contains requirements for tests and analyses that apply to all flight termination systems and the... termination system components that satisfy the requirements of this appendix. (b) Component tests and analyses. A component must satisfy each test or analysis required by any table of this appendix to demonstrate...
14 CFR Appendix E to Part 417 - Flight Termination System Testing and Analysis
Code of Federal Regulations, 2013 CFR
2013-01-01
... contains requirements for tests and analyses that apply to all flight termination systems and the... termination system components that satisfy the requirements of this appendix. (b) Component tests and analyses. A component must satisfy each test or analysis required by any table of this appendix to demonstrate...
14 CFR Appendix E to Part 417 - Flight Termination System Testing and Analysis
Code of Federal Regulations, 2014 CFR
2014-01-01
... contains requirements for tests and analyses that apply to all flight termination systems and the... termination system components that satisfy the requirements of this appendix. (b) Component tests and analyses. A component must satisfy each test or analysis required by any table of this appendix to demonstrate...
14 CFR Appendix E to Part 417 - Flight Termination System Testing and Analysis
Code of Federal Regulations, 2011 CFR
2011-01-01
... contains requirements for tests and analyses that apply to all flight termination systems and the... termination system components that satisfy the requirements of this appendix. (b) Component tests and analyses. A component must satisfy each test or analysis required by any table of this appendix to demonstrate...
ERIC Educational Resources Information Center
Haggart, S. A.; Furry, W. S.
This Working Note documents the first year's events and outcomes in developing the budgeting system and resource allocation rules to support the Education Voucher Demonstration. The district now has systems for per pupil resource allocation and school/minischool cost center accounting. The basic voucher of $1,041 for grades 7-8, and $788 for…
NASA Technical Reports Server (NTRS)
1980-01-01
The long term economic performance of the solar energy system at its installation site is analyzed and four additional locations selected to demonstrate the viability of the design over a broad range of environmental and economic conditions. The economic analysis of the solar energy systems that were installed at Tempe, Arizona and San Diego, California, is developed for these and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f Chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over a projected twenty year life: life cycle savings; year of positive savings; and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainites in constituent system and economic variables is also investigated. The results demonstrate that the solar energy system is economically viable at all of the sites for which the analysis was conducted.
Chen, Li-Sheng; Yen, Amy Ming-Fang; Duffy, Stephen W; Tabar, Laszlo; Lin, Wen-Chou; Chen, Hsiu-Hsi
2010-10-01
Population-based routine service screening has gained popularity following an era of randomized controlled trials. The evaluation of these service screening programs is subject to study design, data availability, and the precise data analysis for adjusting bias. We developed a computer-aided system that allows the evaluation of population-based service screening to unify these aspects and facilitate and guide the program assessor to efficiently perform an evaluation. This system underpins two experimental designs: the posttest-only non-equivalent design and the one-group pretest-posttest design and demonstrates the type of data required at both the population and individual levels. Three major analyses were developed that included a cumulative mortality analysis, survival analysis with lead-time adjustment, and self-selection bias adjustment. We used SAS AF software to develop a graphic interface system with a pull-down menu style. We demonstrate the application of this system with data obtained from a Swedish population-based service screen and a population-based randomized controlled trial for the screening of breast, colorectal, and prostate cancer, and one service screening program for cervical cancer with Pap smears. The system provided automated descriptive results based on the various sources of available data and cumulative mortality curves corresponding to the study designs. The comparison of cumulative survival between clinically and screen-detected cases without a lead-time adjustment are also demonstrated. The intention-to-treat and noncompliance analysis with self-selection bias adjustments are also shown to assess the effectiveness of the population-based service screening program. Model validation was composed of a comparison between our adjusted self-selection bias estimates and the empirical results on effectiveness reported in the literature. We demonstrate a computer-aided system allowing the evaluation of population-based service screening programs with an adjustment for self-selection and lead-time bias. This is achieved by providing a tutorial guide from the study design to the data analysis, with bias adjustment. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Lawson, Denise L.; James, Mark L.
1989-01-01
The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.
SHARP: A multi-mission AI system for spacecraft telemetry monitoring and diagnosis
NASA Technical Reports Server (NTRS)
Lawson, Denise L.; James, Mark L.
1989-01-01
The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real-time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.
Chandra Interactive Analysis of Observations (CIAO)
NASA Technical Reports Server (NTRS)
Dobrzycki, Adam
2000-01-01
The Chandra (formerly AXAF) telescope, launched on July 23, 1999, provides X-rays data with unprecedented spatial and spectral resolution. As part of the Chandra scientific support, the Chandra X-ray Observatory Center provides a new data analysis system, CIAO ("Chandra Interactive Analysis of Observations"). We will present the main components of the system: "First Look" analysis; SHERPA: a multi-dimensional, multi-mission modeling and fitting application; Chandra Imaging and Plotting System; Detect package-source detection algorithms; and DM package generic data manipulation tools, We will set up a demonstration of the portable version of the system and show examples of Chandra Data Analysis.
Reduction method with system analysis for multiobjective optimization-based design
NASA Technical Reports Server (NTRS)
Azarm, S.; Sobieszczanski-Sobieski, J.
1993-01-01
An approach for reducing the number of variables and constraints, which is combined with System Analysis Equations (SAE), for multiobjective optimization-based design is presented. In order to develop a simplified analysis model, the SAE is computed outside an optimization loop and then approximated for use by an operator. Two examples are presented to demonstrate the approach.
Real-time new satellite product demonstration from microwave sensors and GOES-16 at NRL TC web
NASA Astrophysics Data System (ADS)
Cossuth, J.; Richardson, K.; Surratt, M. L.; Bankert, R.
2017-12-01
The Naval Research Laboratory (NRL) Tropical Cyclone (TC) satellite webpage (https://www.nrlmry.navy.mil/TC.html) provides demonstration analyses of storm imagery to benefit operational TC forecast centers around the world. With the availability of new spectral information provided by GOES-16 satellite data and recent research into improved visualization methods of microwave data, experimental imagery was operationally tested to visualize the structural changes of TCs during the 2017 hurricane season. This presentation provides an introduction into these innovative satellite analysis methods, NRL's next generation satellite analysis system (the Geolocated Information Processing System, GeoIPSTM), and demonstration the added value of additional spectral frequencies when monitoring storms in near-realtime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongbin; Szilard, Ronaldo; Epiney, Aaron
Under the auspices of the DOE LWRS Program RISMC Industry Application ECCS/LOCA, INL has engaged staff from both South Texas Project (STP) and the Texas A&M University (TAMU) to produce a generic pressurized water reactor (PWR) model including reactor core, clad/fuel design and systems thermal hydraulics based on the South Texas Project (STP) nuclear power plant, a 4-Loop Westinghouse PWR. A RISMC toolkit, named LOCA Toolkit for the U.S. (LOTUS), has been developed for use in this generic PWR plant model to assess safety margins for the proposed NRC 10 CFR 50.46c rule, Emergency Core Cooling System (ECCS) performance duringmore » LOCA. This demonstration includes coupled analysis of core design, fuel design, thermalhydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results. Within this context, a multi-physics best estimate plus uncertainty (MPBEPU) methodology framework is proposed.« less
X-45A in flight with F-18 #846 chase aircraft, during first GPS-guided weapon demonstration flight
2002-12-19
The first X-45A Unmanned Combat Air Vehicle (UCAV) technology demonstrator completed its sixth flight on Dec. 19, 2002, raising its landing gear in flight for the first time. The X-45A flew for 40 minutes and reached an airspeed of 195 knots and an altitude of 7,500 feet. Dryden is supporting the DARPA/Boeing team in the design, development, integration, and demonstration of the critical technologies, processes, and system attributes leading to an operational UCAV system. Dryden support of the X-45A demonstrator system includes analysis, component development, simulations, ground and flight tests.
Cornelissen, M; Salmon, P M; Stanton, N A; McClure, R
2015-01-01
While a safe systems approach has long been acknowledged as the underlying philosophy of contemporary road safety strategies, systemic applications are sparse. This article argues that systems-based methods from the discipline of Ergonomics have a key role to play in road transport design and evaluation. To demonstrate, the Cognitive Work Analysis framework was used to evaluate two road designs - a traditional Melbourne intersection and a cut-through design for future intersections based on road safety safe systems principles. The results demonstrate that, although the cut-through intersection appears different in layout from the traditional intersection, system constraints are not markedly different. Furthermore, the analyses demonstrated that redistribution of constraints in the cut-through intersection resulted in emergent behaviour, which was not anticipated and could prove problematic. Further, based on the lack of understanding of emergent behaviour, similar design induced problems are apparent across both intersections. Specifically, incompatibilities between infrastructure, vehicles and different road users were not dealt with by the proposed design changes. The importance of applying systems methods in the design and evaluation of road transport systems is discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Park, Seung-Min; Huh, Yun Suk; Szeto, Kylan; Joe, Daniel J; Kameoka, Jun; Coates, Geoffrey W; Edel, Joshua B; Erickson, David; Craighead, Harold G
2010-11-05
Biomolecular transport in nanofluidic confinement offers various means to investigate the behavior of biomolecules in their native aqueous environments, and to develop tools for diverse single-molecule manipulations. Recently, a number of simple nanofluidic fabrication techniques has been demonstrated that utilize electrospun nanofibers as a backbone structure. These techniques are limited by the arbitrary dimension of the resulting nanochannels due to the random nature of electrospinning. Here, a new method for fabricating nanofluidic systems from size-reduced electrospun nanofibers is reported and demonstrated. As it is demonstrated, this method uses the scanned electrospinning technique for generation of oriented sacrificial nanofibers and exposes these nanofibers to harsh, but isotropic etching/heating environments to reduce their cross-sectional dimension. The creation of various nanofluidic systems as small as 20 nm is demonstrated, and practical examples of single biomolecular handling, such as DNA elongation in nanochannels and fluorescence correlation spectroscopic analysis of biomolecules passing through nanochannels, are provided.
Large space antennas: A systems analysis case history
NASA Technical Reports Server (NTRS)
Keafer, Lloyd S. (Compiler); Lovelace, U. M. (Compiler)
1987-01-01
The value of systems analysis and engineering is aptly demonstrated by the work on Large Space Antennas (LSA) by the NASA Langley Spacecraft Analysis Branch. This work was accomplished over the last half-decade by augmenting traditional system engineering, analysis, and design techniques with computer-aided engineering (CAE) techniques using the Langley-developed Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. This report chronicles the research highlights and special systems analyses that focused the LSA work on deployable truss antennas. It notes developmental trends toward greater use of CAE techniques in their design and analysis. A look to the future envisions the application of improved systems analysis capabilities to advanced space systems such as an advanced space station or to lunar and Martian missions and human habitats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentile, Ann C.; Brandt, James M.; Tucker, Thomas
2011-09-01
This report provides documentation for the completion of the Sandia Level II milestone 'Develop feedback system for intelligent dynamic resource allocation to improve application performance'. This milestone demonstrates the use of a scalable data collection analysis and feedback system that enables insight into how an application is utilizing the hardware resources of a high performance computing (HPC) platform in a lightweight fashion. Further we demonstrate utilizing the same mechanisms used for transporting data for remote analysis and visualization to provide low latency run-time feedback to applications. The ultimate goal of this body of work is performance optimization in the facemore » of the ever increasing size and complexity of HPC systems.« less
[Economic effects of integrated RIS-PACS solution in the university environment].
Kröger, M; Nissen-Meyer, S; Wetekam, V; Reiser, M
1999-04-01
The goal of the current article is to demonstrate how qualitative and monetary effects resulting from an integrated RIS/PACS installation can be evaluated. First of all, the system concept of a RIS/PACS solution for a university hospital is defined and described. Based on this example, a generic method for the evaluation of qualitative and monetary effects as well as associated risks is depicted and demonstrated. To this end, qualitative analyses, investment calculations and risk analysis are employed. The sample analysis of a RIS/PACS solution specially designed for a university hospital demonstrates positive qualitative and monetary effects of the system. Under ideal conditions the payoff time of the investments is reached after 4 years of an assumed 8 years effective life of the system. Furthermore, under conservative assumptions, the risk analysis shows a probability of 0% for realising a negative net present value at the end of the payoff time period. It should be pointed out that the positive result of this sample analysis will not necessarily apply to other clinics or hospitals. However, the same methods may be used for the individual evaluation of the qualitative and monetary effects of a RIS/PACS installation in any clinic.
Binnicker, M. J.; Jespersen, D. J.; Harring, J. A.; Rollins, L. O.; Bryant, S. C.; Beito, E. M.
2008-01-01
The diagnosis of Lyme borreliosis (LB) is commonly made by serologic testing with Western blot (WB) analysis serving as an important supplemental assay. Although specific, the interpretation of WBs for diagnosis of LB (i.e., Lyme WBs) is subjective, with considerable variability in results. In addition, the processing, reading, and interpretation of Lyme WBs are laborious and time-consuming procedures. With the need for rapid processing and more objective interpretation of Lyme WBs, we evaluated the performances of two automated interpretive systems, TrinBlot/BLOTrix (Trinity Biotech, Carlsbad, CA) and BeeBlot/ViraScan (Viramed Biotech AG, Munich, Germany), using 518 serum specimens submitted to our laboratory for Lyme WB analysis. The results of routine testing with visual interpretation were compared to those obtained by BLOTrix analysis of MarBlot immunoglobulin M (IgM) and IgG and by ViraScan analysis of ViraBlot and ViraStripe IgM and IgG assays. BLOTrix analysis demonstrated an agreement of 84.7% for IgM and 87.3% for IgG compared to visual reading and interpretation. ViraScan analysis of the ViraBlot assays demonstrated agreements of 85.7% for IgM and 94.2% for IgG, while ViraScan analysis of the ViraStripe IgM and IgG assays showed agreements of 87.1 and 93.1%, respectively. Testing by the automated systems yielded an average time savings of 64 min/run compared to processing, reading, and interpretation by our current procedure. Our findings demonstrated that automated processing and interpretive systems yield results comparable to those of visual interpretation, while reducing the subjectivity and time required for Lyme WB analysis. PMID:18463211
Binnicker, M J; Jespersen, D J; Harring, J A; Rollins, L O; Bryant, S C; Beito, E M
2008-07-01
The diagnosis of Lyme borreliosis (LB) is commonly made by serologic testing with Western blot (WB) analysis serving as an important supplemental assay. Although specific, the interpretation of WBs for diagnosis of LB (i.e., Lyme WBs) is subjective, with considerable variability in results. In addition, the processing, reading, and interpretation of Lyme WBs are laborious and time-consuming procedures. With the need for rapid processing and more objective interpretation of Lyme WBs, we evaluated the performances of two automated interpretive systems, TrinBlot/BLOTrix (Trinity Biotech, Carlsbad, CA) and BeeBlot/ViraScan (Viramed Biotech AG, Munich, Germany), using 518 serum specimens submitted to our laboratory for Lyme WB analysis. The results of routine testing with visual interpretation were compared to those obtained by BLOTrix analysis of MarBlot immunoglobulin M (IgM) and IgG and by ViraScan analysis of ViraBlot and ViraStripe IgM and IgG assays. BLOTrix analysis demonstrated an agreement of 84.7% for IgM and 87.3% for IgG compared to visual reading and interpretation. ViraScan analysis of the ViraBlot assays demonstrated agreements of 85.7% for IgM and 94.2% for IgG, while ViraScan analysis of the ViraStripe IgM and IgG assays showed agreements of 87.1 and 93.1%, respectively. Testing by the automated systems yielded an average time savings of 64 min/run compared to processing, reading, and interpretation by our current procedure. Our findings demonstrated that automated processing and interpretive systems yield results comparable to those of visual interpretation, while reducing the subjectivity and time required for Lyme WB analysis.
Space crew radiation exposure analysis system based on a commercial stand-alone CAD system
NASA Technical Reports Server (NTRS)
Appleby, Matthew H.; Golightly, Michael J.; Hardy, Alva C.
1992-01-01
Major improvements have recently been completed in the approach to spacecraft shielding analysis. A Computer-Aided Design (CAD)-based system has been developed for determining the shielding provided to any point within or external to the spacecraft. Shielding analysis is performed using a commercially available stand-alone CAD system and a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design projects such as a Mars transfer habitat, pressurized lunar rover, and the redesigned Space Station. Results of these analyses are provided to demonstrate the applicability and versatility of the system.
Ganguli, S
1976-11-01
This paper introduces an integrated, objective and biomechanically sound approach for the analysis and evaluation of the functional status of lower extremity amputee-appliance systems. The method is demonstrated here in its application to the unilateral lower extremity amputee-axillary crutches system and the unilateral below-knee amputee-PTB prosthesis system, both of which are commonly encountered in day-to-day rehabilitation practice.
COBRA ATD minefield detection results for the Joint Countermine ACTD Demonstrations
NASA Astrophysics Data System (ADS)
Stetson, Suzanne P.; Witherspoon, Ned H.; Holloway, John H., Jr.; Suiter, Harold R.; Crosby, Frank J.; Hilton, Russell J.; McCarley, Karen A.
2000-08-01
The Coastal Battlefield Reconnaissance and Analysis)COBRA) system described here was a Marine Corps Advanced Technology Demonstration (ATD) development consisting of an unmanned aerial vehicle (UAV) airborne multispectral video sensor system and ground station which processes the multispectral video data to automatically detect minefields along the flight path. After successful completion of the ATD, the residual COBRA ATD system participated in the Joint Countermine (JCM) Advanced Concept Technology Demonstration (ACTD) Demo I held at Camp Lejeune, North Carolina in conjunction with JTFX97 and Demo II held in Stephenville, Newfoundland in conjunction with MARCOT98. These exercises demonstrated the COBRA ATD system in an operational environment, detecting minefields that included several different mine types in widely varying backgrounds. The COBRA system performed superbly during these demonstrations, detecting mines under water, in the surf zone, on the beach, and inland, and has transitioned to an acquisition program. This paper describes the COBRA operation and performance results for these demonstrations, which represent the first demonstrated capability for remote tactical minefield detection from a UAV. The successful COBRA technologies and techniques demonstrated for tactical UAV minefield detection in the Joint Countermine Advanced Concept Technology Demonstrations have formed the technical foundation for future developments in Marine Corps, Navy, and Army tactical remote airborne mine detection systems.
Advanced building energy management system demonstration for Department of Defense buildings.
O'Neill, Zheng; Bailey, Trevor; Dong, Bing; Shashanka, Madhusudana; Luo, Dong
2013-08-01
This paper presents an advanced building energy management system (aBEMS) that employs advanced methods of whole-building performance monitoring combined with statistical methods of learning and data analysis to enable identification of both gradual and discrete performance erosion and faults. This system assimilated data collected from multiple sources, including blueprints, reduced-order models (ROM) and measurements, and employed advanced statistical learning algorithms to identify patterns of anomalies. The results were presented graphically in a manner understandable to facilities managers. A demonstration of aBEMS was conducted in buildings at Naval Station Great Lakes. The facility building management systems were extended to incorporate the energy diagnostics and analysis algorithms, producing systematic identification of more efficient operation strategies. At Naval Station Great Lakes, greater than 20% savings were demonstrated for building energy consumption by improving facility manager decision support to diagnose energy faults and prioritize alternative, energy-efficient operation strategies. The paper concludes with recommendations for widespread aBEMS success. © 2013 New York Academy of Sciences.
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
Operationalizing System Importance Measures for Assessing System of System Resilience
NASA Astrophysics Data System (ADS)
Chandrahasa, Rakshit
In recent times, there has been a shift in focus from component level to system level analysis and an increasing effort to understand and design resilience into the system. Several efforts have been carried out in creating metrics to analyse resilience. Understanding and implementing system resilience in complex System of Systems will help us in building safer and resilient systems. System Importance Measures (SIMs) was formulated to analyse System of System resilience and help in designing a resilient SoS. Here, we operationalize these System Importance Measures for designing a resilient SoS. We first look at the existing methodology to improve the visual representation of system resilience and its usability. We demonstrate this using our first case study with a Naval warfare SoS. We incorporate probability into the SIM formulation. We expand the existing SIMs to quantify the effects of disruptions and mitigation likelihoods. We built a second case study based on Air transportation networks and demonstrated our expanded metrics in both the case studies. SIM based analysis of SoS resilience provides us with two different analysis of resilience, with and without probability. Having an outlook on how the resilience changes with a probability of disruptions can aid the designer making informed choices on design changes and help in creating a resilient SoS.
NASA Technical Reports Server (NTRS)
Peterson, D. L.; Brass, J. A.; Norman, S. D.; Tosta-Miller, N.
1984-01-01
The role of Landsat multi-spectral scanner (MSS) data for forest policy analysis in the state of California has been investigated. The combined requirements for physical, socio-economic, and institutional data in policy analysis were studied to explain potential data needs. A statewide MSS data and general land cover classification was created from which country-wide data sets could be extracted for detailed analyses. The potential to combine point sample data with MSS data was examined as a means to improve specificity in estimations. MSS data was incorporated into geographic information systems to demonstrate modeling techniques using abiotic, biotic, and socio-economic data layers. The review of system configurations to help the California Department of Forestry (CDF) acquire the capability demonstrated resulted in a sequence of options for implementation.
Shanmugam, Akshaya; Usmani, Mohammad; Mayberry, Addison; Perkins, David L; Holcomb, Daniel E
2018-01-01
Miniaturized imaging devices have pushed the boundaries of point-of-care imaging, but existing mobile-phone-based imaging systems do not exploit the full potential of smart phones. This work demonstrates the use of simple imaging configurations to deliver superior image quality and the ability to handle a wide range of biological samples. Results presented in this work are from analysis of fluorescent beads under fluorescence imaging, as well as helminth eggs and freshwater mussel larvae under white light imaging. To demonstrate versatility of the systems, real time analysis and post-processing results of the sample count and sample size are presented in both still images and videos of flowing samples.
Air Force Reusable Booster System A Quick-look, Design Focused Modeling and Cost Analysis Study
NASA Technical Reports Server (NTRS)
Zapata, Edgar
2011-01-01
Presents work supporting the Air force Reusable Booster System (RBS) - A Cost Study with Goals as follows: Support US launch systems decision makers, esp. in regards to the research, technology and demonstration investments required for reusable systems to succeed. Encourage operable directions in Reusable Booster / Launch Vehicle Systems technology choices, system design and product and process developments. Perform a quick-look cost study, while developing a cost model for more refined future analysis.
A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system
NASA Astrophysics Data System (ADS)
Wang, Zhen; Huang, Xia; Li, Yu-Xia; Song, Xiao-Na
2013-01-01
We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.
Total analysis systems with Thermochromic Etching Discs technology.
Avella-Oliver, Miquel; Morais, Sergi; Carrascosa, Javier; Puchades, Rosa; Maquieira, Ángel
2014-12-16
A new analytical system based on Thermochromic Etching Discs (TED) technology is presented. TED comprises a number of attractive features such as track independency, selective irradiation, a high power laser, and the capability to create useful assay platforms. The analytical versatility of this tool opens up a wide range of possibilities to design new compact disc-based total analysis systems applicable in chemistry and life sciences. In this paper, TED analytical implementation is described and discussed, and their analytical potential is supported by several applications. Microarray immunoassay, immunofiltration assay, solution measurement, and cell culture approaches are herein addressed in order to demonstrate the practical capacity of this system. The analytical usefulness of TED technology is herein demonstrated, describing how to exploit this tool for developing truly integrated analytical systems that provide solutions within the point of care framework.
Fault Detection and Severity Analysis of Servo Valves Using Recurrence Quantification Analysis
2014-10-02
Fault Detection and Severity Analysis of Servo Valves Using Recurrence Quantification Analysis M. Samadani1, C. A. Kitio Kwuimy2, and C. Nataraj3...diagnostics of nonlinear systems. A detailed nonlinear math- ematical model of a servo electro-hydraulic system has been used to demonstrate the procedure...Two faults have been considered associated with the servo valve including the in- creased friction between spool and sleeve and the degradation of the
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Storaasli, Olaf O.; Qin, Jiangning; Qamar, Ramzi
1994-01-01
An automatic differentiation tool (ADIFOR) is incorporated into a finite element based structural analysis program for shape and non-shape design sensitivity analysis of structural systems. The entire analysis and sensitivity procedures are parallelized and vectorized for high performance computation. Small scale examples to verify the accuracy of the proposed program and a medium scale example to demonstrate the parallel vector performance on multiple CRAY C90 processors are included.
Hailey, P A; Doherty, P; Tapsell, P; Oliver, T; Aldridge, P K
1996-03-01
An automated system for the on-line monitoring of powder blending processes is described. The system employs near-infrared (NIR) spectroscopy using fibre-optics and a graphical user interface (GUI) developed in the LabVIEW environment. The complete supervisory control and data analysis (SCADA) software controls blender and spectrophotometer operation and performs statistical spectral data analysis in real time. A data analysis routine using standard deviation is described to demonstrate an approach to the real-time determination of blend homogeneity.
An integratable microfluidic cartridge for forensic swab samples lysis.
Yang, Jianing; Brooks, Carla; Estes, Matthew D; Hurth, Cedric M; Zenhausern, Frederic
2014-01-01
Fully automated rapid forensic DNA analysis requires integrating several multistep processes onto a single microfluidic platform, including substrate lysis, extraction of DNA from the released lysate solution, multiplexed PCR amplification of STR loci, separation of PCR products by capillary electrophoresis, and analysis for allelic peak calling. Over the past several years, most of the rapid DNA analysis systems developed started with the reference swab sample lysate and involved an off-chip lysis of collected substrates. As a result of advancement in technology and chemistry, addition of a microfluidic module for swab sample lysis has been achieved in a few of the rapid DNA analysis systems. However, recent reports on integrated rapid DNA analysis systems with swab-in and answer-out capability lack any quantitative and qualitative characterization of the swab-in sample lysis module, which is important for downstream forensic sample processing. Maximal collection and subsequent recovery of the biological material from the crime scene is one of the first and critical steps in forensic DNA technology. Herein we present the design, fabrication and characterization of an integratable swab lysis cartridge module and the test results obtained from different types of commonly used forensic swab samples, including buccal, saliva, and blood swab samples, demonstrating the compatibility with different downstream DNA extraction chemistries. This swab lysis cartridge module is easy to operate, compatible with both forensic and microfluidic requirements, and ready to be integrated with our existing automated rapid forensic DNA analysis system. Following the characterization of the swab lysis module, an integrated run from buccal swab sample-in to the microchip CE electropherogram-out was demonstrated on the integrated prototype instrument. Therefore, in this study, we demonstrate that this swab lysis cartridge module is: (1) functionally, comparable with routine benchtop lysis, (2) compatible with various types of swab samples and chemistries, and (3) integratable to achieve a micro total analysis system (μTAS) for rapid DNA analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Portable point-of-care blood analysis system for global health (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dou, James J.; Aitchison, James Stewart; Chen, Lu; Nayyar, Rakesh
2016-03-01
In this paper we present a portable blood analysis system based on a disposable cartridge and hand-held reader. The platform can perform all the sample preparation, detection and waste collection required to complete a clinical test. In order to demonstrate the utility of this approach a CD4 T cell enumeration was carried out. A handheld, point-of-care CD4 T cell system was developed based on this system. In particular we will describe a pneumatic, active pumping method to control the on-chip fluidic actuation. Reagents for the CD4 T cell counting assay were dried on a reagent plug to eliminate the need for cold chain storage when used in the field. A micromixer based on the active fluidic actuation was designed to complete sample staining with fluorescent dyes that was dried on the reagent plugs. A novel image detection and analysis algorithm was developed to detect and track the flight of target particles and cells during each analysis. The handheld, point-of-care CD4 testing system was benchmarked against clinical cytometer. The experimental results demonstrated experimental results were closely matched with the flow cytometry. The same platform can be further expanded into a bead-array detection system where other types of biomolecules such as proteins can be detected using the same detection system.
Convergence Estimates for Multidisciplinary Analysis and Optimization
NASA Technical Reports Server (NTRS)
Arian, Eyal
1997-01-01
A quantitative analysis of coupling between systems of equations is introduced. This analysis is then applied to problems in multidisciplinary analysis, sensitivity, and optimization. For the sensitivity and optimization problems both multidisciplinary and single discipline feasibility schemes are considered. In all these cases a "convergence factor" is estimated in terms of the Jacobians and Hessians of the system, thus it can also be approximated by existing disciplinary analysis and optimization codes. The convergence factor is identified with the measure for the "coupling" between the disciplines in the system. Applications to algorithm development are discussed. Demonstration of the convergence estimates and numerical results are given for a system composed of two non-linear algebraic equations, and for a system composed of two PDEs modeling aeroelasticity.
ERIC Educational Resources Information Center
Fortuin, K. P. J.; van Koppen, C. S. A.; Kroeze, C.
2013-01-01
Professionals in the environmental domain require cognitive interdisciplinary skills to be able to develop sustainable solutions to environmental problems. We demonstrate that education in environmental systems analysis allows for the development of these skills. We identify three components of cognitive interdisciplinary skills: (1) the ability…
The Tri-Services Site Characterization Analysis Penetrometer System (SCAPS) was developed by the U.S. Army (U.S. Army Corps of Engineers, Waterways Experiment Station [WES] and the Army Environmental Center [AEC]), Navy (Naval Command, Control and Ocean Surveillance Center), and ...
DOT National Transportation Integrated Search
1999-08-15
The Traffic Survey Unit plans to establish a methodology in which it can assign each Portable Traffic Counter (PTC) station a seasonal group profile through a means of statistical and geographical analysis. An ArcView Geographic Information Systems a...
Modelling and analysis of the sugar cataract development process using stochastic hybrid systems.
Riley, D; Koutsoukos, X; Riley, K
2009-05-01
Modelling and analysis of biochemical systems such as sugar cataract development (SCD) are critical because they can provide new insights into systems, which cannot be easily tested with experiments; however, they are challenging problems due to the highly coupled chemical reactions that are involved. The authors present a stochastic hybrid system (SHS) framework for modelling biochemical systems and demonstrate the approach for the SCD process. A novel feature of the framework is that it allows modelling the effect of drug treatment on the system dynamics. The authors validate the three sugar cataract models by comparing trajectories computed by two simulation algorithms. Further, the authors present a probabilistic verification method for computing the probability of sugar cataract formation for different chemical concentrations using safety and reachability analysis methods for SHSs. The verification method employs dynamic programming based on a discretisation of the state space and therefore suffers from the curse of dimensionality. To analyse the SCD process, a parallel dynamic programming implementation that can handle large, realistic systems was developed. Although scalability is a limiting factor, this work demonstrates that the proposed method is feasible for realistic biochemical systems.
Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Michael; Ruhl, Robert
2012-05-01
Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes thatmore » > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.« less
NASA Astrophysics Data System (ADS)
Genberg, Victor L.; Michels, Gregory J.
2017-08-01
The ultimate design goal of an optical system subjected to dynamic loads is to minimize system level wavefront error (WFE). In random response analysis, system WFE is difficult to predict from finite element results due to the loss of phase information. In the past, the use of ystem WFE was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for determining system level WFE using a linear optics model is presented. An error estimate is included in the analysis output based on fitting errors of mode shapes. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.
Hur, Pilwon; Shorter, K Alex; Mehta, Prashant G; Hsiao-Wecksler, Elizabeth T
2012-04-01
In this paper, a novel analysis technique, invariant density analysis (IDA), is introduced. IDA quantifies steady-state behavior of the postural control system using center of pressure (COP) data collected during quiet standing. IDA relies on the analysis of a reduced-order finite Markov model to characterize stochastic behavior observed during postural sway. Five IDA parameters characterize the model and offer physiological insight into the long-term dynamical behavior of the postural control system. Two studies were performed to demonstrate the efficacy of IDA. Study 1 showed that multiple short trials can be concatenated to create a dataset suitable for IDA. Study 2 demonstrated that IDA was effective at distinguishing age-related differences in postural control behavior between young, middle-aged, and older adults. These results suggest that the postural control system of young adults converges more quickly to their steady-state behavior while maintaining COP nearer an overall centroid than either the middle-aged or older adults. Additionally, larger entropy values for older adults indicate that their COP follows a more stochastic path, while smaller entropy values for young adults indicate a more deterministic path. These results illustrate the potential of IDA as a quantitative tool for the assessment of the quiet-standing postural control system.
Analysis technique for controlling system wavefront error with active/adaptive optics
NASA Astrophysics Data System (ADS)
Genberg, Victor L.; Michels, Gregory J.
2017-08-01
The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.
Early Development of Demonstratives in Pre-Qin Chinese
ERIC Educational Resources Information Center
Deng, Lin
2011-01-01
This dissertation offers a new dynamic account of the evolution of the demonstrative system in pre-Qin Chinese based on a comprehensive linguistic analysis of the phonological, morphological, syntactic, semantic, and pragmatic aspects of demonstratives attested in two corpora of excavated texts, i.e. the oracle-bone inscriptions dated to the late…
Solar energy system economic evaluation: Fern Tunkhannock, Tunkhannock, Pennsylvania
NASA Astrophysics Data System (ADS)
1980-09-01
The economic performance of an Operational Test Site (OTS) is described. The long term economic performance of the system at its installation site and extrapolation to four additional selected locations to demonstrate the viability of the design over a broad range of environmental and economic conditions is reported. Topics discussed are: system description, study approach, economic analysis and system optimization, and technical and economical results of analysis. Data for the economic analysis are generated through evaluation of the OTS. The simulation is based on the technical results of the seasonal report simulation. In addition localized and standard economic parameters are used for economic analysis.
Solar energy system economic evaluation: Fern Tunkhannock, Tunkhannock, Pennsylvania
NASA Technical Reports Server (NTRS)
1980-01-01
The economic performance of an Operational Test Site (OTS) is described. The long term economic performance of the system at its installation site and extrapolation to four additional selected locations to demonstrate the viability of the design over a broad range of environmental and economic conditions is reported. Topics discussed are: system description, study approach, economic analysis and system optimization, and technical and economical results of analysis. Data for the economic analysis are generated through evaluation of the OTS. The simulation is based on the technical results of the seasonal report simulation. In addition localized and standard economic parameters are used for economic analysis.
Morag, Ido; Luria, Gil
2018-04-01
Most studies concerned with participative ergonomic (PE) interventions, focus on organizational rather than group level analysis. By implementing an intervention at a manufacturing plant, the current study, utilizing advanced information systems, measured the effect of line-supervisor leadership on employee exposure to risks. The study evaluated which PE dimensions (i.e., extent of workforce involvement, diversity of reporter role types and scope of analysis) are related to such exposure at the group level. The data for the study was extracted from two separate computerized systems (workforce medical records of 791 employees and an intranet reporting system) during a two-year period. While the results did not confirm the effect of line-supervisor leadership on subordinates' exposure to risks, they did demonstrate relationships between PE dimensions and the employees' exposure to risks. The results support the suggested level of analysis and demonstrate that group-based analysis facilitates the assimilation of preventive interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Brown, Gerald V.
2017-01-01
It is essential to design a propulsion powertrain real-time simulator using the hardware-in-the-loop (HIL) system that emulates an electrified aircraft propulsion (EAP) systems power grid. This simulator would enable us to facilitate in-depth understanding of the system principles, to validate system model analysis and performance prediction, and to demonstrate the proof-of-concept of the EAP electrical system. This paper describes how subscale electrical machines with their controllers can mimic the power components in an EAP powertrain. In particular, three powertrain emulations are presented to mimic 1) a gas turbo-=shaft engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft, 2) a motor driving a propulsive fan, and 3) a turbo-shaft engine driven fan (turbofan engine) operation. As a first step towards the demonstration, experimental dynamic characterization of the two motor drive systems, coupled by a mechanical shaft, were performed. The previously developed analytical motor models1 were then replaced with the experimental motor models to perform the real-time demonstration in the predefined flight path profiles. This technique can convert the plain motor system into a unique EAP power grid emulator that enables rapid analysis and real-time simulation performance using hardware-in-the-loop (HIL).
Environmental science applications with Rapid Integrated Mapping and analysis System (RIMS)
NASA Astrophysics Data System (ADS)
Shiklomanov, A.; Prusevich, A.; Gordov, E.; Okladnikov, I.; Titov, A.
2016-11-01
The Rapid Integrated Mapping and analysis System (RIMS) has been developed at the University of New Hampshire as an online instrument for multidisciplinary data visualization, analysis and manipulation with a focus on hydrological applications. Recently it was enriched with data and tools to allow more sophisticated analysis of interdisciplinary data. Three different examples of specific scientific applications with RIMS are demonstrated and discussed. Analysis of historical changes in major components of the Eurasian pan-Arctic water budget is based on historical discharge data, gridded observational meteorological fields, and remote sensing data for sea ice area. Express analysis of the extremely hot and dry summer of 2010 across European Russia is performed using a combination of near-real time and historical data to evaluate the intensity and spatial distribution of this event and its socioeconomic impacts. Integrative analysis of hydrological, water management, and population data for Central Asia over the last 30 years provides an assessment of regional water security due to changes in climate, water use and demography. The presented case studies demonstrate the capabilities of RIMS as a powerful instrument for hydrological and coupled human-natural systems research.
Exploratory Analysis of Survey Data for Understanding Adoption of Novel Aerospace Systems
NASA Astrophysics Data System (ADS)
Reddy, Lauren M.
In order to meet the increasing demand for manned and unmanned flight, the air transportation system must constantly evolve. As new technologies or operational procedures are conceived, we must determine their effect on humans in the system. In this research, we introduce a strategy to assess how individuals or organizations would respond to a novel aerospace system. We employ the most appropriate and sophisticated exploratory analysis techniques on the survey data to generate insight and identify significant variables. We employ three different methods for eliciting views from individuals or organizations who are affected by a system: an opinion survey, a stated preference survey, and structured interviews. We conduct an opinion survey of both the general public and stakeholders in the unmanned aircraft industry to assess their knowledge, attitude, and practices regarding unmanned aircraft. We complete a statistical analysis of the multiple-choice questions using multinomial logit and multivariate probit models and conduct qualitative analysis on free-text questions. We next present a stated preference survey of the general public on the use of an unmanned aircraft package delivery service. We complete a statistical analysis of the questions using multinomial logit, ordered probit, linear regression, and negative binomial models. Finally, we discuss structured interviews conducted on stakeholders from ANSPs and airlines operating in the North Atlantic. We describe how these groups may choose to adopt a new technology (space-based ADS-B) or operational procedure (in-trail procedures). We discuss similarities and differences between the stakeholders groups, the benefits and costs of in-trail procedures and space-based ADS-B as reported by the stakeholders, and interdependencies between the groups interviewed. To demonstrate the value of the data we generated, we explore how the findings from the surveys can be used to better characterize uncertainty in the cost-benefit analysis of aerospace systems. We demonstrate how the findings from the opinion and stated preference surveys can be infused into the cost-benefit analysis of an unmanned aircraft delivery system. We also demonstrate how to apply the findings from the interviews to characterize uncertainty in the estimation of the benefits of space-based ADS-B.
Probabilistic structural analysis by extremum methods
NASA Technical Reports Server (NTRS)
Nafday, Avinash M.
1990-01-01
The objective is to demonstrate discrete extremum methods of structural analysis as a tool for structural system reliability evaluation. Specifically, linear and multiobjective linear programming models for analysis of rigid plastic frames under proportional and multiparametric loadings, respectively, are considered. Kinematic and static approaches for analysis form a primal-dual pair in each of these models and have a polyhedral format. Duality relations link extreme points and hyperplanes of these polyhedra and lead naturally to dual methods for system reliability evaluation.
Technology verification phase. Dynamic isotope power system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, D.G.
1982-03-10
The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight systemmore » design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)« less
Structural analyses of the JPL Mars Pathfinder impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwinn, K.W.
1994-12-31
The purpose of this paper is to demonstrate that finite element analysis can be used in the design process for high performance fabric structures. These structures exhibit extreme geometric nonlinearity; specifically, the contact and interaction of fabric surfaces with the large deformation which necessarily results from membrane structures introduces great complexity to analyses of this type. All of these features are demonstrated here in the analysis of the Jet Propulsion Laboratory (JPL) Mars Pathfinder impact onto Mars. This lander system uses airbags to envelope the lander experiment package, protecting it with large deformation upon contact. Results from the analysis showmore » the stress in the fabric airbags, forces in the internal tendon support system, forces in the latches and hinges which allow the lander to deploy after impact, and deceleration of the lander components. All of these results provide the JPL engineers with design guidance for the success of this novel lander system.« less
Structural analyses of the JPL Mars Pathfinder impact
NASA Astrophysics Data System (ADS)
Gwinn, Kenneth W.
The purpose of this paper is to demonstrate that finite element analysis can be used in the design process for high performance fabric structures. These structures exhibit extreme geometric nonlinearity; specifically, the contact and interaction of fabric surfaces with the large deformation which necessarily results from membrane structures introduces great complexity to analyses of this type. All of these features are demonstrated here in the analysis of the Jet Propulsion Laboratory (JPL) Mars Pathfinder impact onto Mars. This lander system uses airbags to envelope the lander experiment package, protecting it with large deformation upon contact. Results from the analysis show the stress in the fabric airbags, forces in the internal tendon support system, forces in the latches and hinges which allow the lander to deploy after impact, and deceleration of the lander components. All of these results provide the JPL engineers with design guidance for the success of this novel lander system.
NASA Technical Reports Server (NTRS)
Tuey, Richard C.; Moore, Fred W.; Ryan, Christine A.
1995-01-01
The report is presented in four sections: The Introduction describes the duplicating configuration under evaluation and the Background contains a chronological description of the evaluation segmented by phases 1 and 2. This section includes the evaluation schedule, printing and duplicating requirements, storage and communication requirements, electronic publishing system configuration, existing processes and proposed processes, billing rates, costs and productivity analysis, and the return on investment based upon the data gathered to date. The third section contains the phase 1 comparative cost and productivity analysis. This analysis demonstrated that LaRC should proceed with a 90-day evaluation of the DocuTech and follow with a phase 2 cycle to actually demonstrate that the proposed system would meet the needs of LaRC's printing and duplicating requirements, benchmark results, cost comparisons, benchmark observations, and recommendations. These are documented after the recommendations.
Using the General Mission Analysis Tool (GMAT)
NASA Technical Reports Server (NTRS)
Hughes, Steven P.; Conway, Darrel J.; Parker, Joel
2017-01-01
This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT). These slides will be used to accompany the demonstration. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. This talk is a combination of existing presentations and material; system user guide and technical documentation; a GMAT basics and overview, and technical presentations from the TESS projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project. Slides for navigation and optimal control are borrowed from system documentation and training material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Junjie; Jia, Hongzhi, E-mail: hzjia@usst.edu.cn
2015-11-15
We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental resultsmore » are consistent and demonstrate the rationality and validity of this method.« less
Mayberry, Addison; Perkins, David L.; Holcomb, Daniel E.
2018-01-01
Miniaturized imaging devices have pushed the boundaries of point-of-care imaging, but existing mobile-phone-based imaging systems do not exploit the full potential of smart phones. This work demonstrates the use of simple imaging configurations to deliver superior image quality and the ability to handle a wide range of biological samples. Results presented in this work are from analysis of fluorescent beads under fluorescence imaging, as well as helminth eggs and freshwater mussel larvae under white light imaging. To demonstrate versatility of the systems, real time analysis and post-processing results of the sample count and sample size are presented in both still images and videos of flowing samples. PMID:29509786
NASA Technical Reports Server (NTRS)
Jensen, Ralph H.; Dever, Timothy P.
2006-01-01
Design of a flywheel module, designated the G2 module, is described. The G2 flywheel is a 60,000 RPM, 525 W-hr, 1 kW system designed for a laboratory environment; it will be used for component testing and system demonstrations, with the goal of applying flywheels to aerospace energy storage and integrated power and attitude control (IPACS) applications. G2 has a modular design, which allows for new motors, magnetic bearings, touchdown bearings, and rotors to be installed without a complete redesign of the system. This design process involves several engineering disciplines, and requirements are developed for the speed, energy storage, power level, and operating environment. The G2 rotor system consists of a multilayer carbon fiber rim with a titanium hub on which the other components mount, and rotordynamics analysis is conducted to ensure rigid and flexible rotor modes are controllable or outside of the operating speed range. Magnetic bearings are sized using 1-D magnetic circuit analysis and refined using 3-D finite element analysis. The G2 magnetic bearing system was designed by Texas A&M and has redundancy which allows derated operation after the loss of some components, and an existing liquid cooled two pole permanent magnet motor/generator is used. The touchdown bearing system is designed with a squeeze film damper system allowing spin down from full operating speed in case of a magnetic bearing failure. The G2 flywheel will enable module level demonstrations of component technology, and will be a key building block in system level attitude control and IPACS demonstrations.
Application of the actor model to large scale NDE data analysis
NASA Astrophysics Data System (ADS)
Coughlin, Chris
2018-03-01
The Actor model of concurrent computation discretizes a problem into a series of independent units or actors that interact only through the exchange of messages. Without direct coupling between individual components, an Actor-based system is inherently concurrent and fault-tolerant. These traits lend themselves to so-called "Big Data" applications in which the volume of data to analyze requires a distributed multi-system design. For a practical demonstration of the Actor computational model, a system was developed to assist with the automated analysis of Nondestructive Evaluation (NDE) datasets using the open source Myriad Data Reduction Framework. A machine learning model trained to detect damage in two-dimensional slices of C-Scan data was deployed in a streaming data processing pipeline. To demonstrate the flexibility of the Actor model, the pipeline was deployed on a local system and re-deployed as a distributed system without recompiling, reconfiguring, or restarting the running application.
Automated potentiometric electrolyte analysis system. [for use in weightlessness
NASA Technical Reports Server (NTRS)
1973-01-01
The feasibility is demonstrated of utilizing chemical sensing electrode technology as the basis for an automatically-controlled system for blood gas and electrolyte analyses under weightlessness conditions. The specific measurements required were pH, pCO2, sodium, chloride, potassium ions, and ionized calcium. The general electrode theory, and ion activity measurements are described along with the fluid transport package, electronics unit, and controller for the automated potentiometric analysis system.
Air Data Boom System Development for the Max Launch Abort System (MLAS) Flight Experiment
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica A.; Cox, Jeff; Bondurant, Robert; Dupont, Ron; ODonnell, Louise; Vellines, Wesley, IV; Johnston, William M.; Cagle, Christopher M.; Schuster, David M.; Elliott, Kenny B.;
2010-01-01
In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale and passively, aerodynamically stabilized MLAS launch abort demonstrator was successfully launched from Wallops Flight Facility following nearly two years of development work on the launch abort concept: from a napkin sketch to a flight demonstration of the full-scale flight test vehicle. The MLAS flight test vehicle was instrumented with a suite of aerodynamic sensors. The purpose was to obtain sufficient data to demonstrate that the vehicle demonstrated the behavior predicted by Computational Fluid Dynamics (CFD) analysis and wind tunnel testing. This paper describes development of the Air Data Boom (ADB) component of the aerodynamic sensor suite.
New York City Transit Authority automated transit infrastructure maintenance demonstration.
DOT National Transportation Integrated Search
2009-04-01
The objective of this pilot project was to demonstrate that the safety and reliability of the New York City : Transit transportation system can be improved by automating the correlation and analysis of disparate : track related data. Through the use ...
Extended Testability Analysis Tool
NASA Technical Reports Server (NTRS)
Melcher, Kevin; Maul, William A.; Fulton, Christopher
2012-01-01
The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.
GiA Roots: software for the high throughput analysis of plant root system architecture.
Galkovskyi, Taras; Mileyko, Yuriy; Bucksch, Alexander; Moore, Brad; Symonova, Olga; Price, Charles A; Topp, Christopher N; Iyer-Pascuzzi, Anjali S; Zurek, Paul R; Fang, Suqin; Harer, John; Benfey, Philip N; Weitz, Joshua S
2012-07-26
Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.
Van Berkel, Gary J; Kertesz, Vilmos; Boeltz, Harry
2017-11-01
The aim of this work was to demonstrate and evaluate the analytical performance of coupling the immediate drop on demand technology to a mass spectrometer via the recently introduced open port sampling interface and ESI. Methodology & results: A maximum sample analysis throughput of 5 s per sample was demonstrated. Signal reproducibility was 10% or better as demonstrated by the quantitative analysis of propranolol and its stable isotope-labeled internal standard propranolol-d7. The ability of the system to multiply charge and analyze macromolecules was demonstrated using the protein cytochrome c. This immediate drop on demand technology/open port sampling interface/ESI-MS combination allowed for the quantitative analysis of relatively small mass analytes and was used for the identification of macromolecules like proteins.
Van Berkel, Gary J.; Kertesz, Vilmos; Orcutt, Matt; ...
2017-11-07
The aim of this work was to demonstrate and to evaluate the analytical performance of a combined falling drop/open port sampling interface (OPSI) system as a simple noncontact, no-carryover, automated system for flow injection analysis with mass spectrometry. The falling sample drops were introduced into the OPSI using a widely available autosampler platform utilizing low cost disposable pipet tips and conventional disposable microtiter well plates. The volume of the drops that fell onto the OPSI was in the 7–15 μL range with an injected sample volume of several hundred nanoliters. Sample drop height, positioning of the internal capillary on themore » sampling end of the probe, and carrier solvent flow rate were optimized for maximum signal. Sample throughput, signal reproducibility, matrix effects, and quantitative analysis capability of the system were established using the drug molecule propranolol and its isotope labeled internal standard in water, unprocessed river water and two commercially available buffer matrices. A sample-to-sample throughput of ~45 s with a ~4.5 s base-to-base flow injection peak profile was obtained in these experiments. In addition, quantitation with minimally processed rat plasma samples was demonstrated with three different statin drugs (atorvastatin, rosuvastatin, and fluvastatin). Direct characterization capability of unprocessed samples was demonstrated by the analysis of neat vegetable oils. Employing the autosampler system for spatially resolved liquid extraction surface sampling exemplified by the analysis of propranolol and its hydroxypropranolol glucuronide phase II metabolites from a rat thin tissue section was also illustrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Berkel, Gary J.; Kertesz, Vilmos; Orcutt, Matt
The aim of this work was to demonstrate and to evaluate the analytical performance of a combined falling drop/open port sampling interface (OPSI) system as a simple noncontact, no-carryover, automated system for flow injection analysis with mass spectrometry. The falling sample drops were introduced into the OPSI using a widely available autosampler platform utilizing low cost disposable pipet tips and conventional disposable microtiter well plates. The volume of the drops that fell onto the OPSI was in the 7–15 μL range with an injected sample volume of several hundred nanoliters. Sample drop height, positioning of the internal capillary on themore » sampling end of the probe, and carrier solvent flow rate were optimized for maximum signal. Sample throughput, signal reproducibility, matrix effects, and quantitative analysis capability of the system were established using the drug molecule propranolol and its isotope labeled internal standard in water, unprocessed river water and two commercially available buffer matrices. A sample-to-sample throughput of ~45 s with a ~4.5 s base-to-base flow injection peak profile was obtained in these experiments. In addition, quantitation with minimally processed rat plasma samples was demonstrated with three different statin drugs (atorvastatin, rosuvastatin, and fluvastatin). Direct characterization capability of unprocessed samples was demonstrated by the analysis of neat vegetable oils. Employing the autosampler system for spatially resolved liquid extraction surface sampling exemplified by the analysis of propranolol and its hydroxypropranolol glucuronide phase II metabolites from a rat thin tissue section was also illustrated.« less
A quantitative analysis of the F18 flight control system
NASA Technical Reports Server (NTRS)
Doyle, Stacy A.; Dugan, Joanne B.; Patterson-Hine, Ann
1993-01-01
This paper presents an informal quantitative analysis of the F18 flight control system (FCS). The analysis technique combines a coverage model with a fault tree model. To demonstrate the method's extensive capabilities, we replace the fault tree with a digraph model of the F18 FCS, the only model available to us. The substitution shows that while digraphs have primarily been used for qualitative analysis, they can also be used for quantitative analysis. Based on our assumptions and the particular failure rates assigned to the F18 FCS components, we show that coverage does have a significant effect on the system's reliability and thus it is important to include coverage in the reliability analysis.
Challenges in Visual Analysis of Ensembles
Crossno, Patricia
2018-04-12
Modeling physical phenomena through computational simulation increasingly relies on generating a collection of related runs, known as an ensemble. In this paper, we explore the challenges we face in developing analysis and visualization systems for large and complex ensemble data sets, which we seek to understand without having to view the results of every simulation run. Implementing approaches and ideas developed in response to this goal, we demonstrate the analysis of a 15K run material fracturing study using Slycat, our ensemble analysis system.
Challenges in Visual Analysis of Ensembles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crossno, Patricia
Modeling physical phenomena through computational simulation increasingly relies on generating a collection of related runs, known as an ensemble. In this paper, we explore the challenges we face in developing analysis and visualization systems for large and complex ensemble data sets, which we seek to understand without having to view the results of every simulation run. Implementing approaches and ideas developed in response to this goal, we demonstrate the analysis of a 15K run material fracturing study using Slycat, our ensemble analysis system.
Step 1: C3 Flight Demo Data Analysis Plan
NASA Technical Reports Server (NTRS)
2005-01-01
The Data Analysis Plan (DAP) describes the data analysis that the C3 Work Package (WP) will perform in support of the Access 5 Step 1 C3 flight demonstration objectives as well as the processes that will be used by the Flight IPT to gather and distribute the data collected to satisfy those objectives. In addition to C3 requirements, this document will encompass some Human Systems Interface (HSI) requirements in performing the C3 flight demonstrations. The C3 DAP will be used as the primary interface requirements document between the C3 Work Package and Flight Test organizations (Flight IPT and Non-Access 5 Flight Programs). In addition to providing data requirements for Access 5 flight test (piggyback technology demonstration flights, dedicated C3 technology demonstration flights, and Airspace Operations Demonstration flights), the C3 DAP will be used to request flight data from Non- Access 5 flight programs for C3 related data products
Percolator: Scalable Pattern Discovery in Dynamic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sutanay; Purohit, Sumit; Lin, Peng
We demonstrate Percolator, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of Percolator is to dynamically decide and verify a small fraction of patterns and their in- stances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a) the feasibility of incremental pattern mining by walkingmore » through each component of Percolator, b) the efficiency and scalability of Percolator over the sheer size of real-world dynamic graphs, and c) how the user-friendly GUI of Percolator inter- acts with users to support keyword-based queries that detect, browse and inspect trending patterns. We also demonstrate two user cases of Percolator, in social media trend analysis and academic collaboration analysis, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavietes, A.; Kalkhoran, N.
The overall goal of this project was to demonstrate a compact gamma-ray spectroscopic system with better energy resolution and lower costs than scintillator-based detector systems for uranium enrichment analysis applications.
Appendix N. Implementation of the RUPS System in a Total School District.
ERIC Educational Resources Information Center
Jung, Charles; And Others
The implementation in a school district of the Research Utilization and Problem Solving (RUPS) System is demonstrated. RUPS is an instructional system for an inservice program designed to provide the needed competencies for an entire staff to engage in systems analysis and systems synthesis procedures prior to assessing educational needs and…
Design and Analysis of Morpheus Lander Flight Control System
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.
2014-01-01
The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.
Automation tools for demonstration of goal directed and self-repairing flight control systems
NASA Technical Reports Server (NTRS)
Agarwal, A. K.
1988-01-01
The coupling of expert systems and control design and analysis techniques are documented to provide a realizable self repairing flight control system. Key features of such a flight control system are identified and a limited set of rules for a simple aircraft model are presented.
Mobile phone based ELISA (MELISA).
Zhdanov, Arsenii; Keefe, Jordan; Franco-Waite, Luis; Konnaiyan, Karthik Raj; Pyayt, Anna
2018-04-30
Enzyme-linked immunosorbent assay (ELISA) is one of the most important technologies for biochemical analysis critical for diagnosis and monitoring of many diseases. Traditional systems for ELISA incubation and reading are expensive and bulky, thus cannot be used at point-of-care or in the field. Here, we propose and demonstrate a new miniature mobile phone based system for ELISA (MELISA). This system can be used to complete all steps of the assay, including incubation and reading. It weighs just 1 pound, can be fabricated at low cost, portable, and can transfer test results via mobile phone. We successfully demonstrated how MELISA can be calibrated for accurate measurements of progesterone and demonstrated successful measurements with the calibrated system. Copyright © 2017 Elsevier B.V. All rights reserved.
Situational Analysis for Complex Systems: Methodological Development in Public Health Research.
Martin, Wanda; Pauly, Bernie; MacDonald, Marjorie
2016-01-01
Public health systems have suffered infrastructure losses worldwide. Strengthening public health systems requires not only good policies and programs, but also development of new research methodologies to support public health systems renewal. Our research team considers public health systems to be complex adaptive systems and as such new methods are necessary to generate knowledge about the process of implementing public health programs and services. Within our program of research, we have employed situational analysis as a method for studying complex adaptive systems in four distinct research studies on public health program implementation. The purpose of this paper is to demonstrate the use of situational analysis as a method for studying complex systems and highlight the need for further methodological development.
Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information
NASA Astrophysics Data System (ADS)
Li, Songting; Xiao, Yanyang; Zhou, Douglas; Cai, David
2018-05-01
The Granger causality (GC) analysis has been extensively applied to infer causal interactions in dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social science, and many other fields. In the presence of potential nonlinearity in these systems, the validity of the GC analysis in general is questionable. To illustrate this, here we first construct minimal nonlinear systems and show that the GC analysis fails to infer causal relations in these systems—it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed mutual information (TDMI) analysis is able to successfully identify the direction of interactions underlying these nonlinear systems. We then apply both methods to neuroscience data collected from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool in such a case.
Description of a user-oriented geographic information system - The resource analysis program
NASA Technical Reports Server (NTRS)
Tilmann, S. E.; Mokma, D. L.
1980-01-01
This paper describes the Resource Analysis Program, an applied geographic information system. Several applications are presented which utilized soil, and other natural resource data, to develop integrated maps and data analyses. These applications demonstrate the methods of analysis and the philosophy of approach used in the mapping system. The applications are evaluated in reference to four major needs of a functional mapping system: data capture, data libraries, data analysis, and mapping and data display. These four criteria are then used to describe an effort to develop the next generation of applied mapping systems. This approach uses inexpensive microcomputers for field applications and should prove to be a viable entry point for users heretofore unable or unwilling to venture into applied computer mapping.
NASA Technical Reports Server (NTRS)
Schell, J. A.
1974-01-01
The recent availability of timely synoptic earth imagery from the Earth Resources Technology Satellites (ERTS) provides a wealth of information for the monitoring and management of vital natural resources. Formal language definitions and syntax interpretation algorithms were adapted to provide a flexible, computer information system for the maintenance of resource interpretation of imagery. These techniques are incorporated, together with image analysis functions, into an Interactive Resource Information Management and Analysis System, IRIMAS, which is implemented on a Texas Instruments 980A minicomputer system augmented with a dynamic color display for image presentation. A demonstration of system usage and recommendations for further system development are also included.
NASA Technical Reports Server (NTRS)
Drake, R. L.; Duvoisin, P. F.; Asthana, A.; Mather, T. W.
1971-01-01
High speed automated identification and design of dynamic systems, both linear and nonlinear, are discussed. Special emphasis is placed on developing hardware and techniques which are applicable to practical problems. The basic modeling experiment and new results are described. Using the improvements developed successful identification of several systems, including a physical example as well as simulated systems, was obtained. The advantages of parameter signature analysis over signal signature analysis in go-no go testing of operational systems were demonstrated. The feasibility of using these ideas in failure mode prediction in operating systems was also investigated. An improved digital controlled nonlinear function generator was developed, de-bugged, and completely documented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szilard, Ronaldo Henriques
A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.
Case Study for the ARRA-funded GSHP Demonstration at University at Albany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Malhotra, Mini; Xiong, Zeyu
High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This report highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects—a distributed GSHP system at a new 500-bed apartment-style student residence hall at the University at Albany. This case studymore » is based on the analysis of detailed design documents, measured performance data, published catalog data of heat pump equipment, and actual construction costs. Simulations with a calibrated computer model are performed for both the demonstrated GSHP system and a baseline heating, ventilation, and airconditioning (HVAC) system to determine the energy savings and other related benefits achieved by the GSHP system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GSHP system, as well as the pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the demonstrated GSHP system compared with the baseline HVAC system. This case study also identifies opportunities for improving the operational efficiency of the demonstrated GSHP system.« less
Human Support Technology Research, Development and Demonstration
NASA Technical Reports Server (NTRS)
Joshi, Jitendra; Trinh, Eugene
2004-01-01
The Human Support Technology research, development, and demonstration program address es the following areas at TRL: Advanced Power and Propulsion. Cryogenic fluid management. Closed-loop life support and Habitability. Extravehicular activity systems. Scientific data collection and analysis. and Planetary in-situ resource utilization.
In July 1997, the U.S. Environmental Protection Agency (EPA) conducted a demonstration of polychlorinated biphenyl (PCB) field analytical techniques. The demonstration design was subjected to extensive review and comment by EPA's National Exposure Research Laboratory (NERL) Envi...
Remote calorimetric detection of urea via flow injection analysis
Gaddes, David E.; Demirel, Melik C.; Reeves, W. Brian; Tadigadapa, Srinivas
2017-01-01
The design and development of a calorimetric biosensing system enabling relatively high throughput sample analysis are reported. The calorimetric biosensor system consists of a thin (~20 μm) micromachined Y-cut quartz crystal resonator (QCR) as a temperature sensor placed in close proximity to a fluidic chamber packed with an immobilized enzyme. Layer by layer enzyme immobilization of urease is demonstrated and its activity as a function of the number of layers, pH, and time has been evaluated. This configuration enables a sensing system where a transducer element is physically separated from the analyte solution of interest and is thereby free from fouling effects typically associated with biochemical reactions occuring on the sensor surface. The performance of this biosensing system is demonstrated by detection of 1–200 mM urea in phosphate buffer via a flow injection analysis (FIA) technique. Miniaturized fluidic systems were used to provide continuous flow through a reaction column. Under this configuration the biosensor has an ultimate resolution of less than 1 mM urea and showed a linear response between 0–50 mM. This work demonstrates a sensing modality in which the sensor itself is not fouled or contaminated by the solution of interest and the enzyme immobilized Kapton® fluidic reaction column can be used as a disposable cartridge. Such a system enables reuse and reliability for long term sampling measurements. Based on this concept a biosensing system is envisioned which can perform rapid measurements to detect biomarkers such as glucose, creatinine, cholesterol, urea and lactate in urine and blood continuously over extended periods of time. PMID:26479269
Remote calorimetric detection of urea via flow injection analysis.
Gaddes, David E; Demirel, Melik C; Reeves, W Brian; Tadigadapa, Srinivas
2015-12-07
The design and development of a calorimetric biosensing system enabling relatively high throughput sample analysis are reported. The calorimetric biosensor system consists of a thin (∼20 μm) micromachined Y-cut quartz crystal resonator (QCR) as a temperature sensor placed in close proximity to a fluidic chamber packed with an immobilized enzyme. Layer by layer enzyme immobilization of urease is demonstrated and its activity as a function of the number of layers, pH, and time has been evaluated. This configuration enables a sensing system where a transducer element is physically separated from the analyte solution of interest and is thereby free from fouling effects typically associated with biochemical reactions occuring on the sensor surface. The performance of this biosensing system is demonstrated by detection of 1-200 mM urea in phosphate buffer via a flow injection analysis (FIA) technique. Miniaturized fluidic systems were used to provide continuous flow through a reaction column. Under this configuration the biosensor has an ultimate resolution of less than 1 mM urea and showed a linear response between 0-50 mM. This work demonstrates a sensing modality in which the sensor itself is not fouled or contaminated by the solution of interest and the enzyme immobilized Kapton® fluidic reaction column can be used as a disposable cartridge. Such a system enables reuse and reliability for long term sampling measurements. Based on this concept a biosensing system is envisioned which can perform rapid measurements to detect biomarkers such as glucose, creatinine, cholesterol, urea and lactate in urine and blood continuously over extended periods of time.
System Risk Assessment and Allocation in Conceptual Design
NASA Technical Reports Server (NTRS)
Mahadevan, Sankaran; Smith, Natasha L.; Zang, Thomas A. (Technical Monitor)
2003-01-01
As aerospace systems continue to evolve in addressing newer challenges in air and space transportation, there exists a heightened priority for significant improvement in system performance, cost effectiveness, reliability, and safety. Tools, which synthesize multidisciplinary integration, probabilistic analysis, and optimization, are needed to facilitate design decisions allowing trade-offs between cost and reliability. This study investigates tools for probabilistic analysis and probabilistic optimization in the multidisciplinary design of aerospace systems. A probabilistic optimization methodology is demonstrated for the low-fidelity design of a reusable launch vehicle at two levels, a global geometry design and a local tank design. Probabilistic analysis is performed on a high fidelity analysis of a Navy missile system. Furthermore, decoupling strategies are introduced to reduce the computational effort required for multidisciplinary systems with feedback coupling.
Atlanta congestion reduction demonstration. National evaluation : content analysis test plan.
DOT National Transportation Integrated Search
2000-05-30
Commercial Vehicle Information Systems and Networks (CVISN) is the collection of information systems and communication networks that support commercial vehicle operations (CVO.) The National ITS Architecture provides a technical framework that descri...
Flowsheet Analysis of U-Pu Co-Crystallization Process as a New Reprocessing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shunji Homma; Jun-ichi Ishii; Jiro Koga
2006-07-01
A new fuel reprocessing system by U-Pu co-crystallization process is proposed and examined by flowsheet analysis. This reprocessing system is based on the fact that hexavalent plutonium in nitric acid solution is co-crystallized with uranyl nitrate, whereas it is not crystallized when uranyl nitrate does not exist in the solution. The system consists of five steps: dissolution of spent fuel, plutonium oxidation, U-Pu co-crystallization as a co-decontamination, re-dissolution of the crystals, and U re-crystallization as a U-Pu separation. The system requires a recycling of the mother liquor from the U-Pu co-crystallization step and the appropriate recycle ratio is determined bymore » flowsheet analysis such that the satisfactory decontamination is achieved. Further flowsheet study using four different compositions of LWR spent fuels demonstrates that the constant ratio of plutonium to uranium in mother liquor from the re-crystallization step is achieved for every composition by controlling the temperature. It is also demonstrated by comparing to the Purex process that the size of the plant based on the proposed system is significantly reduced. (authors)« less
2002-12-19
The first X-45A Unmanned Combat Air Vehicle (UCAV) technology demonstrator completed its sixth flight on Dec. 19, 2002, raising its landing gear in flight for the first time. The X-45A flew for 40 minutes and reached an airspeed of 195 knots and an altitude of 7,500 feet. Dryden is supporting the DARPA/Boeing team in the design, development, integration, and demonstration of the critical technologies, processes, and system attributes leading to an operational UCAV system. Dryden support of the X-45A demonstrator system includes analysis, component development, simulations, ground and flight tests.
High speed bus technology development
NASA Astrophysics Data System (ADS)
Modrow, Marlan B.; Hatfield, Donald W.
1989-09-01
The development and demonstration of the High Speed Data Bus system, a 50 Million bits per second (Mbps) local data network intended for avionics applications in advanced military aircraft is described. The Advanced System Avionics (ASA)/PAVE PILLAR program provided the avionics architecture concept and basic requirements. Designs for wire and fiber optic media were produced and hardware demonstrations were performed. An efficient, robust token-passing protocol was developed and partially demonstrated. The requirements specifications, the trade-offs made, and the resulting designs for both a coaxial wire media system and a fiber optics design are examined. Also, the development of a message-oriented media access protocol is described, from requirements definition through analysis, simulation and experimentation. Finally, the testing and demonstrations conducted on the breadboard and brassboard hardware is presented.
Automated, Ultra-Sterile Solid Sample Handling and Analysis on a Chip
NASA Technical Reports Server (NTRS)
Mora, Maria F.; Stockton, Amanda M.; Willis, Peter A.
2013-01-01
There are no existing ultra-sterile lab-on-a-chip systems that can accept solid samples and perform complete chemical analyses without human intervention. The proposed solution is to demonstrate completely automated lab-on-a-chip manipulation of powdered solid samples, followed by on-chip liquid extraction and chemical analysis. This technology utilizes a newly invented glass micro-device for solid manipulation, which mates with existing lab-on-a-chip instrumentation. Devices are fabricated in a Class 10 cleanroom at the JPL MicroDevices Lab, and are plasma-cleaned before and after assembly. Solid samples enter the device through a drilled hole in the top. Existing micro-pumping technology is used to transfer milligrams of powdered sample into an extraction chamber where it is mixed with liquids to extract organic material. Subsequent chemical analysis is performed using portable microchip capillary electrophoresis systems (CE). These instruments have been used for ultra-highly sensitive (parts-per-trillion, pptr) analysis of organic compounds including amines, amino acids, aldehydes, ketones, carboxylic acids, and thiols. Fully autonomous amino acid analyses in liquids were demonstrated; however, to date there have been no reports of completely automated analysis of solid samples on chip. This approach utilizes an existing portable instrument that houses optics, high-voltage power supplies, and solenoids for fully autonomous microfluidic sample processing and CE analysis with laser-induced fluorescence (LIF) detection. Furthermore, the entire system can be sterilized and placed in a cleanroom environment for analyzing samples returned from extraterrestrial targets, if desired. This is an entirely new capability never demonstrated before. The ability to manipulate solid samples, coupled with lab-on-a-chip analysis technology, will enable ultraclean and ultrasensitive end-to-end analysis of samples that is orders of magnitude more sensitive than the ppb goal given in the Science Instruments.
Web-based data acquisition and management system for GOSAT validation Lidar data analysis
NASA Astrophysics Data System (ADS)
Okumura, Hiroshi; Takubo, Shoichiro; Kawasaki, Takeru; Abdullah, Indra N.; Uchino, Osamu; Morino, Isamu; Yokota, Tatsuya; Nagai, Tomohiro; Sakai, Tetsu; Maki, Takashi; Arai, Kohei
2012-11-01
An web-base data acquisition and management system for GOSAT (Greenhouse gases Observation SATellite) validation lidar data analysis is developed. The system consists of data acquisition sub-system (DAS) and data management sub-system (DMS). DAS written in Perl language acquires AMeDAS ground-level meteorological data, Rawinsonde upper-air meteorological data, ground-level oxidant data, skyradiometer data, skyview camera images, meteorological satellite IR image data and GOSAT validation lidar data. DMS written in PHP language demonstrates satellite-pass date and all acquired data.
Validating a Geographical Image Retrieval System.
ERIC Educational Resources Information Center
Zhu, Bin; Chen, Hsinchun
2000-01-01
Summarizes a prototype geographical image retrieval system that demonstrates how to integrate image processing and information analysis techniques to support large-scale content-based image retrieval. Describes an experiment to validate the performance of this image retrieval system against that of human subjects by examining similarity analysis…
Performance analysis of a multispectral system for mine detection in the littoral zone
NASA Astrophysics Data System (ADS)
Hargrove, John T.; Louchard, Eric
2004-09-01
Science & Technology International (STI) has developed, under contract with the Office of Naval Research, a system of multispectral airborne sensors and processing algorithms capable of detecting mine-like objects in the surf zone. STI has used this system to detect mine-like objects in a littoral environment as part of blind tests at Kaneohe Marine Corps Base Hawaii, and Panama City, Florida. The airborne and ground subsystems are described. The detection algorithm is graphically illustrated. We report on the performance of the system configured to operate without a human in the loop. A subsurface (underwater bottom proud mine in the surf zone and moored mine in shallow water) mine detection capability is demonstrated in the surf zone, and in shallow water with wave spillage and foam. Our analysis demonstrates that this STI-developed multispectral airborne mine detection system provides a technical foundation for a viable mine counter-measures system for use prior to an amphibious assault.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
Biofuel transportation analysis tool : description, methodology, and demonstration scenarios
DOT National Transportation Integrated Search
2014-01-01
This report describes a Biofuel Transportation Analysis Tool (BTAT), developed by the U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe) in support of the Department of Defense (DOD) Office of Naval Research ...
Droplet-based microfluidic analysis and screening of single plant cells.
Yu, Ziyi; Boehm, Christian R; Hibberd, Julian M; Abell, Chris; Haseloff, Jim; Burgess, Steven J; Reyna-Llorens, Ivan
2018-01-01
Droplet-based microfluidics has been used to facilitate high-throughput analysis of individual prokaryote and mammalian cells. However, there is a scarcity of similar workflows applicable to rapid phenotyping of plant systems where phenotyping analyses typically are time-consuming and low-throughput. We report on-chip encapsulation and analysis of protoplasts isolated from the emergent plant model Marchantia polymorpha at processing rates of >100,000 cells per hour. We use our microfluidic system to quantify the stochastic properties of a heat-inducible promoter across a population of transgenic protoplasts to demonstrate its potential for assessing gene expression activity in response to environmental conditions. We further demonstrate on-chip sorting of droplets containing YFP-expressing protoplasts from wild type cells using dielectrophoresis force. This work opens the door to droplet-based microfluidic analysis of plant cells for applications ranging from high-throughput characterisation of DNA parts to single-cell genomics to selection of rare plant phenotypes.
Cooperative Collision Avoidance Technology Demonstration Data Analysis Report
NASA Technical Reports Server (NTRS)
2007-01-01
This report details the National Aeronautics and Space Administration (NASA) Access 5 Project Office Cooperative Collision Avoidance (CCA) Technology Demonstration for unmanned aircraft systems (UAS) conducted from 21 to 28 September 2005. The test platform chosen for the demonstration was the Proteus Optionally Piloted Vehicle operated by Scaled Composites, LLC, flown out of the Mojave Airport, Mojave, CA. A single intruder aircraft, a NASA Gulf stream III, was used during the demonstration to execute a series of near-collision encounter scenarios. Both aircraft were equipped with Traffic Alert and Collision Avoidance System-II (TCAS-II) and Automatic Dependent Surveillance Broadcast (ADS-B) systems. The objective of this demonstration was to collect flight data to support validation efforts for the Access 5 CCA Work Package Performance Simulation and Systems Integration Laboratory (SIL). Correlation of the flight data with results obtained from the performance simulation serves as the basis for the simulation validation. A similar effort uses the flight data to validate the SIL architecture that contains the same sensor hardware that was used during the flight demonstration.
Excimer laser calibration system.
Gottsch, J D; Rencs, E V; Cambier, J L; Hall, D; Azar, D T; Stark, W J
1996-01-01
Excimer laser photoablation for refractive and therapeutic keratectomies has been demonstrated to be feasible and practicable. However, corneal laser ablations are not without problems, including the delivery and maintenance of a homogeneous beam. We have developed an excimer laser calibration system capable of characterizing a laser ablation profile. Beam homogeneity is determined by the analysis of a polymethylmethacrylate (PMMA)-based thin-film using video capture and image processing. The ablation profile is presented as a color-coded map. Interpolation of excimer calibration system analysis provides a three-dimensional representation of elevation profiles that correlates with two-dimensional scanning profilometry. Excimer calibration analysis was performed before treating a monkey undergoing phototherapeutic keratectomy and two human subjects undergoing myopic spherocylindrical photorefractive keratectomy. Excimer calibration analysis was performed before and after laser refurbishing. Laser ablation profiles in PMMA are resolved by the excimer calibration system to .006 microns/pulse. Correlations with ablative patterns in a monkey cornea were demonstrated with preoperative and postoperative keratometry using corneal topography, and two human subjects using video-keratography. Excimer calibration analysis predicted a central-steep-island ablative pattern with the VISX Twenty/Twenty laser, which was confirmed by corneal topography immediately postoperatively and at 1 week after reepithelialization in the monkey. Predicted central steep islands in the two human subjects were confirmed by video-keratography at 1 week and at 1 month. Subsequent technical refurbishing of the laser resulted in a beam with an overall increased ablation rate measured as microns/pulse with a donut ablation profile. A patient treated after repair of the laser electrodes demonstrated no central island. This excimer laser calibration system can precisely detect laser-beam ablation profiles. The calibration system correctly predicted central islands after excimer photoablation in a treated monkey cornea and in two treated human subjects. Detection of excimer-laser-beam ablation profiles may be useful for precise calibration of excimer lasers before human photorefractive and therapeutic surgery.
An automated real-time microscopy system for analysis of fluorescence resonance energy transfer
NASA Astrophysics Data System (ADS)
Bernardini, André; Wotzlaw, Christoph; Lipinski, Hans-Gerd; Fandrey, Joachim
2010-05-01
Molecular imaging based on Fluorescence Resonance Energy Transfer (FRET) is widely used in cellular physiology both for protein-protein interaction analysis and detecting conformational changes of single proteins, e.g. during activation of signaling cascades. However, getting reliable results from FRET measurements is still hampered by methodological problems such as spectral bleed through, chromatic aberration, focal plane shifts and false positive FRET. Particularly false positive FRET signals caused by random interaction of the fluorescent dyes can easily lead to misinterpretation of the data. This work introduces a Nipkow Disc based FRET microscopy system, that is easy to operate without expert knowledge of FRET. The system automatically accounts for all relevant sources of errors and provides various result presentations of two, three and four dimensional FRET data. Two examples are given to demonstrate the scope of application. An interaction analysis of the two subunits of the hypoxia-inducible transcription factor 1 demonstrates the use of the system as a tool for protein-protein interaction analysis. As an example for time lapse observations, the conformational change of the fluorophore labeled heat shock protein 33 in the presence of oxidant stress is shown.
Prijic, Sergej; Buchhorn, Reiner; Kosutic, Jovan; Vukomanovic, Vladislav; Prijic, Andreja; Bjelakovic, Bojko; Zdravkovic, Marija
2014-01-01
Numerous prospective randomized clinical trials demonstrated favorable effect of beta-blockers in adults with chronic heart failure. However, effectiveness of beta blockers in pediatric patients with systemic ventricle systolic dysfunction was not recognized sufficiently. Limited number of pediatric patients might be the course of unrecognized carvediolol treatment benefit. Currently, no meta-analysis has examined the impact of carvedilol and conventional therapy on the clinical outcome in children with chronic heart failure due to impaired systemic ventricle systolic function. We have systematically searched the Medline/PubMed and Cochrane Library for the controlled clinical trials that examine carvedilol and standard treatment efficacy in pediatric patients with systemic ventricle systolic dysfunction. Mean differences for continuous variables, odds ratios for dichotomous outcomes, heterogeneity between studies and publication bias were calculated using Cochrane Review Manager (Rev Man 5.2). Total of 8 prospective/observational studies met established criteria. Odds ratio for chronic heart failure related mortality/heart transplantation secondary to carvedilol was 0.52 (95% CI: 0.28-0.97, I(2) = 0%). Our analysis showed that carvedilol could prevent 1 death/ heart transplantation by treating 14 pediatric patients with impaired systemic ventricle systolic function. Meta-analysis demonstrated clinical outcome benefit of carvedilol in children with chronic heart failure.
NASA Runway Incursion Prevention System (RIPS) Dallas-Fort Worth Demonstration Performance Analysis
NASA Technical Reports Server (NTRS)
Cassell, Rick; Evers, Carl; Esche, Jeff; Sleep, Benjamin; Jones, Denise R. (Technical Monitor)
2002-01-01
NASA's Aviation Safety Program Synthetic Vision System project conducted a Runway Incursion Prevention System (RIPS) flight test at the Dallas-Fort Worth International Airport in October 2000. The RIPS research system includes advanced displays, airport surveillance system, data links, positioning system, and alerting algorithms to provide pilots with enhanced situational awareness, supplemental guidance cues, a real-time display of traffic information, and warnings of runway incursions. This report describes the aircraft and ground based runway incursion alerting systems and traffic positioning systems (Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Service - Broadcast (TIS-B)). A performance analysis of these systems is also presented.
Optimal subinterval selection approach for power system transient stability simulation
Kim, Soobae; Overbye, Thomas J.
2015-10-21
Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modalmore » analysis using a single machine infinite bus (SMIB) system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. As a result, the performance of the proposed method is demonstrated with the GSO 37-bus system.« less
DOT National Transportation Integrated Search
1995-10-01
REAL-TIME TRAFFIC INFORMATION, ROUTE GUIDANCE, ROUTE PLANNING, INTELLIGENT VEHICLE INITIATIVE OR IVI ">">KEYWORDS: OPERATIONAL TESTS, TRAVTEK, ADVANCED TRAVELER INFORMATION SYSTEMS OR ATIS, ADVANCED TRAFFIC MANAGEMENT SYSTEMS OR ATMS, INTELLI...
Note: An improved 3D imaging system for electron-electron coincidence measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip
We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.
Note: An improved 3D imaging system for electron-electron coincidence measurements
NASA Astrophysics Data System (ADS)
Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen
2015-09-01
We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.
Interactive computer graphics and its role in control system design of large space structures
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.
1985-01-01
This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.
Paramedir: A Tool for Programmable Performance Analysis
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Labarta, Jesus; Gimenez, Judit
2004-01-01
Performance analysis of parallel scientific applications is time consuming and requires great expertise in areas such as programming paradigms, system software, and computer hardware architectures. In this paper we describe a tool that facilitates the programmability of performance metric calculations thereby allowing the automation of the analysis and reducing the application development time. We demonstrate how the system can be used to capture knowledge and intuition acquired by advanced parallel programmers in order to be transferred to novice users.
Space system operations and support cost analysis using Markov chains
NASA Technical Reports Server (NTRS)
Unal, Resit; Dean, Edwin B.; Moore, Arlene A.; Fairbairn, Robert E.
1990-01-01
This paper evaluates the use of Markov chain process in probabilistic life cycle cost analysis and suggests further uses of the process as a design aid tool. A methodology is developed for estimating operations and support cost and expected life for reusable space transportation systems. Application of the methodology is demonstrated for the case of a hypothetical space transportation vehicle. A sensitivity analysis is carried out to explore the effects of uncertainty in key model inputs.
Solar energy system economic evaluation: IBM System 2, Togus, Maine
NASA Technical Reports Server (NTRS)
1980-01-01
The economic analysis of the solar energy system, is developed for Torgus and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f-chart design procedure with inputs taken on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over a projected twenty year life, life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results demonstrate that the solar energy system is economically viable at all of the five sites for which the analysis was conducted.
AN E-TEXTILE SYSTEM FOR MOTION ANALYSIS
EDMISON, Josh; JONES, Mark; LOCKHART, Thurmon; MARTIN, Thomas
2010-01-01
Electronic textiles (e-textiles) offer the promise of home health care devices that integrate seamlessly into the wearer’s everyday lifestyle while providing a higher level of functionality than current devices. Existing gait analysis systems are cumbersome laboratory-based systems that, while providing valuable information, would be difficult or impossible to deploy in the home. Yet gait analysis systems offer the promise of preventing and/or mitigating the serious effects of falls in the elderly population. This paper proposes an e-textile solution to this problem along with a design approach for realizing a solution that is inexpensive and usable across the elderly population. Preliminary results are given to demonstrate the promise of the proposed system. PMID:15718659
Demonstration of a Balloon Borne Arc-second Pointer Design
NASA Astrophysics Data System (ADS)
Deweese, K.; Ward, P.
Many designs for utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments have been proposed throughout the years A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement The test results of a demonstration prototype of the design with similar ability are also presented Discussion of a high fidelity controller simulation for design analysis is presented The flexibility of the flight train is represented through generalized modal analysis A multiple controller scheme is utilized for coarse and fine pointing Coarse azimuth pointing is accomplished by an established pointing system with extensive flight history residing above the gondola structure A pitch-yaw gimbal mount is used for fine pointing providing orthogonal axes when nominally on target Fine pointing actuation is from direct drive dc motors eliminating backlash problems An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static friction are provided A unique bearing hub design is introduced that eliminates static friction from the system dynamics A control scheme involving linear
Delory, Benjamin M; Li, Mao; Topp, Christopher N; Lobet, Guillaume
2018-01-01
Quantifying plant morphology is a very challenging task that requires methods able to capture the geometry and topology of plant organs at various spatial scales. Recently, the use of persistent homology as a mathematical framework to quantify plant morphology has been successfully demonstrated for leaves, shoots, and root systems. In this paper, we present a new data analysis pipeline implemented in the R package archiDART to analyse root system architectures using persistent homology. In addition, we also show that both geometric and topological descriptors are necessary to accurately compare root systems and assess their natural complexity.
archiDART v3.0: A new data analysis pipeline allowing the topological analysis of plant root systems
Delory, Benjamin M.; Li, Mao; Topp, Christopher N.; Lobet, Guillaume
2018-01-01
Quantifying plant morphology is a very challenging task that requires methods able to capture the geometry and topology of plant organs at various spatial scales. Recently, the use of persistent homology as a mathematical framework to quantify plant morphology has been successfully demonstrated for leaves, shoots, and root systems. In this paper, we present a new data analysis pipeline implemented in the R package archiDART to analyse root system architectures using persistent homology. In addition, we also show that both geometric and topological descriptors are necessary to accurately compare root systems and assess their natural complexity. PMID:29636899
Analysis of shadowing effects on spacecraft power systems
NASA Technical Reports Server (NTRS)
Fincannon, H. J.
1995-01-01
This paper describes the Orbiting Spacecraft Shadowing Analysis (OSSA) computer program that was developed at NASA Lewis Research Center in order to assess the shadowing effects on various power systems. The algorithms, inputs and outputs are discussed. Examples of typical shadowing analyses that have been performed for the International Space Station Freedom, International Space Station Alpha and the joint United States/Russian Mir Solar Dynamic Flight Experiment Project are covered. Effects of shadowing on power systems are demonstrated.
Ritter, Alison; Lancaster, Kari
2013-01-01
Assessing the extent to which drug research influences and impacts upon policy decision-making needs to go beyond bibliometric analysis of academic citations. Policy makers do not necessarily access the academic literature, and policy processes are largely iterative and rely on interactions and relationships. Furthermore, media representation of research contributes to public opinion and can influence policy uptake. In this context, assessing research influence involves examining the extent to which a research project is taken up in policy documents, used within policy processes, and disseminated via the media. This three component approach is demonstrated using a case example of two ongoing illicit drug monitoring systems: the Illicit Drug Reporting System (IDRS) and the Ecstasy and related Drugs Reporting System (EDRS). Systematic searches for reference to the IDRS and/or EDRS within policy documents, across multiple policy processes (such as parliamentary inquiries) and in the media, in conjunction with analysis of the types of mentions in these three sources, enables an analysis of policy influence. The context for the research is also described as the foundation for the approach. The application of the three component approach to the case study demonstrates a practical and systematic retrospective approach to measure drug research influence. For example, the ways in which the IDRS and EDRS were mentioned in policy documents demonstrated research utilisation. Policy processes were inclusive of IDRS and EDRS findings, while the media analysis revealed only a small contribution in the context of wider media reporting. Consistent with theories of policy processes, assessing the extent of research influence requires a systematic analysis of policy documents and processes. Development of such analyses and associated methods will better equip researchers to evaluate the impact of research. Copyright © 2012 Elsevier B.V. All rights reserved.
Prototype Development of a Tradespace Analysis Tool for Spaceflight Medical Resources.
Antonsen, Erik L; Mulcahy, Robert A; Rubin, David; Blue, Rebecca S; Canga, Michael A; Shah, Ronak
2018-02-01
The provision of medical care in exploration-class spaceflight is limited by mass, volume, and power constraints, as well as limitations of available skillsets of crewmembers. A quantitative means of exploring the risks and benefits of inclusion or exclusion of onboard medical capabilities may help to inform the development of an appropriate medical system. A pilot project was designed to demonstrate the utility of an early tradespace analysis tool for identifying high-priority resources geared toward properly equipping an exploration mission medical system. Physician subject matter experts identified resources, tools, and skillsets required, as well as associated criticality scores of the same, to meet terrestrial, U.S.-specific ideal medical solutions for conditions concerning for exploration-class spaceflight. A database of diagnostic and treatment actions and resources was created based on this input and weighed against the probabilities of mission-specific medical events to help identify common and critical elements needed in a future exploration medical capability. Analysis of repository data demonstrates the utility of a quantitative method of comparing various medical resources and skillsets for future missions. Directed database queries can provide detailed comparative estimates concerning likelihood of resource utilization within a given mission and the weighted utility of tangible and intangible resources. This prototype tool demonstrates one quantitative approach to the complex needs and limitations of an exploration medical system. While this early version identified areas for refinement in future version development, more robust analysis tools may help to inform the development of a comprehensive medical system for future exploration missions.Antonsen EL, Mulcahy RA, Rubin D, Blue RS, Canga MA, Shah R. Prototype development of a tradespace analysis tool for spaceflight medical resources. Aerosp Med Hum Perform. 2018; 89(2):108-114.
The development of a solar-powered residential heating and cooling system
NASA Technical Reports Server (NTRS)
1974-01-01
Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.
Mindtagger: A Demonstration of Data Labeling in Knowledge Base Construction.
Shin, Jaeho; Ré, Christopher; Cafarella, Michael
2015-08-01
End-to-end knowledge base construction systems using statistical inference are enabling more people to automatically extract high-quality domain-specific information from unstructured data. As a result of deploying DeepDive framework across several domains, we found new challenges in debugging and improving such end-to-end systems to construct high-quality knowledge bases. DeepDive has an iterative development cycle in which users improve the data. To help our users, we needed to develop principles for analyzing the system's error as well as provide tooling for inspecting and labeling various data products of the system. We created guidelines for error analysis modeled after our colleagues' best practices, in which data labeling plays a critical role in every step of the analysis. To enable more productive and systematic data labeling, we created Mindtagger, a versatile tool that can be configured to support a wide range of tasks. In this demonstration, we show in detail what data labeling tasks are modeled in our error analysis guidelines and how each of them is performed using Mindtagger.
Applications of flight control system methods to an advanced combat rotorcraft
NASA Technical Reports Server (NTRS)
Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.
1989-01-01
Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.
Identification of visual evoked response parameters sensitive to pilot mental state
NASA Technical Reports Server (NTRS)
Zacharias, G. L.
1988-01-01
Systems analysis techniques were developed and demonstrated for modeling the electroencephalographic (EEG) steady state visual evoked response (ssVER), for use in EEG data compression and as an indicator of mental workload. The study focused on steady state frequency domain stimulation and response analysis, implemented with a sum-of-sines (SOS) stimulus generator and an off-line describing function response analyzer. Three major tasks were conducted: (1) VER related systems identification material was reviewed; (2) Software for experiment control and data analysis was developed and implemented; and (3) ssVER identification and modeling was demonstrated, via a mental loading experiment. It was found that a systems approach to ssVER functional modeling can serve as the basis for eventual development of a mental workload indicator. The review showed how transient visual evoked response (tVER) and ssVER research are related at the functional level, the software development showed how systems techniques can be used for ssVER characterization, and the pilot experiment showed how a simple model can be used to capture the basic dynamic response of the ssVER, under varying loads.
Dynamic analysis of a photovoltaic power system with battery storage capability
NASA Technical Reports Server (NTRS)
Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.
1979-01-01
A photovolataic power system with a battery storage capability is analyzed. A dual battery current control concept is proposed, which enables the battery to either supply or accept power depending upon system environment and load conditions. A simulation of the power system, including the battery current control, is developed and evaluated. The evaulation demonstrate the visbility of the battery control concept of switch the battery from a charge to discharge mode and back as required by load and environmental conditions. An acceptable system operation is demonstrated over the entire insolation range. Additionally, system sensitivity, bandwidth, and damping characteristics of the battery control are shown to be acceptable for a projected hardware implementation.
A comparison of healing rates on two pressure-relieving systems.
Russell, L; Reynolds, T; Carr, J; Evans, A; Holmes, M
The authors have previously reported the preliminary results of a randomized-controlled trial comparing the relative efficacy of two pressure-relieving systems: Huntleigh Nimbus 3 and Aura Cushion, and Pegasus Cairwave Therapy System and ProActive Seating Cushion (Russell et al, 2000). Although both the mattresses and cushions were effective treatments for pressure ulcers, the Huntleigh equipment was demonstrated to be statistically more effective for heel ulcers, but no differences were demonstrated for sacral ulcers. This article gives a more detailed analysis of the 141 patients assessed using computerized-image analysis of the digital images of sacral ulcers captured during the trial and specifically discusses the healing rates and other patient characteristics. Ninety-eight per cent of ulcers examined were deemed superficial (Torrance grade 2a, 2b, 3). Precision of image analysis assessed by within- and between-batch coefficients of variation was excellent: calibration CV 0.93-1.84%; area CV 4.61-5.72%. The healing rates on the two mattresses were not shown to be statistically different from each other.
Accuracy limitations of hyperbolic multilateration systems
DOT National Transportation Integrated Search
1973-03-22
The report is an analysis of the accuracy limitations of hyperbolic multilateration systems. A central result is a demonstration that the inverse of the covariance matrix for positional errors corresponds to the moment of inertia matrix of a simple m...
14 CFR 35.42 - Components of the propeller control system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Components of the propeller control system... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.42 Components of the propeller control system. The applicant must demonstrate by tests, analysis based on tests, or service...
14 CFR 35.42 - Components of the propeller control system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Components of the propeller control system... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.42 Components of the propeller control system. The applicant must demonstrate by tests, analysis based on tests, or service...
14 CFR 35.42 - Components of the propeller control system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Components of the propeller control system... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.42 Components of the propeller control system. The applicant must demonstrate by tests, analysis based on tests, or service...
14 CFR 35.42 - Components of the propeller control system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Components of the propeller control system... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.42 Components of the propeller control system. The applicant must demonstrate by tests, analysis based on tests, or service...
14 CFR 35.42 - Components of the propeller control system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Components of the propeller control system... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.42 Components of the propeller control system. The applicant must demonstrate by tests, analysis based on tests, or service...
An Integrated Library System from Existing Microcomputer Programs.
ERIC Educational Resources Information Center
Kuntz, Lynda S.
1988-01-01
Demonstrates how three commercial microcomputer software packages--PC-Talk III, Wordstar, and dBase III--were combined to produce an integrated library system at the U.S. Army Concepts Analysis Agency library. The retrospective conversion process is discussed, and the four modules of the system are described: acquisitions/cataloging; online…
The Influence of the Conduct System and Campus Environments on Student Learning
ERIC Educational Resources Information Center
Janosik, Steven M.; Stimpson, Matthew T.
2017-01-01
Researchers have demonstrated the influence of the perceived efficacy of a conduct system on student learning (King, 2012; Stimpson & Janosik, 2015). Multivariate Analysis of Variance (MANOVA) was used to test the relationship between perceived level of conduct system efficacy, institutional culture, and self-reported student learning. More…
Lutz, Sascha; Weber, Patrick; Focke, Max; Faltin, Bernd; Hoffmann, Jochen; Müller, Claas; Mark, Daniel; Roth, Günter; Munday, Peter; Armes, Niall; Piepenburg, Olaf; Zengerle, Roland; von Stetten, Felix
2010-04-07
For the first time we demonstrate a self-sufficient lab-on-a-foil system for the fully automated analysis of nucleic acids which is based on the recently available isothermal recombinase polymerase amplification (RPA). The system consists of a novel, foil-based centrifugal microfluidic cartridge including prestored liquid and dry reagents, and a commercially available centrifugal analyzer for incubation at 37 degrees C and real-time fluorescence detection. The system was characterized with an assay for the detection of the antibiotic resistance gene mecA of Staphylococcus aureus. The limit of detection was <10 copies and time-to-result was <20 min. Microfluidic unit operations comprise storage and release of liquid reagents, reconstitution of lyophilized reagents, aliquoting the sample into < or = 30 independent reaction cavities, and mixing of reagents with the DNA samples. The foil-based cartridge was produced by blow-molding and sealed with a self-adhesive tape. The demonstrated system excels existing PCR based lab-on-a-chip platforms in terms of energy efficiency and time-to-result. Applications are suggested in the field of mobile point-of-care analysis, B-detection, or in combination with continuous monitoring systems.
Chaotic Brillouin optical correlation-domain analysis
NASA Astrophysics Data System (ADS)
Zhang, Jianzhong; Zhang, Mingtao; Zhang, Mingjiang; Liu, Yi; Feng, Changkun; Wang, Yahui; Wang, Yuncai
2018-04-01
We propose and experimentally demonstrate a chaotic Brillouin optical correlation-domain analysis (BOCDA) system for distributed fiber sensing. The utilization of the chaotic laser with low coherent state ensures high spatial resolution. The experimental results demonstrate a 3.92-cm spatial resolution over a 906-m measurement range. The uncertainty in the measurement of the local Brillouin frequency shift is 1.2MHz. The measurement signal-to-noise ratio is given, which is agreement with the theoretical value.
NASA Astrophysics Data System (ADS)
Liu, Ling
The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.
X-Band CubeSat Communication System Demonstration
NASA Technical Reports Server (NTRS)
Altunc, Serhat; Kegege, Obadiah; Bundick, Steve; Shaw, Harry; Schaire, Scott; Bussey, George; Crum, Gary; Burke, Jacob C.; Palo, Scott; O'Conor, Darren
2015-01-01
Today's CubeSats mostly operate their communications at UHF- and S-band frequencies. UHF band is presently crowded, thus downlink communications are at lower data rates due to bandwidth limitations and are unreliable due to interference. This research presents an end-to-end robust, innovative, compact, efficient and low cost S-band uplink and X-band downlink CubeSat communication system demonstration between a balloon and a Near Earth Network (NEN) ground system. Since communication systems serve as umbilical cords for space missions, demonstration of this X-band communication system is critical for successfully supporting current and future CubeSat communication needs. This research has three main objectives. The first objective is to design, simulate, and test a CubeSat S- and X-band communication system. Satellite Tool Kit (STK) dynamic link budget calculations and HFSS Simulations and modeling results have been used to trade the merit of various designs for small satellite applications. S- and X-band antennas have been tested in the compact antenna test range at Goddard Space Flight Center (GSFC) to gather radiation pattern data. The second objective is simulate and test a CubeSat compatible X-band communication system at 12.5Mbps including S-band antennas, X-band antennas, Laboratory for Atmospheric and Space Physics (LASP) /GSFC transmitter and an S-band receiver from TRL-5 to TRL-8 by the end of this effort. Different X-band communication system components (antennas, diplexers, etc.) from GSFC, other NASA centers, universities, and private companies have been investigated and traded, and a complete component list for the communication system baseline has been developed by performing analytical and numerical analysis. This objective also includes running simulations and performing trades between different X-band antenna systems to optimize communication system performance. The final objective is to perform an end-to-end X-band CubeSat communication system demonstration between a balloon and/or a sounding rocket and a Near Earth Network (NEN) ground system. This paper presents CubeSat communication systems simulation results, analysis of X-band and S-band antennas and RF front-end components, transceiver design, analysis and optimization of space-to-ground communication performance, subsystem development, as well as the test results for an end-to-end X-band CubeSat communication system demonstration. The outcome of this work will be used to pave the way for next generation NEN-compatible X-band CubeSat communication systems to support higher data rates with more advanced modulation and forward error correction (FEC) coding schemes, and to support and attract new science missions at lower cost. It also includes an abbreviated concept of operations for CubeSat users to utilize the NEN, starting from first contact with NASA's communication network and continuing through on-orbit operations.
NASA Technical Reports Server (NTRS)
1980-01-01
Economic analysis of the solar energy system installed at Loxahatchee, was developed for Loxahatchee and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis was accomplished based on the technical and economic models in the f Chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system costs over a projected twenty year life, life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables was also investigated. The results demonstrate that the solar energy system is economically viable at all of the five sites for which the analysis was conducted.
NASA Astrophysics Data System (ADS)
Bao, Cheng; Cai, Ningsheng; Croiset, Eric
2011-10-01
Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.
Science Alert Demonstration with a Rover Traverse Science Data Analysis System
NASA Technical Reports Server (NTRS)
Castano, R.; Estlin, T.; Gaines, D.; Castano, A.; Bornstein, B.; Anderson, R. C.; Judd, M.; Stough, T.; Wagstaff, K.
2005-01-01
The Onboard Autonomous Science Investigation System (OASIS) evaluates geologic data gathered by a planetary rover. This analysis is used to prioritize the data for transmission, so that the data with the highest science value is transmitted to Earth. In addition, the onboard analysis results are used to identify science opportunities. A planning and scheduling component of the system enables the rover to take advantage of the identified science opportunity. OASIS is a NASA-funded research project that is currently being tested on the FIDO rover at JPL for the use on future missions.
Development, Demonstration, and Analysis of an Integrated Iodine Hall Thruster Feed System
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Peeples, Steven R.; Burt, Adam O.; Martin, Adam K.; Martinez, Armando; Seixal, Joao F.; Mauro, Stephanie
2016-01-01
The design of an in-space iodine-vapor-fed Hall effect thruster propellant management system is described. The solid-iodine propellant tank has unique issues associated with the microgravity environment, requiring a solution where the iodine is maintained in intimate thermal contact with the heated tank walls. The flow control valves required alterations from earlier iterations to survive for extended periods of time in the corrosive iodine-vapor environment. Materials have been selected for the entire feed system that can chemically resist the iodine vapor, with the design now featuring Hastelloy or Inconel for almost all the wetted components. An integrated iodine feed system/Hall thruster demonstration unit was fabricated and tested, with all control being handled by an onboard electronics card specifically designed to operate the feed system. Structural analysis shows that the feed system can survive launch loads after the implementation of some minor reinforcement. Flow modeling, while still requiring significant additional validation, is presented to show its potential in capturing the behavior of components in this low-flow, low-pressure system.
Pelagic Habitat Analysis Module (PHAM) for GIS Based Fisheries Decision Support
NASA Technical Reports Server (NTRS)
Kiefer, D. A.; Armstrong, Edward M.; Harrison, D. P.; Hinton, M. G.; Kohin, S.; Snyder, S.; O'Brien, F. J.
2011-01-01
We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus & pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus nd pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.
NASA Technical Reports Server (NTRS)
Young, Roy M.; Adams, Charles L.
2010-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.
NASA Technical Reports Server (NTRS)
Blackburn, C. L.; Dovi, A. R.; Kurtze, W. L.; Storaasli, O. O.
1981-01-01
A computer software system for the processing and integration of engineering data and programs, called IPAD (Integrated Programs for Aerospace-Vehicle Design), is described. The ability of the system to relieve the engineer of the mundane task of input data preparation is demonstrated by the application of a prototype system to the design, analysis, and/or machining of three simple structures. Future work to further enhance the system's automated data handling and ability to handle larger and more varied design problems are also presented.
Dilational symmetry-breaking in thermodynamics
NASA Astrophysics Data System (ADS)
Lin, Chris L.; Ordóñez, Carlos R.
2017-04-01
Using thermodynamic relations and dimensional analysis we derive a general formula for the thermodynamical trace 2{ E}-DP for nonrelativistic systems and { E}-DP for relativistic systems, where D is the number of spatial dimensions, in terms of the microscopic scales of the system within the grand canonical ensemble. We demonstrate the formula for several cases, including anomalous systems which develop scales through dimensional transmutation. Using this relation, we make explicit the connection between dimensional analysis and the virial theorem. This paper is focused mainly on the non-relativistic aspects of this relation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-12
... modeling demonstration should include supporting technical analyses and descriptions of all relevant....5 and NO X . The attainment demonstration includes: Technical analyses that locate, identify, and... modeling analysis is a complex technical evaluation that began with selection of the modeling system. The...
Analysis and design of nonlinear resonances via singularity theory
NASA Astrophysics Data System (ADS)
Cirillo, G. I.; Habib, G.; Kerschen, G.; Sepulchre, R.
2017-03-01
Bifurcation theory and continuation methods are well-established tools for the analysis of nonlinear mechanical systems subject to periodic forcing. We illustrate the added value and the complementary information provided by singularity theory with one distinguished parameter. While tracking bifurcations reveals the qualitative changes in the behaviour, tracking singularities reveals how structural changes are themselves organised in parameter space. The complementarity of that information is demonstrated in the analysis of detached resonance curves in a two-degree-of-freedom system.
1983-11-01
INSTRUMENTATION ;(U) FORKLIFT VEHICLES ;(U) EXPERIMENTAL DATA IDENTIFIERS: OBJECTIVE: (U) SUPPORT INHOUSE RESEARCH FOR- ACQUISITION AND ANALYSIS OF...ROBOTIC RECONNAISSANCE VEHICLE DEMONSTRATOR WITH TERRAIN ANALYSIS . THIS WORK WILL SPECIFY THE BASE LINE HARDWARE, SOFTWARE, DATA BASE, AND SYSTEM...THE DATA ANALYSIS . THIS IS ALSO TRUE OF INFLIGMT DATA THAT THE PILOT IS REQUIRED TO ANALYZE. THIS RESEARCH IS CONCERNED WITH THE REPORT NO. CX7419
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Goldberg, M.
1982-01-01
NASA's Eastern Regional Remote Sensing Applications Center (ERRSAC) has recognized the need to accommodate spatial analysis techniques in its remote sensing technology transfer program. A computerized Geographic Information System to incorporate remotely sensed data, specifically Landsat, with other relevant data was considered a realistic approach to address a given resource problem. Questions arose concerning the selection of a suitable available software system to demonstrate, train, and undertake demonstration projects with ERRSAC's user community. The very specific requirements for such a system are discussed. The solution found involved the addition of geographic information processing functions to the Interactive Digital Image Manipulation System (IDIMS). Details regarding the functions of the new integrated system are examined along with the characteristics of the software.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; Zinnecker, Alicia
2014-01-01
Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000(CMAPSS40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLABSimulink (The MathWorks, Inc.) environment.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey Thomas; Zinnecker, Alicia Mae
2014-01-01
Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS 40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLAB Simulink (The MathWorks, Inc.) environment.
Gaudino, Stefano; Goia, Irene; Grignani, Carlo; Monaco, Stefano; Sacco, Dario
2014-07-01
Dairy farms control an important share of the agricultural area of Northern Italy. Zero grazing, large maize-cropped areas, high stocking densities, and high milk production make them intensive and prone to impact the environment. Currently, few published studies have proposed indicator sets able to describe the entire dairy farm system and their internal components. This work had four aims: i) to propose a list of agro-environmental indicators to assess dairy farms; ii) to understand which indicators classify farms best; iii) to evaluate the dairy farms based on the proposed indicator list; iv) to link farmer decisions to the consequent environmental pressures. Forty agro-environmental indicators selected for this study are described. Northern Italy dairy systems were analysed considering both farmer decision indicators (farm management) and the resulting pressure indicators that demonstrate environmental stress on the entire farming system, and its components: cropping system, livestock system, and milk production. The correlations among single indicators identified redundant indicators. Principal Components Analysis distinguished which indicators provided meaningful information about each pressure indicator group. Analysis of the communalities and the correlations among indicators identified those that best represented farm variability: Farm Gate N Balance, Greenhouse Gas Emission, and Net Energy of the farm system; Net Energy and Gross P Balance of the cropping system component; Energy Use Efficiency and Purchased Feed N Input of the livestock system component; N Eco-Efficiency of the milk production component. Farm evaluation, based on the complete list of selected indicators demonstrated organic farming resulted in uniformly high values, while farms with low milk-producing herds resulted in uniformly low values. Yet on other farms, the environmental quality varied greatly when different groups of pressure indicators were considered, which highlighted the importance of expanding environmental analysis to effects within the farm. Statistical analysis demonstrated positive correlations between all farmer decision and pressure group indicators. Consumption of mineral fertiliser and pesticide negatively influenced the cropping system. Furthermore, stocking rate was found to correlate positively with the milk production component and negatively with the farm system. This study provides baseline references for ex ante policy evaluation, and monitoring tools for analysis both in itinere and ex post environment policy implementation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Introduction to the computational structural mechanics testbed
NASA Technical Reports Server (NTRS)
Lotts, C. G.; Greene, W. H.; Mccleary, S. L.; Knight, N. F., Jr.; Paulson, S. S.; Gillian, R. E.
1987-01-01
The Computational Structural Mechanics (CSM) testbed software system based on the SPAR finite element code and the NICE system is described. This software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Lockheed and Engineering Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with a SPAR computational modules.
Surrogate models for efficient stability analysis of brake systems
NASA Astrophysics Data System (ADS)
Nechak, Lyes; Gillot, Frédéric; Besset, Sébastien; Sinou, Jean-Jacques
2015-07-01
This study assesses capacities of the global sensitivity analysis combined together with the kriging formalism to be useful in the robust stability analysis of brake systems, which is too costly when performed with the classical complex eigenvalues analysis (CEA) based on finite element models (FEMs). By considering a simplified brake system, the global sensitivity analysis is first shown very helpful for understanding the effects of design parameters on the brake system's stability. This is allowed by the so-called Sobol indices which discriminate design parameters with respect to their influence on the stability. Consequently, only uncertainty of influent parameters is taken into account in the following step, namely, the surrogate modelling based on kriging. The latter is then demonstrated to be an interesting alternative to FEMs since it allowed, with a lower cost, an accurate estimation of the system's proportions of instability corresponding to the influent parameters.
From ecological test site to geographic information system: lessons for the 1980's
Alexander, Robert H.
1981-01-01
Geographic information systems were common elements in two kinds of interdisciplinary regional demonstration projects in the 1970's. Ecological test sits attempted to provide for more efficient remote-sensing data delivery for regional environmental management. Regional environmental systems analysis attempted to formally describe and model the interacting regional social and environmental processes, including the resource-use decision making process. Lessons for the 1980's are drawn from recent evaluations and assessments of these programs, focusing on cost, rates of system development and technology transfer, program coordination, integrative analysis capability, and the involvement of system users and decision makers.
Remotely piloted vehicle: Application of the GRASP analysis method
NASA Technical Reports Server (NTRS)
Andre, W. L.; Morris, J. B.
1981-01-01
The application of General Reliability Analysis Simulation Program (GRASP) to the remotely piloted vehicle (RPV) system is discussed. The model simulates the field operation of the RPV system. By using individual component reliabilities, the overall reliability of the RPV system is determined. The results of the simulations are given in operational days. The model represented is only a basis from which more detailed work could progress. The RPV system in this model is based on preliminary specifications and estimated values. The use of GRASP from basic system definition, to model input, and to model verification is demonstrated.
Application of mobile digital communications in law enforcement, an introductory planning guide
NASA Technical Reports Server (NTRS)
Sohn, R. L.; Abraham, J. E.; Leflang, W. G.; Kennedy, R. D.; Wilson, J. H.; Gurfield, R. M.
1975-01-01
A set of planning guidelines for the application of digital communications techniques to law enforcement use is presented. Some essential characteristics of digital techniques and their applications are outlined, as are some principles of system analysis, evaluation, and planning. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with respect to this application problem. Information on law enforcement digital communications systems and equipment and a list of vendor sources are given in appendices.
1981-07-01
System 13 (7) Flight Critical Power 15 (8) Power Bus Configuration 16 b. System Control and Protection 20...includes the main buses, external power receptacles and distribution feeders. The function of the distribution protection system * is mainly to provide...TechnicaI rea Manager Power Systems Branch Power Systems B nch Aerospace Power Division Aerospace Power Division FOR .AKE D . REAMS Chief,
INTEGRATE: Driving Transformational Change - JISEA 2018 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
This report demonstrates 2017 highlights of the Joint Institute for Strategic Energy Analysis' (JISEA's) work. The Annual Report overviews JISEA's research and analysis accomplishments in natural gas and methane emissions; nuclear-renewable hybrid energy systems; the Clean Energy Manufacturing Analysis Center's work in global supply chains; the 21st Century Power Partnership; and more.
Logistic Map for Cancellable Biometrics
NASA Astrophysics Data System (ADS)
Supriya, V. G., Dr; Manjunatha, Ramachandra, Dr
2017-08-01
This paper presents design and implementation of secured biometric template protection system by transforming the biometric template using binary chaotic signals and 3 different key streams to obtain another form of template and demonstrating its efficiency by the results and investigating on its security through analysis including, key space analysis, information entropy and key sensitivity analysis.
Leveraging natural dynamical structures to explore multi-body systems
NASA Astrophysics Data System (ADS)
Bosanac, Natasha
Multi-body systems have become the target of an increasing number of mission concepts and observations, supplying further information about the composition, origin and dynamical environment of bodies within the solar system and beyond. In many of these scenarios, identification and characterization of the particular solutions that exist in a circular restricted three-body model is valuable. This insight into the underlying natural dynamical structures is achieved via the application of dynamical systems techniques. One application of such analysis is trajectory design for CubeSats, which are intended to explore cislunar space and other planetary systems. These increasingly complex mission objectives necessitate innovative trajectory design strategies for spacecraft within our solar system, as well as the capability for rapid and well-informed redesign. Accordingly, a trajectory design framework is constructed using dynamical systems techniques and demonstrated for the Lunar IceCube mission. An additional application explored in this investigation involves the motion of an exoplanet near a binary star system. Due to the strong gravitational field near a binary star, physicists have previously leveraged these systems as testbeds for examining the validity of gravitational and relativistic theories. In this investigation, a preliminary analysis into the effect of an additional three-body interaction on the dynamical environment near a large mass ratio binary system is conducted. As demonstrated through both of these sample applications, identification and characterization of the natural particular solutions that exist within a multi-body system supports a well-informed and guided analysis.
Nashville Solar-Water-Heater Demonstration Project. Monitoring-data analysis
NASA Astrophysics Data System (ADS)
1982-03-01
Field monitoring data which were collected for the Nashville Solar Water Heater Demonstration Project from September through November of 1981 are presented. Twenty-six solar domestic water heaters were monitored during September, 35 during October, and 37 during November. Homeowners were audited to assure adequate solar access, and each selected a solar water heating system from an approved list. Two tank and one tank systems are included. The monitoring sample technique and monitoring system are described. Data are analyzed by computer to produce daily and monthly total summaries for each site. The performance of each site was assessed to compare total energy saved by the solar system, solar system savings percentage, and the energy multiplier.
Analysis and design of optical systems by use of sensitivity analysis of skew ray tracing
NASA Astrophysics Data System (ADS)
Lin, Psang Dain; Lu, Chia-Hung
2004-02-01
Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat's eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.
Analysis and Design of Optical Systems by Use of Sensitivity Analysis of Skew Ray Tracing
NASA Astrophysics Data System (ADS)
Dain Lin, Psang; Lu, Chia-Hung
2004-02-01
Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat ?s eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.
A fluid collection system for dermal wounds in clinical investigations
Klopfer, Michael; Li, G.-P.; Widgerow, Alan; Bachman, Mark
2016-01-01
In this work, we demonstrate the use of a thin, self adherent, and clinically durable patch device that can collect fluid from a wound site for analysis. This device is manufactured from laminated silicone layers using a novel all-silicone double-molding process. In vitro studies for flow and delivery were followed by a clinical demonstration for exudate collection efficiency from a clinically presented partial thickness burn. The demonstrated utility of this device lends itself for use as a research implement used to clinically sample wound exudate for analysis. This device can serve as a platform for future integration of wearable technology into wound monitoring and care. The demonstrated fabrication method can be used for devices requiring thin membrane construction. PMID:27051470
NASA Technical Reports Server (NTRS)
Aiken, Alexander
2001-01-01
The Scalable Analysis Toolkit (SAT) project aimed to demonstrate that it is feasible and useful to statically detect software bugs in very large systems. The technical focus of the project was on a relatively new class of constraint-based techniques for analysis software, where the desired facts about programs (e.g., the presence of a particular bug) are phrased as constraint problems to be solved. At the beginning of this project, the most successful forms of formal software analysis were limited forms of automatic theorem proving (as exemplified by the analyses used in language type systems and optimizing compilers), semi-automatic theorem proving for full verification, and model checking. With a few notable exceptions these approaches had not been demonstrated to scale to software systems of even 50,000 lines of code. Realistic approaches to large-scale software analysis cannot hope to make every conceivable formal method scale. Thus, the SAT approach is to mix different methods in one application by using coarse and fast but still adequate methods at the largest scales, and reserving the use of more precise but also more expensive methods at smaller scales for critical aspects (that is, aspects critical to the analysis problem under consideration) of a software system. The principled method proposed for combining a heterogeneous collection of formal systems with different scalability characteristics is mixed constraints. This idea had been used previously in small-scale applications with encouraging results: using mostly coarse methods and narrowly targeted precise methods, useful information (meaning the discovery of bugs in real programs) was obtained with excellent scalability.
Okumura, Noriko; Wakamatsu, Shiori; Uno, Bunji
2014-01-01
This study demonstrated that the electro-chemical analysis of hydrophobic quinones can be performed in liposome suspension systems. We prepared and analyzed liposome suspensions containing lapachol, which is a quinone-based anti-tumor activity compound. In this suspension system, a simple one redox couple of lapachol is observed. These results are quite different from those obtained in organic solvents. In addition, the pH dependence of redox behaviors of lapachol could be observed in multilamellar vesicle (MLV) suspension system. This MLV suspension system method may approximate the electrochemical behavior of hydrophobic compounds in aqueous conditions. A benefit of this liposome suspension system for electrochemical analysis is that it enables to observe water-insoluble compounds without using organic solvents.
Demonstration of intercontinental DSN clock synchronization by VLBI
NASA Technical Reports Server (NTRS)
Hurd, W. J.
1973-01-01
The prototype system for Deep Space Network clock synchronization by VLBI has been demonstrated to operate successfully over intercontinental baselines in a series of experiments between Deep Space Stations at Madrid, Spain, and Goldstone, California. As predicted by analysis and short baseline demonstration, the system achieves reliable synchronization between 26m and 64m antenna stations with 17 and 37K nominal system temperatures using under one million bits of data from each station. Semi-real-time operation is feasible since this small amount of data can be transmitted to JPL and processed within minutes. The system resolution is 50 to 400ns, depending on the amount of data processed and the source intensity. The accuracy is believed to be comparable to the resolution, although it could be independently confirmed to only about 5 microseconds using LORAN C.
Automated in vivo 3D high-definition optical coherence tomography skin analysis system.
Ai Ping Yow; Jun Cheng; Annan Li; Srivastava, Ruchir; Jiang Liu; Wong, Damon Wing Kee; Hong Liang Tey
2016-08-01
The in vivo assessment and visualization of skin structures can be performed through the use of high resolution optical coherence tomography imaging, also known as HD-OCT. However, the manual assessment of such images can be exhaustive and time consuming. In this paper, we present an analysis system to automatically identify and quantify the skin characteristics such as the topography of the surface of the skin and thickness of the epidermis in HD-OCT images. Comparison of this system with manual clinical measurements demonstrated its potential for automatic objective skin analysis and diseases diagnosis. To our knowledge, this is the first report of an automated system to process and analyse HD-OCT skin images.
Coexistence Analysis of Civil Unmanned Aircraft Systems at Low Altitudes
NASA Astrophysics Data System (ADS)
Zhou, Yuzhe
2016-11-01
The requirement of unmanned aircraft systems in civil areas is growing. However, provisioning of flight efficiency and safety of unmanned aircraft has critical requirements on wireless communication spectrum resources. Current researches mainly focus on spectrum availability. In this paper, the unmanned aircraft system communication models, including the coverage model and data rate model, and two coexistence analysis procedures, i. e. the interference and noise ratio criterion and frequency-distance-direction criterion, are proposed to analyze spectrum requirements and interference results of the civil unmanned aircraft systems at low altitudes. In addition, explicit explanations are provided. The proposed coexistence analysis criteria are applied to assess unmanned aircraft systems' uplink and downlink interference performances and to support corresponding spectrum planning. Numerical results demonstrate that the proposed assessments and analysis procedures satisfy requirements of flexible spectrum accessing and safe coexistence among multiple unmanned aircraft systems.
Modeling of power electronic systems with EMTP
NASA Technical Reports Server (NTRS)
Tam, Kwa-Sur; Dravid, Narayan V.
1989-01-01
In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.
Implementing an excellence in teaching recognition system: needs analysis and recommendations.
Schindler, Nancy; Corcoran, Julia C; Miller, Megan; Wang, Chih-Hsiung; Roggin, Kevin; Posner, Mitchell; Fryer, Jonathan; DaRosa, Debra A
2013-01-01
Teaching awards have been suggested to serve a variety of purposes. The specific characteristics of teaching awards and the associated effectiveness at achieving planned purposes are poorly understood. A needs analysis was performed to inform recommendations for an Excellence in Teaching Recognition System to meet the needs of surgical education leadership. We performed a 2-part needs analysis beginning with a review of the literature. We then, developed, piloted, and administered a survey instrument to General Surgery program leaders. The survey examined the features and perceived effectiveness of existing teaching awards systems. A multi-institution committee of program directors, clerkship directors, and Vice-Chairs of education then met to identify goals and develop recommendations for implementation of an "Excellence in Teaching Recognition System." There is limited evidence demonstrating effectiveness of existing teaching awards in medical education. Evidence supports the ability of such awards to demonstrate value placed on teaching, to inspire faculty to teach, and to contribute to promotion. Survey findings indicate that existing awards strive to achieve these purposes and that educational leaders believe awards have the potential to do this and more. Leaders are moderately satisfied with existing awards for providing recognition and demonstrating value placed on teaching, but they are less satisfied with awards for motivating faculty to participate in teaching or for contributing to promotion. Most departments and institutions honor only a few recipients annually. There is a paucity of literature addressing teaching recognition systems in medical education and little evidence to support the success of such systems in achieving their intended purposes. The ability of awards to affect outcomes such as participation in teaching and promotion may be limited by the small number of recipients for most existing awards. We propose goals for a Teaching Recognition System and provide guidelines for implementation and evaluation of such systems. Future analysis should study the effectiveness of systems designed using these guidelines in achieving the outlined goals. Copyright © 2013 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Active vibration damping of the Space Shuttle remote manipulator system
NASA Technical Reports Server (NTRS)
Scott, Michael A.; Gilbert, Michael G.; Demeo, Martha E.
1991-01-01
The feasibility of providing active damping augmentation of the Space Shuttle Remote Manipulator System (RMS) following normal payload handling operations is investigated. The approach used in the analysis is described, and the results for both linear and nonlinear performance analysis of candidate laws are presented, demonstrating that significant improvement in the RMS dynamic response can be achieved through active control using measured RMS tip acceleration data for feedback.
Safety analysis report for packaging (onsite) steel drum
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, W.A.
This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.
Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System.
Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin
2016-08-18
Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems.
Microfluidic-Based Robotic Sampling System for Radioactive Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jack D. Law; Julia L. Tripp; Tara E. Smith
A novel microfluidic based robotic sampling system has been developed for sampling and analysis of liquid solutions in nuclear processes. This system couples the use of a microfluidic sample chip with a robotic system designed to allow remote, automated sampling of process solutions in-cell and facilitates direct coupling of the microfluidic sample chip with analytical instrumentation. This system provides the capability for near real time analysis, reduces analytical waste, and minimizes the potential for personnel exposure associated with traditional sampling methods. A prototype sampling system was designed, built and tested. System testing demonstrated operability of the microfluidic based sample systemmore » and identified system modifications to optimize performance.« less
Intelligent redundant actuation system requirements and preliminary system design
NASA Technical Reports Server (NTRS)
Defeo, P.; Geiger, L. J.; Harris, J.
1985-01-01
Several redundant actuation system configurations were designed and demonstrated to satisfy the stringent operational requirements of advanced flight control systems. However, this has been accomplished largely through brute force hardware redundancy, resulting in significantly increased computational requirements on the flight control computers which perform the failure analysis and reconfiguration management. Modern technology now provides powerful, low-cost microprocessors which are effective in performing failure isolation and configuration management at the local actuator level. One such concept, called an Intelligent Redundant Actuation System (IRAS), significantly reduces the flight control computer requirements and performs the local tasks more comprehensively than previously feasible. The requirements and preliminary design of an experimental laboratory system capable of demonstrating the concept and sufficiently flexible to explore a variety of configurations are discussed.
Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa.
van Belkum, Alex; Soriaga, Leah B; LaFave, Matthew C; Akella, Srividya; Veyrieras, Jean-Baptiste; Barbu, E Magda; Shortridge, Dee; Blanc, Bernadette; Hannum, Gregory; Zambardi, Gilles; Miller, Kristofer; Enright, Mark C; Mugnier, Nathalie; Brami, Daniel; Schicklin, Stéphane; Felderman, Martina; Schwartz, Ariel S; Richardson, Toby H; Peterson, Todd C; Hubby, Bolyn; Cady, Kyle C
2015-11-24
Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. P. aeruginosa is both an antibiotic-refractory pathogen and an important model system for type I CRISPR-Cas bacterial immune systems. By combining the genome sequences of 672 newly and previously sequenced genomes, we were able to provide a global view of the phylogenetic distribution, conservation, and potential targets of these systems. This analysis identified a new and putatively mobile P. aeruginosa CRISPR-Cas subtype, characterized the diverse distribution of known CRISPR-inhibiting genes, and provided a potential new use for CRISPR spacer libraries in accessory genome analysis. Our data demonstrated the importance of CRISPR-Cas systems in modulating the accessory genomes of globally distributed strains while also providing substantial data for subsequent genomic and experimental studies in multiple fields. Understanding why certain genotypes of P. aeruginosa are clinically prevalent and adept at horizontally acquiring virulence and antibiotic resistance elements is of major clinical and economic importance. Copyright © 2015 van Belkum et al.
2002-11-21
The second X-45A Unmanned Combat Air Vehicle (UCAV) technology demonstrator completed its first flight on November 21, 2002, after taking off from a dry lakebed at NASA's Dryden Flight Research Center, Edwards Air Force Base, California. X-45A vehicle two flew for approximately 30 minutes and reached an airspeed of 195 knots and an altitude of 7500 feet. This flight validated the functionality of the UCAV flight software on the second air vehicle. Dryden is supporting the DARPA/Boeing team in the design, development, integration, and demonstration of the critical technologies, processes, and system attributes leading to an operational UCAV system. Dryden support of the X-45A demonstrator system includes analysis, component development, simulations, ground and flight tests.
Numerical analysis of the in-well vapor-stripping system demonstration at Edwards Air Force Base
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.D.; Gilmore, T.J.
1996-10-01
Numerical simulations, with the Subsurface Transport Over Multiple Phases (STOMP) simulator, were applied to the field demonstration of an in-well vapor-stripping system at Edwards Air Force Base (AFB), near Mojave, California. The demonstration field site on the Edwards AFB was previously contaminated from traversing groundwater that was contained a varied composition of volatile organic compounds (VOCs), which primarily includes trichloroethylene (TCE). Contaminant TCE originated from surface basin that had been used to collect runoff during the cleaning of experimental rocket powered planes in the 1960s and 1970s. This report documents those simulations and associated numerical analyses. A companion report documentsmore » the in- well vapor-stripping demonstration from a field perspective.« less
Design analysis tracking and data relay satellite simulation system
NASA Technical Reports Server (NTRS)
1974-01-01
The design and development of the equipment necessary to simulate the S-band multiple access link between user spacecraft, the Tracking and Data Relay Satellite, and a ground control terminal are discussed. The core of the S-band multiple access concept is the use of an Adaptive Ground Implemented Phased Array. The array contains thirty channels and provides the multiplexing and demultiplexing equipment required to demonstrate the ground implemented beam forming feature. The system provided will make it possible to demonstrate the performance of a desired user and ten interfering sources attempting to pass data through the multiple access system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchard, Kristofer E.; Conant, David F.; Anumanchipalli, Gopala K.
A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial-especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship acrossmore » speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics.« less
Anumanchipalli, Gopala K.; Dichter, Benjamin; Chaisanguanthum, Kris S.; Johnson, Keith; Chang, Edward F.
2016-01-01
A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial—especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship across speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics. PMID:27019106
Bouchard, Kristofer E.; Conant, David F.; Anumanchipalli, Gopala K.; ...
2016-03-28
A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial-especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship acrossmore » speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics.« less
Pressure system recertification at NASA-Langley Research Center
NASA Technical Reports Server (NTRS)
Hudson, C. M.; Ramsey, J. W., Jr.
1983-01-01
Langley Research Center pressure systems are being recertified to ensure safe operation of these systems. The procedures for recertifying these pressure systems are reviewed. Generally, the analysis and inspection requirements outlined in the appropriate national consensus codes are followed. In some instances where the requirements of these codes are not met. The systems are analyzed further, repaired, modified and/or tested to demonstrate their structural integrity.
Hardware Demonstration: Frequency Spectra of Transients
NASA Technical Reports Server (NTRS)
McCloskey, John; Dimov, Jen
2017-01-01
Radiated emissions measurements as specified by MIL-STD-461 are performed in the frequency domain, which is best suited to continuous wave (CW) types of signals. However, many platforms implement signals that are single event pulses or transients. Such signals can potentially generate momentary radiated emissions that can cause interference in the system, but they may be missed with traditional measurement techniques. This demonstration provides measurement and analysis techniques that effectively evaluate the potential emissions from such signals in order to evaluate their potential impacts to system performance.
Integrated orbital servicing study follow-on. Volume 2: Technical analysis and system design
NASA Technical Reports Server (NTRS)
1978-01-01
In-orbit service functional and physical requirements to support both low and high Earth orbit servicing/maintenance operations were defined, an optimum servicing system configuration was developed and mockups and early prototype hardware were fabricated to demonstrate and validate the concepts selected. Significant issues addressed include criteria for concept selection; representative mission equipment and approaches to their design for serviceability; significant serviceable spacecraft design aspects; servicer mechanism operation in one-g; approaches for the demonstration/simulation; and service mechanism structure design approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, F.E.; Hedenhag, J.G.; Marchant, S.K.
1997-12-31
AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, airmore » toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.« less
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., sufficient to describe the actual construction of the equipment; (iii) Engineering analysis sufficient to..., engineering analysis, and risk mitigation measures described in this paragraph, demonstrating that the use of... the Federal Docket Management System and posted on its web site at http://www.regulations.gov. (h...
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., sufficient to describe the actual construction of the equipment; (iii) Engineering analysis sufficient to..., engineering analysis, and risk mitigation measures described in this paragraph, demonstrating that the use of... the Federal Docket Management System and posted on its web site at http://www.regulations.gov. (h...
Tokuda, T; Yamada, H; Sasagawa, K; Ohta, J
2009-10-01
This paper proposes and demonstrates a polarization-analyzing CMOS sensor based on image sensor architecture. The sensor was designed targeting applications for chiral analysis in a microchemistry system. The sensor features a monolithically embedded polarizer. Embedded polarizers with different angles were implemented to realize a real-time absolute measurement of the incident polarization angle. Although the pixel-level performance was confirmed to be limited, estimation schemes based on the variation of the polarizer angle provided a promising performance for real-time polarization measurements. An estimation scheme using 180 pixels in a 1deg step provided an estimation accuracy of 0.04deg. Polarimetric measurements of chiral solutions were also successfully performed to demonstrate the applicability of the sensor to optical chiral analysis.
NASA Astrophysics Data System (ADS)
Louchard, Eric; Farm, Brian; Acker, Andrew
2008-04-01
BAE Systems Sensor Systems Identification & Surveillance (IS) has developed, under contract with the Office of Naval Research, a multispectral airborne sensor system and processing algorithms capable of detecting mine-like objects in the surf zone and land mines in the beach zone. BAE Systems has used this system in a blind test at a test range established by the Naval Surface Warfare Center - Panama City Division (NSWC-PCD) at Eglin Air Force Base. The airborne and ground subsystems used in this test are described, with graphical illustrations of the detection algorithms. We report on the performance of the system configured to operate with a human operator analyzing data on a ground station. A subsurface (underwater bottom proud mine in the surf zone and moored mine in shallow water) mine detection capability is demonstrated in the surf zone. Surface float detection and proud land mine detection capability is also demonstrated. Our analysis shows that this BAE Systems-developed multispectral airborne sensor provides a robust technical foundation for a viable system for mine counter-measures, and would be a valuable asset for use prior to an amphibious assault.
Della Manna, Angelo; Nye, Jeffrey V; Carney, Christopher; Hammons, Jennifer S; Mann, Michael; Al Shamali, Farida; Vallone, Peter M; Romsos, Erica L; Marne, Beth Ann; Tan, Eugene; Turingan, Rosemary S; Hogan, Catherine; Selden, Richard F; French, Julie L
2016-11-01
Since the implementation of forensic DNA typing in labs more than 20 years ago, the analysis procedures and data interpretation have always been conducted in a laboratory by highly trained and qualified scientific personnel. Rapid DNA technology has the potential to expand testing capabilities within forensic laboratories and to allow forensic STR analysis to be performed outside the physical boundaries of the traditional laboratory. The developmental validation of the DNAscan/ANDE Rapid DNA Analysis System was completed using a BioChipSet™ Cassette consumable designed for high DNA content samples, such as single source buccal swabs. A total of eight laboratories participated in the testing which totaled over 2300 swabs, and included nearly 1400 unique individuals. The goal of this extensive study was to obtain, document, analyze, and assess DNAscan and its internal Expert System to reliably genotype reference samples in a manner compliant with the FBI's Quality Assurance Standards (QAS) and the NDIS Operational Procedures. The DNAscan System provided high quality, concordant results for reference buccal swabs, including automated data analysis with an integrated Expert System. Seven external laboratories and NetBio, the developer of the technology, participated in the validation testing demonstrating the reproducibility and reliability of the system and its successful use in a variety of settings by numerous operators. The DNAscan System demonstrated limited cross reactivity with other species, was resilient in the presence of numerous inhibitors, and provided reproducible results for both buccal and purified DNA samples with sensitivity at a level appropriate for buccal swabs. The precision and resolution of the system met industry standards for detection of micro-variants and displayed single base resolution. PCR-based studies provided confidence that the system was robust and that the amplification reaction had been optimized to provide high quality results. The DNAscan integrated Expert System was examined as part of the Developmental Validation and successfully interpreted the over 2000 samples tested with over 99.998% concordant alleles. The system appropriately flagged samples for human review and failed both mixed samples and samples with insufficient genetic information. These results demonstrated the integrated Expert System makes correct allele calls without human intervention. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Rong, Hao; Tian, Jin
2015-05-01
The study contributes to human reliability analysis (HRA) by proposing a method that focuses more on human error causality within a sociotechnical system, illustrating its rationality and feasibility by using a case of the Minuteman (MM) III missile accident. Due to the complexity and dynamics within a sociotechnical system, previous analyses of accidents involving human and organizational factors clearly demonstrated that the methods using a sequential accident model are inadequate to analyze human error within a sociotechnical system. System-theoretic accident model and processes (STAMP) was used to develop a universal framework of human error causal analysis. To elaborate the causal relationships and demonstrate the dynamics of human error, system dynamics (SD) modeling was conducted based on the framework. A total of 41 contributing factors, categorized into four types of human error, were identified through the STAMP-based analysis. All factors are related to a broad view of sociotechnical systems, and more comprehensive than the causation presented in the accident investigation report issued officially. Recommendations regarding both technical and managerial improvement for a lower risk of the accident are proposed. The interests of an interdisciplinary approach provide complementary support between system safety and human factors. The integrated method based on STAMP and SD model contributes to HRA effectively. The proposed method will be beneficial to HRA, risk assessment, and control of the MM III operating process, as well as other sociotechnical systems. © 2014, Human Factors and Ergonomics Society.
[The implementation of strategy of medicinal support in multi-type hospital].
Ludupova, E Yu
2016-01-01
The article presents brief review of implementation of strategy of medicinal support of population of the Russian Federation and experience of application of at the level of regional hospital. The necessity and importance of implementation into practice of hospitals of methodology of pharmaco-economical management of medicinal care using modern technologies of XYZ-, ABC and VEN-analysis is demonstrated. The stages of development and implementation of process of medicinal support of multifield hospital applying principles of system of quality management (processing and systemic approaches, risk management) on the basis of standards ISO 9001 are described. The significance of monitoring of results ofprocess of medicinal support of the basis of implementation of priority target programs (prevention of venous thrombo-embolic complications, system od control of anti-bacterial therapy) are demonstrated in relation to multi-field hospital using technique of ATC/DDD-analysis for evaluating indices of effectiveness and efficiency.
Kepler, Christopher K; Vaccaro, Alexander R; Koerner, John D; Dvorak, Marcel F; Kandziora, Frank; Rajasekaran, Shanmuganathan; Aarabi, Bizhan; Vialle, Luiz R; Fehlings, Michael G; Schroeder, Gregory D; Reinhold, Maximilian; Schnake, Klaus John; Bellabarba, Carlo; Cumhur Öner, F
2016-04-01
The aims of this study were (1) to demonstrate the AOSpine thoracolumbar spine injury classification system can be reliably applied by an international group of surgeons and (2) to delineate those injury types which are difficult for spine surgeons to classify reliably. A previously described classification system of thoracolumbar injuries which consists of a morphologic classification of the fracture, a grading system for the neurologic status and relevant patient-specific modifiers was applied to 25 cases by 100 spinal surgeons from across the world twice independently, in grading sessions 1 month apart. The results were analyzed for classification reliability using the Kappa coefficient (κ). The overall Kappa coefficient for all cases was 0.56, which represents moderate reliability. Kappa values describing interobserver agreement were 0.80 for type A injuries, 0.68 for type B injuries and 0.72 for type C injuries, all representing substantial reliability. The lowest level of agreement for specific subtypes was for fracture subtype A4 (Kappa = 0.19). Intraobserver analysis demonstrated overall average Kappa statistic for subtype grading of 0.68 also representing substantial reproducibility. In a worldwide sample of spinal surgeons without previous exposure to the recently described AOSpine Thoracolumbar Spine Injury Classification System, we demonstrated moderate interobserver and substantial intraobserver reliability. These results suggest that most spine surgeons can reliably apply this system to spine trauma patients as or more reliably than previously described systems.
Donovan, Sarah-Louise; Salmon, Paul M; Lenné, Michael G; Horberry, Tim
2017-10-01
Safety leadership is an important factor in supporting safety in high-risk industries. This article contends that applying systems-thinking methods to examine safety leadership can support improved learning from incidents. A case study analysis was undertaken of a large-scale mining landslide incident in which no injuries or fatalities were incurred. A multi-method approach was adopted, in which the Critical Decision Method, Rasmussen's Risk Management Framework and Accimap method were applied to examine the safety leadership decisions and actions which enabled the safe outcome. The approach enabled Rasmussen's predictions regarding safety and performance to be examined in the safety leadership context, with findings demonstrating the distribution of safety leadership across leader and system levels, and the presence of vertical integration as key to supporting the successful safety outcome. In doing so, the findings also demonstrate the usefulness of applying systems-thinking methods to examine and learn from incidents in terms of what 'went right'. The implications, including future research directions, are discussed. Practitioner Summary: This paper presents a case study analysis, in which systems-thinking methods are applied to the examination of safety leadership decisions and actions during a large-scale mining landslide incident. The findings establish safety leadership as a systems phenomenon, and furthermore, demonstrate the usefulness of applying systems-thinking methods to learn from incidents in terms of what 'went right'. Implications, including future research directions, are discussed.
Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasantha Kumari; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Khosravi, Afra; Ramli, Ramliza; Hamat, Rukman Awang
2015-01-01
The toxin-antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains.
Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasantha Kumari; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Khosravi, Afra; Ramli, Ramliza; Hamat, Rukman Awang
2015-01-01
The toxin–antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains. PMID:26005332
Simplified Phased-Mission System Analysis for Systems with Independent Component Repairs
NASA Technical Reports Server (NTRS)
Somani, Arun K.
1996-01-01
Accurate analysis of reliability of system requires that it accounts for all major variations in system's operation. Most reliability analyses assume that the system configuration, success criteria, and component behavior remain the same. However, multiple phases are natural. We present a new computationally efficient technique for analysis of phased-mission systems where the operational states of a system can be described by combinations of components states (such as fault trees or assertions). Moreover, individual components may be repaired, if failed, as part of system operation but repairs are independent of the system state. For repairable systems Markov analysis techniques are used but they suffer from state space explosion. That limits the size of system that can be analyzed and it is expensive in computation. We avoid the state space explosion. The phase algebra is used to account for the effects of variable configurations, repairs, and success criteria from phase to phase. Our technique yields exact (as opposed to approximate) results. We demonstrate our technique by means of several examples and present numerical results to show the effects of phases and repairs on the system reliability/availability.
Overview and Demonstration of USEPA’s Risk-Informed Materials Management (RIMM) Tool System
The Risk-Informed Materials Management (RIMM) Tool System is a data gathering and analysis platform for conducting material disposal and beneficial use assessments. Users can evaluate risks to human and ecological receptors associated with exposures to organic and inorganic chemi...
A System to Integrate Unmanned Undersea Vehicles with a Submarine Host Platform
2011-06-06
Charging pad (while UUV stowed) High Conceptual High based on electric car battery recharging system Technology has not been demonstrated for......and Evaluation EB General Dynamics Corp. – Electric Boat Division EMP Electromagnetic Pulse FMECA Failure Mode Effects and Criticality Analysis
DOT National Transportation Integrated Search
2000-10-01
The Advanced Rural Traveler Information System (ARTIS) began development June 30, 1995. While a number of activities were underway to operationally test and evaluate metro or urban traveler information systems in the 75 target markets, ARTIS setout t...
Managing Complex Dynamical Systems
ERIC Educational Resources Information Center
Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.
2011-01-01
Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.
DOT National Transportation Integrated Search
1976-07-01
The Federal Railroad Administration (FRA) is sponsoring research, development, and demonstration programs to provide improved safety, performance, speed, reliability, and maintainability of rail transportation systems at reduced life-cycle costs. A m...
DOT National Transportation Integrated Search
1998-11-01
This flyer summarizes the identified human factors research needs for integrated in-vehicle systems for transit vehicles, one of five configurations of in-vehicle safety and driver information systems. A complete review of the research needs for all ...
NASA Technical Reports Server (NTRS)
Yau, M.; Guarro, S.; Apostolakis, G.
1993-01-01
Dynamic Flowgraph Methodology (DFM) is a new approach developed to integrate the modeling and analysis of the hardware and software components of an embedded system. The objective is to complement the traditional approaches which generally follow the philosophy of separating out the hardware and software portions of the assurance analysis. In this paper, the DFM approach is demonstrated using the Titan 2 Space Launch Vehicle Digital Flight Control System. The hardware and software portions of this embedded system are modeled in an integrated framework. In addition, the time dependent behavior and the switching logic can be captured by this DFM model. In the modeling process, it is found that constructing decision tables for software subroutines is very time consuming. A possible solution is suggested. This approach makes use of a well-known numerical method, the Newton-Raphson method, to solve the equations implemented in the subroutines in reverse. Convergence can be achieved in a few steps.
A Method for Evaluating the Safety Impacts of Air Traffic Automation
NASA Technical Reports Server (NTRS)
Kostiuk, Peter; Shapiro, Gerald; Hanson, Dave; Kolitz, Stephan; Leong, Frank; Rosch, Gene; Bonesteel, Charles
1998-01-01
This report describes a methodology for analyzing the safety and operational impacts of emerging air traffic technologies. The approach integrates traditional reliability models of the system infrastructure with models that analyze the environment within which the system operates, and models of how the system responds to different scenarios. Products of the analysis include safety measures such as predicted incident rates, predicted accident statistics, and false alarm rates; and operational availability data. The report demonstrates the methodology with an analysis of the operation of the Center-TRACON Automation System at Dallas-Fort Worth International Airport.
Analyzing Data for Systems Biology: Working at the Intersection of Thermodynamics and Data Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, William R.; Baxter, Douglas J.
2012-08-15
Many challenges in systems biology have to do with analyzing data within the framework of molecular phenomena and cellular pathways. How does this relate to thermodynamics that we know govern the behavior of molecules? Making progress in relating data analysis to thermodynamics is essential in systems biology if we are to build predictive models that enable the field of synthetic biology. This report discusses work at the crossroads of thermodynamics and data analysis, and demonstrates that statistical mechanical free energy is a multinomial log likelihood. Applications to systems biology are presented.
Hall Thruster Technology for NASA Science Missions
NASA Technical Reports Server (NTRS)
Manzella, David; Oh, David; Aadland, Randall
2005-01-01
The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.
TES X-ray microcalorimeters for X-ray astronomy and material analysis
NASA Astrophysics Data System (ADS)
Mitsuda, Kazuhisa
2016-11-01
TES X-ray microcalorimeter arrays provide not only high-energy resolution (FWHM < 10eV) in X-ray spectroscopy but also imaging and high-counting-rate capabilities. They are very promising spectrometer for X-ray astronomy and material analysis. In this paper, we report our recent progress. For material analysis, we have fabricated 8 × 8 format array with a fast signal response ( 40 μs) and proved the energy resolution of 5.8 eV FWHM at 5.9 keV. We developed common biasing scheme to reduce number of wirings from room temperature to the cryogenic stage. From measurements using the newly-designed common-bias SQUID array amplifier chips, and from numerical simulations, we demonstrated that signal cross talks due to the common bias is enough small. For space applications, we are developing frequency-division signal multiplexing system. We have fabricated a baseband feedback system and demonstrated that the noise added by the feedback system is about 4 eV FWHM equivalent for 16 ch multiplexing system. The digital to analog converter (DAC) dominates the noise, and needs be reduced by a factor of four for future astronomy missions.
'Remixing Rasmussen': The evolution of Accimaps within systemic accident analysis.
Waterson, Patrick; Jenkins, Daniel P; Salmon, Paul M; Underwood, Peter
2017-03-01
Throughout Jens Rasmussen's career there has been a continued emphasis on the development of methods, techniques and tools for accident analysis and investigation. In this paper we focus on the evolution and development of one specific example, namely Accimaps and their use for accident analysis. We describe the origins of Accimaps followed by a review of 27 studies which have applied and adapted Accimaps over the period 2000-2015 to a range of domains and types of accident. Aside from demonstrating the versatility and popularity of the method, part of the motivation for the review of the use of Accimaps is to address the question of what constitutes a sound, usable, valid and reliable approach to systemic accident analysis. The findings from the review demonstrate continuity with the work carried out by Rasmussen, as well as significant variation (e.g., changes to the Accimap, used of additional theoretical and practice-oriented perspectives on safety). We conclude the paper with some speculations regarding future extension and adaptation of the Accimap approach including the possibility of using hybrid models for accident analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Theoretical analysis of HVAC duct hanger systems
NASA Technical Reports Server (NTRS)
Miller, R. D.
1987-01-01
Several methods are presented which, together, may be used in the analysis of duct hanger systems over a wide range of frequencies. The finite element method (FEM) and component mode synthesis (CMS) method are used for low- to mid-frequency range computations and have been shown to yield reasonably close results. The statistical energy analysis (SEA) method yields predictions which agree with the CMS results for the 800 to 1000 Hz range provided that a sufficient number of modes participate. The CMS approach has been shown to yield valuable insight into the mid-frequency range of the analysis. It has been demonstrated that it is possible to conduct an analysis of a duct/hanger system in a cost-effective way for a wide frequency range, using several methods which overlap for several frequency bands.
A method for the measurement and analysis of ride vibrations of transportation systems
NASA Technical Reports Server (NTRS)
Catherines, J. J.; Clevenson, S. A.; Scholl, H. F.
1972-01-01
The measurement and recording of ride vibrations which affect passenger comfort in transportation systems and the subsequent data-reduction methods necessary for interpreting the data present exceptional instrumentation requirements and necessitate the use of computers for specialized analysis techniques. A method is presented for both measuring and analyzing ride vibrations of the type encountered in ground and air transportation systems. A portable system for measuring and recording low-frequency, low-amplitude accelerations and specialized data-reduction procedures are described. Sample vibration measurements in the form of statistical parameters representative of typical transportation systems are also presented to demonstrate the utility of the techniques.
A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control
NASA Astrophysics Data System (ADS)
Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi
A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.
49 CFR Appendix B to Part 236 - Risk Assessment Criteria
Code of Federal Regulations, 2012 CFR
2012-10-01
... availability calculations for subsystems and components, Fault Tree Analysis (FTA) of the subsystems, and... upper bound, as estimated with a sensitivity analysis, and the risk value selected must be demonstrated... interconnected subsystems/components? The risk assessment of each safety-critical system (product) must account...
49 CFR Appendix B to Part 236 - Risk Assessment Criteria
Code of Federal Regulations, 2014 CFR
2014-10-01
... availability calculations for subsystems and components, Fault Tree Analysis (FTA) of the subsystems, and... upper bound, as estimated with a sensitivity analysis, and the risk value selected must be demonstrated... interconnected subsystems/components? The risk assessment of each safety-critical system (product) must account...
Full Life Cycle of Data Analysis with Climate Model Diagnostic Analyzer (CMDA)
NASA Astrophysics Data System (ADS)
Lee, S.; Zhai, C.; Pan, L.; Tang, B.; Zhang, J.; Bao, Q.; Malarout, N.
2017-12-01
We have developed a system that supports the full life cycle of a data analysis process, from data discovery, to data customization, to analysis, to reanalysis, to publication, and to reproduction. The system called Climate Model Diagnostic Analyzer (CMDA) is designed to demonstrate that the full life cycle of data analysis can be supported within one integrated system for climate model diagnostic evaluation with global observational and reanalysis datasets. CMDA has four subsystems that are highly integrated to support the analysis life cycle. Data System manages datasets used by CMDA analysis tools, Analysis System manages CMDA analysis tools which are all web services, Provenance System manages the meta data of CMDA datasets and the provenance of CMDA analysis history, and Recommendation System extracts knowledge from CMDA usage history and recommends datasets/analysis tools to users. These four subsystems are not only highly integrated but also easily expandable. New datasets can be easily added to Data System and scanned to be visible to the other subsystems. New analysis tools can be easily registered to be available in the Analysis System and Provenance System. With CMDA, a user can start a data analysis process by discovering datasets of relevance to their research topic using the Recommendation System. Next, the user can customize the discovered datasets for their scientific use (e.g. anomaly calculation, regridding, etc) with tools in the Analysis System. Next, the user can do their analysis with the tools (e.g. conditional sampling, time averaging, spatial averaging) in the Analysis System. Next, the user can reanalyze the datasets based on the previously stored analysis provenance in the Provenance System. Further, they can publish their analysis process and result to the Provenance System to share with other users. Finally, any user can reproduce the published analysis process and results. By supporting the full life cycle of climate data analysis, CMDA improves the research productivity and collaboration level of its user.
Distributed Finite Element Analysis Using a Transputer Network
NASA Technical Reports Server (NTRS)
Watson, James; Favenesi, James; Danial, Albert; Tombrello, Joseph; Yang, Dabby; Reynolds, Brian; Turrentine, Ronald; Shephard, Mark; Baehmann, Peggy
1989-01-01
The principal objective of this research effort was to demonstrate the extraordinarily cost effective acceleration of finite element structural analysis problems using a transputer-based parallel processing network. This objective was accomplished in the form of a commercially viable parallel processing workstation. The workstation is a desktop size, low-maintenance computing unit capable of supercomputer performance yet costs two orders of magnitude less. To achieve the principal research objective, a transputer based structural analysis workstation termed XPFEM was implemented with linear static structural analysis capabilities resembling commercially available NASTRAN. Finite element model files, generated using the on-line preprocessing module or external preprocessing packages, are downloaded to a network of 32 transputers for accelerated solution. The system currently executes at about one third Cray X-MP24 speed but additional acceleration appears likely. For the NASA selected demonstration problem of a Space Shuttle main engine turbine blade model with about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 required 23.9 seconds to obtain a solution while the transputer network, operated from an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the $80,000 transputer network demonstrated a cost-performance ratio about 60 times better than the $15,000,000 Cray X-MP24 system.
Multari, Rosalie A.; Cremers, David A.; Bostian, Melissa L.; Dupre, Joanne M.
2013-01-01
Laser-Induced Breakdown Spectroscopy (LIBS) is a rapid, in situ, diagnostic technique in which light emissions from a laser plasma formed on the sample are used for analysis allowing automated analysis results to be available in seconds to minutes. This speed of analysis coupled with little or no sample preparation makes LIBS an attractive detection tool. In this study, it is demonstrated that LIBS can be utilized to discriminate both the bacterial species and strains of bacterial colonies grown on blood agar. A discrimination algorithm was created based on multivariate regression analysis of spectral data. The algorithm was deployed on a simulated LIBS instrument system to demonstrate discrimination capability using 6 species. Genetically altered Staphylococcus aureus strains grown on BA, including isogenic sets that differed only by the acquisition of mutations that increase fusidic acid or vancomycin resistance, were also discriminated. The algorithm successfully identified all thirteen cultures used in this study in a time period of 2 minutes. This work provides proof of principle for a LIBS instrumentation system that could be developed for the rapid discrimination of bacterial species and strains demonstrating relatively minor genomic alterations using data collected directly from pathogen isolation media. PMID:24109513
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Lang, Timothy J.; Leake, Skye; Runco, Mario, Jr.; Blakeslee, Richard J.
2017-01-01
Video and still frame images from cameras aboard the International Space Station (ISS) are used to inspire, educate, and provide a unique vantage point from low-Earth orbit that is second to none; however, these cameras have overlooked capabilities for contributing to scientific analysis of the Earth and near-space environment. The goal of this project is to study how geo referenced video/images from available ISS camera systems can be useful for scientific analysis, using lightning properties as a demonstration.
A Passive Earth-Entry Capsule for Mars Sample Return
NASA Technical Reports Server (NTRS)
Mitcheltree, Robert A.; Kellas, Sotiris
1999-01-01
A combination of aerodynamic analysis and testing, aerothermodynamic analysis, structural analysis and testing, impact analysis and testing, thermal analysis, ground characterization tests, configuration packaging, and trajectory simulation are employed to determine the feasibility of an entirely passive Earth entry capsule for the Mars Sample Return mission. The design circumvents the potential failure modes of a parachute terminal descent system by replacing that system with passive energy absorbing material to cushion the Mars samples during ground impact. The suggested design utilizes a spherically blunted 45-degree half-angle cone forebody with an ablative heat shield. The primary structure is a hemispherical, composite sandwich enclosing carbon foam energy absorbing material. Though no demonstration test of the entire system is included, results of the tests and analysis presented indicate that the design is a viable option for the Mars Sample Return Mission.
MacKay, Christina M; Skow, Rachel J; Tymko, Michael M; Boulet, Lindsey M; Davenport, Margie H; Steinback, Craig D; Ainslie, Philip N; Lemieux, Chantelle C M; Day, Trevor A
2016-03-01
One of the most effective ways of engaging students of physiology and medicine is through laboratory demonstrations and case studies that combine 1) the use of equipment, 2) problem solving, 3) visual representations, and 4) manipulation and interpretation of data. Depending on the measurements made and the type of test, laboratory demonstrations have the added benefit of being able to show multiple organ system integration. Many research techniques can also serve as effective demonstrations of integrative human physiology. The "Duffin" hyperoxic rebreathing test is often used in research settings as a test of central respiratory chemosensitivity and cerebrovascular reactivity to CO2. We aimed to demonstrate the utility of the hyperoxic rebreathing test for both respiratory and cerebrovascular responses to increases in CO2 and illustrate the integration of the respiratory and cerebrovascular systems. In the present article, methods such as spirometry, respiratory gas analysis, and transcranial Doppler ultrasound are described, and raw data traces can be adopted for discussion in a tutorial setting. If educators have these instruments available, instructions on how to carry out the test are provided so students can collect their own data. In either case, data analysis and quantification are discussed, including principles of linear regression, calculation of slope, the coefficient of determination (R(2)), and differences between plotting absolute versus normalized data. Using the hyperoxic rebreathing test as a demonstration of the complex interaction and integration between the respiratory and cerebrovascular systems provides senior undergraduate, graduate, and medical students with an advanced understanding of the integrative nature of human physiology. Copyright © 2016 The American Physiological Society.
Barczi, Jean-François; Rey, Hervé; Griffon, Sébastien; Jourdan, Christophe
2018-04-18
Many studies exist in the literature dealing with mathematical representations of root systems, categorized, for example, as pure structure description, partial derivative equations or functional-structural plant models. However, in these studies, root architecture modelling has seldom been carried out at the organ level with the inclusion of environmental influences that can be integrated into a whole plant characterization. We have conducted a multidisciplinary study on root systems including field observations, architectural analysis, and formal and mathematical modelling. This integrative and coherent approach leads to a generic model (DigR) and its software simulator. Architecture analysis applied to root systems helps at root type classification and architectural unit design for each species. Roots belonging to a particular type share dynamic and morphological characteristics which consist of topological and geometric features. The DigR simulator is integrated into the Xplo environment, with a user interface to input parameter values and make output ready for dynamic 3-D visualization, statistical analysis and saving to standard formats. DigR is simulated in a quasi-parallel computing algorithm and may be used either as a standalone tool or integrated into other simulation platforms. The software is open-source and free to download at http://amapstudio.cirad.fr/soft/xplo/download. DigR is based on three key points: (1) a root-system architectural analysis, (2) root type classification and modelling and (3) a restricted set of 23 root type parameters with flexible values indexed in terms of root position. Genericity and botanical accuracy of the model is demonstrated for growth, branching, mortality and reiteration processes, and for different root architectures. Plugin examples demonstrate the model's versatility at simulating plastic responses to environmental constraints. Outputs of the model include diverse root system structures such as tap-root, fasciculate, tuberous, nodulated and clustered root systems. DigR is based on plant architecture analysis which leads to specific root type classification and organization that are directly linked to field measurements. The open source simulator of the model has been included within a friendly user environment. DigR accuracy and versatility are demonstrated for growth simulations of complex root systems for both annual and perennial plants.
Fault Tree Analysis Application for Safety and Reliability
NASA Technical Reports Server (NTRS)
Wallace, Dolores R.
2003-01-01
Many commercial software tools exist for fault tree analysis (FTA), an accepted method for mitigating risk in systems. The method embedded in the tools identifies a root as use in system components, but when software is identified as a root cause, it does not build trees into the software component. No commercial software tools have been built specifically for development and analysis of software fault trees. Research indicates that the methods of FTA could be applied to software, but the method is not practical without automated tool support. With appropriate automated tool support, software fault tree analysis (SFTA) may be a practical technique for identifying the underlying cause of software faults that may lead to critical system failures. We strive to demonstrate that existing commercial tools for FTA can be adapted for use with SFTA, and that applied to a safety-critical system, SFTA can be used to identify serious potential problems long before integrator and system testing.
Use of an engineering data management system in the analysis of Space Shuttle Orbiter tiles
NASA Technical Reports Server (NTRS)
Giles, G. L.; Vallas, M.
1981-01-01
This paper demonstrates the use of an engineering data management system to facilitate the extensive stress analyses of the Space Shuttle Orbiter thermal protection system. Descriptions are given of the approach and methods used (1) to gather, organize, and store the data, (2) to query data interactively, (3) to generate graphic displays of the data, and (4) to access, transform, and prepare the data for input to a stress analysis program. The relational information management system was found to be well suited to the tile analysis problem because information related to many separate tiles could be accessed individually from a data base having a natural organization from an engineering viewpoint. The flexible user features of the system facilitated changes in data content and organization which occurred during the development and refinement of the tile analysis procedure. Additionally, the query language supported retrieval of data to satisfy a variety of user-specified conditions.
High-frame-rate digital radiographic videography
NASA Astrophysics Data System (ADS)
King, Nicholas S. P.; Cverna, Frank H.; Albright, Kevin L.; Jaramillo, Steven A.; Yates, George J.; McDonald, Thomas E.; Flynn, Michael J.; Tashman, Scott
1994-10-01
High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100 microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.
Time-dependent inertia analysis of vehicle mechanisms
NASA Astrophysics Data System (ADS)
Salmon, James Lee
Two methods for performing transient inertia analysis of vehicle hardware systems are developed in this dissertation. The analysis techniques can be used to predict the response of vehicle mechanism systems to the accelerations associated with vehicle impacts. General analytical methods for evaluating translational or rotational system dynamics are generated and evaluated for various system characteristics. The utility of the derived techniques are demonstrated by applying the generalized methods to two vehicle systems. Time dependent acceleration measured during a vehicle to vehicle impact are used as input to perform a dynamic analysis of an automobile liftgate latch and outside door handle. Generalized Lagrange equations for a non-conservative system are used to formulate a second order nonlinear differential equation defining the response of the components to the transient input. The differential equation is solved by employing the fourth order Runge-Kutta method. The events are then analyzed using commercially available two dimensional rigid body dynamic analysis software. The results of the two analytical techniques are compared to experimental data generated by high speed film analysis of tests of the two components performed on a high G acceleration sled at Ford Motor Company.
Artificial intelligence for multi-mission planetary operations
NASA Technical Reports Server (NTRS)
Atkinson, David J.; Lawson, Denise L.; James, Mark L.
1990-01-01
A brief introduction is given to an automated system called the Spacecraft Health Automated Reasoning Prototype (SHARP). SHARP is designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for evaluation of the prototype in a real-time operations setting during the Voyager spacecraft encounter with Neptune in August, 1989. The preliminary results of the SHARP project and plans for future application of the technology are discussed.
NASA Astrophysics Data System (ADS)
Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.
2018-04-01
We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.
ERIC Educational Resources Information Center
Blum, Abraham
1991-01-01
Compared the agricultural knowledge systems (AKS) of the Netherlands and Israel; analyzed the features that made the systems effective and applicable to other countries. The analysis discovered eight elements that explain the success of these AKSs and demonstrated the value of comparative case studies. (JOW)
Demonstration Advanced Avionics System (DAAS). Phase 1 report
NASA Technical Reports Server (NTRS)
1981-01-01
An integrated avionics system which provides expanded functional capabilities that significantly enhance the utility and safety of general aviation at a cost commensurate with the general aviation market is discussed. Displays and control were designed so that the pilot can use the system after minimum training. Functional and hardware descriptions, operational evaluation and failure modes effects analysis are included.
32 CFR 989.16 - Environmental impact statement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.16 Environmental impact statement. (a) Certain...) Development of major new weapons systems (at decision points that involve demonstration, validation...
32 CFR 989.16 - Environmental impact statement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.16 Environmental impact statement. (a) Certain...) Development of major new weapons systems (at decision points that involve demonstration, validation...
32 CFR 989.16 - Environmental impact statement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.16 Environmental impact statement. (a) Certain...) Development of major new weapons systems (at decision points that involve demonstration, validation...
32 CFR 989.16 - Environmental impact statement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.16 Environmental impact statement. (a) Certain...) Development of major new weapons systems (at decision points that involve demonstration, validation...
Game theoretic analysis of physical protection system design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canion, B.; Schneider, E.; Bickel, E.
The physical protection system (PPS) of a fictional small modular reactor (SMR) facility have been modeled as a platform for a game theoretic approach to security decision analysis. To demonstrate the game theoretic approach, a rational adversary with complete knowledge of the facility has been modeled attempting a sabotage attack. The adversary adjusts his decisions in response to investments made by the defender to enhance the security measures. This can lead to a conservative physical protection system design. Since defender upgrades were limited by a budget, cost benefit analysis may be conducted upon security upgrades. One approach to cost benefitmore » analysis is the efficient frontier, which depicts the reduction in expected consequence per incremental increase in the security budget.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walworth, Matthew J; ElNaggar, Mariam S; Stankovich, Joseph J
Direct liquid extraction based surface sampling, a technique previously demonstrated with continuous flow and autonomous pipette liquid microjunction surface sampling probes, has recently been implemented as the Liquid Extraction Surface Analysis (LESA) mode on the commercially available Advion NanoMate chip-based infusion nanoelectrospray ionization system. In the present paper, the LESA mode was applied to the analysis of 96-well format custom solid phase extraction (SPE) cards, with each well consisting of either a 1 or 2 mm diameter monolithic hydrophobic stationary phase. These substrate wells were conditioned, loaded with either single or multi-component aqueous mixtures, and read out using the LESAmore » mode of a TriVersa NanoMate or a Nanomate 100 coupled to an ABI/Sciex 4000QTRAPTM hybrid triple quadrupole/linear ion trap mass spectrometer and a Thermo LTQ XL linear ion trap mass spectrometer. Extraction conditions, including extraction/nanoESI solvent composition, volume, and dwell times, were optimized in the analysis of targeted compounds. Limit of detection and quantitation as well as analysis reproducibility figures of merit were measured. Calibration data was obtained for propranolol using a deuterated internal standard which demonstrated linearity and reproducibility. A 10x increase in signal and cleanup of micromolar Angiotensin II from a concentrated salt solution was demonstrated. Additionally, a multicomponent herbicide mixture at ppb concentration levels was analyzed using MS3 spectra for compound identification in the presence of isobaric interferences.« less
Development of a model system to analyze chondrogenic differentiation of mesenchymal stem cells
Ruedel, Anke; Hofmeister, Simone; Bosserhoff, Anja-Katrin
2013-01-01
High-density cell culture is widely used for the analysis of cartilage development of human mesenchymal stem cells (HMSCs) in vitro. Several cell culture systems, as micromass, pellet culture and alginate culture, are applied by groups in the field to induce chondrogenic differentiation of HMSCs. A draw back of all model systems is the high amount of cells necessary for the experiments. Further, handling of large experimental approaches is difficult due to culturing e.g. in 15 ml tubes. Therefore, we aimed to develop a new model system based on “hanging drop” cultures using 10 to 100 fold less cells. Here, we demonstrate that differentiation of chondrogenic cells was induced as previously shown in other model systems. Real time RT-PCR analysis demonstrated that Collagen type II and MIA/CD-RAP were upregulated during culturing whereas for induction of hypertrophic markers like Collagen type X and AP-2 epsilon treatment with TGF beta was needed. To further test the system, siRNA against Sox9 was used and effects on chondrogenic gene expression were evaluated. In summary, the hanging drop culture system was determined to be a promising tool for in vitro chondrogenic studies. PMID:24294400
Jackson, Brian A; Faith, Kay Sullivan
2013-02-01
Although significant progress has been made in measuring public health emergency preparedness, system-level performance measures are lacking. This report examines a potential approach to such measures for Strategic National Stockpile (SNS) operations. We adapted an engineering analytic technique used to assess the reliability of technological systems-failure mode and effects analysis-to assess preparedness. That technique, which includes systematic mapping of the response system and identification of possible breakdowns that affect performance, provides a path to use data from existing SNS assessment tools to estimate likely future performance of the system overall. Systems models of SNS operations were constructed and failure mode analyses were performed for each component. Linking data from existing assessments, including the technical assistance review and functional drills, to reliability assessment was demonstrated using publicly available information. The use of failure mode and effects estimates to assess overall response system reliability was demonstrated with a simple simulation example. Reliability analysis appears an attractive way to integrate information from the substantial investment in detailed assessments for stockpile delivery and dispensing to provide a view of likely future response performance.
Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system.
Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil
2014-08-20
In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications.
A controls engineering approach for analyzing airplane input-output characteristics
NASA Technical Reports Server (NTRS)
Arbuckle, P. Douglas
1991-01-01
An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.
Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner; Sakaguchi, Jun; Olmos, Juan José Vegas; Awaji, Yoshinari; Monroy, Idelfonso Tafur; Wada, Naoya
2017-09-18
This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.
String-Coupled Pendulum Oscillators: Theory and Experiment.
ERIC Educational Resources Information Center
Moloney, Michael J.
1978-01-01
A coupled-oscillator system is given which is readily set up, using only household materials. The normal-mode analysis of this system is worked out, and an experiment or demonstration is recommended in which one verifies the theory by measuring two times and four lengths. (Author/GA)
Terra Vac In Situ Vacuum Extraction System: Applications Analysis Report
This document is an evaluation of the Terra Vac in situ vacuum extraction system and its applicability as a treatment method for waste site cleanup. This report analyzes the results from the Superfund Innovative Technology Evaluation (SITE) Program’s 56-day demonstration at t...
Robust MOE Detector for DS-CDMA Systems with Signature Waveform Mismatch
NASA Astrophysics Data System (ADS)
Lin, Tsui-Tsai
In this letter, a decision-directed MOE detector with excellent robustness against signature waveform mismatch is proposed for DS-CDMA systems. Both the theoretic analysis and computer simulation results demonstrate that the proposed detector can provide better SINR performance than that of conventional detectors.
BIOTROL SOIL WASHING SYSTEM FOR TREATMENT OF A WOOD PRESERVING SITE - APPLICATIONS ANALYSIS REPORT
The report analyzes the results of the SITE Program demonstration of BioTrol's Soil Washing System at the MacGillis & Gibbs wood treatment facility in New Brighton, MN. The contaminants of primary interest are pentachlorophenol (penta) and polynuclear aromatic hydrocarbons (PAHs)...
Power System Transient Stability Improvement by the Interline Power Flow Controller (IPFC)
NASA Astrophysics Data System (ADS)
Zhang, Jun; Yokoyama, Akihiko
This paper presents a study on the power system transient stability improvement by means of interline power flow controller (IPFC). The power injection model of IPFC in transient analysis is proposed and can be easily incorporated into existing power systems. Based on the energy function analysis, the operation of IPFC should guarantee that the time derivative of the global energy of the system is not greater than zero in order to damp the electromechanical oscillations. Accordingly, control laws of IPFC are proposed for its application to the single-machine infinite-bus (SMIB) system and the multimachine systems, respectively. Numerical simulations on the corresponding model power systems are presented to demonstrate their effectiveness in improving power system transient stability.
Segmentation-free image processing and analysis of precipitate shapes in 2D and 3D
NASA Astrophysics Data System (ADS)
Bales, Ben; Pollock, Tresa; Petzold, Linda
2017-06-01
Segmentation based image analysis techniques are routinely employed for quantitative analysis of complex microstructures containing two or more phases. The primary advantage of these approaches is that spatial information on the distribution of phases is retained, enabling subjective judgements of the quality of the segmentation and subsequent analysis process. The downside is that computing micrograph segmentations with data from morphologically complex microstructures gathered with error-prone detectors is challenging and, if no special care is taken, the artifacts of the segmentation will make any subsequent analysis and conclusions uncertain. In this paper we demonstrate, using a two phase nickel-base superalloy microstructure as a model system, a new methodology for analysis of precipitate shapes using a segmentation-free approach based on the histogram of oriented gradients feature descriptor, a classic tool in image analysis. The benefits of this methodology for analysis of microstructure in two and three-dimensions are demonstrated.
Vibration analysis of rotor systems using reduced subsystem models
NASA Technical Reports Server (NTRS)
Fan, Uei-Jiun; Noah, Sherif T.
1989-01-01
A general impedance method using reduced submodels has been developed for the linear dynamic analysis of rotor systems. Formulated in terms of either modal or physical coordinates of the subsystems, the method enables imbalance responses at specific locations of the rotor systems to be efficiently determined from a small number of 'master' degrees of freedom. To demonstrate the capability of this impedance approach, the Space Shuttle Main Engine high-pressure oxygen turbopump has been investigated to determine the bearing loads due to imbalance. Based on the same formulation, an eigenvalue analysis has been performed to study the system stability. A small 5-DOF model has been utilized to illustrate the application of the method to eigenvalue analysis. Because of its inherent characteristics of allowing formulation of reduced submodels, the impedance method can significantly increase the computational speed.
Miller, Matthew James; McGuire, Kerry M.; Feigh, Karen M.
2016-01-01
The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity. The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design. PMID:28491008
Miller, Matthew James; McGuire, Kerry M; Feigh, Karen M
2017-06-01
The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity . The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design.
A study on integrating surveys of terrestrial natural resources: The Oregon Demonstration Project
J. Jeffery Goebel; Hans T. Schreuder; Carol C. House; Paul H. Geissler; Anthony R. Olsen; William Williams
1998-01-01
An interagency project demonstrated the feasibility of integrating Federal surveys of terrestrial natural resources and offers a vision for that integration. At locations selected from forest inventory and analysis, National forest system Region 6, and national resources inventory surveys in a six-county area in Northern Oregon, experienced teams interpreted and made...
ERIC Educational Resources Information Center
Lokey, Kenneth R.
The Satellite Technology Demonstration (STD), a project of the Federation of Rocky Mountain States, Inc. (FRMS), employed a project management model for its organizational structure. The organization and management system utilized by the STD was designed to accomplish a predetermined set of objectives with the highest quality possible within a…
The Pan-STARRS PS1 Image Processing Pipeline
NASA Astrophysics Data System (ADS)
Magnier, E.
The Pan-STARRS PS1 Image Processing Pipeline (IPP) performs the image processing and data analysis tasks needed to enable the scientific use of the images obtained by the Pan-STARRS PS1 prototype telescope. The primary goals of the IPP are to process the science images from the Pan-STARRS telescopes and make the results available to other systems within Pan-STARRS. It also is responsible for combining all of the science images in a given filter into a single representation of the non-variable component of the night sky defined as the "Static Sky". To achieve these goals, the IPP also performs other analysis functions to generate the calibrations needed in the science image processing, and to occasionally use the derived data to generate improved astrometric and photometric reference catalogs. It also provides the infrastructure needed to store the incoming data and the resulting data products. The IPP inherits lessons learned, and in some cases code and prototype code, from several other astronomy image analysis systems, including Imcat (Kaiser), the Sloan Digital Sky Survey (REF), the Elixir system (Magnier & Cuillandre), and Vista (Tonry). Imcat and Vista have a large number of robust image processing functions. SDSS has demonstrated a working analysis pipeline and large-scale databasesystem for a dedicated project. The Elixir system has demonstrated an automatic image processing system and an object database system for operational usage. This talk will present an overview of the IPP architecture, functional flow, code development structure, and selected analysis algorithms. Also discussed is the HW highly parallel HW configuration necessary to support PS1 operational requirements. Finally, results are presented of the processing of images collected during PS1 early commissioning tasks utilizing the Pan-STARRS Test Camera #3.
Equation-free analysis of agent-based models and systematic parameter determination
NASA Astrophysics Data System (ADS)
Thomas, Spencer A.; Lloyd, David J. B.; Skeldon, Anne C.
2016-12-01
Agent based models (ABM)s are increasingly used in social science, economics, mathematics, biology and computer science to describe time dependent systems in circumstances where a description in terms of equations is difficult. Yet few tools are currently available for the systematic analysis of ABM behaviour. Numerical continuation and bifurcation analysis is a well-established tool for the study of deterministic systems. Recently, equation-free (EF) methods have been developed to extend numerical continuation techniques to systems where the dynamics are described at a microscopic scale and continuation of a macroscopic property of the system is considered. To date, the practical use of EF methods has been limited by; (1) the over-head of application-specific implementation; (2) the laborious configuration of problem-specific parameters; and (3) large ensemble sizes (potentially) leading to computationally restrictive run-times. In this paper we address these issues with our tool for the EF continuation of stochastic systems, which includes algorithms to systematically configuration problem specific parameters and enhance robustness to noise. Our tool is generic and can be applied to any 'black-box' simulator and determines the essential EF parameters prior to EF analysis. Robustness is significantly improved using our convergence-constraint with a corrector-repeat (C3R) method. This algorithm automatically detects outliers based on the dynamics of the underlying system enabling both an order of magnitude reduction in ensemble size and continuation of systems at much higher levels of noise than classical approaches. We demonstrate our method with application to several ABM models, revealing parameter dependence, bifurcation and stability analysis of these complex systems giving a deep understanding of the dynamical behaviour of the models in a way that is not otherwise easily obtainable. In each case we demonstrate our systematic parameter determination stage for configuring the system specific EF parameters.
Cselényi, Zsolt; Lundberg, Johan; Halldin, Christer; Farde, Lars; Gulyás, Balázs
2004-10-01
Positron emission tomography (PET) has proved to be a highly successful technique in the qualitative and quantitative exploration of the human brain's neurotransmitter-receptor systems. In recent years, the number of PET radioligands, targeted to different neuroreceptor systems of the human brain, has increased considerably. This development paves the way for a simultaneous analysis of different receptor systems and subsystems in the same individual. The detailed exploration of the versatility of neuroreceptor systems requires novel technical approaches, capable of operating on huge parametric image datasets. An initial step of such explorative data processing and analysis should be the development of novel exploratory data-mining tools to gain insight into the "structure" of complex multi-individual, multi-receptor data sets. For practical reasons, a possible and feasible starting point of multi-receptor research can be the analysis of the pre- and post-synaptic binding sites of the same neurotransmitter. In the present study, we propose an unsupervised, unbiased data-mining tool for this task and demonstrate its usefulness by using quantitative receptor maps, obtained with positron emission tomography, from five healthy subjects on (pre-synaptic) serotonin transporters (5-HTT or SERT) and (post-synaptic) 5-HT(1A) receptors. Major components of the proposed technique include the projection of the input receptor maps to a feature space, the quasi-clustering and classification of projected data (neighbourhood formation), trans-individual analysis of neighbourhood properties (trajectory analysis), and the back-projection of the results of trajectory analysis to normal space (creation of multi-receptor maps). The resulting multi-receptor maps suggest that complex relationships and tendencies in the relationship between pre- and post-synaptic transporter-receptor systems can be revealed and classified by using this method. As an example, we demonstrate the regional correlation of the serotonin transporter-receptor systems. These parameter-specific multi-receptor maps can usefully guide the researchers in their endeavour to formulate models of multi-receptor interactions and changes in the human brain.
CONNECT: Linking Energy, Security, and Prosperity in the 21st Century - JISEA 2017 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
This report demonstrates 2016 highlights of the Joint Institute for Strategic Energy Analysis' (JISEA's) work. The Annual Report overviews JISEA's research and analysis accomplishments in natural gas and methane emissions; nuclear-renewable hybrid energy systems; the 21st Century Power Partnership; and more.
40 CFR 63.7505 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... compliance with the applicable emission limit for hydrogen chloride or mercury using fuel analysis if the..., fuel analysis, or continuous monitoring systems (CMS), including a continuous emission monitoring..., you must demonstrate compliance for hydrogen chloride or mercury using performance testing, if subject...
We advocate an approach to reduce the anticipated increase in stormwater runoff from conventional development by demonstrating a low-impact development that incorporates hydrologic factors into an expanded land suitability analysis. This methodology was applied to a 3 hectare exp...
Nanoliter-Scale Oil-Air-Droplet Chip-Based Single Cell Proteomic Analysis.
Li, Zi-Yi; Huang, Min; Wang, Xiu-Kun; Zhu, Ying; Li, Jin-Song; Wong, Catherine C L; Fang, Qun
2018-04-17
Single cell proteomic analysis provides crucial information on cellular heterogeneity in biological systems. Herein, we describe a nanoliter-scale oil-air-droplet (OAD) chip for achieving multistep complex sample pretreatment and injection for single cell proteomic analysis in the shotgun mode. By using miniaturized stationary droplet microreaction and manipulation techniques, our system allows all sample pretreatment and injection procedures to be performed in a nanoliter-scale droplet with minimum sample loss and a high sample injection efficiency (>99%), thus substantially increasing the analytical sensitivity for single cell samples. We applied the present system in the proteomic analysis of 100 ± 10, 50 ± 5, 10, and 1 HeLa cell(s), and protein IDs of 1360, 612, 192, and 51 were identified, respectively. The OAD chip-based system was further applied in single mouse oocyte analysis, with 355 protein IDs identified at the single oocyte level, which demonstrated its special advantages of high enrichment of sequence coverage, hydrophobic proteins, and enzymatic digestion efficiency over the traditional in-tube system.
Analysis of high vacuum systems using SINDA'85
NASA Technical Reports Server (NTRS)
Spivey, R. A.; Clanton, S. E.; Moore, J. D.
1993-01-01
The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.
Krause, David A; Boyd, Michael S; Hager, Allison N; Smoyer, Eric C; Thompson, Anthony T; Hollman, John H
2015-02-01
The squat is a fundamental movement of many athletic and daily activities. Methods to clinically assess the squat maneuver range from simple observation to the use of sophisticated equipment. The purpose of this study was to examine the reliability of Coach's Eye (TechSmith Corp), a 2-dimensional (2D) motion analysis mobile device application (app), for assessing maximal sagittal plane hip, knee, and ankle motion during a functional movement screen deep squat, and to compare range of motion values generated by it to those from a Vicon (Vicon Motion Systems Ltd) 3-dimensional (3D) motion analysis system. Twenty-six healthy subjects performed three functional movement screen deep squats recorded simultaneously by both the app (on an iPad [Apple Inc]) and the 3D motion analysis system. Joint angle data were calculated with Vicon Nexus software (Vicon Motion Systems Ltd). The app video was analyzed frame by frame to determine, and freeze on the screen, the deepest position of the squat. With a capacitive stylus reference lines were then drawn on the iPad screen to determine joint angles. Procedures were repeated with approximately 48 hours between sessions. Test-retest intrarater reliability (ICC3,1) for the app at the hip, knee, and ankle was 0.98, 0.98, and 0.79, respectively. Minimum detectable change was hip 6°, knee 6°, and ankle 7°. Hip joint angles measured with the 2D app exceeded measurements obtained with the 3D motion analysis system by approximately 40°. Differences at the knee and ankle were of lower magnitude, with mean differences of 5° and 3°, respectively. Bland-Altman analysis demonstrated a systematic bias in the hip range-of-motion measurement. No such bias was demonstrated at the knee or ankle. The 2D app demonstrated excellent reliability and appeared to be a responsive means to assess for clinical change, with minimum detectable change values ranging from 6° to 7°. These results also suggest that the 2D app may be used as an alternative to a sophisticated 3D motion analysis system for assessing sagittal plane knee and ankle motion; however, it does not appear to be a comparable alternative for assessing hip motion. 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naka, T., E-mail: naka@flab.phys.nagoya-u.ac.jp; Institute for Advanced Research, Nagoya University, Aichi 464-8602; Asada, T.
Analyses of nuclear emulsion detectors that can detect and identify charged particles or radiation as tracks have typically utilized optical microscope systems because the targets have lengths from several μm to more than 1000 μm. For recent new nuclear emulsion detectors that can detect tracks of submicron length or less, the current readout systems are insufficient due to their poor resolution. In this study, we developed a new system and method using an optical microscope system for rough candidate selection and the hard X-ray microscope system at SPring-8 for high-precision analysis with a resolution of better than 70 nm resolution.more » Furthermore, we demonstrated the analysis of submicron-length tracks with a matching efficiency of more than 99% and position accuracy of better than 5 μm. This system is now running semi-automatically.« less
Model-Driven Safety Analysis of Closed-Loop Medical Systems
Pajic, Miroslav; Mangharam, Rahul; Sokolsky, Oleg; Arney, David; Goldman, Julian; Lee, Insup
2013-01-01
In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure. PMID:24177176
Model-Driven Safety Analysis of Closed-Loop Medical Systems.
Pajic, Miroslav; Mangharam, Rahul; Sokolsky, Oleg; Arney, David; Goldman, Julian; Lee, Insup
2012-10-26
In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure.
A LISREL Model for the Analysis of Repeated Measures with a Patterned Covariance Matrix.
ERIC Educational Resources Information Center
Rovine, Michael J.; Molenaar, Peter C. M.
1998-01-01
Presents a LISREL model for the estimation of the repeated measures analysis of variance (ANOVA) with a patterned covariance matrix. The model is demonstrated for a 5 x 2 (Time x Group) ANOVA in which the data are assumed to be serially correlated. Similarities with the Statistical Analysis System PROC MIXED model are discussed. (SLD)
Thermal structure analyses for CSM testbed (COMET)
NASA Technical Reports Server (NTRS)
Xue, David Y.; Mei, Chuh
1994-01-01
This document is the final report for the project entitled 'Thermal Structure Analyses for CSM Testbed (COMET),' for the period of May 16, 1992 - August 15, 1994. The project was focused on the investigation and development of finite element analysis capability of the computational structural mechanics (CSM) testbed (COMET) software system in the field of thermal structural responses. The stages of this project consisted of investigating present capabilities, developing new functions, analysis demonstrations, and research topics. The appendices of this report list the detailed documents of major accomplishments and demonstration runstreams for future references.
Integrated Data Visualization and Virtual Reality Tool
NASA Technical Reports Server (NTRS)
Dryer, David A.
1998-01-01
The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Malhotra, Mini; Xiong, Zeyu
High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a distributed GSHP system for providing all the space conditioning, outdoor air ventilation, and 100% domestic hot water tomore » the Wilders Grove Solid Waste Service Center of City of Raleigh, North Carolina. This case study is based on the analysis of measured performance data, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning and outdoor air ventilation as the demonstrated GSHP system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GSHP system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation and improving the operational efficiency of the demonstrated GSHP system.« less
Mines Systems Safety Improvement Using an Integrated Event Tree and Fault Tree Analysis
NASA Astrophysics Data System (ADS)
Kumar, Ranjan; Ghosh, Achyuta Krishna
2017-04-01
Mines systems such as ventilation system, strata support system, flame proof safety equipment, are exposed to dynamic operational conditions such as stress, humidity, dust, temperature, etc., and safety improvement of such systems can be done preferably during planning and design stage. However, the existing safety analysis methods do not handle the accident initiation and progression of mine systems explicitly. To bridge this gap, this paper presents an integrated Event Tree (ET) and Fault Tree (FT) approach for safety analysis and improvement of mine systems design. This approach includes ET and FT modeling coupled with redundancy allocation technique. In this method, a concept of top hazard probability is introduced for identifying system failure probability and redundancy is allocated to the system either at component or system level. A case study on mine methane explosion safety with two initiating events is performed. The results demonstrate that the presented method can reveal the accident scenarios and improve the safety of complex mine systems simultaneously.
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Gaier, James R.; Zoeckler, Joseph G.; Kolacz, John S.; Wegeng, Robert S.; Rassat, Scot D.; Clark, D. Larry
2013-01-01
A Mars hopper has been proposed as a Mars mobility concept that will also demonstrate and advance in-situ resource utilization. The components needed in a Mars propellant production plant have been developed to various levels of technology maturity, but there is little experience with the systems in a Mars environment. Two systems for the acquisition and compression of the thin carbon dioxide atmosphere were designed, assembled, and tested in a Mars environment chamber. A microchannel sorption pump system was able to raise the pressure from 7 Torr to 450 Torr or from 12 Torr to over 700 Torr in two stages. This data now provides information needed to make additional improvements in the sorption pump technology to increase performance, although a system-level analysis might prove that some amount of pre- or post-compression may be a preferred solution. A mini cryofreezer system was also evaluated as an alternative method for carbon dioxide acquisition and compression. Finally, an electrolysis system was tested and successfully demonstrated start-up operation and thermal stability of all components during long-term operation in the chamber.
Design and demonstration of an advanced data collection/position location system
NASA Technical Reports Server (NTRS)
1977-01-01
The final report on a breadboard evaluation and demonstration program is reported concerning the applicability of MSK modulation and chirp-z transformer technology in Advanced Data Collection/Position Location (ADC/PL) systems. The program effort consisted of three phases - design, testing, and evaluation. Section 2 describes the breadboard hardware built during the design phase of the program, Section 3 describes the tests conducted on the breadboard and the results of the tests, and Section 4 presents a brief analysis and summary of the findings of the breadboard tests and develops a sample ADC/PL system which incorporates both MSK modulation and a chirp-z transformer.
Tutorial: Advanced fault tree applications using HARP
NASA Technical Reports Server (NTRS)
Dugan, Joanne Bechta; Bavuso, Salvatore J.; Boyd, Mark A.
1993-01-01
Reliability analysis of fault tolerant computer systems for critical applications is complicated by several factors. These modeling difficulties are discussed and dynamic fault tree modeling techniques for handling them are described and demonstrated. Several advanced fault tolerant computer systems are described, and fault tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that is capable of solving the fault tree models presented.
2016-09-23
Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s
2011-08-01
investigated. Implementation of this technology into the maintenance framework depends on several factors, including safety of the structural system, cost... Maintenance Parameters The F-15 Program has indicated that, in practice , maintenance actions are generally performed on flight hour multiples of 200...Risk Analysis or the Perform Cost Benefit Analysis sections of the flowchart. 4.6. Determine System Configurations The current maintenance practice
Site characterization and analysis penetrometer system
NASA Astrophysics Data System (ADS)
Heath, Jeff
1995-04-01
The site characterization and analysis penetrometer system (SCAPS) with laser induced fluorescence (LIF) sensors is being demonstrated as a quick field screening technique to determine the physical and chemical characteristics of subsurface soil and contaminants at hazardous waste sites SCAPS is a collaborative development effort of the Navy, Army, and Air Force under the Tri-Service SCAPS Program. The current SCAPS configuration is designed to quickly and cost-effectively distinguish areas contaminated with petroleum products (hydrocarbons) from unaffected areas.
Probabilistic methods for rotordynamics analysis
NASA Technical Reports Server (NTRS)
Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.
1991-01-01
This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.
Pursit-evasion game analysis in a line of sight coordinate system
NASA Technical Reports Server (NTRS)
Shinar, J.; Davidovitz, A.
1985-01-01
The paper proposes to use line of sight coordinates for the analysis of pursuit-evasion games. The advantage of this method for two-target games is shown to be evident. As a demonstrative example the game of two identical cars is formulated and solved in such coordinate systems. A new type of singular surface, overlooked in a previous study of the same problem, is discovered as a consequence of the simplicity of the solution.
Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System
Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin
2016-01-01
Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems. PMID:27548171
Probabilistic Structures Analysis Methods (PSAM) for select space propulsion system components
NASA Technical Reports Server (NTRS)
1991-01-01
The basic formulation for probabilistic finite element analysis is described and demonstrated on a few sample problems. This formulation is based on iterative perturbation that uses the factorized stiffness on the unperturbed system as the iteration preconditioner for obtaining the solution to the perturbed problem. This approach eliminates the need to compute, store and manipulate explicit partial derivatives of the element matrices and force vector, which not only reduces memory usage considerably, but also greatly simplifies the coding and validation tasks. All aspects for the proposed formulation were combined in a demonstration problem using a simplified model of a curved turbine blade discretized with 48 shell elements, and having random pressure and temperature fields with partial correlation, random uniform thickness, and random stiffness at the root.
This report provides the in-depth data analysis from the SITE Program's six-week demonstration of BioTrol's Aqueous Treatment System (BATS) at the MacGillis and Gibbs Company wood treatment facility in New Brighton, Minnesota. he pilot scale (5gpm), fixed-film biological system u...
We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat ...
Demonstration of no-VOC/no-HAP wood furniture coating system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, E.W.; Guan, R.; McCrillis, R.C.
1997-12-31
The United States Environmental Protection Agency has contracted with AeroVironment Environmental Services, Inc. and its subcontractor, Adhesive Coating Co., to develop and demonstrate a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system. The objectives of this project are to develop a new wood coating system that is sufficiently mature for demonstration and to develop a technology transfer plan to get the product into public use. The performance characteristics of this new coating system are excellent in terms of adhesion, drying times, gloss, hardness, mar resistance, level of solvents, and stain resistance. Workshops will be held to providemore » detailed information to wood furniture manufacturers on what is required to change to the new coating system. Topics such as spray gun selection, spray techniques, coating repair procedures, drying times and procedures, and spray equipment cleaning materials and techniques will be presented. A cost analysis, including costs of materials, capital outlay, and labor will be conducted comparing costs to finish furniture with the new system to systems currently used. Film performance, coating materials cost per unit production, productivity, manufacturing changes, and emission levels will be compared in the workshops, based on data gathered during the in-plant, full scale demonstrations.« less
Nuclear Systems Kilopower Overview
NASA Technical Reports Server (NTRS)
Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross
2016-01-01
The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.
De Brún, Aoife; McAuliffe, Eilish
2018-03-13
Health systems research recognizes the complexity of healthcare, and the interacting and interdependent nature of components of a health system. To better understand such systems, innovative methods are required to depict and analyze their structures. This paper describes social network analysis as a methodology to depict, diagnose, and evaluate health systems and networks therein. Social network analysis is a set of techniques to map, measure, and analyze social relationships between people, teams, and organizations. Through use of a case study exploring support relationships among senior managers in a newly established hospital group, this paper illustrates some of the commonly used network- and node-level metrics in social network analysis, and demonstrates the value of these maps and metrics to understand systems. Network analysis offers a valuable approach to health systems and services researchers as it offers a means to depict activity relevant to network questions of interest, to identify opinion leaders, influencers, clusters in the network, and those individuals serving as bridgers across clusters. The strengths and limitations inherent in the method are discussed, and the applications of social network analysis in health services research are explored.
Chung, Younjin; Salvador-Carulla, Luis; Salinas-Pérez, José A; Uriarte-Uriarte, Jose J; Iruin-Sanz, Alvaro; García-Alonso, Carlos R
2018-04-25
Decision-making in mental health systems should be supported by the evidence-informed knowledge transfer of data. Since mental health systems are inherently complex, involving interactions between its structures, processes and outcomes, decision support systems (DSS) need to be developed using advanced computational methods and visual tools to allow full system analysis, whilst incorporating domain experts in the analysis process. In this study, we use a DSS model developed for interactive data mining and domain expert collaboration in the analysis of complex mental health systems to improve system knowledge and evidence-informed policy planning. We combine an interactive visual data mining approach, the self-organising map network (SOMNet), with an operational expert knowledge approach, expert-based collaborative analysis (EbCA), to develop a DSS model. The SOMNet was applied to the analysis of healthcare patterns and indicators of three different regional mental health systems in Spain, comprising 106 small catchment areas and providing healthcare for over 9 million inhabitants. Based on the EbCA, the domain experts in the development team guided and evaluated the analytical processes and results. Another group of 13 domain experts in mental health systems planning and research evaluated the model based on the analytical information of the SOMNet approach for processing information and discovering knowledge in a real-world context. Through the evaluation, the domain experts assessed the feasibility and technology readiness level (TRL) of the DSS model. The SOMNet, combined with the EbCA, effectively processed evidence-based information when analysing system outliers, explaining global and local patterns, and refining key performance indicators with their analytical interpretations. The evaluation results showed that the DSS model was feasible by the domain experts and reached level 7 of the TRL (system prototype demonstration in operational environment). This study supports the benefits of combining health systems engineering (SOMNet) and expert knowledge (EbCA) to analyse the complexity of health systems research. The use of the SOMNet approach contributes to the demonstration of DSS for mental health planning in practice.
Sensitivity analysis of automatic flight control systems using singular value concepts
NASA Technical Reports Server (NTRS)
Herrera-Vaillard, A.; Paduano, J.; Downing, D.
1985-01-01
A sensitivity analysis is presented that can be used to judge the impact of vehicle dynamic model variations on the relative stability of multivariable continuous closed-loop control systems. The sensitivity analysis uses and extends the singular-value concept by developing expressions for the gradients of the singular value with respect to variations in the vehicle dynamic model and the controller design. Combined with a priori estimates of the accuracy of the model, the gradients are used to identify the elements in the vehicle dynamic model and controller that could severely impact the system's relative stability. The technique is demonstrated for a yaw/roll damper stability augmentation designed for a business jet.
Vetter, Jeffrey S.
2005-02-01
The method and system described herein presents a technique for performance analysis that helps users understand the communication behavior of their message passing applications. The method and system described herein may automatically classifies individual communication operations and reveal the cause of communication inefficiencies in the application. This classification allows the developer to quickly focus on the culprits of truly inefficient behavior, rather than manually foraging through massive amounts of performance data. Specifically, the method and system described herein trace the message operations of Message Passing Interface (MPI) applications and then classify each individual communication event using a supervised learning technique: decision tree classification. The decision tree may be trained using microbenchmarks that demonstrate both efficient and inefficient communication. Since the method and system described herein adapt to the target system's configuration through these microbenchmarks, they simultaneously automate the performance analysis process and improve classification accuracy. The method and system described herein may improve the accuracy of performance analysis and dramatically reduce the amount of data that users must encounter.
Houghton, Robert J; Baber, Chris; Stanton, Neville A; Jenkins, Daniel P; Revell, Kirsten
2015-01-01
Cognitive Work Analysis (CWA) allows complex, sociotechnical systems to be explored in terms of their potential configurations. However, CWA does not explicitly analyse the manner in which person-to-person communication is performed in these configurations. Consequently, the combination of CWA with Social Network Analysis provides a means by which CWA output can be analysed to consider communication structure. The approach is illustrated through a case study of a military planning team. The case study shows how actor-to-actor and actor-to-function mapping can be analysed, in terms of centrality, to produce metrics of system structure under different operating conditions. In this paper, a technique for building social network diagrams from CWA is demonstrated.The approach allows analysts to appreciate the potential impact of organisational structure on a command system.
Thermal analysis of a conceptual design for a 250 We GPHS/FPSE space power system
NASA Technical Reports Server (NTRS)
Mccomas, Thomas J.; Dugan, Edward T.
1991-01-01
A thermal analysis has been performed for a 250-We space nuclear power system which combines the US Department of Energy's general purpose heat source (GPHS) modules with a state-of-the-art free-piston Stirling engine (FPSE). The focus of the analysis is on the temperature of the indium fuel clad within the GPHS modules. The thermal analysis results indicate fuel clad temperatures slightly higher than the design goal temperature of 1573 K. The results are considered favorable due to numerous conservative assumptions used. To demonstrate the effects of the conservatism, a brief sensitivity analysis is performed in which a few of the key system parameters are varied to determine their effect on the fuel clad temperatures. It is shown that thermal analysis of a more detailed thermal mode should yield fuel clad temperatures below 1573 K.
Space Life-Support Engineering Program
NASA Technical Reports Server (NTRS)
Seagrave, Richard C. (Principal Investigator)
1995-01-01
This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.
Programs for analysis and resizing of complex structures. [computerized minimum weight design
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Prasad, B.
1978-01-01
The paper describes the PARS (Programs for Analysis and Resizing of Structures) system. PARS is a user oriented system of programs for the minimum weight design of structures modeled by finite elements and subject to stress, displacement, flutter and thermal constraints. The system is built around SPAR - an efficient and modular general purpose finite element program, and consists of a series of processors that communicate through the use of a data base. An efficient optimizer based on the Sequence of Unconstrained Minimization Technique (SUMT) with an extended interior penalty function and Newton's method is used. Several problems are presented for demonstration of the system capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Liu, Xiaobing
High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects were competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This report highlights the findings of a case study of one such GSHP demonstration projects that uses a recycled water heat pump (RWHP) system installed at the Denver Museum of Nature & Science in Denver, Colorado. Themore » RWHP system uses recycled water from the city’s water system as the heat sink and source for a modular water-to-water heat pump (WWHP). This case study was conducted based on the available measured performance data from December 2014 through August 2015, utility bills of the building in 2014 and 2015, construction drawings, maintenance records, personal communications, and construction costs. The annual energy consumption of the RWHP system was calculated based on the available measured data and other related information. It was compared with the performance of a baseline scenario— a conventional VAV system using a water-cooled chiller and a natural gas fired boiler, both of which have the minimum energy efficiencies allowed by ASHRAE 90.1-2010. The comparison was made to determine energy savings, operating cost savings, and CO2 emission reductions achieved by the RWHP system. A cost analysis was performed to evaluate the simple payback of the RWHP system. Summarized below are the results of the performance analysis, the learned lessons, and recommended improvement in the operation of the RWHP system.« less
Internal Logistics System Selection with Total Cost of Ownership Analysis
NASA Astrophysics Data System (ADS)
Araújo, Inês; Pimentel, Carina; Godina, Radu; Matias, João C. O.
2017-06-01
In this paper a methodology was followed in order to support the decision-making of one industrial unit regarding its internal logistics system. The addressed factory was facing issues with their internal logistics approach. Some alternatives were pointed out and a proper total cost of ownership (TCO) analysis was developed. This analysis was taken in order to demonstrate the more cost-effective solution for the internal logistics system. This tool is more and more valued by the companies, due to their willing to reduce the costs that are associated with the way of doing business. Despite the proposal of the best choice for the internal logistics system of the enterprise, this study also intends to present some conclusions about the match between the nature of the industrial unit and the logistics systems that best fit the requirements of those.
Computerized system for assessing heart rate variability.
Frigy, A; Incze, A; Brânzaniuc, E; Cotoi, S
1996-01-01
The principal theoretical, methodological and clinical aspects of heart rate variability (HRV) analysis are reviewed. This method has been developed over the last 10 years as a useful noninvasive method of measuring the activity of the autonomic nervous system. The main components and the functioning of the computerized rhythm-analyzer system developed by our team are presented. The system is able to perform short-term (maximum 20 minutes) time domain HRV analysis and statistical analysis of the ventricular rate in any rhythm, particularly in atrial fibrillation. The performances of our system are demonstrated by using the graphics (RR histograms, delta RR histograms, RR scattergrams) and the statistical parameters resulted from the processing of three ECG recordings. These recordings are obtained from a normal subject, from a patient with advanced heart failure, and from a patient with atrial fibrillation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almajali, Anas; Rice, Eric; Viswanathan, Arun
This paper presents a systems analysis approach to characterizing the risk of a Smart Grid to a load-drop attack. A characterization of the risk is necessary for the design of detection and remediation strategies to address the consequences of such attacks. Using concepts from systems health management and system engineering, this work (a) first identifies metrics that can be used to generate constraints for security features, and (b) lays out an end-to-end integrated methodology using separate network and power simulations to assess system risk. We demonstrate our approach by performing a systems-style analysis of a load-drop attack implemented over themore » AMI subsystem and targeted at destabilizing the underlying power grid.« less
Impact of Offshore Wind Power Integrated by VSC-HVDC on Power Angle Stability of Power Systems
NASA Astrophysics Data System (ADS)
Lu, Haiyang; Tang, Xisheng
2017-05-01
Offshore wind farm connected to grid by VSC-HVDC loses frequency support for power system, so adding frequency control in wind farm and VSC-HVDC system is an effective measure, but it will change wind farm VSC-HVDC’s transient stability on power system. Through theoretical analysis, concluding the relationship between equivalent mechanical power and electromagnetic power of two-machine system with the active power of wind farm VSC-HVDC, then analyzing the impact of wind farm VSC-HVDC with or without frequency control and different frequency control parameters on angle stability of synchronous machine by EEAC. The validity of theoretical analysis has been demonstrated through simulation in PSCAD/EMTDC.
The Use of Object-Oriented Analysis Methods in Surety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craft, Richard L.; Funkhouser, Donald R.; Wyss, Gregory D.
1999-05-01
Object-oriented analysis methods have been used in the computer science arena for a number of years to model the behavior of computer-based systems. This report documents how such methods can be applied to surety analysis. By embodying the causality and behavior of a system in a common object-oriented analysis model, surety analysts can make the assumptions that underlie their models explicit and thus better communicate with system designers. Furthermore, given minor extensions to traditional object-oriented analysis methods, it is possible to automatically derive a wide variety of traditional risk and reliability analysis methods from a single common object model. Automaticmore » model extraction helps ensure consistency among analyses and enables the surety analyst to examine a system from a wider variety of viewpoints in a shorter period of time. Thus it provides a deeper understanding of a system's behaviors and surety requirements. This report documents the underlying philosophy behind the common object model representation, the methods by which such common object models can be constructed, and the rules required to interrogate the common object model for derivation of traditional risk and reliability analysis models. The methodology is demonstrated in an extensive example problem.« less
Space-to-earth power transmission system
NASA Technical Reports Server (NTRS)
Stevens, G. H.; Schuh, R.
1976-01-01
A preliminary analysis was conducted to establish the requirements of a space-to-earth microwave power transmission system. The need for accurate phase control on the transmitter was established and methods for assessing the impact of power density and thermal constraints on system performance were demonstrated. Potential radio frequency interference was considered. The sensitivity of transmission system scale to variations in power source, transportation and orbital fabrication and assembly costs was also determined.
NASA Astrophysics Data System (ADS)
Kumar, Girish; Jain, Vipul; Gandhi, O. P.
2018-03-01
Maintenance helps to extend equipment life by improving its condition and avoiding catastrophic failures. Appropriate model or mechanism is, thus, needed to quantify system availability vis-a-vis a given maintenance strategy, which will assist in decision-making for optimal utilization of maintenance resources. This paper deals with semi-Markov process (SMP) modeling for steady state availability analysis of mechanical systems that follow condition-based maintenance (CBM) and evaluation of optimal condition monitoring interval. The developed SMP model is solved using two-stage analytical approach for steady-state availability analysis of the system. Also, CBM interval is decided for maximizing system availability using Genetic Algorithm approach. The main contribution of the paper is in the form of a predictive tool for system availability that will help in deciding the optimum CBM policy. The proposed methodology is demonstrated for a centrifugal pump.
Conceptual spacecraft systems design and synthesis
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
Computational singular perturbation analysis of stochastic chemical systems with stiffness
NASA Astrophysics Data System (ADS)
Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.
2017-04-01
Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.
NASA Technical Reports Server (NTRS)
Walsh, T. M.; Morello, S. A.; Reeder, J. P.
1976-01-01
An exercise to support the Federal Aviation Administration in demonstrating the U.S. candidate for an international microwave landing system (MLS) was conducted by NASA. During this demonstration the MLS was utilized to provide the TCV Boeing 737 research airplane with guidance for automatic control during transition from conventional RNAV to MLS RNAV in curved, descending flight; flare; touchdown; and roll-out. Flight profiles, system configuration, displays, and operating procedures used in the demonstration are described, and preliminary results of flight data analysis are discussed. Recent experiences with manually controlled flight in the NAFEC MLS environment are also discussed. The demonstration shows that in automatic three-dimensional flight, the volumetric signal coverage of the MLS can be exploited to enable a commercial carrier class airplane to perform complex curved, descending paths with precision turns into short final approaches terminating in landing and roll-out, even when subjected to strong and gusty tail and cross wind components and severe wind shear.
Distinct role of IL-1β in instigating disease in Sharpincpdm mice
Gurung, Prajwal; Sharma, Bhesh Raj; Kanneganti, Thirumala-Devi
2016-01-01
Mice deficient in SHARPIN (Sharpincpdm mice), a member of linear ubiquitin chain assembly complex (LUBAC), develop severe dermatitis associated with systemic inflammation. Previous studies have demonstrated that components of the TNF-signaling pathway, NLRP3 inflammasome and IL-1R signaling are required to provoke skin inflammation in Sharpincpdm mice. However, whether IL-1α or IL-1β, both of which signals through IL-1R, instigates skin inflammation and systemic disease is not known. Here, we have performed extensive cellular analysis of pre-diseased and diseased Sharpincpdm mice and demonstrated that cellular dysregulation precedes skin inflammation. Furthermore, we demonstrate a specific role for IL-1β, but not IL-1α, in instigating dermatitis in Sharpincpdm mice. Our results altogether demonstrate distinct roles of SHARPIN in initiating systemic inflammation and dermatitis. Furthermore, skin inflammation in Sharpincpdm mice is specifically modulated by IL-1β, highlighting the importance of specific targeted therapies in the IL-1 signaling blockade. PMID:27892465
Huang, Qingchao; Liu, Dachang; Chen, Yinfang; Wang, Yuehui; Tan, Jun; Chen, Wei; Liu, Jianguo; Zhu, Ninghua
2018-05-14
A secure free-space optical (S-FSO) communication system based on data fragmentation multipath transmission (DFMT) scheme is proposed and demonstrated for enhancing the security of FSO communications. By fragmenting the transmitted data and simultaneously distributing data fragments into different atmospheric channels, the S-FSO communication system can protect confidential messages from being eavesdropped effectively. A field experiment of S-FSO communication between two buildings has been successfully undertaken, and the experiment results demonstrate the feasibility of the scheme. The transmission distance is 50m and the maximum throughput is 1 Gb/s. We also established a theoretical model to analysis the security performance of the S-FSO communication system. To the best of our knowledge, this is the first application of DFMT scheme in FSO communication system.
Case Analysis Of The Joint High Speed Vessel Program: Defense Acquisition
2016-09-01
reviews resulted in a series of Advanced Concept Technology Demonstrations (ACTD) designed to explore the military utility of converted commercial...requirements into a final and unique materiel solution for a system capability that is fielded. 14. SUBJECT TERMS Advanced Concept and Technology ...Advanced Concept Technology Demonstrations (ACTD) designed to explore the military utility of converted commercial, high-speed, shallow-draft
49 CFR 229.211 - Processing of petitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Docket Management System and posted on its Web site at http://www.regulations.gov. (3) In the event FRA..., FRA will consider proper documentation of competent engineering analysis, or practical demonstrations...
49 CFR 229.211 - Processing of petitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Docket Management System and posted on its Web site at http://www.regulations.gov. (3) In the event FRA..., FRA will consider proper documentation of competent engineering analysis, or practical demonstrations...
Broadcasting GPS integrity information using Loran-C
NASA Astrophysics Data System (ADS)
Lo, Sherman Chih
The United States Federal Aviation Administration (FAA) will adopt the Global Positioning System (GPS) as its primary navigation systems for aviation as stated by the Federal Radionavigation Plans (FRP) of 1996 and 1999. The FRP also proposes the reduction or termination of some existing radionavigation system in favor of GPS and satellite navigation. It may be beneficial to retain some of these existing terrestrial navigation systems if they can provide increased safety and redundancy to the GPS based architecture. One manner in which this can be done is by using or creating a data link on these existing radionavigation systems. These systems thus can provide both navigation and an additional broadcast of GPS integrity information. This thesis examines the use of terrestrial data links to provide Wide Area Augmentation System (WAAS) based GPS integrity information for aviation. The thesis focuses on using Loran-C to broadcast WAAS data. Analysis and experimental results demonstrating the capabilities of these designs are also discussed. Using Loran for this purpose requires increasing its data capacity. Many Loran modulation schemes are developed and analyzed. The data rates developed significantly increased the Loran data capacity. However, retaining compatibility with Loran legacy users resulted in data rates below the WARS data rate of 250 bps. As a result, this thesis also examines means of reducing the data requirements for WAAS information. While higher data rates offer improved performance and compatibility with WAAS, this thesis demonstrates that higher rates incur greater interference. Therefore, this work develops and considers a 108 bps and 167 bps Loran GPS integrity channel (LOGIC) design. The performance of the two designs illustrates some of the advantages and disadvantages of using a higher data rate. Analysis demonstrated means of maintaining integrity with these low data rate systems and determined the theoretical capabilities of the systems. The system was tested empirically by developing software that generated the LOGIC message and applied these messages to a GPS user. The resulting 108 bps and 167 bps systems demonstrated capability to provide lateral navigation/vertical navigation (LNAV/VNAV) and approach with vertical guidance (APV) respectively.
Use of an engineering data management system in the analysis of space shuttle orbiter tiles
NASA Technical Reports Server (NTRS)
Giles, G. L.; Vallas, M.
1981-01-01
The use of an engineering data management system to facilitate the extensive stress analyses of the space shuttle orbiter thermal protection system is demonstrated. The methods used to gather, organize, and store the data; to query data interactively; to generate graphic displays of the data; and to access, transform, and prepare the data for input to a stress analysis program are described. Information related to many separate tiles can be accessed individually from the data base which has a natural organization from an engineering viewpoint. The flexible user features of the system facilitate changes in data content and organization which occur during the development and refinement of the tile analysis procedure. Additionally, the query language supports retrieval of data to satisfy a variety of user-specified conditions.
Structural monitoring for rare events in remote locations
NASA Astrophysics Data System (ADS)
Hale, J. M.
2005-01-01
A structural monitoring system has been developed for use on high value engineering structures, which is particularly suitable for use in remote locations where rare events such as accidental impacts, seismic activity or terrorist attack might otherwise go undetected. The system comprises a low power intelligent on-site data logger and a remote analysis computer that communicate with one another using the internet and mobile telephone technology. The analysis computer also generates e-mail alarms and maintains a web page that displays detected events in near real-time to authorised users. The application of the prototype system to pipeline monitoring is described in which the analysis of detected events is used to differentiate between impacts and pressure surges. The system has been demonstrated successfully and is ready for deployment.
NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions.
NASA Astrophysics Data System (ADS)
Coughlan, J. C.
2005-12-01
The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle, human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future NASA missions.
Simulation technique for modeling flow on floodplains and in coastal wetlands
Schaffranek, Raymond W.; Baltzer, Robert A.
1988-01-01
The system design is premised on a proven, areal two-dimensional, finite-difference flow/transport model which is supported by an operational set of computer programs for input data management and model output interpretation. The purposes of the project are (1) to demonstrate the utility of the model for providing useful highway design information, (2) to develop guidelines and procedures for using the simulation system for evaluation, analysis, and optimal design of highway crossings of floodplain and coastal wetland areas, and (3) to identify improvements which can be effected in the simulation system to better serve the needs of highway design engineers. Two case study model implementations, being conducted to demonstrate the simulation system and modeling procedure, are presented and discussed briefly.
NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions
NASA Technical Reports Server (NTRS)
Coughlan, Joseph C.
2005-01-01
The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle. Human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future Nasa missions.
NASA Astrophysics Data System (ADS)
Valasek, John; Henrickson, James V.; Bowden, Ezekiel; Shi, Yeyin; Morgan, Cristine L. S.; Neely, Haly L.
2016-05-01
As small unmanned aircraft systems become increasingly affordable, reliable, and formally recognized under federal regulation, they become increasingly attractive as novel platforms for civil applications. This paper details the development and demonstration of fixed-wing unmanned aircraft systems for precision agriculture tasks. Tasks such as soil moisture content and high throughput phenotyping are considered. Rationale for sensor, vehicle, and ground equipment selections are provided, in addition to developed flight operation procedures for minimal numbers of crew. Preliminary imagery results are presented and analyzed, and these results demonstrate that fixed-wing unmanned aircraft systems modified to carry non-traditional sensors at extended endurance durations can provide high quality data that is usable for serious scientific analysis.
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
Mathematical Analysis for Non-reciprocal-interaction-based Model of Collective Behavior
NASA Astrophysics Data System (ADS)
Kano, Takeshi; Osuka, Koichi; Kawakatsu, Toshihiro; Ishiguro, Akio
2017-12-01
In many natural and social systems, collective behaviors emerge as a consequence of non-reciprocal interaction between their constituents. As a first step towards understanding the core principle that underlies these phenomena, we previously proposed a minimal model of collective behavior based on non-reciprocal interactions by drawing inspiration from friendship formation in human society, and demonstrated via simulations that various non-trivial patterns emerge by changing parameters. In this study, a mathematical analysis of the proposed model wherein the system size is small is performed. Through the analysis, the mechanism of the transition between several patterns is elucidated.
The Shock and Vibration Digest. Volume 16, Number 3
1984-03-01
Fluid-induced Statistical Energy Analysis Method excitation, Wind tunnel testing V.R. Miller and L.L. Faulkner Flight Dynamics Lab., Air Force...84475 wall by the statistical energy analysis (SEA) method. The fuselage structure is represented as a series of curved, iso- Probabilistic Fracture...heavy are demonstrated in three-dimensional form. floor, a statistical energy analysis (SEA) model is presented. Only structural systems (i.e., no
Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan
2008-09-01
In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.
Turbine blade forced response prediction using FREPS
NASA Technical Reports Server (NTRS)
Murthy, Durbha, V.; Morel, Michael R.
1993-01-01
This paper describes a software system called FREPS (Forced REsponse Prediction System) that integrates structural dynamic, steady and unsteady aerodynamic analyses to efficiently predict the forced response dynamic stresses in axial flow turbomachinery blades due to aerodynamic and mechanical excitations. A flutter analysis capability is also incorporated into the system. The FREPS system performs aeroelastic analysis by modeling the motion of the blade in terms of its normal modes. The structural dynamic analysis is performed by a finite element code such as MSC/NASTRAN. The steady aerodynamic analysis is based on nonlinear potential theory and the unsteady aerodynamic analyses is based on the linearization of the non-uniform potential flow mean. The program description and presentation of the capabilities are reported herein. The effectiveness of the FREPS package is demonstrated on the High Pressure Oxygen Turbopump turbine of the Space Shuttle Main Engine. Both flutter and forced response analyses are performed and typical results are illustrated.
NASA Technical Reports Server (NTRS)
Meng, J. C. S.; Thomson, J. A. L.
1975-01-01
A data analysis program constructed to assess LDV system performance, to validate the simulation model, and to test various vortex location algorithms is presented. Real or simulated Doppler spectra versus range and elevation is used and the spatial distributions of various spectral moments or other spectral characteristics are calculated and displayed. Each of the real or simulated scans can be processed by one of three different procedures: simple frequency or wavenumber filtering, matched filtering, and deconvolution filtering. The final output is displayed as contour plots in an x-y coordinate system, as well as in the form of vortex tracks deduced from the maxima of the processed data. A detailed analysis of run number 1023 and run number 2023 is presented to demonstrate the data analysis procedure. Vortex tracks and system range resolutions are compared with theoretical predictions.
Practical Application of Model-based Programming and State-based Architecture to Space Missions
NASA Technical Reports Server (NTRS)
Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian
2006-01-01
A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps
Energy efficient engine. Volume 1: Component development and integration program
NASA Technical Reports Server (NTRS)
1981-01-01
Technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines are developed, evaluated, and demonstrated. The four program objectives are: (1) propulsion system analysis; (2) component analysis, design, and development; (3) core design, fabrication, and test; and (4) integrated core/low spoon design, fabrication, and test.
ERIC Educational Resources Information Center
Speakman, Sheree T.; And Others
1997-01-01
Examines the need for new financial reporting and analysis, starting with rethinking the school finance field, retooling the management information systems for school finance, and re-evaluating knowledge about school-site management, accounting, and reporting. Demonstrates a new reporting methodology, the Financial Analysis Model, that traces…
A pulsed jumping ring apparatus for demonstration of Lenz's law
NASA Astrophysics Data System (ADS)
Tanner, Paul; Loebach, Jeff; Cook, James; Hallen, H. D.
2001-08-01
Lenz's law is often demonstrated in classrooms by the use of Elihu Thomson's jumping ring. However, it is ironic that a thorough analysis of the physics of the ac jumping ring reveals that the operation is due mainly to a phase difference, not Lenz's law. A complete analysis of the physics behind the ac jumping ring is difficult for the introductory student. We present a design for a pulsed jumping ring which can be fully described by the application of Lenz's law. Other advantages of this system are that it lends itself to a rigorous analysis of the force balances and energy flow. The simple jumping ring apparatus closely resembles Thomson's, but is powered by a capacitor bank. The jump heights were measured for several rings as a function of energy stored in the capacitors. A simple model describes the data well. Currents in both the drive coil and ring are measured and that of the drive coil modeled to illuminate some properties of the capacitors. An analysis of the energy flow in the system explains the higher jump heights, to 2 m, when the ring is cooled.
NASA Astrophysics Data System (ADS)
Leka, K. D.; Barnes, Graham; Wagner, Eric
2018-04-01
A classification infrastructure built upon Discriminant Analysis (DA) has been developed at NorthWest Research Associates for examining the statistical differences between samples of two known populations. Originating to examine the physical differences between flare-quiet and flare-imminent solar active regions, we describe herein some details of the infrastructure including: parametrization of large datasets, schemes for handling "null" and "bad" data in multi-parameter analysis, application of non-parametric multi-dimensional DA, an extension through Bayes' theorem to probabilistic classification, and methods invoked for evaluating classifier success. The classifier infrastructure is applicable to a wide range of scientific questions in solar physics. We demonstrate its application to the question of distinguishing flare-imminent from flare-quiet solar active regions, updating results from the original publications that were based on different data and much smaller sample sizes. Finally, as a demonstration of "Research to Operations" efforts in the space-weather forecasting context, we present the Discriminant Analysis Flare Forecasting System (DAFFS), a near-real-time operationally-running solar flare forecasting tool that was developed from the research-directed infrastructure.
Electro-focusing liquid extractive surface analysis (EF-LESA) coupled to mass spectrometry.
Brenton, A Gareth; Godfrey, A Ruth
2014-04-01
Analysis of the chemical composition of surfaces by liquid sampling devices interfaced to mass spectrometry is attractive as the sample stream can be continuously monitored at good sensitivity and selectivity. A sampling probe has been constructed that takes discrete liquid samples (typically <100 nL) of a surface. It incorporates an electrostatic lens system, comprising three electrodes, to which static and pulsed voltages are applied to form a conical "liquid tip", employed to dissolve analytes at a surface. A prototype system demonstrates spatial resolution of 0.093 mm(2). Time of contact between the liquid tip and the surface is controlled to standardize extraction. Calibration graphs of different analyte concentrations on a stainless surface have been measured, together with the probe's reproducibility, carryover, and recovery. A leucine enkephalin-coated surface demonstrated good linearity (R(2) = 0.9936), with a recovery of 90% and a limit of detection of 38 fmol per single spot sampled. The probe is compact and can be fitted into automated sample analysis equipment having potential for rapid analysis of surfaces at a good spatial resolution.
Electro-Focusing Liquid Extractive Surface Analysis (EF-LESA) Coupled to Mass Spectrometry
2014-01-01
Analysis of the chemical composition of surfaces by liquid sampling devices interfaced to mass spectrometry is attractive as the sample stream can be continuously monitored at good sensitivity and selectivity. A sampling probe has been constructed that takes discrete liquid samples (typically <100 nL) of a surface. It incorporates an electrostatic lens system, comprising three electrodes, to which static and pulsed voltages are applied to form a conical “liquid tip”, employed to dissolve analytes at a surface. A prototype system demonstrates spatial resolution of 0.093 mm2. Time of contact between the liquid tip and the surface is controlled to standardize extraction. Calibration graphs of different analyte concentrations on a stainless surface have been measured, together with the probe’s reproducibility, carryover, and recovery. A leucine enkephalin-coated surface demonstrated good linearity (R2 = 0.9936), with a recovery of 90% and a limit of detection of 38 fmol per single spot sampled. The probe is compact and can be fitted into automated sample analysis equipment having potential for rapid analysis of surfaces at a good spatial resolution. PMID:24597530
Emergency and microfog lubrication and cooling of bearings for Army helicopters
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1978-01-01
An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once-through oil-mist (microfog) and coolant air system. A system was designed, manufactured, coupled with an existing rig and evaluation tests were performed using 46 mm bore split-inner angular-contact ball bearings under 1779N (400 lb.) thrust load. An emergency lubrication aspirator system was also manufactured and tested under lost lubricant conditions. The testing demonstrated the feasibility of using a mist oil and cooling air system to lubricate and cool a high speed helicopter engine mainshaft bearing. The testing also demonstrated the feasibility of using an emergency aspirator lubrication system as a viable survivability concept for helicopter mainshaft engine bearing for periods as long as 30 minutes.
Fuzzy logic-based flight control system design
NASA Astrophysics Data System (ADS)
Nho, Kyungmoon
The application of fuzzy logic to aircraft motion control is studied in this dissertation. The self-tuning fuzzy techniques are developed by changing input scaling factors to obtain a robust fuzzy controller over a wide range of operating conditions and nonlinearities for a nonlinear aircraft model. It is demonstrated that the properly adjusted input scaling factors can meet the required performance and robustness in a fuzzy controller. For a simple demonstration of the easy design and control capability of a fuzzy controller, a proportional-derivative (PD) fuzzy control system is compared to the conventional controller for a simple dynamical system. This thesis also describes the design principles and stability analysis of fuzzy control systems by considering the key features of a fuzzy control system including the fuzzification, rule-base and defuzzification. The wing-rock motion of slender delta wings, a linear aircraft model and the six degree of freedom nonlinear aircraft dynamics are considered to illustrate several self-tuning methods employing change in input scaling factors. Finally, this dissertation is concluded with numerical simulation of glide-slope capture in windshear demonstrating the robustness of the fuzzy logic based flight control system.
Rare event computation in deterministic chaotic systems using genealogical particle analysis
NASA Astrophysics Data System (ADS)
Wouters, J.; Bouchet, F.
2016-09-01
In this paper we address the use of rare event computation techniques to estimate small over-threshold probabilities of observables in deterministic dynamical systems. We demonstrate that genealogical particle analysis algorithms can be successfully applied to a toy model of atmospheric dynamics, the Lorenz ’96 model. We furthermore use the Ornstein-Uhlenbeck system to illustrate a number of implementation issues. We also show how a time-dependent objective function based on the fluctuation path to a high threshold can greatly improve the performance of the estimator compared to a fixed-in-time objective function.
SUPERFUND TREATABILITY CLEARINGHOUSE: FINAL ...
During the period of July 8 - July 12, 1985, the Shirco Infrared Systems Portable Pilot Test Unit was in operation at the Times Beach Dioxin Research Facility to demonstrate the capability of Shirco's infrared technology to decontaminate silty soil laden with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at a concentration range of 156 to 306 ppb. Emissions sampling and final analysis was performed by Environmental Research & Technology, Inc. (ERT), while laboratory analysis of the emissions and soil samples was performed by Roy F. Weston Inc. Shirco Infrared Systems prepared the testing procedure protocol and operated the furnace system. publish information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Taylor; Guo, Yi; Veers, Paul
Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrummore » is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.« less
Demonstration of a Pyrotechnic Bolt-Retractor System
NASA Technical Reports Server (NTRS)
Johnston, Nick; Ahmed, Rafiq; Garrison, Craig; Gaines, Joseph; Waggoner, Jason
2004-01-01
A paper describes a demonstration of the X-38 bolt-retractor system (BRS) on a spacecraft-simulating apparatus, called the Large Mobility Base, in NASA's Flight Robotics Laboratory (FRL). The BRS design was proven safe by testing in NASA's Pyrotechnic Shock Facility (PSF) before being demonstrated in the FRL. The paper describes the BRS, FRL, PSF, and interface hardware. Information on the bolt-retraction time and spacecraft-simulator acceleration, and an analysis of forces, are presented. The purpose of the demonstration was to show the capability of the FRL for testing of the use of pyrotechnics to separate stages of a spacecraft. Although a formal test was not performed because of schedule and budget constraints, the data in the report show that the BRS is a successful design concept and the FRL is suitable for future separation tests.
The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies
NASA Technical Reports Server (NTRS)
Mulqueen, Jack; Jones, David; Hopkins, Randy
2011-01-01
This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.
Underground Transport Restoration (UTR) Operational Technology Demonstration (OTD)
This full-scale study focused on gathering sampling, decontamination (decon), waste management, and cost analysis information for the remediation of a subway system after contamination with a Bacillus anthracis (Ba) surrogate.
Measurement and analysis of operating system fault tolerance
NASA Technical Reports Server (NTRS)
Lee, I.; Tang, D.; Iyer, R. K.
1992-01-01
This paper demonstrates a methodology to model and evaluate the fault tolerance characteristics of operational software. The methodology is illustrated through case studies on three different operating systems: the Tandem GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Measurements are made on these systems for substantial periods to collect software error and recovery data. In addition to investigating basic dependability characteristics such as major software problems and error distributions, we develop two levels of models to describe error and recovery processes inside an operating system and on multiple instances of an operating system running in a distributed environment. Based on the models, reward analysis is conducted to evaluate the loss of service due to software errors and the effect of the fault-tolerance techniques implemented in the systems. Software error correlation in multicomputer systems is also investigated.
NASA Technical Reports Server (NTRS)
Hill, Geoffrey A.; Olson, Erik D.
2004-01-01
Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rechard, Robert P.
This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance usingmore » surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.« less
Modal-pushover-based ground-motion scaling procedure
Kalkan, Erol; Chopra, Anil K.
2011-01-01
Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.
Abramyan, Tigran M; Snyder, James A; Thyparambil, Aby A; Stuart, Steven J; Latour, Robert A
2016-08-05
Clustering methods have been widely used to group together similar conformational states from molecular simulations of biomolecules in solution. For applications such as the interaction of a protein with a surface, the orientation of the protein relative to the surface is also an important clustering parameter because of its potential effect on adsorbed-state bioactivity. This study presents cluster analysis methods that are specifically designed for systems where both molecular orientation and conformation are important, and the methods are demonstrated using test cases of adsorbed proteins for validation. Additionally, because cluster analysis can be a very subjective process, an objective procedure for identifying both the optimal number of clusters and the best clustering algorithm to be applied to analyze a given dataset is presented. The method is demonstrated for several agglomerative hierarchical clustering algorithms used in conjunction with three cluster validation techniques. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Fault Tree in the Trenches, A Success Story
NASA Technical Reports Server (NTRS)
Long, R. Allen; Goodson, Amanda (Technical Monitor)
2000-01-01
Getting caught up in the explanation of Fault Tree Analysis (FTA) minutiae is easy. In fact, most FTA literature tends to address FTA concepts and methodology. Yet there seems to be few articles addressing actual design changes resulting from the successful application of fault tree analysis. This paper demonstrates how fault tree analysis was used to identify and solve a potentially catastrophic mechanical problem at a rocket motor manufacturer. While developing the fault tree given in this example, the analyst was told by several organizations that the piece of equipment in question had been evaluated by several committees and organizations, and that the analyst was wasting his time. The fault tree/cutset analysis resulted in a joint-redesign of the control system by the tool engineering group and the fault tree analyst, as well as bragging rights for the analyst. (That the fault tree found problems where other engineering reviews had failed was not lost on the other engineering groups.) Even more interesting was that this was the analyst's first fault tree which further demonstrates how effective fault tree analysis can be in guiding (i.e., forcing) the analyst to take a methodical approach in evaluating complex systems.
Hierarchical Strategy for Rapid Analysis Environment
NASA Technical Reports Server (NTRS)
Whitcomb, John
2003-01-01
A new philosophy is developed wherein the hierarchical definition of data is made use of in creating a better environment to conduct analyses of practical problems. This system can be adapted to conduct virtually any type of analysis, since this philosophy is not bound to any specific kind of analysis. It provides a framework to manage different models and its results and more importantly, the interaction between the different models. Thus, it is ideal for many types of finite element analyses like globalAoca1 analysis and those that involve multiple scales and fields. The system developed during the course of this work is just a demonstrator of the basic concepts. A complete implementation of this strategy could potentially make a major impact on the way analyses are conducted. It could considerably reduce the time frame required to conduct the analysis of real-life problems by efficient management of the data involved and reducing the human effort involved. It also helps in better decision making because of more ways to interpret the results. The strategy has been currently implemented for structural analysis, but with more work it could be extended to other fields of science when the finite element method is used to solve the differential equations numerically. This report details the work that has been done during the course of this project and its achievements and results. The following section discusses the meaning of the word hierarchical and the different references to the term in the literature. It talks about the development of the finite element method, its different versions and how hierarchy has been used to improve the methodology. The next section describes the hierarchical philosophy in detail and explains the different concepts and terms associated with it. It goes on to describe the implementation and the features of the demonstrator. A couple of problems are analyzed using the demonstrator program to show the working of the system. The two problems considered are two dimensional plane stress analysis problems. The results are compared with those obtained using conventional analysis. The different challenges faced during the development of this system are discussed. Finally, we conclude with suggestions for future work to add more features and extend it to a wider range of problems.
Multi-community command and control systems in law enforcement: An introductory planning guide
NASA Technical Reports Server (NTRS)
Sohn, R. L.; Garcia, E. A.; Kennedy, R. D.
1976-01-01
A set of planning guidelines for multi-community command and control systems in law enforcement is presented. Essential characteristics and applications of these systems are outlined. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. Program management techniques and joint powers agreements for multicommunity programs are discussed in detail. A description of a typical multi-community computer-aided dispatch system is appended.
14 CFR 415.129 - Flight safety system test data.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., acceptance, age surveillance, and preflight testing of a flight safety system and its subsystems and..., subsystem, and component testing requirements of part 417 of this chapter and appendix E to part 417 of this... demonstrate similarity by performing the analysis required by appendix E of part 417 of this chapter. The...
14 CFR 415.129 - Flight safety system test data.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., acceptance, age surveillance, and preflight testing of a flight safety system and its subsystems and..., subsystem, and component testing requirements of part 417 of this chapter and appendix E to part 417 of this... demonstrate similarity by performing the analysis required by appendix E of part 417 of this chapter. The...
14 CFR 415.129 - Flight safety system test data.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., acceptance, age surveillance, and preflight testing of a flight safety system and its subsystems and..., subsystem, and component testing requirements of part 417 of this chapter and appendix E to part 417 of this... demonstrate similarity by performing the analysis required by appendix E of part 417 of this chapter. The...
14 CFR 415.129 - Flight safety system test data.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., acceptance, age surveillance, and preflight testing of a flight safety system and its subsystems and..., subsystem, and component testing requirements of part 417 of this chapter and appendix E to part 417 of this... demonstrate similarity by performing the analysis required by appendix E of part 417 of this chapter. The...
14 CFR 415.129 - Flight safety system test data.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., acceptance, age surveillance, and preflight testing of a flight safety system and its subsystems and..., subsystem, and component testing requirements of part 417 of this chapter and appendix E to part 417 of this... demonstrate similarity by performing the analysis required by appendix E of part 417 of this chapter. The...
On board processor development for NASA's spaceborne imaging radar with system-on-chip technology
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi
2004-01-01
This paper reports a preliminary study result of an on-board spaceborne SAR processor. It consists of a processing requirement analysis, functional specifications, and implementation with system-on-chip technology. Finally, a minimum version of this on-board processor designed for performance evaluation and for partial demonstration is illustrated.
Suicide Bulletin Board Systems Comparison between Japan and Germany
ERIC Educational Resources Information Center
Sueki, Hajime; Eichenberg, Christiane
2012-01-01
An online questionnaire (n = 301) was conducted to analyze the cross-cultural influence of the use of suicide bulletin board systems. Factor analysis demonstrated that participants had two types of motives: the constructive motive of mutual help and the destructive motive of suicide preparation. The results showed that suicidal thoughts did not…
Sequoyah Foreign Language Translation System - Business Case Analysis
2007-12-01
Interactive Natural Dialogue System (S-MINDS)..................................................................20 j. Voice Response Translator ( VRT ...20 Figure 8. U.S. Marine Military Policeman Demonstrating VRT (From: Ref. U.S...www.languagerealm.com/Files/usmc_mt_test_2004.pdf. 21 j. Voice Response Translator ( VRT ) The VRT is a S2S human language translation device that uses
Cosgrove, J W; Brown, I R
1984-05-01
An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of D-lysergic acid diethylamide (LSD) to rabbits resulted in a lesion at the initiation stage of brain protein synthesis. Three inhibitors of initiation, edeine, poly(I), and aurintricarboxylic acid were used to demonstrate a reduction in initiation-dependent amino acid incorporation in the brain cell-free system. One hour after LSD injection, there was also a measurable decrease in the formation of 40S and 80S initiation complexes in vitro, using either [35S]methionine or [35S]Met-tRNAf. Analysis of the methionine pool size after LSD administration indicated there was no change in methionine levels. Analysis of the formation of initiation complexes in the brain cell-free protein synthesis system prepared 6 h after LSD administration indicated that there was a return to control levels at this time. The effects of LSD on steps in the initiation process are thus reversible.
Engineering Aerothermal Analysis for X-34 Thermal Protection System Design
NASA Technical Reports Server (NTRS)
Wurster, Kathryn E.; Riley, Christopher J.; Zoby, E. Vincent
1998-01-01
Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier-Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented.
Engineering Aerothermal Analysis for X-34 Thermal Protection System Design
NASA Technical Reports Server (NTRS)
Wurster, Kathryn E.; Riley, Christopher J.; Zoby, E. Vincent
1998-01-01
Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier- Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented.
Hall, Gordon H; Glerum, D Moira; Backhouse, Christopher J
2016-02-01
Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An inexpensive economical solar heating system for homes
NASA Technical Reports Server (NTRS)
Allred, J. W.; Shinn, J. M., Jr.; Kirby, C. E.; Barringer, S. R.
1976-01-01
A low-cost solar home heating system to supplement existing warm-air heating systems is described. The report is written in three parts: (1) a brief background on solar heating, (2) experience with a demonstration system, and (3) information for the homeowner who wishes to construct such a system. Instructions are given for a solar heating installation in which the homeowner supplies all labor necessary to install off-the-shelf components estimated to cost $2,000. These components, which include solar collector, heat exchanger, water pump, storage tank, piping, and controls to make the system completely automatic, are available at local lumber yards, hardware stores, and plumbing supply stores, and are relatively simple to install. Manufacturers and prices of each component used and a rough cost analysis based on these prices are included. This report also gives performance data obtained from a demonstration system which was built and tested at the Langley Research Center.
Seal Technology Development for Advanced Component for Airbreathing Engines
NASA Technical Reports Server (NTRS)
Snyder, Philip H.
2008-01-01
Key aspects of the design of sealing systems for On Rotor Combustion/Wave Rotor (ORC/WR) systems were addressed. ORC/WR systems generally fit within a broad class of pressure gain Constant Volume Combustors (CVCs) or Pulse Detonation Combustors (PDCs) which are currently being considered for use in many classes of turbine engines for dramatic efficiency improvement. Technology readiness level of this ORC/WR approaches are presently at 2.0. The results of detailed modeling of an ORC/WR system as applied to a regional jet engine application were shown to capture a high degree of pressure gain capabilities. The results of engine cycle analysis indicated the level of specific fuel consumption (SFC) benefits to be 17 percent. The potential losses in pressure gain due to leakage were found to be closely coupled to the wave processes at the rotor endpoints of the ORC/WR system. Extensive investigation into the sealing approaches is reported. Sensitivity studies show that SFC gains of 10 percent remain available even when pressure gain levels are highly penalized. This indicates ORC/WR systems to have a high degree of tolerance to rotor leakage effects but also emphasizes their importance. An engine demonstration of an ORC/WR system is seen as key to progressing the TRL of this technology. An industrial engine was judged to be a highly advantageous platform for demonstration of a first generation ORC/WR system. Prior to such a demonstration, the existing NASA pressure exchanger wave rotor rig was identified as an opportunity to apply both expanded analytical modeling capabilities developed within this program and to identify and fix identified leakage issues existing within this rig. Extensive leakage analysis of the rig was performed and a detailed design of additional sealing strategies for this rig was generated.
Mordecai, Yaniv; Dori, Dov
2017-07-17
The cyber-physical gap (CPG) is the difference between the 'real' state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer's ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015-Object Process Methodology as our conceptual modeling framework.
Development of neural network techniques for finger-vein pattern classification
NASA Astrophysics Data System (ADS)
Wu, Jian-Da; Liu, Chiung-Tsiung; Tsai, Yi-Jang; Liu, Jun-Ching; Chang, Ya-Wen
2010-02-01
A personal identification system using finger-vein patterns and neural network techniques is proposed in the present study. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis and classification. The biometric system for verification consists of a combination of feature extraction using principal component analysis and pattern classification using both back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extracted by principal component analysis method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network is compared with the proposed system. The experimental results indicated the proposed system using adaptive neuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personal identification using the finger-vein patterns.
Multidisciplinary System Reliability Analysis
NASA Technical Reports Server (NTRS)
Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)
2001-01-01
The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.
Multi-Disciplinary System Reliability Analysis
NASA Technical Reports Server (NTRS)
Mahadevan, Sankaran; Han, Song
1997-01-01
The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.
Demonstration of a Particle Impact Monitoring System for Crewed Space Exploration Modules
NASA Technical Reports Server (NTRS)
Opiela, J. N.; Liou, J.-C.; Corsaro, R.; Giovane, F.; Anz-Meador, P.
2011-01-01
When micrometeorite or debris impacts occur on a space habitat, crew members need to be quickly informed of the likely extent of damage, and be directed to the impact location for possible repairs. The goal of the Habitat Particle Impact Monitoring System (HIMS) is to develop a fully automated, end-to-end particle impact detection system for crewed space exploration modules, both in space and on the surfaces of Solar System bodies. The HIMS uses multiple thin film piezo-polymer vibration sensors to detect impacts on a surface, and computer processing of the acoustical signals to characterize the impacts. Development and demonstration of the HIMS is proceeding in concert with NASA's Habitat Demonstration Unit (HDU) Project. The HDU Project is designed to develop and test various technologies, configurations, and operational concepts for exploration habitats. This paper describes the HIMS development, initial testing, and HDU integration efforts. Initial tests of the system on the HDU were conducted at NASA?s 2010 Desert Research and Technologies Studies (Desert-RATS). Four sensor locations were assigned near the corners of a rectangular pattern. To study the influence of wall thickness, three sets of four sensors were installed at different layer depths: on the interior of the PEM wall, on the exterior of the same wall, and on the exterior of a layer of foam insulation applied to the exterior wall. Once the system was activated, particle impacts were periodically applied by firing a pneumatic pellet gun at the exterior wall section. Impact signals from the sensors were recognized by a data acquisition system when they occurred, and recorded on a computer for later analysis. Preliminary analysis of the results found that the HIMS system located the point of impact to within 8 cm, provided a measure of the impact energy / damage produced, and was insensitive to other acoustic events. Based on this success, a fully automated version of this system will be completed and demonstrated as part of a crew "Caution/Warning" system at the 2011 Desert-RATS, along with a crew response procedure.
A polymeric micro total analysis system for single-cell analysis
NASA Astrophysics Data System (ADS)
Lai, Hsuan-Hong
The advancement of microengineering has enabled the manipulation and analysis of single cells, which is critical in understanding the molecular mechanisms underlying the basic physiological functions from the point of view of modern biologists. Unfortunately, analysis of single cells remains challenging from a technical perspective, mainly because of the miniature nature of the cell and the high throughput requirements of the analysis. Lab-on-a-chip (LOC) emerges as a research field that shows great promise in this perspective. We have demonstrated a micro total analysis system (mu-TAS) combining chip-based electrophoretic separation, fluorescence detection, and a pulsed Nd:YAG laser cell lysis system, in a Poly(dimethylsiloxane) (PDMS) microfluidic analytical platform for the implementation of single-cell analysis. To accomplish the task, a polymeric microfluidic device was fabricated and UV graft polymerization surface modification techniques were used. To optimize the conditions for the surface treatment techniques, the modified surfaces of PDMS were characterized using AIR-IR spectrum and sessile water drop contact angle measurements, and in-channel surfaces were characterized by their electroosmotic flow mobility. Accurate single-cell analysis relies on rapid cell lysis and therefore an optical measure of fast cell lysis was implemented and optimized in a microscopic station. The influences of pulse energy and the location of the laser beam with respect to the cell in the microchannel were explored. The observation from the cell disruption experiments suggested that the cell lysis was enabled mainly via a thermo-mechanical instead of a plasma-mediated mechanism. Finally, after chip-based electrophoresis and a laser-induced fluorescence (LIF) detection system were incorporated with the laser lysis system in a microfluidic analytical station, a feasibility demonstration of single-cell analysis was implemented. The analytical platform exhibited the capability of fluidic transportation, optical lysis of single cells, separation, and analysis of the lysates by electrophoresis and LIF detection. In comparison with the control experiment, the migration times of the fluorescent signals for the cytosolic fluorophores were in good agreement with those for the standard fluorophores, which confirmed the feasibility of the analytical processes.
A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis
NASA Astrophysics Data System (ADS)
Jokhio, G. A.; Izzuddin, B. A.
2015-05-01
This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.
System Engineering Concept Demonstration, Effort Summary. Volume 1
1992-12-01
involve only the system software, user frameworks and user tools. U •User Tool....s , Catalyst oExternal 00 Computer Framwork P OSystems • •~ Sysytem...analysis, synthesis, optimization, conceptual design of Catalyst. The paper discusses the definition, design, test, and evaluation; operational concept...This approach will allow system engineering The conceptual requirements for the Process Model practitioners to recognize and tailor the model. This
Shao, Jing-jing; Yu, Jing-jin; Yu, Ming-zhu; Duan, Yong; Gong, Xiangguang; Chen, Zheng; Wang, Hua; Shi, Peiwu; Liang, Zhankai; Yang, Feng; Wang, Dunzhi; Yue, Jianning; Luo, Shi; Luo, Li; Wang, Weicheng; Wang, Ying; Sun, Mei; Su, Zhongxin; Ma, Ning; Xie, Hongbin; Hao, Mo
2005-03-01
To develop and demonstrate the strategies to solve the problem of public health service delivery insufficiency of disease prevention and control system of China. 205 literatures in 8 national academic journals concerning health service management have been reviewed. The method of boundary analysis has been employed to conclude the various reform strategies. Based on the causes and mechanism of public health service delivery insufficiency of disease prevention and control system, the logic analysis has been employed to develop fundamental strategies, which has been demonstrated by 154 CDC using intention questionnaires. There are fundamental strategies to which the agreeing rate for sampling CDC was over 95%: to make sure government should afford the financing function of disease prevention and control and secure the feasible investment for centers of disease prevention and control. Meanwhile, the working efficiency of CDC should be improved through strengthening management and reforming government investing manner.
Embedded spectroscopic fiber sensor for on-line arc-welding analysis.
Mirapeix, Jesús; Cobo, Adolfo; Quintela, Antonio; López-Higuera, José-Miguel
2007-06-01
A new fiber sensor system designed for spectroscopic analysis and on-line quality assurance of arc-welding processes is presented here. Although several different approaches have been considered for the optical capture of plasma emission in arc-welding processes, they tend to be invasive and make use of optical devices such as collimators or photodiodes. The solution proposed here is based on the arrangement of an optical fiber, which is used at the same time as the optical capturing device and also to deliver the optical information to a spectrometer, embedded within an arc-welding torch. It will be demonstrated that, by using the shielding gas as a protection for the fiber end, the plasma light emission is efficiently collected, forming a sensor system completely transparent and noninvasive for the welding operator. The feasibility of the proposed sensor designed to be used as the input optics of a welding quality-assurance system based on plasma spectroscopy will be demonstrated by means of several welding tests.
On the Automation of the MarkIII Data Analysis System.
NASA Astrophysics Data System (ADS)
Schwegmann, W.; Schuh, H.
1999-03-01
A faster and semiautomatic data analysis is an important contribution to the acceleration of the VLBI procedure. A concept for the automation of one of the most widely used VLBI software packages the MarkIII Data Analysis System was developed. Then, the program PWXCB, which extracts weather and cable calibration data from the station log-files, was automated supplementing the existing Fortran77 program-code. The new program XLOG and its results will be presented. Most of the tasks in the VLBI data analysis are very complex and their automation requires typical knowledge-based techniques. Thus, a knowledge-based system (KBS) for support and guidance of the analyst is being developed using the AI-workbench BABYLON, which is based on methods of artificial intelligence (AI). The advantages of a KBS for the MarkIII Data Analysis System and the required steps to build a KBS will be demonstrated. Examples about the current status of the project will be given, too.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, P. L.
An SNM attribute Information Barrier (IB) system was developed for a 2011 US/UK Exercise. The system was modified and extensively tested in a 2013-2014 US-UK Measurement Campaign. This work demonstrated rapid deployment of an IB system for potential treaty use. The system utilizes an Ortec Fission Meter neutron multiplicity counter and custom computer code. The system demonstrates a proof-of-principle automated Pu-240 mass determination with an information barrier. After a software start command is issued, the system automatically acquires and downloads data, performs an analysis, and displays the results. This system conveys the results of a Pu mass threshold measurements inmore » a way the does not reveal sensitive information. In full IB mode, only red/green ‘lights’ are displayed in the software. In test mode, more detailed information is displayed. The code can also read in, analyze, and display results from previously acquired or simulated data. Because the equipment is commercial-off-the-shelf (COTS), the system demonstrates a low-cost short-lead-time technology for treaty SNM attribute measurements. A deployed system will likely require integration of additional authentication and tamper-indicating technologies. This will be discussed for the project in this and future progress reports.« less
Research on ponderomotive driven Vlasov–Poisson system in electron acoustic wave parametric region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, C. Z.; Huang, T. W.; Liu, Z. J.
2014-03-15
Theoretical analysis and corresponding 1D Particle-in-Cell (PIC) simulations of ponderomotive driven Vlasov–Poisson system in electron acoustic wave (EAW) parametric region are demonstrated. Theoretical analysis identifies that under the resonant condition, a monochromatic EAW can be excited when the wave number of the drive ponderomotive force satisfies 0.26≲k{sub d}λ{sub D}≲0.53. If k{sub d}λ{sub D}≲0.26, nonlinear superposition of harmonic waves can be resonantly excited, called kinetic electrostatic electron nonlinear waves. Numerical simulations have demonstrated these wave excitation and evolution dynamics, in consistence with the theoretical predictions. The physical nature of these two waves is supposed to be interaction of harmonic waves, andmore » their similar phase space properties are also discussed.« less
NASA Astrophysics Data System (ADS)
Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng
2012-12-01
This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.
Phased-mission system analysis using Boolean algebraic methods
NASA Technical Reports Server (NTRS)
Somani, Arun K.; Trivedi, Kishor S.
1993-01-01
Most reliability analysis techniques and tools assume that a system is used for a mission consisting of a single phase. However, multiple phases are natural in many missions. The failure rates of components, system configuration, and success criteria may vary from phase to phase. In addition, the duration of a phase may be deterministic or random. Recently, several researchers have addressed the problem of reliability analysis of such systems using a variety of methods. A new technique for phased-mission system reliability analysis based on Boolean algebraic methods is described. Our technique is computationally efficient and is applicable to a large class of systems for which the failure criterion in each phase can be expressed as a fault tree (or an equivalent representation). Our technique avoids state space explosion that commonly plague Markov chain-based analysis. A phase algebra to account for the effects of variable configurations and success criteria from phase to phase was developed. Our technique yields exact (as opposed to approximate) results. The use of our technique was demonstrated by means of an example and present numerical results to show the effects of mission phases on the system reliability.
Integrated Safety Analysis Teams
NASA Technical Reports Server (NTRS)
Wetherholt, Jonathan C.
2008-01-01
Today's complex systems require understanding beyond one person s capability to comprehend. Each system requires a team to divide the system into understandable subsystems which can then be analyzed with an Integrated Hazard Analysis. The team must have both specific experiences and diversity of experience. Safety experience and system understanding are not always manifested in one individual. Group dynamics make the difference between success and failure as well as the difference between a difficult task and a rewarding experience. There are examples in the news which demonstrate the need to connect the pieces of a system into a complete picture. The Columbia disaster is now a standard example of a low consequence hazard in one part of the system; the External Tank is a catastrophic hazard cause for a companion subsystem, the Space Shuttle Orbiter. The interaction between the hardware, the manufacturing process, the handling, and the operations contributed to the problem. Each of these had analysis performed, but who constituted the team which integrated this analysis together? This paper will explore some of the methods used for dividing up a complex system; and how one integration team has analyzed the parts. How this analysis has been documented in one particular launch space vehicle case will also be discussed.
Thermal-Acoustic Analysis of a Metallic Integrated Thermal Protection System Structure
NASA Technical Reports Server (NTRS)
Behnke, Marlana N.; Sharma, Anurag; Przekop, Adam; Rizzi, Stephen A.
2010-01-01
A study is undertaken to investigate the response of a representative integrated thermal protection system structure under combined thermal, aerodynamic pressure, and acoustic loadings. A two-step procedure is offered and consists of a heat transfer analysis followed by a nonlinear dynamic analysis under a combined loading environment. Both analyses are carried out in physical degrees-of-freedom using implicit and explicit solution techniques available in the Abaqus commercial finite-element code. The initial study is conducted on a reduced-size structure to keep the computational effort contained while validating the procedure and exploring the effects of individual loadings. An analysis of a full size integrated thermal protection system structure, which is of ultimate interest, is subsequently presented. The procedure is demonstrated to be a viable approach for analysis of spacecraft and hypersonic vehicle structures under a typical mission cycle with combined loadings characterized by largely different time-scales.
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann; DaSilva, Arlindo; Atlas, Robert (Technical Monitor)
2001-01-01
Toward the development of a finite-volume Data Assimilation System (fvDAS), a consistent finite-volume methodology is developed for interfacing the NASA/DAO's Physical Space Statistical Analysis System (PSAS) to the joint NASA/NCAR finite volume CCM3 (fvCCM3). To take advantage of the Lagrangian control-volume vertical coordinate of the fvCCM3, a novel "shaving" method is applied to the lowest few model layers to reflect the surface pressure changes as implied by the final analysis. Analysis increments (from PSAS) to the upper air variables are then consistently put onto the Lagrangian layers as adjustments to the volume-mean quantities during the analysis cycle. This approach is demonstrated to be superior to the conventional method of using independently computed "tendency terms" for surface pressure and upper air prognostic variables.
Heave-pitch-roll analysis and testing of air cushion landing systems
NASA Technical Reports Server (NTRS)
Boghani, A. B.; Captain, K. M.; Wormley, D. N.
1978-01-01
The analytical tools (analysis and computer simulation) needed to explain and predict the dynamic operation of air cushion landing systems (ACLS) is described. The following tasks were performed: the development of improved analytical models for the fan and the trunk; formulation of a heave pitch roll analysis for the complete ACLS; development of a general purpose computer simulation to evaluate landing and taxi performance of an ACLS equipped aircraft; and the verification and refinement of the analysis by comparison with test data obtained through lab testing of a prototype cushion. Demonstration of simulation capabilities through typical landing and taxi simulation of an ACLS aircraft are given. Initial results show that fan dynamics have a major effect on system performance. Comparison with lab test data (zero forward speed) indicates that the analysis can predict most of the key static and dynamic parameters (pressure, deflection, acceleration, etc.) within a margin of a 10 to 25 percent.
An analysis and demonstration of clock synchronization by VLBI
NASA Technical Reports Server (NTRS)
Hurd, W. J.
1972-01-01
A prototype of a semireal-time system for synchronizing the DSN station clocks by radio interferometry was successfully demonstrated. The system utilized an approximate maximum likelihood estimation procedure for processing the data, thereby achieving essentially optimum time synchronization estimates for a given amount of data, or equivalently, minimizing the amount of data required for reliable estimation. Synchronization accuracies as good as 100 nsec rms were achieved between DSS 11 and DSS 12, both at Goldstone, California. The accuracy can be improved by increasing the system bandwidth until the fundamental limitations due to position uncertainties of baseline and source and atmospheric effects are reached. These limitations are under ten nsec for transcontinental baselines.
Fractal analysis of GPS time series for early detection of disastrous seismic events
NASA Astrophysics Data System (ADS)
Filatov, Denis M.; Lyubushin, Alexey A.
2017-03-01
A new method of fractal analysis of time series for estimating the chaoticity of behaviour of open stochastic dynamical systems is developed. The method is a modification of the conventional detrended fluctuation analysis (DFA) technique. We start from analysing both methods from the physical point of view and demonstrate the difference between them which results in a higher accuracy of the new method compared to the conventional DFA. Then, applying the developed method to estimate the measure of chaoticity of a real dynamical system - the Earth's crust, we reveal that the latter exhibits two distinct mechanisms of transition to a critical state: while the first mechanism has already been known due to numerous studies of other dynamical systems, the second one is new and has not previously been described. Using GPS time series, we demonstrate efficiency of the developed method in identification of critical states of the Earth's crust. Finally we employ the method to solve a practically important task: we show how the developed measure of chaoticity can be used for early detection of disastrous seismic events and provide a detailed discussion of the numerical results, which are shown to be consistent with outcomes of other researches on the topic.
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Fincannon, James
1995-01-01
The United States and Russia have agreed to jointly develop a solar dynamic (SD) system for flight demonstration on the Russian MIR space station starting in late 1997. Two important components of this SD system are the solar concentrator and heat receiver provided by Russia and the U.S., respectively. This paper describes optical analysis of the concentrator and solar flux predictions on target receiver surfaces. The optical analysis is performed using the code CIRCE2. These analyses account for finite sun size with limb darkening, concentrator surface slope and position errors, concentrator petal thermal deformation, gaps between petals, and the shading effect of the receiver support struts. The receiver spatial flux distributions are then combined with concentrator shadowing predictions. Geometric shadowing patterns are traced from the concentrator to the target receiver surfaces. These patterns vary with time depending on the chosen MIR flight attitude and orbital mechanics of the MIR spacecraft. The resulting predictions provide spatial and temporal receiver flux distributions for any specified mission profile. The impact these flux distributions have on receiver design and control of the Brayton engine are discussed.
FaSTR DNA: a new expert system for forensic DNA analysis.
Power, Timothy; McCabe, Brendan; Harbison, Sally Ann
2008-06-01
The automation of DNA profile analysis of reference and crime samples continues to gain pace driven in part by a realisation by the criminal justice system of the positive impact DNA technology can have in aiding in the solution of crime and the apprehension of suspects. Expert systems to automate the profile analysis component of the process are beginning to be developed. In this paper, we report the validation of a new expert system FaSTR DNA, an expert system suitable for the analysis of DNA profiles from single source reference samples and from crime samples. We compare the performance of FaSTR DNA with that of other equivalent systems, GeneMapper ID v3.2 (Applied Biosystems, Foster City, CA) and FSS-i(3) v4 (The Forensic Science Service((R)) DNA expert System Suite FSS-i(3), Forensic Science Service, Birmingham, UK) with GeneScan Analysis v3.7/Genotyper v3.7 software (Applied Biosystems, Foster City, CA, USA) with manual review. We have shown that FaSTR DNA provides an alternative solution to automating DNA profile analysis and is appropriate for implementation into forensic laboratories. The FaSTR DNA system was demonstrated to be comparable in performance to that of GeneMapper ID v3.2 and superior to that of FSS-i(3) v4 for the analysis of DNA profiles from crime samples.
López, Diego M; Blobel, Bernd; Gonzalez, Carolina
2010-01-01
Requirement analysis, design, implementation, evaluation, use, and maintenance of semantically interoperable Health Information Systems (HIS) have to be based on eHealth standards. HIS-DF is a comprehensive approach for HIS architectural development based on standard information models and vocabulary. The empirical validity of HIS-DF has not been demonstrated so far. Through an empirical experiment, the paper demonstrates that using HIS-DF and HL7 information models, semantic quality of HIS architecture can be improved, compared to architectures developed using traditional RUP process. Semantic quality of the architecture has been measured in terms of model's completeness and validity metrics. The experimental results demonstrated an increased completeness of 14.38% and an increased validity of 16.63% when using the HIS-DF and HL7 information models in a sample HIS development project. Quality assurance of the system architecture in earlier stages of HIS development presumes an increased quality of final HIS systems, which supposes an indirect impact on patient care.
Development and flight qualification of the C-SiC thermal protection systems for the IXV
NASA Astrophysics Data System (ADS)
Buffenoir, François; Zeppa, Céline; Pichon, Thierry; Girard, Florent
2016-07-01
The Intermediate experimental Vehicle (IXV) atmospheric re-entry demonstrator, developed within the FLPP (Future Launcher Preparatory Programme) and funded by ESA, aimed at developing a demonstration vehicle that gave Europe a unique opportunity to increase its knowledge in the field of advanced atmospheric re-entry technologies. A key technology that has been demonstrated in real conditions through the flight of this ambitious vehicle is the thermal protection system (TPS) of the Vehicle. Within this programme, HERAKLES, Safran Group, has been in charge of the TPS of the windward and nose assemblies of the vehicle, and has developed and manufactured SepcarbInox® ceramic matrix composite (CMC) protection systems that provided a high temperature resistant non ablative outer mould line (OML) for enhanced aerodynamic control. The design and flight justification of these TPS has been achieved through extensive analysis and testing:
Development and Testing of a High Stability Engine Control (HISTEC) System
NASA Technical Reports Server (NTRS)
Orme, John S.; DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Doane, Paul M.
1998-01-01
Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhao, Jiyun; Wang, Peng; Skyllas-Kazacos, Maria; Xiong, Binyu; Badrinarayanan, Rajagopalan
2015-09-01
Electrical equivalent circuit models demonstrate excellent adaptability and simplicity in predicting the electrical dynamic response of the all-vanadium redox flow battery (VRB) system. However, only a few publications that focus on this topic are available. The paper presents a comprehensive equivalent circuit model of VRB for system level analysis. The least square method is used to identify both steady-state and dynamic characteristics of VRB. The inherent features of the flow battery such as shunt current, ion diffusion and pumping energy consumption are also considered. The proposed model consists of an open-circuit voltage source, two parasitic shunt bypass circuits, a 1st order resistor-capacitor network and a hydraulic circuit model. Validated with experimental data, the proposed model demonstrates excellent accuracy. The mean-error of terminal voltage and pump consumption are 0.09 V and 0.49 W respectively. Based on the proposed model, self-discharge and system efficiency are studied. An optimal flow rate which maximizes the system efficiency is identified. Finally, the dynamic responses of the proposed VRB model under step current profiles are presented. Variables such as SOC and stack terminal voltage can be provided.
Patterson, Eric E; Pritchett, Jeanita S; Shippy, Scott A
2009-02-01
A system is presented demonstrating the high-temporal resolution coupling of low-flow push-pull perfusion sampling (LFPS) to capillary electrophoresis for the absorbance measurement of ascorbate at the rat vitreoretinal interface. This system holds all separation components at a low pressure as the means for withdrawing sample during LFPS. The system uses a flow-gated interface to directly couple the withdrawal capillary from the LFPS probe to a separation capillary and eliminates the need for any offline sample handling. The temporal resolution of the system was limited by injection time and is less than 16 s. This high temporal resolution was applied to the monitoring of in vivo ascorbate levels at the rat vitreoretinal interface. Baseline concentrations of ascorbate were found to be 86 microM +/- 18 microM at the vitreoretinal interface. Baseline concentrations matched well with those obtained for the postmortem bulk vitreous analysis. Upon stimulation with 145 mM K(+), a maximum increase in baseline values between 32-107% for n = 3 was observed. This system demonstrates the first in vivo temporal study of ascorbate at the rat vitreoretinal interface.
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2016-01-01
NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative is based on a pure geometrically-derived access technique. The first phase of analysis has been completed, and the results are documented in this paper.
Multiscale recurrence quantification analysis of order recurrence plots
NASA Astrophysics Data System (ADS)
Xu, Mengjia; Shang, Pengjian; Lin, Aijing
2017-03-01
In this paper, we propose a new method of multiscale recurrence quantification analysis (MSRQA) to analyze the structure of order recurrence plots. The MSRQA is based on order patterns over a range of time scales. Compared with conventional recurrence quantification analysis (RQA), the MSRQA can show richer and more recognizable information on the local characteristics of diverse systems which successfully describes their recurrence properties. Both synthetic series and stock market indexes exhibit their properties of recurrence at large time scales that quite differ from those at a single time scale. Some systems present more accurate recurrence patterns under large time scales. It demonstrates that the new approach is effective for distinguishing three similar stock market systems and showing some inherent differences.
NASA Astrophysics Data System (ADS)
Simola, Kaisa; Laakso, Kari
1992-01-01
Eight years of operating experiences of 104 motor operated closing valves in different safety systems in nuclear power units were analyzed in a systematic way. The qualitative methods used were Failure Mode and Effect Analysis (FMEA) and Maintenance Effects and Criticality Analysis (MECA). These reliability engineering methods are commonly used in the design stage of equipment. The successful application of these methods for analysis and utilization of operating experiences was demonstrated.
Noninterferometric Two-Dimensional Fourier-Transform Spectroscopy of Multilevel Systems
NASA Astrophysics Data System (ADS)
Davis, J. A.; Dao, L. V.; Do, M. T.; Hannaford, P.; Nugent, K. A.; Quiney, H. M.
2008-06-01
We demonstrate a technique that determines the phase of the photon-echo emission from spectrally resolved intensity data without requiring phase-stabilized input pulses. The full complex polarization of the emission is determined from spectral intensity measurements. The validity of this technique is demonstrated using simulated data, and is then applied to the analysis of two-color data obtained from the light-harvesting molecule lycopene.
Damping torque analysis of VSC-based system utilizing power synchronization control
NASA Astrophysics Data System (ADS)
Fu, Q.; Du, W. J.; Zheng, K. Y.; Wang, H. F.
2017-05-01
Power synchronization control is a new control strategy of VSC-HVDC for connecting a weak power system. Different from the vector control method, this control method utilizes the internal synchronization mechanism in ac systems, in principle, similar to the operation of a synchronous machine. So that the parameters of controllers in power synchronization control will change the electromechanical oscillation modes and make an impact on the transient stability of power system. This paper present a mathematical model for small-signal stability analysis of VSC station used power synchronization control and analyse the impact of the dynamic interactions by calculating the contribution of the damping torque from the power synchronization control, besides, the parameters of controllers which correspond to damping torque and synchronous torque in the power synchronization control is defined respectively. At the end of the paper, an example power system is presented to demonstrate and validate the theoretical analysis and associated conclusions are made.
Interactive systems design and synthesis of future spacecraft concepts
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced spacecraft (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze and conduct parametric studies and modify Earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa
van Belkum, Alex; Soriaga, Leah B.; LaFave, Matthew C.; Akella, Srividya; Veyrieras, Jean-Baptiste; Barbu, E. Magda; Shortridge, Dee; Blanc, Bernadette; Hannum, Gregory; Zambardi, Gilles; Miller, Kristofer; Enright, Mark C.; Mugnier, Nathalie; Brami, Daniel; Schicklin, Stéphane; Felderman, Martina; Schwartz, Ariel S.; Richardson, Toby H.; Peterson, Todd C.; Hubby, Bolyn
2015-01-01
ABSTRACT Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. PMID:26604259
Jarboe, G R; Gates, R H; McDaniel, C D
1990-01-01
Healthcare providers of multiple option plans may be confronted with special market segmentation problems. This study demonstrates how cluster analysis may be used for discovering distinct patterns of preference for multiple option plans. The availability of metric, as opposed to categorical or ordinal, data provides the ability to use sophisticated analysis techniques which may be superior to frequency distributions and cross-tabulations in revealing preference patterns.
SCALE TSUNAMI Analysis of Critical Experiments for Validation of 233U Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Don; Rearden, Bradley T
2009-01-01
Oak Ridge National Laboratory (ORNL) staff used the SCALE TSUNAMI tools to provide a demonstration evaluation of critical experiments considered for use in validation of current and anticipated operations involving {sup 233}U at the Radiochemical Development Facility (RDF). This work was reported in ORNL/TM-2008/196 issued in January 2009. This paper presents the analysis of two representative safety analysis models provided by RDF staff.
Aviation Data Integration System
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak; Wang, Yao; Windrem, May; Patel, Hemil; Keller, Richard
2003-01-01
During the analysis of flight data and safety reports done in ASAP and FOQA programs, airline personnel are not able to access relevant aviation data for a variety of reasons. We have developed the Aviation Data Integration System (ADIS), a software system that provides integrated heterogeneous data to support safety analysis. Types of data available in ADIS include weather, D-ATIS, RVR, radar data, and Jeppesen charts, and flight data. We developed three versions of ADIS to support airlines. The first version has been developed to support ASAP teams. A second version supports FOQA teams, and it integrates aviation data with flight data while keeping identification information inaccessible. Finally, we developed a prototype that demonstrates the integration of aviation data into flight data analysis programs. The initial feedback from airlines is that ADIS is very useful in FOQA and ASAP analysis.
Quality Assurance and T&E of Inertial Systems for RLV Mission
NASA Astrophysics Data System (ADS)
Sathiamurthi, S.; Thakur, Nayana; Hari, K.; Peter, Pilmy; Biju, V. S.; Mani, K. S.
2017-12-01
This work describes the quality assurance and Test and Evaluation (T&E) activities carried out for the inertial systems flown successfully in India's first reusable launch vehicle technology demonstrator hypersonic experiment mission. As part of reliability analysis, failure mode effect and criticality analysis and derating analysis were carried out in the initial design phase, findings presented to design review forums and the recommendations were implemented. T&E plan was meticulously worked out and presented to respective forums for review and implementation. Test data analysis, health parameter plotting and test report generation was automated and these automations significantly reduced the time required for these activities and helped to avoid manual errors. Further, T&E cycle is optimized without compromising on quality aspects. These specific measures helped to achieve zero defect delivery of inertial systems for RLV application.
NASA Astrophysics Data System (ADS)
Sikder, Somali; Ghosh, Shila
2018-02-01
This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.
[Ecological demonstration activity and eco-civilization construction mode: review and prospects].
Mao, Hui-ping; He, Xuan; He, Jia; Niu, Dong-jie; Bao, Cun-kuan
2013-04-01
Ecological civilization is to normalize human development behaviors to harmonize the relationships between social and ecological development and eco-environment protection. In this paper, a comparative analysis was made on the ecological demonstration activities of ecological demonstration areas led by the Ministry of Environmental Protection, exemplar cities of national environmental protection, and ecological provinces, cities, and counties. It was considered that all the ecological demonstration activities had the problems of lacking pertinence of construction goals, disordered construction subjects, inefficient construction processes, and lacking continuous incentive mechanisms of assessment. In the meantime, through the analysis of the connotations of eco-civilization, the relationships between eco-civilization and eco-demonstration constructions were approached, and the eco-civilization construction mode was put forward in terms of construction goal, construction subject, and construction processes and assessment. The construction mode included the construction goal based on regional characteristics; the synergistic cooperation of construction subjects, the expanding ways of public participation, and the establishment of evaluation system for comprehensively measuring the 'actions and results'.
DOT National Transportation Integrated Search
1996-12-01
This report contains the results of an analysis of : traffic accidents in the City of Troy, Michigan, where : the Sydney Coordinated Adaptive Traffic System : (SCATS) was deployed as part of a federal demonstration : program. The analyses includes a ...
System Guidelines for EMC Safety-Critical Circuits: Design, Selection, and Margin Demonstration
NASA Technical Reports Server (NTRS)
Lawton, R. M.
1996-01-01
Demonstration of required safety margins on critical electrical/electronic circuits in large complex systems has become an implementation and cost problem. These margins are the difference between the activation level of the circuit and the electrical noise on the circuit in the actual operating environment. This document discusses the origin of the requirement and gives a detailed process flow for the identification of the system electromagnetic compatibility (EMC) critical circuit list. The process flow discusses the roles of engineering disciplines such as systems engineering, safety, and EMC. Design and analysis guidelines are provided to assist the designer in assuring the system design has a high probability of meeting the margin requirements. Examples of approaches used on actual programs (Skylab and Space Shuttle Solid Rocket Booster) are provided to show how variations of the approach can be used successfully.
Integrated restructurable flight control system demonstration results
NASA Technical Reports Server (NTRS)
Weiss, Jerold L.; Hsu, John Y.
1987-01-01
The purpose of this study was to examine the complementary capabilities of several restructurable flight control system (RFCS) concepts through the integration of these technologies into a complete system. Performance issues were addressed through a re-examination of RFCS functional requirements, and through a qualitative analysis of the design issues that, if properly addressed during integration, will lead to the highest possible degree of fault-tolerant performance. Software developed under previous phases of this contract and under NAS1-18004 was modified and integrated into a complete RFCS subroutine for NASA's B-737 simulation. The integration of these modules involved the development of methods for dealing with the mismatch between the outputs of the failure detection module and the input requirements of the automatic control system redesign module. The performance of this demonstration system was examined through extensive simulation trials.
NASA Astrophysics Data System (ADS)
Tomilova, I. V.; Bordovitsyna, T. V.
2017-08-01
Results of investigation into the resonant structure of perturbations and long-term orbital evolution of space vehicles of GLONASS and GPS global navigating satellite systems (GNSS) under assumption that all of them have lost control on 08/01/2015 are presented. It is demonstrated that the majority of the examined objects are in the range of action of the secular resonances of various types. In addition, practically all satellites of the GPS system are within the scope of the 2:1 orbital resonance with rotation of the Earth. Results of the MEGNO analysis demonstrate that the motion of all objects of the GLONASS system during the 100-year period is regular, whereas the motion of the majority of objects of the GPS system is subject to chaotization.
An Expert Assistant for Computer Aided Parallelization
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Chun, Robert; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit
2004-01-01
The prototype implementation of an expert system was developed to assist the user in the computer aided parallelization process. The system interfaces to tools for automatic parallelization and performance analysis. By fusing static program structure information and dynamic performance analysis data the expert system can help the user to filter, correlate, and interpret the data gathered by the existing tools. Sections of the code that show poor performance and require further attention are rapidly identified and suggestions for improvements are presented to the user. In this paper we describe the components of the expert system and discuss its interface to the existing tools. We present a case study to demonstrate the successful use in full scale scientific applications.
A health systems constraints analysis for neurologic diseases: the example of Timor-Leste.
Mateen, Farrah J; Martins, Nelson
2014-04-08
Neurologic care exists within health systems and complex social, political, and economic environments. Identification of obstacles within health systems, defined as "constraints," is crucial to improving the delivery of neurologic care within its macroclimate. Here we use the World Health Organization's 6 building blocks of a health system to examine core services for priority interventions related to neurologic disease: (1) service delivery; (2) health workforce; (3) information; (4) medical products, vaccines, and technologies; (5) financing; and (6) leadership and governance. We demonstrate the use of a constraints analysis for neurologic disorders using the example of Timor-Leste, a newly sovereign and low-income country, which aims to improve neurologic care in the coming years.
Li, Mengjia; Zhou, Junyi; Gu, Xue; Wang, Yan; Huang, Xiaojing; Yan, Chao
2009-01-01
A quantitative CE (qCE) system with high precision has been developed, in which a 4-port nano-valve was isolated from the electric field and served as sample injector. The accurate amount of sample was introduced into the CE system with high reproducibility. Based on this system, consecutive injections and separations were performed without voltage interruption. Reproducibilities in terms of RSD lower than 0.8% for retention time and 1.7% for peak area were achieved. The effectiveness of the system was demonstrated by the quantitative analysis of caffeine, theobromine, and theophylline in real samples, such as tea leaf, roasted coffee, coca cola, and theophylline tablets.
Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T
2016-07-08
A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.
Tutorial: Crystal orientations and EBSD — Or which way is up?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton, T.B., E-mail: b.britton@imperial.ac.uk; Jiang, J.; Guo, Y.
2016-07-15
Electron backscatter diffraction (EBSD) is an automated technique that can measure the orientation of crystals in a sample very rapidly. There are many sophisticated software packages that present measured data. Unfortunately, due to crystal symmetry and differences in the set-up of microscope and EBSD software, there may be accuracy issues when linking the crystal orientation to a particular microstructural feature. In this paper we outline a series of conventions used to describe crystal orientations and coordinate systems. These conventions have been used to successfully demonstrate that a consistent frame of reference is used in the sample, unit cell, pole figuremore » and diffraction pattern frames of reference. We establish a coordinate system rooted in measurement of the diffraction pattern and subsequently link this to all other coordinate systems. A fundamental outcome of this analysis is to note that the beamshift coordinate system needs to be precisely defined for consistent 3D microstructure analysis. This is supported through a series of case studies examining particular features of the microscope settings and/or unambiguous crystallographic features. These case studies can be generated easily in most laboratories and represent an opportunity to demonstrate confidence in use of recorded orientation data. Finally, we include a simple software tool, written in both MATLAB® and Python, which the reader can use to compare consistency with their own microscope set-up and which may act as a springboard for further offline analysis. - Highlights: • Presentation of conventions used to describe crystal orientations • Three case studies that outline how conventions are consistent • Demonstrates a pathway for calibration and validation of EBSD based orientation measurements • EBSD computer code supplied for validation by the reader.« less
L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition
NASA Technical Reports Server (NTRS)
Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu
2010-01-01
Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.
NASA Astrophysics Data System (ADS)
Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi
2013-02-01
A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.
Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography
Schneider, Simon; Eppler, Florian; Weber, Marco; Olowojoba, Ganiu; Weiss, Patrick; Hübner, Christof; Mikonsaari, Irma; Freude, Wolfgang; Koos, Christian
2016-01-01
Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT. PMID:27557544
Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography.
Schneider, Simon; Eppler, Florian; Weber, Marco; Olowojoba, Ganiu; Weiss, Patrick; Hübner, Christof; Mikonsaari, Irma; Freude, Wolfgang; Koos, Christian
2016-08-25
Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT.
A knowledge-based system for monitoring the electrical power system of the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Eddy, Pat
1987-01-01
The design and the prototype for the expert system for the Hubble Space Telescope's electrical power system are discussed. This prototype demonstrated the capability to use real time data from a 32k telemetry stream and to perform operational health and safety status monitoring, detect trends such as battery degradation, and detect anomalies such as solar array failures. This prototype, along with the pointing control system and data management system expert systems, forms the initial Telemetry Analysis for Lockheed Operated Spacecraft (TALOS) capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongge; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Yang, Guidong
The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractionalmore » order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.« less
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni
2018-05-01
Recent experimental studies in the ZnO-"FeO"-SiO2 system in reducing atmosphere demonstrated significant discrepancies with the current FactSage thermodynamic model developed using previous experimental data in this system in equilibrium with metallic iron and air. The present experimental study on phase equilibria in the ZnO-"FeO"-SiO2-"Cu2O" system in equilibrium with liquid copper at 1250 °C (1523 K) at low copper oxide concentrations in slag was initiated and undertaken to resolve these discrepancies. A high-temperature equilibration-rapid quenching-electron-probe X-ray microanalysis (EPMA) technique using a primary phase substrate support and closed system approach with Cu metal introduced to determine effective equilibrium oxygen partial pressure from the Cumetal/Cu2Oslag equilibria was applied to provide accurate information on the liquidus and corresponding solid compositions in the spinel, willemite, and tridymite primary phase fields. The present results confirmed the accuracy of the FactSage model, resolved discrepancies, and demonstrated significant uncertainties in the recent studies by other authors on the system in the open reducing atmosphere. The present study shows how this closed system approach can be used to obtain key thermodynamic data on phase equilibria in systems containing volatile metal species, overcoming the limitations and uncertainties encountered in conventional open gas/condensed phase equilibration with these systems. The study highlights the importance of the focus on obtaining accurate experimental data and the risks of misleading information from inadequate experimental control and analysis. The study also demonstrates that continuing in-depth critical review and analysis of the elemental reactions taking place in complex systems is an essential step in phase equilibrium research.
Determining cantilever stiffness from thermal noise.
Lübbe, Jannis; Temmen, Matthias; Rahe, Philipp; Kühnle, Angelika; Reichling, Michael
2013-01-01
We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency f n , quality factor Q n and specifically the stiffness k n of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine k n from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequency range of 10 Hz to 1 kHz regardless of the eigenfrequency of the cantilever. We demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required simple instrumentation for spectral analysis is available in most experimental systems.
Print Still Matters in an E-Learning World, and Training Companies Need to Properly Manage It
ERIC Educational Resources Information Center
Kriesen, Gretchen L.
2011-01-01
This report demonstrates how the application of Behavioral Systems Analysis (BSA) methods assisted in assessing a small training company's Print Production Management (PPM) system. PPM is the process by which printed materials are conceptualized, estimated, released to a commercial printer, proofed, and delivered to the client. The current PPM…
NASA Technical Reports Server (NTRS)
Lang, H. R.; Conel, J. E.; Paylor, E. D.
1984-01-01
A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.
NASA Astrophysics Data System (ADS)
Flanagan, S.; Schachter, J. M.; Schissel, D. P.
2001-10-01
A Data Analysis Monitoring (DAM) system has been developed to monitor between pulse physics analysis at the DIII-D National Fusion Facility. The system allows for rapid detection of discrepancies in diagnostic measurements or the results from physics analysis codes. This enables problems to be detected and possibly fixed between pulses as opposed to after the experimental run has concluded thus increasing the efficiency of experimental time. An example of a consistency check is comparing the stored energy from integrating the measured kinetic profiles to that calculated from magnetic measurements by EFIT. This new system also tracks the progress of MDSplus dispatching of software for data analysis and the loading of analyzed data into MDSplus. DAM uses a Java Servlet to receive messages, Clips to implement expert system logic, and displays its results to multiple web clients via HTML. If an error is detected by DAM, users can view more detailed information so that steps can be taken to eliminate the error for the next pulse. A demonstration of this system including a simulated DIII-D pulse cycle will be presented.
Wang, Monan; Zhang, Kai; Yang, Ning
2018-04-09
To help doctors decide their treatment from the aspect of mechanical analysis, the work built a computer assisted optimal system for treatment of femoral neck fracture oriented to clinical application. The whole system encompassed the following three parts: Preprocessing module, finite element mechanical analysis module, post processing module. Preprocessing module included parametric modeling of bone, parametric modeling of fracture face, parametric modeling of fixed screw and fixed position and input and transmission of model parameters. Finite element mechanical analysis module included grid division, element type setting, material property setting, contact setting, constraint and load setting, analysis method setting and batch processing operation. Post processing module included extraction and display of batch processing operation results, image generation of batch processing operation, optimal program operation and optimal result display. The system implemented the whole operations from input of fracture parameters to output of the optimal fixed plan according to specific patient real fracture parameter and optimal rules, which demonstrated the effectiveness of the system. Meanwhile, the system had a friendly interface, simple operation and could improve the system function quickly through modifying single module.
A User's Guide for the Differential Reduced Ejector/Mixer Analysis "DREA" Program. 1.0
NASA Technical Reports Server (NTRS)
DeChant, Lawrence J.; Nadell, Shari-Beth
1999-01-01
A system of analytical and numerical two-dimensional mixer/ejector nozzle models that require minimal empirical input has been developed and programmed for use in conceptual and preliminary design. This report contains a user's guide describing the operation of the computer code, DREA (Differential Reduced Ejector/mixer Analysis), that contains these mathematical models. This program is currently being adopted by the Propulsion Systems Analysis Office at the NASA Glenn Research Center. A brief summary of the DREA method is provided, followed by detailed descriptions of the program input and output files. Sample cases demonstrating the application of the program are presented.
System Safety and the Unintended Consequence
NASA Technical Reports Server (NTRS)
Watson, Clifford
2012-01-01
The analysis and identification of risks often result in design changes or modification of operational steps. This paper identifies the potential of unintended consequences as an over-looked result of these changes. Examples of societal changes such as prohibition, regulatory changes including mandating lifeboats on passenger ships, and engineering proposals or design changes to automobiles and spaceflight hardware are used to demonstrate that the System Safety Engineer must be cognizant of the potential for unintended consequences as a result of an analysis. Conclusions of the report indicate the need for additional foresight and consideration of the potential effects of analysis-driven design, processing changes, and/or operational modifications.
Livingood, Wiliiam C; Coughlin, Susan; Bowman, Walter; Bryant, Thomas; Goldhagen, Jeffrey
2007-01-01
Public health systems are stressed by increasing demands and inadequate resources. This study was designed to demonstrate how economic impact analysis can estimate the economic value of a local public health system's infrastructure as well as the economic assets of an "Academic Health Department" model. This study involved the secondary analysis of publicly available data on health department finances and employment using proprietary software specifically designed to assess economic impacts. The health department's impact on the local community was estimated at over 100 million dollars, exceeding the economic impact of other recently studied local industries with no additional costs to local taxpayers.
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.
1981-01-01
An analytical technique was developed to predict the behavior of a rotor system subjected to sudden unbalance. The technique is implemented in the Turbine Engine Transient Rotor Analysis (TETRA) computer program using the component element method. The analysis was particularly aimed toward blade-loss phenomena in gas turbine engines. A dual-rotor, casing, and pylon structure can be modeled by the computer program. Blade tip rubs, Coriolis forces, and mechanical clearances are included. The analytical system was verified by modeling and simulating actual test conditions for a rig test as well as a full-engine, blade-release demonstration.
Modeling of multi-rotor torsional vibrations in rotating machinery using substructuring
NASA Technical Reports Server (NTRS)
Soares, Fola R.
1986-01-01
The application of FEM modeling techniques to the analysis of torsional vibrations in complex rotating systems is described and demonstrated, summarizing results reported by Soares (1985). A substructuring approach is used for determination of torsional natural frequencies and resonant-mode shapes, steady-state frequency-sweep analysis, identification of dynamically unstable speed ranges, and characterization of transient linear and nonlinear systems. Results for several sample problems are presented in diagrams, graphs, and tables. STORV, a computer code based on this approach, is in use as a preliminary design tool for drive-train torsional analysis in the High Altitude Wind Tunnel at NASA Lewis.
Redox flow cell development and demonstration project, calendar year 1976
NASA Technical Reports Server (NTRS)
1977-01-01
The major focus of the effort was the key technology issues that directly influence the fundamental feasibility of the overall redox concept. These issues were the development of a suitable semipermeable separator membrane for the system, the screening and study of candidate redox couples to achieve optimum cell performance, and the carrying out of systems analysis and modeling to develop system performance goals and cost estimates.
Satellite temperature monitoring and prediction system
NASA Technical Reports Server (NTRS)
Barnett, U. R.; Martsolf, J. D.; Crosby, F. L.
1980-01-01
The paper describes the Florida Satellite Freeze Forecast System (SFFS) in its current state. All data collection options have been demonstrated, and data collected over a three year period have been stored for future analysis. Presently, specific minimum temperature forecasts are issued routinely from November through March. The procedures for issuing these forecast are discussed. The automated data acquisition and processing system is described, and the physical and statistical models employed are examined.
On an interface of the online system for a stochastic analysis of the varied information flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorshenin, Andrey K.; MIREA, MGUPI; Kuzmin, Victor Yu.
The article describes a possible approach to the construction of an interface of an online asynchronous system that allows researchers to analyse varied information flows. The implemented stochastic methods are based on the mixture models and the method of moving separation of mixtures. The general ideas of the system functionality are demonstrated on an example for some moments of a finite normal mixture.
NASA Technical Reports Server (NTRS)
Landis, Kenneth H.; Glusman, Steven I.
1985-01-01
The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of ACAS characteristics; display mode switching logic. Findings from the literature review and the analysis and synthesis of desired control laws are reported in Volume 2. Conclusions drawn from pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.
In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System
Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James
2013-01-01
In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy. PMID:24516722
In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System.
Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James
2014-01-01
In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy.
NASA Technical Reports Server (NTRS)
Andrews, Alison E.
1987-01-01
An approach to analyzing CFD knowledge-based systems is proposed which is based, in part, on the concept of knowledge-level analysis. Consideration is given to the expert cooling fan design system, the PAN AIR knowledge system, grid adaptation, and expert zonal grid generation. These AI/CFD systems demonstrate that current AI technology can be successfully applied to well-formulated problems that are solved by means of classification or selection of preenumerated solutions.
Magnetic resonance signal moment determination using the Earth's magnetic field.
Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L
2015-03-01
We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. Copyright © 2015 Elsevier Inc. All rights reserved.
U.K. Foot and Mouth Disease: A Systemic Risk Assessment of Existing Controls.
Delgado, João; Pollard, Simon; Pearn, Kerry; Snary, Emma L; Black, Edgar; Prpich, George; Longhurst, Phil
2017-09-01
This article details a systemic analysis of the controls in place and possible interventions available to further reduce the risk of a foot and mouth disease (FMD) outbreak in the United Kingdom. Using a research-based network analysis tool, we identify vulnerabilities within the multibarrier control system and their corresponding critical control points (CCPs). CCPs represent opportunities for active intervention that produce the greatest improvement to United Kingdom's resilience to future FMD outbreaks. Using an adapted 'features, events, and processes' (FEPs) methodology and network analysis, our results suggest that movements of animals and goods associated with legal activities significantly influence the system's behavior due to their higher frequency and ability to combine and create scenarios of exposure similar in origin to the U.K. FMD outbreaks of 1967/8 and 2001. The systemic risk assessment highlights areas outside of disease control that are relevant to disease spread. Further, it proves to be a powerful tool for demonstrating the need for implementing disease controls that have not previously been part of the system. © 2016 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.
NASA Technical Reports Server (NTRS)
Cassarino, S.; Sopher, R.
1982-01-01
user instruction and software descriptions for the base program of the coupled rotor/airframe vibration analysis are provided. The functional capabilities and procedures for running the program are provided. Interfaces with external programs are discussed. The procedure of synthesizing a dynamic system and the various solution methods are described. Input data and output results are presented. Detailed information is provided on the program structure. Sample test case results for five representative dynamic configurations are provided and discussed. System response are plotted to demonstrate the plots capabilities available. Instructions to install and execute SIMVIB on the CDC computer system are provided.
Automated daily quality control analysis for mammography in a multi-unit imaging center.
Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli
2018-01-01
Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.
Exploration Laboratory Analysis
NASA Technical Reports Server (NTRS)
Krihak, M.; Ronzano, K.; Shaw, T.
2016-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the downselection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institute's rHEALTH X and Intelligent Optical System's lateral flow assays combined with Holomic's smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements. The technology demonstrations and metrics for success will be finalized in FY16. Also, the downselected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.
NASA Astrophysics Data System (ADS)
Razavi, Saman; Gupta, Hoshin V.
2015-05-01
Sensitivity analysis is an essential paradigm in Earth and Environmental Systems modeling. However, the term "sensitivity" has a clear definition, based in partial derivatives, only when specified locally around a particular point (e.g., optimal solution) in the problem space. Accordingly, no unique definition exists for "global sensitivity" across the problem space, when considering one or more model responses to different factors such as model parameters or forcings. A variety of approaches have been proposed for global sensitivity analysis, based on different philosophies and theories, and each of these formally characterizes a different "intuitive" understanding of sensitivity. These approaches focus on different properties of the model response at a fundamental level and may therefore lead to different (even conflicting) conclusions about the underlying sensitivities. Here we revisit the theoretical basis for sensitivity analysis, summarize and critically evaluate existing approaches in the literature, and demonstrate their flaws and shortcomings through conceptual examples. We also demonstrate the difficulty involved in interpreting "global" interaction effects, which may undermine the value of existing interpretive approaches. With this background, we identify several important properties of response surfaces that are associated with the understanding and interpretation of sensitivities in the context of Earth and Environmental System models. Finally, we highlight the need for a new, comprehensive framework for sensitivity analysis that effectively characterizes all of the important sensitivity-related properties of model response surfaces.
NASA Astrophysics Data System (ADS)
Hadjimichael, A.; Corominas, L.; Comas, J.
2017-12-01
With sustainable development as their overarching goal, urban wastewater system (UWS) managers need to take into account multiple social, economic, technical and environmental facets related to their decisions. In this complex decision-making environment, uncertainty can be formidable. It is present both in the ways the system is interpreted stochastically, but also in its natural ever-shifting behavior. This inherent uncertainty suggests that wiser decisions would be made under an adaptive and iterative decision-making regime. No decision-support framework has been presented in the literature to effectively addresses all these needs. The objective of this work is to describe such a conceptual framework to evaluate and compare alternative solutions for various UWS challenges within an adaptive management structure. Socio-economic aspects such as externalities are taken into account, along with other traditional criteria as necessary. Robustness, reliability and resilience analyses test the performance of the system against present and future variability. A valuation uncertainty analysis incorporates uncertain valuation assumptions in the decision-making process. The framework is demonstrated with an application to a case study presenting a typical problem often faced by managers: poor river water quality, increasing population, and more stringent water quality legislation. The application of the framework made use of: i) a cost-benefit analysis including monetized environmental benefits and damages; ii) a robustness analysis of system performance against future conditions; iii) reliability and resilience analyses of the system given contextual variability; and iv) a valuation uncertainty analysis of model parameters. The results suggest that the installation of bigger volumes would give rise to increased benefits despite larger capital costs, as well as increased robustness and resilience. Population numbers appear to affect the estimated benefits most, followed by electricity prices and climate change projections. The presented framework is expected to be a valuable tool for the next generation of UWS decision-making and the application demonstrates a novel and valuable integration of metrics and methods for UWS analysis.
Application of systems and control theory-based hazard analysis to radiation oncology.
Pawlicki, Todd; Samost, Aubrey; Brown, Derek W; Manger, Ryan P; Kim, Gwe-Ya; Leveson, Nancy G
2016-03-01
Both humans and software are notoriously challenging to account for in traditional hazard analysis models. The purpose of this work is to investigate and demonstrate the application of a new, extended accident causality model, called systems theoretic accident model and processes (STAMP), to radiation oncology. Specifically, a hazard analysis technique based on STAMP, system-theoretic process analysis (STPA), is used to perform a hazard analysis. The STPA procedure starts with the definition of high-level accidents for radiation oncology at the medical center and the hazards leading to those accidents. From there, the hierarchical safety control structure of the radiation oncology clinic is modeled, i.e., the controls that are used to prevent accidents and provide effective treatment. Using STPA, unsafe control actions (behaviors) are identified that can lead to the hazards as well as causal scenarios that can lead to the identified unsafe control. This information can be used to eliminate or mitigate potential hazards. The STPA procedure is demonstrated on a new online adaptive cranial radiosurgery procedure that omits the CT simulation step and uses CBCT for localization, planning, and surface imaging system during treatment. The STPA procedure generated a comprehensive set of causal scenarios that are traced back to system hazards and accidents. Ten control loops were created for the new SRS procedure, which covered the areas of hospital and department management, treatment design and delivery, and vendor service. Eighty three unsafe control actions were identified as well as 472 causal scenarios that could lead to those unsafe control actions. STPA provides a method for understanding the role of management decisions and hospital operations on system safety and generating process design requirements to prevent hazards and accidents. The interaction of people, hardware, and software is highlighted. The method of STPA produces results that can be used to improve safety and prevent accidents and warrants further investigation.
NASA Technical Reports Server (NTRS)
1987-01-01
The objective was to design, fabricate and test an integrated cryogenic test article incorporating both fluid and thermal propellant management subsystems. A 2.2 m (87 in) diameter aluminum test tank was outfitted with multilayer insulation, helium purge system, low-conductive tank supports, thermodynamic vent system, liquid acquisition device and immersed outflow pump. Tests and analysis performed on the start basket liquid acquisition device and studies of the liquid retention characteristics of fine mesh screens are discussed.
Classification of Phase Transitions by Microcanonical Inflection-Point Analysis
NASA Astrophysics Data System (ADS)
Qi, Kai; Bachmann, Michael
2018-05-01
By means of the principle of minimal sensitivity we generalize the microcanonical inflection-point analysis method by probing derivatives of the microcanonical entropy for signals of transitions in complex systems. A strategy of systematically identifying and locating independent and dependent phase transitions of any order is proposed. The power of the generalized method is demonstrated in applications to the ferromagnetic Ising model and a coarse-grained model for polymer adsorption onto a substrate. The results shed new light on the intrinsic phase structure of systems with cooperative behavior.
[The ways in which variations in space and atmospheric factors act upon the biosphere and humans].
Chernogor, L F
2010-01-01
The system analysis is validated to be an efficient means for studying the channels through which variations in space and tropospheric weather affect the biosphere (humans). The basics of the system analysis paradigm are presented. The causes of variations in space and tropospheric weather are determined, and the interrelations between them are demonstrated. The ways in which these variations affect the biosphere (humans) are discussed. Aperiodic and quasi-periodic disturbances in the physical fields that influence the biosphere (humans) are intercompared.
Design and Analysis of a Hyperspectral Microwave Receiver Subsystem
NASA Technical Reports Server (NTRS)
Blackwell, W.; Galbraith, C.; Hancock, T.; Leslie, R.; Osaretin, I.; Shields, M.; Racette, P.; Hillard, L.
2012-01-01
Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance. HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth. A principal challenge is Size/Weight/Power scaling. Objectives of this work: 1) Demonstrate ultra-compact (100 cm3) 52-channel IF processor (enabler); 2) Demonstrate a hyperspectral microwave receiver subsystem; and 3) Deliver a flight-ready system to validate HM sounding.
1996-10-01
aligned using an octree search algorithm combined with cross correlation analysis . Successive 4x downsampling with optional and specifiable neighborhood...desired and the search engine embedded in the OODBMS will find the requested imagery and que it to the user for further analysis . This application was...obtained during Hoftmann-LaRoche production pathology imaging performed at UMICH. Versant works well and is easy to use; 3) Pathology Image Analysis
New Mexico’s comprehensive impaired-driving program : crash data analysis.
DOT National Transportation Integrated Search
2014-03-01
In late 2004, the National Highway Traffic Safety Administration provided funds through a Cooperative Agreement to the New Mexico Department of Transportation to demonstrate a process for implementing a comprehensive State impaired-driving system. NH...
Space fabrication demonstration system: Executive summary. [for large space structures
NASA Technical Reports Server (NTRS)
1979-01-01
The results of analysis and tests conducted to define the basic 1-m beam configuration required, and the design, development, fabrication, and verification tests of the machine required to automatically produce these beams are presented.
Gray, Aaron D; Willis, Brad W; Skubic, Marjorie; Huo, Zhiyu; Razu, Swithin; Sherman, Seth L; Guess, Trent M; Jahandar, Amirhossein; Gulbrandsen, Trevor R; Miller, Scott; Siesener, Nathan J
Noncontact anterior cruciate ligament (ACL) injury in adolescent female athletes is an increasing problem. The knee-ankle separation ratio (KASR), calculated at initial contact (IC) and peak flexion (PF) during the drop vertical jump (DVJ), is a measure of dynamic knee valgus. The Microsoft Kinect V2 has shown promise as a reliable and valid marker-less motion capture device. The Kinect V2 will demonstrate good to excellent correlation between KASR results at IC and PF during the DVJ, as compared with a "gold standard" Vicon motion analysis system. Descriptive laboratory study. Level 2. Thirty-eight healthy volunteer subjects (20 male, 18 female) performed 5 DVJ trials, simultaneously measured by a Vicon MX-T40S system, 2 AMTI force platforms, and a Kinect V2 with customized software. A total of 190 jumps were completed. The KASR was calculated at IC and PF during the DVJ. The intraclass correlation coefficient (ICC) assessed the degree of KASR agreement between the Kinect and Vicon systems. The ICCs of the Kinect V2 and Vicon KASR at IC and PF were 0.84 and 0.95, respectively, showing excellent agreement between the 2 measures. The Kinect V2 successfully identified the KASR at PF and IC frames in 182 of 190 trials, demonstrating 95.8% reliability. The Kinect V2 demonstrated excellent ICC of the KASR at IC and PF during the DVJ when compared with the Vicon system. A customized Kinect V2 software program demonstrated good reliability in identifying the KASR at IC and PF during the DVJ. Reliable, valid, inexpensive, and efficient screening tools may improve the accessibility of motion analysis assessment of adolescent female athletes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friese, Ryan; Khemka, Bhavesh; Maciejewski, Anthony A
Rising costs of energy consumption and an ongoing effort for increases in computing performance are leading to a significant need for energy-efficient computing. Before systems such as supercomputers, servers, and datacenters can begin operating in an energy-efficient manner, the energy consumption and performance characteristics of the system must be analyzed. In this paper, we provide an analysis framework that will allow a system administrator to investigate the tradeoffs between system energy consumption and utility earned by a system (as a measure of system performance). We model these trade-offs as a bi-objective resource allocation problem. We use a popular multi-objective geneticmore » algorithm to construct Pareto fronts to illustrate how different resource allocations can cause a system to consume significantly different amounts of energy and earn different amounts of utility. We demonstrate our analysis framework using real data collected from online benchmarks, and further provide a method to create larger data sets that exhibit similar heterogeneity characteristics to real data sets. This analysis framework can provide system administrators with insight to make intelligent scheduling decisions based on the energy and utility needs of their systems.« less
NASA Technical Reports Server (NTRS)
1979-01-01
The SEASAT-A commercial demonstration program ASVT is described. The program consists of a set of experiments involving the evaluation of a real time data distributions system, the SEASAT-A user data distribution system, that provides the capability for near real time dissemination of ocean conditions and weather data products from the U.S. Navy Fleet Numerical Weather Central to a selected set of commercial and industrial users and case studies, performed by commercial and industrial users, using the data gathered by SEASAT-A during its operational life. The impact of the SEASAT-A data on business operations is evaluated by the commercial and industrial users. The approach followed in the performance of the case studies, and the methodology used in the analysis and integration of the case study results to estimate the actual and potential economic benefits of improved ocean condition and weather forecast data are described.
Efficiency evaluation with feedback for regional water use and wastewater treatment
NASA Astrophysics Data System (ADS)
Hu, Zhineng; Yan, Shiyu; Yao, Liming; Moudi, Mahdi
2018-07-01
Clean water is crucial for sustainable economic and social development; however, around the world low water use efficiency and increasing water pollution have become serious problems. To comprehensively evaluate water use and wastewater treatment, this paper integrated bi-level programming (BLP) and Data Envelopment Analysis (DEA) with a feedback variable to deal with poor output to rank DMUs using a super efficiency DEA. The proposed model was applied to a case study of 10 cities in the Minjiang River Basin to demonstrate the applicability and effectiveness, from which it was found that a water system can only be cost-efficient when both the water use and wastewater treatment subsystems are both cost-efficient. The comparison analysis demonstrated that the proposed model was more discriminating, and stable than traditional DEA models and was able to better improve total water system cost efficiencies than a BLP-DEA model.
Overview of the NASA Entry, Descent and Landing Systems Analysis Exploration Feed-Forward Study
NASA Technical Reports Server (NTRS)
DwyerCianciolo, Alicia M.; Zang, Thomas A.; Sostaric, Ronald R.; McGuire, M. Kathy
2011-01-01
Technology required to land large payloads (20 to 50 mt) on Mars remains elusive. In an effort to identify the most viable investment path, NASA and others have been studying various concepts. One such study, the Entry, Descent and Landing Systems Analysis (EDLSA) Study [1] identified three potential options: the rigid aeroshell, the inflatable aeroshell and supersonic retropropulsion (SRP). In an effort to drive out additional levels of design detail, a smaller demonstrator, or exploration feed-forward (EFF), robotic mission was devised that utilized two of the three (inflatable aeroshell and SRP) high potential technologies in a configuration to demonstrate landing a two to four metric ton payload on Mars. This paper presents and overview of the maximum landed mass, inflatable aeroshell controllability and sensor suite capability assessments of the selected technologies and recommends specific technology areas for additional work.
Case Study for the ARRA-Funded Ground Source Heat Pump Demonstration at Ball State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Liu, Xiaobing; Henderson, Jr., Hugh
With funding provided by the American Recovery and Reinvestment Act (ARRA), 26 ground-source heat pump (GSHP) projects were competitively selected in 2009 to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. One of the selected demonstration projects is a district central GSHP system installed at Ball State University (BSU) in Muncie, IN. Prior to implementing the district GSHP system, 47 major buildings in BSU were served by a central steam plant with four coal-fired and three natural-gas-fired steam boilers. Cooling was provided by five water-cooled centrifugal chillers at the District Energy Station Southmore » (DESS). The new district GSHP system replaced the existing coal-fired steam boilers and conventional water-cooled chillers. It uses ground-coupled heat recovery (HR) chillers to meet the simultaneous heating and cooling demands of the campus. The actual performance of the GSHP system was analyzed based on available measured data from August 2015 through July 2016, construction drawings, maintenance records, personal communications, and construction costs. Since Phase 1 was funded in part by the ARRA grant, it is the focus of this case study. The annual energy consumption of the GSHP system was calculated based on the available measured data and other related information. It was compared with the performance of a baseline scenario— a conventional water-cooled chiller and natural-gas-fired boiler system, both of which meet the minimum energy efficiencies allowed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013). The comparison was made to determine source energy savings, energy cost savings, and CO2 emission reductions achieved by the GSHP system. A cost analysis was performed to evaluate the simple payback of the GSHP system. The following sections summarize the results of the analysis, the lessons learned, and recommendations for improvement in the operation of this district GSHP system.« less
User-driven integrated software lives: ``Paleomag'' paleomagnetics analysis on the Macintosh
NASA Astrophysics Data System (ADS)
Jones, Craig H.
2002-12-01
"PaleoMag," a paleomagnetics analysis package originally developed for the Macintosh operating system in 1988, allows examination of demagnetization of individual samples and analysis of directional data from collections of samples. Prior to recent reinvigorated development of the software for both Macintosh and Windows, it was widely used despite not running properly on machines and operating systems sold after 1995. This somewhat surprising situation demonstrates that there is a continued need for integrated analysis software within the earth sciences, in addition to well-developed scripting and batch-mode software. One distinct advantage of software like PaleoMag is in the ability to combine quality control with analysis within a unique graphical environment. Because such demands are frequent within the earth sciences, means of nurturing the development of similar software should be found.